WO2011018849A1 - Laminated photoelectric conversion device and photoelectric conversion module - Google Patents

Laminated photoelectric conversion device and photoelectric conversion module Download PDF

Info

Publication number
WO2011018849A1
WO2011018849A1 PCT/JP2009/064269 JP2009064269W WO2011018849A1 WO 2011018849 A1 WO2011018849 A1 WO 2011018849A1 JP 2009064269 W JP2009064269 W JP 2009064269W WO 2011018849 A1 WO2011018849 A1 WO 2011018849A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
translucent
conversion body
type
Prior art date
Application number
PCT/JP2009/064269
Other languages
French (fr)
Japanese (ja)
Inventor
順次 荒浪
樋口 永
久 坂井
崇宏 大佐々
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to PCT/JP2009/064269 priority Critical patent/WO2011018849A1/en
Publication of WO2011018849A1 publication Critical patent/WO2011018849A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a stacked photoelectric conversion device and a photoelectric conversion module in which a plurality of photoelectric conversion bodies are stacked.
  • Patent Document 1 As a photoelectric conversion device that converts light into electricity such as a solar cell, there is one disclosed in Patent Document 1, for example.
  • This photoelectric conversion device is configured by sequentially stacking a p-type semiconductor layer, a fullerene layer, and a back electrode on a transparent electrode on a transparent substrate.
  • the p-type semiconductor layer facing the sunlight and the fullerene layer laminated thereon generate excitons from incident light, and charge separation is performed at the interface between the p-type semiconductor and the fullerene layer. And holes are transported by the p-type semiconductor, and electrons are transported by the fullerene layer.
  • the photoelectric conversion device having such a configuration it is difficult to control the shape of the interface between the p-type semiconductor layer and the fullerene layer, so that the charge mobility is increased or the exciton is deactivated. It is difficult to suppress, and as a result, the photoelectric conversion efficiency may be reduced. Therefore, a photoelectric conversion device that can obtain higher photoelectric conversion efficiency is demanded.
  • a stacked photoelectric conversion device includes a first photoelectric conversion body having translucency, a conductor layer located on a part of the first photoelectric conversion body, and the conductor. And a second photoelectric conversion body positioned on the layer.
  • a photoelectric conversion module is a photoelectric conversion module including a plurality of the stacked photoelectric conversion devices, wherein the plurality of stacked photoelectric conversion devices are arranged side by side and are electrically connected to each other. It is connected to the.
  • FIG. 1 is a cross-sectional view showing a stacked photoelectric conversion device according to an embodiment of the present invention.
  • the stacked photoelectric conversion device 1 is formed on a translucent substrate 31a, a translucent first photoelectric conversion body 3 formed on the translucent substrate 31a, and the first photoelectric conversion body 3.
  • a light-transmitting conductive layer 31b is formed on the light-transmitting substrate 31a, and the conductive substrate 31 is configured by combining them.
  • the translucent substrate 31a may not be provided, and in that case, the first photoelectric conversion body 3 itself may be formed of a hard plate. Further, the light-transmitting conductive layer 31b may not be provided, and in that case, a collector electrode or the like may be provided at an end portion of the first photoelectric conversion body 3. Further, when there are the light-transmitting substrate 31a and the light-transmitting conductive layer 31b, the light-transmitting substrate 31a functions as a support and a light transmitting body for the first photoelectric conversion body 3, and the light-transmitting conductive layer 31b is transparent. This is preferable in that it functions as a light-sensitive large-area electrode.
  • the first photoelectric conversion body 3 has translucency.
  • having translucency means that the transmittance of light of a specific wavelength is 10% or more.
  • the specific wavelength is a wavelength at which the second photoelectric converter 2 has spectral sensitivity.
  • the first photoelectric conversion body 3 is also referred to as a translucent photoelectric conversion body 3.
  • spectral sensitivity means that when light is incident, the light can be absorbed to generate a current.
  • the photoelectric conversion device of the present embodiment light is incident from the first photoelectric converter 3 side, and a part of the incident light is photoelectrically converted by the first photoelectric converter 3. Moreover, the light which permeate
  • the translucent photoelectric conversion body 3 is made of a semiconductor material that converts light into electricity.
  • the translucent photoelectric conversion body 3 is mainly composed of an inorganic material.
  • durability of the stacked photoelectric conversion device 1 with respect to light is improved.
  • a translucent photoelectric conversion body 3 there are those that generate an internal electric field such as a pn junction type, a Schottky junction type, and a hetero junction type in addition to the pin junction type.
  • the second photoelectric converter 2 is made of a semiconductor material that converts light into electricity.
  • the second photoelectric converter 2 is an organic semiconductor material.
  • an organic semiconductor refers to a semiconductor containing an organic material as a main component.
  • the production of the second photoelectric conversion body 2 (hereinafter, the second photoelectric conversion body 2 made of an organic semiconductor material is referred to as an organic photoelectric conversion body 2) is a process at a relatively low temperature compared to an inorganic material. And easy to manufacture.
  • the translucent photoelectric conversion body 3 is made of an inorganic material having spectral sensitivity with respect to light having a relatively short wavelength, and the organic photoelectric conversion body 2 is made transparent.
  • the organic photoelectric converter 2 can be suppressed by suppressing the short wavelength light from entering the organic photoelectric converter 2.
  • the spectral sensitivity can be increased by combining the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2, and the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 can be increased. Can do.
  • the peak wavelength of the spectral sensitivity of the second photoelectric converter 2 is longer than the peak wavelength of the spectral sensitivity of the translucent photoelectric converter 3.
  • the 2nd photoelectric conversion body 2 and the translucent photoelectric conversion body 3 can photoelectrically convert the light of a wavelength range which each differed more, and high conversion efficiency is obtained.
  • Some organic photoelectric conversion bodies 2 generate an internal electric field such as a pin junction type, a pn junction type, a bulk hetero type, and a superlattice type.
  • a configuration including the layer 22 and the hole blocking layer 21 is shown.
  • the organic photoelectric conversion body 2 can be used by repeatedly laminating 2 to 3 layers in order to compensate for low mobility. Further, in order to match the current with the organic photoelectric conversion body 2, the spectral sensitivity can be adjusted by thinning the translucent photoelectric conversion body 3, or the translucent photoelectric conversion body 3 can be repeatedly laminated. . In this case, higher conversion efficiency can be achieved by inserting the conductor layer 4 between the photoelectric converters.
  • the conductor layer 4 is for improving the electrical connection between the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2, and electrons extracted from the translucent photoelectric conversion body 3 ( Or holes) and holes (or electrons) extracted from the second photoelectric converter 2 can be efficiently recombined. As a result, the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 of the present invention can be increased.
  • the conductor layer 4 is translucent in order to favorably advance light from the translucent photoelectric converter 3 to the second photoelectric converter 2.
  • the conductor layer 4 is also referred to as a translucent recombination layer 4.
  • the conductor layer 4 is partially formed at the interface between the translucent photoelectric converter 3 and the second photoelectric converter 2. That is, the conductor layer 4 is not formed over the entire interface between the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 but has a non-forming portion.
  • the light transmittance from the translucent photoelectric conversion body 3 to the 2nd photoelectric conversion body 2 can be raised, and the photoelectric conversion efficiency of the laminated photoelectric conversion apparatus 1 can be raised. .
  • the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 are joined via the conductor layer 4. It is preferable that there is a portion where the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 are in direct contact with each other.
  • contact of the conductor layer 4 and the translucent photoelectric conversion body 3 is carried out.
  • the area or the contact area between the conductor layer 4 and the second photoelectric converter 2 can be increased, and the electrons and holes generated by the translucent photoelectric converter 3 and the second photoelectric converter 2 Can be efficiently recombined by the conductor layer 4. As a result, the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 can be further improved.
  • the translucent photoelectric converter 3 and the second photoelectric converter 2 each include a semiconductor layer that is in direct contact with the conductor layer 4.
  • produced in the translucent photoelectric conversion body 3 and the 2nd photoelectric conversion body 2 can be moved quickly to the conductor layer 4, and the electron and hole in the conductor layer 4 are The recombination efficiency can be increased.
  • FIG. 6 shows a cross-sectional view of a photoelectric conversion module 10 in which the stacked photoelectric conversion device 1 of FIG. 1 is modularized.
  • the photoelectric conversion module 10 a plurality of the stacked photoelectric conversion devices 1 of the present embodiment are provided side by side on a substrate and are electrically connected.
  • FIG. 6 shows a unit body of the stacked photoelectric conversion device 1. A plurality of the unit bodies are arranged so that their side surfaces face each other, and they are connected in series, in parallel, or in series-parallel.
  • the photoelectric conversion module 10 is obtained.
  • the translucent conductive layer 31b is divided by laser scribing, and the translucent photoelectric conversion body 3, the translucent recombination layer 4, and the organic photoelectric conversion.
  • the electrode 5 is patterned and pulled out to the light transmitting photoelectric conversion body 3 side (lower side).
  • 31bb is a parting part of the translucent conductive layer 31b.
  • the lower end portion of the electrode 5 is connected to the translucent conductive layer 31 b that is an electrode on the positive electrode side of the adjacent stacked photoelectric conversion device 1.
  • an insulating layer (not shown) is provided at a portion of the organic photoelectric conversion body 2, the translucent recombination layer 4, and the translucent photoelectric conversion body 3 that is in contact with the electrode 5 so as not to be electrically connected to the electrode 5. May be formed. Or since the organic photoelectric conversion body 2, the translucent recombination layer 4, and the translucent photoelectric conversion body 3 are comparatively high resistance, the insulating layer does not need to be formed.
  • the sealing material 6 is bonded together by the sealing material 6.
  • the space inside the sealing material 6 is in a vacuum state, a reduced pressure state, an inert gas sealed state, and the like, and oxidation by oxygen and water is suppressed.
  • the electrode 5 is formed by a vapor deposition method, a sputtering method, a printing method, or the like using a mask.
  • the sealing material 6 is made of glass frit, epoxy resin, ionomer, or the like.
  • the sealing material 6 can be formed by a printing method, a thermocompression bonding method, an ultraviolet curing method, or the like.
  • it is preferably performed in a dark place at as low a temperature as possible.
  • the atmosphere gas during the assembly operation may be an inert gas, or the assembly operation may be performed in a reduced pressure state or a vacuum state, in which case the organic photoelectric conversion is performed. Deterioration of the body 2 is suppressed.
  • the counter substrate 7 is made of glass, metal, plastic or the like. In the case of using the counter substrate 7 made of plastic, it is preferable to use a substrate in which a gas barrier coat made of a metal layer or the like is formed on the surface in order to suppress oxygen and moisture permeability.
  • the gas barrier coat is formed by a vapor deposition method or the like.
  • FIG. 7 is a cross-sectional view showing a first modification of the photoelectric conversion module of FIG.
  • the photoelectric conversion module of FIG. 7 has a configuration in which a laminated body in which a translucent photoelectric conversion body 3, a translucent recombination layer 4, and an organic photoelectric conversion body 2 are stacked is embedded in a sealing material 6.
  • the configuration of other parts is the same as that of the photoelectric conversion module 10 of FIG.
  • the sealing material 6 needs to cover the laminated body which laminated
  • FIG. 8 is a cross-sectional view showing a second modification of the photoelectric conversion module of FIG.
  • the photoelectric conversion module 10 in FIG. 8 does not have the counter substrate 7, and the configuration of other parts is the same as that of the photoelectric conversion module 10 in FIG.
  • the sealing material 6 it is preferable to use a material in which a gas barrier coat made of a metal layer or the like is formed on the surface in order to suppress oxygen and moisture permeability.
  • the gas barrier coat is formed by a vapor deposition method or the like.
  • the sealing material 6 can also be covered with the back sheet for improving moisture resistance.
  • the stacked photoelectric conversion device of the present embodiment includes a conductive substrate, an organic photoelectric conversion body 2 including an organic semiconductor formed on the conductive substrate, and an electron formed on the organic photoelectric conversion body 2. And a translucent recombination layer 4 that recombines holes, and a translucent photoelectric conversion body 3 formed on the translucent recombination layer 4 (not shown).
  • the conductive substrate is non-translucent, light is incident from the translucent photoelectric conversion body 3 side, so that the thin film type translucent photoelectric conversion body 3 causes short wavelength light (wavelength 300). Is highly photoelectrically converted, and long-wavelength light (wavelength of about 600 to 900 nm) is well photoelectrically converted by the organic photoelectric converter 2, and the conversion efficiency of both the photoelectric converters 2 and 3 is high. can get.
  • the conductive substrate 31 includes a translucent substrate 31a and a translucent conductive layer 31b.
  • resin such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, inorganic material such as blue plate glass, soda glass, borosilicate glass, ceramics, or conductive resin
  • organic-inorganic hybrid materials are good.
  • a tin-doped indium oxide layer (ITO layer), an impurity-doped indium oxide layer (In 2 O 3 layer), or the like formed by a low-temperature growth sputtering method, a low-temperature spray pyrolysis method, or the like is preferable.
  • a fluorine-doped tin dioxide layer (SnO 2 : F layer) formed by a thermal CVD method, an impurity-doped zinc oxide layer (ZnO layer) formed by a solution growth method, or the like may be used. Further, these layers may be stacked and used.
  • Other methods for forming the translucent conductive layer 31b include a vacuum deposition method, an ion plating method, a dip coating method, and a sol-gel method. Further, if a surface irregularity in the order of the wavelength of incident light is formed on the surface of the translucent conductive layer 31b, a light confinement effect may be obtained.
  • the translucent conductive layer 31b may be a thin (about 1 to 5 nm thick) metal layer made of Au, Pd, Al or the like formed by a vacuum deposition method or a sputtering method.
  • the thickness of the conductive substrate 31 is preferably 0.1 mm to 5 mm, more preferably 0.2 mm to 3 mm. By setting the thickness within the range of 0.1 mm to 5 mm, the mechanical strength of the conductive substrate 31 can be made sufficient, and an increase in weight can be suppressed.
  • the thickness of the translucent conductive layer 31b is preferably 0.001 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 2 ⁇ m. By setting the thickness within the range of 0.001 ⁇ m to 10 ⁇ m, the conductivity and light transmittance of the translucent conductive layer 31b can be kept high.
  • the amount of incident light may be increased.
  • the white arrow of FIG. 1 shows incident light.
  • the organic photoelectric converter 2 only needs to generate an internal electric field such as a pin junction type, a pn junction type, a bulk hetero type, or a superlattice type.
  • organic semiconductor material constituting the organic photoelectric conversion body 2 examples include phthalocyanine semiconductors such as phthalocyanine, zinc phthalocyanine, copper phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine, hexadecafluorozinc phthalocyanine, chlorophthalocyanine, C60, C70, and fullerene oxide.
  • phthalocyanine semiconductors such as phthalocyanine, zinc phthalocyanine, copper phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine, hexadecafluorozinc phthalocyanine, chlorophthalocyanine, C60, C70, and fullerene oxide.
  • PCBM Phenyl C61 butyl acid methyl ester
  • PCBM Phenyl C85 butyl acid methyl ester
  • fullerene semiconductors such as fullerene derivatives, porphyrin semiconductors such as tetramethylporphyrin, bacteriochlorophylls, chlorophylls, pentacene
  • Polyacene semiconductors such as tetracene
  • thiophene semiconductors such as poly-3-hexylthiophene
  • naphthalene semiconductors pyrrole semi Quinone semiconductors such as benzoquinone and naphthoquinone
  • TCNQ semiconductors such as tetracyanoquinodimethane (TCNQ) and tetrafluorotetracyanoquinodimethane
  • perylene semiconductors such as perylene and perylenetetracarboxylic acid, which are amorphous.
  • the material having the above-described composition can also be used as a derivative or a polymer imparted with an electron withdrawing property, electron donating property, stability, and the like by a functional group.
  • the organic photoelectric converter can also be used as a doping or charge transfer complex.
  • tetracyanoquinodimethane can be used as a p-type dopant for metal phthalocyanine, and Mg or tetrafluorotetracyanoquinodimethane (F4-TCNQ) can be used as an n-type dopant.
  • F4-TCNQ tetrafluorotetracyanoquinodimethane
  • F4-TCNQ tetrafluorotetracyanoquinodimethane
  • a charge transfer complex in which tetrathiafuvalene (TTF) is coordinated with TCNQ can be used.
  • TTF tetrathiafuvalene
  • the open band voltage of the organic photoelectric conversion body can be increased by controlling the levels of the conduction band and the valence band by doping.
  • the semiconductor constituting the organic photoelectric converter 2 is a chalcopyrite compound semiconductor, a silicon semiconductor, a group 2-6 semiconductor such as zinc oxide, indium nitride, etc. Or a Group 3-5 semiconductor.
  • chalcopyrite compound semiconductors have long wavelength sensitivity and are suitable as a dye layer.
  • a method of using such an organic semiconductor and an inorganic semiconductor a method of using chalcopyrite compound semiconductor fine particles mixed with a bulk hetero type organic photoelectric converter as a semiconductor dye, a surface having a flat surface or an uneven shape
  • a method of forming a pn interface by coating P3HT (poly-3-hexylthiophene), which is a p-type semiconductor, on the n-type zinc oxide semiconductor, and forming a bulk hetero layer (mixed film of P3HT and PCBM) on the n-type zinc oxide semiconductor A method of coating and exhibiting the function as a hole blocking layer simultaneously with the formation of the pn interface is preferable.
  • inorganic metal oxides such as TiOx, NbOx, ZrOx, TaOx, and WOx can be used as the material that exhibits the function as the hole blocking layer.
  • inorganic metal oxides such as TiOx, NbOx, ZrOx, TaOx, and WOx can be used as the material that exhibits the function as the hole blocking layer.
  • the dye layer shown in FIG. 1 refers to a layer that has a function of photoelectric conversion and can transfer charges to and from a semiconductor layer in contact therewith.
  • the charge refers to a charge generated by the generated exciton by charge separation at the interface between the dye layer and the semiconductor layer, a charge separated by charge inside the dye, or the like.
  • an electron block layer 25 As an example of the pin junction type organic photoelectric converter 2, as shown in FIG. 2, an electron block layer 25, a first conductive type (p type) organic semiconductor layer 24a, and a first conductive type (p type) organic There is a configuration in which a mixed (i-type) layer 23a of a second semiconductor (n-type) organic semiconductor, a second conductive (n-type) organic semiconductor 22a, and a hole blocking layer 21a are sequentially stacked. .
  • an electron block layer 25a As an example of the pn junction type organic photoelectric conversion body 2, as shown in FIG. 3, an electron block layer 25a, a first conductive type (p type) organic semiconductor layer 24b, a second conductive type (n type) organic There is a configuration in which the semiconductor layer 22b and the hole blocking layer 21b are sequentially stacked.
  • the bulk hetero type organic photoelectric converter 2 there is a configuration in which an electron block layer 25b, a bulk hetero layer 26, and a hole block layer 21c are sequentially stacked as shown in FIG.
  • This bulk hetero type can promote the layer separation in the bulk hetero layer 26 and the crystallization of the organic semiconductor by performing an annealing process, and as a result, the conversion efficiency can be improved. Further, the spectral sensitivity can be improved by further mixing the dye into the bulk hetero layer 26.
  • an electron block layer 25b As an example of the superlattice type organic photoelectric converter 2, as shown in FIG. 5, an electron block layer 25b, a first conductive type (p type) organic semiconductor layer 24d, and a second conductive type (n type) organic There is a configuration in which three stacked structure layers in which a pair with the semiconductor layer 22d is stacked and a hole blocking layer 21d are sequentially stacked.
  • the organic photoelectric conversion body 2 is formed by a vacuum deposition method, a spin coating method, a dip coating method, a casting method, a printing method, an ink jet method, a physical vapor deposition method, or the like.
  • the first conductive type (p-type) organic semiconductor layer 24 is preferably made of copper phthalocyanine or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage (coverage) of the first conductive type organic semiconductor layer 24 is improved, the charge separation is sufficient, and the increase in series resistance is suppressed. Can do.
  • the dye layer 23 is a layer that does not greatly affect charge separation but increases spectral sensitivity, is made of tin phthalocyanine or the like, and preferably has a thickness of about 0.5 to 50 nm. By setting the thickness within the range of about 0.5 nm to 50 nm, the spectral sensitivity can be increased, and the series resistance can be reduced.
  • the second conductivity type (n-type) organic semiconductor layer 22 is preferably made of fullerene C60 or the like and has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductivity type organic semiconductor layer 22 is improved, the charge separation is sufficient, and the increase in series resistance can be suppressed. it can.
  • the hole blocking layer 21 is made of bathocuproine, TiOx (a titanium oxide layer including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21 is improved, charge separation is sufficient, and an increase in series resistance can be suppressed.
  • the electronic block layer 25 is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm.
  • the thickness within the range of about 1 to 200 nm, the covering property of the electron blocking layer 25 is improved, charge separation is sufficient, and an increase in series resistance can be suppressed.
  • the first conductivity type (p-type) organic semiconductor layer 24a is preferably made of copper phthalocyanine or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the covering property of the first conductive type (p-type) organic semiconductor layer 24a is improved, charge separation is sufficient, and the increase in series resistance is suppressed. be able to.
  • the mixed layer 23a is made of copper phthalocyanine, fullerene C60, or the like, and preferably has a thickness of about 1 to 500 nm. By setting the thickness within the range of about 1 to 500 nm, the spectral sensitivity can be increased and the series resistance can be reduced.
  • the second conductivity type (n-type) organic semiconductor layer 22a is preferably made of fullerene C60 or the like and has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductive type (n-type) organic semiconductor layer 22a is improved, charge separation is sufficient, and further, the series resistance is increased. Can be suppressed.
  • the hole blocking layer 21a is made of bathocuproine, TiOx (titanium oxide film including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21a can be improved, and an increase in series resistance can be suppressed.
  • the electronic block layer 25a is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage of the electron blocking layer 25a can be improved, and an increase in series resistance can be suppressed.
  • the first conductivity type (p-type) organic semiconductor layer 24b is preferably made of copper phthalocyanine or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the covering property of the first conductive type (p-type) organic semiconductor layer 24b is improved, charge separation is sufficient, and the increase in series resistance is suppressed. be able to.
  • the second conductivity type (n-type) organic semiconductor layer 22b is preferably made of fullerene C60 or the like and has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductive type (n-type) organic semiconductor layer 22b is improved, charge separation is sufficient, and further, the series resistance is increased. Can be suppressed.
  • the electron block layer 25b is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage of the electron blocking layer 25b can be improved, and an increase in series resistance can be suppressed.
  • the bulk hetero layer 26 is made of thiophene derivative P3HT, fullerene derivative PCBM, or the like, and preferably has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the spectral sensitivity of the bulk hetero layer 26 can be increased, and the series resistance can be reduced.
  • the hole blocking layer 21c is made of bathocuproine, TiOx (titanium oxide layer including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21c can be improved, and an increase in series resistance can be suppressed.
  • the electron block layer 25 is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage of the electron blocking layer 25 can be improved, and an increase in series resistance can be suppressed.
  • the first conductivity type (p-type) organic semiconductor layer 24d is made of copper phthalocyanine or the like, and preferably has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the covering property of the first conductive type (p-type) organic semiconductor layer 24d is improved, charge separation is sufficient, and the increase in series resistance is suppressed. be able to.
  • the second conductivity type (n-type) organic semiconductor layer 22d is made of fullerene C60 or the like, and preferably has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductive type (n-type) organic semiconductor layer 22d is improved, charge separation is sufficient, and further, the series resistance is increased. Can be suppressed.
  • the hole blocking layer 21c is made of bathocuproine, TiOx (titanium oxide layer including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21c can be improved, and an increase in series resistance can be suppressed.
  • the translucent recombination layer 4 is a layer for facilitating recombination of electrons and holes between the organic photoelectric conversion body 2 and the translucent photoelectric conversion body 3.
  • the translucent recombination layer 4 is partially formed at the interface between the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 and has a non-formed part.
  • the ability to suppress recombination at some surface levels of the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is one factor that can increase the photoelectric conversion efficiency of the stacked photoelectric conversion device 1. . This is because part of the surface levels of the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 do not come into contact with the translucent recombination layer 4 that is a conductive material. This is because the probability that the holes diffuse is greatly reduced. As a result, the apparent surface state density can be reduced and recombination can be suppressed, so that the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 can be increased.
  • the translucent recombination layer 4 may include at least one of a metal, a conductive oxide, and a conductive polymer. In this case, recombination of electrons and holes is facilitated, and the translucent recombination layer 4 with a small light loss can be obtained.
  • Occupancy ratio of the translucent recombination layer 4 at the interface between the translucent photoelectric converter 3 and the organic photoelectric converter 2 (planar in the direction perpendicular to the translucent photoelectric converter 3 and the organic photoelectric converter 2)
  • the occupation ratio is B / A.
  • the translucent recombination layer 4 is preferably composed of a plurality of conductor portions (hereinafter also referred to as island portions) that are located apart from each other.
  • island portions conductor portions
  • the work function difference between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is reduced, and the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 are reduced. Electron and hole transfer is facilitated.
  • the average diameter of one island-like portion constituting such a translucent recombination layer 4 is preferably 2 nm to 20 nm, and more preferably 2 nm to 4 nm.
  • the translucent recombination layer 4 is composed of a plurality of island-shaped portions, there are gaps between the island-shaped portions, and other layers enter the gap. It can be said that the bonding layer 4 has a layered shape as a whole.
  • the translucent recombination layer 4 preferably has a shape having a plurality of through holes, for example, a mesh shape, a lattice shape, or the like. In this case, there is an advantage that good translucency can be obtained, and there is an advantage that it can be used as a growth nucleus of the organic photoelectric conversion body 2 to be laminated next. Further, the work function difference between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is reduced, and the electrons and positive electrons between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 are reduced. The movement of the hole becomes easy.
  • the average diameter of the through holes in the translucent recombination layer 4 is preferably 2 nm to 100 ⁇ m, and more preferably 2 nm to 10 nm.
  • the translucent recombination layer 4 is partially formed between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2, electron transfer and hole transfer are facilitated. That is, since the surface area is increased by partially forming the translucent recombination layer 4, the surface energy is increased and the catalytic properties are improved, the ratio of steps, kinks, etc. on the surface is increased, This is due to reasons such as an increase in active sites accompanying an increase in surface area. In addition, the ability to suppress recombination at some surface levels of the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is one factor that facilitates electron transfer and hole transfer.
  • the translucent recombination layer 4 is made of a metal
  • the material is made of a platinum group element such as platinum or palladium, or a metal such as silver, aluminum, titanium, iron, copper, indium, chromium, or iridium.
  • the translucent recombination layer 4 is formed by vacuum deposition, sputtering, thermal decomposition of a coated complex, electrodeposition, or the like.
  • the material of the conductive oxide used for the translucent recombination layer 4 includes tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, zinc oxide, and indium oxide.
  • the translucent recombination layer 4 made of a conductive oxide is formed by sputtering, vapor deposition, chemical vapor deposition, spin coating, plating, or the like.
  • the material of the conductive polymer used for the translucent recombination layer 4 is polyethylene dioxythiophene (PEDOT) (which may be doped with polystyrene sulfonate or toluene sulfonate), polyvinyl carbazole, polythiophene, polypyrrole, or the like. Good. Polyethylene dioxythiophene, polyophene, and polypyrrole are formed by a coating method such as a spin coating method and a cast method, and polyvinylcarbazole and polythiophene are formed by an electrodeposition method.
  • PEDOT polyethylene dioxythiophene
  • Polyethylene dioxythiophene, polyophene, and polypyrrole are formed by a coating method such as a spin coating method and a cast method, and polyvinylcarbazole and polythiophene are formed by an electrodeposition method.
  • At least one of the translucent recombination layers 4 is a catalyst layer.
  • a catalyst layer can reduce the overvoltage that acts on the organic photoelectric conversion body 2 and the translucent photoelectric conversion body 3, so that the overvoltage necessary for charge recombination can be reduced.
  • the catalyst layer may contain at least one of platinum, palladium, nickel, aluminum, and silver from the viewpoint of enhancing the overvoltage reduction action.
  • the translucent recombination layer 4 may be a laminate of a plurality of layers. By laminating a plurality of layers, charge transfer between the organic photoelectric conversion body 2 and the translucent recombination layer 4, and between the translucent recombination layer 4 and the translucent photoelectric conversion body 3, It can be performed more smoothly.
  • the translucent recombination layer 4 comprised in such a multilayer is the 1st catalyst layer which contact
  • the intermediate layer includes the conductive oxides described above. Further, the surface resistivity of the intermediate layer can be measured by, for example, a four probe resistivity measurement method. Further, the catalyst layer may have a shape having an island-shaped portion made of at least one of a metal, a conductive oxide, and a conductive polymer, or may have a shape having a plurality of through holes. Such an intermediate layer is included in either the organic photoelectric conversion body 2 or the translucent photoelectric conversion body 3 and constitutes a part of the photoelectric conversion body.
  • the translucent photoelectric converter 3 is preferably an amorphous semiconductor layer such as a hydrogenated amorphous silicon semiconductor layer having a pin junction structure continuously deposited by plasma CVD.
  • the pin junction structure is a structure in which a p-type semiconductor, an i-type semiconductor, and an n-type semiconductor are sequentially stacked.
  • the translucent photoelectric conversion body 3 has a pin structure including an i-type amorphous silicon layer, the translucent photoelectric conversion body absorbs light having a short wavelength of about 700 nm or less to generate power, and generates about 700 nm. The above long wavelength light is transmitted.
  • the wavelength range of sunlight is 310 nm to 2000 nm
  • the wavelength range with high intensity is 400 nm to 1200 nm. Therefore, by using the organic semiconductor 2 having a sensitivity of 700 nm to 1200 nm or 700 nm to 2000 nm as the organic photoelectric conversion body 2, high photoelectric conversion efficiency can be obtained.
  • the translucent photoelectric conversion body 3 includes, for example, a first conductivity type (n-type) amorphous silicon semiconductor layer 32, an intrinsic type (i-type) amorphous silicon semiconductor layer 33, from the organic photoelectric conversion body 2 side.
  • a pin junction structure in which the second conductivity type (p-type) amorphous silicon semiconductor layers 34 are sequentially stacked is used, but a nip junction structure that is a reverse junction may be used.
  • the translucent photoelectric conversion body 3 is not limited to the above-described amorphous silicon semiconductor layer. If the i-type semiconductor layer is amorphous, at least one of the p-type semiconductor layer and the n-type semiconductor layer has microcrystals. Or a hydrogenated amorphous silicon alloy layer.
  • the p-type semiconductor layer on the light incident side is preferably a hydrogenated amorphous silicon carbide layer, in which case the light transmissivity is high and the light loss is further reduced.
  • the translucent photoelectric conversion body 3 can be formed by a catalytic CVD method or the like. Further, when the plasma CVD method and the catalytic CVD method are combined, photodegradation can be suppressed and reliability can be improved.
  • the first conductive type amorphous silicon semiconductor layer 32, the intrinsic type amorphous silicon semiconductor layer 33, and the second conductive type amorphous silicon semiconductor layer 34 can be continuously deposited under the respective film forming conditions by the CVD method. It can be formed in a short time at a low cost, which is preferable.
  • the thickness of the p-type a-Si: H layer (“a-Si” means amorphous silicon and “: H” means hydrogen dope) that is the second conductivity type amorphous silicon semiconductor layer 34.
  • a-Si means amorphous silicon and “: H” means hydrogen dope
  • the thickness of the i-type a-Si: H layer that is the intrinsic type amorphous silicon semiconductor layer 33 is preferably 500 to 5000 mm, and more preferably 1500 to 2500 mm (0.15 ⁇ m to 0.25 ⁇ m). By setting the thickness within the range of 500 to 5000 mm, a sufficient photocurrent can be obtained and the light transmittance can be improved.
  • the thickness of the n-type a-Si: H layer which is the first conductivity type amorphous silicon semiconductor layer 32 is preferably 50 to 200 mm, more preferably 80 to 120 mm. By setting the thickness within the range of 50 to 200 mm, an internal electric field can be easily formed in the translucent photoelectric conversion body 3, and light quantity loss in the n-type a-Si: H layer can be reduced.
  • the translucent photoelectric conversion body and the organic photoelectric conversion body are laminated, a short wavelength light (wavelength of about 300 to 600 nm) is often obtained with a thin film type translucent photoelectric conversion body.
  • Long-wavelength light (wavelength of about 600 to 900 nm) is well photoelectrically converted by the organic photoelectric conversion body, and high conversion efficiency combining the conversion efficiency of both photoelectric conversion bodies is obtained.
  • long wavelength light transmitted through the thin film translucent photoelectric conversion body can be photoelectrically converted by the organic photoelectric conversion body, and light in a wide wavelength range can be efficiently converted. Good photoelectric conversion.
  • the translucent photoelectric conversion body which absorbs short wavelength light well and transmits most of the long wavelength light is disposed on the light incident side, and the organic photoelectric conversion body is disposed on the rear side.
  • the organic photoelectric converter on the rear side does not directly receive strong light such as sunlight.
  • the organic photoelectric conversion body does not directly receive strong light such as sunlight, and the short wavelength light including ultraviolet rays is drastically reduced by the translucent photoelectric conversion body. It is reduced and high reliability can be obtained.
  • the organic photoelectric conversion body and the translucent photoelectric conversion body can be formed by a low-temperature process with a substrate temperature of about 500 ° C. or less, a stacked configuration that provides high conversion efficiency can be obtained at a conventional level of about 1400 ° C. It can be manufactured more easily and easily than a photoelectric conversion device that requires a high-temperature process at a lower cost.
  • the stacked photoelectric conversion device of the present invention is not limited to the above-described embodiment.
  • the first photoelectric converter may be an organic photoelectric converter
  • the second photoelectric converter may be composed mainly of an inorganic material.
  • both the first photoelectric converter and the second photoelectric converter may be composed of an inorganic material as a main component, or both the first photoelectric converter and the second photoelectric converter are organic.
  • You may comprise a system photoelectric conversion body. As long as the first photoelectric conversion body transmits long wavelength light to the second photoelectric conversion body, the first photoelectric conversion body may have a stacked structure.
  • Example 1 Examples of the stacked photoelectric conversion device of this embodiment will be described below.
  • a stacked photoelectric conversion device 1 having the configuration shown in FIG. 1 was produced as follows.
  • a glass substrate (size 1 cm ⁇ 2 cm, thickness approximately) on which a light-transmitting conductive layer 31 b made of a SnO 2 : F layer (F-doped SnO 2 layer) having a surface resistivity of 10 ⁇ / ⁇ (square) is formed. 0.11 cm), and a thin film type translucent photoelectric conversion body 3 was formed on one main surface thereof.
  • the translucent photoelectric conversion body 3 was formed as follows.
  • An i-type a-Si: H layer as the intrinsic type amorphous silicon semiconductor layer 33 and an n-type a-Si: H layer as the first conductive type amorphous silicon semiconductor layer 32 are successively formed in a vacuum. did.
  • the p-type a-Si: H layer uses SiH 4 gas, H 2 gas, and B 2 H 6 gas (diluted to 500 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm and 10 sccm, respectively.
  • the thickness was 2 sccm and the thickness was 90 mm (9 nm).
  • the i-type a-Si: H layer was formed using SiH 4 gas and H 2 gas as source gases, the flow rates of these gases being 30 sccm and 80 sccm, respectively, and the thickness being 2000 mm (200 nm).
  • the n-type a-Si: H layer uses SiH 4 gas, H 2 gas, and PH 3 gas (diluted to 1000 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm, 30 sccm, and 6 sccm, respectively. And a thickness of 100 mm (10 nm).
  • the temperature of the glass substrate during the formation of the p-type a-Si: H layer, i-type a-Si: H layer, and n-type a-Si: H layer was 220 ° C. in all cases.
  • a Pt layer as the translucent recombination layer 4 was formed on the translucent photoelectric conversion body 3 with a thickness of 5 nm by a sputtering method. At this time, the Pt layer had a thickness of about 1 nm and was formed in an island shape.
  • the organic photoelectric conversion body 2 was formed as follows.
  • a two-conductivity (n-type) organic semiconductor layer 22 and a hole blocking layer 21 made of bathocuproine were successively formed in a vacuum.
  • the first conductive type (p-type) organic semiconductor layer 24 made of copper phthalocyanine was heated to 540 ° C. in a quartz crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the pigment layer 23 made of tin phthalocyanine was heated to 520 ° C. in a quartz crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the second conductive type (n-type) organic semiconductor layer 22 made of fullerene was heated to 580 ° C. in a quartz crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the bathocuproine hole blocking layer 21 was heated to 180 ° C. in a pBN crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the electrode 5 was formed on the organic photoelectric conversion body 2.
  • the electrode 5 was formed as follows using a vacuum evaporation apparatus.
  • the electrode 5 made of silver was formed into a mask in vacuum.
  • the electrode 5 was deposited by heating silver particles on a tantalum boat in a vacuum deposition apparatus.
  • the deposition rate was 0.02 nm per second at the start of deposition, and 0.1 nm per second after forming a thickness of 40 nm.
  • the stacked photoelectric conversion device 1 was produced.
  • the photoelectric conversion characteristics of the obtained laminated photoelectric conversion device 1 having an area of 0.5 cm 2 were evaluated in nitrogen gas.
  • a xenon arc lamp was used as the light source, and the current and the distance from the light source were adjusted so that the amount of light was equivalent to 100 mW / cm 2 under AM 1.5 using a standard cell for evaluating the light intensity.
  • the characteristic of only the translucent photoelectric converter 3 was an open-end voltage of 0.83 V, and the characteristic of only the organic photoelectric converter 2 was an open-end voltage of 0.27 V.
  • an open-end voltage of 1.08 V was obtained, and almost no leakage current was observed.
  • Example 2 A stacked photoelectric conversion device 1 having the configuration of FIG. 2 was produced as follows.
  • a glass substrate size 1 cm ⁇ 2 cm, thickness
  • a thin film type translucent photoelectric conversion body 3 was formed on one main surface thereof.
  • the translucent photoelectric conversion body 3 was formed as follows.
  • An i-type a-Si: H layer as the intrinsic type amorphous silicon semiconductor layer 33 and an n-type a-Si: H layer as the first conductive type amorphous silicon semiconductor layer 32 are successively formed in a vacuum. did.
  • the p-type a-Si: H layer uses SiH 4 gas, H 2 gas, and B 2 H 6 gas (diluted to 500 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm and 10 sccm, respectively.
  • the thickness was 2 sccm and the thickness was 90 mm (9 nm).
  • the i-type a-Si: H layer was formed using SiH 4 gas and H 2 gas as source gases, the flow rates of these gases being 30 sccm and 80 sccm, respectively, and the thickness being 2000 mm (200 nm).
  • the n-type a-Si: H layer uses SiH 4 gas, H 2 gas, and PH 3 gas (diluted to 1000 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm, 30 sccm, and 6 sccm, respectively. And a thickness of 100 mm (10 nm).
  • the temperature of the glass substrate during the formation of the p-type a-Si: H layer, i-type a-Si: H layer, and n-type a-Si: H layer was 220 ° C. in all cases.
  • a Pt layer as the translucent recombination layer 4 was formed on the translucent photoelectric conversion body 3 with a thickness of 5 nm by a sputtering method. At this time, the Pt layer had a thickness of about 1 nm and was formed in an island shape.
  • the organic photoelectric conversion body 2 was formed as follows.
  • an electron blocking layer 25 made of polystyrene dioxythiophene (PEDOT: PSS) doped with polystyrene sulfonate dispersed in an aqueous solvent was spin-coated on the translucent recombination layer 4. Dried in air at 110 ° C. to form.
  • PEDOT polystyrene dioxythiophene
  • An n-type organic semiconductor body 22a and a hole blocking layer 21a made of bathocuproine were successively formed in a vacuum.
  • the first conductivity type (p-type) organic semiconductor 24a made of copper phthalocyanine was heated to 540 ° C. in a quartz crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the pigment layer 23a made of tin phthalocyanine was heated to 520 ° C. in a quartz crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the second conductive type (n-type) organic semiconductor layer 22a made of fullerene was heated to 580 ° C. in a quartz crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the hole blocking layer 21a made of bathocuproine was heated to 180 ° C. in a pBN crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
  • the electrode 5 was formed on the organic photoelectric conversion body 2.
  • the electrode 5 was formed as follows using a vacuum evaporation apparatus.
  • the electrode 5 made of silver was formed into a mask in vacuum.
  • the electrode 5 was deposited by heating silver particles on a tantalum boat in a vacuum deposition apparatus.
  • the deposition rate was 0.02 nm per second at the start of deposition, and 0.1 nm per second after forming a thickness of 40 nm.
  • the stacked photoelectric conversion device 1 was produced.
  • photoelectric conversion characteristics were evaluated in nitrogen gas.
  • a xenon arc lamp was used as the light source, and the current and distance from the light source were adjusted so that the amount of light was equivalent to 100 mW / cm 2 under AM 1.5 using a standard cell for evaluating the light intensity.
  • the characteristic of only the translucent photoelectric converter 3 was an open-end voltage of 0.83 V, and the characteristic of only the organic photoelectric converter 2 was an open-end voltage of 0.27 V.
  • an open circuit voltage of 0.99 V was obtained in the stacked photoelectric conversion device 1 in which the translucent recombination layer 4 is provided between them.
  • the open-circuit voltage was lower than that in Example 1, the short circuit current density was about 1.3 times that of the stacked photoelectric conversion device 1 in Example 1 due to the provision of the electron blocking layer 25.

Abstract

Disclosed is a laminated photoelectric conversion device (1) comprising: a first photoelectric conversion element (3) having light transmissibility; an electrically conductive layer (4) arranged on a part of the first photoelectric conversion element (3); and a second photoelectric conversion element (2) arranged on the electrically conductive layer (4).

Description

積層型光電変換装置及び光電変換モジュールStacked photoelectric conversion device and photoelectric conversion module
 本発明は、複数の光電変換体を積層した積層型光電変換装置及び光電変換モジュールに関する。 The present invention relates to a stacked photoelectric conversion device and a photoelectric conversion module in which a plurality of photoelectric conversion bodies are stacked.
 太陽電池等のように光を電気に変換する光電変換装置として、例えば、特許文献1に開示されたものがある。この光電変換装置は、透明基材上の透明電極上にp型半導体層、フラーレン層及びバック電極を順次積層して構成されている。特許文献1の光電変換装置においては、太陽光に面したp型半導体層とそれに積層されたフラーレン層とが、入射光から励起子を生成し、p型半導体とフラーレン層との界面において電荷分離が行われ、正孔がp型半導体によって輸送され、電子がフラーレン層によって輸送されるように構成されている。 As a photoelectric conversion device that converts light into electricity such as a solar cell, there is one disclosed in Patent Document 1, for example. This photoelectric conversion device is configured by sequentially stacking a p-type semiconductor layer, a fullerene layer, and a back electrode on a transparent electrode on a transparent substrate. In the photoelectric conversion device of Patent Document 1, the p-type semiconductor layer facing the sunlight and the fullerene layer laminated thereon generate excitons from incident light, and charge separation is performed at the interface between the p-type semiconductor and the fullerene layer. And holes are transported by the p-type semiconductor, and electrons are transported by the fullerene layer.
 しかしながら、このような構成を有する光電変換装置は、p型半導体層とフラーレン層との界面の形状を制御するのが困難であることから、電荷の移動度を高めたり、励起子の失活を抑えることが難しく、結果として光電変換効率が低下する可能性がある。そのため、より高い光電変換効率が得られる光電変換装置が求められている。 However, in the photoelectric conversion device having such a configuration, it is difficult to control the shape of the interface between the p-type semiconductor layer and the fullerene layer, so that the charge mobility is increased or the exciton is deactivated. It is difficult to suppress, and as a result, the photoelectric conversion efficiency may be reduced. Therefore, a photoelectric conversion device that can obtain higher photoelectric conversion efficiency is demanded.
特開平5-335614号公報JP-A-5-335614
 本発明の一実施形態に係る積層型光電変換装置は、透光性を有する第1の光電変換体と、前記第1の光電変換体上の一部に位置する導電体層と、前記導電体層上に位置する第2の光電変換体と、を有する。 A stacked photoelectric conversion device according to an embodiment of the present invention includes a first photoelectric conversion body having translucency, a conductor layer located on a part of the first photoelectric conversion body, and the conductor. And a second photoelectric conversion body positioned on the layer.
 本発明の一実施形態に係る光電変換モジュールは、上記の積層型光電変換装置を複数有する、光電変換モジュールであって、前記複数の積層型光電変換装置は、並べて配置され、且つ、互いに電気的に接続されている。 A photoelectric conversion module according to an embodiment of the present invention is a photoelectric conversion module including a plurality of the stacked photoelectric conversion devices, wherein the plurality of stacked photoelectric conversion devices are arranged side by side and are electrically connected to each other. It is connected to the.
本発明の実施形態に係る積層型光電変換装置を示す断面図である。It is sectional drawing which shows the laminated photoelectric conversion apparatus which concerns on embodiment of this invention. 図1の積層型光電変換装置の第1の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the laminated photoelectric conversion apparatus of FIG. 図1の積層型光電変換装置の第2の変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the laminated photoelectric conversion apparatus of FIG. 図1の積層型光電変換装置の第3の変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of the laminated photoelectric conversion apparatus of FIG. 図1の積層型光電変換装置の第4の変形例を示す断面図である。It is sectional drawing which shows the 4th modification of the laminated photoelectric conversion apparatus of FIG. 本発明の実施形態に係る光電変換モジュールを示す断面図である。It is sectional drawing which shows the photoelectric conversion module which concerns on embodiment of this invention. 図6の光電変換モジュールの第1の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the photoelectric conversion module of FIG. 図6の光電変換モジュールの第2の変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the photoelectric conversion module of FIG.
 本発明の実施形態に係る光電変換装置及び光電変換モジュールの具体的な例について、図面に基づいて以下に詳細に説明する。 Specific examples of the photoelectric conversion device and the photoelectric conversion module according to the embodiment of the present invention will be described below in detail based on the drawings.
 ≪光電変換装置≫
 図1は、本発明の実施形態に係る積層型光電変換装置を示す断面図である。
≪Photoelectric conversion device≫
FIG. 1 is a cross-sectional view showing a stacked photoelectric conversion device according to an embodiment of the present invention.
 この積層型光電変換装置1は、透光性基板31aと、透光性基板31a上に形成された透光性の第1の光電変換体3と、第1の光電変換体3上に形成された導電体層4と、導電体層4上に形成された第2の光電変換体2とを有する。なお、透光性基板31a上には透光性導電層31bが形成されており、これらが合わさって導電性基板31が構成されている。 The stacked photoelectric conversion device 1 is formed on a translucent substrate 31a, a translucent first photoelectric conversion body 3 formed on the translucent substrate 31a, and the first photoelectric conversion body 3. A conductive layer 4 and a second photoelectric conversion body 2 formed on the conductive layer 4. Note that a light-transmitting conductive layer 31b is formed on the light-transmitting substrate 31a, and the conductive substrate 31 is configured by combining them.
 本実施形態の積層型光電変換装置において、透光性基板31aはなくてもよく、その場合、第1の光電変換体3自体が硬質の板状体から成るものであればよい。また、透光性導電層31bはなくてもよく、その場合、第1の光電変換体3の端部に集電極等を設けてもよい。また、透光性基板31a及び透光性導電層31bがある場合、透光性基板31aは第1の光電変換体3の支持体及び光透過体として機能し、透光性導電層31bは透光性の大面積の電極として機能する点で好適である。 In the stacked photoelectric conversion device of the present embodiment, the translucent substrate 31a may not be provided, and in that case, the first photoelectric conversion body 3 itself may be formed of a hard plate. Further, the light-transmitting conductive layer 31b may not be provided, and in that case, a collector electrode or the like may be provided at an end portion of the first photoelectric conversion body 3. Further, when there are the light-transmitting substrate 31a and the light-transmitting conductive layer 31b, the light-transmitting substrate 31a functions as a support and a light transmitting body for the first photoelectric conversion body 3, and the light-transmitting conductive layer 31b is transparent. This is preferable in that it functions as a light-sensitive large-area electrode.
 また、第1の光電変換体3は透光性を有する。ここで、透光性を有するとは、特定の波長の光の透過率が10%以上のものをいう。なお、この特定の波長というのは、第2の光電変換体2が分光感度を有する波長である。以下、第1の光電変換体3を透光性光電変換体3ともいう。なお、分光感度とは、光が入射されたときにその光を吸収して電流を生じさせることのできることをいう。 Further, the first photoelectric conversion body 3 has translucency. Here, having translucency means that the transmittance of light of a specific wavelength is 10% or more. The specific wavelength is a wavelength at which the second photoelectric converter 2 has spectral sensitivity. Hereinafter, the first photoelectric conversion body 3 is also referred to as a translucent photoelectric conversion body 3. Note that spectral sensitivity means that when light is incident, the light can be absorbed to generate a current.
 本実施形態の光電変換装置においては、第1の光電変換体3側から光が入射され、入射された光のうち一部が第1の光電変換体3で光電変換される。また、入射された光のうち第1の光電変換体3を透過した光は、第2の光電変換体2で光電変換される。このような構成により、本実施形態の積層型光電変換装置1は、光電変換効率を高めることができる。 In the photoelectric conversion device of the present embodiment, light is incident from the first photoelectric converter 3 side, and a part of the incident light is photoelectrically converted by the first photoelectric converter 3. Moreover, the light which permeate | transmitted the 1st photoelectric conversion body 3 among the incident lights is photoelectrically converted by the 2nd photoelectric conversion body 2. FIG. With such a configuration, the stacked photoelectric conversion device 1 of the present embodiment can increase the photoelectric conversion efficiency.
 透光性光電変換体3は光を電気に変換する半導体材料が用いられる。好ましくは、透光性光電変換体3は無機材料を主成分とするものがよい。この場合、透光性光電変換体3は、光が入射される側に設けられるため、積層型光電変換装置1の光に対する耐久性が向上する。このような透光性光電変換体3としては、pin接合型の他に、pn接合型、ショットキー接合型、ヘテロ接合型等の内部電界を生じるものがある。 The translucent photoelectric conversion body 3 is made of a semiconductor material that converts light into electricity. Preferably, the translucent photoelectric conversion body 3 is mainly composed of an inorganic material. In this case, since the translucent photoelectric conversion body 3 is provided on the light incident side, durability of the stacked photoelectric conversion device 1 with respect to light is improved. As such a translucent photoelectric conversion body 3, there are those that generate an internal electric field such as a pn junction type, a Schottky junction type, and a hetero junction type in addition to the pin junction type.
 第2の光電変換体2は、光を電気に変換する半導体材料が用いられる。好ましくは、第2の光電変換体2は、有機系半導体材料とするのがよい。なお、有機系半導体とは、有機材料を主成分とする半導体をいう。この場合、第2の光電変換体2(以下、有機系半導体材料から成る第2の光電変換体2を有機系光電変換体2という)の作製は、無機材料に比べ、比較的低温の工程であり、作製が容易となる。また、積層型光電変換装置1を太陽電池として用いる場合、透光性光電変換体3を、比較的短波長の光に対して分光感度を有する無機材料とし、有機系光電変換体2を透光性光電変換体3の分光感度よりも長波長側の光に分光感度を有するものとすれば、有機系光電変換体2への短波長側の光の入射を抑制して有機系光電変換体2の耐久性を高めることができるとともに、透光性光電変換体3と有機系光電変換体2とを合わせることで分光感度を広げることができ、積層型光電変換装置1の光電変換効率を高めることができる。 The second photoelectric converter 2 is made of a semiconductor material that converts light into electricity. Preferably, the second photoelectric converter 2 is an organic semiconductor material. Note that an organic semiconductor refers to a semiconductor containing an organic material as a main component. In this case, the production of the second photoelectric conversion body 2 (hereinafter, the second photoelectric conversion body 2 made of an organic semiconductor material is referred to as an organic photoelectric conversion body 2) is a process at a relatively low temperature compared to an inorganic material. And easy to manufacture. Moreover, when using the laminated photoelectric conversion apparatus 1 as a solar cell, the translucent photoelectric conversion body 3 is made of an inorganic material having spectral sensitivity with respect to light having a relatively short wavelength, and the organic photoelectric conversion body 2 is made transparent. If the light having a longer wavelength than the spectral sensitivity of the photosensitive photoelectric converter 3 has a spectral sensitivity, the organic photoelectric converter 2 can be suppressed by suppressing the short wavelength light from entering the organic photoelectric converter 2. In addition, the spectral sensitivity can be increased by combining the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2, and the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 can be increased. Can do.
 好ましくは、第2の光電変換体2の分光感度のピーク波長が透光性光電変換体3の分光感度のピーク波長より長波長側にあるとよい。これにより、第2の光電変換体2及び透光性光電変換体3がそれぞれ異なった波長域の光をより効率的に光電変換でき、高い変換効率が得られる。 Preferably, the peak wavelength of the spectral sensitivity of the second photoelectric converter 2 is longer than the peak wavelength of the spectral sensitivity of the translucent photoelectric converter 3. Thereby, the 2nd photoelectric conversion body 2 and the translucent photoelectric conversion body 3 can photoelectrically convert the light of a wavelength range which each differed more, and high conversion efficiency is obtained.
 有機系光電変換体2は、pin接合型、pn接合型、バルクヘテロ型、超格子型等の内部電界を生じるものがある。図1の積層型光電変換装置では、その一例として、導電体層4側から、第1導電型(p型)有機系半導体層24、色素層23、第2導電型(n型)有機系半導体層22、正孔ブロック層21からなる構成を示した。 Some organic photoelectric conversion bodies 2 generate an internal electric field such as a pin junction type, a pn junction type, a bulk hetero type, and a superlattice type. In the stacked photoelectric conversion device of FIG. 1, as an example, the first conductive type (p-type) organic semiconductor layer 24, the dye layer 23, and the second conductive type (n-type) organic semiconductor from the conductor layer 4 side. A configuration including the layer 22 and the hole blocking layer 21 is shown.
 また、有機系光電変換体2は、低い移動度を補うため、2~3層を繰り返し積層して用いることができる。また、有機系光電変換体2と電流のマッチングを取るために、透光性光電変換体3の薄膜化による分光感度の調節を行ったり、透光性光電変換体3を繰り返し積層することもできる。この場合、各光電変換体間に導電体層4を挿入することによって、より高い変換効率を達成できる。 The organic photoelectric conversion body 2 can be used by repeatedly laminating 2 to 3 layers in order to compensate for low mobility. Further, in order to match the current with the organic photoelectric conversion body 2, the spectral sensitivity can be adjusted by thinning the translucent photoelectric conversion body 3, or the translucent photoelectric conversion body 3 can be repeatedly laminated. . In this case, higher conversion efficiency can be achieved by inserting the conductor layer 4 between the photoelectric converters.
 導電体層4は、透光性光電変換体3と第2の光電変換体2との電気的な接続を良好にするためのものであり、透光性光電変換体3から引き抜かれた電子(もしくは正孔)と、第2の光電変換体2から引き抜かれた正孔(もしくは電子)と、を効率よく再結合させることができる。その結果、本発明の積層型光電変換装置1の光電変換効率を高めることができる。また、導電体層4は、透光性光電変換体3から第2の光電変換体2へ光を良好に進行させるため、透光性である。以下、導電体層4を透光性再結合層4ともいう。 The conductor layer 4 is for improving the electrical connection between the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2, and electrons extracted from the translucent photoelectric conversion body 3 ( Or holes) and holes (or electrons) extracted from the second photoelectric converter 2 can be efficiently recombined. As a result, the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 of the present invention can be increased. In addition, the conductor layer 4 is translucent in order to favorably advance light from the translucent photoelectric converter 3 to the second photoelectric converter 2. Hereinafter, the conductor layer 4 is also referred to as a translucent recombination layer 4.
 導電体層4は、透光性光電変換体3と第2の光電変換体2との界面に部分的に形成されている。すなわち、導電体層4は、透光性光電変換体3と第2の光電変換体2との界面の全体にわたって形成されているのではなく、非形成部を有する。このような構成とすることで、透光性光電変換体3から第2の光電変換体2への光透過率を高めることができ、積層型光電変換装置1の光電変換効率を高めることができる。 The conductor layer 4 is partially formed at the interface between the translucent photoelectric converter 3 and the second photoelectric converter 2. That is, the conductor layer 4 is not formed over the entire interface between the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 but has a non-forming portion. By setting it as such a structure, the light transmittance from the translucent photoelectric conversion body 3 to the 2nd photoelectric conversion body 2 can be raised, and the photoelectric conversion efficiency of the laminated photoelectric conversion apparatus 1 can be raised. .
 好ましくは、透光性光電変換体3と第2の光電変換体2との界面において、透光性光電変換体3と第2の光電変換体2とは導電体層4を介して接合している部分が存在するとともに、透光性光電変換体3と第2の光電変換体2とが直接、接している部分も存在するのがよい。このような構成とすることで、透光性光電変換体3から第2の光電変換体2への光透過率を高めることに加え、導電体層4と透光性光電変換体3との接触面積、または、導電体層4と第2の光電変換体2との接触面積を大きくすることができ、透光性光電変換体3および第2の光電変換体2で生成した電子と正孔とを、導電体層4で効率よく再結合させることができる。その結果、積層型光電変換装置1の光電変換効率をさらに向上させることができる。 Preferably, at the interface between the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2, the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 are joined via the conductor layer 4. It is preferable that there is a portion where the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 are in direct contact with each other. By setting it as such a structure, in addition to raising the light transmittance from the translucent photoelectric conversion body 3 to the 2nd photoelectric conversion body 2, contact of the conductor layer 4 and the translucent photoelectric conversion body 3 is carried out. The area or the contact area between the conductor layer 4 and the second photoelectric converter 2 can be increased, and the electrons and holes generated by the translucent photoelectric converter 3 and the second photoelectric converter 2 Can be efficiently recombined by the conductor layer 4. As a result, the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 can be further improved.
 特に透光性光電変換体3および第2の光電変換体2は、それぞれ導電体層4と直接、密着した半導体層を含むことが好ましい。これにより、透光性光電変換体3および第2の光電変換体2で発生した電子および正孔を導電体層4にすばやく移動させることができ、導電体層4での電子と正孔との再結合の効率を高めることができる。 In particular, it is preferable that the translucent photoelectric converter 3 and the second photoelectric converter 2 each include a semiconductor layer that is in direct contact with the conductor layer 4. Thereby, the electron and the hole which generate | occur | produced in the translucent photoelectric conversion body 3 and the 2nd photoelectric conversion body 2 can be moved quickly to the conductor layer 4, and the electron and hole in the conductor layer 4 are The recombination efficiency can be increased.
 ≪光電変換モジュール≫
 図6は、図1の積層型光電変換装置1をモジュール化した光電変換モジュール10の断面図を示すものである。光電変換モジュール10は、本実施形態の積層型光電変換装置1の複数が基板上に並べて設けられているとともにそれらが電気的に接続されている。図6は、積層型光電変換装置1の単位体を示すものであり、その単位体が複数、互いの側面を対向させるように並べられて、それらが直列接続、並列接続または直並列接続されて光電変換モジュール10となる。
≪Photoelectric conversion module≫
FIG. 6 shows a cross-sectional view of a photoelectric conversion module 10 in which the stacked photoelectric conversion device 1 of FIG. 1 is modularized. In the photoelectric conversion module 10, a plurality of the stacked photoelectric conversion devices 1 of the present embodiment are provided side by side on a substrate and are electrically connected. FIG. 6 shows a unit body of the stacked photoelectric conversion device 1. A plurality of the unit bodies are arranged so that their side surfaces face each other, and they are connected in series, in parallel, or in series-parallel. The photoelectric conversion module 10 is obtained.
 本実施形態の光電変換モジュール10の構成及び製造方法について以下に説明する。 The configuration and manufacturing method of the photoelectric conversion module 10 of the present embodiment will be described below.
 まず、透光性導電層31bを正極(p)と負極(n)とに分離するためにレーザスクライブで分断し、透光性光電変換体3、透光性再結合層4、有機系光電変換体2を積層した後、電極5をパターニングして透光性光電変換体3の側(下側)へ引き出している。31bbは透光性導電層31bの分断部である。電極5の下端部は、隣接する積層型光電変換装置1の正極側の電極である透光性導電層31bに接続される。 First, in order to separate the translucent conductive layer 31b into the positive electrode (p) and the negative electrode (n), it is divided by laser scribing, and the translucent photoelectric conversion body 3, the translucent recombination layer 4, and the organic photoelectric conversion. After the body 2 is laminated, the electrode 5 is patterned and pulled out to the light transmitting photoelectric conversion body 3 side (lower side). 31bb is a parting part of the translucent conductive layer 31b. The lower end portion of the electrode 5 is connected to the translucent conductive layer 31 b that is an electrode on the positive electrode side of the adjacent stacked photoelectric conversion device 1.
 また、有機系光電変換体2、透光性再結合層4及び透光性光電変換体3の電極5と接する部位には、電極5と電気的に接続されないように絶縁層(図示せず)が形成されていてもよい。あるいは、有機系光電変換体2、透光性再結合層4及び透光性光電変換体3は比較的高抵抗であるため、絶縁層が形成されていなくてもよい。 In addition, an insulating layer (not shown) is provided at a portion of the organic photoelectric conversion body 2, the translucent recombination layer 4, and the translucent photoelectric conversion body 3 that is in contact with the electrode 5 so as not to be electrically connected to the electrode 5. May be formed. Or since the organic photoelectric conversion body 2, the translucent recombination layer 4, and the translucent photoelectric conversion body 3 are comparatively high resistance, the insulating layer does not need to be formed.
 次に、対向基板7の下面の外周部と導電性基板31の上面の外周部とを封止材6によって貼り合せる。このとき、封止材6の内側の空間は、真空状態、減圧状態、不活性ガス封入状態などとされており、酸素及び水による酸化などが抑制される。 Next, the outer peripheral portion of the lower surface of the counter substrate 7 and the outer peripheral portion of the upper surface of the conductive substrate 31 are bonded together by the sealing material 6. At this time, the space inside the sealing material 6 is in a vacuum state, a reduced pressure state, an inert gas sealed state, and the like, and oxidation by oxygen and water is suppressed.
 また、電極5は、マスクを用いた、蒸着法またはスパッタリング法、あるいは印刷法等により形成される。 Further, the electrode 5 is formed by a vapor deposition method, a sputtering method, a printing method, or the like using a mask.
 また、封止材6は、ガラスフリット、エポキシ樹脂、アイオノマーなどから成る。封止材6は、印刷法、熱圧着法、紫外線硬化法などによって形成できるが、有機系光電変換体2の変質を抑えるためには、なるべく低温で暗所で行うことが好ましい。熱及び光が有機系光電変換体2に影響を及ぼす場合、組立作業中の雰囲気ガスを不活性ガスとするか、もしくは減圧状態または真空状態で組立作業を行うと良く、その場合有機系光電変換体2の劣化が抑制される。 The sealing material 6 is made of glass frit, epoxy resin, ionomer, or the like. The sealing material 6 can be formed by a printing method, a thermocompression bonding method, an ultraviolet curing method, or the like. However, in order to suppress deterioration of the organic photoelectric conversion body 2, it is preferably performed in a dark place at as low a temperature as possible. When heat and light affect the organic photoelectric conversion body 2, the atmosphere gas during the assembly operation may be an inert gas, or the assembly operation may be performed in a reduced pressure state or a vacuum state, in which case the organic photoelectric conversion is performed. Deterioration of the body 2 is suppressed.
 対向基板7はガラス、金属、プラスチックなどから成る。プラスチックから成る対向基板7を用いる場合、酸素及び水分の透過性を抑えるために、表面に金属層等から成るガスバリアコートを形成したものを用いるのが良い。ガスバリアコートは蒸着法等によって形成される。 The counter substrate 7 is made of glass, metal, plastic or the like. In the case of using the counter substrate 7 made of plastic, it is preferable to use a substrate in which a gas barrier coat made of a metal layer or the like is formed on the surface in order to suppress oxygen and moisture permeability. The gas barrier coat is formed by a vapor deposition method or the like.
 図7は、図6の光電変換モジュールの第1の変形例を示す断面図である。 FIG. 7 is a cross-sectional view showing a first modification of the photoelectric conversion module of FIG.
 図7の光電変換モジュールは、透光性光電変換体3、透光性再結合層4、有機系光電変換体2を積層した積層体を封止材6の内部に埋め込むようにした構成であり、その他の部位の構成は図6の光電変換モジュール10と同様である。 The photoelectric conversion module of FIG. 7 has a configuration in which a laminated body in which a translucent photoelectric conversion body 3, a translucent recombination layer 4, and an organic photoelectric conversion body 2 are stacked is embedded in a sealing material 6. The configuration of other parts is the same as that of the photoelectric conversion module 10 of FIG.
 封止材6の内部には空気溜まりが残らないことが良い。ただし、対向基板7と導電性基板31の熱膨張係数の違いなどから発生する応力を緩和するために、若干の気泡を残しておくと良い。 It is preferable that no air pocket remains inside the sealing material 6. However, in order to relieve stress generated due to a difference in thermal expansion coefficient between the counter substrate 7 and the conductive substrate 31, it is preferable to leave some bubbles.
 また、封止材6は、透光性光電変換体3、透光性再結合層4、有機系光電変換体2を積層した積層体を覆う必要があるため、積層体を覆う前に液状等の柔軟なものであり、積層体を覆った後に熱処理、紫外線照射により硬化するものであることが好ましい。 Moreover, since the sealing material 6 needs to cover the laminated body which laminated | stacked the translucent photoelectric conversion body 3, the translucent recombination layer 4, and the organic type photoelectric conversion body 2, it is liquid etc. before covering a laminated body. It is preferable that the material is flexible and is cured by heat treatment and ultraviolet irradiation after covering the laminate.
 図8は、図6の光電変換モジュールの第2の変形例を示す断面図である。 FIG. 8 is a cross-sectional view showing a second modification of the photoelectric conversion module of FIG.
 図8の光電変換モジュール10は、対向基板7を有していないものであり、その他の部位の構成は図7の光電変換モジュール10と同様である。 The photoelectric conversion module 10 in FIG. 8 does not have the counter substrate 7, and the configuration of other parts is the same as that of the photoelectric conversion module 10 in FIG.
 封止材6は、酸素及び水分の透過性を抑えるために、表面に金属層等から成るガスバリアコートを形成したものを用いるのが良い。ガスバリアコートは蒸着法等によって形成される。また、対湿性を高めるためのバックシートで封止材6を覆うこともできる。 As the sealing material 6, it is preferable to use a material in which a gas barrier coat made of a metal layer or the like is formed on the surface in order to suppress oxygen and moisture permeability. The gas barrier coat is formed by a vapor deposition method or the like. Moreover, the sealing material 6 can also be covered with the back sheet for improving moisture resistance.
 また、本実施形態の積層型光電変換装置は、導電性基板と、導電性基板上に形成された有機半導体を含む有機系光電変換体2と、有機系光電変換体2上に形成された電子と正孔を再結合させる透光性再結合層4と、透光性再結合層4上に形成された透光性光電変換体3とを有する(図示せず)。 In addition, the stacked photoelectric conversion device of the present embodiment includes a conductive substrate, an organic photoelectric conversion body 2 including an organic semiconductor formed on the conductive substrate, and an electron formed on the organic photoelectric conversion body 2. And a translucent recombination layer 4 that recombines holes, and a translucent photoelectric conversion body 3 formed on the translucent recombination layer 4 (not shown).
 この場合、導電性基板が非透光性のものであれば、透光性光電変換体3側から光を入射させることにより、薄膜型の透光性光電変換体3で短波長光(波長300~600nm程度)がよく光電変換され、有機系光電変換体2で長波長光(波長600~900nm程度)がよく光電変換され、両光電変換体2,3の変換効率を合わせた高い変換効率が得られる。 In this case, if the conductive substrate is non-translucent, light is incident from the translucent photoelectric conversion body 3 side, so that the thin film type translucent photoelectric conversion body 3 causes short wavelength light (wavelength 300). Is highly photoelectrically converted, and long-wavelength light (wavelength of about 600 to 900 nm) is well photoelectrically converted by the organic photoelectric converter 2, and the conversion efficiency of both the photoelectric converters 2 and 3 is high. can get.
 ≪光電変換装置の各構成要素についての詳細説明≫
 以下、積層型光電変換装置1の各構成部分について詳細に説明する。
≪Detailed description of each component of photoelectric conversion device≫
Hereinafter, each component of the stacked photoelectric conversion device 1 will be described in detail.
 <導電性基板(透光性基板)>
 導電性基板31は、透光性基板31aと透光性導電層31bからなる。透光性基板31aの材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等の樹脂、青板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等の無機材料、または導電性樹脂,有機無機ハイブリッド材料等がよい。
<Conductive substrate (translucent substrate)>
The conductive substrate 31 includes a translucent substrate 31a and a translucent conductive layer 31b. As a material of the translucent substrate 31a, resin such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, inorganic material such as blue plate glass, soda glass, borosilicate glass, ceramics, or conductive resin Organic-inorganic hybrid materials are good.
 透光性導電層31bとしては、低温成長のスパッタリング法、低温スプレー熱分解法等によって形成した、スズドープ酸化インジウム層(ITO層)、不純物ドープの酸化インジウム層(In23層)等がよい。また、熱CVD法によって形成したフッ素ドープの二酸化スズ層(SnO2:F層)、溶液成長法によって形成した不純物ドープの酸化亜鉛層(ZnO層)等であってもよい。さらに、これらの層を積層して用いてもよい。 As the translucent conductive layer 31b, a tin-doped indium oxide layer (ITO layer), an impurity-doped indium oxide layer (In 2 O 3 layer), or the like formed by a low-temperature growth sputtering method, a low-temperature spray pyrolysis method, or the like is preferable. . Further, a fluorine-doped tin dioxide layer (SnO 2 : F layer) formed by a thermal CVD method, an impurity-doped zinc oxide layer (ZnO layer) formed by a solution growth method, or the like may be used. Further, these layers may be stacked and used.
 透光性導電層31bの他の形成方法として、真空蒸着法、イオンプレーティング法、ディップコート法、ゾルゲル法等がある。また、透光性導電層31bの表面に入射光の波長オーダーの表面凹凸を形成すると、光閉じ込め効果が得られてなおよい。 Other methods for forming the translucent conductive layer 31b include a vacuum deposition method, an ion plating method, a dip coating method, and a sol-gel method. Further, if a surface irregularity in the order of the wavelength of incident light is formed on the surface of the translucent conductive layer 31b, a light confinement effect may be obtained.
 また、透光性導電層31bは、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等から成る薄い(厚み1~5nm程度)金属層であってもよい。 Further, the translucent conductive layer 31b may be a thin (about 1 to 5 nm thick) metal layer made of Au, Pd, Al or the like formed by a vacuum deposition method or a sputtering method.
 導電性基板31の厚みは0.1mm~5mmがよく、より好ましくは0.2mm~3mmがよい。0.1mm~5mmの範囲内とすることにより、導電性基板31の機械的強度を十分なものとし、また、重量の増加を抑えることができる。 The thickness of the conductive substrate 31 is preferably 0.1 mm to 5 mm, more preferably 0.2 mm to 3 mm. By setting the thickness within the range of 0.1 mm to 5 mm, the mechanical strength of the conductive substrate 31 can be made sufficient, and an increase in weight can be suppressed.
 透光性導電層31bの厚みは0.001μm~10μmがよく、より好ましくは0.05μm~2μmがよい。0.001μm~10μmの範囲内とすることにより、透光性導電層31bの導電性及び光透過率を高く維持することができる。 The thickness of the translucent conductive layer 31b is preferably 0.001 μm to 10 μm, more preferably 0.05 μm to 2 μm. By setting the thickness within the range of 0.001 μm to 10 μm, the conductivity and light transmittance of the translucent conductive layer 31b can be kept high.
 また、導電性基板31の光入射面(図1の白矢印側の面)に、誘電体多層膜などの反射防止膜を形成すると入射光量が増加して良い。なお、図1の白矢印は入射光を示す。 Further, if an antireflection film such as a dielectric multilayer film is formed on the light incident surface of the conductive substrate 31 (the surface on the white arrow side in FIG. 1), the amount of incident light may be increased. In addition, the white arrow of FIG. 1 shows incident light.
 <第2の光電変換体(有機系光電変換体)>
 有機系光電変換体2は、pin接合型、pn接合型、バルクヘテロ型、超格子型等の内部電界を生じるものであればよい。
<Second Photoelectric Converter (Organic Photoelectric Converter)>
The organic photoelectric converter 2 only needs to generate an internal electric field such as a pin junction type, a pn junction type, a bulk hetero type, or a superlattice type.
 有機系光電変換体2を構成する有機半導体の材料としては、フタロシアニン,亜鉛フタロシアニン,銅フタロシアニン,チタニルフタロシアニン,バナジルフタロシアニン,ヘキサデカフルオロ亜鉛フタロシアニン,塩化フタロシアニンなどのフタロシアニン系半導体、C60,C70,酸化フラーレン,フェニルC61ブチルアシッドメチルエステル(PCBM),フェニルC85ブチルアシッドメチルエステル([84]PCBM),フラーレン誘導体などのフラーレン系半導体、テトラメチルポルフィリンなどのポルフィリン系半導体、バクテリオクロロフィル類、クロロフィル類、ペンタセン,テトラセンなどのポリアセン系半導体、ポリ-3-ヘキシルチオフェンなどのチオフェン系半導体、ナフタレン系半導体,ピロール系半導体,ベンゾキノン,ナフトキノンなどのキノン系半導体、テトラシアノキノジメタン(TCNQ),テトラフルオロテトラシアノキノジメタンなどのTCNQ系半導体、ペリレン、ペリレンテトラカルボン酸などのペリレン系半導体がよく、それぞれ非晶質、多結晶相、単結晶相として用いることができる。また、上述した組成を有する材料は、官能基によって電子吸引性、電子供与性、安定性などを付与した誘導体や、重合体として用いることもできる。 Examples of the organic semiconductor material constituting the organic photoelectric conversion body 2 include phthalocyanine semiconductors such as phthalocyanine, zinc phthalocyanine, copper phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine, hexadecafluorozinc phthalocyanine, chlorophthalocyanine, C60, C70, and fullerene oxide. , Phenyl C61 butyl acid methyl ester (PCBM), phenyl C85 butyl acid methyl ester ([84] PCBM), fullerene semiconductors such as fullerene derivatives, porphyrin semiconductors such as tetramethylporphyrin, bacteriochlorophylls, chlorophylls, pentacene, Polyacene semiconductors such as tetracene, thiophene semiconductors such as poly-3-hexylthiophene, naphthalene semiconductors, pyrrole semi Quinone semiconductors such as benzoquinone and naphthoquinone, TCNQ semiconductors such as tetracyanoquinodimethane (TCNQ) and tetrafluorotetracyanoquinodimethane, and perylene semiconductors such as perylene and perylenetetracarboxylic acid, which are amorphous. It can be used as a quality, polycrystalline phase or single crystalline phase. In addition, the material having the above-described composition can also be used as a derivative or a polymer imparted with an electron withdrawing property, electron donating property, stability, and the like by a functional group.
 有機系光電変換体は、ドーピングや電荷移動錯体として用いることもできる。例えば、金属フタロシアニンにテトラシアノキノジメタンをp型ドーパントとして、Mgやテトラフルオロテトラシアノキノジメタン(F4-TCNQ)をn型ドーパントとして用いることができる。また、TCNQにテトラチアフバレン(TTF)を配位させた電荷移動錯体などを用いることもできる。このようにドーピングすることで、導電性を高めて移動度を向上させ、膜厚を厚く成膜できる。また、ドーピングによって伝導帯、荷電子帯の準位を制御し、有機系光電変換体の開放端電圧を増加させることができる。 The organic photoelectric converter can also be used as a doping or charge transfer complex. For example, tetracyanoquinodimethane can be used as a p-type dopant for metal phthalocyanine, and Mg or tetrafluorotetracyanoquinodimethane (F4-TCNQ) can be used as an n-type dopant. Alternatively, a charge transfer complex in which tetrathiafuvalene (TTF) is coordinated with TCNQ can be used. By doping in this way, the conductivity can be increased to improve the mobility, and the film thickness can be increased. Further, the open band voltage of the organic photoelectric conversion body can be increased by controlling the levels of the conduction band and the valence band by doping.
 また、有機半導体との電荷分離性が良好であれば、有機系光電変換体2を構成する半導体は、カルコパイライト系化合物半導体、シリコン系半導体、酸化亜鉛などの2-6族半導体、窒化インジウムなどの3-5族半導体などを含んでもよい。特にカルコパイライト系化合物半導体は、長波長感度があり、色素層として好適である。このような有機系半導体と無機系半導体を用いる方法として、バルクヘテロ型の有機系光電変換体にカルコパイライト系化合物半導体の微粒子を混入させて半導体色素として用いる方法や、表面が平坦面もしくは凹凸形状とされたn型酸化亜鉛半導体にp型半導体であるP3HT(ポリ-3-ヘキシルチオフェン)をコートしてpn界面を形成させる方法、n型酸化亜鉛半導体にバルクヘテロ層(P3HTとPCBMの混合膜)をコートし、pn界面の形成と同時にホールブロック層としての機能を発現させる方法などがよい。 If the charge separation property with the organic semiconductor is good, the semiconductor constituting the organic photoelectric converter 2 is a chalcopyrite compound semiconductor, a silicon semiconductor, a group 2-6 semiconductor such as zinc oxide, indium nitride, etc. Or a Group 3-5 semiconductor. In particular, chalcopyrite compound semiconductors have long wavelength sensitivity and are suitable as a dye layer. As a method of using such an organic semiconductor and an inorganic semiconductor, a method of using chalcopyrite compound semiconductor fine particles mixed with a bulk hetero type organic photoelectric converter as a semiconductor dye, a surface having a flat surface or an uneven shape A method of forming a pn interface by coating P3HT (poly-3-hexylthiophene), which is a p-type semiconductor, on the n-type zinc oxide semiconductor, and forming a bulk hetero layer (mixed film of P3HT and PCBM) on the n-type zinc oxide semiconductor A method of coating and exhibiting the function as a hole blocking layer simultaneously with the formation of the pn interface is preferable.
 他に、上述のようにホールブロック層としての機能を発現する材料として、TiOx,NbOx,ZrOx,TaOx,WOxなどの無機金属酸化物が挙げられる。ここで、一部アモルファス構造を含むことでカバレッジが良くなり、信頼性が向上する。 In addition, as described above, inorganic metal oxides such as TiOx, NbOx, ZrOx, TaOx, and WOx can be used as the material that exhibits the function as the hole blocking layer. Here, by including a part of the amorphous structure, coverage is improved and reliability is improved.
 図1で示した色素層とは、光電変換する機能を有し、接する半導体層に電荷の授受が可能な層を言う。ここで電荷とは、生成した励起子が色素層と半導体層との界面での電荷分離で生成した電荷や、色素内部で電荷分離した電荷などを言う。 The dye layer shown in FIG. 1 refers to a layer that has a function of photoelectric conversion and can transfer charges to and from a semiconductor layer in contact therewith. Here, the charge refers to a charge generated by the generated exciton by charge separation at the interface between the dye layer and the semiconductor layer, a charge separated by charge inside the dye, or the like.
 pin接合型の有機系光電変換体2の例としては、図2に示すように、電子ブロック層25、第1導電型(p型)有機系半導体層24a、第1導電型(p型)有機系半導体と第2導電型(n型)有機系半導体との混合(i型)層23a、第2導電型(n型)有機系半導体22a、正孔ブロック層21aが順次積層された構成がある。 As an example of the pin junction type organic photoelectric converter 2, as shown in FIG. 2, an electron block layer 25, a first conductive type (p type) organic semiconductor layer 24a, and a first conductive type (p type) organic There is a configuration in which a mixed (i-type) layer 23a of a second semiconductor (n-type) organic semiconductor, a second conductive (n-type) organic semiconductor 22a, and a hole blocking layer 21a are sequentially stacked. .
 pn接合型の有機系光電変換体2の例としては、図3に示すように、電子ブロック層25a、第1導電型(p型)有機系半導体層24b、第2導電型(n型)有機系半導体層22b、正孔ブロック層21bが順次積層された構成がある。 As an example of the pn junction type organic photoelectric conversion body 2, as shown in FIG. 3, an electron block layer 25a, a first conductive type (p type) organic semiconductor layer 24b, a second conductive type (n type) organic There is a configuration in which the semiconductor layer 22b and the hole blocking layer 21b are sequentially stacked.
 バルクヘテロ型の有機系光電変換体2の例としては、図4に示すように、電子ブロック層25b、バルクヘテロ層26、正孔ブロック層21cが順次積層された構成がある。このバルクヘテロ型は、アニール処理などを施すことによって、バルクヘテロ層26内での層分離や有機系半導体の結晶化を促進させることができ、その結果、変換効率を向上させることができる。また、色素をバルクヘテロ層26にさらに混合することによって、分光感度を向上させることができる。 As an example of the bulk hetero type organic photoelectric converter 2, there is a configuration in which an electron block layer 25b, a bulk hetero layer 26, and a hole block layer 21c are sequentially stacked as shown in FIG. This bulk hetero type can promote the layer separation in the bulk hetero layer 26 and the crystallization of the organic semiconductor by performing an annealing process, and as a result, the conversion efficiency can be improved. Further, the spectral sensitivity can be improved by further mixing the dye into the bulk hetero layer 26.
 超格子型の有機系光電変換体2の例としては、図5に示すように、電子ブロック層25b、第1導電型(p型)有機系半導体層24dと第2導電型(n型)有機系半導体層22dとの組を3組積層した積層構造層、正孔ブロック層21dが順次積層された構成がある。 As an example of the superlattice type organic photoelectric converter 2, as shown in FIG. 5, an electron block layer 25b, a first conductive type (p type) organic semiconductor layer 24d, and a second conductive type (n type) organic There is a configuration in which three stacked structure layers in which a pair with the semiconductor layer 22d is stacked and a hole blocking layer 21d are sequentially stacked.
 有機系光電変換体2は、真空蒸着法、スピンコート法、ディップコート法、キャスト法、印刷法、インクジェット法、物理気相堆積法などによって形成される。 The organic photoelectric conversion body 2 is formed by a vacuum deposition method, a spin coating method, a dip coating method, a casting method, a printing method, an ink jet method, a physical vapor deposition method, or the like.
 図1の構成において、第1導電型(p型)有機系半導体層24は、銅フタロシアニン等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、第1導電型有機系半導体層24の被覆性(カバレッジ)が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 In the configuration of FIG. 1, the first conductive type (p-type) organic semiconductor layer 24 is preferably made of copper phthalocyanine or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage (coverage) of the first conductive type organic semiconductor layer 24 is improved, the charge separation is sufficient, and the increase in series resistance is suppressed. Can do.
 色素層23は、電荷分離に大きな影響を及ぼさないが、分光感度を増大させる層であり、スズフタロシアニン等から成り、厚みは0.5nm~50nm程度であることがよい。0.5nm~50nm程度の範囲内とすることにより、分光感度を高くすることができ、また、直列抵抗を低減することができる。 The dye layer 23 is a layer that does not greatly affect charge separation but increases spectral sensitivity, is made of tin phthalocyanine or the like, and preferably has a thickness of about 0.5 to 50 nm. By setting the thickness within the range of about 0.5 nm to 50 nm, the spectral sensitivity can be increased, and the series resistance can be reduced.
 第2導電型(n型)有機系半導体層22は、フラーレンC60等から成り、厚みは0.5nm~200nm程度であることがよい。0.5nm~200nm程度の範囲内とすることにより、第2導電型有機系半導体層22の被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The second conductivity type (n-type) organic semiconductor layer 22 is preferably made of fullerene C60 or the like and has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductivity type organic semiconductor layer 22 is improved, the charge separation is sufficient, and the increase in series resistance can be suppressed. it can.
 正孔ブロック層21は、バソクプロインやTiOx(アモルファス構造を含む酸化チタン層)等から成り、厚みは0.5nm~1000nm程度であることがよい。0.5nm~1000nm程度の範囲内とすることにより、正孔ブロック層21の被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The hole blocking layer 21 is made of bathocuproine, TiOx (a titanium oxide layer including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21 is improved, charge separation is sufficient, and an increase in series resistance can be suppressed.
 図2の構成において、電子ブロック層25は、PEDOT:PSS等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、電子ブロック層25の被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 In the configuration of FIG. 2, the electronic block layer 25 is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the covering property of the electron blocking layer 25 is improved, charge separation is sufficient, and an increase in series resistance can be suppressed.
 第1導電型(p型)有機系半導体層24aは、銅フタロシアニン等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、第1導電型(p型)有機系半導体層24aの被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The first conductivity type (p-type) organic semiconductor layer 24a is preferably made of copper phthalocyanine or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the covering property of the first conductive type (p-type) organic semiconductor layer 24a is improved, charge separation is sufficient, and the increase in series resistance is suppressed. be able to.
 混合層23aは、銅フタロシアニン及びフラーレンC60等から成り、厚みは1~500nm程度であることがよい。1~500nm程度の範囲内とすることにより、分光感度を高くし、また、直列抵抗を低減することができる。 The mixed layer 23a is made of copper phthalocyanine, fullerene C60, or the like, and preferably has a thickness of about 1 to 500 nm. By setting the thickness within the range of about 1 to 500 nm, the spectral sensitivity can be increased and the series resistance can be reduced.
 第2導電型(n型)有機系半導体層22aは、フラーレンC60等から成り、厚みは0.5nm~200nm程度であることがよい。0.5nm~200nm程度の範囲内とすることにより、第2導電型(n型)有機系半導体層22aの被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The second conductivity type (n-type) organic semiconductor layer 22a is preferably made of fullerene C60 or the like and has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductive type (n-type) organic semiconductor layer 22a is improved, charge separation is sufficient, and further, the series resistance is increased. Can be suppressed.
 正孔ブロック層21aは、バソクプロインやTiOx(アモルファス構造を含む酸化チタン膜)等から成り、厚みは0.5nm~1000nm程度であることがよい。0.5nm~1000nm程度の範囲内とすることにより、正孔ブロック層21aの被覆性が向上し、また、直列抵抗の増大を抑えることができる。 The hole blocking layer 21a is made of bathocuproine, TiOx (titanium oxide film including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21a can be improved, and an increase in series resistance can be suppressed.
 図3の構成において、電子ブロック層25aは、PEDOT:PSS等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、電子ブロック層25aの被覆性が向上し、また、直列抵抗の増大を抑えることができる。 In the configuration of FIG. 3, the electronic block layer 25a is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage of the electron blocking layer 25a can be improved, and an increase in series resistance can be suppressed.
 第1導電型(p型)有機系半導体層24bは、銅フタロシアニン等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、第1導電型(p型)有機系半導体層24bの被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The first conductivity type (p-type) organic semiconductor layer 24b is preferably made of copper phthalocyanine or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the covering property of the first conductive type (p-type) organic semiconductor layer 24b is improved, charge separation is sufficient, and the increase in series resistance is suppressed. be able to.
 第2導電型(n型)有機系半導体層22bは、フラーレンC60等から成り、厚みは0.5nm~200nm程度であることがよい。0.5nm~200nm程度の範囲内とすることにより、第2導電型(n型)有機系半導体層22bの被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The second conductivity type (n-type) organic semiconductor layer 22b is preferably made of fullerene C60 or the like and has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductive type (n-type) organic semiconductor layer 22b is improved, charge separation is sufficient, and further, the series resistance is increased. Can be suppressed.
 図4の構成において、電子ブロック層25bは、PEDOT:PSS等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、電子ブロック層25bの被覆性が向上し、また、直列抵抗の増大を抑えることができる。 In the configuration of FIG. 4, the electron block layer 25b is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage of the electron blocking layer 25b can be improved, and an increase in series resistance can be suppressed.
 バルクヘテロ層26は、チオフェン誘導体のP3HT及びフラーレン誘導体のPCBM等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、バルクヘテロ層26の分光感度が高くなり、また、直列抵抗を低減することができる。 The bulk hetero layer 26 is made of thiophene derivative P3HT, fullerene derivative PCBM, or the like, and preferably has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the spectral sensitivity of the bulk hetero layer 26 can be increased, and the series resistance can be reduced.
 正孔ブロック層21cは、バソクプロインやTiOx(アモルファス構造を含む酸化チタン層)等から成り、厚みは0.5nm~1000nm程度であることがよい。0.5nm~1000nm程度の範囲内とすることにより、正孔ブロック層21cの被覆性が向上し、また、直列抵抗の増大を抑えることができる。 The hole blocking layer 21c is made of bathocuproine, TiOx (titanium oxide layer including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21c can be improved, and an increase in series resistance can be suppressed.
 図5の構成において、電子ブロック層25は、PEDOT:PSS等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、電子ブロック層25の被覆性が向上し、また、直列抵抗の増大を抑えることができる。 In the configuration of FIG. 5, the electron block layer 25 is preferably made of PEDOT: PSS or the like and has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the coverage of the electron blocking layer 25 can be improved, and an increase in series resistance can be suppressed.
 第1導電型(p型)有機系半導体層24dは、銅フタロシアニン等から成り、厚みは1~200nm程度であることがよい。1~200nm程度の範囲内とすることにより、第1導電型(p型)有機系半導体層24dの被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The first conductivity type (p-type) organic semiconductor layer 24d is made of copper phthalocyanine or the like, and preferably has a thickness of about 1 to 200 nm. By setting the thickness within the range of about 1 to 200 nm, the covering property of the first conductive type (p-type) organic semiconductor layer 24d is improved, charge separation is sufficient, and the increase in series resistance is suppressed. be able to.
 第2導電型(n型)有機系半導体層22dは、フラーレンC60等から成り、厚みは0.5nm~200nm程度であることがよい。0.5nm~200nm程度の範囲内とすることにより、第2導電型(n型)有機系半導体層22dの被覆性が向上し、また、電荷分離が十分なものとなり、さらに、直列抵抗の増大を抑えることができる。 The second conductivity type (n-type) organic semiconductor layer 22d is made of fullerene C60 or the like, and preferably has a thickness of about 0.5 nm to 200 nm. By setting the thickness within the range of about 0.5 nm to 200 nm, the coverage of the second conductive type (n-type) organic semiconductor layer 22d is improved, charge separation is sufficient, and further, the series resistance is increased. Can be suppressed.
 正孔ブロック層21cは、バソクプロインやTiOx(アモルファス構造を含む酸化チタン層)等から成り、厚みは0.5nm~1000nm程度であることがよい。0.5nm~1000nm程度の範囲内とすることにより、正孔ブロック層21cの被覆性が向上し、また、直列抵抗の増大を抑えることができる。 The hole blocking layer 21c is made of bathocuproine, TiOx (titanium oxide layer including an amorphous structure), or the like, and preferably has a thickness of about 0.5 nm to 1000 nm. By setting the thickness within the range of about 0.5 nm to 1000 nm, the coverage of the hole blocking layer 21c can be improved, and an increase in series resistance can be suppressed.
 <導電体層(透光性再結合層)>
 透光性再結合層4は、有機系光電変換体2と透光性光電変換体3との間で、電子と正孔の再結合を容易にするための層である。
<Conductor layer (translucent recombination layer)>
The translucent recombination layer 4 is a layer for facilitating recombination of electrons and holes between the organic photoelectric conversion body 2 and the translucent photoelectric conversion body 3.
 透光性再結合層4は、透光性光電変換体3と第2の光電変換体2との界面に部分的に形成されており、非形成部を有する。このような構成とすることで、透光性光電変換体3から第2の光電変換体2への光透過率を高めることができ、積層型光電変換装置1の光電変換効率を高めることができる。 The translucent recombination layer 4 is partially formed at the interface between the translucent photoelectric conversion body 3 and the second photoelectric conversion body 2 and has a non-formed part. By setting it as such a structure, the light transmittance from the translucent photoelectric conversion body 3 to the 2nd photoelectric conversion body 2 can be raised, and the photoelectric conversion efficiency of the laminated photoelectric conversion apparatus 1 can be raised. .
 また、透光性光電変換体3や有機系光電変換体2の一部の表面準位で再結合を抑制できることも、積層型光電変換装置1の光電変換効率を高めることが出来る一因である。それは、透光性光電変換体3や有機系光電変換体2の表面準位の一部が、導電材料である透光性再結合層4と接触しないため、それらの表面準位まで電子や正孔が拡散する確率が大幅に減少するからである。結果、見かけ上の表面準位密度を減少させることが出来、再結合を抑制できるため、積層型光電変換装置1の光電変換効率を高めることが出来る。 In addition, the ability to suppress recombination at some surface levels of the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is one factor that can increase the photoelectric conversion efficiency of the stacked photoelectric conversion device 1. . This is because part of the surface levels of the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 do not come into contact with the translucent recombination layer 4 that is a conductive material. This is because the probability that the holes diffuse is greatly reduced. As a result, the apparent surface state density can be reduced and recombination can be suppressed, so that the photoelectric conversion efficiency of the stacked photoelectric conversion device 1 can be increased.
 透光性再結合層4は、金属、導電性酸化物及び導電性ポリマーのうちの少なくとも一つを含むことがよい。この場合、電子と正孔の再結合が容易となり、光の損失の小さい透光性再結合層4を得ることができる。 The translucent recombination layer 4 may include at least one of a metal, a conductive oxide, and a conductive polymer. In this case, recombination of electrons and holes is facilitated, and the translucent recombination layer 4 with a small light loss can be obtained.
 透光性光電変換体3と有機系光電変換体2との界面における透光性再結合層4の占有率(透光性光電変換体3および有機系光電変換体2に対して垂直方向に平面視した場合において、透光性光電変換体3と有機系光電変換体2との界面の面積をAとし、透光性再結合層4の面積をBとしたときに、占有率はB/Aで表される)は、電子と正孔の再結合を高めるという観点からは3%以上、好ましくは、10%以上とするのがよい。また、光透過性を高めるという観点からは97%以下、好ましくは、90%以下とするのがよい。 Occupancy ratio of the translucent recombination layer 4 at the interface between the translucent photoelectric converter 3 and the organic photoelectric converter 2 (planar in the direction perpendicular to the translucent photoelectric converter 3 and the organic photoelectric converter 2) In this case, when the area of the interface between the translucent photoelectric converter 3 and the organic photoelectric converter 2 is A and the area of the translucent recombination layer 4 is B, the occupation ratio is B / A. Is represented by 3% or more, preferably 10% or more from the viewpoint of enhancing the recombination of electrons and holes. Further, from the viewpoint of enhancing light transmittance, it is 97% or less, preferably 90% or less.
 また、透光性再結合層4は、互いに離れて位置する複数の導電体部(以下、島状部ともいう)から成ることがよい。この場合、良好な透光性が得られるという効果、また、次に積層する有機系光電変換体2の成長核として用いることができるという利点がある。また、この場合、透光性光電変換体3と有機系光電変換体2との間における仕事関数差を小さくして、透光性光電変換体3と有機系光電変換体2との間での電子及び正孔の移動が容易になる。このような透光性再結合層4を構成する1つの島状部の平均直径は2nm~20nmがよく、より好ましくは、2nm~4nmであるのがよい。 The translucent recombination layer 4 is preferably composed of a plurality of conductor portions (hereinafter also referred to as island portions) that are located apart from each other. In this case, there is an advantage that good translucency can be obtained, and there is an advantage that it can be used as a growth nucleus of the organic photoelectric conversion body 2 to be laminated next. In this case, the work function difference between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is reduced, and the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 are reduced. Electron and hole transfer is facilitated. The average diameter of one island-like portion constituting such a translucent recombination layer 4 is preferably 2 nm to 20 nm, and more preferably 2 nm to 4 nm.
 なお、透光性再結合層4が複数の島状部から構成されている場合、島状部同士の間には隙間があり、隙間には他の層が入り込んでいるが、透光性再結合層4は全体としては層状を成しているといえる。 In addition, when the translucent recombination layer 4 is composed of a plurality of island-shaped portions, there are gaps between the island-shaped portions, and other layers enter the gap. It can be said that the bonding layer 4 has a layered shape as a whole.
 また、透光性再結合層4は、複数の貫通孔を有している形状、例えば網目状、格子状等の形状であることが好ましい。この場合、良好な透光性が得られるという効果、また、次に積層する有機系光電変換体2の成長核として用いることができる利点がある。また、透光性光電変換体3と有機系光電変換体2との間における仕事関数差を小さくして、透光性光電変換体3と有機系光電変換体2との間での電子及び正孔の移動が容易になる。このような透光性再結合層4における貫通孔の平均直径は2nm~100μmがよく、より好ましくは、2nm~10nmであるのがよい。 The translucent recombination layer 4 preferably has a shape having a plurality of through holes, for example, a mesh shape, a lattice shape, or the like. In this case, there is an advantage that good translucency can be obtained, and there is an advantage that it can be used as a growth nucleus of the organic photoelectric conversion body 2 to be laminated next. Further, the work function difference between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is reduced, and the electrons and positive electrons between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 are reduced. The movement of the hole becomes easy. The average diameter of the through holes in the translucent recombination layer 4 is preferably 2 nm to 100 μm, and more preferably 2 nm to 10 nm.
 以上のように透光性再結合層4は、透光性光電変換体3と有機系光電変換体2との間に部分的に形成されると、電子移動及び正孔移動が容易となる。それは、透光性再結合層4が部分的に形成されることによって表面積が増加するため、表面エネルギーが高くなり触媒特性が向上すること、表面におけるステップ、キンクなどの占める割合が高くなること、表面積の増加に伴う活性点が増加することなどの理由による。また、透光性光電変換体3や有機系光電変換体2の一部の表面準位で再結合を抑制できることも、電子移動及び正孔移動が容易となる一因である。 As described above, when the translucent recombination layer 4 is partially formed between the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2, electron transfer and hole transfer are facilitated. That is, since the surface area is increased by partially forming the translucent recombination layer 4, the surface energy is increased and the catalytic properties are improved, the ratio of steps, kinks, etc. on the surface is increased, This is due to reasons such as an increase in active sites accompanying an increase in surface area. In addition, the ability to suppress recombination at some surface levels of the translucent photoelectric conversion body 3 and the organic photoelectric conversion body 2 is one factor that facilitates electron transfer and hole transfer.
 透光性再結合層4が、金属から成る場合、その材質は、白金,パラジウムなどの白金族元素、または銀,アルミニウム,チタン,鉄,銅,インジウム,クロム,イリジウムなどの金属から成る。この場合、透光性再結合層4は、真空蒸着法、スパッタリング法、コートした錯体の熱分解法、電着法等によって形成される。 When the translucent recombination layer 4 is made of a metal, the material is made of a platinum group element such as platinum or palladium, or a metal such as silver, aluminum, titanium, iron, copper, indium, chromium, or iridium. In this case, the translucent recombination layer 4 is formed by vacuum deposition, sputtering, thermal decomposition of a coated complex, electrodeposition, or the like.
 透光性再結合層4に用いられる上記の導電性酸化物の材質としては、スズドープ酸化インジウム,フッ素ドープ酸化スズ,アンチモンドープ酸化スズ,アルミニウムドープ酸化亜鉛,ガリウムドープ酸化亜鉛,酸化亜鉛,酸化インジウム,酸化スズ,酸化チタン,ニオブドープ酸化チタンなど、透明電極としての機能を有することができる酸化物がよい。導電性酸化物から成る透光性再結合層4は、スパッタリング法、蒸着法、化学気相成長法、スピンコート法、めっき法などで形成される。 The material of the conductive oxide used for the translucent recombination layer 4 includes tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, zinc oxide, and indium oxide. An oxide that can function as a transparent electrode, such as tin oxide, titanium oxide, or niobium-doped titanium oxide, is preferable. The translucent recombination layer 4 made of a conductive oxide is formed by sputtering, vapor deposition, chemical vapor deposition, spin coating, plating, or the like.
 透光性再結合層4に用いられる上記の導電性ポリマーの材質は、ポリエチレンジオキシチオフェン(PEDOT)(ポリスチレンスルホナートやトルエンスルホネート等をドーピングしてもよい),ポリビニルカルバゾール,ポリチオフェン,ポリピロールなどがよい。ポリエチレンジオキシチオフェン,ポリオフェン,ポリピロールは、スピンコート法、キャスト法などの塗布法によって形成され、ポリビニルカルバゾール,ポリチオフェンは電着法で形成される。 The material of the conductive polymer used for the translucent recombination layer 4 is polyethylene dioxythiophene (PEDOT) (which may be doped with polystyrene sulfonate or toluene sulfonate), polyvinyl carbazole, polythiophene, polypyrrole, or the like. Good. Polyethylene dioxythiophene, polyophene, and polypyrrole are formed by a coating method such as a spin coating method and a cast method, and polyvinylcarbazole and polythiophene are formed by an electrodeposition method.
 また、透光性再結合層4は、その少なくとも1層が触媒層であることが好ましい。このような触媒層は、有機系光電変換体2および透光性光電変換体3に作用する過電圧を低減することができるため、電荷の再結合に必要な過電圧を小さくすることができる。また、触媒層は、過電圧の低減作用を高めるという観点から、白金、パラジウム、ニッケル、アルミニウム、および銀の少なくとも1つを含むのが良い。 Moreover, it is preferable that at least one of the translucent recombination layers 4 is a catalyst layer. Such a catalyst layer can reduce the overvoltage that acts on the organic photoelectric conversion body 2 and the translucent photoelectric conversion body 3, so that the overvoltage necessary for charge recombination can be reduced. In addition, the catalyst layer may contain at least one of platinum, palladium, nickel, aluminum, and silver from the viewpoint of enhancing the overvoltage reduction action.
 また、透光性再結合層4は、複数層を積層したものを用いることもできる。複数層を積層することによって、有機系光電変換体2と透光性再結合層4との間、透光性再結合層4と透光性光電変換体3との間における電荷の授受を、よりスムーズに行うことができる。 Further, the translucent recombination layer 4 may be a laminate of a plurality of layers. By laminating a plurality of layers, charge transfer between the organic photoelectric conversion body 2 and the translucent recombination layer 4, and between the translucent recombination layer 4 and the translucent photoelectric conversion body 3, It can be performed more smoothly.
 そして、このような複数層で構成された透光性再結合層4は、有機系光電変換体2と接する第1の触媒層と、透光性光電変換体3と接する第2の触媒層と、第1の触媒層と第2の触媒層との間に介在する中間層と、を有し、この中間層の表面抵抗率が、1.0×10Ω/□(スクエア)以上1.0×1010Ω/□(スクエア)以下であることが好ましい。このような形態であれば、透光性再結合層と有機系光電変換体との電荷の再結合を実現しつつ、中間層の面内方向における電荷の移動を抑制して透光性光電変換体における電荷の再結合を低減できるため、より光電変換効率を高めることができる。中間層としては、例えば、上述した導電性酸化物が挙げられる。また、中間層の表面抵抗率は、例えば、四探針抵抗率測定法によって測定できる。また、触媒層は、金属、導電性酸化物及び導電性ポリマーの少なくともいずれか1種類から成る島状部を有する形状でもよく、複数の貫通孔を有する形状であってもよい。このような中間層は有機系光電変換体2および透光性光電変換体3のいずれかに含まれ、光電変換体の一部を構成するとする。 And the translucent recombination layer 4 comprised in such a multilayer is the 1st catalyst layer which contact | connects the organic photoelectric conversion body 2, the 2nd catalyst layer which contact | connects the translucent photoelectric conversion body 3, and An intermediate layer interposed between the first catalyst layer and the second catalyst layer, and the surface resistivity of the intermediate layer is 1.0 × 10 3 Ω / □ (square) or more. It is preferable that it is 0 × 10 10 Ω / □ (square) or less. With such a configuration, translucent photoelectric conversion is achieved by suppressing charge movement in the in-plane direction of the intermediate layer while realizing recombination of charges between the translucent recombination layer and the organic photoelectric conversion body. Since recombination of charges in the body can be reduced, photoelectric conversion efficiency can be further increased. Examples of the intermediate layer include the conductive oxides described above. Further, the surface resistivity of the intermediate layer can be measured by, for example, a four probe resistivity measurement method. Further, the catalyst layer may have a shape having an island-shaped portion made of at least one of a metal, a conductive oxide, and a conductive polymer, or may have a shape having a plurality of through holes. Such an intermediate layer is included in either the organic photoelectric conversion body 2 or the translucent photoelectric conversion body 3 and constitutes a part of the photoelectric conversion body.
 <第1の光電変換体(透光性光電変換体)>
 透光性光電変換体3としては、プラズマCVD法によって連続堆積したpin接合構造の水素化非晶質シリコン半導体層のような非晶質の半導体層がよい。pin接合構造とは、p型半導体とi型半導体とn型半導体とを順に積層した構造である。透光性光電変換体3はi型の非晶質シリコン層を含むpin構造を有している場合、透光性光電変換体は約700nm以下の短波長光を吸収して発電し、約700nm以上の長波長光を透過する。その結果、例えば透光性光電変換体3の後側に配置された有機系光電変換体2が十分に吸収し発電することが可能な波長域の光が透過することとなる。太陽光の波長域は310nm~2000nmであり、強度が大きい波長域は400nm~1200nmである。従って、有機系光電変換体2に、700nm~1200nmあるいは700nm~2000nmに感度を有する有機半導体2を用いることにより、高い光電変換効率が得られる。
<First photoelectric conversion body (translucent photoelectric conversion body)>
The translucent photoelectric converter 3 is preferably an amorphous semiconductor layer such as a hydrogenated amorphous silicon semiconductor layer having a pin junction structure continuously deposited by plasma CVD. The pin junction structure is a structure in which a p-type semiconductor, an i-type semiconductor, and an n-type semiconductor are sequentially stacked. In the case where the translucent photoelectric conversion body 3 has a pin structure including an i-type amorphous silicon layer, the translucent photoelectric conversion body absorbs light having a short wavelength of about 700 nm or less to generate power, and generates about 700 nm. The above long wavelength light is transmitted. As a result, for example, light in a wavelength region that can be sufficiently absorbed and generated by the organic photoelectric conversion body 2 disposed on the rear side of the translucent photoelectric conversion body 3 is transmitted. The wavelength range of sunlight is 310 nm to 2000 nm, and the wavelength range with high intensity is 400 nm to 1200 nm. Therefore, by using the organic semiconductor 2 having a sensitivity of 700 nm to 1200 nm or 700 nm to 2000 nm as the organic photoelectric conversion body 2, high photoelectric conversion efficiency can be obtained.
 透光性光電変換体3は、例えば、有機系光電変換体2側から、第1導電型(n型)非晶質シリコン半導体層32、真性型(i型)非晶質シリコン半導体層33、第2導電型(p型)非晶質シリコン半導体層34が順次積層されたpin接合構造であるが、逆接合であるnip接合構造でも構わない。 The translucent photoelectric conversion body 3 includes, for example, a first conductivity type (n-type) amorphous silicon semiconductor layer 32, an intrinsic type (i-type) amorphous silicon semiconductor layer 33, from the organic photoelectric conversion body 2 side. A pin junction structure in which the second conductivity type (p-type) amorphous silicon semiconductor layers 34 are sequentially stacked is used, but a nip junction structure that is a reverse junction may be used.
 透光性光電変換体3は、上記の非晶質シリコン半導体層に限らず、i型半導体層が非晶質であれば、p型半導体層とn型半導体層の少なくとも一方が、微結晶を有するもの、または水素化非晶質シリコン合金層でも構わない。例えば、光入射側のp型半導体層は、水素化非晶質シリコンカーバイド層であることがよく、その場合、透光性が高く、光損失がより小さくなる。 The translucent photoelectric conversion body 3 is not limited to the above-described amorphous silicon semiconductor layer. If the i-type semiconductor layer is amorphous, at least one of the p-type semiconductor layer and the n-type semiconductor layer has microcrystals. Or a hydrogenated amorphous silicon alloy layer. For example, the p-type semiconductor layer on the light incident side is preferably a hydrogenated amorphous silicon carbide layer, in which case the light transmissivity is high and the light loss is further reduced.
 透光性光電変換体3は、触媒CVD法等によって形成できる。また、プラズマCVD法と触媒CVD法を組み合わせると、光劣化が抑制でき、信頼性が高まる。第1導電型非晶質シリコン半導体層32、真性型非晶質シリコン半導体層33、第2導電型非晶質シリコン半導体層34は、CVD法によりそれぞれの成膜条件で連続堆積できるので、低コストに短時間で形成でき、好適である。 The translucent photoelectric conversion body 3 can be formed by a catalytic CVD method or the like. Further, when the plasma CVD method and the catalytic CVD method are combined, photodegradation can be suppressed and reliability can be improved. The first conductive type amorphous silicon semiconductor layer 32, the intrinsic type amorphous silicon semiconductor layer 33, and the second conductive type amorphous silicon semiconductor layer 34 can be continuously deposited under the respective film forming conditions by the CVD method. It can be formed in a short time at a low cost, which is preferable.
 例えば、第2導電型非晶質シリコン半導体層34であるp型a-Si:H層(「a-Si」はアモルファスシリコンを意味し、「:H」は水素ドープを意味する。)の厚みは50Å~200Åがよく、より好適には80Å~120Åがよい。50Å~200Åの範囲内とすることにより、透光性光電変換体3に内部電界を容易に形成でき、また、p型a-Si:H層における光量損失を低減できる。 For example, the thickness of the p-type a-Si: H layer (“a-Si” means amorphous silicon and “: H” means hydrogen dope) that is the second conductivity type amorphous silicon semiconductor layer 34. Is preferably 50 to 200 mm, more preferably 80 to 120 mm. By setting the thickness within the range of 50 to 200 mm, an internal electric field can be easily formed in the translucent photoelectric conversion body 3, and light quantity loss in the p-type a-Si: H layer can be reduced.
 真性型非晶質シリコン半導体層33であるi型a-Si:H層の厚みは500Å~5000Åがよく、より好適には1500Å~2500Å(0.15μm~0.25μm)がよい。500Å~5000Åの範囲内とすることにより、充分な光電流を得ることができ、また、光の透過性を高めることができる。 The thickness of the i-type a-Si: H layer that is the intrinsic type amorphous silicon semiconductor layer 33 is preferably 500 to 5000 mm, and more preferably 1500 to 2500 mm (0.15 μm to 0.25 μm). By setting the thickness within the range of 500 to 5000 mm, a sufficient photocurrent can be obtained and the light transmittance can be improved.
 第1導電型非晶質シリコン半導体層32であるn型a-Si:H層の厚みは50Å~200Åがよく、より好適には80Å~120Åがよい。50Å~200Åの範囲内とすることにより、透光性光電変換体3に内部電界を容易に形成でき、また、n型a-Si:H層における光量損失を低減することができる。 The thickness of the n-type a-Si: H layer which is the first conductivity type amorphous silicon semiconductor layer 32 is preferably 50 to 200 mm, more preferably 80 to 120 mm. By setting the thickness within the range of 50 to 200 mm, an internal electric field can be easily formed in the translucent photoelectric conversion body 3, and light quantity loss in the n-type a-Si: H layer can be reduced.
 また、本実施形態では、透光性光電変換体と有機系光電変換体とが積層されていることから、薄膜型の透光性光電変換体で短波長光(波長300~600nm程度)がよく光電変換され、有機系光電変換体で長波長光(波長600~900nm程度)がよく光電変換され、両光電変換体の変換効率を合わせた高い変換効率が得られる。また、透光性基板側から光が入射する場合、薄膜型の透光性光電変換体を透過した長波長光を有機系光電変換体で光電変換することができ、広い波長域の光を効率良く光電変換できる。 Further, in the present embodiment, since the translucent photoelectric conversion body and the organic photoelectric conversion body are laminated, a short wavelength light (wavelength of about 300 to 600 nm) is often obtained with a thin film type translucent photoelectric conversion body. Long-wavelength light (wavelength of about 600 to 900 nm) is well photoelectrically converted by the organic photoelectric conversion body, and high conversion efficiency combining the conversion efficiency of both photoelectric conversion bodies is obtained. In addition, when light is incident from the translucent substrate side, long wavelength light transmitted through the thin film translucent photoelectric conversion body can be photoelectrically converted by the organic photoelectric conversion body, and light in a wide wavelength range can be efficiently converted. Good photoelectric conversion.
 また、本実施形態では、光の入射側に、短波長光を良く吸収し長波長光をほとんど透過させる透光性光電変換体を配置し、その後側に有機系光電変換体を配置することができるので、後側の有機系光電変換体が太陽光等の強い光を直接受けることがない。その結果、有機系光電変換体は太陽光等の強い光を直接受けることがなく、さらに透光性光電変換体によって紫外線等を含む短波長光が激減するので、有機半導体の光劣化が大幅に軽減され、高い信頼性を得ることができる。 Moreover, in this embodiment, the translucent photoelectric conversion body which absorbs short wavelength light well and transmits most of the long wavelength light is disposed on the light incident side, and the organic photoelectric conversion body is disposed on the rear side. As a result, the organic photoelectric converter on the rear side does not directly receive strong light such as sunlight. As a result, the organic photoelectric conversion body does not directly receive strong light such as sunlight, and the short wavelength light including ultraviolet rays is drastically reduced by the translucent photoelectric conversion body. It is reduced and high reliability can be obtained.
 加えて、有機系光電変換体及び透光性光電変換体は、基板温度が500℃程度以下の低温プロセスで形成できるので、高い変換効率が得られる積層型の構成を、従来の1400℃程度の高温プロセスを要する光電変換装置よりも簡便かつ容易に、さらに低コストに製造可能である。 In addition, since the organic photoelectric conversion body and the translucent photoelectric conversion body can be formed by a low-temperature process with a substrate temperature of about 500 ° C. or less, a stacked configuration that provides high conversion efficiency can be obtained at a conventional level of about 1400 ° C. It can be manufactured more easily and easily than a photoelectric conversion device that requires a high-temperature process at a lower cost.
 なお、本発明の積層型光電変換装置は、上述した実施形態に限定されることはない。例えば、第1の光電変換体は有機系光電変換体でもよく、第2の光電変換体は無機材料を主成分とするものでもよい。また、第1の光電変換体と第2の光電変換体をともに無機材料を主成分とするもので構成してもよく、あるいは、第1の光電変換体と第2の光電変換体をともに有機系光電変換体で構成してもよい。また、第1の光電変換体が第2の光電変換体に長波長光を透過するものであれば、第1の光電変換体は積層構造となっていてもよい。 Note that the stacked photoelectric conversion device of the present invention is not limited to the above-described embodiment. For example, the first photoelectric converter may be an organic photoelectric converter, and the second photoelectric converter may be composed mainly of an inorganic material. Further, both the first photoelectric converter and the second photoelectric converter may be composed of an inorganic material as a main component, or both the first photoelectric converter and the second photoelectric converter are organic. You may comprise a system photoelectric conversion body. As long as the first photoelectric conversion body transmits long wavelength light to the second photoelectric conversion body, the first photoelectric conversion body may have a stacked structure.
 <<実施例1>>
 本実施形態の積層型光電変換装置の実施例について以下に説明する。図1の構成の積層型光電変換装置1を以下のようにして作製した。
<< Example 1 >>
Examples of the stacked photoelectric conversion device of this embodiment will be described below. A stacked photoelectric conversion device 1 having the configuration shown in FIG. 1 was produced as follows.
 <透光性光電変換体3の形成工程>
 導電性基板31として、表面抵抗率10Ω/□(スクエア)のSnO2:F層(FドープSnO2層)から成る透光性導電層31bが形成されたガラス基板(サイズ1cm×2cm、厚み約0.11cm)を用い、その一主面に薄膜型の透光性光電変換体3を形成した。透光性光電変換体3は以下のようにして形成した。
<Formation process of translucent photoelectric conversion body 3>
As the conductive substrate 31, a glass substrate (size 1 cm × 2 cm, thickness approximately) on which a light-transmitting conductive layer 31 b made of a SnO 2 : F layer (F-doped SnO 2 layer) having a surface resistivity of 10Ω / □ (square) is formed. 0.11 cm), and a thin film type translucent photoelectric conversion body 3 was formed on one main surface thereof. The translucent photoelectric conversion body 3 was formed as follows.
 プラズマCVD装置を用いて、透光性導電層31b上に、第2導電型非晶質シリコン半導体層34としてのp型a-Si:H層(Hドープアモルファスシリコン(a-Si)層)、真性型非晶質シリコン半導体層33としてのi型a-Si:H層、第1導電型非晶質シリコン半導体層32としてのn型a-Si:H層を順次連続して真空中で形成した。 Using a plasma CVD apparatus, a p-type a-Si: H layer (H-doped amorphous silicon (a-Si) layer) as the second conductivity type amorphous silicon semiconductor layer 34 on the translucent conductive layer 31b, An i-type a-Si: H layer as the intrinsic type amorphous silicon semiconductor layer 33 and an n-type a-Si: H layer as the first conductive type amorphous silicon semiconductor layer 32 are successively formed in a vacuum. did.
 p型a-Si:H層は、原料ガスとしてSiH4ガス、H2ガス、B26ガス(H2ガスで500ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ3sccm、10sccm、2sccmとし、厚みを90Å(9nm)として形成した。 The p-type a-Si: H layer uses SiH 4 gas, H 2 gas, and B 2 H 6 gas (diluted to 500 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm and 10 sccm, respectively. The thickness was 2 sccm and the thickness was 90 mm (9 nm).
 i型a-Si:H層は、原料ガスとしてSiH4ガス、H2ガスを用い、これらのガスの流量をそれぞれ30sccm、80sccmとし、厚みを2000Å(200nm)として形成した。 The i-type a-Si: H layer was formed using SiH 4 gas and H 2 gas as source gases, the flow rates of these gases being 30 sccm and 80 sccm, respectively, and the thickness being 2000 mm (200 nm).
 n型a-Si:H層は、原料ガスとしてSiH4ガス、H2ガス、PH3ガス(H2ガスで1000ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ3sccm、30sccm、6sccmとし、厚みを100Å(10nm)として形成した。 The n-type a-Si: H layer uses SiH 4 gas, H 2 gas, and PH 3 gas (diluted to 1000 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm, 30 sccm, and 6 sccm, respectively. And a thickness of 100 mm (10 nm).
 p型a-Si:H層、i型a-Si:H層、n型a-Si:H層の形成時のガラス基板の温度は、何れの場合にも220℃とした。 The temperature of the glass substrate during the formation of the p-type a-Si: H layer, i-type a-Si: H layer, and n-type a-Si: H layer was 220 ° C. in all cases.
 <透光性再結合層4の形成工程>
 次に、透光性再結合層4としてのPt層を、透光性光電変換体3上に厚み5nmとしてスパッタリング法によって形成した。このとき、Pt層は厚みが1nm程度であり島状に形成された。
<Formation process of translucent recombination layer 4>
Next, a Pt layer as the translucent recombination layer 4 was formed on the translucent photoelectric conversion body 3 with a thickness of 5 nm by a sputtering method. At this time, the Pt layer had a thickness of about 1 nm and was formed in an island shape.
 <有機系光電変換体2の形成工程>
 次に、有機系光電変換体2を透光性再結合層4上に形成した。有機系光電変換体2は以下のようにして形成した。
<Formation process of organic photoelectric conversion body 2>
Next, the organic photoelectric conversion body 2 was formed on the translucent recombination layer 4. The organic photoelectric conversion body 2 was formed as follows.
 真空蒸着装置を用いて、透光性再結合層4上に、銅フタロシアニンから成る第1導電型(p型)有機系半導体層24、スズ(II)フタロシアニンから成る色素層23、フラーレンから成る第2導電型(n型)有機系半導体層22、バソクプロインから成る正孔ブロック層21を、順次連続して真空中で形成した。 Using a vacuum deposition apparatus, on the translucent recombination layer 4, a first conductive type (p-type) organic semiconductor layer 24 made of copper phthalocyanine, a dye layer 23 made of tin (II) phthalocyanine, and a first fullerene made of fullerene. A two-conductivity (n-type) organic semiconductor layer 22 and a hole blocking layer 21 made of bathocuproine were successively formed in a vacuum.
 銅フタロシアニンから成る第1導電型(p型)有機系半導体層24は、真空蒸着装置内の石英るつぼ中で540℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The first conductive type (p-type) organic semiconductor layer 24 made of copper phthalocyanine was heated to 540 ° C. in a quartz crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 スズフタロシアニンから成る色素層23は、真空蒸着装置内の石英るつぼ中で520℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The pigment layer 23 made of tin phthalocyanine was heated to 520 ° C. in a quartz crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 フラーレンから成る第2導電型(n型)有機系半導体層22は、真空蒸着装置内の石英るつぼ中で580℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The second conductive type (n-type) organic semiconductor layer 22 made of fullerene was heated to 580 ° C. in a quartz crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 バソクプロイン正孔ブロック層21は、真空蒸着装置内のpBNるつぼ中で180℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The bathocuproine hole blocking layer 21 was heated to 180 ° C. in a pBN crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 <電極5の形成工程>
 次に、電極5を有機系光電変換体2上に形成した。電極5は真空蒸着装置を用いて、以下のようにして形成した。
<Formation process of electrode 5>
Next, the electrode 5 was formed on the organic photoelectric conversion body 2. The electrode 5 was formed as follows using a vacuum evaporation apparatus.
 銀から成る電極5を真空中でマスク成膜した。電極5は、真空蒸着装置内のタンタルボート上で銀粒子を加熱することによって蒸着した。蒸着レートは、蒸着開始時は1秒当たり0.02nm、40nmの厚みに形成した後は1秒当たり0.1nmで形成した。 The electrode 5 made of silver was formed into a mask in vacuum. The electrode 5 was deposited by heating silver particles on a tantalum boat in a vacuum deposition apparatus. The deposition rate was 0.02 nm per second at the start of deposition, and 0.1 nm per second after forming a thickness of 40 nm.
 以上のようにして、積層型光電変換装置1を作製した。 Thus, the stacked photoelectric conversion device 1 was produced.
 得られた面積0.5cm2の積層型光電変換装置1について、光電変換特性を窒素ガス中で評価した。光源はキセノンアーク灯を用い、光強度を評価するための標準セルを用いてAM1.5下、100mW/cm2と同等の光量となるように電流、光源との距離を調整した。 The photoelectric conversion characteristics of the obtained laminated photoelectric conversion device 1 having an area of 0.5 cm 2 were evaluated in nitrogen gas. A xenon arc lamp was used as the light source, and the current and the distance from the light source were adjusted so that the amount of light was equivalent to 100 mW / cm 2 under AM 1.5 using a standard cell for evaluating the light intensity.
 透光性光電変換体3のみの特性は開放端電圧0.83Vが得られ、有機系光電変換体2のみの特性は開放端電圧0.27Vが得られた。これらの間に透光性再結合層4を設けた積層型光電変換装置1は、開放端電圧1.08Vが得られ、リーク電流もほとんど認められなかった。 The characteristic of only the translucent photoelectric converter 3 was an open-end voltage of 0.83 V, and the characteristic of only the organic photoelectric converter 2 was an open-end voltage of 0.27 V. In the stacked photoelectric conversion device 1 in which the translucent recombination layer 4 is provided between them, an open-end voltage of 1.08 V was obtained, and almost no leakage current was observed.
 <<実施例2>>
 図2の構成の積層型光電変換装置1を以下のようにして作製した。
<< Example 2 >>
A stacked photoelectric conversion device 1 having the configuration of FIG. 2 was produced as follows.
 <透光性光電変換体3の形成工程>
 透光性基板31として、表面抵抗率10Ω/□(スクエア)のSnO2:F層(FドープSnO2層)から成る透光性導電層31bが形成されたガラス基板(サイズ1cm×2cm、厚み約0.11cm)を用い、その一主面に薄膜型の透光性光電変換体3を形成した。透光性光電変換体3は以下のようにして形成した。
<Formation process of translucent photoelectric conversion body 3>
As the translucent substrate 31, a glass substrate (size 1 cm × 2 cm, thickness) on which a translucent conductive layer 31b made of SnO 2 : F layer (F-doped SnO 2 layer) having a surface resistivity of 10Ω / □ (square) is formed. About 0.11 cm), and a thin film type translucent photoelectric conversion body 3 was formed on one main surface thereof. The translucent photoelectric conversion body 3 was formed as follows.
 プラズマCVD装置を用いて、透光性導電層31b上に、第2導電型非晶質シリコン半導体層34としてのp型a-Si:H層(Hドープアモルファスシリコン(a-Si)層)、真性型非晶質シリコン半導体層33としてのi型a-Si:H層、第1導電型非晶質シリコン半導体層32としてのn型a-Si:H層を順次連続して真空中で形成した。 Using a plasma CVD apparatus, a p-type a-Si: H layer (H-doped amorphous silicon (a-Si) layer) as the second conductivity type amorphous silicon semiconductor layer 34 on the translucent conductive layer 31b, An i-type a-Si: H layer as the intrinsic type amorphous silicon semiconductor layer 33 and an n-type a-Si: H layer as the first conductive type amorphous silicon semiconductor layer 32 are successively formed in a vacuum. did.
 p型a-Si:H層は、原料ガスとしてSiH4ガス、H2ガス、B26ガス(H2ガスで500ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ3sccm、10sccm、2sccmとし、厚みを90Å(9nm)として形成した。 The p-type a-Si: H layer uses SiH 4 gas, H 2 gas, and B 2 H 6 gas (diluted to 500 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm and 10 sccm, respectively. The thickness was 2 sccm and the thickness was 90 mm (9 nm).
 i型a-Si:H層は、原料ガスとしてSiH4ガス、H2ガスを用い、これらのガスの流量をそれぞれ30sccm、80sccmとし、厚みを2000Å(200nm)として形成した。 The i-type a-Si: H layer was formed using SiH 4 gas and H 2 gas as source gases, the flow rates of these gases being 30 sccm and 80 sccm, respectively, and the thickness being 2000 mm (200 nm).
 n型a-Si:H層は、原料ガスとしてSiH4ガス、H2ガス、PH3ガス(H2ガスで1000ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ3sccm、30sccm、6sccmとし、厚みを100Å(10nm)として形成した。 The n-type a-Si: H layer uses SiH 4 gas, H 2 gas, and PH 3 gas (diluted to 1000 ppm with H 2 gas) as source gases, and the flow rates of these gases are 3 sccm, 30 sccm, and 6 sccm, respectively. And a thickness of 100 mm (10 nm).
 p型a-Si:H層、i型a-Si:H層、n型a-Si:H層の形成時のガラス基板の温度は、何れの場合にも220℃とした。 The temperature of the glass substrate during the formation of the p-type a-Si: H layer, i-type a-Si: H layer, and n-type a-Si: H layer was 220 ° C. in all cases.
 <透光性再結合層4の形成工程>
 次に、透光性再結合層4としてのPt層を、透光性光電変換体3上に厚み5nmとしてスパッタリング法によって形成した。このとき、Pt層は厚みが1nm程度であり島状に形成された。
<Formation process of translucent recombination layer 4>
Next, a Pt layer as the translucent recombination layer 4 was formed on the translucent photoelectric conversion body 3 with a thickness of 5 nm by a sputtering method. At this time, the Pt layer had a thickness of about 1 nm and was formed in an island shape.
 <有機系光電変換体2の形成工程>
 次に、有機系光電変換体2を透光性再結合層4上に形成した。有機系光電変換体2は以下のようにして形成した。
<Formation process of organic photoelectric conversion body 2>
Next, the organic photoelectric conversion body 2 was formed on the translucent recombination layer 4. The organic photoelectric conversion body 2 was formed as follows.
 まず、電子ブロック層25として、水系溶媒に分散した、ポリスチレンスルホナートをドープしたポリスチレンジオキシチオフェン(PEDOT:PSS)から成る電子ブロック層25を、透光性再結合層4上にスピンコートした後、空気中で110℃で乾燥し、形成した。 First, as the electron blocking layer 25, an electron blocking layer 25 made of polystyrene dioxythiophene (PEDOT: PSS) doped with polystyrene sulfonate dispersed in an aqueous solvent was spin-coated on the translucent recombination layer 4. Dried in air at 110 ° C. to form.
 真空蒸着装置を用いて、電子ブロック層25上に、銅フタロシアニンから成る第1導電型(p型)有機系半導体24a、スズ(II)フタロシアニンから成る色素層23a、フラーレンから成る第2導電型(n型)有機系半導体体22a、バソクプロインから成る正孔ブロック層21aを、順次連続して真空中で形成した。 Using a vacuum deposition apparatus, a first conductive type (p-type) organic semiconductor 24a made of copper phthalocyanine, a dye layer 23a made of tin (II) phthalocyanine, and a second conductive type made of fullerene (on the electron block layer 25). An n-type) organic semiconductor body 22a and a hole blocking layer 21a made of bathocuproine were successively formed in a vacuum.
 銅フタロシアニンから成る第1導電型(p型)有機系半導体24aは、真空蒸着装置内の石英るつぼ中で540℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The first conductivity type (p-type) organic semiconductor 24a made of copper phthalocyanine was heated to 540 ° C. in a quartz crucible in a vacuum deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 スズフタロシアニンから成る色素層23aは、真空蒸着装置内の石英るつぼ中で520℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The pigment layer 23a made of tin phthalocyanine was heated to 520 ° C. in a quartz crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 フラーレンから成る第2導電型(n型)有機系半導体層22aは、真空蒸着装置内の石英るつぼ中で580℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The second conductive type (n-type) organic semiconductor layer 22a made of fullerene was heated to 580 ° C. in a quartz crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 バソクプロインから成る正孔ブロック層21aは、真空蒸着装置内のpBNるつぼ中で180℃に加熱し、1秒当たり約0.1nmの蒸着レートで蒸着した。 The hole blocking layer 21a made of bathocuproine was heated to 180 ° C. in a pBN crucible in a vacuum vapor deposition apparatus and deposited at a deposition rate of about 0.1 nm per second.
 <電極5の形成工程>
 次に、電極5を有機系光電変換体2上に形成した。電極5は真空蒸着装置を用いて、以下のようにして形成した。
<Formation process of electrode 5>
Next, the electrode 5 was formed on the organic photoelectric conversion body 2. The electrode 5 was formed as follows using a vacuum evaporation apparatus.
 銀から成る電極5を、真空中でマスク成膜した。電極5は真空蒸着装置内のタンタルボート上で銀粒子を加熱することによって蒸着した。蒸着レートは、蒸着開始時は1秒当たり0.02nm、40nmの厚みに形成した後は1秒当たり0.1nmで形成した。 The electrode 5 made of silver was formed into a mask in vacuum. The electrode 5 was deposited by heating silver particles on a tantalum boat in a vacuum deposition apparatus. The deposition rate was 0.02 nm per second at the start of deposition, and 0.1 nm per second after forming a thickness of 40 nm.
 以上のようにして、積層型光電変換装置1を作製した。 Thus, the stacked photoelectric conversion device 1 was produced.
 得られた面積0.5cm2の積層型光電変換装置1について、光電変換特性を窒素ガス中で評価した。光源はキセノンアーク灯を用い、光強度を評価するための標準セルを用いてAM1.5下、100mW/cm2と同等の光量となるように電流、光源との距離を調整した。 About the obtained stacked photoelectric conversion device 1 having an area of 0.5 cm 2 , photoelectric conversion characteristics were evaluated in nitrogen gas. A xenon arc lamp was used as the light source, and the current and distance from the light source were adjusted so that the amount of light was equivalent to 100 mW / cm 2 under AM 1.5 using a standard cell for evaluating the light intensity.
 透光性光電変換体3のみの特性は開放端電圧0.83Vが得られ、有機系光電変換体2のみの特性は開放端電圧0.27Vが得られた。これらの間に透光性再結合層4を設けた積層型光電変換装置1は開放端電圧0.99Vが得られた。開放端電圧は実施例1よりも低い値となったが、電子ブロック層25を備えたことによって短絡電流密度が実施例1の積層型光電変換装置1の約1.3倍となった。 The characteristic of only the translucent photoelectric converter 3 was an open-end voltage of 0.83 V, and the characteristic of only the organic photoelectric converter 2 was an open-end voltage of 0.27 V. In the stacked photoelectric conversion device 1 in which the translucent recombination layer 4 is provided between them, an open circuit voltage of 0.99 V was obtained. Although the open-circuit voltage was lower than that in Example 1, the short circuit current density was about 1.3 times that of the stacked photoelectric conversion device 1 in Example 1 due to the provision of the electron blocking layer 25.

Claims (12)

  1.  透光性を有する第1の光電変換体と、
     前記第1の光電変換体上の一部に位置する導電体層と、
     前記導電体層上に位置する第2の光電変換体と、
    を有する積層型光電変換装置。
    A first photoelectric conversion body having translucency;
    A conductor layer located in a part on the first photoelectric converter;
    A second photoelectric converter located on the conductor layer;
    A stacked photoelectric conversion device.
  2.  前記第2光電変換体の分光感度のピーク波長は、前記第1の光電変換体の分光感度のピーク波長より長波長である、請求項1に記載の積層型光電変換装置。 2. The stacked photoelectric conversion device according to claim 1, wherein a peak wavelength of spectral sensitivity of the second photoelectric converter is longer than a peak wavelength of spectral sensitivity of the first photoelectric converter.
  3.  前記第2の光電変換体は、前記第1の光電変換体を透過する光に対して分光感度を有する、請求項1に記載の積層型光電変換装置。 2. The stacked photoelectric conversion device according to claim 1, wherein the second photoelectric conversion body has spectral sensitivity with respect to light transmitted through the first photoelectric conversion body.
  4.  前記第1の光電変換体は、i型の非晶質シリコン層を含むpin構造を有する、請求項1に記載の積層型光電変換装置。 The stacked photoelectric conversion device according to claim 1, wherein the first photoelectric conversion body has a pin structure including an i-type amorphous silicon layer.
  5.  前記第2の光電変換体は有機系半導体を有する、請求項1に記載の積層型光電変換装置。 The stacked photoelectric conversion device according to claim 1, wherein the second photoelectric conversion body includes an organic semiconductor.
  6.  前記第2の光電変換体は有機系半導体を含むことを特徴とする請求項4に記載の積層型光電変換装置。 The stacked photoelectric conversion device according to claim 4, wherein the second photoelectric conversion body includes an organic semiconductor.
  7.  前記第1の光電変換体および前記第2の光電変換体は夫々、前記導電体層と直接接合した半導体層を有する、請求項1に記載の積層型光電変換装置。 2. The stacked photoelectric conversion device according to claim 1, wherein each of the first photoelectric conversion body and the second photoelectric conversion body includes a semiconductor layer directly bonded to the conductor layer.
  8.  前記導電体層は、金属、導電性酸化物及び導電性ポリマーで構成される群の少なくとも一つを含む、請求項1に記載の積層型光電変換装置。 2. The stacked photoelectric conversion device according to claim 1, wherein the conductor layer includes at least one of a group consisting of a metal, a conductive oxide, and a conductive polymer.
  9.  前記導電体層は、白金、パラジウム、ニッケル、アルミニウム及び銀で構成される群の少なくとも1つを含む、請求項1に記載の積層型光電変換装置。 2. The stacked photoelectric conversion device according to claim 1, wherein the conductor layer includes at least one of a group consisting of platinum, palladium, nickel, aluminum, and silver.
  10.  前記導電体層は、互いに離れて位置する複数の導電体部を有する、請求項1に記載の積層型光電変換装置。 2. The stacked photoelectric conversion device according to claim 1, wherein the conductor layer has a plurality of conductor portions positioned apart from each other.
  11.  前記導電体層は前記第1の光電変換体側の主面から前記第2の光電変換体側の主面にかけて貫通した複数の貫通孔を有する、請求項1に記載の積層型光電変換装置。 The stacked photoelectric conversion device according to claim 1, wherein the conductor layer has a plurality of through holes penetrating from a main surface on the first photoelectric converter side to a main surface on the second photoelectric converter side.
  12.  請求項1に記載の積層型光電変換装置を複数有する、光電変換モジュールであって、
     前記複数の積層型光電変換装置は、並べて配置され、且つ、互いに電気的に接続されている。
     
    A photoelectric conversion module comprising a plurality of stacked photoelectric conversion devices according to claim 1,
    The plurality of stacked photoelectric conversion devices are arranged side by side and are electrically connected to each other.
PCT/JP2009/064269 2009-08-12 2009-08-12 Laminated photoelectric conversion device and photoelectric conversion module WO2011018849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064269 WO2011018849A1 (en) 2009-08-12 2009-08-12 Laminated photoelectric conversion device and photoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064269 WO2011018849A1 (en) 2009-08-12 2009-08-12 Laminated photoelectric conversion device and photoelectric conversion module

Publications (1)

Publication Number Publication Date
WO2011018849A1 true WO2011018849A1 (en) 2011-02-17

Family

ID=43586035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064269 WO2011018849A1 (en) 2009-08-12 2009-08-12 Laminated photoelectric conversion device and photoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2011018849A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116200A1 (en) * 2014-01-31 2015-08-06 Cambrios Technologies Corporation Tandem organic photovoltaic devices that include a metallic nanostructure recombination layer
EP2826070A4 (en) * 2012-03-14 2015-11-04 Univ Princeton Hole-blocking silicon/titanium-oxide heterojunction for silicon photovoltaics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071716A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Tandem photovoltaic device and its manufacturing method
JP2005093631A (en) * 2003-09-17 2005-04-07 Sanyo Electric Co Ltd Photovoltaic device
JP2008147609A (en) * 2006-12-08 2008-06-26 Kaitokui Denshi Kogyo Kofun Yugenkoshi Cascade solar cell having amorphous silicon-based solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071716A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Tandem photovoltaic device and its manufacturing method
JP2005093631A (en) * 2003-09-17 2005-04-07 Sanyo Electric Co Ltd Photovoltaic device
JP2008147609A (en) * 2006-12-08 2008-06-26 Kaitokui Denshi Kogyo Kofun Yugenkoshi Cascade solar cell having amorphous silicon-based solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2826070A4 (en) * 2012-03-14 2015-11-04 Univ Princeton Hole-blocking silicon/titanium-oxide heterojunction for silicon photovoltaics
WO2015116200A1 (en) * 2014-01-31 2015-08-06 Cambrios Technologies Corporation Tandem organic photovoltaic devices that include a metallic nanostructure recombination layer
TWI624939B (en) * 2014-01-31 2018-05-21 凱姆控股有限公司 Tandem organic photovoltaic devices that include a metallic nanostructure recombination layer

Similar Documents

Publication Publication Date Title
Ajayan et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies
US9136408B2 (en) Perovskite and other solar cell materials
US10741708B2 (en) Vertically stacked photovoltaic and thermal solar cell
US8993998B2 (en) Electro-optic device having nanowires interconnected into a network of nanowires
EP3172776B9 (en) Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
KR101310058B1 (en) Inverted organic solar cell and method for fabricating the same
JP4759286B2 (en) Organic solar cell module and manufacturing method thereof
US20120312375A1 (en) All-Solid-State Heterojunction Solar Cell
EP2560212A2 (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
WO2014151522A1 (en) Perovskite and other solar cell materials
US10229952B2 (en) Photovoltaic cell and a method of forming a photovoltaic cell
EP2171764A2 (en) Wrapped solar cell
US20110030782A1 (en) Solar cell and method for manufacturing the same
US20090255585A1 (en) Flexible photovoltaic device
Xiao et al. Enhancing the efficiency and stability of Organic/Silicon solar cells using graphene electrode and Double-layer Anti-reflection coating
JP2009260209A (en) Laminated photoelectric converter and photoelectric conversion module
JP2008277422A (en) Laminated photoelectric converter
KR20150002055A (en) Inverted organic solar cell with IGZO and method for fabricating thereof
WO2011018849A1 (en) Laminated photoelectric conversion device and photoelectric conversion module
KR101098792B1 (en) Organic Solar Cells with biphenyl compounds
KR20140012224A (en) Tandem solar cells comprising a transparent conducting intermediate layer and fabrication methods thereof
KR101791801B1 (en) Perovskite solar cells containing N-type semiconductors modified with chalcogens, and fabricating method therof
EP2538452A2 (en) All-solid-state heterojunction solar cell
JP2009009851A (en) Photoelectric conversion device
JP2009032661A (en) Lamination type photoelectric transfer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP