WO2011021357A1 - Data reception circuit - Google Patents

Data reception circuit Download PDF

Info

Publication number
WO2011021357A1
WO2011021357A1 PCT/JP2010/004944 JP2010004944W WO2011021357A1 WO 2011021357 A1 WO2011021357 A1 WO 2011021357A1 JP 2010004944 W JP2010004944 W JP 2010004944W WO 2011021357 A1 WO2011021357 A1 WO 2011021357A1
Authority
WO
WIPO (PCT)
Prior art keywords
data signal
data
signal
delay
circuit
Prior art date
Application number
PCT/JP2010/004944
Other languages
French (fr)
Japanese (ja)
Inventor
武田憲明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011021357A1 publication Critical patent/WO2011021357A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/153Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant
    • H03K5/1532Peak detectors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00078Fixed delay
    • H03K2005/00136Avoiding asymmetry of delay for leading or trailing edge; Avoiding variations of delay due to threshold

Definitions

  • the technology disclosed in this specification relates to a circuit that receives data read from a memory or the like.
  • a data signal output from a DDR SDRAM Double Data Rate Synchronous Dynamic Random-Access Memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random-Access Memory
  • one bit is allocated in the period between the rising edge and the falling edge, and the signal level of that period is Data is represented by transitions.
  • the memory controller determines the level of the data signal at the timing of the rising edge and falling edge of the strobe signal. In order to make an accurate determination, it is necessary to adjust the phases of the data signal and the strobe signal so that the edge timing of the strobe signal is within a period in which the level of the data signal is constant.
  • Patent Document 1 describes a device that delays only the phase of the strobe signal DQS by 90 ° out of the data signal DQ and the strobe signal DQS sent from the memory in the same phase as an example of a technique for performing such adjustment. ing.
  • Digital televisions and digital video recorders are required to transmit large amounts of data at high speed within a limited time in order to process high-quality moving images.
  • An error in the transition timing of the data signal or strobe signal narrows the period during which data determination for each bit is possible. Since the time per bit decreases as the transmission speed increases, such a timing error has become a size that cannot be ignored for a period in which data determination is possible.
  • An object of the present invention is to reduce a steady delay difference between a rising edge and a falling edge of a data signal.
  • a data receiving circuit amplifies a data signal for transmitting data and outputs the amplified signal, and delays the output of the amplifying circuit in accordance with a first control signal and outputs the delayed signal as a first delayed data signal
  • a first delay circuit that delays the output of the amplifier circuit in accordance with a second control signal and outputs it as a second delayed data signal, an active edge of the first delayed data signal
  • a data signal reproduction circuit for generating and outputting a reproduction data signal based on an active edge of the second delayed data signal.
  • the timing of the rising edge and the timing of the falling edge of the data signal can be controlled independently. Therefore, it is possible to reduce the steady delay difference between the rising edge and the falling edge of the data signal.
  • the timing of the rising edge and the timing of the falling edge of the data signal can be controlled independently, the steady state between the rising edge and the falling edge of the data signal can be controlled.
  • the difference in delay can be reduced. Since a sufficient eye width in the eye pattern of the data signal can be secured, accurate data determination for the data signal can be performed.
  • FIG. 1 is a block diagram showing a configuration example of a data receiving circuit according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating a configuration example of the comparator of FIG. 1 to which a data signal is input.
  • FIG. 3 is a circuit diagram illustrating a configuration example of the comparator of FIG. 1 to which a differential data strobe signal is input.
  • FIG. 4 is a block diagram illustrating a configuration example of the delay circuit of FIG.
  • FIG. 5 is a timing chart showing signal waveforms at various parts of the data receiving circuit of FIG. 1 when the edge timing of the data signal is ideal.
  • FIG. 6 is a timing chart showing signal waveform examples of each part of the data receiving circuit of FIG. 1 when the timing of the falling edge of the data signal is earlier than that of FIG.
  • FIG. 1 is a block diagram showing a configuration example of a data receiving circuit according to an embodiment of the present invention.
  • 1 includes a comparator 12, 18 as an amplifier circuit, an inverter 14, delay circuits 21, 22, 23, 24, D flip-flops (hereinafter referred to as D-FF) 32, 42, 44.
  • the D-FF 32 operates as a data signal reproduction circuit, and the D-FFs 42 and 44 each operate as a data determination unit.
  • the data receiving circuit 100 is used for a controller circuit of, for example, a DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory).
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random-Access Memory
  • the memory 2 outputs a data signal DQ for transmitting data and data strobe signals DQS and DQSB.
  • the memory 2 is, for example, a DDR SDRAM.
  • the data strobe signal DQS periodically changes in level between “H” and “L”.
  • the data strobe signal DQSB is a signal having a phase opposite to that of the data strobe signal DQS, and the data strobe signals DQS and DQSB constitute a differential data strobe signal.
  • the comparator 12 amplifies and outputs the data signal DQ so that the amplitude becomes a predetermined magnitude. Specifically, the comparator 12 compares the voltage of the data signal DQ with the reference voltage VREF. When the data signal DQ is higher than the reference voltage VREF, the comparator 12 sets “H”, and when the data signal DQ is lower, “L”. Output as ROQ.
  • the inverter 14 inverts the data signal ROQ output from the comparator 12 and outputs the inverted signal as the data signal ROQB. Therefore, the timing of the rising edge of the data signal DQ is transmitted as the rising edge of the signal ROQ, and the timing of the falling edge of the data signal DQ is transmitted as the rising edge of the signal ROQB.
  • the comparator 18 amplifies and outputs the differential data strobe signals DQS and DQSB so that the amplitude becomes a predetermined magnitude. That is, the receiver circuit 18 outputs the data strobe signals DQS and DQSB with the higher potential at the “H” level and the lower potential at the “L” level. The comparator 18 outputs a positive-phase data strobe signal ROS and a negative-phase data strobe signal ROSB corresponding to the data strobe signals DQS and DQSB, respectively.
  • the timing of the rising edge of the data strobe signal DQS is transmitted as the timing of the rising edge of the signal ROS
  • the timing of the falling edge of the data strobe signal DQS is transmitted as the timing of the rising edge of the signal ROSB.
  • the delay circuit 21 delays the data signal ROQ according to the control signal CTL1, and outputs the obtained signal to the D-FF 32 as the delayed data signal DDQ.
  • the delay circuit 22 delays the data signal ROQB according to the control signal CTL2, and outputs the obtained signal to the D-FF 32 as a delayed data signal DDQB.
  • the delay circuit 23 delays the data strobe signal ROS according to the control signal CTL3, and outputs the obtained signal to the D-FF 42 as the delayed data strobe signal DDS.
  • the delay circuit 24 delays the data strobe signal ROSB in accordance with the control signal CTL4, and outputs the obtained signal to the D-FF 44 as a delayed data strobe signal DDSB.
  • the rising edges of the delayed data signals DDQ and DDQB and the delayed data strobe signals DDS and DDSB are all active edges.
  • the control signals CTL1 to CTL4 are input from a CPU or the like outside the data receiving circuit 100.
  • FIG. 2 is a circuit diagram showing a configuration example of the comparator 12 of FIG. 1 to which the data signal DQ is input.
  • the comparator 12 includes a differential amplifier 50 and inverters 58 and 59.
  • the differential amplifier 50 includes PMOS (p-channel Metal Oxide Semiconductor) transistors 51 and 52, NMOS (n-channel Metal Oxide Semiconductor) transistors 53 and 54, and a current source 55.
  • the source of the PMOS transistor 51 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the node N51.
  • the source of the PMOS transistor 52 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the nodes N51 and N52, respectively.
  • the source and drain of the NMOS transistor 53 are connected to nodes N54 and N51, respectively, and the data signal DQ is input to the gates thereof.
  • the source and drain of the NMOS transistor 54 are connected to nodes N54 and N52, respectively, and the reference voltage VREF is input to the gates thereof.
  • the current source 55 is connected between the node N54 and the ground GND.
  • the differential amplifier 50 compares the data signal DQ output from the SDRAM 2 with the reference voltage VREF, and outputs “H” as the potential of the node N52 when the potential of the data signal DQ is higher than the reference voltage VREF. In this case, “L” is output.
  • Inverter 58 inverts and outputs the potential of node N52, and inverter 59 further inverts the output of inverter 58 and outputs it as data signal ROQ. Therefore, the logic level of node N52 is output as data signal ROQ.
  • FIG. 3 is a circuit diagram showing a configuration example of the comparator 18 of FIG. 1 to which the differential data strobe signals DQS and DQSB are inputted.
  • the comparator 18 includes a differential amplifier 60 and inverters 68 and 69.
  • the differential amplifier 60 includes PMOS transistors 61 and 62, NMOS transistors 63 and 64, and a current source 65.
  • the source of the PMOS transistor 61 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the node N61.
  • the source of the PMOS transistor 62 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the nodes N61 and N62, respectively.
  • the source and drain of the NMOS transistor 63 are connected to the nodes N64 and N61, respectively, and the data strobe signal DQS is input to its gate.
  • the source and drain of the NMOS transistor 64 are connected to the nodes N64 and N62, respectively, and the data strobe signal DQSB is input to the gate.
  • the current source 65 is connected between the node N64 and the ground GND.
  • the differential amplifier 60 compares the data strobe signal DQS output from the SDRAM 2 with the data strobe signal DQSB, and outputs “H” as the potential of the node N62 when the potential of the data strobe signal DQS is higher than the data strobe signal DQSB. In other cases, “L” is output.
  • Inverter 68 inverts the potential of node N62 and outputs the inverted signal as data strobe signal ROSB.
  • Inverter 69 further inverts the output of inverter 68 and outputs it as data strobe signal ROS. Therefore, the logic level of node N62 is output as data strobe signal ROS.
  • FIG. 4 is a block diagram showing a configuration example of the delay circuit 21 in FIG.
  • the delay circuit 21 includes N (N is a natural number) delay cells 72_1, 72_2,..., 72_N, switches 74_0, 74_1, 74_2,. ing.
  • Delay cells 72_1 to 72_N have inverters INN and INP, respectively, and delay the input signal and output it.
  • the delay circuit 21 gives a delay according to the control signal CTL1 to the data signal ROQ input to the terminal IN and outputs the data signal from the terminal OUT.
  • the delay circuits 22 to 24 are configured in the same manner as the delay circuit 21.
  • the delay circuits 21 and 22 include the minimum value of the period from the active edge (rising edge) of the delayed data signal DDQ to the active edge (rising edge) of the delayed data signal DDQB, and the delay data signal DDQ from the active edge of the delayed data signal DDQB.
  • the data signal ROQ or ROQB is delayed so that the minimum value of the period until the active edge becomes equal.
  • a CPU or the like outside the data receiving circuit 100 changes the delay of one or both of the delay circuits 21 and 22 from the minimum value to the maximum value by the control signals CTL1 and CTL2, and outputs normal data
  • the values of the control signals CTL1 and CTL2 as described above are obtained.
  • the margin is made as large as possible, the minimum value of the period from the active edge of the delayed data signal DDQ to the active edge of the delayed data signal DDQB, and the active edge of the delayed data signal DDQB to the active edge of the delayed data signal DDQ
  • the optimum values of the control signals CTL1 and CTL2 can be obtained so that the minimum value of the period until is equal.
  • control signals CTL1 and CTL2 may be obtained in the same manner and the obtained control signals CTL1 and CTL2 may be continuously used.
  • a power supply voltage VDD and delayed data signals DDQ and DDQB are supplied to an input terminal D, a clock terminal, and a reset terminal R of the D-FF 32, respectively.
  • the D-FF 32 generates a reproduction data signal CDQ having a rising edge corresponding to the active edge of the delayed data signal DDQ and a falling edge corresponding to the active edge of the delayed data signal DDQB. Output from.
  • the D-FF 32 changes the reproduction data signal CDQ from “L” to “H”.
  • the D-FF 32 changes the reproduction data signal CDQ from “H” to “L”. That is, the D-FF 32 combines the delayed data signals DDQ and DDQB to generate and output a reproduction data signal CDQ indicating the rising edges of these two signals.
  • the timing of the rising edge of the reproduction data signal CDQ is the timing obtained by delaying the timing of the rising edge of the data signal DQ by the delay circuit 21.
  • the timing of the falling edge of the reproduction data signal CDQ is the timing obtained by delaying the timing of the falling edge of the data signal DQ by the delay circuit 22. That is, according to the data receiving circuit of FIG. 1, it is possible to independently delay the timing of the rising edge and the falling edge of the data signal DQ.
  • FIG. 5 is a timing chart showing signal waveforms of respective parts of the data receiving circuit 100 of FIG. 1 when the edge timing of the data signal DQ is ideal. As shown in FIG. 5, when the timings of the rising edge and falling edge of the data signal DQ are ideal timings, for example, the CPU external to the data receiving circuit 100 may receive the delay given by the delay circuits 21 and 22. Control signals CTL1 and CTL2 are generated and output to delay circuits 21 and 22 so that the amounts are substantially equal.
  • the CPU generates the control signals CTL3 and CTL4 so that the delay amount given by the delay circuits 23 and 24 becomes a delay amount obtained by adding a delay corresponding to a phase difference of 90 ° to the delay amount of the delay circuit 21.
  • the phase difference of 90 ° corresponds to a quarter cycle of the data strobe signal DQS.
  • the edge timings of the delayed data strobe signals DDS and DDSB are set in the middle of a period in which the level of the reproduction data signal CDQ is constant.
  • the reproduction data signal CDQ and the delayed data strobe signal DDS are supplied to the input terminal D and the clock terminal of the D-FF 42, respectively.
  • a reproduction data signal CDQ and a delayed data strobe signal DDSB are supplied to an input terminal D and a clock terminal of the D-FF 44, respectively.
  • the D-FFs 42 and 44 perform data determination according to the rising edge and falling edge of the data strobe signal DQS, respectively.
  • the D-FF 42 determines the value of the reproduction data signal CDQ at the rising edge of the delayed data strobe signal DDS obtained by delaying the data strobe signal DQS by 90 °, and outputs the determination value FIR.
  • the D-FF 44 determines the value of the reproduction data signal CDQ at the rising edge of the delayed data strobe signal DDSB obtained by delaying the data strobe signal DQSB by 90 °, and outputs the determination value FIF. Since the value is determined at the center of the period when the level of the reproduction data signal CDQ is constant, the value can be determined accurately.
  • FIG. 6 is a timing chart showing signal waveform examples of each part of the data receiving circuit 100 of FIG. 1 when the timing of the falling edge of the data signal DQ is earlier than that of FIG.
  • the “H” period of the data signal ROQ output from the comparator 12 is shorter. In this state, the eye width in the eye pattern of the data signal ROQ is narrow, and it can be seen that the setup margin / hold margin at the time of data determination is narrow.
  • the delay circuit 22 delays the delayed data signal DDQB having a rising edge corresponding to the falling edge of the data signal DQ by the time td.
  • the operation of the data receiving circuit 100 of FIG. 1 is the same as that of FIG.
  • the reproduction data signal CDQ output from the D-FF 32 becomes the same as in the case of FIG.
  • the delay circuits 21 and 22 independently control the timing of the rising edge and the falling edge of the data signal DQ, according to the data receiving circuit of FIG. 1, the rising edge and the falling edge of the data signal The difference in steady delay from the edge can be reduced. Since a sufficient eye width in the eye pattern of the reproduced data signal CDQ can be secured, accurate data determination for the data signal can be performed.
  • the delay circuits 21 to 24 can easily adjust the delay time according to the number of the delay cells 72_1 to 72_N passing through the signal. Therefore, as compared with the case where the edge timing is corrected by reducing the absolute value of the slew rate of the signal, the delay circuits 21 to 24 have a wide correction range, and jitter generated when the absolute value of the slew rate is reduced. Can be prevented.
  • the delay circuits 23 and 24 independently correct the timings of the rising edges of the data strobe signals DQS and DQSB, it is possible to ensure the setup margin / hold margin at the time of data determination. .
  • the case where the falling edge of the data signal DQ is earlier than ideal has been described as an example. However, when the falling edge is later than ideal, the delay of the delay circuit 22 may be reduced. When the rising edge of the data signal DQ is earlier than ideal, the delay of the delay circuit 21 is increased, and when it is late, the delay of the delay circuit 21 is decreased. The timing correction of the rising edge of the data signal DQ by the delay circuit 21 and the timing correction of the falling edge of the data signal DQ by the delay circuit 22 may be performed simultaneously.
  • the timing of the rising edge of the data signal DQ is made to correspond to the timing of the rising edge of the data strobe signal ROS has been described, but it may be made to correspond to the timing of the falling edge of the signal ROS.
  • the timing of the falling edge of the data signal DQ is made to correspond to the timing of the rising edge of the delayed data strobe signal ROSB has been described, the timing may be made to correspond to the timing of the falling edge of the signal ROSB.
  • the rising edges of the delayed data signals DDQ and DDQB and the delayed data strobe signals DDS and DDSB are active edges.
  • any of the falling edges of these signals may be the active edge.
  • the D-FFs 32, 42, and 44 may be operated according to the active edge.
  • the D-FF 32 generates a reproduction data signal CDQ having a falling edge corresponding to the active edge of the delayed data signal DDQ and a rising edge corresponding to the active edge of the delayed data signal DDQB, and outputs it from the output terminal Q. Good.
  • the comparator 12 in FIG. 1 may have any configuration as long as it is a circuit that amplifies the data signal DQ to a logic level “H” or “L” and outputs it.
  • the comparator 18 in FIG. 1 may have any configuration as long as it is a circuit that amplifies and outputs the data strobe signals DQS and DQSB to logic levels “H” and “L”.

Abstract

Difference of a constant delay between a rising edge and a falling edge of a data signal can be reduced. A data reception circuit comprises an amplification circuit which amplifies and outputs a data signal which transmits data, a first delay circuit which delays the output from the amplification circuit in accordance with a first control signal and outputs as a first delay data signal, a second delay circuit which delays the output from the amplification circuit in accordance with a second control signal and outputs as a second delay data signal, and a data signal reproduction circuit which generates and outputs a reproduction data signal on the basis of an active edge of the first delay data signal and an active edge of the second delay data signal.

Description

データ受信回路Data receiving circuit
 本明細書で開示される技術は、メモリ等から読み出されたデータを受信する回路に関する。 The technology disclosed in this specification relates to a circuit that receives data read from a memory or the like.
 DDR SDRAM(Double Data Rate Synchronous Dynamic Random-Access Memory)等から出力されたデータ信号では、例えば、立ち上がりエッジと立ち下がりエッジとの間の期間に1ビットが割り当てられており、その期間の信号レベルの遷移によってデータが表現される。メモリコントローラは、このようなデータ信号のレベルの判定を、ストローブ信号の立ち上がりエッジ及び立ち下がりエッジのタイミングで行う。正確に判定を行うためには、ストローブ信号のエッジのタイミングが、データ信号のレベルが一定である期間内にあるように、データ信号及びストローブ信号の位相を調整することが必要となる。 In a data signal output from a DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory) or the like, for example, one bit is allocated in the period between the rising edge and the falling edge, and the signal level of that period is Data is represented by transitions. The memory controller determines the level of the data signal at the timing of the rising edge and falling edge of the strobe signal. In order to make an accurate determination, it is necessary to adjust the phases of the data signal and the strobe signal so that the edge timing of the strobe signal is within a period in which the level of the data signal is constant.
 特許文献1には、このような調整を行う技術の例として、メモリから同位相で送られてきたデータ信号DQ及びストローブ信号DQSのうち、ストローブ信号DQSの位相のみを90°遅らせる装置が記載されている。 Patent Document 1 describes a device that delays only the phase of the strobe signal DQS by 90 ° out of the data signal DQ and the strobe signal DQS sent from the memory in the same phase as an example of a technique for performing such adjustment. ing.
特開2007-109203号公報JP 2007-109203 A
 デジタルテレビジョンやデジタルビデオレコーダでは、高画質な動画を処理するために、大容量のデータを限られた時間内に高速に伝送することが求められている。データ信号やストローブ信号の遷移タイミングの誤差は、各ビットについてのデータ判定が可能である期間を狭める。伝送速度が速くなると1ビットあたりの時間が減少するので、このようなタイミングの誤差が、データ判定が可能である期間に対して無視できない大きさになってきている。 Digital televisions and digital video recorders are required to transmit large amounts of data at high speed within a limited time in order to process high-quality moving images. An error in the transition timing of the data signal or strobe signal narrows the period during which data determination for each bit is possible. Since the time per bit decreases as the transmission speed increases, such a timing error has become a size that cannot be ignored for a period in which data determination is possible.
 データ信号の立ち上がりエッジと立ち下がりエッジとの間に定常的な遅延の差が存在すると、レベルが“H”(高電位)及び“L”(低電位)の期間のうちの一方が短くなる。短い方の期間においてもデータ判定を行う必要があるので、このような遅延差があると、高速なデータ伝送や正確なデータ判定を行うことが困難になる。 If there is a steady delay difference between the rising edge and the falling edge of the data signal, one of the periods in which the level is “H” (high potential) and “L” (low potential) is shortened. Since it is necessary to perform data determination even in a shorter period, such a delay difference makes it difficult to perform high-speed data transmission and accurate data determination.
 本発明は、データ信号の立ち上がりエッジと立ち下がりエッジとの間の定常的な遅延の差を小さくすることを目的とする。 An object of the present invention is to reduce a steady delay difference between a rising edge and a falling edge of a data signal.
 本発明の実施形態によるデータ受信回路は、データを伝送するデータ信号を増幅して出力する増幅回路と、第1の制御信号に従って前記増幅回路の出力を遅延させ、第1の遅延データ信号として出力する第1の遅延回路と、第2の制御信号に従って前記増幅回路の出力を遅延させ、第2の遅延データ信号として出力する第2の遅延回路と、前記第1の遅延データ信号のアクティブエッジ及び前記第2の遅延データ信号のアクティブエッジに基づいて再生データ信号を生成して出力するデータ信号再生回路とを有する。 A data receiving circuit according to an embodiment of the present invention amplifies a data signal for transmitting data and outputs the amplified signal, and delays the output of the amplifying circuit in accordance with a first control signal and outputs the delayed signal as a first delayed data signal A first delay circuit that delays the output of the amplifier circuit in accordance with a second control signal and outputs it as a second delayed data signal, an active edge of the first delayed data signal, and A data signal reproduction circuit for generating and outputting a reproduction data signal based on an active edge of the second delayed data signal.
 これによると、第1及び第2の遅延回路を有するので、データ信号の立ち上がりエッジのタイミングと立ち下がりエッジのタイミングとを独立して制御することができる。したがって、データ信号の立ち上がりエッジと立ち下がりエッジとの間の定常的な遅延の差を小さくすることが可能となる。 According to this, since the first and second delay circuits are provided, the timing of the rising edge and the timing of the falling edge of the data signal can be controlled independently. Therefore, it is possible to reduce the steady delay difference between the rising edge and the falling edge of the data signal.
 本発明の実施形態によれば、データ信号の立ち上がりエッジのタイミングと立ち下がりエッジのタイミングとを独立して制御することができるので、データ信号の立ち上がりエッジと立ち下がりエッジとの間の定常的な遅延の差を小さくすることができる。データ信号のアイパターンにおけるアイ幅を十分に確保できるので、データ信号に対する正確なデータ判定が可能となる。 According to the embodiment of the present invention, since the timing of the rising edge and the timing of the falling edge of the data signal can be controlled independently, the steady state between the rising edge and the falling edge of the data signal can be controlled. The difference in delay can be reduced. Since a sufficient eye width in the eye pattern of the data signal can be secured, accurate data determination for the data signal can be performed.
図1は、本発明の実施形態に係るデータ受信回路の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a data receiving circuit according to an embodiment of the present invention. 図2は、データ信号が入力される図1のコンパレータの構成例を示す回路図である。FIG. 2 is a circuit diagram illustrating a configuration example of the comparator of FIG. 1 to which a data signal is input. 図3は、差動データストローブ信号が入力される図1のコンパレータの構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration example of the comparator of FIG. 1 to which a differential data strobe signal is input. 図4は、図1の遅延回路の構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of the delay circuit of FIG. 図5は、データ信号のエッジのタイミングが理想的な場合における、図1のデータ受信回路の各部の信号波形を示すタイミングチャートである。FIG. 5 is a timing chart showing signal waveforms at various parts of the data receiving circuit of FIG. 1 when the edge timing of the data signal is ideal. 図6は、データ信号の立ち下がりエッジのタイミングが図5より早い場合における、図1のデータ受信回路の各部の信号波形例を示すタイミングチャートである。FIG. 6 is a timing chart showing signal waveform examples of each part of the data receiving circuit of FIG. 1 when the timing of the falling edge of the data signal is earlier than that of FIG.
 以下、本発明の実施形態を、図面を参照しながら説明する。図面において同じ参照番号で示された構成要素は、同一の又は類似の構成要素である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Components shown with the same reference numbers in the drawings are identical or similar components.
 図1は、本発明の実施形態に係るデータ受信回路の構成例を示すブロック図である。図1のデータ受信回路100は、増幅回路としてのコンパレータ12,18と、インバータ14と、遅延回路21,22,23,24と、Dフリップフロップ(以下ではD-FFと称する)32,42,44とを有している。D-FF32はデータ信号再生回路として動作し、D-FF42,44はそれぞれデータ判定器として動作する。データ受信回路100は、例えばDDR SDRAM(Double Data Rate Synchronous Dynamic Random-Access Memory)のコントローラ回路に用いられる。 FIG. 1 is a block diagram showing a configuration example of a data receiving circuit according to an embodiment of the present invention. 1 includes a comparator 12, 18 as an amplifier circuit, an inverter 14, delay circuits 21, 22, 23, 24, D flip-flops (hereinafter referred to as D-FF) 32, 42, 44. The D-FF 32 operates as a data signal reproduction circuit, and the D- FFs 42 and 44 each operate as a data determination unit. The data receiving circuit 100 is used for a controller circuit of, for example, a DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory).
 メモリ2は、データを伝送するデータ信号DQと、データストローブ信号DQS,DQSBとを出力する。メモリ2は、例えばDDR SDRAMである。データストローブ信号DQSは、“H”及び“L”の間で周期的にレベルが遷移する。データストローブ信号DQSBは、データストローブ信号DQSの逆位相の信号であり、データストローブ信号DQS及びDQSBは、差動データストローブ信号を構成する。 The memory 2 outputs a data signal DQ for transmitting data and data strobe signals DQS and DQSB. The memory 2 is, for example, a DDR SDRAM. The data strobe signal DQS periodically changes in level between “H” and “L”. The data strobe signal DQSB is a signal having a phase opposite to that of the data strobe signal DQS, and the data strobe signals DQS and DQSB constitute a differential data strobe signal.
 コンパレータ12は、振幅が所定の大きさになるように、データ信号DQを増幅して出力する。具体的には、コンパレータ12は、データ信号DQの電圧を基準電圧VREFと比較し、データ信号DQが基準電圧VREFより高い場合には“H”を、低い場合には“L”を、データ信号ROQとして出力する。インバータ14は、コンパレータ12から出力されたデータ信号ROQを反転させ、データ信号ROQBとして出力する。したがって、データ信号DQが持つ立ち上がりエッジのタイミングが信号ROQの立ち上がりエッジとして、データ信号DQが持つ立ち下がりエッジのタイミングが信号ROQBの立ち上がりエッジとして伝送される。 The comparator 12 amplifies and outputs the data signal DQ so that the amplitude becomes a predetermined magnitude. Specifically, the comparator 12 compares the voltage of the data signal DQ with the reference voltage VREF. When the data signal DQ is higher than the reference voltage VREF, the comparator 12 sets “H”, and when the data signal DQ is lower, “L”. Output as ROQ. The inverter 14 inverts the data signal ROQ output from the comparator 12 and outputs the inverted signal as the data signal ROQB. Therefore, the timing of the rising edge of the data signal DQ is transmitted as the rising edge of the signal ROQ, and the timing of the falling edge of the data signal DQ is transmitted as the rising edge of the signal ROQB.
 コンパレータ18は、振幅が所定の大きさになるように、差動データストローブ信号DQS,DQSBを増幅して出力する。すなわち、レシーバ回路18は、データストローブ信号DQS,DQSBのうち、電位が高い方を“H”レベル、低い方を“L”レベルにして出力する。コンパレータ18は、データストローブ信号DQS,DQSBにそれぞれ対応する正相のデータストローブ信号ROS及び逆相のデータストローブ信号ROSBを出力する。これにより、データストローブ信号DQSの立ち上がりエッジのタイミングが信号ROSの立ち上がりエッジのタイミングとして、データストローブ信号DQSの立ち下がりエッジのタイミングが信号ROSBの立ち上がりエッジのタイミングとして伝送される。 The comparator 18 amplifies and outputs the differential data strobe signals DQS and DQSB so that the amplitude becomes a predetermined magnitude. That is, the receiver circuit 18 outputs the data strobe signals DQS and DQSB with the higher potential at the “H” level and the lower potential at the “L” level. The comparator 18 outputs a positive-phase data strobe signal ROS and a negative-phase data strobe signal ROSB corresponding to the data strobe signals DQS and DQSB, respectively. Thereby, the timing of the rising edge of the data strobe signal DQS is transmitted as the timing of the rising edge of the signal ROS, and the timing of the falling edge of the data strobe signal DQS is transmitted as the timing of the rising edge of the signal ROSB.
 遅延回路21は、制御信号CTL1に従ってデータ信号ROQを遅延させ、得られた信号を遅延データ信号DDQとしてD-FF32に出力する。遅延回路22は、制御信号CTL2に従ってデータ信号ROQBを遅延させ、得られた信号を遅延データ信号DDQBとしてD-FF32に出力する。遅延回路23は、制御信号CTL3に従ってデータストローブ信号ROSを遅延させ、得られた信号を遅延データストローブ信号DDSとしてD-FF42に出力する。遅延回路24は、制御信号CTL4に従ってデータストローブ信号ROSBを遅延させ、得られた信号を遅延データストローブ信号DDSBとしてD-FF44に出力する。遅延データ信号DDQ,DDQB及び遅延データストローブ信号DDS,DDSBの立ち上がりエッジは、いずれもアクティブエッジである。制御信号CTL1~CTL4は、データ受信回路100の外部にあるCPU等から入力される。 The delay circuit 21 delays the data signal ROQ according to the control signal CTL1, and outputs the obtained signal to the D-FF 32 as the delayed data signal DDQ. The delay circuit 22 delays the data signal ROQB according to the control signal CTL2, and outputs the obtained signal to the D-FF 32 as a delayed data signal DDQB. The delay circuit 23 delays the data strobe signal ROS according to the control signal CTL3, and outputs the obtained signal to the D-FF 42 as the delayed data strobe signal DDS. The delay circuit 24 delays the data strobe signal ROSB in accordance with the control signal CTL4, and outputs the obtained signal to the D-FF 44 as a delayed data strobe signal DDSB. The rising edges of the delayed data signals DDQ and DDQB and the delayed data strobe signals DDS and DDSB are all active edges. The control signals CTL1 to CTL4 are input from a CPU or the like outside the data receiving circuit 100.
 図2は、データ信号DQが入力される図1のコンパレータ12の構成例を示す回路図である。コンパレータ12は、差動アンプ50と、インバータ58,59とを有している。差動アンプ50は、PMOS(p-channel Metal Oxide Semiconductor)トランジスタ51,52と、NMOS(n-channel Metal Oxide Semiconductor)トランジスタ53,54と、電流源55とを有している。 FIG. 2 is a circuit diagram showing a configuration example of the comparator 12 of FIG. 1 to which the data signal DQ is input. The comparator 12 includes a differential amplifier 50 and inverters 58 and 59. The differential amplifier 50 includes PMOS (p-channel Metal Oxide Semiconductor) transistors 51 and 52, NMOS (n-channel Metal Oxide Semiconductor) transistors 53 and 54, and a current source 55.
 PMOSトランジスタ51のソースには電源電圧VDDが与えられ、そのゲート及びドレインはノードN51に接続されている。PMOSトランジスタ52のソースには電源電圧VDDが与えられ、そのゲート及びドレインはノードN51,N52にそれぞれ接続されている。NMOSトランジスタ53のソース及びドレインはノードN54,N51にそれぞれ接続され、そのゲートにはデータ信号DQが入力されている。NMOSトランジスタ54のソース及びドレインはノードN54,N52にそれぞれ接続され、そのゲートには基準電圧VREFが入力されている。電流源55は、ノードN54とグラウンドGNDとの間に接続されている。 The source of the PMOS transistor 51 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the node N51. The source of the PMOS transistor 52 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the nodes N51 and N52, respectively. The source and drain of the NMOS transistor 53 are connected to nodes N54 and N51, respectively, and the data signal DQ is input to the gates thereof. The source and drain of the NMOS transistor 54 are connected to nodes N54 and N52, respectively, and the reference voltage VREF is input to the gates thereof. The current source 55 is connected between the node N54 and the ground GND.
 差動アンプ50は、SDRAM2から出力されたデータ信号DQを基準電圧VREFと比較し、データ信号DQの電位が基準電圧VREFより高い場合にはノードN52の電位として“H”を出力し、その他の場合は“L”を出力する。インバータ58は、ノードN52の電位を反転して出力し、インバータ59は、インバータ58の出力を更に反転してデータ信号ROQとして出力する。したがって、ノードN52の論理レベルがデータ信号ROQとして出力される。 The differential amplifier 50 compares the data signal DQ output from the SDRAM 2 with the reference voltage VREF, and outputs “H” as the potential of the node N52 when the potential of the data signal DQ is higher than the reference voltage VREF. In this case, “L” is output. Inverter 58 inverts and outputs the potential of node N52, and inverter 59 further inverts the output of inverter 58 and outputs it as data signal ROQ. Therefore, the logic level of node N52 is output as data signal ROQ.
 図3は、差動データストローブ信号DQS,DQSBが入力される図1のコンパレータ18の構成例を示す回路図である。コンパレータ18は、差動アンプ60と、インバータ68,69とを有している。差動アンプ60は、PMOSトランジスタ61,62と、NMOSトランジスタ63,64と、電流源65とを有している。 FIG. 3 is a circuit diagram showing a configuration example of the comparator 18 of FIG. 1 to which the differential data strobe signals DQS and DQSB are inputted. The comparator 18 includes a differential amplifier 60 and inverters 68 and 69. The differential amplifier 60 includes PMOS transistors 61 and 62, NMOS transistors 63 and 64, and a current source 65.
 PMOSトランジスタ61のソースには電源電圧VDDが与えられ、そのゲート及びドレインはノードN61に接続されている。PMOSトランジスタ62のソースには電源電圧VDDが与えられ、そのゲート及びドレインはノードN61,N62にそれぞれ接続されている。NMOSトランジスタ63のソース及びドレインはノードN64,N61にそれぞれ接続され、そのゲートにはデータストローブ信号DQSが入力されている。NMOSトランジスタ64のソース及びドレインはノードN64,N62にそれぞれ接続され、そのゲートにはデータストローブ信号DQSBが入力されている。電流源65は、ノードN64とグラウンドGNDとの間に接続されている。 The source of the PMOS transistor 61 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the node N61. The source of the PMOS transistor 62 is supplied with the power supply voltage VDD, and the gate and drain thereof are connected to the nodes N61 and N62, respectively. The source and drain of the NMOS transistor 63 are connected to the nodes N64 and N61, respectively, and the data strobe signal DQS is input to its gate. The source and drain of the NMOS transistor 64 are connected to the nodes N64 and N62, respectively, and the data strobe signal DQSB is input to the gate. The current source 65 is connected between the node N64 and the ground GND.
 差動アンプ60は、SDRAM2から出力されたデータストローブ信号DQSをデータストローブ信号DQSBと比較し、データストローブ信号DQSの電位がデータストローブ信号DQSBより高い場合にはノードN62の電位として“H”を出力し、その他の場合は“L”を出力する。インバータ68は、ノードN62の電位を反転してデータストローブ信号ROSBとして出力する。インバータ69は、インバータ68の出力を更に反転してデータストローブ信号ROSとして出力する。したがって、ノードN62の論理レベルがデータストローブ信号ROSとして出力される。 The differential amplifier 60 compares the data strobe signal DQS output from the SDRAM 2 with the data strobe signal DQSB, and outputs “H” as the potential of the node N62 when the potential of the data strobe signal DQS is higher than the data strobe signal DQSB. In other cases, “L” is output. Inverter 68 inverts the potential of node N62 and outputs the inverted signal as data strobe signal ROSB. Inverter 69 further inverts the output of inverter 68 and outputs it as data strobe signal ROS. Therefore, the logic level of node N62 is output as data strobe signal ROS.
 図4は、図1の遅延回路21の構成例を示すブロック図である。遅延回路21は、N(Nは自然数)個の遅延セル72_1,72_2,…,72_Nと、スイッチ74_0,74_1,74_2,…,74_Nと、デコーダ76_0,76_1,76_2,…,76_Nとを有している。 FIG. 4 is a block diagram showing a configuration example of the delay circuit 21 in FIG. The delay circuit 21 includes N (N is a natural number) delay cells 72_1, 72_2,..., 72_N, switches 74_0, 74_1, 74_2,. ing.
 遅延セル72_1~72_Nは、それぞれ、インバータINN及びINPを有しており、入力された信号に遅延を与えて出力する。端子CTLに入力される制御信号CTL1に従って、デコーダ76_0~76_Nのうちの1つの出力のみがアクティブになり、スイッチ74_0~74_Nのうち、この出力を受け取るスイッチのみがオンになる。すなわち、遅延回路21は、端子INに入力されたデータ信号ROQに、制御信号CTL1に応じた遅延を与えて端子OUTから出力する。遅延回路22~24も、遅延回路21と同様に構成されている。 Delay cells 72_1 to 72_N have inverters INN and INP, respectively, and delay the input signal and output it. In accordance with the control signal CTL1 input to the terminal CTL, only one output of the decoders 76_0 to 76_N becomes active, and only the switch that receives this output among the switches 74_0 to 74_N is turned on. That is, the delay circuit 21 gives a delay according to the control signal CTL1 to the data signal ROQ input to the terminal IN and outputs the data signal from the terminal OUT. The delay circuits 22 to 24 are configured in the same manner as the delay circuit 21.
 遅延回路21及び22は、遅延データ信号DDQのアクティブエッジ(立ち上がりエッジ)から遅延データ信号DDQBのアクティブエッジ(立ち上がりエッジ)までの期間の最小値と、遅延データ信号DDQBのアクティブエッジから遅延データ信号DDQのアクティブエッジまでの期間の最小値とが等しくなるように、データ信号ROQ又はROQBを遅延させる。 The delay circuits 21 and 22 include the minimum value of the period from the active edge (rising edge) of the delayed data signal DDQ to the active edge (rising edge) of the delayed data signal DDQB, and the delay data signal DDQ from the active edge of the delayed data signal DDQB. The data signal ROQ or ROQB is delayed so that the minimum value of the period until the active edge becomes equal.
 例えば、電源オン時に、データ受信回路100の外部のCPU等が、制御信号CTL1,CTL2によって、遅延回路21,22の一方又は両方の遅延を最小値から最大値まで変化させ、正常なデータが出力されるような制御信号CTL1,CTL2の値を求める。このとき、マージンができるだけ大きくなるようにすると、遅延データ信号DDQのアクティブエッジから遅延データ信号DDQBのアクティブエッジまでの期間の最小値と、遅延データ信号DDQBのアクティブエッジから遅延データ信号DDQのアクティブエッジまでの期間の最小値とが等しくなるように、制御信号CTL1,CTL2の最適値を求めることができる。 For example, when the power is turned on, a CPU or the like outside the data receiving circuit 100 changes the delay of one or both of the delay circuits 21 and 22 from the minimum value to the maximum value by the control signals CTL1 and CTL2, and outputs normal data The values of the control signals CTL1 and CTL2 as described above are obtained. At this time, if the margin is made as large as possible, the minimum value of the period from the active edge of the delayed data signal DDQ to the active edge of the delayed data signal DDQB, and the active edge of the delayed data signal DDQB to the active edge of the delayed data signal DDQ The optimum values of the control signals CTL1 and CTL2 can be obtained so that the minimum value of the period until is equal.
 データ受信回路100の製造後の検査時に、同様にして制御信号CTL1,CTL2の最適値を求め、求められた制御信号CTL1,CTL2を使い続けるようにしてもよい。 At the time of inspection after manufacturing the data receiving circuit 100, the optimum values of the control signals CTL1 and CTL2 may be obtained in the same manner and the obtained control signals CTL1 and CTL2 may be continuously used.
 D-FF32の入力端子D、クロック端子、及びリセット端子Rには、電源電圧VDD、遅延データ信号DDQ,DDQBがそれぞれ与えられている。D-FF32は、これらの信号に従って、遅延データ信号DDQのアクティブエッジに対応する立ち上がりエッジ及び遅延データ信号DDQBのアクティブエッジに対応する立ち下がりエッジを有する再生データ信号CDQを生成して、出力端子Qから出力する。 A power supply voltage VDD and delayed data signals DDQ and DDQB are supplied to an input terminal D, a clock terminal, and a reset terminal R of the D-FF 32, respectively. In accordance with these signals, the D-FF 32 generates a reproduction data signal CDQ having a rising edge corresponding to the active edge of the delayed data signal DDQ and a falling edge corresponding to the active edge of the delayed data signal DDQB. Output from.
 具体的には、遅延データ信号DDQの立ち上がりエッジにおいて、D-FF32は、再生データ信号CDQを“L”から“H”に遷移させる。遅延データ信号DDQBの立ち上がりエッジにおいて、D-FF32は、再生データ信号CDQを“H”から“L”に遷移させる。すなわち、D-FF32は、遅延データ信号DDQ,DDQBを合成して、これらの2信号の立ち上がりエッジを示す再生データ信号CDQを生成し、出力する。 Specifically, at the rising edge of the delayed data signal DDQ, the D-FF 32 changes the reproduction data signal CDQ from “L” to “H”. At the rising edge of the delayed data signal DDQB, the D-FF 32 changes the reproduction data signal CDQ from “H” to “L”. That is, the D-FF 32 combines the delayed data signals DDQ and DDQB to generate and output a reproduction data signal CDQ indicating the rising edges of these two signals.
 再生データ信号CDQの立ち上がりエッジのタイミングは、データ信号DQの立ち上がりエッジのタイミングを遅延回路21で遅延させたタイミングとなる。また、再生データ信号CDQの立ち下がりエッジのタイミングは、データ信号DQの立ち下がりエッジのタイミングを遅延回路22で遅延させたタイミングとなる。すなわち、図1のデータ受信回路によると、データ信号DQの立ち上がりエッジ及び立ち下がりエッジのタイミングを独立して遅延させることが可能となる。 The timing of the rising edge of the reproduction data signal CDQ is the timing obtained by delaying the timing of the rising edge of the data signal DQ by the delay circuit 21. The timing of the falling edge of the reproduction data signal CDQ is the timing obtained by delaying the timing of the falling edge of the data signal DQ by the delay circuit 22. That is, according to the data receiving circuit of FIG. 1, it is possible to independently delay the timing of the rising edge and the falling edge of the data signal DQ.
 図5は、データ信号DQのエッジのタイミングが理想的な場合における、図1のデータ受信回路100の各部の信号波形を示すタイミングチャートである。図5のように、データ信号DQの立ち上がりエッジ及び立ち下がりエッジのタイミングが理想的なタイミングである場合には、例えば、データ受信回路100の外部のCPUは、遅延回路21及び22によって与えられる遅延量がほぼ等しくなるように、制御信号CTL1,CTL2を生成して遅延回路21及び22に出力する。 FIG. 5 is a timing chart showing signal waveforms of respective parts of the data receiving circuit 100 of FIG. 1 when the edge timing of the data signal DQ is ideal. As shown in FIG. 5, when the timings of the rising edge and falling edge of the data signal DQ are ideal timings, for example, the CPU external to the data receiving circuit 100 may receive the delay given by the delay circuits 21 and 22. Control signals CTL1 and CTL2 are generated and output to delay circuits 21 and 22 so that the amounts are substantially equal.
 また、CPUは、遅延回路23及び24によって与えられる遅延量が、遅延回路21の遅延量に位相差90°に相当する遅延を付加した遅延量になるように、制御信号CTL3,CTL4を生成して遅延回路23及び24に出力する。ここで、位相差90°は、データストローブ信号DQSの1/4周期に相当する。すると、再生データ信号CDQのレベルが一定である期間の中央に遅延データストローブ信号DDS,DDSBのエッジのタイミングが設定される。 Further, the CPU generates the control signals CTL3 and CTL4 so that the delay amount given by the delay circuits 23 and 24 becomes a delay amount obtained by adding a delay corresponding to a phase difference of 90 ° to the delay amount of the delay circuit 21. To the delay circuits 23 and 24. Here, the phase difference of 90 ° corresponds to a quarter cycle of the data strobe signal DQS. Then, the edge timings of the delayed data strobe signals DDS and DDSB are set in the middle of a period in which the level of the reproduction data signal CDQ is constant.
 D-FF42の入力端子D及びクロック端子には、再生データ信号CDQ及び遅延データストローブ信号DDSがそれぞれ与えられている。D-FF44の入力端子D及びクロック端子には、再生データ信号CDQ及び遅延データストローブ信号DDSBがそれぞれ与えられている。D-FF42,44は、データストローブ信号DQSの立ち上がりエッジ及び立ち下がりエッジに従ってデータ判定をそれぞれ行う。 The reproduction data signal CDQ and the delayed data strobe signal DDS are supplied to the input terminal D and the clock terminal of the D-FF 42, respectively. A reproduction data signal CDQ and a delayed data strobe signal DDSB are supplied to an input terminal D and a clock terminal of the D-FF 44, respectively. The D- FFs 42 and 44 perform data determination according to the rising edge and falling edge of the data strobe signal DQS, respectively.
 具体的には、D-FF42は、データストローブ信号DQSが90°遅延させられた遅延データストローブ信号DDSの立ち上がりエッジで再生データ信号CDQの値を判定し、判定値FIRを出力する。D-FF44は、データストローブ信号DQSBが90°遅延させられた遅延データストローブ信号DDSBの立ち上がりエッジで再生データ信号CDQの値を判定し、判定値FIFを出力する。再生データ信号CDQのレベルが一定の期間の中央で値の判定が行われるので、正確に値の判定を行うことができる。 Specifically, the D-FF 42 determines the value of the reproduction data signal CDQ at the rising edge of the delayed data strobe signal DDS obtained by delaying the data strobe signal DQS by 90 °, and outputs the determination value FIR. The D-FF 44 determines the value of the reproduction data signal CDQ at the rising edge of the delayed data strobe signal DDSB obtained by delaying the data strobe signal DQSB by 90 °, and outputs the determination value FIF. Since the value is determined at the center of the period when the level of the reproduction data signal CDQ is constant, the value can be determined accurately.
 図6は、データ信号DQの立ち下がりエッジのタイミングが図5より早い場合における、図1のデータ受信回路100の各部の信号波形例を示すタイミングチャートである。図5に示された理想的な場合と比較して、図6ではデータ信号DQの立ち下がりのタイミングが早いので、コンパレータ12から出力されるデータ信号ROQの“H”期間が短い。このままではデータ信号ROQのアイパターンにおけるアイ幅が狭いので、データ判定時のセットアップマージン/ホールドマージンが狭いことがわかる。 FIG. 6 is a timing chart showing signal waveform examples of each part of the data receiving circuit 100 of FIG. 1 when the timing of the falling edge of the data signal DQ is earlier than that of FIG. Compared with the ideal case shown in FIG. 5, since the falling timing of the data signal DQ is earlier in FIG. 6, the “H” period of the data signal ROQ output from the comparator 12 is shorter. In this state, the eye width in the eye pattern of the data signal ROQ is narrow, and it can be seen that the setup margin / hold margin at the time of data determination is narrow.
 図6の場合には、遅延回路22が、データ信号DQの立ち下がりエッジに対応する立ち上がりエッジを有する遅延データ信号DDQBを時間tdだけ余分に遅延させる。その他の点については、図1のデータ受信回路100の動作は図5の場合と同様である。 In the case of FIG. 6, the delay circuit 22 delays the delayed data signal DDQB having a rising edge corresponding to the falling edge of the data signal DQ by the time td. In other respects, the operation of the data receiving circuit 100 of FIG. 1 is the same as that of FIG.
 これにより、D-FF32から出力される再生データ信号CDQは、図5の場合と同じになる。このように、データ信号DQの立ち上がりエッジのタイミングと立ち下がりエッジのタイミングとを、遅延回路21及び22が独立に制御するので、図1のデータ受信回路によると、データ信号の立ち上がりエッジと立ち下がりエッジとの間の定常的な遅延の差を小さくすることができる。再生データ信号CDQのアイパターンにおけるアイ幅を十分に確保できるので、データ信号に対する正確なデータ判定が可能となる。 Thus, the reproduction data signal CDQ output from the D-FF 32 becomes the same as in the case of FIG. Thus, since the delay circuits 21 and 22 independently control the timing of the rising edge and the falling edge of the data signal DQ, according to the data receiving circuit of FIG. 1, the rising edge and the falling edge of the data signal The difference in steady delay from the edge can be reduced. Since a sufficient eye width in the eye pattern of the reproduced data signal CDQ can be secured, accurate data determination for the data signal can be performed.
 遅延回路21~24は、信号を経由させる遅延セル72_1~72_Nの数によって、遅延時間を簡単に調整することができる。このため、信号のスルーレートの絶対値を小さくしてエッジのタイミングを補正する場合に比べると、遅延回路21~24は、その補正範囲が広く、スルーレートの絶対値を小さくする場合に生じるジッタの発生を防ぐことができる。 The delay circuits 21 to 24 can easily adjust the delay time according to the number of the delay cells 72_1 to 72_N passing through the signal. Therefore, as compared with the case where the edge timing is corrected by reducing the absolute value of the slew rate of the signal, the delay circuits 21 to 24 have a wide correction range, and jitter generated when the absolute value of the slew rate is reduced. Can be prevented.
 また、遅延回路23,24が、データストローブ信号DQS,DQSBのそれぞれの立ち上がりエッジのタイミングを独立して補正するので、データ判定時におけるセットアップマージン/ホールドマージンを確保することがより確実に可能となる。 In addition, since the delay circuits 23 and 24 independently correct the timings of the rising edges of the data strobe signals DQS and DQSB, it is possible to ensure the setup margin / hold margin at the time of data determination. .
 図6を参照して、データ信号DQの立ち下がりエッジが理想より早い場合を例として説明したが、立ち下がりエッジが理想より遅い場合には遅延回路22の遅延を小さくすればよい。データ信号DQの立ち上がりエッジが理想より早い場合には遅延回路21の遅延を大きくし、遅い場合には遅延回路21の遅延を小さくすればよい。遅延回路21によるデータ信号DQの立ち上がりエッジのタイミング補正と、遅延回路22によるデータ信号DQの立ち下がりエッジのタイミング補正とを同時に行うようにしてもよい。 6, the case where the falling edge of the data signal DQ is earlier than ideal has been described as an example. However, when the falling edge is later than ideal, the delay of the delay circuit 22 may be reduced. When the rising edge of the data signal DQ is earlier than ideal, the delay of the delay circuit 21 is increased, and when it is late, the delay of the delay circuit 21 is decreased. The timing correction of the rising edge of the data signal DQ by the delay circuit 21 and the timing correction of the falling edge of the data signal DQ by the delay circuit 22 may be performed simultaneously.
 本実施形態では、データ信号DQの立ち上がりエッジのタイミングをデータストローブ信号ROSの立ち上がりエッジのタイミングに対応させる場合について説明したが、信号ROSの立ち下がりエッジのタイミングに対応させるようにしてもよい。同様に、データ信号DQの立ち下がりエッジのタイミングを遅延データストローブ信号ROSBの立ち上がりエッジのタイミングに対応させる場合について説明したが、信号ROSBの立ち下がりエッジのタイミングに対応させるようにしてもよい。 In the present embodiment, the case where the timing of the rising edge of the data signal DQ is made to correspond to the timing of the rising edge of the data strobe signal ROS has been described, but it may be made to correspond to the timing of the falling edge of the signal ROS. Similarly, although the case where the timing of the falling edge of the data signal DQ is made to correspond to the timing of the rising edge of the delayed data strobe signal ROSB has been described, the timing may be made to correspond to the timing of the falling edge of the signal ROSB.
 遅延データ信号DDQ,DDQB及び遅延データストローブ信号DDS,DDSBの立ち上がりエッジがアクティブエッジであるとして説明したが、これらの信号のいずれかの立ち下がりエッジがアクティブエッジであるとしてもよい。この場合には、D-FF32,42,44が、アクティブエッジに従って動作するようにすればよい。 In the above description, the rising edges of the delayed data signals DDQ and DDQB and the delayed data strobe signals DDS and DDSB are active edges. However, any of the falling edges of these signals may be the active edge. In this case, the D- FFs 32, 42, and 44 may be operated according to the active edge.
 D-FF32は、遅延データ信号DDQのアクティブエッジに対応する立ち下がりエッジ及び遅延データ信号DDQBのアクティブエッジに対応する立ち上がりエッジを有する再生データ信号CDQを生成して、出力端子Qから出力してもよい。 The D-FF 32 generates a reproduction data signal CDQ having a falling edge corresponding to the active edge of the delayed data signal DDQ and a rising edge corresponding to the active edge of the delayed data signal DDQB, and outputs it from the output terminal Q. Good.
 図1のコンパレータ12は、データ信号DQを、論理レベル“H”又は“L”まで増幅して出力する回路であれば、どのような構成であってもよい。図1のコンパレータ18は、データストローブ信号DQS及びDQSBを、論理レベル“H”及び“L”まで増幅して出力する回路であれば、どのような構成であってもよい。 The comparator 12 in FIG. 1 may have any configuration as long as it is a circuit that amplifies the data signal DQ to a logic level “H” or “L” and outputs it. The comparator 18 in FIG. 1 may have any configuration as long as it is a circuit that amplifies and outputs the data strobe signals DQS and DQSB to logic levels “H” and “L”.
 本発明の多くの特徴及び優位性は、記載された説明から明らかであり、よって添付の特許請求の範囲によって、本発明のそのような特徴及び優位性の全てをカバーすることが意図される。更に、多くの変更及び改変が当業者には容易に可能であるので、本発明は、図示され記載されたものと全く同じ構成及び動作に限定されるべきではない。したがって、全ての適切な改変物及び等価物は本発明の範囲に入るものとされる。 Many features and advantages of the present invention will be apparent from the written description, and thus, it is intended by the appended claims to cover all such features and advantages of the present invention. Further, since many changes and modifications will readily occur to those skilled in the art, the present invention should not be limited to the exact construction and operation as illustrated and described. Accordingly, all suitable modifications and equivalents are intended to be within the scope of the present invention.
 以上説明したように、本発明の実施形態によると、正確なデータ判定が可能となるので、本発明は、データ受信回路等について有用である。 As described above, according to the embodiment of the present invention, accurate data determination is possible, and therefore the present invention is useful for a data receiving circuit and the like.
12,18 コンパレータ(増幅回路)
21,22,23,24 遅延回路
32 Dフリップフロップ(データ信号再生回路)
42,44 Dフリップフロップ(データ判定器)
12, 18 Comparator (amplifier circuit)
21, 22, 23, 24 Delay circuit 32 D flip-flop (data signal reproduction circuit)
42,44 D flip-flop (data judgment unit)

Claims (4)

  1.  データを伝送するデータ信号を増幅して出力する増幅回路と、
     第1の制御信号に従って前記増幅回路の出力を遅延させ、第1の遅延データ信号として出力する第1の遅延回路と、
     第2の制御信号に従って前記増幅回路の出力を遅延させ、第2の遅延データ信号として出力する第2の遅延回路と、
     前記第1の遅延データ信号のアクティブエッジ及び前記第2の遅延データ信号のアクティブエッジに基づいて再生データ信号を生成して出力するデータ信号再生回路とを備える
    データ受信回路。
    An amplifier circuit for amplifying and outputting a data signal for transmitting data;
    A first delay circuit that delays the output of the amplifier circuit in accordance with a first control signal and outputs the delayed output as a first delayed data signal;
    A second delay circuit for delaying the output of the amplifier circuit according to a second control signal and outputting the delayed output as a second delayed data signal;
    A data reception circuit comprising: a data signal reproduction circuit that generates and outputs a reproduction data signal based on an active edge of the first delayed data signal and an active edge of the second delay data signal.
  2.  請求項1に記載のデータ受信回路において、
     前記第1及び第2の遅延回路は、前記第1の遅延データ信号のアクティブエッジから前記第2の遅延データ信号のアクティブエッジまでの期間の最小値と、前記第2の遅延データ信号のアクティブエッジから前記第1の遅延データ信号のアクティブエッジまでの期間の最小値とが等しくなるように、前記増幅回路の出力を遅延させる
    データ受信回路。
    The data receiving circuit according to claim 1,
    The first and second delay circuits include a minimum value of a period from an active edge of the first delayed data signal to an active edge of the second delayed data signal, and an active edge of the second delayed data signal. A data receiving circuit that delays the output of the amplifier circuit so that the minimum value of the period from the first delay data signal to the active edge of the first delay data signal becomes equal.
  3.  請求項1に記載のデータ受信回路において、
     前記データ信号再生回路は、前記第1の遅延データ信号のアクティブエッジに対応する立ち上がりエッジ及び前記第2の遅延データ信号のアクティブエッジに対応する立ち下がりエッジを有する前記再生データ信号を生成する
    データ受信回路。
    The data receiving circuit according to claim 1,
    The data signal reproduction circuit receives data for generating the reproduction data signal having a rising edge corresponding to an active edge of the first delayed data signal and a falling edge corresponding to an active edge of the second delayed data signal circuit.
  4.  請求項3に記載のデータ受信回路において、
     周期的にレベルが遷移するデータストローブ信号に従って前記再生データ信号の値を判定して出力するデータ判定器を更に備える
    データ受信回路。
    The data receiving circuit according to claim 3,
    A data receiving circuit further comprising a data decision unit for judging and outputting the value of the reproduction data signal according to a data strobe signal whose level periodically changes.
PCT/JP2010/004944 2009-08-17 2010-08-05 Data reception circuit WO2011021357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009188569A JP2011041140A (en) 2009-08-17 2009-08-17 Data receiving circuit
JP2009-188569 2009-08-17

Publications (1)

Publication Number Publication Date
WO2011021357A1 true WO2011021357A1 (en) 2011-02-24

Family

ID=43606818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004944 WO2011021357A1 (en) 2009-08-17 2010-08-05 Data reception circuit

Country Status (2)

Country Link
JP (1) JP2011041140A (en)
WO (1) WO2011021357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197275A (en) * 2015-04-02 2016-11-24 富士通株式会社 Information processing apparatus, information processing system, program for controlling information processing apparatus, and method of controlling information processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742627B2 (en) * 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
US9524763B2 (en) * 2014-06-12 2016-12-20 Qualcomm Incorporated Source-synchronous data transmission with non-uniform interface topology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108809A (en) * 1987-10-21 1989-04-26 Tdk Corp Delay line
JPH0332137A (en) * 1989-06-28 1991-02-12 Fujitsu Ltd Signal transmitter
JPH0856143A (en) * 1994-08-10 1996-02-27 Advantest Corp Variable delay circuit for periodic clock
JP2001195884A (en) * 1999-11-05 2001-07-19 Mitsubishi Electric Corp Semiconductor device
WO2002099810A1 (en) * 2001-05-30 2002-12-12 Hitachi, Ltd. Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108809A (en) * 1987-10-21 1989-04-26 Tdk Corp Delay line
JPH0332137A (en) * 1989-06-28 1991-02-12 Fujitsu Ltd Signal transmitter
JPH0856143A (en) * 1994-08-10 1996-02-27 Advantest Corp Variable delay circuit for periodic clock
JP2001195884A (en) * 1999-11-05 2001-07-19 Mitsubishi Electric Corp Semiconductor device
WO2002099810A1 (en) * 2001-05-30 2002-12-12 Hitachi, Ltd. Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197275A (en) * 2015-04-02 2016-11-24 富士通株式会社 Information processing apparatus, information processing system, program for controlling information processing apparatus, and method of controlling information processing apparatus

Also Published As

Publication number Publication date
JP2011041140A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
US10284186B2 (en) Apparatuses and methods for phase interpolating clock signals and for providing duty cycle corrected clock signals
US9667252B1 (en) Duty cycle correction circuit and duty cycle correction method
KR100709475B1 (en) Duty cycle correcting circuit for delay locked loop
US7863957B2 (en) Duty cycle correction circuit and semiconductor integrated circuit apparatus including the same
US11233511B2 (en) Skew compensation circuit and semiconductor apparatus including the same
US8624647B2 (en) Duty cycle correction circuit for memory interfaces in integrated circuits
JP2008017475A (en) Semiconductor device with impedance-adjustable data input/output driver
KR100987359B1 (en) Data input/output circuit
US9747972B2 (en) Memory controller, information processing device, and reference voltage adjustment method
US8035412B2 (en) On-die termination latency clock control circuit and method of controlling the on-die termination latency clock
US7633329B2 (en) Single signal-to-differential signal converter and converting method
JP4860193B2 (en) Input buffer
US10742182B2 (en) Amplifier, and receiving circuit, semiconductor apparatus, and system using the amplifier
US9484931B2 (en) Delay locked loop circuit and operation method thereof
WO2011021357A1 (en) Data reception circuit
US9049057B2 (en) Duty cycle compensation of RAM transmitters
KR20090020410A (en) Clock pulse generator
KR102618526B1 (en) Receiver, receiving circuit, semiconductor apparatus, and semiconductor system including the receiver
US7176761B2 (en) Apparatus and method for receiving inputted signal
US6704242B2 (en) Semiconductor integrated circuit
US20080278206A1 (en) Dll circuit
US8476933B2 (en) Receiver circuit of semiconductor apparatus and method for receiving signal
US20240128935A1 (en) Differential signaling circuit for correcting for duty change due to nbti degradation, operating method thereof, and semiconductor device including the same
US20220416790A1 (en) Buffer circuit capable of reducing noise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809705

Country of ref document: EP

Kind code of ref document: A1