WO2011021563A1 - Polyester film for molding - Google Patents

Polyester film for molding Download PDF

Info

Publication number
WO2011021563A1
WO2011021563A1 PCT/JP2010/063689 JP2010063689W WO2011021563A1 WO 2011021563 A1 WO2011021563 A1 WO 2011021563A1 JP 2010063689 W JP2010063689 W JP 2010063689W WO 2011021563 A1 WO2011021563 A1 WO 2011021563A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
layer
film
polyester film
benzoxazin
Prior art date
Application number
PCT/JP2010/063689
Other languages
French (fr)
Japanese (ja)
Inventor
西河博以
齋藤智久
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2011021563A1 publication Critical patent/WO2011021563A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2519/00Labels, badges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention is excellent in moldability, particularly moldability under low temperature and low pressure, and excellent in solvent resistance, heat resistance and light resistance, and has a small environmental load, for example, for home appliances, automobile nameplates or building members. It is related with the polyester film for shaping
  • a polyvinyl chloride film is typical and has been preferably used in terms of workability, but the film has a problem of generation of toxic gas when the film burns due to a fire or the like.
  • problems such as bleed-out of plasticizers, and new materials with a small environmental load have been demanded due to recent needs for environmental resistance.
  • unstretched sheets made of polyester, polycarbonate and acrylic resin have been used in a wide range of fields as non-chlorine materials.
  • unstretched sheets made of a polyester resin are widely used because of their excellent mechanical properties, transparency, and economy.
  • unstretched polyester-based sheets containing polyethylene terephthalate and a substantially non-crystalline polyester-based resin in which the ethylene glycol component is replaced with another component are disclosed (for example, Patent Documents 1 to 5).
  • the above-mentioned unstretched polyester sheet satisfies market demands regarding moldability and laminate suitability, but because it is an unstretched sheet, it does not have sufficient heat resistance and solvent resistance and satisfies the high demands of the market. It hasn't been done yet.
  • Patent Documents 6 to 8 As a method for solving the above problems, a method using a biaxially stretched polyester film is clearly shown, and it is known that the moldability is particularly excellent at a low temperature and a low pressure (for example, Patent Documents 6 to 8).
  • Patent Documents 9 to 11 As a method for imparting light resistance, a method of adding an ultraviolet absorber is known (for example, Patent Documents 9 to 11).
  • polyester film satisfies the market demand for light resistance, it is not sufficient in satisfying both moldability and solvent resistance because it has a single-layer film structure, and it is highly demanded by the market. Not yet satisfied.
  • JP-A-9-156267 JP 2001-71669 A Japanese Patent Laid-Open No. 2001-80251 JP 2001-129951 A JP 2002-249651 A JP-A-64-40400 Japanese Patent Laid-Open No. 7-196821 JP-A-8-3227 Japanese Patent Laid-Open No. 2000-309652 JP 2003-111538 A Japanese Patent Laid-Open No. 2003-221606
  • An object of the present invention is to provide a low-loading polyester film for molding that can be suitably used as, for example, a home appliance, an automobile nameplate or a building member.
  • the gist of the present invention is a polyester film containing a UV absorber made of benzotriazole or a cyclic imino ester and having a light transmittance of 1% or less at a wavelength of 350 nm, the polyester film comprising: a base layer B; A laminated polyester film having at least one layer A adjacent to the layer B, wherein the base layer B has a melting point (TmB) in the range of 180 to 225 ° C., and the layer A has a melting point (TmA) of the base layer B
  • TmB melting point
  • TmA melting point
  • the molding polyester film is characterized by having a melting point higher than the melting point and a difference in melting point (TmA ⁇ TmB) in the range of 10 to 40 ° C.
  • the moldability particularly the moldability under a low temperature and a low pressure, the solvent resistance, the heat resistance, the light resistance, and the environmental load are small, for example, for home appliances, automobile nameplates or construction
  • the polyester film for molding which can be favorably used as a member for use can be provided at low cost, and the industrial value of the present invention is high.
  • the polyester constituting the film of the present invention is preferably terephthalic acid as the dicarboxylic acid component.
  • terephthalic acid oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid
  • One or more known dicarboxylic acids such as naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, and cyclohexanedicarboxylic acid may be included as a copolymerization component.
  • the diol component ethylene glycol is preferable.
  • propylene glycol trimethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol,
  • diols such as neopentyl glycol may be included as a copolymerization component.
  • the present invention is effective to adjust the amount of the third component in order to keep the melting point of each layer in the specified range.
  • Examples of the polymerization catalyst include antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds, and titanium compounds.
  • Titanium compounds include, for example, tetraalkyl titanates, tetraaryl titanates, titanyl oxalate salts, titanyl oxalate, chelate compounds containing titanium, titanium tetracarboxylates, and specifically tetraethyl titanate, tetrapropyl titanate, tetraphenyl Examples thereof include titanate or a partial hydrolyzate thereof, titanyl ammonium oxalate, potassium titanyl oxalate, titanium triacetylacetonate and the like.
  • inorganic particles that can be used include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, Examples thereof include lithium fluoride.
  • examples of the organic salt particles include calcium oxalate, terephthalate such as calcium, barium, zinc, manganese, and magnesium.
  • crosslinked polymer particles examples include divinylbenzene, styrene, acrylic acid, methacrylic acid, acrylic acid or a methacrylic acid vinyl monomer homopolymer or copolymer.
  • organic particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin may be used.
  • the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
  • the method for adding particles to the polyester is not particularly limited, and a conventionally known method can be adopted.
  • it can be added at any stage for producing the polyester, but the polycondensation reaction may proceed preferably after the esterification stage or after the transesterification reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder is done by methods.
  • the film of the present invention contains an ultraviolet absorber made of benzotriazole or cyclic imino ester, and the light transmittance at a wavelength of 350 nm is required to be 1% or less.
  • the light transmittance is preferably 8% or less, more preferably 0.6% or less. By imparting this property, it is possible to prevent the polyester film layer from deteriorating particularly when exposed to sunlight outdoors.
  • benzotriazole or cyclic imino ester is used for the ultraviolet absorber used from a viewpoint of heat resistance and economical efficiency.
  • benzotriazole ultraviolet absorber examples include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl).
  • cyclic imino ester ultraviolet absorber examples include 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one), 2-methyl-3,1-benzoxazine. -4-one, 2-butyl-3,1-benzoxazin-4-one, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1- Benzoxazin-4-one, 2- (4-biphenyl) -3,1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoylphenyl -3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-cyclohexyl-3,1-benzoxazin-4-one, 2-p- ( Or -) Phthalimidophenyl-3,1-benzox
  • the UV absorber When blending the above UV absorber into a film, it is exposed to high temperatures in the extrusion process, so the UV absorber uses a UV absorber with a decomposition start temperature of 290 ° C. or more to reduce process contamination during film formation. Preferred above.
  • the decomposed product of the ultraviolet absorber adheres to the roll group of the manufacturing apparatus during film formation, so that it may be reattached to the film or scratched. May be a flaw.
  • the total thickness of the polyester film of the present invention is not particularly limited because it is appropriately selected depending on the use for which the polyester film of the present invention is used, but is preferably 12 from the viewpoint of mechanical strength, handling properties, and productivity. ⁇ 100 ⁇ m.
  • the polyester film used as the base material of the present invention needs to have a multilayer structure.
  • at least one outer layer as a skin layer that is resistant to solvents, both moldability and solvent resistance can be achieved.
  • the ultraviolet absorber is blended in the polyester layer constituting the surface layer because the ultraviolet absorbing effect is high.
  • the method for achieving the multilayer structure is not particularly limited, but two or three or more layers of films are obtained by a so-called coextrusion method using two or three or more melt extruders because of its economical efficiency. It is preferable.
  • a polyester film having a base layer B and at least one outer layer A adjacent to the B layer, wherein the base layer B has a melting point (TmB) in the range of 180 to 225 ° C., and the melting point of the layer A ( TmA) is higher than the melting point of the base layer B, and the difference between the melting points (TmA ⁇ TmB) needs to be 10 to 40 ° C.
  • TmB melting point
  • the melting point (TmB) of the base layer is higher than 225 ° C.
  • the film is not deformed particularly at low temperature and low pressure, and the moldability is poor.
  • the difference in melting point (TmA-TmB) is less than 10 ° C, the solvent resistance necessary for the surface treatment on the film is given, and the film has poor moldability, etc. It is difficult to do.
  • the difference in melting point (TmA ⁇ TmB) is larger than 40 ° C., a phenomenon occurs in which a crack occurs between the base layer B and the outer layer A when the film is deformed, and peeling occurs at the interface.
  • coating layers such as an antistatic layer, an adhesive layer, and an oligomer precipitation preventing layer may be provided as long as the gist of the present invention is not impaired.
  • In-line coating is a method of coating within the process of producing a polyester film. Specifically, it is a method of coating at any stage from melt-extrusion of polyester to biaxial stretching, heat setting and winding. is there. Usually applied to either a substantially amorphous unstretched sheet obtained by melting and quenching, a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do. In these, the method of extending
  • the thickness of the coating layer is usually 0.001 to 10 ⁇ m, preferably 0.010 to 5 ⁇ m, and more preferably 0.015 to 2 ⁇ m as the thickness after drying.
  • the thickness of the coating layer is less than 0.001 ⁇ m, the effect such as antistatic may not be sufficiently improved.
  • the thickness of the coating layer exceeds 10 ⁇ m, so-called blocking may occur in which the coating layer acts like an adhesive and the films wound up on the roll adhere to each other.
  • Polyester composition The polyester film was dissolved in deuterated trifluoroacetic acid and analyzed by 1 H-NMR method to determine isophthalic acid content and 1,4-cyclohexanedimethanol content.
  • Thickness Obtained with a micrometer.
  • Tm Melting peak temperature
  • Heat resistance as a film for molding A release layer is formed on the polyester film, a mold having a length of 35 cm, a width of 25 cm, and a maximum depth of 3.0 cm is used. After preheating with an IR heater, the mold is preliminarily prepared by vacuum or pressure molding. Molding was performed. The heat resistance was evaluated according to the following criteria based on the state of melting of the film by preheating. ⁇ : It can withstand the processing temperature and can be used for preforming. (Triangle
  • X Perforation due to film melting or expansion due to film softening frequently occurs.
  • Solvent resistance as a film for molding As a substitute evaluation of defects occurring during printing, the polyester film was cut out, immersed in toluene for 30 seconds, and evaluated according to the following criteria. ⁇ : There is no change in transparency and the like compared to the sample before immersion. (Triangle
  • Formability as a film for molding Molds having different depths were used in the preforming process, and evaluation was performed based on the mold following ability.
  • A A mold having a depth of 2.0 cm is formed with a uniform thickness without causing film breakage or cracking.
  • A mold having a depth of 2.0 cm cannot be molded with a uniform thickness due to film breakage, cracking, or the like, but a mold having a depth of 1.0 cm can be molded with a uniform thickness.
  • X A mold having a depth of 1.0 cm cannot be molded with a uniform thickness due to film breakage, crack generation, or the like.
  • Interfacial peeling evaluation As a substitute evaluation for interfacial peeling, which frequently occurs during molding, evaluation was performed according to the following criteria. That is, a tensile test under an atmosphere of 100 ° C. was evaluated 5 times (10 times in total) in the longitudinal and lateral directions of the sample, and the evaluation was performed according to the following criteria. ⁇ : The phenomenon that only the surface layer breaks does not occur. ⁇ : The phenomenon that only the surface layer breaks occurs once or more and less than 5 times. X: The phenomenon which only the surface layer fractures occurs 5 times or more.
  • polyester raw material used in the following examples will be described.
  • terephthalic acid as the dicarboxylic acid component
  • ethylene glycol as the polyhydric alcohol component
  • a polyester chip containing no lubricant particle size and having an intrinsic viscosity of 0.66 dl / g by a conventional melt polymerization method was produced.
  • ⁇ Polyester 2> Using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the polyhydric alcohol component, 0.60 part of amorphous silica having an intrinsic viscosity of 0.66 dl / g and an average particle diameter of 2.5 ⁇ m by a conventional melt polymerization method The contained polyester chip was produced.
  • ⁇ Polyester 3> A raw material containing 0.50 part of amorphous silica having an average diameter of 2.5 ⁇ m polymerized by a conventional melt polycondensation method using isophthalic acid and terephthalic acid as dicarboxylic acid components and ethylene glycol as a polyhydric alcohol component, respectively. Chips were manufactured. The isophthalic acid content in the dicarboxylic acid component of this raw material was 16 mol%.
  • a UV absorbent-containing polyester chip was prepared by adding 10% by weight of Siasorb UV-3638 (CAS No. 18600-59-4) manufactured by Nippon Cytec Industries, Ltd. to polyester 1, and kneading in an extruder.
  • a UV absorbent-containing polyester chip was prepared by adding 10% by weight of Siasorb UV-3638 (CAS No. 18600-59-4) manufactured by Nippon Cytec Industries Co., Ltd. to polyester 4 and kneading in an extruder.
  • Example 1 Polyester 3 and polyester 6 are blended at a weight ratio of 40:60, melted in an extruder, supplied to the outer layer A of the laminated die, and polyester 1, polyester 4 and polyester 5 are fed to the inner layer B of the laminated die. : 30:50 by weight ratio.
  • the extrusion rate ratio of the outer layer A and the inner layer B is supplied at a ratio of 4:46, and two types and three layers of laminated polyester resin composed of the outer layer A / inner layer B / outer layer A are extruded into a film and cooled at 35 ° C. An unstretched film cast on a drum and rapidly solidified was produced.
  • the infrared heating heater and the heating roll were used in combination, and the film was stretched 3.2 times in the vertical direction between 85 ° C. rolls. Then, the film was stretched 4.2 times in the transverse direction while being heated at a temperature of 110 ° C., subjected to a heat treatment at 190 ° C. for 10 seconds, and simultaneously relaxed by 10% in the width direction to obtain a polyester film having a thickness of 50 ⁇ m.
  • the properties of the obtained film were as shown in Table 1. From these results, it was found that both heat resistance and solvent resistance were good, moldability and interfacial peeling were satisfactory, and light resistance was excellent.
  • Example 2 In Example 1, the raw materials supplied to the outer layer A were polyester 2 and polyester 7 40:60, and the raw materials supplied to the inner layer B were polyester 1: polyester 4: polyester 5 5:50:45. In the same manner as in Example 1, a 50 ⁇ m thick polyester film was obtained.
  • Example 3 In Example 1, a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the raw materials supplied to the outer layer A were 40:60 for polyester 3 and polyester 6.
  • Example 4 In Example 1, a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the raw materials supplied to the outer layer A were 40:60 for polyester 2 and polyester 6.
  • Example 5 In Example 2, a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the raw material supplied to the outer layer A was 10:30:60 for polyester 2, polyester 4 and polyester 7.
  • Example 6 In Example 2, a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 2 except that the raw materials supplied to the outer layer A were 40:15:45 for polyester 3, polyester 4, and polyester 6.
  • Comparative Example 1 A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 2 except that the raw materials supplied to the outer layer A in Example 2 were changed to 60:40 for polyester 1 and polyester 3. The obtained film was greatly inferior in light resistance.
  • Example 1 a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 2 except that the raw material supplied to the outer layer A was 40:30:30 for polyester 3, polyester 4 and polyester 6. The obtained film was inferior in light resistance.
  • Example 4 a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 4 except that the raw materials supplied to the inner layer B were 55:45 for polyester 1 and polyester 4. The obtained film was inferior in moldability.
  • Example 1 a polyester film having a thickness of 50 ⁇ m is obtained in the same manner as in Example 1 except that polyester 5 and polyester 7 are 40:60 as raw materials supplied to the outer layer A and polyester 5 is used as a raw material supplied to the inner layer B. It was. The obtained film was inferior in heat resistance and solvent resistance.
  • Example 4 a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 4 except that the raw materials supplied to the inner layer B were polyester 1 and polyester 4 of 25:75. The obtained film was inferior to interfacial peeling, and tears, etc. that were considered to be caused by this property occurred frequently even when it was actually molded.
  • Comparative Example 6 In Comparative Example 4, a polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 4 except that the raw material supplied to the inner layer B was 30:70 for polyester 4 and polyester 5. Although heat resistance improved compared with the comparative example 4, it was still inferior to solvent resistance.
  • Comparative Example 7 Except that polyester 1, polyester 2, polyester 4, and polyester 6 were blended in a weight ratio of 40: 5: 50: 5, melted in an extruder, and a polyester resin composed of a single layer was extruded into a film. A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1. The obtained film was inferior in moldability.
  • Comparative Example 8 Except that polyester 3, polyester 4, polyester 5, and polyester 7 were blended at a weight ratio of 5: 35: 55: 5, melted in an extruder, and a polyester resin composed of a single layer was extruded into a film. A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1. The obtained film was inferior in solvent resistance.
  • the film of the present invention can be suitably used, for example, as a member for home appliances, automobile nameplates, or construction.

Abstract

Provided is an inexpensive polyester film which has excellent moldability, particularly moldability under a low temperature and a low pressure, has excellent solvent resistance, heat resistance, and light resistance, and imposes little environmental stress and is ideal for use in nameplates for home appliances and automobiles and in building materials. The polyester film contains a UV absorber formed from benzotriazole or cyclic imino ester and has a light transmittance of 1% or less at a wavelength of 350 nm. The polyester film is a laminated polyester film comprising a base layer B and at least one layer A adjacent to the layer B. The melting point of the base layer B (TmB) is within a range of 180ºC to 225ºC, the melting point of the layer A (TmA) is higher than the melting point of the base layer B, and the difference between said melting points (TmA - TmB) is within the range of 10ºC to 40ºC.

Description

成型用ポリエステルフィルムPolyester film for molding
 本発明は、成型性、特に低い温度および低い圧力下での成型性に優れ、かつ耐溶剤性、耐熱性、耐光性に優れ、環境負荷の小さい、例えば家電、自動車の銘板用または建築用部材として好適に用いることのできる成型用ポリエステルフィルムに関する。 The present invention is excellent in moldability, particularly moldability under low temperature and low pressure, and excellent in solvent resistance, heat resistance and light resistance, and has a small environmental load, for example, for home appliances, automobile nameplates or building members. It is related with the polyester film for shaping | molding which can be used suitably as.
 従来、成型用シートとしては、ポリ塩化ビニルフィルムが代表的であり、加工性などの点で好ましく使用されてきたが、当該フィルムには、火災などによりフィルムが燃焼した際の有毒ガス発生の問題、可塑剤のブリードアウトなどの問題があり、近年の耐環境性のニーズにより、環境負荷の小さい新しい素材が求められてきている。 Conventionally, as a sheet for molding, a polyvinyl chloride film is typical and has been preferably used in terms of workability, but the film has a problem of generation of toxic gas when the film burns due to a fire or the like. However, there are problems such as bleed-out of plasticizers, and new materials with a small environmental load have been demanded due to recent needs for environmental resistance.
 上記要求を満足させるために、非塩素系素材としてポリエステル、ポリカーボネートおよびアクリル系樹脂よりなる未延伸シートが広い分野において使用されてきている。特にポリエステル樹脂よりなる未延伸シートは、機械的特性、透明性、経済性に優れ広く採用されている。例えばポリエチレンテレフタレートおよびそのエチレングリコール成分を別の成分に置換した実質的に未結晶のポリエステル系樹脂を構成成分とする未延伸ポリエステル系シートが開示されている(例えば、特許文献1~5)。 In order to satisfy the above requirements, unstretched sheets made of polyester, polycarbonate and acrylic resin have been used in a wide range of fields as non-chlorine materials. In particular, unstretched sheets made of a polyester resin are widely used because of their excellent mechanical properties, transparency, and economy. For example, unstretched polyester-based sheets containing polyethylene terephthalate and a substantially non-crystalline polyester-based resin in which the ethylene glycol component is replaced with another component are disclosed (for example, Patent Documents 1 to 5).
 上記の未延伸ポリエステルシートは、成型性やラミネート適性に関しては市場要求を満足するものではあるが、未延伸シートであるため、耐熱性や耐溶剤性が十分ではなく、市場の高度な要求を満足させるまでには至っていない。 The above-mentioned unstretched polyester sheet satisfies market demands regarding moldability and laminate suitability, but because it is an unstretched sheet, it does not have sufficient heat resistance and solvent resistance and satisfies the high demands of the market. It hasn't been done yet.
 上記の問題を解決する方法として、二軸延伸ポリエステルフィルムを用いる方法が明示され、特に低い温度および低い圧力下での成型性に優れることが知られている(例えば、特許文献6~8)。 As a method for solving the above problems, a method using a biaxially stretched polyester film is clearly shown, and it is known that the moldability is particularly excellent at a low temperature and a low pressure (for example, Patent Documents 6 to 8).
 また、耐光性を付与する方法として、紫外線吸収剤を添加する方法が知られている(例えば、特許文献9~11)。 As a method for imparting light resistance, a method of adding an ultraviolet absorber is known (for example, Patent Documents 9 to 11).
 上記のポリエステルフィルムは、耐光性に関しては市場要求を満足するものではあるが、単層フィルム構成であるため、成型性と耐溶剤性の双方を満たす点で十分ではなく、市場の高度な要求を満足させるまでには至っていない。 Although the above polyester film satisfies the market demand for light resistance, it is not sufficient in satisfying both moldability and solvent resistance because it has a single-layer film structure, and it is highly demanded by the market. Not yet satisfied.
特開平9-156267号公報JP-A-9-156267 特開2001-71669号公報JP 2001-71669 A 特開2001-80251号公報Japanese Patent Laid-Open No. 2001-80251 特開2001-129951号公報JP 2001-129951 A 特開2002-249651号公報JP 2002-249651 A 特開昭64-40400号公報JP-A-64-40400 特開平7-196821号公報Japanese Patent Laid-Open No. 7-196821 特開平8-3227号公報JP-A-8-3227 特開2000-309652号公報Japanese Patent Laid-Open No. 2000-309652 特開2003-211538号公報JP 2003-111538 A 特開2003-211606号公報Japanese Patent Laid-Open No. 2003-221606
 本発明は上記実情に鑑みなされたものであって、その解決課題は、成型性、特に低い温度および低い圧力下での成型性に優れ、かつ耐溶剤性、耐熱性、耐光性に優れ、環境負荷の小さい、例えば家電、自動車の銘板用または建築用部材として好適に用いることのできる成型用ポリエステルフィルムを安価に提供することにある。 The present invention has been made in view of the above circumstances, and the problem to be solved is excellent moldability, particularly moldability under low temperature and low pressure, and excellent in solvent resistance, heat resistance, light resistance, and environment. An object of the present invention is to provide a low-loading polyester film for molding that can be suitably used as, for example, a home appliance, an automobile nameplate or a building member.
 本発明者らは、上記課題に鑑み鋭意検討した結果、特定の構成を有するフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。 As a result of intensive investigations in view of the above problems, the present inventors have found that the above problems can be easily solved by a film having a specific configuration, and the present invention has been completed.
 すなわち、本発明の要旨は、ベンゾトリアゾールまたは環状イミノエステルからなる紫外線吸収剤を含有する、波長350nmの光線透過率が1%以下のポリエステルフィルムであって、当該ポリエステルフィルムは、ベース層Bと、当該層Bに隣接する層Aを少なくとも1層有する積層ポリエステルフィルムであって、ベース層Bの融点(TmB)が180~225℃の範囲であり、層Aの融点(TmA)がベース層Bの融点より高く、その融点の差(TmA-TmB)が10~40℃の範囲であること特徴とする成型用ポリエステルフィルムに存する。 That is, the gist of the present invention is a polyester film containing a UV absorber made of benzotriazole or a cyclic imino ester and having a light transmittance of 1% or less at a wavelength of 350 nm, the polyester film comprising: a base layer B; A laminated polyester film having at least one layer A adjacent to the layer B, wherein the base layer B has a melting point (TmB) in the range of 180 to 225 ° C., and the layer A has a melting point (TmA) of the base layer B The molding polyester film is characterized by having a melting point higher than the melting point and a difference in melting point (TmA−TmB) in the range of 10 to 40 ° C.
 本発明によれば、成型性、特に低い温度および低い圧力下での成型性に優れ、かつ耐溶剤性、耐熱性、耐光性に優れ、環境負荷の小さい、例えば家電、自動車の銘板用または建築用部材として好的に用いることのできる成型用ポリエステルフィルムを安価に提供することができ、本発明の工業的価値は高い。 According to the present invention, the moldability, particularly the moldability under a low temperature and a low pressure, the solvent resistance, the heat resistance, the light resistance, and the environmental load are small, for example, for home appliances, automobile nameplates or construction The polyester film for molding which can be favorably used as a member for use can be provided at low cost, and the industrial value of the present invention is high.
 以下、本発明を詳細に説明する。
 本発明のフィルムを構成するポリエステルは、ジカルボン酸成分としては、テレフタル酸が好ましく、これらのほかに、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、シクロヘキサンジカルボン酸などの公知のジカルボン酸の一種以上を、共重合成分として含んでいてもよい。また、ジオール成分としては、エチレングリコールが好ましく、これらのほかに、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、ネオペンチルグリコールなどの公知のジオールの一種以上を、共重合成分として含んでいてもよい。
Hereinafter, the present invention will be described in detail.
The polyester constituting the film of the present invention is preferably terephthalic acid as the dicarboxylic acid component. Besides these, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, One or more known dicarboxylic acids such as naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, and cyclohexanedicarboxylic acid may be included as a copolymerization component. As the diol component, ethylene glycol is preferable. Besides these, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, One or more known diols such as neopentyl glycol may be included as a copolymerization component.
 本発明においてフィルム各層の融点を指定範囲に収めるためには上記第三成分の量を調整することが有効である。 In the present invention, it is effective to adjust the amount of the third component in order to keep the melting point of each layer in the specified range.
 重合触媒としては、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物やゲルマニウム化合物やチタン化合物が挙げられる。チタン化合物では、例えばテトラアルキルチタネート、テトラアリールチタネート、シュウ酸チタニル塩類、シュウ酸チタニル、チタンを含むキレート化合物、チタンのテトラカルボキシレート等であり、具体的にはテトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、シュウ酸チタニルアンモニウム、シュウ酸チタニルカリウム、チタントリアセチルアセトネート等が挙げられる。 Examples of the polymerization catalyst include antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds, and titanium compounds. Titanium compounds include, for example, tetraalkyl titanates, tetraaryl titanates, titanyl oxalate salts, titanyl oxalate, chelate compounds containing titanium, titanium tetracarboxylates, and specifically tetraethyl titanate, tetrapropyl titanate, tetraphenyl Examples thereof include titanate or a partial hydrolyzate thereof, titanyl ammonium oxalate, potassium titanyl oxalate, titanium triacetylacetonate and the like.
 また、本発明のポリエステルフィルムには、無機粒子、有機塩粒子や架橋高分子粒子を添加することが好ましい。用いることのできる無機粒子としては、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リチウム等が挙げられる。一方、有機塩粒子としては、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等が挙げられる。また、架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重合体が挙げられる。その他ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機粒子を用いてもよい。 In addition, it is preferable to add inorganic particles, organic salt particles and crosslinked polymer particles to the polyester film of the present invention. Inorganic particles that can be used include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, Examples thereof include lithium fluoride. On the other hand, examples of the organic salt particles include calcium oxalate, terephthalate such as calcium, barium, zinc, manganese, and magnesium. Examples of the crosslinked polymer particles include divinylbenzene, styrene, acrylic acid, methacrylic acid, acrylic acid or a methacrylic acid vinyl monomer homopolymer or copolymer. In addition, organic particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin may be used.
 使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。 The shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.
 ポリエステル中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後、重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。 The method for adding particles to the polyester is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester, but the polycondensation reaction may proceed preferably after the esterification stage or after the transesterification reaction. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.
 なお、本発明におけるポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、蛍光増白剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known antioxidants, heat stabilizers, lubricants, antistatic agents, fluorescent brighteners, dyes, pigments, and the like are added to the polyester film in the present invention as necessary. be able to.
 本発明のフィルムは、ベンゾトリアゾールまたは環状イミノエステルからなる紫外線吸収剤を含有し、波長350nmの光線透過率が1%以下であることが必要である。光線透過率は、好ましくは8%以下、さらに好ましくは0.6%以下である。本特性を付与することにより、特に屋外で太陽光にさらされた場合にポリエステルフィルム層が劣化することを防ぐことができる。また、使用する紫外線吸収剤には耐熱性および経済性の観点からベンゾトリアゾールまたは環状イミノエステルを用いる。 The film of the present invention contains an ultraviolet absorber made of benzotriazole or cyclic imino ester, and the light transmittance at a wavelength of 350 nm is required to be 1% or less. The light transmittance is preferably 8% or less, more preferably 0.6% or less. By imparting this property, it is possible to prevent the polyester film layer from deteriorating particularly when exposed to sunlight outdoors. Moreover, benzotriazole or cyclic imino ester is used for the ultraviolet absorber used from a viewpoint of heat resistance and economical efficiency.
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシヘキシル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-tert-ブチル-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-tert-ブチル-3’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-メトキシ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-シアノ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-tert-ブチル-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-ニトロ-2H-ベンゾトリアゾールなどが挙げられるが、特にこれらに限定されるものではない。 Examples of the benzotriazole ultraviolet absorber include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl). ) Phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyhexyl) phenyl ] -2H-benzotriazole, 2- [2′-hydroxy-3′-tert-butyl-5 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5′-tert -Butyl-3 '-(methacryloyloxyethyl) phenyl]- H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl ] -5-methoxy-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-cyano-2H-benzotriazole, 2- [2'-hydroxy-5'- (Methacryloyloxyethyl) phenyl] -5-tert-butyl-2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -5-nitro-2H-benzotriazole However, it is not particularly limited to these.
 環状イミノエステル系紫外線吸収剤としては、例えば、2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジンー4-オン)、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オン、2-(1-または2-ナフチル)-3,1-ベンゾオキサジン-4-オン、2-(4-ビフェニル)-3,1-ベンゾオキサジン-4-オン、2-p-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-p-ベンゾイルフェニル-3,1-ベンゾオキサジン-4-オン、2-p-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-シクロヘキシル-3,1-ベンゾオキサジン-4-オン、2-p-(またはm-)フタルイミドフェニル-3,1-ベンゾオキサジン-4-オン、2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)、2,2’-ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-エチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-デカメチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン、2,2’-(2,6-または1,5-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(1,4-シクロヘキシレン)ビス(3,1-ベンゾオキサジン-4-オン)、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ベンゼン、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,4,6-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,8-ジメチル-4H,6H-ベンゾ(1,2-d;5,4-d’)ビス-(1,3)-オキサジン-4,6-ジオン、2,7-ジメチル-4H,9H-ベンゾ(1,2-d;5,4-d’)ビス-(1,3)-オキサジン-4,9-ジオン、2,8-ジフェニル-4H,8H-ベンゾ(1,2-d;5,4-d’)ビス-(1,3)-オキサジン-4,6-ジオン、2,7-ジフェニル-4H,9H-ベンゾ(1,2-d;5,4-d’)ビス-(1,3)-オキサジン-4,6-ジオン、6,6’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-エチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、および6,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)などが挙げられる。 Examples of the cyclic imino ester ultraviolet absorber include 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one), 2-methyl-3,1-benzoxazine. -4-one, 2-butyl-3,1-benzoxazin-4-one, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1- Benzoxazin-4-one, 2- (4-biphenyl) -3,1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoylphenyl -3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-cyclohexyl-3,1-benzoxazin-4-one, 2-p- ( Or -) Phthalimidophenyl-3,1-benzoxazin-4-one, 2,2 '-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), 2,2'- Bis (3,1-benzoxazin-4-one), 2,2'-ethylenebis (3,1-benzoxazin-4-one), 2,2'-decamethylenebis (3,1-benzoxazine- 4-one), 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2, 2 '-(4,4'-diphenylene) bis (3,1-benzoxazin-4-one, 2,2'-m-phenylenebis (3,1-benzoxazin-4-one, 2,2'- (2,6- or 1,5-naphthalene) bis (3,1 Benzoxazin-4-one), 2,2 '-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2'-(2-nitro-p-phenylene) Bis (3,1-benzoxazin-4-one), 2,2 ′-(2-chloro-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(1, 4-cyclohexylene) bis (3,1-benzoxazin-4-one), 1,3,5-tri (3,1-benzoxazin-4-one-2-yl) benzene, 1,3,5- Tri (3,1-benzoxazin-4-one-2-yl) naphthalene, 2,4,6-tri (3,1-benzoxazin-4-one-2-yl) naphthalene, 2,8-dimethyl- 4H, 6H-benzo (1,2-d; 5,4-d ′) bis- (1, 3) -Oxazine-4,6-dione, 2,7-dimethyl-4H, 9H-benzo (1,2-d; 5,4-d ′) bis- (1,3) -oxazine-4,9- Dione, 2,8-diphenyl-4H, 8H-benzo (1,2-d; 5,4-d ′) bis- (1,3) -oxazine-4,6-dione, 2,7-diphenyl-4H , 9H-benzo (1,2-d; 5,4-d ′) bis- (1,3) -oxazine-4,6-dione, 6,6′-bis (2-methyl-4H, 3,1 -Benzoxazin-4-one), 6,6'-bis (2-ethyl-4H, 3,1-benzoxazin-4-one), 6,6'-bis (2-phenyl-4H, 3,1 -Benzoxazin-4-one), 6,6′-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), , 6′-methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-ethylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-butylenebis (2-methyl-4H, 3,1-benzoxazin-4-one) 6,6′-butylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-oxybis (2-methyl-4H, 3,1-benzoxazin-4-one) 6,6′-oxybis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-sulfonylbis (2-methyl-4H, 3,1-benzoxazin-4-one) ), 6,6'-sulfonyl (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-carbonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6 ′ -Carbonylbis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7,7'-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7 '-Methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7,7'-bis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7 '-Ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7'-oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 7, 7'-sulfonylbis (2-methyl-4H, 3 , 1-benzoxazin-4-one), 7,7′-carbonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7′-bis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7′-bis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,7′-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), and 6,7′-methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one).
 上記の紫外線吸収剤をフィルムに配合する場合は、押出工程で高温に晒されるので、紫外線吸収剤は分解開始温度が290℃以上の紫外線吸収剤を用いるのが製膜時の工程汚染を少なくする上で好ましい。分解開始温度が290℃未満の紫外線吸収剤を用いると製膜中に紫外線吸収剤の分解物が製造装置のロール群等に付着し、強いてはフィルムに再付着したり、キズをつけたりして光学的な欠陥となることがある。 When blending the above UV absorber into a film, it is exposed to high temperatures in the extrusion process, so the UV absorber uses a UV absorber with a decomposition start temperature of 290 ° C. or more to reduce process contamination during film formation. Preferred above. When an ultraviolet absorber having a decomposition start temperature of less than 290 ° C is used, the decomposed product of the ultraviolet absorber adheres to the roll group of the manufacturing apparatus during film formation, so that it may be reattached to the film or scratched. May be a flaw.
 本発明のポリエステルフィルムの総厚みは、本発明のポリエステルフィルムが使用される用途に応じ適宜選択されるため、特に限定されないが、機械的強度、ハンドリング性および生産性などの点から、好ましくは12~100μmである。 The total thickness of the polyester film of the present invention is not particularly limited because it is appropriately selected depending on the use for which the polyester film of the present invention is used, but is preferably 12 from the viewpoint of mechanical strength, handling properties, and productivity. ~ 100 μm.
 本発明の基材として用いられるポリエステルフィルムは多層構成が必要である。少なくとも一方の外層を溶剤に強いスキン層とすることで、成型性と耐溶剤性を両立させることができる。 The polyester film used as the base material of the present invention needs to have a multilayer structure. By forming at least one outer layer as a skin layer that is resistant to solvents, both moldability and solvent resistance can be achieved.
 3層以上の積層構造のフィルムの場合、紫外線吸収剤は、表層を構成するポリエステル層中に配合する方が、紫外線吸収効果が高く、好ましい。 In the case of a film having a laminated structure of three or more layers, it is preferable that the ultraviolet absorber is blended in the polyester layer constituting the surface layer because the ultraviolet absorbing effect is high.
 多層構成を達成するため方法に関しては特に限定されるものではないが、その経済性から溶融押出機を2台または3台以上用いる、いわゆる共押出法により、2層または3層以上のフィルムを得ることが好ましい。 The method for achieving the multilayer structure is not particularly limited, but two or three or more layers of films are obtained by a so-called coextrusion method using two or three or more melt extruders because of its economical efficiency. It is preferable.
 本発明において、ベース層Bと、B層に隣接した外層Aを少なくとも1層有するポリエステルフィルムであって、ベース層Bの融点(TmB)が180~225℃の範囲であり、層Aの融点(TmA)がベース層Bの融点より高く、その融点の差(TmA-TmB)が10~40℃あることが必要である。ベース層の融点(TmB)が180℃未満の場合、高温で使用する場合に穴が開いたり破れたりするなどの現象が発生する場合が多く、耐熱性に劣る。ベース層の融点(TmB)が225℃より高い場合、特に低い温度および低い圧力下でフィルムが変形せず、成型性に劣る。融点の差(TmA-TmB)が10℃未満の場合、フィルムの上に表面処理を実施する際に必要な耐溶剤性を持たせた場合、フィルムの成型性に劣るなど、2つの特性を両立させることが困難である。融点の差(TmA-TmB)が40℃より大きい場合、フィルムが変形した際にベース層Bと外層Aの間にクラックが入り、その界面で剥離してしまうという現象が起こってしまう。 In the present invention, a polyester film having a base layer B and at least one outer layer A adjacent to the B layer, wherein the base layer B has a melting point (TmB) in the range of 180 to 225 ° C., and the melting point of the layer A ( TmA) is higher than the melting point of the base layer B, and the difference between the melting points (TmA−TmB) needs to be 10 to 40 ° C. When the melting point (TmB) of the base layer is less than 180 ° C., a phenomenon such as opening or tearing often occurs when used at a high temperature, resulting in poor heat resistance. When the melting point (TmB) of the base layer is higher than 225 ° C., the film is not deformed particularly at low temperature and low pressure, and the moldability is poor. When the difference in melting point (TmA-TmB) is less than 10 ° C, the solvent resistance necessary for the surface treatment on the film is given, and the film has poor moldability, etc. It is difficult to do. When the difference in melting point (TmA−TmB) is larger than 40 ° C., a phenomenon occurs in which a crack occurs between the base layer B and the outer layer A when the film is deformed, and peeling occurs at the interface.
 本発明のフィルムにおいて本発明の主旨を損なわない範囲において、帯電防止層、接着層、オリゴマー析出防止層等の塗布層を設けてもよい。 In the film of the present invention, coating layers such as an antistatic layer, an adhesive layer, and an oligomer precipitation preventing layer may be provided as long as the gist of the present invention is not impaired.
 塗布層を設ける場合は、インラインコーティングにより設けられるのが好ましい。インラインコーティングは、ポリステルフイルム製造の工程内で塗布を行う方法であり、具体的には、ポリエステルを溶融押出ししてから二軸延伸後熱固定して巻き上げるまでの任意の段階で塗布を行う方法である。通常は、溶融・急冷して得られる実質的に非晶状態の未延伸シート、その後に長手方向(縦方向)に延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルムの何れかに塗布する。これらの中では、一軸延伸フィルムに塗布した後に横方向に延伸する方法が優れている。斯かる方法によれば、製膜と塗布乾燥を同時に行うことができるために製造コスト上のメリットがあり、塗布後に延伸を行うために薄膜塗布が容易であり、塗布後に施される熱処理が他の方法では達成されない高温であるために塗膜とポリエステルフィルムが強固に密着する。 When the coating layer is provided, it is preferably provided by in-line coating. In-line coating is a method of coating within the process of producing a polyester film. Specifically, it is a method of coating at any stage from melt-extrusion of polyester to biaxial stretching, heat setting and winding. is there. Usually applied to either a substantially amorphous unstretched sheet obtained by melting and quenching, a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do. In these, the method of extending | stretching to a horizontal direction after apply | coating to a uniaxially stretched film is excellent. According to such a method, since film formation and coating / drying can be performed simultaneously, there is a merit in manufacturing cost, thin film coating is easy to perform stretching after coating, and heat treatment performed after coating is not limited. Since the high temperature is not achieved by this method, the coating film and the polyester film are firmly adhered.
 塗布層の厚さは、乾燥後の厚さとして、通常0.001~10μm、好ましくは0.010~5μm、さらに好ましくは0.015~2μmである。塗布層の厚さが0.001μm未満の場合は、帯電防止等の効果が十分に改良されない場合がある。塗布層の厚さが10μmを超える場合は、塗布層が粘着剤のような作用してロールに巻き上げたフィルム同士が相互に接着する、いわゆるブロッキングを生じることがある。 The thickness of the coating layer is usually 0.001 to 10 μm, preferably 0.010 to 5 μm, and more preferably 0.015 to 2 μm as the thickness after drying. When the thickness of the coating layer is less than 0.001 μm, the effect such as antistatic may not be sufficiently improved. When the thickness of the coating layer exceeds 10 μm, so-called blocking may occur in which the coating layer acts like an adhesive and the films wound up on the roll adhere to each other.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
(1)極限粘度:
 測定試料をフェノール/テトラクロロエタン=50/50(重量部)の溶媒に溶解させて濃度c=0.01g/cmの溶液を調製し、30℃にて溶媒との相対粘度ηを測定し、極限粘度[η]を求めた。
(1) Intrinsic viscosity:
A measurement sample was dissolved in a solvent of phenol / tetrachloroethane = 50/50 (parts by weight) to prepare a solution having a concentration c = 0.01 g / cm 3 , and a relative viscosity η r with the solvent was measured at 30 ° C. The intrinsic viscosity [η] was determined.
(2)ポリエステル組成:
 ポリエステルフィルムを重水素化トリフルオロ酢酸に溶解し、1H-NMR法で分析してイソフタル酸含有量および1,4-シクロヘキサンジメタノール含有量を求めた。
(2) Polyester composition:
The polyester film was dissolved in deuterated trifluoroacetic acid and analyzed by 1 H-NMR method to determine isophthalic acid content and 1,4-cyclohexanedimethanol content.
(3)厚さ:
 マイクロメータにより求めた。
(3) Thickness:
Obtained with a micrometer.
(4)融解ピーク温度(Tm):
 ティーエーイインスツルメント社製の示差走査熱良計「MDSC2920型」を使用し、ポリエステル樹脂約5mgを0℃から300℃まで20℃/分の速度で昇温させた際に得られる融解に伴う吸熱ピークの温度をTmとした。上述の方法により得た融解ピーク温度の内、製膜したフィルムの外層(A層)のみをサンプリングし測定したものの融解ピーク温度を艶消し性外層A(TmA)とし、製膜したフィルムの外層(A層)を除去したフィルムから得られた融解ピーク温度をベース層Bの融点(TmB)とし、融点の差=(TmA)-(TmB)を求めた。
(4) Melting peak temperature (Tm):
Accompanied by melting obtained when a temperature difference of about 5 mg of a polyester resin is raised from 0 ° C. to 300 ° C. at a rate of 20 ° C./minute using a differential scanning calorimeter “MDSC 2920 type” manufactured by TA Instruments Inc. The temperature of the endothermic peak was Tm. Of the melting peak temperatures obtained by the above-mentioned method, only the outer layer (A layer) of the formed film was sampled and measured, and the melting peak temperature was defined as the matte outer layer A (TmA), and the outer layer of the formed film ( The melting peak temperature obtained from the film from which layer A) was removed was taken as the melting point (TmB) of base layer B, and the difference in melting points = (TmA) − (TmB) was determined.
(5)350nm透過率:
 分光光度計(島津製作所(株)製、UV-3100PC)を用いて、波長350nmの紫外領域における光線透過率を測定した。
(5) 350 nm transmittance:
The light transmittance in the ultraviolet region with a wavelength of 350 nm was measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV-3100PC).
(6)成型用フィルムとしての耐熱性:
 ポリエステルフィルム上に離型層を形成し、縦35cm、横25cm、最大深さ3.0cmの深さの金型を用い、IRヒータで予備加熱後、金型内部に真空または圧空成型法により予備成型を実施した。予備加熱によるフィルムの融解状況より、下記基準で耐熱性の評価を行った。
 ○:加工温度に耐久でき、予備成型に対応できる。
 △:予備成型に対応できるが、稀にフィルム軟化による膨張が発生する。
 ×:フィルム融解による穴あきあるいは、フィルム軟化による膨張が頻繁に発生する。
(6) Heat resistance as a film for molding:
A release layer is formed on the polyester film, a mold having a length of 35 cm, a width of 25 cm, and a maximum depth of 3.0 cm is used. After preheating with an IR heater, the mold is preliminarily prepared by vacuum or pressure molding. Molding was performed. The heat resistance was evaluated according to the following criteria based on the state of melting of the film by preheating.
○: It can withstand the processing temperature and can be used for preforming.
(Triangle | delta): Although it can respond to preforming, the expansion | swelling by film softening generate | occur | produces rarely.
X: Perforation due to film melting or expansion due to film softening frequently occurs.
(7)成型用フィルムとしての耐溶剤性:
 印刷時に起こる不良の代用評価としてポリエステルフィルム上を切り出し、トルエン中に30秒間浸漬し、以下の基準で評価を行った。
 ○:浸漬前のサンプルと比較し、透明度などに変化はない。
 △:浸漬前のサンプルと比較し、透明度が若干低下する。
 ×:浸漬前のサンプルと比較し、透明度が明らかに低下する(白化する)。
(7) Solvent resistance as a film for molding:
As a substitute evaluation of defects occurring during printing, the polyester film was cut out, immersed in toluene for 30 seconds, and evaluated according to the following criteria.
○: There is no change in transparency and the like compared to the sample before immersion.
(Triangle | delta): Transparency falls a little compared with the sample before immersion.
X: The transparency is clearly reduced (whitened) as compared with the sample before immersion.
(8)成型用フィルムとしての成型性:
 上記予備成型の過程で深さの異なる金型を使用し、その金型追従性により評価を行った。
 ○:深さ2.0cmの金型でフィルム破断、クラック発生等がなく、均一な厚さで成型される。
 △:深さ2.0cmの金型ではフィルム破断、クラック発生等により均一な厚さで成型できないが、深さ1.0cmの金型では均一な厚さで成型できる。
 ×:深さ1.0cmの金型でもフィルム破断、クラック発生等により均一な厚さで成型できない。
(8) Formability as a film for molding:
Molds having different depths were used in the preforming process, and evaluation was performed based on the mold following ability.
A: A mold having a depth of 2.0 cm is formed with a uniform thickness without causing film breakage or cracking.
Δ: A mold having a depth of 2.0 cm cannot be molded with a uniform thickness due to film breakage, cracking, or the like, but a mold having a depth of 1.0 cm can be molded with a uniform thickness.
X: A mold having a depth of 1.0 cm cannot be molded with a uniform thickness due to film breakage, crack generation, or the like.
(9)界面剥離評価:
 成型時に度々発生する、界面剥離の代用評価として、以下の基準により評価を行った。
 すなわち、100℃雰囲気下の引張試験をサンプルの縦方向、横方向について各5回(計10回)評価を行い、以下の基準により評価を実施した。
 ○:表層のみ破断する現象は発生しない。
 △:表層のみ破断する現象が1回以上、5回未満発生する。
 ×:表層のみ破断する現象が5回以上発生する。
(9) Interfacial peeling evaluation:
As a substitute evaluation for interfacial peeling, which frequently occurs during molding, evaluation was performed according to the following criteria.
That is, a tensile test under an atmosphere of 100 ° C. was evaluated 5 times (10 times in total) in the longitudinal and lateral directions of the sample, and the evaluation was performed according to the following criteria.
○: The phenomenon that only the surface layer breaks does not occur.
Δ: The phenomenon that only the surface layer breaks occurs once or more and less than 5 times.
X: The phenomenon which only the surface layer fractures occurs 5 times or more.
(10)耐光性評価:
 サンシャインウェザーメーター(スガ試験機(株)製、WEL-SUN-HCL型)を使用し、JIS-K-6783bに準じて、得られたポリエステルフィルムに1000時間(屋外暴露1年間に相当)照射することにより、屋外暴露促進試験を行った。その後にJIS Z8730に準拠し、色差(△E値)を測定した。色差(△E値)が小さい程、光照射前後における色の変化が小さい、すなわち耐光性に優れるため、下の基準により評価した。
 ○:△E値が2未満
 △:△E値が5未満
 ×:△E値が5以上
(10) Light resistance evaluation:
Using a sunshine weather meter (Suga Test Instruments Co., Ltd., WEL-SUN-HCL type), irradiate the resulting polyester film for 1000 hours (equivalent to 1 year of outdoor exposure) according to JIS-K-6783b. Thus, an outdoor exposure promotion test was conducted. Thereafter, the color difference (ΔE value) was measured according to JIS Z8730. The smaller the color difference (ΔE value), the smaller the color change before and after the light irradiation, that is, the better the light resistance.
○: ΔE value is less than 2 Δ: ΔE value is less than 5 ×: ΔE value is 5 or more
 次に以下の例において使用したポリエステル原料について説明する。
<ポリエステル1>
 ジカルボン酸成分としてテレフタル酸、多価アルコール成分としてエチレングリコールを使用し、定法の溶融重合法にて極限粘度が0.66dl/gとする滑剤粒径を含有しないポリエステルチップを製造した。
Next, the polyester raw material used in the following examples will be described.
<Polyester 1>
Using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the polyhydric alcohol component, a polyester chip containing no lubricant particle size and having an intrinsic viscosity of 0.66 dl / g by a conventional melt polymerization method was produced.
<ポリエステル2>
 ジカルボン酸成分としてテレフタル酸、多価アルコール成分としてエチレングリコールを使用し、定法の溶融重合法にて極限粘度が0.66dl/gとし平均粒径2.5μmの非晶質シリカを0.60部含有したポリエステルチップを製造した。
<Polyester 2>
Using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the polyhydric alcohol component, 0.60 part of amorphous silica having an intrinsic viscosity of 0.66 dl / g and an average particle diameter of 2.5 μm by a conventional melt polymerization method The contained polyester chip was produced.
<ポリエステル3>
 ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分としてエチレングリコールをそれぞれ使用し、常法の溶融重縮合法で重合し平均径2.5μmの非晶質シリカを0.50部含有した原料チップを製造した。この原料のジカルボン酸成分中のイソフタル酸含量は16モル%であった。
<Polyester 3>
A raw material containing 0.50 part of amorphous silica having an average diameter of 2.5 μm polymerized by a conventional melt polycondensation method using isophthalic acid and terephthalic acid as dicarboxylic acid components and ethylene glycol as a polyhydric alcohol component, respectively. Chips were manufactured. The isophthalic acid content in the dicarboxylic acid component of this raw material was 16 mol%.
<ポリエステル4>
 ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分としてエチレングリコールをそれぞれ使用し、常法の溶融重縮合法で重合した原料チップを製造した。この原料のジカルボン酸成分中のイソフタル酸含量は22モル%であった。
<Polyester 4>
Using diphthalic acid components as isophthalic acid and terephthalic acid, and polyhydric alcohol components as ethylene glycol, raw material chips polymerized by a conventional melt polycondensation method were produced. The isophthalic acid content in the dicarboxylic acid component of this raw material was 22 mol%.
<ポリエステル5>
 ジカルボン酸成分としてテレフタル酸、多価アルコール成分として1,4-シクロヘキサンジメタノールおよびエチレングリコールをそれぞれ使用し、常法の溶融重縮合法で重合した原料チップを製造した。この原料のジオール成分中の1,4-シクロヘキサンジメタノール含有量は33モル%であった。
<Polyester 5>
Using terephthalic acid as the dicarboxylic acid component and 1,4-cyclohexanedimethanol and ethylene glycol as the polyhydric alcohol component, raw material chips polymerized by a conventional melt polycondensation method were produced. The 1,4-cyclohexanedimethanol content in the diol component of this raw material was 33 mol%.
<ポリエステル6>
 日本サイテックインダストリー株式会社製、サイアソーブUV-3638(CAS番号18600-59-4)10重量%をポリエステル1に加え、押出機内で混練することによりUV吸収剤含有ポリエステルチップを作製した。
<Polyester 6>
A UV absorbent-containing polyester chip was prepared by adding 10% by weight of Siasorb UV-3638 (CAS No. 18600-59-4) manufactured by Nippon Cytec Industries, Ltd. to polyester 1, and kneading in an extruder.
<ポリエステル7>
 日本サイテックインダストリー株式会社製、サイアソーブUV-3638(CAS番号18600-59-4)10重量%をポリエステル4に加え、押出機内で混練することによりUV吸収剤含有ポリエステルチップを作製した。
<Polyester 7>
A UV absorbent-containing polyester chip was prepared by adding 10% by weight of Siasorb UV-3638 (CAS No. 18600-59-4) manufactured by Nippon Cytec Industries Co., Ltd. to polyester 4 and kneading in an extruder.
 実施例1:
 ポリエステル3とポリエステル6を40:60の重量比率で配合し、押出機にて溶融させて、積層ダイの外層Aに供給し、積層ダイの内層Bにはポリエステル1とポリエステル4とポリエステル5を20:30:50の重量比率で供給した。外層Aと内層Bの押出量比率を4:46の割合で供給し、外層A/内層B/外層Aの構成からなる2種3層の積層ポリエステル樹脂をフィルム状に押出して、35℃の冷却ドラム上にキャストして急冷固化した未延伸フィルムを作製した。次いで80℃の加熱ロールで予熱した後、赤外線加熱ヒータと加熱ロールを併用して85℃のロール間で縦方向に3.2倍延伸した後、次いでフィルム端部をクリップで把持してテンター内に導き、110℃の温度で加熱しつつ横方向に4.2倍延伸し、190℃で10秒間の熱処理を行うと同時に幅方向に10%弛緩を施して厚み50μmのポリエステルフィルムを得た。得られたフィルムの特性は表1に示す通りであった。この結果より、耐熱性、耐溶剤性、共に良好であり、成型性、界面剥離も問題なく、かつ耐光性に優れる結果が得られた。
Example 1:
Polyester 3 and polyester 6 are blended at a weight ratio of 40:60, melted in an extruder, supplied to the outer layer A of the laminated die, and polyester 1, polyester 4 and polyester 5 are fed to the inner layer B of the laminated die. : 30:50 by weight ratio. The extrusion rate ratio of the outer layer A and the inner layer B is supplied at a ratio of 4:46, and two types and three layers of laminated polyester resin composed of the outer layer A / inner layer B / outer layer A are extruded into a film and cooled at 35 ° C. An unstretched film cast on a drum and rapidly solidified was produced. Next, after preheating with a heating roll at 80 ° C., the infrared heating heater and the heating roll were used in combination, and the film was stretched 3.2 times in the vertical direction between 85 ° C. rolls. Then, the film was stretched 4.2 times in the transverse direction while being heated at a temperature of 110 ° C., subjected to a heat treatment at 190 ° C. for 10 seconds, and simultaneously relaxed by 10% in the width direction to obtain a polyester film having a thickness of 50 μm. The properties of the obtained film were as shown in Table 1. From these results, it was found that both heat resistance and solvent resistance were good, moldability and interfacial peeling were satisfactory, and light resistance was excellent.
 実施例2:
 実施例1において、外層Aに供給する原料をポリエステル2とポリエステル7を40:60とし、内層Bに供給する原料をポリエステル1:ポリエステル4:ポリエステル5を5:50:45とした以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。
Example 2:
In Example 1, the raw materials supplied to the outer layer A were polyester 2 and polyester 7 40:60, and the raw materials supplied to the inner layer B were polyester 1: polyester 4: polyester 5 5:50:45. In the same manner as in Example 1, a 50 μm thick polyester film was obtained.
 実施例3:
 実施例1において、外層Aに供給する原料をポリエステル3とポリエステル6を40:60とした以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。
Example 3:
In Example 1, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the raw materials supplied to the outer layer A were 40:60 for polyester 3 and polyester 6.
 実施例4:
 実施例1において、外層Aに供給する原料をポリエステル2とポリエステル6を40:60とした以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。
Example 4:
In Example 1, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the raw materials supplied to the outer layer A were 40:60 for polyester 2 and polyester 6.
 実施例5:
 実施例2において、外層Aに供給する原料をポリエステル2とポリエステル4とポリエステル7を10:30:60とした以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。
Example 5:
In Example 2, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the raw material supplied to the outer layer A was 10:30:60 for polyester 2, polyester 4 and polyester 7.
 実施例6:
 実施例2において、外層Aに供給する原料をポリエステル3とポリエステル4とポリエステル6を40:15:45とした以外は実施例2と同様にして厚み50μmのポリエステルフィルムを得た。
Example 6:
In Example 2, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 2 except that the raw materials supplied to the outer layer A were 40:15:45 for polyester 3, polyester 4, and polyester 6.
 比較例1:
 実施例2において外層Aに供給する原料をポリエステル1とポリエステル3を60:40にした以外は実施例2と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは耐光性に大きく劣るものであった。
Comparative Example 1:
A polyester film having a thickness of 50 μm was obtained in the same manner as in Example 2 except that the raw materials supplied to the outer layer A in Example 2 were changed to 60:40 for polyester 1 and polyester 3. The obtained film was greatly inferior in light resistance.
 比較例2:
 実施例1において、外層Aに供給する原料をポリエステル3とポリエステル4とポリエステル6を40:30:30とした以外は実施例2と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは耐光性に劣るものであった。
Comparative Example 2:
In Example 1, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 2 except that the raw material supplied to the outer layer A was 40:30:30 for polyester 3, polyester 4 and polyester 6. The obtained film was inferior in light resistance.
 比較例3:
 実施例4において、内層Bに供給する原料をポリエステル1とポリエステル4を55:45にした以外は実施例4と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは成型性に劣るものであった。
Comparative Example 3:
In Example 4, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 4 except that the raw materials supplied to the inner layer B were 55:45 for polyester 1 and polyester 4. The obtained film was inferior in moldability.
 比較例4:
 実施例1において、外層Aに供給する原料をポリエステル5とポリエステル7を40:60とし、内層Bに供給する原料をポリエステル5とした以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは耐熱性および耐溶剤性に劣るものであった。
Comparative Example 4:
In Example 1, a polyester film having a thickness of 50 μm is obtained in the same manner as in Example 1 except that polyester 5 and polyester 7 are 40:60 as raw materials supplied to the outer layer A and polyester 5 is used as a raw material supplied to the inner layer B. It was. The obtained film was inferior in heat resistance and solvent resistance.
 比較例5:
 実施例4において、内層Bに供給する原料をポリエステル1とポリエステル4を25:75とした以外は実施例4と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは界面剥離に劣り、実際に成型した際にも本特性が原因と考えられる破れなどが頻発した。
Comparative Example 5:
In Example 4, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 4 except that the raw materials supplied to the inner layer B were polyester 1 and polyester 4 of 25:75. The obtained film was inferior to interfacial peeling, and tears, etc. that were considered to be caused by this property occurred frequently even when it was actually molded.
 比較例6:
 比較例4において、内層Bに供給する原料をポリエステル4とポリエステル5を30:70とした以外は実施例4と同様にして厚み50μmのポリエステルフィルムを得た。比較例4と比較して耐熱性は向上したが、やはり耐溶剤性に劣るものであった。
Comparative Example 6:
In Comparative Example 4, a polyester film having a thickness of 50 μm was obtained in the same manner as in Example 4 except that the raw material supplied to the inner layer B was 30:70 for polyester 4 and polyester 5. Although heat resistance improved compared with the comparative example 4, it was still inferior to solvent resistance.
 比較例7:
 ポリエステル1とポリエステル2とポリエステル4とポリエステル6を40:5:50:5の重量比率で配合し、押出機にて溶融させて、単層構成からなるポリエステル樹脂をフィルム状に押出した以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは成型性に劣るものであった。
Comparative Example 7:
Except that polyester 1, polyester 2, polyester 4, and polyester 6 were blended in a weight ratio of 40: 5: 50: 5, melted in an extruder, and a polyester resin composed of a single layer was extruded into a film. A polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1. The obtained film was inferior in moldability.
 比較例8:
 ポリエステル3とポリエステル4とポリエステル5とポリエステル7を5:35:55:5の重量比率で配合し、押出機にて溶融させて、単層構成からなるポリエステル樹脂をフィルム状に押出した以外は実施例1と同様にして厚み50μmのポリエステルフィルムを得た。得られたフィルムは耐溶剤性に劣るものであった。
Comparative Example 8:
Except that polyester 3, polyester 4, polyester 5, and polyester 7 were blended at a weight ratio of 5: 35: 55: 5, melted in an extruder, and a polyester resin composed of a single layer was extruded into a film. A polyester film having a thickness of 50 μm was obtained in the same manner as in Example 1. The obtained film was inferior in solvent resistance.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明のフィルムは、例えば、家電、自動車の銘板用または建築用部材として好適に利用することができる。
 
The film of the present invention can be suitably used, for example, as a member for home appliances, automobile nameplates, or construction.

Claims (3)

  1.  ベンゾトリアゾールまたは環状イミノエステルからなる紫外線吸収剤を含有する、波長350nmの光線透過率が1%以下のポリエステルフィルムであって、当該ポリエステルフィルムは、ベース層Bと、当該層Bに隣接する層Aを少なくとも1層有する積層ポリエステルフィルムであって、ベース層Bの融点(TmB)が180~225℃の範囲であり、層Aの融点(TmA)がベース層Bの融点より高く、その融点の差(TmA-TmB)が10~40℃の範囲であること特徴とする成型用ポリエステルフィルム。 A polyester film containing a UV absorber composed of benzotriazole or a cyclic imino ester and having a light transmittance of 1% or less at a wavelength of 350 nm, the polyester film comprising a base layer B and a layer A adjacent to the layer B The base layer B has a melting point (TmB) in the range of 180 to 225 ° C., the layer A has a melting point (TmA) higher than the melting point of the base layer B, and the difference between the melting points A polyester film for molding, wherein (TmA-TmB) is in the range of 10 to 40 ° C.
  2.  分解開始温度が290℃以上の紫外線吸収剤を用いる請求項1に記載の成型用ポリエステルフィルム。 The molding polyester film according to claim 1, wherein an ultraviolet absorber having a decomposition start temperature of 290 ° C or higher is used.
  3.  紫外線吸収剤を含有するポリエステル層が表層を構成する請求項1又は2に記載の成型用ポリエステルフィルム。
     
    The polyester film for molding according to claim 1 or 2, wherein the polyester layer containing the ultraviolet absorber constitutes a surface layer.
PCT/JP2010/063689 2009-08-17 2010-08-12 Polyester film for molding WO2011021563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-188230 2009-08-17
JP2009188230A JP2011037192A (en) 2009-08-17 2009-08-17 Polyester film for molding

Publications (1)

Publication Number Publication Date
WO2011021563A1 true WO2011021563A1 (en) 2011-02-24

Family

ID=43607018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063689 WO2011021563A1 (en) 2009-08-17 2010-08-12 Polyester film for molding

Country Status (2)

Country Link
JP (1) JP2011037192A (en)
WO (1) WO2011021563A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238223A (en) * 1999-02-19 2000-09-05 Tsutsunaka Plast Ind Co Ltd Transparent composite resin laminate
JP2004284326A (en) * 2003-03-25 2004-10-14 Toray Ind Inc Laminated film
JP2006233138A (en) * 2005-02-28 2006-09-07 Toyobo Co Ltd Polyester film for molding
JP2008162221A (en) * 2006-12-31 2008-07-17 Mitsubishi Plastics Ind Ltd Polyester film for molding simultaneous transfer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264136A (en) * 2005-03-24 2006-10-05 Toray Ind Inc Polyester film for molding decoration material
JP4839012B2 (en) * 2005-04-05 2011-12-14 帝人デュポンフィルム株式会社 Polyester film for in-mold molding
JP2007203571A (en) * 2006-02-01 2007-08-16 Teijin Dupont Films Japan Ltd Polyester film for simultaneous molding and decoration
JP4548430B2 (en) * 2006-03-02 2010-09-22 東レ株式会社 White laminated polyester film for reflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238223A (en) * 1999-02-19 2000-09-05 Tsutsunaka Plast Ind Co Ltd Transparent composite resin laminate
JP2004284326A (en) * 2003-03-25 2004-10-14 Toray Ind Inc Laminated film
JP2006233138A (en) * 2005-02-28 2006-09-07 Toyobo Co Ltd Polyester film for molding
JP2008162221A (en) * 2006-12-31 2008-07-17 Mitsubishi Plastics Ind Ltd Polyester film for molding simultaneous transfer

Also Published As

Publication number Publication date
JP2011037192A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP3994351B2 (en) Polyester film for molding
JP5359992B2 (en) Polyester film for molding
JP5664201B2 (en) Biaxially oriented polyester film for molding
JP4573144B2 (en) Laminated polyester film for molding
JP5674227B2 (en) Polyester film for in-mold transfer
JP2006297853A (en) Film for use in molding
JP4232004B2 (en) Biaxially oriented polyester film
JP2010138261A (en) Polyester film for laminated glass, and its layered product
JP5070676B2 (en) Polyester film for molding
JP2012219168A (en) Heat shielding film
JP2010138262A (en) Polyester film for laminated glass, and its layered product
JP2010138024A (en) Polyester film for laminated glass, and laminated glass
JP5070677B2 (en) Polyester film for molding
JP6154626B2 (en) Softening polyester film
WO2011021563A1 (en) Polyester film for molding
JP2012162586A (en) Oriented polyester film for molding
JP2013237171A (en) Laminated polyester film
JP2012140498A (en) Biaxially oriented polyester film for concurrent deep drawing and transfer
JP2010260275A (en) Laminated polyester film for in-mold transfer foil
JP5607520B2 (en) Optical polyester film
JP5225828B2 (en) Polyester film for in-mold transfer foil
WO2013136875A1 (en) Biaxially oriented polyester film
JP2005187565A (en) White polyester film for molding and molded member obtained by using the same
JP2019014780A (en) Polyester resin composition
JP2010253678A (en) Polyester film for in-mold transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809908

Country of ref document: EP

Kind code of ref document: A1