WO2011017888A1 - 中继网络中参与中继的基站获取状态信息的方法及系统 - Google Patents

中继网络中参与中继的基站获取状态信息的方法及系统 Download PDF

Info

Publication number
WO2011017888A1
WO2011017888A1 PCT/CN2009/075918 CN2009075918W WO2011017888A1 WO 2011017888 A1 WO2011017888 A1 WO 2011017888A1 CN 2009075918 W CN2009075918 W CN 2009075918W WO 2011017888 A1 WO2011017888 A1 WO 2011017888A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
base station
relay node
status information
status
Prior art date
Application number
PCT/CN2009/075918
Other languages
English (en)
French (fr)
Inventor
马睿
沈晓芹
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011017888A1 publication Critical patent/WO2011017888A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a relay technology, and more particularly to a method and system for acquiring state information by a base station participating in a relay in a relay network. Background technique
  • FIG. 1 is a schematic structural diagram of a conventional cellular wireless communication system.
  • a cellular wireless communication system is mainly composed of a terminal, a radio access network (RAN), and a core network.
  • the RAN is a network composed of a base station, or a base station and a base station controller (not shown in Fig. 1), and is responsible for access layer transactions, such as management of radio resources.
  • Each base station can be connected to one or more core network nodes (CN, Core Network).
  • the core network is responsible for non-access layer transactions, such as location updates, and is the anchor point for the user plane.
  • User equipment refers to various devices that can communicate with a cellular wireless communication network, such as a mobile phone or a notebook computer.
  • FIG. 2 is a schematic diagram of a network architecture of an existing LTE.
  • LTE Long Term Evolution
  • FIG. 2 in a Long Term Evolution (LTE) system, on the one hand, wireless coverage of a fixed base station network is limited for various reasons. For example, the blockage of wireless signals by various building structures causes inevitable coverage holes in the coverage of wireless networks; on the other hand, in the edge regions of cells, due to the weakening of wireless signal strength and interference from neighboring cells When the UE is at the cell edge, the communication quality is poor, and the error rate of the wireless transmission is improved.
  • a wireless network node called a relay, in a cellular wireless communication system.
  • Relay is a station that has the function of relaying data and possibly controlling information through wireless links between other network nodes, also called Relay Node/Relay Station.
  • Figure 3 shows the network that joins the relay station in existing LTE. Schematic diagram of the architecture, as shown in FIG. 3, the UE directly served by the base station is called a macro UE, and the UE served by the relay is called a relay UE.
  • the radio link between the base station and the UE is called a direct link and includes a direct/downlink (DL/UL downlink/uplink) direct link.
  • the wireless link between the Relay Node and the UE is called an access link and contains a DL/UL access link.
  • the wireless link between the base station and the Relay Node is called a backhaul link and contains a DL/UL trunk link.
  • the relay node can relay data through multiple methods, such as directly amplifying the received base station to send a wireless signal, or receiving the data sent by the base station, performing corresponding processing, such as demodulation or decoding, and then forwarding the data to the UE, or the base station and the medium. Following the cooperation, the data is sent to the UE; on the contrary, the Relay Node also relays the data sent from the UE to the base station.
  • Type I Relay One type of relay is called Type I Relay.
  • the characteristics of Type I relay are as follows:
  • the UE cannot distinguish between the relay and the cell under the fixed base station. That is, from the perspective of the UE, there is no difference between the cells under the relay node and the cell under the base station.
  • a cell may be called a relay cell.
  • the relay cell has its own cell physical identity (PCI, Physical Cell Identity), and broadcasts the same as the normal d and zone.
  • PCI Physical Cell Identity
  • the relay cell can separately allocate scheduling radio resources to the UE.
  • the radio resource scheduling of the base station (the DeNB, also known as the Donor base station, that is, the relay connected by the backhaul link) participating in the relay is independent of each other.
  • the interface between the Relay cell and the Relay UE and the protocol stack are the same as those between the normal base station cell and the UE.
  • nodes are defined in the Type I relay system: UE, Relay Node, Donor The eNB and the wireless interface between the nodes, such as the Uu interface between the UE and the Relay Node; the Un interface between the Relay Node and the Donor eNB.
  • the protocol stacks for Relay Node and Donor eNB are currently divided into two broad categories: The first is that the S1 interface terminates in the Relay Node (as shown in Figure 4 to Figure 6 below), and the second is that the S1 interface terminates in Donor. eNB (as shown in Figure 7 below). The four schemes are described below in conjunction with the schematic diagram.
  • FIG. 4 is a schematic diagram of the first implementation of the control plane protocol stack between the existing Relay and the Donor eNB.
  • the Relay is completely transparent to the DeNB; the S1-AP protocol is added in the Relay, so that the Relay is directly connected to the MME.
  • the Relay PGW/SGW network element is added between the DeNB and the MME to reduce the protocol modification to the DeNB, but the network delay is increased to some extent.
  • FIG. 5 is a schematic diagram of implementation scheme 2 of the control plane protocol stack between the existing Relay and the Donor eNB.
  • a SI AP proxy is used on the Donor eNB, and the SI AP proxy is transparent to both the MME and the Relay. From the perspective of the MME, the UE seems to be directly connected to the Donor eNB; from the perspective of Relay, the Relay is like talking directly to the MME.
  • FIG. 6 is a schematic diagram of implementation scheme 3 of a control plane protocol stack between a current Relay and a Donor eNB. As shown in FIG. 6, the scheme is actually a special case of the scheme 1 shown in FIG. 4, that is, the DeNB and the relay shown in FIG. The functions of the PGW/SGW are concentrated in the DeNB, and some modifications have been made to the protocol of the DeNB.
  • FIG. 7 is a schematic diagram of implementation scheme 4 of the control plane protocol stack between the existing Relay and the Donor eNB. As shown in FIG. 7, the scheme has no S1-AP protocol on the relay side, that is, the RRC completes the function of the S1-AP protocol.
  • the four control plane protocol stack schemes shown in FIG. 4 to FIG. 7 can be summarized into two types, one is that the UE is visible to the DeNB. The other is that the UE is not visible to the DeNB.
  • Figure 5 and Figure 7 The case is that the UE is visible to the DeNB, and the schemes shown in FIG. 4 and FIG. 6 are cases where the UE is invisible to the DeNB.
  • the eNB can control the amount of uplink transmission data by assigning an uplink grant (UL grant), and also for the downlink, the eNB can be based on the radio link layer (RLC) status.
  • the report and the buffer size of the UE (buffer size) are used to adjust the amount of downlink transmission data. Therefore, there is no special flow control mechanism at the bottom.
  • the two sides of the relay node are the Un interface and the Uu interface.
  • the DeNB can learn the buffer condition of the RN through the Un interface. However, the DeNB cannot know the specific conditions of the UE on the Uu interface, such as various status information. In this case, if congestion occurs on the RN side of the Uu interface during the communication between the RN and the multiple UEs, and the DeNB is unaware of the traffic control, the DeNB will continue to send downlink data, which will eventually lead to the RN. Overloading, resulting in data loss.
  • FIG. 8 is an existing UE E-RAB multiplexed RN.
  • the current DeNB performs extensive management on the RN on the Un interface. Therefore, the DeNB does not know the specific status of the E-RAB of each UE or UE in the RN coverage, such as status information. If the service with the priority of 4 ⁇ is high, and the corresponding UE has poor radio conditions at this time, the DeNB will preferentially deliver the service with higher priority. Therefore, the DeNB cannot reasonably perform traffic control, which will inevitably lead to Un.
  • the efficiency of the interface is low, or it affects the transmission of other UEs or other services multiplexed on the same RN E-RAB, and even congestion or packet loss occurs. Summary of the invention
  • the main purpose of the present invention is to provide a method and system for acquiring state information of a base station participating in a relay in a relay network, and being able to know the state of the RN side or the UE side on the Uu interface. State information ensures that the DeNB performs traffic control or scheduling reasonably.
  • a method for acquiring state information by a base station participating in a relay in a relay network comprising: the relay node feeding back a user terminal within its own coverage or a coverage area to a base station participating in the relay
  • the method further includes: the base station participating in the relay performs flow control or scheduling on the Un interface according to the obtained state information.
  • the method of the feedback is: the relay node feeds back the status information in a periodic trigger manner or an event trigger manner.
  • the method further includes: the base station participating in the relay transmitting a status report configuration message to the relay node by using radio resource control RRC signaling, and notifying the relay node Feedback period length;
  • the relay node After receiving the status report configuration message, the relay node starts a status report timer, and sends a status report message carrying the status information to the base station participating in the relay when the status report timer expires;
  • the timing duration of the status report timer is the length of the feedback period.
  • the method further includes: setting a status message on the relay node (control cell, and a list of logical channel identifier LCID values reserved in the MAC header) Assigning an LCID index to the status report MAC control cell; when the value of the LCID is 0, indicating that the status report message does not need to be sent, when
  • the value of the LCID is 1, and the relay node is triggered to send a status message carrying the status information.
  • the triggering condition is preset, or is notified to the relay node by the base station participating in the relay by using RRC signaling.
  • the granularity of the feedback of the relay node to the base station participating in the relay is: an enhanced radio access bearer E-RAB on the relay node or the relay node; or UE or UE E-RAB.
  • the granularity of the feedback is an enhanced radio access bearer on the relay node or the relay node
  • the status information includes:
  • the relay node downlink buffer occupancy rate, Unair interface throughput, downlink PRB resource occupancy rate, and other information useful for the flow control of the base station participating in the relay on the Un interface.
  • the status information is:
  • a system for acquiring state information of a base station participating in a relay in a relay network including a relay node, a base station participating in the relay, and a UE;
  • a relay node configured to feed back status information of the UE in its own coverage or the coverage area to the base station participating in the relay;
  • a base station participating in the relay is configured to receive status information from the relay node.
  • the base station participating in the relay is further configured to perform flow control or scheduling on the Un interface according to the obtained status information.
  • the relay node is configured to feed back the status information in a period triggering manner or an event triggering manner.
  • the relay node feeds back the status information of the UE in its own coverage or the coverage area to the base station participating in the relay, and the base station participating in the relay performs the Un interface on the Un interface according to the obtained status information.
  • the DeNB flexibly schedules the E-RAB of the UE or the UE through the state information fed back by the RN on the Un interface, and ensures that each UE or the UE E-RAB can receive the data sent by the DeNB reasonably; or the RN or the RN E
  • the state of the -RAB is controlled, and the overload control (overload) on the RN is avoided by flow control.
  • FIG. 1 is a schematic structural diagram of a structure of a conventional cellular wireless communication system
  • FIG. 2 is a schematic diagram of a network architecture of an existing LTE
  • FIG. 3 is a schematic diagram of a network architecture of a conventional LTE joining a relay station
  • FIG. 4 is a schematic diagram of a first implementation scheme of a control plane protocol stack between an existing Relay and a Donor eNB;
  • FIG. 5 is a schematic diagram of implementation scheme 2 of a control plane protocol stack between an existing Relay and a Donor eNB;
  • FIG. 6 is a schematic diagram of implementation scheme 3 of a control plane protocol stack between an existing Relay and a Donor eNB;
  • FIG. 7 is a schematic diagram of implementation scheme 4 of a control plane protocol stack between an existing Relay and a Donor eNB;
  • FIG. 8 is a schematic diagram of an existing UE E-RAB multiplexing RN E-RAB mode
  • FIG. 9 is a flowchart of a method for acquiring state information of a base station participating in a relay in a relay network according to the present invention
  • FIG. 10 is a schematic structural diagram of a system for acquiring state information of a base station participating in a relay in a relay network according to the present invention.
  • 9 is a flow chart of a method for acquiring state information of a base station participating in a relay in a relay network according to the present invention. As shown in FIG. 9, the method of the present invention includes the following steps:
  • Step 900 The relay node feeds back the status information of the UE in its own coverage or the coverage area to the base station participating in the relay.
  • the relay node may report the status report to the DeNB according to the status information of the entire RN or an RN E-RAB/RB in a periodic triggering manner or an event triggering manner.
  • the feedback granularity may be the RN or the RN E-RAB.
  • the feedback content carried in the status report is the downlink buffer occupancy of the RN, the throughput of the Un air interface, and the downlink physical resource block (PRB, Physical resource block) Status information such as resource occupancy rate;
  • the feedback granularity may also be the service of the UE or the UE.
  • the feedback content carried in the status report is the radio condition of each UE under the coverage of the RN, the buffer occupancy rate, and the air interface throughput. Status information.
  • the scheduling priority adjustment information of the recommended UE may also be fed back as status information.
  • the periodic triggering mode is as follows:
  • the DeNB sends a Status Report configuration (Configuration) message to the RN through the RRC signaling, and notifies the RN of the feedback period length, that is, the timing of the Status Report timer.
  • the RN After receiving the Status Report configuration message, the RN starts the Status Report timer. And send a Status Report message to the DeNB when the Status Report timer expires.
  • the timing of the Status Report timer can be set in advance according to actual needs.
  • the event triggering method is: adding a Status Report MAC control element to the RN, and assigning an LCID index (LCID) to the list of LCID (logical channel identifier) values reserved in the MAC header. Index ) For example, 11001 is added to the new Status Report MAC control cell.
  • Table 1 is a list of LCID values in the MAC header, as shown in bold and underlined fonts in Table 1. When the value of the LCID is 0, it indicates that the Status Report message does not need to be sent. When the value of the LCID is 1, it indicates that the Status Report message needs to be sent.
  • the trigger condition is met, for example, if a UE is overloaded, the value of the LCID is 1, and the RN is triggered to send a Status Report message.
  • the trigger condition may be set in advance, or may be notified to the RN by the DeNB through RRC signaling.
  • Index LCID values (LCID values)
  • Step 901 The base station participating in the relay performs flow control or scheduling on the Un interface according to the obtained status information. It should be noted that, in this step, the base station participating in the relay performs traffic control or scheduling on the Un interface according to the feedback status information, and flexibly schedules the E-RAB of the UE or the UE, and ensures each UE or UE. E-RAB can receive the data sent by the DeNB reasonably; or control the state of the RN or RN E-RAB, and avoid overloading on the RN through flow control.
  • the specific flow control or scheduling method is implemented by each manufacturer and is not intended to limit the scope of protection of the present invention.
  • the present invention further provides a system for acquiring state information of a base station participating in a relay in a relay network
  • FIG. 10 is a composition of a system for acquiring state information of a base station participating in a relay in a relay network according to the present invention.
  • a schematic diagram of the structure, as shown in FIG. 10, includes a relay node, a base station participating in the relay, and a UE, where
  • the relay node is configured to feed back status information of the UE in its own coverage or the coverage area to the base station participating in the relay.
  • the base station participating in the relay is further configured to perform flow control or scheduling on the Un interface according to the obtained status information.
  • the relay node is configured to feed back the status information in a periodic trigger manner or an event trigger manner Interest.
  • the control plane protocol stack between the relay and the Donor eNB is either scheme 1 or scheme 3
  • the feedback granularity is RN or RN E-RAB
  • the feedback content is the state information of the RN.
  • the control plane protocol stack between the relay and the Donor eNB is the scheme 2 or the scheme 4
  • the feedback granularity is the UE or the UE E-RAB
  • the feedback content is the state information of the UE.
  • the control plane protocol stack between the Relay and the Donor eNB is the first scheme.
  • the DeNB sends a Status Report configuration message to the RN through RRC signaling.
  • the RN triggers the length of the period.
  • the RN After receiving the Status Report configuration message, the RN starts the Status Report timer. When the Status Report timer expires, the RN sends a Status Report message to the DeNB.
  • the Status Report message carries the status information of the RN downlink buffer occupancy rate, the Unair interface throughput, and the downlink PRB resource occupancy rate, which are useful for the DeNB to perform flow control on the Un interface.
  • the DeNB After receiving the Status Report message of the RN, the DeNB assumes that the RN is known.
  • the downlink buffer occupancy rate is greater than the preset buffer occupancy threshold of 80%, and the DeNB adopts a corresponding flow control method on the Un interface to achieve the purpose of alleviating the overload problem that may occur in the RN. It should be noted that the specific flow control method is implemented by each manufacturer and is not used to limit the scope of protection of the present invention.
  • the RN can restart the Status Report timer.
  • the control plane protocol stack between the Relay and the Donor eNB is the second solution. It is assumed that a Status Report MAC control cell has been added to the RN, and an LCID index of 11001 has been assigned to the new Status Report MAC control cell. When the value of the LCID corresponding to the index is 0, the Status Report message does not need to be sent. When the value of the LCID corresponding to the index is 1, the Status Report message is sent.
  • the second embodiment is a manner in which an event triggers feedback status information. If the preset trigger condition is met, if the UE is overloaded, the value of the LCID is 1, and the Status Report message is sent.
  • the UE in the coverage of the RN sends information such as the radio condition (such as the L2 measurement report, the CQI report, the CQI report, the buffer occupancy rate, the air interface throughput, etc.) to the RN; the RN uses the information obtained from the UE to The UE schedules priority queuing. For example, the priority of the UE scheduling may be determined according to the buffer occupancy rate of the UE. The UE with a high buffer occupancy rate has a lower scheduling priority, and the UE with a lower buffer occupancy rate has a higher scheduling priority.
  • the RN carries the scheduling priority result of the UE as the status information in the Status Report message, and sends it on the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the DeNB After receiving the Status Report message reported by the RN, the DeNB obtains the scheduling priority of the UE, and the DeNB will According to the scheduling priority result, the UE is scheduled on the Un interface to complete downlink flow control.
  • the control plane protocol stack between the Relay and the Donor eNB is the fourth solution. It is assumed that a Status Report MAC control cell has been added to the RN, and an LCID index of 11001 has been assigned to the new Status Report MAC control cell. When the value of the LCID corresponding to the index is 0, the Status Report message does not need to be sent. When the value of the LCID corresponding to the index is 1, the Status Report message is sent.
  • the third embodiment is a manner in which an event triggers feedback status information.
  • the trigger condition for the eNB to notify the RN through the RRC signaling is satisfied, if the UE is overloaded, the value of the LCID is 1, and the Status Report message is sent.
  • the UE in the coverage area of the RN has its radio condition (the following line is physical) Status information such as resource block utilization, downlink packet delay, downlink packet loss rate, CQI report, etc., buffer occupancy rate, and air interface throughput are sent to the RN; the RN carries the obtained status information in the Status Report message, directly in the The PUSCH is sent to the DeNB.
  • the DeNB can perform priority queuing on the UE according to the information in the Status Report message.
  • the UE can determine the priority of the UE scheduling according to the downlink packet loss rate (DL packet loss) of the UE, and the UE with a high downlink packet loss rate.
  • the scheduling priority of the UE with a lower downlink packet loss rate is higher.
  • the DeNB will schedule the UE on the Un interface according to the scheduling priority result to complete downlink flow control.
  • the control plane protocol stack between the Relay and the Donor eNB is the second solution.
  • the DeNB sends a Status Report configuration message to the RN through RRC signaling.
  • the RN triggers the period length.
  • the RN After receiving the Status Report configuration message, the RN starts the Status Report timer.
  • the RN sends a Status Report message to the DeNB.
  • the UE under the coverage of the RN will have its radio conditions (such as L2 measurement report, CQI report, etc.), buffer occupancy rate, air interface throughput, and the like.
  • the information is sent to the RN.
  • multiple UE E-RABs are multiplexed on one RN E-RAB according to service principles, and each UE E-RAB may correspond to different UEs, and different UEs have different radio conditions, so each UE E -RAB needs to have different priorities.
  • the RN determines the UE E-RAB with poor performance of multiplexing on the RN E-RAB and the UE E-RAB with better performance through the obtained information of the air interface throughput, so as to determine that the priority scheduling performance is better.
  • the UE E-RAB; the RN carries the scheduling priority result of the UE E-RAB multiplexed on the RN E-RAB as status information in the Status Report message and sends it to the DeNB.
  • the DeNB After receiving the Status Report message reported by the RN E-RAB, the DeNB obtains the scheduling priority of the UE E-RAB, according to the scheduling priority of the UE E-RAB and comprehensively considers its own known Quality of Service (QoS) priority.
  • QoS Quality of Service
  • the UE E-RAB is scheduled on the Un interface to complete downlink flow control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种中继网络中参与中继的基站获取状态信息的方法及系统,包括中继节点向参与中继的基站反馈自身或自身覆盖范围内的用户终端(UE)的状态信息。参与中继的基站(DeNB)通过中继节点(RN)在Un口上反馈的状态信息,获知了Uu接口上RN侧或者UE侧的状态信息,从而灵活地调度 UE或者UE的E-RAB,保证了每个UE或者UE E-RAB 都能合理的接收到DeNB下发的数据;或者对RN或RN E-RAB的状态进行掌控,通过流量控制避免了在RN上发生过载(overload)的情况。

Description

中继网络中参与中继的基站获取状态信息的方法及系统 技术领域
本发明涉及中继技术, 尤指一种中继网络中参与中继的基站获取状态 信息的方法及系统。 背景技术
图 1为现有蜂窝无线通信系统的组成结构示意图, 如图 1所示, 蜂窝 无线通信系统主要由终端、 无线接入网 (RAN, Radio Access Network )和 核心网组成。 RAN是由基站, 或基站和基站控制器(图 1中未示出 )组成 的网络, 负责接入层事务, 比如无线资源的管理。 基站之间可以根据实际 情况存在物理或者逻辑上的连接, 如图 1中的基站 1和基站 2, 或者基站 1 和基站 3。 每个基站可以和一个或者一个以上的核心网节点 (CN , Core Network )连接。 核心网负责非接入层事务, 比如位置更新等, 并且是用户 面的锚点。 用户终端(UE, User Equipment )是指可以和蜂窝无线通信网络 通信的各种设备, 比如移动电话或者笔记本电脑等。
图 2为现有 LTE的网络架构的示意图,如图 2所示,在长期演进(LTE, Long Term Evolution )系统中, 一方面, 固定基站网络的无线覆盖由于各种 各样的原因受到限制, 比如各种建筑结构对无线信号的阻挡等原因造成在 无线网络的覆盖中无可避免的存在覆盖漏洞; 另一方面, 在小区的边缘地 区, 由于无线信号强度的减弱, 以及相邻小区的干扰, 导致 UE在小区边缘 时, 通信质量较差, 无线传输的错误率提高。 为了提高数据传输吞吐量, 群组移动性, 临时网络部署, 小区边缘地区的吞吐量以及新区域的覆盖, 一种解决方案是在蜂窝无线通信系统引入一种无线网络节点, 称为中继 ( Relay ) 。 Relay是具有在其它网络节点之间通过无线链路中继数据以及可能控 制信息功能的站点, 也叫中继节点 /中继站(Relay Node/Relay Station ) , 图 3为现有 LTE中加入中继站的网络架构的示意图, 如图 3所示, 其中基站 直接服务的 UE称为宏 UE( Macro UE ), Relay服务的 UE称为中继 UE( Relay UE ) „
如图 3所示, 各网元间的接口及链路定义如下:
基站与 UE之间的无线链路称为直传链路(direct link ) , 包含上 /下行 ( DL/UL downlink/uplink )直传链路。 Relay Node与 UE之间的无线链路称 为接入链路 ( access link ) , 包含 DL/UL接入链路。 基站与 Relay Node之 间的无线链路称为回程链路(backhaul link ) , 包含 DL/UL中继链路。
Relay Node可以通过多种方法中继数据, 比如直接放大接收到的基站 发送无线信号, 或者将基站发送的数据接收后进行对应的处理如解调或解 码后,再转发给 UE,或者基站和中继合作向 UE发送数据;相反 Relay Node 也会中继从 UE向基站发送的数据。
在众多的中继类型中, 有一种中继称为类型 I中继 (Type I Relay ) , 类型 I中继的特点如下:
UE无法区分 Relay和固定基站下的小区, 即从 UE来看, Relay Node 下的小区 3艮基站下的小区没有区别, 此类小区可以称为 Relay小区。 Relay 小区和所有的小区一样有自己的小区物理标识( PCI, Physical Cell Identity ) , 和普通 d、区一样发送广播, 当 UE驻留在 Relay小区中时, Relay小区可以 单独分配调度无线资源给 UE使用,与参与中继的基站( DeNB,也称为 Donor 基站即 Relay通过 backhaul link连接的基站 ) 的无线资源调度相互独立。 Relay小区和 Relay UE之间的接口以及协议栈与普通基站小区和 UE之间的 相同。
同时, 在类型 I中继系统中定义了几个节点: UE, Relay Node, Donor eNB以及这几个节点之间的无线接口, 比如 UE和 Relay Node之间的 Uu 接口; Relay Node和 Donor eNB之间的 Un接口。
对于 Relay Node和 Donor eNB之间的接口如何中继 UE的数据已存在 不少讨论方法。对于 Relay Node和 Donor eNB的协议栈目前分为两种大类: 第一类为 S1接口终止于 Relay Node (如下面图 4~图 6所示的方案), 第二 类为 S1接口终止于 Donor eNB (如下面图 7所示的方案) 。 下面结合示意 图对这四种方案进行描述。
图 4为现有 Relay与 Donor eNB之间的控制面协议栈实现方案一的示 意图,如图 4所示, Relay对 DeNB完全透明;在 Relay中增加 S1-AP协议, 使得 Relay 直接与 MME 连接, 并在 DeNB 和 MME 之间添加 Relay PGW/SGW网元, 减少对 DeNB的协议修改, 但在一定程度上增加了网络 时延。
图 5为现有 Relay与 Donor eNB之间的控制面协议栈实现方案二的示 意图, 如图 5所示, 在 Donor eNB上用一个 SI AP代理, SI AP代理对于 MME和 Relay都是透明的。从 MME来看, UE好像是直接连接 Donor eNB 的; 而从 Relay来看, Relay就像是直接与 MME对话。
图 6为现有 Relay与 Donor eNB之间的控制面协议栈实现方案三的示 意图, 如图 6所示, 该方案实际是图 4所示方案一的特例, 即将图 4所示 的 DeNB和 Relay PGW/SGW的功能集中在 DeNB中, 对 DeNB的协议做 了一些爹改。
图 7为现有 Relay与 Donor eNB之间的控制面协议栈实现方案四的示 意图,如图 7所示,该方案在 Relay侧无 S1-AP协议,即由 RRC完成 S1-AP 协议的功能。
上述图 4~图 7所示的四种控制面协议栈方案最终可以归纳为两种, 一 种是 UE对 DeNB可见。 另一个是 UE对 DeNB不可见。 图 5和图 7所示方 案为 UE对 DeNB可见的情况,图 4和图 6所示的方案为 UE对 DeNB不可 见的情况。
在 LTE协议中, 因为对于上行而言, eNB可以通过分配上行链路授权 ( UL grant )控制上行传输数据量, 同样对于下行而言, eNB可以根据无线 链路层( RLC, Radio Link Control )状态报告和 UE的緩沖区大小( buffer size ) 来调整下行传输数据数量。 所以, 底层没有专门的流量控制 ( flow control ) 机制。
在 LTE系统引入 Relay之后, Relay node两侧分别是 Un接口和 Uu接 口两个独立空口。 DeNB可以通过 Un接口获知 RN的緩沖区情况, 但是, DeNB无法获知 Uu接口上 UE的具体情况如各种状态信息。 这种情况下, 如果在 RN和多个 UE通信过程中, Uu接口的 RN侧上发生拥塞, 而 DeNB 对此并不知情, 无法合理进行流量控制, DeNB会继续发送下行数据, 最终 会导致 RN处过载(overload ) , 从而导致数据丟失。
同时,因为多个 UE增强无线接入承载( E-RAB , E-Radio Access bearer ) 复用在一个 RN E-RAB上, 如图 8所示, 图 8为现有 UE E-RAB复用 RN E-RAB方式之一的示意图。 目前的 DeNB在 Un接口上对 RN进行粗放式 的管理,所以 DeNB并不了解 RN覆盖范围内的每个 UE或者 UE的 E-RAB 的具体情况如状态信息。若存在优先级 4艮高的业务其对应的 UE此时的无线 条件很差的情况, DeNB依然会将优先级较高的业务优先下发,这样, DeNB 无法合理进行流量控制, 必然会导致 Un接口的效率低下, 或者影响到复用 在同一个 RN E-RAB上的其它 UE或者其它业务的传输, 甚至发生拥塞或 丟包。 发明内容
有鉴于此, 本发明的主要目的在于提供一种中继网络中参与中继的基 站获取状态信息的方法及系统, 能够获知 Uu接口上 RN侧或者 UE侧的状 态信息, 保证 DeNB合理进行流量控制或调度。
为达到上述目的, 本发明的技术方案是这样实现的:
一种中继网络中参与中继的基站获取状态信息的方法, 该方法包括: 中继节点向参与中继的基站反馈自身或自身覆盖范围内的用户终端
UE的状态信息。
该方法还包括: 所述参与中继的基站根据获得的状态信息, 在 Un接口 上进行流量控制或调度。
所述反馈的方法为: 所述中继节点以周期触发方式、 或事件触发方式 反馈所述状态信息。
当以周期触发方式反馈所述状态信息时, 该方法进一步包括: 所述参与中继的基站通过无线资源控制 RRC信令向所述中继节点下发 状态报告配置消息, 通知所述中继节点反馈周期长度;
所述中继节点接收到状态报告配置消息后, 启动状态报告定时器, 并 在状态报告定时器超时时, 向所述参与中继的基站发送携带所述状态信息 的状态报告消息;
其中, 所述状态报告定时器的定时时长为反馈周期长度。
当以事件触发方式反馈所述状态信息时, 该方法进一步包括: 在所述中继节点上设置状态 4艮告^1 (控制信元, 并在 MAC头中预留的 逻辑信道标识 LCID值列表中分配一个 LCID索引给所述状态报告 MAC控制 信元; 当该 LCID的取值为 0时, 表明不需要发送所述状态报告消息, 当该
LCID的取值为 1时, 表明需要发送所述状态报告消息;
若满足触发条件,则 LCID的值为 1 ,触发所述中继节点发送携带有所述 状态信息的状态 告消息。
所述触发条件为预先设置的, 或由所述参与中继的基站通过 RRC信令 通知给所述中继节点的。 所述中继节点向参与中继的基站的反馈的粒度为: 中继节点或中继节 点上的增强无线接入承载 E-RAB; 或者, UE或 UE E-RAB。
当所述反馈的粒度为中继节点或中继节点上的增强无线接入承载
E-RAB时, 所述状态信息包括:
所述中继节点下行緩沖区占用率、 Un空口吞吐量、 下行 PRB资源占用 率, 以及其他对所述参与中继的基站在 Un接口进行流控有用的信息。
当所述反馈的粒度为 UE或 UE E-RAB时, 所述状态信息为:
所述中继节点覆盖范围内的 UE的无线条件、 緩沖区占用率、 空口吞吐 量;或者, UE的调度优先级结果;或者,复用在某 RN E-RAB上的 UE E-RAB 的调度优先级结果。
一种中继网络中参与中继的基站获取状态信息的系统, 包括中继节点、 参与中继的基站和 UE; 其中,
中继节点, 用于向参与中继的基站反馈自身或自身覆盖范围内的 UE 的状态信息;
参与中继的基站, 用于接收来自中继节点的状态信息。
所述参与中继的基站, 还用于根据获得的状态信息, 在 Un接口上进行 流量控制或调度。
所述中继节点, 用于以周期触发方式或事件触发方式反馈所述状态信 息。
从上述本发明提供的技术方案可以看出, 中继节点向参与中继的基站 反馈自身或自身覆盖范围内的 UE的状态信息,参与中继的基站根据获得的 状态信息, 在 Un接口上进行流量控制或调度。 DeNB通过 RN在 Un口上 反馈的状态信息, 灵活地调度 UE或者 UE的 E-RAB,保证了每个 UE或者 UE E-RAB 都能合理的接收到 DeNB下发的数据;或者对 RN或 RN E-RAB 的状态进行掌控,通过流量控制避免了在 RN上发生过载(overload )的情况。 附图说明
图 1为现有蜂窝无线通信系统的组成结构示意图;
图 2为现有 LTE的网络架构的示意图;
图 3为现有 LTE中加入中继站的网络架构的示意图;
图 4为现有 Relay与 Donor eNB之间的控制面协议栈实现方案一的示 意图;
图 5为现有 Relay与 Donor eNB之间的控制面协议栈实现方案二的示 意图;
图 6为现有 Relay与 Donor eNB之间的控制面协议栈实现方案三的示 意图;
图 7为现有 Relay与 Donor eNB之间的控制面协议栈实现方案四的示 意图;
图 8为现有 UE E-RAB复用 RN E-RAB方式的示意图;
图 9为本发明中继网给中参与中继的基站获取状态信息的方法的流程图; 图 10为本发明中继网络中参与中继的基站获取状态信息的系统的组成 结构示意图。 具体实施方式 图 9为本发明中继网络中参与中继的基站获取状态信息的方法的流程 图, 如图 9所示, 本发明方法包括以下步骤:
步骤 900:中继节点向参与中继的基站反馈自身或自身覆盖范围内的 UE 的状态信息。
本步骤中, 中继节点可以以周期触发方式或事件触发方式, 按整个 RN 或者某个 RN E-RAB/RB的状态信息向 DeNB反馈状态报告( Status Report )。
其中,反馈粒度可以是 RN或者是 RN E-RAB,状态报告中携带的反馈 内容为 RN的下行緩沖区占用率, Un空口吞吐量, 下行物理资源块(PRB, Physical Resource Block ) 资源占用率等状态信息; 反馈粒度也可以是 UE 或者是 UE的业务, 状态报告中携带的反馈内容为 RN覆盖范围下的各个 UE 的无线条件, 緩沖区占用率, 空口吞吐量等状态信息。 也可以将建议 UE的调度优先级调整信息作为状态信息进行反馈。
周期触发方式为: DeNB通过 RRC信令向 RN下发 Status Report配置 ( configuration ) 消息, 通知 RN反馈周期长度即 Status Report定时器的定 时时长, RN接收到 Status Report配置消息后, 启动 Status Report定时器, 并在 Status Report定时器超时时, 向 DeNB发送 Status Report消息。 其中, Status Report定时器的定时时长可根据实际需要预先设置。
事件触发方式为:在 RN上增加一个 Status Report MAC控制信元( MAC control element ),并在 MAC头中预留的還辑信道标识( LCID, logical channel identifier )值列表中分配一个 LCID索引 ( LCID Index )如 11001给新增的 Status Report MAC控制信元, 表 1为 MAC头中 LCID值的列表, 如表 1 中加粗加下划线字体所示。当该 LCID的取值为 0时,表明不需要发送 Status Report消息, 当该 LCID的取值为 1时, 表明需要发送 Status Report消息。 若满足触发条件如某 UE发生过载( overload ) ,则 LCID的值为 1 ,触发 RN 发送 Status Report消息。 这里, 触发条件可以预先设置, 也可以由 DeNB 通过 RRC信令通知给 RN。
索引 (Index ) LCID值( LCID values )
00000 CCCH
00001-01010 Identity of the logical channel
01011-11000 Reserved
11001 Status Report
11010 Power Headroom Report
11011 C-RNTI
11100 Truncated BSR
11101 Short BSR
11110 Long BSR
11111 Padding
表 1
步骤 901 : 参与中继的基站根据获得的状态信息, 在 Un接口上进行流 量控制或调度。 需要说明的是, 本步骤强调的是: 参与中继的基站根据反 馈的状态信息, 在 Un接口上进行流量控制或调度, 灵活地调度 UE或者 UE的 E-RAB, 保证了每个 UE或者 UE E-RAB 都能合理的接收到 DeNB 下发的数据; 或者对 RN或 RN E-RAB的状态进行掌控, 通过流量控制避 免了在 RN上发生过载的情况。具体流量控制或调度方法为各厂家实现,不 用于限定本发明的保护范围。
针对图 9所示的方法, 本发明还提供一种中继网络中参与中继的基站 获取状态信息的系统, 图 10为本发明中继网络中参与中继的基站获取状态 信息的系统的组成结构示意图, 如图 10所示, 包括中继节点、 参与中继的 基站和 UE, 其中,
中继节点, 用于向参与中继的基站反馈自身或自身覆盖范围内的 UE 的状态信息。
其中, 参与中继的基站, 还用于根据获得的状态信息, 在 Un接口上进 行流量控制或调度。
所述中继节点, 用于以周期触发方式或事件触发方式反馈所述状态信 息。
下面结合图 4~图 7所示的不同的 Relay与 Donor eNB, 核心网之间控 制面协议栈实现方案,举实例对本发明方法进行详细描述。当 Relay与 Donor eNB之间控制面协议栈为方案一或者方案三时, 反馈粒度为 RN或者 RN E-RAB,反馈内容为 RN的状态信息。 当 Relay与 Donor eNB之间控制面协 议栈为方案二或者方案四时, 反馈粒度为 UE或者 UE E-RAB, 反馈内容为 UE的状态信息。
第一实施例中, 假设 Relay与 Donor eNB之间控制面协议栈为方案一。 DeNB通过 RRC信令给 RN下发一个 Status Report配置消息。通知 RN 触发周期长度, RN接收到 Status Report配置消息后, 启动 Status Report定 时器。 当 Status Report定时器超时时, RN向 DeNB发送 Status Report消息。 Status Report消息中携带有 RN下行緩沖区占用率、 Un空口吞吐量、 下行 PRB资源占用率等对 DeNB在 Un接口进行流控有用的状态信息; DeNB收 到 RN的 Status Report消息后,假设获知 RN的下行緩沖区占用率大于预设 的緩沖区占用率阈值 80%,则 DeNB在 Un接口采用相应的流控方法, 以达 到緩解 RN可能发生的过载问题的目的。需要说明的是的,具体流控方法为 各厂家实现, 不用于限定本发明的保护范围。
之后, RN可以重启 Status Report定时器。
第二实施例中, 假设 Relay与 Donor eNB之间控制面协议栈为方案二。 并假设在 RN上已增加一个 Status Report MAC控制信元, 并已分配 LCID 索引为 11001给新增的 Status Report MAC控制信元。当该索引对应的 LCID 的取值为 0时, 不需要发送 Status Report消息, 当该索引对应的 LCID的取 值为 1时, 发送 Status Report消息。
第二实施例为事件触发反馈状态信息的方式。 当满足预设触发条件如 存在 UE发生 overload, 则 LCID的取值为 1 , 发送 Status Report消息, 此 时, RN覆盖范围内的 UE将其无线条件 (如 L2测量报告 ( L2 measurement report )、 CQI report等)、緩沖区占用率、 空口吞吐量等信息发送给 RN; RN 利用从 UE获得的信息给 UE调度优先级排队, 比如可以根据 UE的緩沖区 占用率来决定 UE调度的优先级,緩沖区占用率高的 UE其调度优先级较低, 緩沖区占用率低的 UE其调度优先级较高; RN将 UE的调度优先级结果作 为状态信息携带在 Status Report消息中, 在物理上行共享信道( PUSCH ) 上发送; DeNB收到 RN上报的 Status Report消息后, 获得 UE的调度优先 级, DeNB将按照这个调度优先级结果, 在 Un口上对 UE进行调度, 完成 下行流控。
第三实施例中, 假设 Relay与 Donor eNB之间控制面协议栈为方案四。 并假设在 RN上已增加一个 Status Report MAC控制信元, 并已分配 LCID 索引为 11001给新增的 Status Report MAC控制信元。当该索引对应的 LCID 的取值为 0时, 不需要发送 Status Report消息, 当该索引对应的 LCID的取 值为 1时, 发送 Status Report消息。
第三实施例为事件触发反馈状态信息的方式。 当满足由 DeNB 通过 RRC信令通知给 RN的触发条件如存在 UE发生 overload, 则 LCID的取值 为 1 , 发送 Status Report消息, 此时, RN覆盖范围内的 UE将其无线条件 (如下行物理资源块利用率、 下行分组时延、 下行丟包率、 CQI report等)、 緩沖区占用率、 空口吞吐量等状态信息发送给 RN; RN将获得的状态信息 携带在 Status Report消息中, 直接在 PUSCH上发送给 DeNB; DeNB可以 根据 Status Report消息中的信息对 UE进行优先级排队, 比如可以根据 UE 的下行丟包率( DL packet loss ) 决定 UE调度的优先级, 下行丟包率高的 UE其调度优先级较低, 下行丟包率低的 UE其调度优先级较高。 DeNB将 按照这个调度优先级结果, 在 Un口上对 UE进行调度, 完成下行流控。
第四实施例中, 假设 Relay与 Donor eNB之间控制面协议栈为方案二。 DeNB通过 RRC信令给 RN下发一个 Status Report配置消息。通知 RN 触发周期长度, RN接收到 Status Report配置消息后, 启动 Status Report定 时器。 当 Status Report定时器超时时, 该 RN向 DeNB发送 Status Report 消息,此时, RN覆盖范围下的 UE将其无线条件(如 L2 measurement report, CQI report等)、 緩存区占有率、 空口吞吐量等信息发送给 RN。
如果本实施例中,多个 UE E-RAB按照业务原则复用在一个 RN E-RAB 上, 各个 UE E-RAB可能对应不同的 UE, 不同的 UE的无线条件不相同, 所以, 各个 UE E-RAB需要有不同的优先级。 RN通过获得的空口吞吐量的 信息, 判断出这个 RN E-RAB上复用的性能较差的某些 UE E-RAB, 以及 性能较好的 UE E-RAB, 从而判定优先调度性能较好的 UE E-RAB; RN将 复用在该 RN E-RAB上的 UE E-RAB的调度优先级结果作为状态信息携带 在 Status Report消息中发给 DeNB。 DeNB收到 RN E-RAB上报的 Status Report消息后, 获得 UE E-RAB的调度优先级, 根据该 UE E-RAB的调度 优先级并综合考虑自身已知的服务质量(QoS )优先级, 在 Un接口上对 UE E-RAB进行调度, 完成下行流控。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、一种中继网络中参与中继的基站获取状态信息的方法,其特征在于, 该方法包括:
中继节点向参与中继的基站反馈自身或自身覆盖范围内的用户终端
UE的状态信息。
2、 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 所述参 与中继的基站根据获得的状态信息, 在 Un接口上进行流量控制或调度。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述反馈的方法为: 所述中继节点以周期触发方式、 或事件触发方式反馈所述状态信息。
4、 根据权利要求 3所述的方法, 其特征在于, 当以周期触发方式反馈 所述状态信息时, 该方法进一步包括:
所述参与中继的基站通过无线资源控制 RRC信令向所述中继节点下发 状态报告配置消息, 通知所述中继节点反馈周期长度;
所述中继节点接收到状态报告配置消息后, 启动状态报告定时器, 并 在状态报告定时器超时时, 向所述参与中继的基站发送携带所述状态信息 的状态报告消息;
其中, 所述状态报告定时器的定时时长为反馈周期长度。
5、 根据权利要求 3所述的方法, 其特征在于, 当以事件触发方式反馈 所述状态信息时, 该方法进一步包括:
在所述中继节点上设置状态 4艮告^1 (控制信元, 并在 MAC头中预留的 逻辑信道标识 LCID值列表中分配一个 LCID索引给所述状态报告 MAC控制 信元; 当该 LCID的取值为 0时, 表明不需要发送所述状态报告消息, 当该 LCID的取值为 1时, 表明需要发送所述状态报告消息;
若满足触发条件,则 LCID的值为 1 ,触发所述中继节点发送携带有所述 状态信息的状态 告消息。
6、 根据权利要求 5所述的方法, 其特征在于, 所述触发条件为预先设 置的, 或由所述参与中继的基站通过 RRC信令通知给所述中继节点的。
7、 根据权利要求 1所述的方法, 其特征在于, 所述中继节点向参与中 继的基站的反馈的粒度为: 中继节点或中继节点上的增强无线接入承载 E-RAB; 或者, UE或 UE E-RAB。
8、 根据权利要求 3所述的方法, 其特征在于, 当所述反馈的粒度为中 继节点或中继节点上的增强无线接入承载 E-RAB时, 所述状态信息包括: 所述中继节点下行緩沖区占用率、 Un空口吞吐量、 下行 PRB资源占用 率, 以及其他对所述参与中继的基站在 Un接口进行流控有用的信息。
9、 根据权利要求 3所述的方法, 其特征在于, 当所述反馈的粒度为 UE 或 UE E-RAB时, 所述状态信息为:
所述中继节点覆盖范围内的 UE的无线条件、 緩沖区占用率、 空口吞吐 量;或者, UE的调度优先级结果;或者,复用在某 RN E-RAB上的 UE E-RAB 的调度优先级结果。
10、 一种中继网络中参与中继的基站获取状态信息的系统, 其特征在 于, 包括中继节点、 参与中继的基站和 UE; 其中,
中继节点, 用于向参与中继的基站反馈自身或自身覆盖范围内的 UE 的状态信息;
参与中继的基站, 用于接收来自中继节点的状态信息。
11、 根据权利要求 10所述的系统, 其特征在于, 所述参与中继的基站, 还用于根据获得的状态信息, 在 Un接口上进行流量控制或调度。
12、 根据权利要求 10或 11所述的系统, 其特征在于, 所述中继节点, 用于以周期触发方式或事件触发方式反馈所述状态信息。
PCT/CN2009/075918 2009-08-13 2009-12-23 中继网络中参与中继的基站获取状态信息的方法及系统 WO2011017888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910162357.9 2009-08-13
CN200910162357.9A CN101998700B (zh) 2009-08-13 2009-08-13 中继网络中参与中继的基站获取状态信息的方法及系统

Publications (1)

Publication Number Publication Date
WO2011017888A1 true WO2011017888A1 (zh) 2011-02-17

Family

ID=43585877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075918 WO2011017888A1 (zh) 2009-08-13 2009-12-23 中继网络中参与中继的基站获取状态信息的方法及系统

Country Status (2)

Country Link
CN (1) CN101998700B (zh)
WO (1) WO2011017888A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201635A1 (zh) * 2013-06-19 2014-12-24 华为技术有限公司 一种消息处理的方法及基站
CN107645778A (zh) * 2016-07-22 2018-01-30 中兴通讯股份有限公司 一种无线站点状态信息上报方法和装置
CN111107010B (zh) * 2018-10-25 2022-11-25 华为技术有限公司 传输控制方法和装置
WO2020199195A1 (zh) * 2019-04-04 2020-10-08 华为技术有限公司 一种数据处理方法、中继设备和网络设备
CN113923711A (zh) * 2020-07-09 2022-01-11 大唐移动通信设备有限公司 缓冲区状态报告的上报方法、装置及中继终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047431A (zh) * 2006-06-22 2007-10-03 华为技术有限公司 在含有中继站的通信系统中实现混合自动重传的方法
WO2009050205A1 (en) * 2007-10-17 2009-04-23 Nokia Siemens Networks Oy Method and device for data communication and communication system comprising such device
WO2009050174A1 (en) * 2007-10-15 2009-04-23 Nokia Siemens Networks Oy Transmission control in a relay network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047431A (zh) * 2006-06-22 2007-10-03 华为技术有限公司 在含有中继站的通信系统中实现混合自动重传的方法
WO2009050174A1 (en) * 2007-10-15 2009-04-23 Nokia Siemens Networks Oy Transmission control in a relay network
WO2009050205A1 (en) * 2007-10-17 2009-04-23 Nokia Siemens Networks Oy Method and device for data communication and communication system comprising such device

Also Published As

Publication number Publication date
CN101998700B (zh) 2015-04-01
CN101998700A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
US11382001B2 (en) Wireless broadband communication method, device, and system, for establishing a user plane connection between a small cell and a user equipment
US11076340B2 (en) Method and apparatus for supporting communication via a relay wireless device
US9107228B2 (en) Radio communication system and control method of radio resource allocation
EP3499961B1 (en) Controlling data offload in response to feedback information
KR101454524B1 (ko) 중계기에서의 서비스 품질 제어
WO2015027719A1 (zh) 一种协作多流传输数据的方法及基站
EP2744260A1 (en) Data transmission method and device
JP6480637B2 (ja) 通信方法、プロセッサ、及びユーザ装置
WO2011000193A1 (zh) 一种无线中继系统中终端的移动性管理方法及系统
US20230261732A1 (en) Methods, wireless communications networks and infrastructure equipment
WO2011063684A1 (zh) 一种长期演进系统中调度的方法和装置
WO2011017888A1 (zh) 中继网络中参与中继的基站获取状态信息的方法及系统
JP7321352B2 (ja) 中継制御方法及び通信ノード
WO2020223919A1 (en) Method and apparatus for radio link flow control
WO2022210546A1 (ja) 通信制御方法
KR102230567B1 (ko) 제어 정보 송수신 방법, 기지국, 및 단말
US20220408308A1 (en) Methods and apparatuses for end-to-end flow control
KR20200035609A (ko) 무선통신 시스템에서 iab를 수행하는 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848218

Country of ref document: EP

Kind code of ref document: A1