WO2011018912A1 - Plasma cvd apparatus, plasma electrode, and method for manufacturing semiconductor film - Google Patents

Plasma cvd apparatus, plasma electrode, and method for manufacturing semiconductor film Download PDF

Info

Publication number
WO2011018912A1
WO2011018912A1 PCT/JP2010/057383 JP2010057383W WO2011018912A1 WO 2011018912 A1 WO2011018912 A1 WO 2011018912A1 JP 2010057383 W JP2010057383 W JP 2010057383W WO 2011018912 A1 WO2011018912 A1 WO 2011018912A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
shower plate
main electrode
heat transfer
Prior art date
Application number
PCT/JP2010/057383
Other languages
French (fr)
Japanese (ja)
Inventor
正和 滝
睦 津田
賢治 新谷
謙 今村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011526696A priority Critical patent/JP5398837B2/en
Priority to DE112010003248.3T priority patent/DE112010003248B4/en
Priority to CN201080035372.8A priority patent/CN102473612B/en
Publication of WO2011018912A1 publication Critical patent/WO2011018912A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Definitions

  • the present invention relates to a plasma CVD (Chemical Vapor Deposition) apparatus used for forming a thin film or the like, a plasma electrode, and a semiconductor film manufacturing method using the apparatus.
  • a plasma CVD Chemical Vapor Deposition
  • the plasma CVD apparatus is widely used as an apparatus for forming a thin film such as an amorphous silicon thin film or a microcrystalline silicon thin film on a substrate.
  • a plasma CVD apparatus capable of forming a thin film having a large area such as a silicon thin film used for a power generation layer of a thin film silicon solar cell at a high speed at a time has been developed.
  • Patent Document 1 a gas blowing face plate in which a plurality of gas blowing holes for blowing out a reactive gas and a plurality of plasma promoting holes for promoting the generation of plasma are formed in a plasma electrode (counter electrode).
  • a plasma CVD apparatus that can form a thin film having a large area at high speed is described.
  • the plurality of plasma promotion holes are formed on the surface of the gas blowing face plate facing the substrate without penetrating the gas blowing face plate.
  • a so-called “high pressure depletion method” is known as a method capable of forming a thin film having a large area at a higher speed than the film formation by the plasma CVD apparatus described in Patent Document 1.
  • This high pressure depletion method is one of the plasma CVD methods, and a film forming chamber (vacuum container) is formed by a plasma CVD apparatus in which a distance between a stage portion on which a film forming substrate is placed and a plasma electrode is narrowed to about 10 mm. Film formation is performed by generating plasma in a high-frequency electric field while keeping the inside at high pressure and depleting (insufficient) the source gas.
  • a large plasma electrode is used regardless of the structure of the plasma CVD apparatus used and the film formation principle. Since the plasma electrode receives a heat input from the plasma at the time of film formation and rises in temperature, the larger the plasma electrode, the larger the amount of thermal deformation at the time of film formation. For example, when the temperature of a plasma electrode having a size of 1 m square when viewed in plan from the film formation substrate side is increased by 20 ° C. due to heat input from the plasma, the plasma electrode generally has 0 in the vertical and horizontal directions, respectively. .Expands about 4 mm.
  • the plasma electrode swells up to about 10 mm toward the stage part, and the distance between the plasma electrode and the stage part greatly deviates from the set value, resulting in process characteristics during film formation. Adversely affected.
  • a gas diffusion space is formed by an upper plate in which process gas introduction holes are formed and a lower plate in which a plurality of gas passage holes are formed. If an intermediate plate with holes is provided in the gas diffusion space and a plurality of heat transfer members are provided between the intermediate plate and the upper plate and between the lower plate and the intermediate plate, the plasma is transferred from the plasma to the lower plate. Since the conducted heat is sequentially conducted to the heat transfer member, the intermediate plate, the heat transfer member, and the upper plate and is dissipated to the outside from the upper plate, it is easy to suppress thermal deformation of the plasma electrode.
  • the present invention has been made in view of the above circumstances, and an object thereof is to obtain a plasma CVD apparatus, a plasma electrode, and a method for manufacturing a semiconductor film, which facilitate the stable deposition of a large-area thin film at a high speed. To do.
  • the plasma CVD apparatus includes a film formation chamber, a stage portion for mounting a film formation substrate disposed in the film formation chamber, and a plasma electrode disposed in the film formation chamber so as to face the stage portion.
  • the plasma electrode includes a main electrode portion provided with a process gas introduction hole and a plurality of gas discharge holes for discharging process gas to the stage portion side.
  • a gas shower plate part that is attached to the stage part side and forms a gas diffusion space between the main electrode part, a plurality of gas flow holes for the process gas to circulate, and a gas shower plate part, A gas diffusion plate disposed in the gas diffusion space so as to oppose each other, and a plurality of transmission lines disposed in the gas diffusion space and thermally connecting the gas shower plate portion and the main electrode portion through the gas flow holes.
  • thermal pillar A wherein the air gap is formed between the peripheral surface of the heat transfer pillar portion through an inner wall and the gas flow hole of the gas flow holes.
  • the heat transfer pillar portion is passed through the gas flow hole formed in the gas diffusion plate, the diameter of the heat transfer pillar portion is increased or the heat transfer pillar portion is maintained while maintaining the uniformity of the generated plasma. It is easy to increase the number of As a result, it becomes easy to enhance the cooling performance of the plasma electrode and suppress its thermal deformation, and it becomes easy to form a large-area thin film stably at high speed.
  • FIG. 1 is a cross sectional view schematically showing Embodiment 1 of the plasma CVD apparatus of the present invention.
  • FIG. 2 is an enlarged view of a part of the plasma electrode in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a plasma electrode (shower head) of Patent Document 2.
  • FIG. 4 is a sectional view showing a part of a schematic configuration of Embodiment 3 of the plasma electrode according to the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a part of the plasma electrode of FIG. 6 is an exploded cross-sectional view of the plasma electrode of FIG.
  • FIG. 7 is a cross-sectional view showing a part of a schematic configuration of Embodiment 4 of the plasma electrode according to the present invention.
  • FIG. 1 is a sectional view schematically showing Embodiment 1 of the plasma CVD apparatus of the present invention
  • FIG. 2 is an enlarged view of a part of the plasma electrode in FIG.
  • a plasma CVD apparatus 40 shown in FIG. 1 is a horizontal apparatus including a film forming chamber 10, a stage unit 20 and a plasma electrode 30 disposed in the film forming chamber 10.
  • the process gas discharged to the side is turned into plasma by a high-frequency electric field formed between the plasma electrode 30 and the stage unit 20, and a thin film is formed on the film formation substrate 50 such as a glass substrate placed on the stage unit 20. To do.
  • the film forming chamber 10 includes a top plate portion 1 in which a first process gas introduction hole 1 a for introducing a process gas into the film forming chamber 10 is formed, and the top plate portion.
  • 1 is a hollow body 5 disposed on the lower surface side of the body 1 via a high-frequency insulating member 3, a bottom plate 7 that closes the lower end side of the body 5, and the body 5 attached to the outer periphery of the body 5.
  • 5 is a box-like body having a tubular exhaust pipe connecting portion 9 provided with an exhaust port 9a communicating with the five exhaust ports 5a.
  • a shield member is disposed around the top plate portion 1 so that a high frequency applied to the top plate portion 1 does not leak to the outside.
  • the stage unit 20 is provided on the bottom plate unit 7, and at the time of film formation, the deposition target substrate 50 is placed on the stage unit 20 and the stage unit 20 is grounded.
  • the plasma electrode 30 includes a main electrode portion 21 provided with a second process gas introduction hole 21a, a gas shower plate portion 23 that forms a gas diffusion space DS between the main electrode portion 21, and a gas diffusion space DS.
  • the gas diffusion plate 25 and the plurality of heat transfer pillar portions 27 are arranged on the top plate portion 1 side in the film forming chamber 10 with a predetermined interval from the upper surface of the stage portion 20.
  • the distance between the plasma electrode 30 and the stage unit 20 is, for example, about several mm to several tens mm depending on the film forming conditions.
  • the main electrode portion 21 is a box-like body having an opening on the stage portion 20 side, and a second process gas introduction hole 21a is provided on the top side of the main electrode portion 21.
  • the main electrode portion 21 is attached to the lower surface of the top plate portion 1 such that the second process gas introduction hole 21a communicates with the first process gas introduction hole 1a.
  • Receive power supply A flow path 21 b for cooling the main electrode portion 21 by flowing a coolant such as water is formed in the top portion of the main electrode portion 21.
  • the gas shower plate portion 23 is a flat plate member having a plurality of gas discharge holes 23a for discharging process gas to the stage portion 20 side.
  • the arrangement is selected so that the process gas can be uniformly discharged from the plasma electrode 30 to the stage unit 20 side.
  • the gas shower plate portion 23 is provided on the end portion of the main electrode portion 21 on the stage portion 20 side, specifically on the lower end of the side wall portion of the main electrode portion 21 and the lower end of each heat transfer pillar portion 27, for example, with screws or the like. It is attached by a fixture S 1 (see FIG. 2).
  • a space between the top surface inside the main electrode portion 21 and the upper surface of the gas shower plate portion 23 becomes a gas diffusion space DS.
  • the gas diffusion plate 25 is a plate-like member having a plurality of gas flow holes 25a through which process gas flows and a plurality of fixing pillar portions 25b, and is spaced from the gas shower plate portion 23, and The gas shower plate portion 23 is disposed in the gas diffusion space DS so as to face each other.
  • the arrangement position of each gas circulation hole 25a is selected so as not to overlap the gas discharge hole 23a of the gas shower plate portion 23 in plan view.
  • the gas diffusion plate 25 is fixed to the main electrode portion 21 by, for example, a fixing tool S 2 (see FIG. 2) such as a screw inserted into the fixing pillar portion 25b from the gas shower plate portion 23 side.
  • the process gas introduced into the gas diffusion space DS through the first process gas introduction hole 1a and the second process gas introduction hole 21a is transferred to the gas diffusion space DS. It becomes easy to diffuse uniformly inside. Further, by disposing each gas circulation hole 25a so as not to overlap the gas discharge hole 23a in plan view, it becomes easy to discharge the process gas from the plasma electrode 30 into the film forming chamber 10 uniformly. As a result, it is easy to improve the uniformity of plasma generated in the space between the plasma electrode 30 and the deposition target substrate 50 during film formation. A part of the flow direction of the process gas in the plasma electrode 30 is indicated by a dashed arrow A in FIG.
  • Each heat transfer pillar portion 27 protrudes from the top of the main electrode portion 21 toward the gas shower plate portion 23, and each heat transfer pillar portion 27 passes through the gas flow hole 25 a and is a gas shower plate.
  • the gas shower plate part 23 and the main electrode part 21 are thermally connected.
  • a gap is formed between the inner wall of the gas flow hole 25a and the peripheral surface of the heat transfer pillar portion 27 passing through the gas flow hole 25a so that the process gas can flow.
  • the main electrode portion 21 and each heat transfer pillar portion 27 are integrally formed from one material.
  • Each of the main electrode part 21, the gas shower plate part 23, the gas diffusion plate 25, and the heat transfer pillar part 27 constituting the plasma electrode part 30 is generally made of aluminum.
  • the thermal conductivity, electrical conductivity, In consideration of mechanical strength and the like, it is also possible to manufacture with other metal materials, alloy materials, composite metal materials and the like.
  • the top panel 1 is connected to the high-frequency power source 60 (see FIG. 1) via the power wiring 55 (see FIG. 1) and the high-frequency matching unit (impedance matching unit; not shown).
  • the high frequency power supply 60 receives the supply of high frequency power.
  • the high frequency power supplied to the top plate portion 1 is conducted from the top plate portion 1 to the plasma electrode 30, and from the plasma electrode 30 to the stage portion 20 and the deposition target substrate 50 placed on the stage portion 20. Conducted with.
  • a high-frequency electric field is formed in the space between the plasma electrode 30, the stage unit 20, and the deposition target substrate 50.
  • a coolant such as water is caused to flow through the flow path 21 b in the main electrode portion 21.
  • a process gas supply source (not shown) and the first process gas introduction hole 1a are connected to each other via a process gas supply pipe (not shown) to the plasma electrode 30. While the gas is supplied, an exhaust pump (not shown) is connected to the exhaust pipe connection portion 9 via the exhaust pipe, and the inside of the film forming chamber 10 is adjusted to a desired pressure.
  • a mixed gas of monosilane (SiH 4 ) gas as a silicon source and hydrogen (H 2 ) gas as a carrier gas is used as a process gas.
  • the process gas is introduced into the plasma electrode 30 from the first process gas introduction hole 1a through the second process gas introduction hole 21a, and then discharged from the gas discharge holes 23a of the gas shower plate part 23 to the stage part 20 side. Then, it is turned into plasma in the above-mentioned high-frequency electric field.
  • active species such as SiH 3 , SiH 2 , SiH, Si, and H are generated, and these active species enter the deposition target substrate 50 to be amorphous or fine on the deposition target substrate 50.
  • Crystalline silicon is deposited.
  • an amorphous or microcrystalline silicon thin film is formed on the deposition target substrate 50.
  • the main electrode portion 21 of the plasma electrode 30 receives heat input from the plasma, but the main electrode portion 21 is cooled by the refrigerant flowing through the flow path 21b. Thermal deformation is suppressed.
  • the gas shower plate portion 23 also receives heat input from the plasma, but since the heat conducted from the plasma to the gas shower plate portion 23 is conducted from each heat transfer pillar portion 27 to the main electrode portion 21, the gas shower plate 23 The part 23 can also suppress thermal deformation.
  • a part of the heat conduction direction in the plasma electrode 30 at the time of film formation is indicated by a dashed-dotted arrow B in FIG.
  • the heat transfer pillar portion 27 is passed through the gas flow hole 25a formed in the gas diffusion plate 25. Compared with the case where the heat transfer pillars are provided so that they do not pass, the diameter of the heat transfer pillars 27 is increased while maintaining the uniformity of the generated plasma, or the number of heat transfer pillars 27 is increased. Is easy. This point will be specifically described with reference to FIG.
  • FIG. 3 is a cross-sectional view schematically showing the plasma electrode (shower head) of Patent Document 2.
  • the plasma electrode 130 shown in the figure includes an upper plate 121 provided with a process gas introduction hole 121 a and a lower plate that is attached to an end of the upper plate 121 and forms a gas diffusion space DS between the upper plate 121. 123, an intermediate plate 125 disposed in the gas diffusion space DS, and a cover member 127 attached to the lower surface of the lower plate 123.
  • a plurality of heat transfer members 129 a disposed between the intermediate plate 125 and the upper plate 121 and a plurality of heat transfer members 129 b disposed between the intermediate plate 125 and the lower plate 123 are also provided.
  • the lower plate 123 is provided with a plurality of gas passage holes 123a through which process gas flows
  • the intermediate plate 125 is provided with a plurality of gas passage holes 125a through which process gas flows.
  • the cover member 127 is provided with a plurality of gas discharge holes 127a for discharging process gas.
  • each heat-transfer member 129a, 129b is arrange
  • the design flexibility of the plasma electrode 130 is relatively low, and it is difficult to increase the diameter of the heat transfer members 129a and 129b and increase the number of heat transfer members 129a and 129b.
  • the heat transfer pillar portion 27 is passed through the gas flow hole 25a as described above, the heat transfer pillar is maintained while maintaining the uniformity of the generated plasma. It is easy to increase the diameter of the portion 27 or increase the number of the heat transfer pillar portions 27.
  • a microcrystalline silicon film is deposited over a glass substrate using a silane gas (SiH 4 ) and a hydrogen gas (H 2 ) with the apparatus illustrated in FIG. 1
  • the plasma electrode 30 of the plasma CVD apparatus used here has a size of 1.2 m ⁇ 1.5 m in plan view. Further, the heat transfer pillar portion 27 having a diameter of 15 mm was disposed in the gas diffusion space DS with a pitch of 40 mm.
  • a glass substrate 7 (thickness: 4 mm) of 1400 mm ⁇ 1100 mm was placed on the stage unit 20 in the film forming chamber 10 evacuated, and the substrate temperature was raised to 200 ° C. by a heater (not shown). Next, the stage part 20 was set so that the space
  • SiH 4 gas and H 2 gas were supplied to the first process gas introduction hole 1a at flow rates of 1 slm and 50 slm, respectively.
  • the supplied process gas is introduced into the gas diffusion space DS, and is supplied into the film forming chamber 10 from the gas discharge hole 23a of the gas shower plate portion 23 through the gas circulation hole 25a.
  • the gas was exhausted from the exhaust port 5a by an exhaust pump (not shown) so that the gas pressure in the film forming chamber 10 was 1000 Pa.
  • high frequency power of 13.56 MHz was supplied to generate SiH 4 / H 2 mixed plasma between the plasma electrode 30 and the glass substrate.
  • the temperature rise of the gas shower plate 23 in a state where film formation was performed was measured using an optical fiber thermometer from the back side of the gas shower plate 23, that is, from the gas diffusion space DS side.
  • the shower plate back surface temperature rose to 33 degrees and reached equilibrium.
  • the rising temperature during film formation is 13 degrees, and it can be seen that the method of this embodiment can be sufficiently cooled by optimizing the diameter and number of the heat transfer pillar portions 27 necessary for cooling the gas shower plate 23. .
  • the film thickness and film quality uniformity of the microcrystalline silicon thin film described above can be obtained because of the optimal arrangement of the gas discharge holes 23a necessary for ensuring the uniformity by the method of the present embodiment and the gas shower plate 23. This is because the configuration of the heat transfer pillar portion 27 necessary for cooling can be easily optimized at the same time.
  • the in-plane uniformity of the film is good when the film is formed under a narrow condition where the distance between the gas shower plate portion 23 and the glass substrate is 10 mm or less. It becomes.
  • the deformation of the gas shower plate portion 23 is small and the in-plane of the film Uniformity is improved.
  • a semiconductor film having excellent uniformity can be formed on a large substrate having an area of 1 square m or more, for example, 1 m or more on one side, and productivity is excellent.
  • FIG. 4 is a cross-sectional view showing a part of a schematic configuration of a plasma electrode according to Embodiment 3 of the present invention
  • FIG. 5 is an enlarged cross-sectional view showing a part of the plasma electrode of FIG. 4,
  • FIG. It is sectional drawing which decomposes
  • the gas shower plate portion 23 is attached to the heat transfer pillar portion 27 by a fixture S 1 ′ (screw or bolt) that can be tightened or loosened from the stage portion 20 side (plasma surface side).
  • a fixture S 1 ′ screw or bolt
  • a through hole 71 with counterbore 70 is provided in the gas shower plate portion 23 so that the fixture S 1 ′ does not protrude from the surface of the gas shower plate portion 23, and the fixing device S 1 is a screw with a head from the plasma surface side. 'Is inserted and inserted into the screw hole 72 of the heat transfer pillar portion 27 on the back surface side, and the screw is tightened.
  • each heat transfer pillar portion 27 is sufficiently fastened with a screw so that each heat transfer pillar portion 27 and the gas shower plate portion 23 are brought into close contact with each other.
  • the gas shower plate portion 23 is attached to the heat transfer pillar portion 27 with screws.
  • the head of the screw is combined with a fixture S 1 having a flat countersunk screw with a flat head tip and a countersunk hole.
  • the gas shower plate portion 23 is made substantially flat so that it substantially coincides with the plasma surface side of the gas shower plate portion 23.
  • the screw has + and-depressions that can be rotated and installed with a screwdriver. Since the screw for fixing the gas shower plate portion 23 of the CVD apparatus for forming a meter-sized substrate to the heat transfer pillar portion 27 is about M5, generally the depth of the above-mentioned hollow portion is usually ⁇ The following problems occur due to 2 mm.
  • the interval between the stage unit 20 on which the deposition target substrate is placed and the plasma electrode 30 is set to be as narrow as about 10 mm.
  • the amount of the recess of the screw with respect to the set gap between the gas shower plate portion 23 and the stage portion 20 is several tens of percent, so that the plasma electrode surface in contact with the plasma is not flat and uneven. Therefore, the substantial distance from the stage unit 20 to the plasma electrode 30 varies within the surface of the gas shower plate unit 23. This unevenness affects plasma generation, and for example, the plasma density increases and decreases where there are screws and where there are no screws.
  • a fixture S 1 ′ for fixing the gas shower plate portion 23 to the heat transfer pillar portion 27 is attached by being submerged from the shower plate surface.
  • a counterbore 70 is provided on the gas shower plate portion 23 in order to sink and attach the fixture S 1 ′, which is a screw.
  • the lid F 1 is attached to the counterbore 70.
  • the depth of the counterbore 70 is the same as the thickness of the lid F 1 so that no unevenness occurs on the shower plate surface.
  • the lid F 1 is attached with a screw provided on the gas shower plate portion 23.
  • the lid F 1 is not particularly required to be attached and fixed, but if the lid F 1 is provided with a slight recess 73 of 1 mm or less, the lid F 1 can be securely screwed into the gas shower plate portion 23.
  • This lid F 1 is different from the fixture S 1 'for fastening the gas shower plate 23 and the heat transfer pillar portion 27, there is no need to fasten by a strong force, the screw holes to be used for detaching the lid F 1
  • the grooves and the grooves can be made very small like a slight depression 73.
  • the recess 73 may not be provided as long as it can be detached and attached by being rotated by the frictional force of the surface.
  • the material of the lid F 1 is not particularly defined, but the same material as the gas shower plate portion 23 is desirable.
  • the gas shower plate portion 23 and the heat transfer pillar portion 27 can be fastened with a sufficient force, and the surface of the gas shower plate portion 23 in contact with the plasma has a flat surface without unevenness, so that the plasma is uniform. Improves.
  • the material of the fixture S 1 is the same as that of the gas shower plate portion 23. Since the head of the fixture S 1 ′ is completely hidden, there is no problem even if a material different from the gas shower plate portion 23 is used.
  • the gas shower plate 23 is made of aluminum or an alloy thereof, it is possible to use screws of stainless steel or copper alloy that are harder than those.
  • a film of a solid lubricant or the like may be formed in the screw groove.
  • a solid lubricant or the like for example, molybdenum disulfide
  • the replacement operation of the gas shower plate portion 23 is facilitated and the lid F 1 is provided, so that these solid lubricants can be prevented from entering the film forming chamber 10 from the screw groove and being contaminated.
  • FIG. 7 is a cross-sectional view showing a part of a schematic configuration of Embodiment 4 of the plasma electrode according to the present invention.
  • the heat transfer pillar portion 27 is provided with a screw 81 at the end on the side where the gas shower plate portion 23 is attached.
  • the gas shower plate 23 is attached and fixed by tightening a nut 82 to the screw 81.
  • the lid F 2 is attached in the same manner as described above.
  • the surface of the stage side of the gas shower plate 23, a counterbore 83 which cover F 2 enters the nut 82 is provided, flush with the surface of the lid F 2 gas shower plate 23 surface depth of counterbore 83 To prevent unevenness.
  • the plasma CVD apparatus of the present invention has been described with reference to the embodiment.
  • the present invention is not limited to the above embodiment.
  • whether or not the heat transfer pillar portion is integrally formed with the main electrode portion from one material can be appropriately selected.
  • the individual heat transfer pillar parts are attached to the main electrode part by a fixture such as a screw. It may be attached to the top.
  • each heat transfer pillar portion and the main electrode portion from one material. If each heat transfer pillar part is formed integrally with the main electrode part from one material, there is no contact interface between the heat transfer pillar part and the main electrode part, so there is no decrease in heat conduction at the contact interface and cooling performance. It becomes easy to obtain a high plasma electrode.
  • the number of heat transfer pillar portions and the number of gas flow holes in the gas diffusion plate may be the same, or the number of gas flow holes may be larger than the number of heat transfer pillar portions.
  • each of the main electrode portion and the gas shower plate portion constituting the plasma electrode may be any shape as long as a gas diffusion space can be formed between the main electrode portion and the gas shower plate portion.
  • both can be box-like bodies.
  • the top of the main electrode portion can also function as the top plate of the film forming chamber. That is, it is possible to configure a plasma CVD apparatus using the top of the main electrode portion as the top plate of the film forming chamber.
  • the plasma CVD apparatus of the present invention may be either a horizontal type or a vertical type, and either type can be appropriately selected according to the use of the plasma CVD apparatus.
  • the present invention can be variously modified, modified, combined, etc. other than those described above.
  • the plasma CVD apparatus according to the present invention is suitable as an apparatus for forming a thin film such as a silicon thin film, particularly as an apparatus for forming a thin film having a large area at a high speed at a time.

Abstract

The plasma electrode (30) of a plasma CVD apparatus (40) is configured by providing a main electrode section (21), which is provided with a process gas introducing port (second process gas introducing port (21a)); and a gas shower plate section (23), which is attached to an end portion of the main electrode section and forms a gas diffusion space (DS) between the main electrode section and the gas shower plate section. A plurality of gas jetting ports (23a) for jetting a process gas are formed in the gas shower plate section, and inside of the gas diffusion space, a gas diffusion plate (25), which has a plurality of gas distribution ports (25a) for distributing the process gas, and a plurality of heat transfer pillar sections (27) that pass through the gas distribution ports of the gas diffusion plate and thermally connect the gas shower plate section and the main electrode section to each other, are disposed. A space is formed between the inner wall of each of the gas distribution ports, and the circumferential surface of each of the heat transfer pillar sections that pass through the gas distribution ports.

Description

プラズマCVD装置、プラズマ電極および半導体膜の製造方法Plasma CVD apparatus, plasma electrode, and method for manufacturing semiconductor film
 この発明は、薄膜等の成膜に用いられるプラズマCVD(Chemical Vapor Deposition)装置、プラズマ電極およびその装置を用いた半導体膜の製造方法に関する。 The present invention relates to a plasma CVD (Chemical Vapor Deposition) apparatus used for forming a thin film or the like, a plasma electrode, and a semiconductor film manufacturing method using the apparatus.
 プラズマCVD装置は、アモルファスシリコン薄膜や微結晶シリコン薄膜等の薄膜を基板上に成膜するための装置として広く用いられている。今日では、例えば薄膜シリコン太陽電池の発電層に用いられるシリコン薄膜のような大面積の薄膜を高速で一時に成膜することができるプラズマCVD装置も開発されている。 The plasma CVD apparatus is widely used as an apparatus for forming a thin film such as an amorphous silicon thin film or a microcrystalline silicon thin film on a substrate. Nowadays, for example, a plasma CVD apparatus capable of forming a thin film having a large area such as a silicon thin film used for a power generation layer of a thin film silicon solar cell at a high speed at a time has been developed.
 例えば特許文献1には、反応ガスを吹出すための複数のガス吹出孔とプラズマの発生を促進するための複数のプラズマ促進孔とが形成されたガス吹出面板をプラズマ電極(対向電極)に設けることで、大面積の薄膜を高速で成膜することを可能にしたプラズマCVD装置が記載されている。このプラズマCVD装置では、ガス吹出面板での基板と対向する面に、当該ガス吹出面板を貫通させることなく上記複数のプラズマ促進孔が形成される。 For example, in Patent Document 1, a gas blowing face plate in which a plurality of gas blowing holes for blowing out a reactive gas and a plurality of plasma promoting holes for promoting the generation of plasma are formed in a plasma electrode (counter electrode). Thus, a plasma CVD apparatus that can form a thin film having a large area at high speed is described. In this plasma CVD apparatus, the plurality of plasma promotion holes are formed on the surface of the gas blowing face plate facing the substrate without penetrating the gas blowing face plate.
 また、特許文献1に記載のプラズマCVD装置による成膜よりも更に高速で大面積の薄膜を一時に成膜することが可能な方法として、いわゆる「高圧枯渇法」が知られている。この高圧枯渇法はプラズマCVD法の1つであり、被成膜基板が載置されるステージ部とプラズマ電極との間隔を十mm前後と狭くしたプラズマCVD装置により、成膜室(真空容器)内を高圧に保ちながら、かつ原料ガスを枯渇(不足)させながら高周波電界中でプラズマを生成して成膜を行う。 Also, a so-called “high pressure depletion method” is known as a method capable of forming a thin film having a large area at a higher speed than the film formation by the plasma CVD apparatus described in Patent Document 1. This high pressure depletion method is one of the plasma CVD methods, and a film forming chamber (vacuum container) is formed by a plasma CVD apparatus in which a distance between a stage portion on which a film forming substrate is placed and a plasma electrode is narrowed to about 10 mm. Film formation is performed by generating plasma in a high-frequency electric field while keeping the inside at high pressure and depleting (insufficient) the source gas.
 大面積の薄膜をプラズマCVD法により一時に成膜する際には、使用するプラズマCVD装置の構造や成膜原理に拘わらず、大形のプラズマ電極が用いられる。プラズマ電極は、成膜時にプラズマからの入熱を受けて昇温するため、当該プラズマ電極が大型化すればするほど成膜時の熱変形量が大きくなる。例えば、被成膜基板側から平面視したときの大きさが1m角のプラズマ電極の温度がプラズマからの入熱により20℃上昇すると、該プラズマ電極は、一般に、縦方向および横方向にそれぞれ0.4mm程度熱膨張する。このとき、プラズマ電極の周囲が固定されていたとすると当該プラズマ電極はステージ部側に最大10mm程度膨らむこととなり、プラズマ電極とステージ部との間隔が設定値から大きくずれて成膜時のプロセス特性に悪影響を与える。 When a large-area thin film is formed at a time by the plasma CVD method, a large plasma electrode is used regardless of the structure of the plasma CVD apparatus used and the film formation principle. Since the plasma electrode receives a heat input from the plasma at the time of film formation and rises in temperature, the larger the plasma electrode, the larger the amount of thermal deformation at the time of film formation. For example, when the temperature of a plasma electrode having a size of 1 m square when viewed in plan from the film formation substrate side is increased by 20 ° C. due to heat input from the plasma, the plasma electrode generally has 0 in the vertical and horizontal directions, respectively. .Expands about 4 mm. At this time, if the periphery of the plasma electrode is fixed, the plasma electrode swells up to about 10 mm toward the stage part, and the distance between the plasma electrode and the stage part greatly deviates from the set value, resulting in process characteristics during film formation. Adversely affected.
 プラズマ電極の熱変形を抑えるうえからは、プラズマからの入熱をできるだけ外部に放散させることが望まれる。例えば特許文献2のプラズマ電極(シャワーヘッド)におけるように、プロセスガス導入孔が形成された上部プレートと複数のガス通過孔が形成された下部プレートとでガス拡散空間を形成し、複数のガス通過孔が形成された中間プレートをガス拡散空間内に設けると共に、中間プレートと上部プレートとの間および下部プレートと中間プレートとの間にそれぞれ複数の伝熱部材を設ければ、プラズマから下部プレートに伝導した熱が伝熱部材、中間プレート、伝熱部材、上部プレートへと順次伝導して上部プレートから外部に放散されるので、プラズマ電極の熱変形を抑え易くなる。 In order to suppress thermal deformation of the plasma electrode, it is desirable to dissipate the heat input from the plasma to the outside as much as possible. For example, as in the plasma electrode (shower head) of Patent Document 2, a gas diffusion space is formed by an upper plate in which process gas introduction holes are formed and a lower plate in which a plurality of gas passage holes are formed. If an intermediate plate with holes is provided in the gas diffusion space and a plurality of heat transfer members are provided between the intermediate plate and the upper plate and between the lower plate and the intermediate plate, the plasma is transferred from the plasma to the lower plate. Since the conducted heat is sequentially conducted to the heat transfer member, the intermediate plate, the heat transfer member, and the upper plate and is dissipated to the outside from the upper plate, it is easy to suppress thermal deformation of the plasma electrode.
特開2002-237460号公報JP 2002-237460 A 特開2009-10101号公報JP 2009-10101 A
 しかしながら、特許文献2に具体的に記載されているプラズマ電極(シャワーヘッド)では、中間プレートのガス通過孔と重ならないようにして各伝熱部材が配置されるため、生成されるプラズマの均一性を保ちつつ伝熱部材の径を大きくしたり、伝熱部材の数を増やしたりすることが困難である。結果として、下部プレートから上部プレートへの熱伝導性を高めてプラズマ電極の冷却性能を高めることも困難である。 However, in the plasma electrode (shower head) specifically described in Patent Document 2, since each heat transfer member is arranged so as not to overlap with the gas passage hole of the intermediate plate, the uniformity of the generated plasma It is difficult to increase the diameter of the heat transfer member or increase the number of heat transfer members while maintaining the above. As a result, it is difficult to increase the thermal conductivity from the lower plate to the upper plate to improve the cooling performance of the plasma electrode.
 この発明は上記の事情に鑑みてなされたものであり、大面積の薄膜を高速で安定に成膜することを容易にするプラズマCVD装置、プラズマ電極および半導体膜の製造方法を得ることを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to obtain a plasma CVD apparatus, a plasma electrode, and a method for manufacturing a semiconductor film, which facilitate the stable deposition of a large-area thin film at a high speed. To do.
 この発明のプラズマCVD装置は、成膜室と、成膜室に配設された被成膜基板載置用のステージ部と、ステージ部と対向するように成膜室に配設されたプラズマ電極とを備えたプラズマCVD装置であって、プラズマ電極は、プロセスガス導入孔が設けられた主電極部と、プロセスガスをステージ部側に吐出するための複数のガス吐出孔を有し、主電極部でのステージ部側に取り付けられて主電極部との間にガス拡散空間を形成するガスシャワープレート部と、プロセスガスが流通するための複数のガス流通孔を有し、ガスシャワープレート部と互いに対向するようにガス拡散空間内に配置されたガス拡散板と、ガス拡散空間内に配置され、ガス流通孔を通ってガスシャワープレート部と主電極部とを熱的に接続する複数の伝熱ピラー部とを有し、ガス流通孔の内壁と該ガス流通孔を通る伝熱ピラー部の周面との間には空隙が形成されていることを特徴とする。 The plasma CVD apparatus according to the present invention includes a film formation chamber, a stage portion for mounting a film formation substrate disposed in the film formation chamber, and a plasma electrode disposed in the film formation chamber so as to face the stage portion. The plasma electrode includes a main electrode portion provided with a process gas introduction hole and a plurality of gas discharge holes for discharging process gas to the stage portion side. A gas shower plate part that is attached to the stage part side and forms a gas diffusion space between the main electrode part, a plurality of gas flow holes for the process gas to circulate, and a gas shower plate part, A gas diffusion plate disposed in the gas diffusion space so as to oppose each other, and a plurality of transmission lines disposed in the gas diffusion space and thermally connecting the gas shower plate portion and the main electrode portion through the gas flow holes. With thermal pillar A, wherein the air gap is formed between the peripheral surface of the heat transfer pillar portion through an inner wall and the gas flow hole of the gas flow holes.
 この発明のプラズマCVD装置では、ガス拡散板に形成したガス流通孔に伝熱ピラー部を通しているので、生成されるプラズマの均一性を保ちつつ伝熱ピラー部の径を大きくしたり伝熱ピラー部の数を増やしたりすることが容易である。その結果として、プラズマ電極の冷却性能を高めてその熱変形を抑えることも容易になり、大面積の薄膜を高速で安定に成膜し易くなる。 In the plasma CVD apparatus of the present invention, since the heat transfer pillar portion is passed through the gas flow hole formed in the gas diffusion plate, the diameter of the heat transfer pillar portion is increased or the heat transfer pillar portion is maintained while maintaining the uniformity of the generated plasma. It is easy to increase the number of As a result, it becomes easy to enhance the cooling performance of the plasma electrode and suppress its thermal deformation, and it becomes easy to form a large-area thin film stably at high speed.
図1は、この発明のプラズマCVD装置の実施の形態1を概略的に示す断面図である。FIG. 1 is a cross sectional view schematically showing Embodiment 1 of the plasma CVD apparatus of the present invention. 図2は、図1中のプラズマ電極の一部を拡大した拡大図である。FIG. 2 is an enlarged view of a part of the plasma electrode in FIG. 図3は、特許文献2のプラズマ電極(シャワーヘッド)を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a plasma electrode (shower head) of Patent Document 2. As shown in FIG. 図4は、本発明に係るプラズマ電極の実施の形態3の概略構成の一部を示す断面図である。FIG. 4 is a sectional view showing a part of a schematic configuration of Embodiment 3 of the plasma electrode according to the present invention. 図5は、図4のプラズマ電極の一部を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing a part of the plasma electrode of FIG. 図6は、図5のプラズマ電極を分解して示す断面図である。6 is an exploded cross-sectional view of the plasma electrode of FIG. 図7は、本発明に係るプラズマ電極の実施の形態4の概略構成の一部を示す断面図である。FIG. 7 is a cross-sectional view showing a part of a schematic configuration of Embodiment 4 of the plasma electrode according to the present invention.
 以下、この発明のプラズマCVD装置の実施の形態について、図面を参照して詳細に説明する。なお、この発明は下記の形態に限定されるものではない。
実施の形態1.
Hereinafter, embodiments of the plasma CVD apparatus of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following form.
Embodiment 1 FIG.
 図1は、この発明のプラズマCVD装置の実施の形態1を概略的に示す断面図であり、図2は、図1中のプラズマ電極の一部を拡大した拡大図である。図1に示すプラズマCVD装置40は、成膜室10と、該成膜室10内に配置されたステージ部20およびプラズマ電極30とを備えた横型の装置であり、プラズマ電極30からステージ部20側に吐出したプロセスガスをプラズマ電極30とステージ部20との間に形成した高周波電界によりプラズマ化して、ステージ部20上に載置されたガラス基板等の被成膜基板50上に薄膜を形成する。 FIG. 1 is a sectional view schematically showing Embodiment 1 of the plasma CVD apparatus of the present invention, and FIG. 2 is an enlarged view of a part of the plasma electrode in FIG. A plasma CVD apparatus 40 shown in FIG. 1 is a horizontal apparatus including a film forming chamber 10, a stage unit 20 and a plasma electrode 30 disposed in the film forming chamber 10. The process gas discharged to the side is turned into plasma by a high-frequency electric field formed between the plasma electrode 30 and the stage unit 20, and a thin film is formed on the film formation substrate 50 such as a glass substrate placed on the stage unit 20. To do.
 図1に示すように、上記の成膜室10は、プロセスガスを当該成膜室10内に導入するための第1プロセスガス導入孔1aが形成された天板部1と、該天板部1の下面側に高周波絶縁部材3を介して配置された中空の胴部5と、該胴部5での下端側を閉塞する底板部7と、胴部5の外周に取り付けられて該胴部5の排気口5aに連通する排気口9aが設けられた管状の排気管接続部9とを有する箱状体である。図示を省略しているが、天板部1の周囲には、該天板部1に印加される高周波が外部に漏洩しないようにシールド部材が配置されている。また、ステージ部20は底板部7上に設けられており、成膜時には、当該ステージ部20上に被成膜基板50が載置されると共に当該ステージ部20が接地される。 As shown in FIG. 1, the film forming chamber 10 includes a top plate portion 1 in which a first process gas introduction hole 1 a for introducing a process gas into the film forming chamber 10 is formed, and the top plate portion. 1 is a hollow body 5 disposed on the lower surface side of the body 1 via a high-frequency insulating member 3, a bottom plate 7 that closes the lower end side of the body 5, and the body 5 attached to the outer periphery of the body 5. 5 is a box-like body having a tubular exhaust pipe connecting portion 9 provided with an exhaust port 9a communicating with the five exhaust ports 5a. Although not shown, a shield member is disposed around the top plate portion 1 so that a high frequency applied to the top plate portion 1 does not leak to the outside. Further, the stage unit 20 is provided on the bottom plate unit 7, and at the time of film formation, the deposition target substrate 50 is placed on the stage unit 20 and the stage unit 20 is grounded.
 プラズマ電極30は、第2プロセスガス導入孔21aが設けられた主電極部21と、該主電極部21との間にガス拡散空間DSを形成するガスシャワープレート部23と、ガス拡散空間DS内に配置されたガス拡散板25および複数の伝熱ピラー部27とを有し、ステージ部20の上面から所定の間隔をあけて成膜室10での天板部1側に配置されている。プラズマ電極30とステージ部20との間隔は、成膜条件に応じて例えば数mm~数十mm程度とされる。 The plasma electrode 30 includes a main electrode portion 21 provided with a second process gas introduction hole 21a, a gas shower plate portion 23 that forms a gas diffusion space DS between the main electrode portion 21, and a gas diffusion space DS. The gas diffusion plate 25 and the plurality of heat transfer pillar portions 27 are arranged on the top plate portion 1 side in the film forming chamber 10 with a predetermined interval from the upper surface of the stage portion 20. The distance between the plasma electrode 30 and the stage unit 20 is, for example, about several mm to several tens mm depending on the film forming conditions.
 上記の主電極部21は、ステージ部20側が開口した箱状体であり、該主電極部21での天側には第2プロセスガス導入孔21aが設けられている。この主電極部21は、第2プロセスガス導入孔21aが第1プロセスガス導入孔1aと互いに連通するようにして天板部1の下面に取り付けられ、天板部1を介してプロセスガスおよび高周波電力の供給を受ける。また、主電極部21での天部内には、水等の冷媒を流して当該主電極部21を冷却するための流路21bが形成されている。 The main electrode portion 21 is a box-like body having an opening on the stage portion 20 side, and a second process gas introduction hole 21a is provided on the top side of the main electrode portion 21. The main electrode portion 21 is attached to the lower surface of the top plate portion 1 such that the second process gas introduction hole 21a communicates with the first process gas introduction hole 1a. Receive power supply. A flow path 21 b for cooling the main electrode portion 21 by flowing a coolant such as water is formed in the top portion of the main electrode portion 21.
 図1および図2に示すように、ガスシャワープレート部23は、プロセスガスをステージ部20側に吐出するための複数のガス吐出孔23aを有する平板状の部材であり、各ガス吐出孔23aの配置は、プラズマ電極30からステージ部20側にプロセスガスを均一に吐出することができるように選定されている。このガスシャワープレート部23は、主電極部21でのステージ部20側の端部、具体的には主電極部21の側壁部の下端および各伝熱ピラー部27の下端に、例えばネジ等の固定具S1(図2参照)により取り付けられる。主電極部21の内側の天面とガスシャワープレート部23の上面との間の空間がガス拡散空間DSとなる。 As shown in FIGS. 1 and 2, the gas shower plate portion 23 is a flat plate member having a plurality of gas discharge holes 23a for discharging process gas to the stage portion 20 side. The arrangement is selected so that the process gas can be uniformly discharged from the plasma electrode 30 to the stage unit 20 side. The gas shower plate portion 23 is provided on the end portion of the main electrode portion 21 on the stage portion 20 side, specifically on the lower end of the side wall portion of the main electrode portion 21 and the lower end of each heat transfer pillar portion 27, for example, with screws or the like. It is attached by a fixture S 1 (see FIG. 2). A space between the top surface inside the main electrode portion 21 and the upper surface of the gas shower plate portion 23 becomes a gas diffusion space DS.
 ガス拡散板25は、プロセスガスが流通するための複数のガス流通孔25aと、複数の固定用ピラー部25bとを有する板状部材であり、ガスシャワープレート部23から間隔をあけて、かつ該ガスシャワープレート部23と互いに対向するようにしてガス拡散空間DS内に配置されている。各ガス流通孔25aは、ガスシャワープレート部23のガス吐出孔23aと平面視上重ならないように、その配設位置が選定されている。このガス拡散板25は、例えば、ガスシャワープレート部23側から固定用ピラー部25bに挿入されたネジ等の固定具S2(図2参照)により主電極部21に固定される。 The gas diffusion plate 25 is a plate-like member having a plurality of gas flow holes 25a through which process gas flows and a plurality of fixing pillar portions 25b, and is spaced from the gas shower plate portion 23, and The gas shower plate portion 23 is disposed in the gas diffusion space DS so as to face each other. The arrangement position of each gas circulation hole 25a is selected so as not to overlap the gas discharge hole 23a of the gas shower plate portion 23 in plan view. The gas diffusion plate 25 is fixed to the main electrode portion 21 by, for example, a fixing tool S 2 (see FIG. 2) such as a screw inserted into the fixing pillar portion 25b from the gas shower plate portion 23 side.
 ガス拡散空間DS内にガス拡散板25を設けることにより、第1プロセスガス導入孔1aおよび第2プロセスガス導入孔21aを通ってガス拡散空間DS内に導入されたプロセスガスを当該ガス拡散空間DS内で均一に拡散させ易くなる。また、各ガス流通孔25aをガス吐出孔23aと平面視上重ならないように配置することにより、プロセスガスをプラズマ電極30から成膜室10内に均一に吐出させ易くなる。結果として、成膜時にプラズマ電極30と被成膜基板50との間の空間に生成されるプラズマの均一性を高め易くなる。プラズマ電極30内でのプロセスガスの流れ方向を、一部、図2中に破線の矢印Aで示してある。 By providing the gas diffusion plate 25 in the gas diffusion space DS, the process gas introduced into the gas diffusion space DS through the first process gas introduction hole 1a and the second process gas introduction hole 21a is transferred to the gas diffusion space DS. It becomes easy to diffuse uniformly inside. Further, by disposing each gas circulation hole 25a so as not to overlap the gas discharge hole 23a in plan view, it becomes easy to discharge the process gas from the plasma electrode 30 into the film forming chamber 10 uniformly. As a result, it is easy to improve the uniformity of plasma generated in the space between the plasma electrode 30 and the deposition target substrate 50 during film formation. A part of the flow direction of the process gas in the plasma electrode 30 is indicated by a dashed arrow A in FIG.
 各伝熱ピラー部27は、主電極部21での天部からガスシャワープレート部23側に向けて突設されており、個々の伝熱ピラー部27はガス流通孔25aを通ってガスシャワープレート部23に達し、ガスシャワープレート部23と主電極部21とを熱的に接続する。プロセスガスが流通できるように、ガス流通孔25aの内壁と該ガス流通孔25aを通る伝熱ピラー部27の周面との間には空隙が形成されている。図示の例では、主電極部21と各伝熱ピラー部27とが1つの材料から一体成形されている。 Each heat transfer pillar portion 27 protrudes from the top of the main electrode portion 21 toward the gas shower plate portion 23, and each heat transfer pillar portion 27 passes through the gas flow hole 25 a and is a gas shower plate. The gas shower plate part 23 and the main electrode part 21 are thermally connected. A gap is formed between the inner wall of the gas flow hole 25a and the peripheral surface of the heat transfer pillar portion 27 passing through the gas flow hole 25a so that the process gas can flow. In the illustrated example, the main electrode portion 21 and each heat transfer pillar portion 27 are integrally formed from one material.
 プラズマ電極部30を構成する主電極部21、ガスシャワープレート部23、ガス拡散板25、および伝熱ピラー部27の各々は、一般にはアルミニウムにより作製されるが、熱伝導性、電気伝導性、機械的強度等を考慮して他の金属材料、合金材料、複合金属材料等により作製することも可能である。 Each of the main electrode part 21, the gas shower plate part 23, the gas diffusion plate 25, and the heat transfer pillar part 27 constituting the plasma electrode part 30 is generally made of aluminum. However, the thermal conductivity, electrical conductivity, In consideration of mechanical strength and the like, it is also possible to manufacture with other metal materials, alloy materials, composite metal materials and the like.
 上述した構成を有するプラズマCVD装置40の使用時には、天板部1が電源配線55(図1参照)および高周波整合器(インピーダンス整合器;図示せず)を介して高周波電源60(図1参照)に接続されて、該高周波電源60から高周波電力の供給を受ける。天板部1に供給された高周波電力は、該天板部1からプラズマ電極30へ伝導し、該プラズマ電極30からステージ部20および該ステージ部20上に載置された被成膜基板50へと伝導する。プラズマ電極30とステージ部20および被成膜基板50との間の空間には、高周波電界が形成される。また、プラズマCVD装置40の使用時には、主電極部21中の流路21bに水等の冷媒が流される。 When the plasma CVD apparatus 40 having the above-described configuration is used, the top panel 1 is connected to the high-frequency power source 60 (see FIG. 1) via the power wiring 55 (see FIG. 1) and the high-frequency matching unit (impedance matching unit; not shown). The high frequency power supply 60 receives the supply of high frequency power. The high frequency power supplied to the top plate portion 1 is conducted from the top plate portion 1 to the plasma electrode 30, and from the plasma electrode 30 to the stage portion 20 and the deposition target substrate 50 placed on the stage portion 20. Conducted with. A high-frequency electric field is formed in the space between the plasma electrode 30, the stage unit 20, and the deposition target substrate 50. Further, when the plasma CVD apparatus 40 is used, a coolant such as water is caused to flow through the flow path 21 b in the main electrode portion 21.
 そして、プラズマCVD装置40の使用時には、プロセスガス供給源(図示せず)と第1プロセスガス導入孔1aとがプロセスガス供給管(図示せず)を介して互いに接続されてプラズマ電極30にプロセスガスが供給される一方で、排気管接続部9に排気管を介して排気ポンプ(図示せず)が接続されて成膜室10内が所望の圧力に調整される。 When the plasma CVD apparatus 40 is used, a process gas supply source (not shown) and the first process gas introduction hole 1a are connected to each other via a process gas supply pipe (not shown) to the plasma electrode 30. While the gas is supplied, an exhaust pump (not shown) is connected to the exhaust pipe connection portion 9 via the exhaust pipe, and the inside of the film forming chamber 10 is adjusted to a desired pressure.
 被成膜基板50上にシリコン薄膜を成膜するときには、例えば、シリコン源としてのモノシラン(SiH4)ガスとキャリアガスとしての水素(H2)ガスとの混合ガスがプロセスガスとして用いられる。プロセスガスは、第1プロセスガス導入孔1aから第2プロセスガス導入孔21aを通ってプラズマ電極30内に導入された後、ガスシャワープレート部23の各ガス吐出孔23aからステージ部20側に吐出されて、上記の高周波電界中でプラズマ化される。このプラズマ化によりSiH3,SiH2,SiH,Si,H等の活性種が生成され、これらの活性種が被成膜基板50に入射して該被成膜基板50上に非晶質あるいは微結晶のシリコンが堆積する。結果として、被成膜基板50上に非晶質あるいは微結晶のシリコン薄膜が成膜される。 When a silicon thin film is formed on the deposition target substrate 50, for example, a mixed gas of monosilane (SiH 4 ) gas as a silicon source and hydrogen (H 2 ) gas as a carrier gas is used as a process gas. The process gas is introduced into the plasma electrode 30 from the first process gas introduction hole 1a through the second process gas introduction hole 21a, and then discharged from the gas discharge holes 23a of the gas shower plate part 23 to the stage part 20 side. Then, it is turned into plasma in the above-mentioned high-frequency electric field. By this plasma formation, active species such as SiH 3 , SiH 2 , SiH, Si, and H are generated, and these active species enter the deposition target substrate 50 to be amorphous or fine on the deposition target substrate 50. Crystalline silicon is deposited. As a result, an amorphous or microcrystalline silicon thin film is formed on the deposition target substrate 50.
 成膜を行っている間、プラズマ電極30の主電極部21はプラズマからの入熱を受けるが、流路21bを流れる冷媒により当該主電極部21が冷却されることから、主電極部21では熱変形が抑えられる。また、ガスシャワープレート部23もプラズマからの入熱を受けるが、プラズマから当該ガスシャワープレート部23に伝導した熱は各伝熱ピラー部27から主電極部21へと伝導するので、ガスシャワープレート部23でも熱変形が抑えられる。成膜時におけるプラズマ電極30での熱の伝導方向を、一部、図2中に一点鎖線の矢印Bで示してある。 While the film is being formed, the main electrode portion 21 of the plasma electrode 30 receives heat input from the plasma, but the main electrode portion 21 is cooled by the refrigerant flowing through the flow path 21b. Thermal deformation is suppressed. Further, the gas shower plate portion 23 also receives heat input from the plasma, but since the heat conducted from the plasma to the gas shower plate portion 23 is conducted from each heat transfer pillar portion 27 to the main electrode portion 21, the gas shower plate 23 The part 23 can also suppress thermal deformation. A part of the heat conduction direction in the plasma electrode 30 at the time of film formation is indicated by a dashed-dotted arrow B in FIG.
 成膜時におけるプラズマ電極30の熱変形が上述のようにして抑えられるプラズマCVD装置40では、ガス拡散板25に形成したガス流通孔25aに伝熱ピラー部27を通しているので、ガス流通孔25aを通らないようにして伝熱ピラー部を設ける場合に比べて、生成されるプラズマの均一性を保ちつつ伝熱ピラー部27の径を大きくしたり、伝熱ピラー部27の数を増やしたりすることが容易である。この点について、図3を参照して具体的に説明する。 In the plasma CVD apparatus 40 in which thermal deformation of the plasma electrode 30 during film formation is suppressed as described above, the heat transfer pillar portion 27 is passed through the gas flow hole 25a formed in the gas diffusion plate 25. Compared with the case where the heat transfer pillars are provided so that they do not pass, the diameter of the heat transfer pillars 27 is increased while maintaining the uniformity of the generated plasma, or the number of heat transfer pillars 27 is increased. Is easy. This point will be specifically described with reference to FIG.
 図3は、特許文献2のプラズマ電極(シャワーヘッド)を概略的に示す断面図である。同図に示すプラズマ電極130は、プロセスガス導入孔121aが設けられた上部プレート121と、上部プレート121の端部に取り付けられて該上部プレート121との間にガス拡散空間DSを形成する下部プレート123と、ガス拡散空間DS内に配置された中間プレート125と、下部プレート123の下面に取り付けられたカバー部材127とを有している。また、中間プレート125と上部プレート121との間に配置された複数の伝熱部材129a、および中間プレート125と下部プレート123との間に配置された複数の伝熱部材129bも有している。下部プレート123には、プロセスガスが流通するための複数のガス通過孔123aが設けられており、中間プレート125にはプロセスガスが流通するための複数のガス通過孔125aが設けられている。また、カバー部材127には、プロセスガスを吐出するための複数のガス吐出孔127aが設けられている。 FIG. 3 is a cross-sectional view schematically showing the plasma electrode (shower head) of Patent Document 2. The plasma electrode 130 shown in the figure includes an upper plate 121 provided with a process gas introduction hole 121 a and a lower plate that is attached to an end of the upper plate 121 and forms a gas diffusion space DS between the upper plate 121. 123, an intermediate plate 125 disposed in the gas diffusion space DS, and a cover member 127 attached to the lower surface of the lower plate 123. In addition, a plurality of heat transfer members 129 a disposed between the intermediate plate 125 and the upper plate 121 and a plurality of heat transfer members 129 b disposed between the intermediate plate 125 and the lower plate 123 are also provided. The lower plate 123 is provided with a plurality of gas passage holes 123a through which process gas flows, and the intermediate plate 125 is provided with a plurality of gas passage holes 125a through which process gas flows. The cover member 127 is provided with a plurality of gas discharge holes 127a for discharging process gas.
 上述のように構成されたプラズマ電極130では、中間プレート125のガス通過孔125aと伝熱部材129a,129bとが重なるとプロセスガスを均一に吐出することが困難になり、生成されるプラズマの均一性が低下する。このため各伝熱部材129a,129bは、ガス通過孔125aと重ならないようにして配置される。このため、プラズマ電極130では設計の自由度が比較的低く、伝熱部材129a,129bの径を大きくしたり、伝熱部材129a,129bの数を増やしたりし難い。 In the plasma electrode 130 configured as described above, if the gas passage hole 125a of the intermediate plate 125 and the heat transfer members 129a and 129b overlap, it becomes difficult to uniformly discharge the process gas, and the generated plasma is uniform. Sex is reduced. For this reason, each heat- transfer member 129a, 129b is arrange | positioned so that it may not overlap with the gas passage hole 125a. For this reason, the design flexibility of the plasma electrode 130 is relatively low, and it is difficult to increase the diameter of the heat transfer members 129a and 129b and increase the number of heat transfer members 129a and 129b.
 これに対し、図1に示したプラズマCVD装置40のプラズマ電極30では、前述のようにガス流通孔25aに伝熱ピラー部27を通しているので、生成されるプラズマの均一性を保ちつつ伝熱ピラー部27の径を大きくしたり、伝熱ピラー部27の数を増やしたりすることが容易である。 On the other hand, in the plasma electrode 30 of the plasma CVD apparatus 40 shown in FIG. 1, since the heat transfer pillar portion 27 is passed through the gas flow hole 25a as described above, the heat transfer pillar is maintained while maintaining the uniformity of the generated plasma. It is easy to increase the diameter of the portion 27 or increase the number of the heat transfer pillar portions 27.
 その結果として、プラズマCVD装置40では、大面積の薄膜を一時に成膜するためにプラズマ電極30を大形化したときでも、伝熱ピラー部27の径を大きくしたり、伝熱ピラー部27の数を増やしたりすることで当該プラズマ電極30の冷却性能を高めて、成膜時の熱変形を抑えることが容易である。したがって、大面積の薄膜を高速で安定に成膜することが容易になる。例えば、プラズマ電極30をその平面視上の大きさが1.1m×1.4m程度となるように大形化しても、1.1m×1.4m程度の被成膜面を有する被成膜基板にシリコン薄膜等の薄膜を高速で安定に成膜することが容易になる。また、歩留りの向上を図ることも容易になる。
実施の形態2.
As a result, in the plasma CVD apparatus 40, even when the plasma electrode 30 is enlarged to form a thin film with a large area at a time, the diameter of the heat transfer pillar portion 27 is increased or the heat transfer pillar portion 27 is increased. It is easy to improve the cooling performance of the plasma electrode 30 by increasing the number of the above and suppress thermal deformation during film formation. Therefore, it becomes easy to form a large-area thin film stably at high speed. For example, even if the plasma electrode 30 is enlarged so that the size in plan view is about 1.1 m × 1.4 m, the film forming surface having a film forming surface of about 1.1 m × 1.4 m is formed. It becomes easy to form a thin film such as a silicon thin film on the substrate stably at a high speed. It is also easy to improve the yield.
Embodiment 2. FIG.
 本実施の形態では、図1に示す装置を用いてシランガス(SiH)と水素ガス(H)を用いて、ガラス基板上に微結晶シリコン膜を堆積させた例について説明する。ここで用いたプラズマCVD装置のプラズマ電極30は、平面視上1.2m×1.5mの大きさである。また、伝熱ピラー部27は直径が15mmのものを、ガス拡散空間DSにピッチ40mmで配置した。 In this embodiment, an example in which a microcrystalline silicon film is deposited over a glass substrate using a silane gas (SiH 4 ) and a hydrogen gas (H 2 ) with the apparatus illustrated in FIG. 1 will be described. The plasma electrode 30 of the plasma CVD apparatus used here has a size of 1.2 m × 1.5 m in plan view. Further, the heat transfer pillar portion 27 having a diameter of 15 mm was disposed in the gas diffusion space DS with a pitch of 40 mm.
 真空排気した成膜室10内のステージ部20に1400mm×1100mmのガラス基板7(厚み:4mm)を設置し、図示しないヒーターにより基板温度を200℃にまで昇温した。次に、ガスシャワープレート部23とガラス基板との間隔が5mmになるようにステージ部20を設定した。 A glass substrate 7 (thickness: 4 mm) of 1400 mm × 1100 mm was placed on the stage unit 20 in the film forming chamber 10 evacuated, and the substrate temperature was raised to 200 ° C. by a heater (not shown). Next, the stage part 20 was set so that the space | interval of the gas shower plate part 23 and a glass substrate might be set to 5 mm.
 この状態で、第1プロセスガス導入孔1aにSiHガスとHガスをそれぞれ1slmと50slmの流量で供給した。供給されたプロセスガスはガス拡散空間DSに導入され、ガス流通孔25aを経由してガスシャワープレート部23のガス吐出孔23aから成膜室10内に供給される。 In this state, SiH 4 gas and H 2 gas were supplied to the first process gas introduction hole 1a at flow rates of 1 slm and 50 slm, respectively. The supplied process gas is introduced into the gas diffusion space DS, and is supplied into the film forming chamber 10 from the gas discharge hole 23a of the gas shower plate portion 23 through the gas circulation hole 25a.
 次に、成膜室10内のガス圧力が1000Paとなるよう、排気口5aから図示しない排気ポンプで排気した。ガス圧力が安定した後、13.56MHzの高周波電力を給電してプラズマ電極30とガラス基板間にSiH/H混合プラズマを発生した。高周波電力は、12kW(電力密度=約0.67W/cm)給電して50分間成膜を行った。 Next, the gas was exhausted from the exhaust port 5a by an exhaust pump (not shown) so that the gas pressure in the film forming chamber 10 was 1000 Pa. After the gas pressure was stabilized, high frequency power of 13.56 MHz was supplied to generate SiH 4 / H 2 mixed plasma between the plasma electrode 30 and the glass substrate. The high frequency power was supplied at 12 kW (power density = about 0.67 W / cm 2 ) and film formation was performed for 50 minutes.
 この条件で成膜を行うと、膜厚2μm、膜厚の面内均一性±8%でシリコン薄膜が堆積され、実用的な大面積の基板サイズで均一な成膜が可能になった。また、ラマン分光法によって測定される480cm-1における非晶質シリコンのピークIに対する520cm-1における結晶シリコンのピークIの強度比I/Iの平均値は7.4、面内均一性は±10%であり、良好な微結晶シリコン薄膜を均一に得ることができた。 When film formation was performed under these conditions, a silicon thin film was deposited with a film thickness of 2 μm and an in-plane uniformity of film thickness of ± 8%, and uniform film formation with a practical large-area substrate size became possible. Also, the average value of the intensity ratio I c / I a of the crystalline silicon peak I c at 520 cm −1 to the amorphous silicon peak I a at 480 cm −1 measured by Raman spectroscopy is 7.4, and in-plane The uniformity was ± 10%, and a good microcrystalline silicon thin film could be obtained uniformly.
 ここで成膜を行っている状態でのガスシャワープレート23の温度上昇を、ガスシャワープレート23の裏面側すなわち、ガス拡散空間DS側から光ファイバ温度計を用いて計測した。その結果、冷媒の流路21bに流す冷媒の温度を20度に設定した場合、シャワープレート裏面温度は33度まで上昇し平衡に達した。成膜中の上昇温度は13度であり、本実施形態の方法によりガスシャワープレート23の冷却に必要な伝熱ピラー部27の直径および本数を最適化することで十分冷却できていることがわかる。 Here, the temperature rise of the gas shower plate 23 in a state where film formation was performed was measured using an optical fiber thermometer from the back side of the gas shower plate 23, that is, from the gas diffusion space DS side. As a result, when the temperature of the refrigerant flowing through the refrigerant flow path 21b was set to 20 degrees, the shower plate back surface temperature rose to 33 degrees and reached equilibrium. The rising temperature during film formation is 13 degrees, and it can be seen that the method of this embodiment can be sufficiently cooled by optimizing the diameter and number of the heat transfer pillar portions 27 necessary for cooling the gas shower plate 23. .
 また、上述の微結晶シリコン薄膜の膜厚および膜質の均一性が得られるのは、本実施形態の方法により均一性を確保するに必要なガス吐出孔23aの最適配置と、ガスシャワープレート23の冷却に必要な伝熱ピラー部27の構成の最適化が同時に容易に行えるからである。 Further, the film thickness and film quality uniformity of the microcrystalline silicon thin film described above can be obtained because of the optimal arrangement of the gas discharge holes 23a necessary for ensuring the uniformity by the method of the present embodiment and the gas shower plate 23. This is because the configuration of the heat transfer pillar portion 27 necessary for cooling can be easily optimized at the same time.
 上記のようなプラズマCVD装置をシリコンなどの半導体膜の製造に用いるので、ガスシャワープレート部23とガラス基板との間隔が10mm以下の狭い条件で成膜した際の膜の面内均一性が良好となる。また、ガスシャワープレート部23表面で高周波電力の平均密度が0.5W/平方cm以上となるように大電力を投入して成膜する条件でもガスシャワープレート部23の変形が小さく膜の面内均一性が良好となる。これにより、面積が1平方m以上、たとえば1辺が1m以上の大型基板の上に均一性に優れた半導体膜を高速に成膜することができるようになり生産性が優れる。
実施の形態3.
Since the plasma CVD apparatus as described above is used for manufacturing a semiconductor film such as silicon, the in-plane uniformity of the film is good when the film is formed under a narrow condition where the distance between the gas shower plate portion 23 and the glass substrate is 10 mm or less. It becomes. In addition, even under conditions where high power is applied so that the average density of the high frequency power is 0.5 W / square cm or more on the surface of the gas shower plate portion 23, the deformation of the gas shower plate portion 23 is small and the in-plane of the film Uniformity is improved. As a result, a semiconductor film having excellent uniformity can be formed on a large substrate having an area of 1 square m or more, for example, 1 m or more on one side, and productivity is excellent.
Embodiment 3 FIG.
 図4は、本発明に係るプラズマ電極の実施の形態3の概略構成の一部を示す断面図、図5は、図4のプラズマ電極の一部を拡大して示す断面図、図6は、図5のプラズマ電極を分解して示す断面図である。図4~図6において、この実施の形態3は、伝熱ピラー部27とガスシャワープレート部23とを固定する固定具S1´をシャワープレート面(プラズマ発生させる側の面)よりも沈み込むよう取り付けて、その上にふた(カバー)F1を取り付けてシャワープレート面をほぼ平坦とした構造である。 4 is a cross-sectional view showing a part of a schematic configuration of a plasma electrode according to Embodiment 3 of the present invention, FIG. 5 is an enlarged cross-sectional view showing a part of the plasma electrode of FIG. 4, and FIG. It is sectional drawing which decomposes | disassembles and shows the plasma electrode of FIG. 4 to 6, in the third embodiment, the fixture S 1 ′ for fixing the heat transfer pillar portion 27 and the gas shower plate portion 23 sinks more than the shower plate surface (surface on the plasma generation side). And the lid (cover) F 1 is attached on the surface so that the shower plate surface is substantially flat.
 ガスシャワープレート部23は交換容易とするために、ステージ部20側(プラズマ面側)から締緩可能な固定具S1´(ネジやボルト)によって伝熱ピラー部27に取り付ける。 In order to facilitate replacement, the gas shower plate portion 23 is attached to the heat transfer pillar portion 27 by a fixture S 1 ′ (screw or bolt) that can be tightened or loosened from the stage portion 20 side (plasma surface side).
 固定具S1´がガスシャワープレート部23の表面から突出しないように、ガスシャワープレート部23にザグリ70付きの貫通穴71を設けて、プラズマ面側から頭付きのネジである固定具S1´を差し込み、裏面側の伝熱ピラー部27のネジ穴72に差し込んでネジを締め付ける。良好な熱伝導を得るために、伝熱ピラー部27ごとにネジで十分に締結して各伝熱ピラー部27とガスシャワープレート部23とを密着させる。 A through hole 71 with counterbore 70 is provided in the gas shower plate portion 23 so that the fixture S 1 ′ does not protrude from the surface of the gas shower plate portion 23, and the fixing device S 1 is a screw with a head from the plasma surface side. 'Is inserted and inserted into the screw hole 72 of the heat transfer pillar portion 27 on the back surface side, and the screw is tightened. In order to obtain good heat conduction, each heat transfer pillar portion 27 is sufficiently fastened with a screw so that each heat transfer pillar portion 27 and the gas shower plate portion 23 are brought into close contact with each other.
 実施の形態1では、ガスシャワープレート部23をネジにより伝熱ピラー部27に取り付けた。この実施の形態1では、図2に示すように、頭の先端が平坦な皿ネジ(flat countersunk screw)である固定具S1と、皿ザグリ穴(countersunk hole)との組み合わせで、ネジの頭がガスシャワープレート部23のプラズマ面側と概ね一致させてガスシャワープレート部23を略平坦とした。 In the first embodiment, the gas shower plate portion 23 is attached to the heat transfer pillar portion 27 with screws. In the first embodiment, as shown in FIG. 2, the head of the screw is combined with a fixture S 1 having a flat countersunk screw with a flat head tip and a countersunk hole. The gas shower plate portion 23 is made substantially flat so that it substantially coincides with the plasma surface side of the gas shower plate portion 23.
 しかしながら、ネジにはドライバで回転させて取り付けるための+や-の窪みが施してある。メーターサイズの基板を成膜するCVD装置のガスシャワープレート部23を伝熱ピラー部27に固定するネジはM5程度の大きさが用いられるので、一般的には上記窪み部の深さは通常~2mmとなり以下の不具合が生じる。 However, the screw has + and-depressions that can be rotated and installed with a screwdriver. Since the screw for fixing the gas shower plate portion 23 of the CVD apparatus for forming a meter-sized substrate to the heat transfer pillar portion 27 is about M5, generally the depth of the above-mentioned hollow portion is usually ~ The following problems occur due to 2 mm.
 十分に力をかけて締結するにはネジの頭に締結工具の先端と噛み合わせるのに、ある程度大きなプラスや六角の穴やマイナスの溝が必要であり、この窪み部の深さを浅くすることは難しい。 To fasten with sufficient force, a large plus, hexagonal hole, or minus groove is needed to engage the screw head with the tip of the fastening tool, and the depth of this recess should be reduced. Is difficult.
 前述したように高圧枯渇法プロセスでは、被成膜基板が載置されるステージ部20とプラズマ電極30との間隔を十mm前後と狭く設定される。その結果、設定したガスシャワープレート部23とステージ部20の間隔に対する前記ネジの窪み量は数十%になることから、プラズマと接するプラズマ電極面が平坦にならず凹凸を生じることになる。そのためステージ部20から見たプラズマ電極30までの実質的な距離はガスシャワープレート部23面内でばらつきが生じる。この凹凸はプラズマ生成に影響を与え、ネジのある所と無い所で例えばプラズマ密度が増減しバラツクことになる。 As described above, in the high pressure depletion method process, the interval between the stage unit 20 on which the deposition target substrate is placed and the plasma electrode 30 is set to be as narrow as about 10 mm. As a result, the amount of the recess of the screw with respect to the set gap between the gas shower plate portion 23 and the stage portion 20 is several tens of percent, so that the plasma electrode surface in contact with the plasma is not flat and uneven. Therefore, the substantial distance from the stage unit 20 to the plasma electrode 30 varies within the surface of the gas shower plate unit 23. This unevenness affects plasma generation, and for example, the plasma density increases and decreases where there are screws and where there are no screws.
 この問題を解消するには、図4~図6に示すように伝熱ピラー部27にガスシャワープレート部23を固定する固定具S1´を、シャワープレート面より沈めて取り付ける。ネジである固定具S1´を沈めて取り付けるにはガスシャワープレート部23にザグリ70を設ける。このネジである固定具S1´を取り付けた後は、ふたF1をザグリ70に取り付ける。この場合、ザグリ70の深さはふたF1の厚みと同じにしてシャワープレート面とで凹凸が生じないようにする。ふたF1はガスシャワープレート部23に設けたネジで取り付ける。フタF1の取り付け固定は特に強度が必要でないが、ふたF1に1mm以下の僅かな窪み73を設けると、ふたF1をガスシャワープレート部23に確実にねじ込んで装着することができる。 In order to solve this problem, as shown in FIGS. 4 to 6, a fixture S 1 ′ for fixing the gas shower plate portion 23 to the heat transfer pillar portion 27 is attached by being submerged from the shower plate surface. A counterbore 70 is provided on the gas shower plate portion 23 in order to sink and attach the fixture S 1 ′, which is a screw. After the fixing tool S 1 ′, which is a screw, is attached, the lid F 1 is attached to the counterbore 70. In this case, the depth of the counterbore 70 is the same as the thickness of the lid F 1 so that no unevenness occurs on the shower plate surface. The lid F 1 is attached with a screw provided on the gas shower plate portion 23. The lid F 1 is not particularly required to be attached and fixed, but if the lid F 1 is provided with a slight recess 73 of 1 mm or less, the lid F 1 can be securely screwed into the gas shower plate portion 23.
 このふたF1はガスシャワープレート部23と伝熱ピラー部27とを締結する固定具S1´とは異なり、強い力で締結する必要がないので、ふたF1を脱着する際に用いるネジ穴や溝は僅かな窪み73のようにごく小さくできる。表面の摩擦力で回転させて脱着が可能ならば、窪み73は無くても構わない。ふたF1の材質は特に規定しないが、ガスシャワープレート部23と同材料が望ましい。 This lid F 1 is different from the fixture S 1 'for fastening the gas shower plate 23 and the heat transfer pillar portion 27, there is no need to fasten by a strong force, the screw holes to be used for detaching the lid F 1 The grooves and the grooves can be made very small like a slight depression 73. The recess 73 may not be provided as long as it can be detached and attached by being rotated by the frictional force of the surface. The material of the lid F 1 is not particularly defined, but the same material as the gas shower plate portion 23 is desirable.
 以上の構成により、ガスシャワープレート部23と伝熱ピラー部27とを十分な力で締結できるとともに、ガスシャワープレート部23のプラズマと接する表面は凹凸の無い平坦な面が得られるのでプラズマの均一性が向上する。 With the above configuration, the gas shower plate portion 23 and the heat transfer pillar portion 27 can be fastened with a sufficient force, and the surface of the gas shower plate portion 23 in contact with the plasma has a flat surface without unevenness, so that the plasma is uniform. Improves.
 また、図2のように、固定具S1の頭がプラズマ面に露出する場合は、固定具S1の材質をガスシャワープレート部23と同じにすることが望ましいが、本実施の形態3では固定具S1´の頭が完全に隠れてしまうので、ガスシャワープレート部23と異なる材質を使用しても問題ない。 As shown in FIG. 2, when the head of the fixture S 1 is exposed to the plasma surface, it is desirable that the material of the fixture S 1 is the same as that of the gas shower plate portion 23. Since the head of the fixture S 1 ′ is completely hidden, there is no problem even if a material different from the gas shower plate portion 23 is used.
 例えば、ガスシャワープレート部23がアルミニウムやその合金などからなる場合に、それらよりも硬質のステンレスや銅合金のネジを使用することが可能である。その場合、伝熱ピラー部27側のネジ穴72には、例えばステンレスや銅合金などからなるインサートネジ(screw thread insert)、たとえばヘリカルインサート(Helical insert)を挿入しておくとさらによい。硬質なネジやネジ穴によって強固な締結を繰り返しても、ネジの破損が少なくなる。 For example, when the gas shower plate 23 is made of aluminum or an alloy thereof, it is possible to use screws of stainless steel or copper alloy that are harder than those. In this case, it is further preferable to insert an insert screw made of, for example, stainless steel or copper alloy, for example, a helical insert, into the screw hole 72 on the heat transfer pillar portion 27 side. Even if strong fastening is repeated with a hard screw or screw hole, damage to the screw is reduced.
 また、ネジの締緩を容易とするために、ネジ溝に固体潤滑剤等(たとえば二硫化モリブデンなど)の被膜が形成されていてもよい。ガスシャワープレート部23の交換作業が容易となり、ふたF1があるので、これらの固体潤滑剤がネジ溝から成膜室10内に入って汚染することも防止できる。
実施の形態4.
Further, in order to facilitate the tightening and loosening of the screw, a film of a solid lubricant or the like (for example, molybdenum disulfide) may be formed in the screw groove. The replacement operation of the gas shower plate portion 23 is facilitated and the lid F 1 is provided, so that these solid lubricants can be prevented from entering the film forming chamber 10 from the screw groove and being contaminated.
Embodiment 4 FIG.
 上述した実施の形態では、ガスシャワープレート部23をネジにより伝熱ピラー部27に取り付ける方法について説明したが、ナットで取り付けてもよい。図7は、本発明に係るプラズマ電極の実施の形態4の概略構成の一部を示す断面図である。図7において、伝熱ピラー部27には、ガスシャワープレート部23が取り付けられる側の端部にネジ81を施している。ガスシャワープレート部23の取り付け固定は、ネジ81にナット82を締め付けて行う。ナット82を取り付けたら、前述と同様にふたFを取り付ける。この場合、ガスシャワープレート部23のステージ側の表面には、ナット82とふたFが入るザグリ83を設け、ザグリ83の深さはふたFの表面がガスシャワープレート部23表面と同一面になり凹凸が生じないようにする。 In the above-described embodiment, the method of attaching the gas shower plate portion 23 to the heat transfer pillar portion 27 with a screw has been described, but it may be attached with a nut. FIG. 7 is a cross-sectional view showing a part of a schematic configuration of Embodiment 4 of the plasma electrode according to the present invention. In FIG. 7, the heat transfer pillar portion 27 is provided with a screw 81 at the end on the side where the gas shower plate portion 23 is attached. The gas shower plate 23 is attached and fixed by tightening a nut 82 to the screw 81. When the nut 82 is attached, the lid F 2 is attached in the same manner as described above. In this case, the surface of the stage side of the gas shower plate 23, a counterbore 83 which cover F 2 enters the nut 82 is provided, flush with the surface of the lid F 2 gas shower plate 23 surface depth of counterbore 83 To prevent unevenness.
 以上、この発明のプラズマCVD装置について実施の形態を挙げて説明したが、前述のように、本発明は上記の形態に限定されるものではない。例えば、伝熱ピラー部を1つの材料から主電極部と一体成形するか否かは適宜選定可能である。伝熱ピラー部のない主電極部または該主電極部の天部と伝熱ピラー部とを別体に作製した後、例えば、ネジ等の固定具により個々の伝熱ピラー部を主電極部の天部に取り付けてもよい。 As described above, the plasma CVD apparatus of the present invention has been described with reference to the embodiment. However, as described above, the present invention is not limited to the above embodiment. For example, whether or not the heat transfer pillar portion is integrally formed with the main electrode portion from one material can be appropriately selected. After preparing the main electrode part without the heat transfer pillar part or the top part of the main electrode part and the heat transfer pillar part separately, for example, the individual heat transfer pillar parts are attached to the main electrode part by a fixture such as a screw. It may be attached to the top.
 ただし、冷却性能の高いプラズマ電極を得るという観点からは、1つの材料から各伝熱ピラー部と主電極部とを一体に成形した方が好ましい。各伝熱ピラー部を1つの材料から主電極部と一体に成形すると、伝熱ピラー部と主電極部との間に接触界面がなくなるので、接触界面での熱伝導の低下がなくなり、冷却性能の高いプラズマ電極を得易くなる。伝熱ピラー部の数とガス拡散板でのガス流通孔の数は、同数としてもよいし、ガス流通孔の数を伝熱ピラー部の数より多くしてもよい。 However, from the viewpoint of obtaining a plasma electrode with high cooling performance, it is preferable to integrally form each heat transfer pillar portion and the main electrode portion from one material. If each heat transfer pillar part is formed integrally with the main electrode part from one material, there is no contact interface between the heat transfer pillar part and the main electrode part, so there is no decrease in heat conduction at the contact interface and cooling performance. It becomes easy to obtain a high plasma electrode. The number of heat transfer pillar portions and the number of gas flow holes in the gas diffusion plate may be the same, or the number of gas flow holes may be larger than the number of heat transfer pillar portions.
 プラズマ電極を構成する主電極部およびガスシャワープレート部それぞれの形状は、これら主電極部とガスシャワープレート部との間にガス拡散空間を形成することができる形状であればよく、いずれか一方を箱状体とし、他方を平板状とする他に、両方を箱状体とすることもできる。また、主電極部の天部に成膜室の天板部としての機能を兼ねさせることもできる。すなわち、主電極部の天部を成膜室の天板部としてプラズマCVD装置を構成することも可能である。 The shape of each of the main electrode portion and the gas shower plate portion constituting the plasma electrode may be any shape as long as a gas diffusion space can be formed between the main electrode portion and the gas shower plate portion. In addition to a box-like body and the other plate-like, both can be box-like bodies. Further, the top of the main electrode portion can also function as the top plate of the film forming chamber. That is, it is possible to configure a plasma CVD apparatus using the top of the main electrode portion as the top plate of the film forming chamber.
 この発明のプラズマCVD装置は、横型および縦型のいずれであってもよく、どちらの型にするかは当該プラズマCVD装置の用途等に応じて適宜選択可能である。この発明については、上述した以外にも種々の変形、修飾、組み合わせ等が可能である。 The plasma CVD apparatus of the present invention may be either a horizontal type or a vertical type, and either type can be appropriately selected according to the use of the plasma CVD apparatus. The present invention can be variously modified, modified, combined, etc. other than those described above.
 この発明のプラズマCVD装置は、シリコン薄膜等の薄膜を成膜するための装置として、特に大面積の薄膜を高速で一時に成膜するための装置として好適である。 The plasma CVD apparatus according to the present invention is suitable as an apparatus for forming a thin film such as a silicon thin film, particularly as an apparatus for forming a thin film having a large area at a high speed at a time.
 1 天板部
 1a 第1プロセスガス導入孔
 3 高周波絶縁部材
 5 胴部
 5a 排気口
 7 底板部
 9 排気管接続部
 DS ガス拡散空間
 10 成膜室
 20 ステージ部
 21 主電極部
 21a 第2プロセスガス導入孔
 21b 冷媒の流路
 23 ガスシャワープレート部
 23a ガス吐出孔
 25 ガス拡散板
 25a ガス流通孔
 27 伝熱ピラー部
 30 プラズマ電極
 40 プラズマCVD装置
 50 被成膜基板
 60 高周波電源
 S1、S1´、S 固定具
 F1、F ふた
 70、83 ザグリ
 71、84 貫通穴
 72 ネジ穴
 73 窪み
 81 ネジ
 82 ナット
DESCRIPTION OF SYMBOLS 1 Top plate part 1a 1st process gas introduction hole 3 High frequency insulation member 5 Trunk part 5a Exhaust port 7 Bottom plate part 9 Exhaust pipe connection part DS Gas diffusion space 10 Deposition chamber 20 Stage part 21 Main electrode part 21a 2nd process gas introduction Hole 21b Refrigerant flow path 23 Gas shower plate part 23a Gas discharge hole 25 Gas diffusion plate 25a Gas flow hole 27 Heat transfer pillar part 30 Plasma electrode 40 Plasma CVD apparatus 50 Film-forming substrate 60 High frequency power supply S 1 , S 1 ′, S 2 fixture F 1 , F 2 lid 70, 83 counterbore 71, 84 through hole 72 screw hole 73 recess 81 screw 82 nut

Claims (7)

  1.  成膜室と、該成膜室に配設された被成膜基板載置用のステージ部と、該ステージ部と対向するように前記成膜室に配設されたプラズマ電極とを備えたプラズマCVD装置であって、
     前記プラズマ電極は、
     プロセスガス導入孔が設けられた主電極部と、
     プロセスガスを前記ステージ部側に吐出するための複数のガス吐出孔を有し、前記主電極部での前記ステージ部側に取り付けられて該主電極部との間にガス拡散空間を形成するガスシャワープレート部と、
     前記プロセスガスが流通するための複数のガス流通孔を有し、前記ガスシャワープレート部と互いに対向するように前記ガス拡散空間内に配置されたガス拡散板と、
     前記ガス拡散空間内に配置され、ガス流通孔を通って前記ガスシャワープレート部と前記主電極部とを熱的に接続する複数の伝熱ピラー部と、
     を有し、前記ガス流通孔の内壁と該ガス流通孔を通る前記伝熱ピラー部の周面との間には空隙が形成されていることを特徴とするプラズマCVD装置。
    A plasma comprising a film formation chamber, a stage portion for placing a film formation substrate disposed in the film formation chamber, and a plasma electrode disposed in the film formation chamber so as to face the stage portion A CVD apparatus,
    The plasma electrode is
    A main electrode portion provided with a process gas introduction hole;
    A gas that has a plurality of gas discharge holes for discharging process gas to the stage portion side, is attached to the stage portion side of the main electrode portion, and forms a gas diffusion space between the main electrode portion The shower plate,
    A gas diffusion plate having a plurality of gas flow holes for flowing the process gas, and disposed in the gas diffusion space so as to face the gas shower plate portion;
    A plurality of heat transfer pillar portions disposed in the gas diffusion space and thermally connecting the gas shower plate portion and the main electrode portion through gas flow holes;
    And a gap is formed between the inner wall of the gas flow hole and the peripheral surface of the heat transfer pillar portion passing through the gas flow hole.
  2.  前記主電極部と前記伝熱ピラー部とは、1つの材料から一体成形されていることを特徴とする請求項1に記載のプラズマCVD装置。 The plasma CVD apparatus according to claim 1, wherein the main electrode portion and the heat transfer pillar portion are integrally formed from one material.
  3.  前記主電極部の内部には、冷媒を流して該主電極部を冷却するための流路が形成されていることを特徴とする請求項1または2に記載のプラズマCVD装置。 3. The plasma CVD apparatus according to claim 1, wherein a flow path for cooling the main electrode portion by flowing a coolant is formed inside the main electrode portion.
  4.  前記伝熱ピラーとシャワープレートはネジで固定され、前記ネジはシャワープレートのステージ側表面に設けたザグリに沈めて取り付け且つ、前記ザグリにふたを設けたことを特徴とする請求項1から3のいずれか1項に記載のプラズマCVD装置。 The heat transfer pillar and the shower plate are fixed with screws, the screws are attached by sinking in a counterbore provided on a stage side surface of the shower plate, and a cover is provided on the counterbore. The plasma CVD apparatus according to any one of the above.
  5.  プロセスガス導入孔が設けられた主電極部と、
     前記主電極部との間にガス拡散空間が形成されるように前記主電極部に対向配置され、前記プロセスガス導入孔を介して前記ガス拡散空間に流入したプロセスガスを吐出する複数のガス吐出孔が設けられたガスシャワープレート部と、
     前記ガスシャワープレート部と対向するように前記ガス拡散空間内に配置され、前記プロセスガスを流通させる複数のガス流通孔が設けられたガス拡散板と、
     前記ガス流通孔を通して前記ガスシャワープレート部と前記主電極部とを熱的に接続し、前記ガス流通孔との間に隙間が空けられた複数の伝熱ピラー部とを備えることを特徴とするプラズマ電極。
    A main electrode portion provided with a process gas introduction hole;
    A plurality of gas discharges arranged to face the main electrode part so as to form a gas diffusion space between the main electrode part and discharge process gas flowing into the gas diffusion space through the process gas introduction hole A gas shower plate with holes,
    A gas diffusion plate disposed in the gas diffusion space so as to face the gas shower plate portion, and provided with a plurality of gas flow holes for flowing the process gas;
    The gas shower plate portion and the main electrode portion are thermally connected through the gas flow holes, and a plurality of heat transfer pillar portions having gaps between the gas flow holes are provided. Plasma electrode.
  6.  前記ガス流通孔と前記隙間とは平面視上互いに重ならないように配置されていることを特徴とする請求項5に記載のプラズマ電極。 6. The plasma electrode according to claim 5, wherein the gas flow hole and the gap are arranged so as not to overlap each other in plan view.
  7.  請求項1から4のいずれか1項に記載のプラズマCVD装置を用いた半導体膜の製造方法であって、
    前記ガスシャワープレート部と基板との間隔を10mm以下となるように前記ステージ部に基板を載置してシリコン薄膜を前記基板上に堆積することを特徴とする半導体膜の製造方法。
    A method of manufacturing a semiconductor film using the plasma CVD apparatus according to any one of claims 1 to 4,
    A method of manufacturing a semiconductor film, comprising: placing a substrate on the stage portion so that a distance between the gas shower plate portion and the substrate is 10 mm or less; and depositing a silicon thin film on the substrate.
PCT/JP2010/057383 2009-08-10 2010-04-26 Plasma cvd apparatus, plasma electrode, and method for manufacturing semiconductor film WO2011018912A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011526696A JP5398837B2 (en) 2009-08-10 2010-04-26 Plasma CVD apparatus, plasma electrode, and method for manufacturing semiconductor film
DE112010003248.3T DE112010003248B4 (en) 2009-08-10 2010-04-26 Plasma CVD device, plasma electrode and method for producing a semiconductor layer
CN201080035372.8A CN102473612B (en) 2009-08-10 2010-04-26 Plasma CVD apparatus, plasma electrode, and method for manufacturing semiconductor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009185828 2009-08-10
JP2009-185828 2009-08-10

Publications (1)

Publication Number Publication Date
WO2011018912A1 true WO2011018912A1 (en) 2011-02-17

Family

ID=43586092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057383 WO2011018912A1 (en) 2009-08-10 2010-04-26 Plasma cvd apparatus, plasma electrode, and method for manufacturing semiconductor film

Country Status (4)

Country Link
JP (1) JP5398837B2 (en)
CN (1) CN102473612B (en)
DE (1) DE112010003248B4 (en)
WO (1) WO2011018912A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528616A (en) * 2015-09-22 2018-09-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shower head support structure
CN112030110A (en) * 2020-08-21 2020-12-04 无锡爱尔华光电科技有限公司 Vacuum coating equipment with separable base materials
JP2022501501A (en) * 2018-09-26 2022-01-06 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Thermal spacer for plasma processing chamber
TWI754404B (en) * 2019-11-22 2022-02-01 大陸商中微半導體設備(上海)股份有限公司 Upper electrode element and plasma processing equipment
US11236423B2 (en) * 2018-12-26 2022-02-01 Tokyo Electron Limited Film-forming apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480417B (en) 2012-11-02 2015-04-11 Ind Tech Res Inst Air showr device having air curtain and apparatus for depositing film using the same
WO2017149739A1 (en) * 2016-03-03 2017-09-08 コアテクノロジー株式会社 Plasma treatment device and structure of reaction vessel for plasma treatment
KR102243897B1 (en) * 2019-06-26 2021-04-26 세메스 주식회사 A showerhead unit, a substrate processing apparatus including the showerhead unit, and a method of assembling the showerhead unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338458A (en) * 1993-05-28 1994-12-06 Kokusai Electric Co Ltd Plasma cvd device
JPH09213685A (en) * 1996-01-30 1997-08-15 Hitachi Electron Eng Co Ltd Plasma electrode of plasma system for semiconductor device
WO2005065186A2 (en) * 2003-12-23 2005-07-21 Lam Research Corporation Showerhead electrode assembly for plasma processing apparatuses
JP2009010101A (en) * 2007-06-27 2009-01-15 Tokyo Electron Ltd Substrate processing equipment, and showerhead
JP2009094380A (en) * 2007-10-11 2009-04-30 Renesas Technology Corp Method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578694B2 (en) * 2001-02-09 2010-11-10 株式会社カネカ Plasma CVD apparatus and silicon-based film manufacturing method using plasma CVD apparatus
TW200537695A (en) * 2004-03-19 2005-11-16 Adv Lcd Tech Dev Ct Co Ltd Insulating film forming method, insulating film forming apparatus, and plasma film forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338458A (en) * 1993-05-28 1994-12-06 Kokusai Electric Co Ltd Plasma cvd device
JPH09213685A (en) * 1996-01-30 1997-08-15 Hitachi Electron Eng Co Ltd Plasma electrode of plasma system for semiconductor device
WO2005065186A2 (en) * 2003-12-23 2005-07-21 Lam Research Corporation Showerhead electrode assembly for plasma processing apparatuses
JP2009010101A (en) * 2007-06-27 2009-01-15 Tokyo Electron Ltd Substrate processing equipment, and showerhead
JP2009094380A (en) * 2007-10-11 2009-04-30 Renesas Technology Corp Method for manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528616A (en) * 2015-09-22 2018-09-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shower head support structure
JP2022501501A (en) * 2018-09-26 2022-01-06 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Thermal spacer for plasma processing chamber
JP7369183B2 (en) 2018-09-26 2023-10-25 アプライド マテリアルズ インコーポレイテッド Thermal conductive spacer for plasma processing chamber
US11236423B2 (en) * 2018-12-26 2022-02-01 Tokyo Electron Limited Film-forming apparatus
TWI754404B (en) * 2019-11-22 2022-02-01 大陸商中微半導體設備(上海)股份有限公司 Upper electrode element and plasma processing equipment
CN112030110A (en) * 2020-08-21 2020-12-04 无锡爱尔华光电科技有限公司 Vacuum coating equipment with separable base materials

Also Published As

Publication number Publication date
DE112010003248T5 (en) 2013-05-02
CN102473612B (en) 2015-06-10
JPWO2011018912A1 (en) 2013-01-17
DE112010003248B4 (en) 2014-12-24
JP5398837B2 (en) 2014-01-29
CN102473612A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5398837B2 (en) Plasma CVD apparatus, plasma electrode, and method for manufacturing semiconductor film
US20130084408A1 (en) Vacuum processing apparatus and plasma processing method
JP3597871B2 (en) Stacked showerhead assemblies for providing gas and RF (radio frequency) output to a reaction chamber
JP4576466B2 (en) Vapor growth apparatus and vapor growth method
KR101444873B1 (en) System for treatmenting substrate
US20060087211A1 (en) Plasma processing apparatus
US9518322B2 (en) Film formation apparatus and film formation method
US20060191480A1 (en) Plasma processing apparatus and semiconductor device manufactured by the same apparatus
US9490150B2 (en) Substrate support for substrate backside contamination control
JP5678883B2 (en) Plasma CVD apparatus and silicon thin film manufacturing method
US20090159432A1 (en) Thin-film deposition apparatus using discharge electrode and solar cell fabrication method
JP5377749B2 (en) Plasma generator
JP3970815B2 (en) Semiconductor device manufacturing equipment
KR101010389B1 (en) Plasma cvd apparatus and film deposition method
KR20070013364A (en) Heater module of chemical vapor deposition apparatus
US20190211448A1 (en) Atomic layer deposition apparatus and atomic layer deposition method
TWI712341B (en) Method for plasma processing and plasma processing apparatus
KR101553214B1 (en) Apparatus for processing a large area substrate
US8931433B2 (en) Plasma processing apparatus
WO2010143327A1 (en) Plasma cvd device
JP4890313B2 (en) Plasma CVD equipment
JP5052206B2 (en) CVD equipment
JP2012109458A (en) Focus ring for plasma processing apparatus and plasma processing apparatus
TWI503907B (en) Substrate processing apparatus
JP2005244098A (en) Plasma processing unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035372.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526696

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112010003248

Country of ref document: DE

Ref document number: 1120100032483

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808097

Country of ref document: EP

Kind code of ref document: A1