WO2011017561A1 - Bicyclic aryl sphingosine 1-phosphate analogs - Google Patents

Bicyclic aryl sphingosine 1-phosphate analogs Download PDF

Info

Publication number
WO2011017561A1
WO2011017561A1 PCT/US2010/044607 US2010044607W WO2011017561A1 WO 2011017561 A1 WO2011017561 A1 WO 2011017561A1 US 2010044607 W US2010044607 W US 2010044607W WO 2011017561 A1 WO2011017561 A1 WO 2011017561A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutically acceptable
acceptable salt
methyl
trans
naphthalen
Prior art date
Application number
PCT/US2010/044607
Other languages
French (fr)
Inventor
Jermaine Thomas
Xiaogao Liu
Edward Yin-Shiang Lin
Guo Zhu Zheng
Bin Ma
Richard D. Caldwell
Kevin M. Guckian
Gnanasambandam Kumaravel
Arthur G. Taveras
Original Assignee
Biogen Idec Ma Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MYPI2011005317A priority Critical patent/MY180702A/en
Priority to UAA201202539A priority patent/UA107360C2/en
Priority to NZ597596A priority patent/NZ597596A/en
Priority to SG2012003117A priority patent/SG177675A1/en
Application filed by Biogen Idec Ma Inc. filed Critical Biogen Idec Ma Inc.
Priority to AU2010279337A priority patent/AU2010279337B2/en
Priority to MX2012001650A priority patent/MX2012001650A/en
Priority to RS20150422A priority patent/RS54091B1/en
Priority to CN201080044608.4A priority patent/CN102548409B/en
Priority to EA201200239A priority patent/EA024435B1/en
Priority to MEP-2015-93A priority patent/ME02157B/en
Priority to IN1241DEN2012 priority patent/IN2012DN01241A/en
Priority to BR112012002511-2A priority patent/BR112012002511B1/en
Priority to PL10807186T priority patent/PL2461683T3/en
Priority to US13/389,054 priority patent/US8802659B2/en
Priority to ES10807186.1T priority patent/ES2539383T3/en
Priority to SI201030960T priority patent/SI2461683T1/en
Priority to KR1020127005229A priority patent/KR101818096B1/en
Priority to DK10807186.1T priority patent/DK2461683T3/en
Priority to JP2012523962A priority patent/JP5893558B2/en
Priority to EP10807186.1A priority patent/EP2461683B8/en
Priority to CA2768858A priority patent/CA2768858C/en
Publication of WO2011017561A1 publication Critical patent/WO2011017561A1/en
Priority to ZA2012/00505A priority patent/ZA201200505B/en
Priority to IL217884A priority patent/IL217884A/en
Priority to US14/306,231 priority patent/US9186367B2/en
Priority to SM201500170T priority patent/SMT201500170B/en
Priority to HRP20150792TT priority patent/HRP20150792T1/en
Priority to IL240111A priority patent/IL240111B/en
Priority to US14/874,600 priority patent/US9572824B2/en
Priority to US15/397,421 priority patent/US9827258B2/en
Priority to US15/783,809 priority patent/US10166250B2/en
Priority to US16/182,845 priority patent/US20190209592A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/235Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/247Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a carbon atom of a ring other than a six-membered aromatic ring containing halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/695Silicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/11Aldehydes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/223Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of alpha-aminoacids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/397Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/662Phosphorus acids or esters thereof having P—C bonds, e.g. foscarnet, trichlorfon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/14Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of carbon skeletons containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/22Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/46Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/46Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C229/48Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups and carboxyl groups bound to carbon atoms of the same non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/08Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/52Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the nitrogen atom of at least one of the carboxamide groups further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/13Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/14Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/50Compounds containing any of the groups, X being a hetero atom, Y being any atom
    • C07C311/51Y being a hydrogen or a carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/575Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D211/62Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/227Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/04Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/24Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/74Quinazolines; Hydrogenated quinazolines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to ring carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/08Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3834Aromatic acids (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • C07F9/5728Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • Sphingosine 1-phosphate is a lysophospholipid mediator that evokes a variety of cellular responses by stimulation of five members of the endothelial cell differentiation gene (EDG) receptor family.
  • EDG endothelial cell differentiation gene
  • the EDG receptors are G-protein coupled receptors (GPCRs) and on stimulation propagate second messenger signals via activation of heterotrimeric G-protein alpha (G ⁇ ) subunits and beta-gamma (G ⁇ ) dimers.
  • GPCRs G-protein coupled receptors
  • the immunomodulator FTY720 (2-amino-2-[2-(4- octylphenyl) ethyl] propane 1,3-diol), that following phosphorylation, is an agonist at 4 of 5 SlP receptors, revealed that affecting SlP receptor activity influences lymphocyte trafficking.
  • SlP type 1 receptor (SlPi) antagonists cause leakage of the lung capillary endothelium, which suggests that SlP may be involved in maintaining the integrity of the endothelial barrier in some tissue beds.
  • SlP type 4 receptors (SlP 4 ) are expressed mainly in leukocytes, and specifically SIP 4 mediates immunosuppressive effects of SlP by inhibiting proliferation and secretion of effector cytokines, while enhancing secretion of the suppressive cytokine IL-IO. See, for example, Wang, W. et. al., (2005) FASEB J. 19(12): 1731-3, which is incorporated by reference in its entirety.
  • SlP type 5 receptors (SIP 5 ) are exclusively expressed in
  • oligodendrocytes and oligodendrocyte precursor cells are vital for cell migration. Stimulation of SIP 5 inhibits OPC migration, which normally migrate considerable distances during brain development. See, for example, Novgorodov, A. et al., (2007) FASEB J, 21: 1503- 1514, which is incorporated by reference in its entirety.
  • SlP has been demonstrated to induce many cellular processes, including those that result in platelet aggregation, cell proliferation, cell morphology, tumor-cell invasion, endothelial cell chemotaxis and angiogenesis. For these reasons, SlP receptors are good targets for therapeutic applications such as wound healing, tumor growth inhibition, and autoimmune diseases.
  • Sphingosine- 1-phosphate signals cells in part via a set of G protein-coupled receptors named SlPi, SlP 2 , SlP 3 , SlP 4 , and SlP 5 (formerly EDGl, EDG5, EDG3, EDG6 and EDG8).
  • the EDG receptors are G-protein coupled receptors (GPCRs) and on stimulation propagate second messenger signals via activation of heterotrimeric G-protein alpha (G ⁇ ) subunits and beta-gamma (G ⁇ ) dimers. These receptors share 50-55% amino acid sequence identity and cluster with three other receptors (LPAi, LPA 2 , and LPA 3 (formerly EDG2, EDG4 and EDG7) for the structurally related lysophosphatidic acid (LPA).
  • GPCR G-Protein Coupled Receptor
  • G-proteins capable of associating with many effector proteins leading to an amplified cellular response.
  • compounds can switch from antagonists to agonist depending on what G protein is downstream of the receptor. When G q is downstream a compound targeting the SlP 4 receptor can act as an antagonist. It is possible that with a different G protein (G 1 ) downstream an agonist compound may be an agonist.
  • SlP receptors make good drug targets because individual receptors are both tissue and response specific. Tissue specificity of the SlP receptors is desirable because development of an agonist or antagonist selective for one receptor localizes the cellular response to tissues containing that receptor, limiting unwanted side effects. Response specificity of the SlP receptors is also of importance because it allows for the development of agonists or antagonists that initiate or suppress certain cellular responses without affecting other responses. For example, the response specificity of the SlP receptors could allow for an SlP mimetic that initiates platelet aggregation without affecting cell morphology.
  • Sphingosine-1 -phosphate is formed as a metabolite of sphingosine in its reaction with sphingosine kinase and is stored in abundance in the aggregates of platelets where high levels of sphingosine kinase exist and sphingosine lyase is lacking. SlP is released during platelet aggregation, accumulates in serum, and is also found in malignant ascites. Reversible
  • biodegradation of S IP most likely proceeds via hydrolysis by ectophosphohydrolases, specifically the sphingosine 1- phosphate phosphohydrolases. Irreversible degradation of SlP is catalyzed by SlP lyase yielding ethanolamine phosphate and hexadecenal.
  • SlP receptor having enhanced potency, selectivity, and oral bioavailability.
  • identification of, as well as the synthesis and use of, such compounds there is a need in the art for identification of, as well as the synthesis and use of, such compounds.
  • a compound can have formula (I):
  • a 2 can be
  • a 7 can be -C(R 3 )
  • B 1 can be I , H , or I ; and B 2 can be ⁇ - , /0 ⁇ , or /N ⁇ .
  • a x -A 8 and B ⁇ B 2 are N, O, or S.
  • Each of X 1 , X 2 , X 3 , X 4 , X 5 , and X 6 can be hydrogen, halo, hydroxy, nitro, cyano, alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkoxy, haloalkoxy, cycloalkoxy,
  • acyl aminoacyl, -N(R f R g ), -N(R f )SO 2 R g , -SO 2 R f , -S(O) 2 N(R f R g ), -C0 2 R f , trialkylamino, aryl, or heteroaryl.
  • W can be -C(R f R g )-, -N(R f )-, -O-, -S-, -S(O)-, or -S(O) 2 -.
  • Cy can be cycloalkyl, spirocycloalkyl, cycloalkenyl, spirocycloalkenyl, heterocyclyl, spiroheterocyclyl, aryl, or heteroaryl.
  • Cy can be optionally substituted by 1-6 substituents selected from the group consisting of halo, hydroxy, nitro, cyano, -N(R f R g ), alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
  • L 1 can be -C(O)-, -S(O) 2 -, -N(R f )C(0)-, -N(R f )-, -C(R f R g )-, -C(R f R g )-C(R f R g )-, or a bond.
  • J can be -[C(R f R g )] n -, -N(R f )-[C(R f R g )] n -, or a bond, wherein each n, independently, can bean integer from 0 to 5; or J can be
  • each of D and D independently, can be ⁇ , or ⁇ .
  • D 2 can be -[C(R f R g )] k -, -[C(R f R g )] k -N(R f )-, -[C(R f R g )] k -0-, -N(R f )-, or
  • D 4 can be -[C(R f R g )] m -.
  • k can be 1 or 2; and m can be 0, 1, 2, or 3.
  • No more than 2 ring atoms of D ⁇ D 4 can be N or O.
  • L 2 can be -C(R f R g )-, -C(R f G)-, -C(G) 2 -, -C(R f R g )-C(R f R g )-, -C(R f R g )-C(R f G)-,
  • At least one of L 1 , J, and L 2 can be other than a bond.
  • T 1 can be -C(0)(0R f ), -C(O)N(R f )S(O) 2 R f , tetrazolyl, -S(O) 2 OR f , -C(0)NHC(0)-R f ,
  • Each G independently, can be hydrogen, hydroxy, a halogen, or trifluoromethyl.
  • Each R f can be hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl or NH 2 .
  • Each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle can be optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG 3 , -OH, -NO 2 , alkyl, -OCG 3 , alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino,
  • dialkylamino dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, or
  • Each R g can be hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, or heterocyclyl.
  • Each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle can be optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG 3 , -OH, -NO 2 , alkyl, -OCG 3 , alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino, dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, can be
  • the compound can be in the form of a pharmaceutically acceptable salt.
  • B 2 can be ⁇ ⁇ .
  • 0, 1, or 2 ring atoms of A x -A 6 can be N.
  • the remaining ring atoms of A x -A 6 can each be C.
  • a 8 can be
  • B 1 is H
  • B 2 can be ⁇ C ⁇
  • B 1 can be II
  • B 2 can be ⁇ ° ⁇
  • each ring atom of A 1 , A 2 , A 5 -A 8 and B ⁇ B 2 is C, and each of A 3 and A 4 is, independently, C or N.
  • L 1 can be -C(R f R g )- and J can be -NR f - or
  • each of D 1 and D 3 is ⁇ N v ⁇ , or ⁇ C ⁇ ⁇ Rf ;
  • D 2 is -[C(R f R g )] k -, -[C(R f R g )] k -N(R f K -[C(R f R g )] k -O-, -N(R f )-, or -N(R f )-[(CR f R g )] k -; and D 4 is -[C(R f R g )] m -;
  • k is 1 or 2; and m is 0, 1, 2, or 3;
  • T 1 can be -C(O)(OR f ).
  • T 1 can be -C(O)N(R f )S(O 2 R f ), - O-P(O)(OR f )OR f , -P(O 2 )(OR f ), tetrazolyl or -S(O) 2 OR f .
  • X 6 can be an electron withdrawing group.
  • X 6 can be halo, alkyl, or haloalkyl.
  • Each G independently, can be fluoro or hydroxy.
  • Cy can have the formula:
  • Each of x, y, and z, independently, can be 1, 2, or 3.
  • Each R d , and each R e can be hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl.
  • R la and R lb can be hydrogen, halo, hydroxy, nitro, cyano, -NR f R g , alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
  • R la and R lb when taken together, can be C 2
  • R 2a and R 2b can be hydrogen, halo, hydroxy, nitro, cyano, -NR f R g , alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
  • R la and R 2a when taken together, can be Ci-C 5 alkylene or C 2 -C 5 alkenylene.
  • R la , R lb , R 2a , and R 2b can be each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NR f R g , or -CO 2 R f .
  • R la and R 2a can be both hydrogen.
  • Z 1 can be -CH 2 CH 2 -.
  • Z 2 can be -CH 2 -.
  • Z 3 can be a bond.
  • R lb can be fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1-dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t- butoxy, n-pentyloxy, i-pentyloxy, 1,1-dimethylpropoxy, neopentyloxy, cyclopentyloxy, n- hexyloxy, or cyclohexyloxy.
  • W is O
  • Z 1 is -[C(R d R e )] x -
  • Z 2 is -[C(R d R e )] y -
  • Z 3 is
  • each ring atom of A*-A 8 and B ⁇ B 2 is C.
  • each ring atom of A ⁇ A 3 , A 5 -A 8 and B ⁇ B 2 is C, and A 4 is N.
  • each ring atom of A ⁇ A 2 , A 4 - A 8 and B ⁇ B 2 is C, and A 3 is N.
  • the compound can be in the form of a pharmaceutically acceptable salt.
  • a 1 can be CH;
  • a 3 can be CH;
  • a 4 can be CH;
  • a 5 can be CH;
  • a 6 can be CH;
  • a 7 can be C(R 3 );
  • a 8 can be C(-W-Cy);
  • B 1 can be Il ; and
  • B 2 can be - ⁇ ⁇ .
  • Each ring atom of A 1 , A 2 , A 5 -A 8 and B ⁇ B 2 is C, and each of A 3 and A 4 is, independently,
  • L 1 can be -C(R f R g )- and J can be -NR f - or
  • each of D and D is ⁇ , or ⁇ ;
  • D 2 is -[C(R f R g )] k -, -[C(R f R g )] k -N(R f K -[C(R f R g )] k -0-, -N(R f )-, or
  • D 4 is -[C(R f R g )] m -; wherein k is 1 or 2; and m is 0, 1, 2, or 3;
  • T 1 can be -C(O)(OR f ).
  • T 1 can be -C(O)N(R f )S(O 2 R f ), -O-P(O)(OR f )OR f , -P(O 2 )(OR f ), tetrazolyl or -S(O) 2 OR f .
  • X 6 can be an electron withdrawing group.
  • X 6 can be halo, alkyl, or haloalkyl.
  • Each G independently, can be fluoro or hydroxy.
  • Cy can have the formula:
  • Each of x, y, and z, independently, can be 1, 2, or 3.
  • Each R d , and each R e can be hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl.
  • R la and R lb can be hydrogen, halo, hydroxy, nitro, cyano, -NR f R g , alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
  • R la and R lb when taken together, can be C 2
  • R 2a and R 2b can be hydrogen, halo, hydroxy, nitro, cyano, -NR f R g , alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
  • R la and R 2a when taken together, can be C 1 -C 5 alkylene or C 2 -C 5 alkenylene.
  • R la , R lb , R 2a , and R 2b can be each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NR f R g , or -CO 2 R f .
  • R la and R 2a can be both hydrogen.
  • Z 1 can be -CH 2 CH 2 -.
  • Z 2 can be -CH 2 -.
  • Z 3 can be a bond.
  • R lb can be fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1-dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t- butoxy, n-pentyloxy, i-pentyloxy, 1,1-dimethylpropoxy, neopentyloxy, cyclopentyloxy, n- hexyloxy, or cyclohexyloxy.
  • W is O
  • Z 1 is -[C(R d R e )] x -
  • Z 2 is -[C(R d R e )] y -
  • Z 3 is
  • X 2 is methyl.
  • W is -O-.
  • a pharmaceutical composition in another aspect, includes a pharmaceutically acceptable carrier and a compound of formula (I), as defined above.
  • a method for prevention or treatment of a pathological condition or symptom in a mammal includes administering to said mammal an effective amount of a compound of formula (I).
  • a method for prevention or treatment of a pathological condition or symptom in a mammal includes administering to said mammal an effective amount of a compound of formula
  • a method for prevention or treatment of a pathological condition or symptom in a mammal wherein the activity of sphingosine 1 -phosphate receptors is implicated and antagonism of such activity is desired includes administering to said mammal an effective amount of a compound of formula (I).
  • the pathological condition can be multiple sclerosis, autoimmune diseases, chronic inflammatory disorders, asthma, inflammatory neuropathies, arthritis, transplantation, Crohn's disease, ulcerative colitis, lupus erythematosis, psoriasis, ischemia- reperfusion injury, solid tumours, tumour metastasis, diseases associated with angiogenesis, vascular diseases, pain conditions, acute viral diseases, inflammatory bowel conditions, insulin or non-insulin dependant diabetes, inhibited cell migration, over-proliferation and secretion of effector cytokines, or lack of secretion of the suppressive cytokine IL-IO.
  • the compound exhibits SlPi agonist activity.
  • the compound exhibits SlPi agonist activity and is substantially free of SlP 3 agonist and antagonist activity.
  • the compound exhibits SIP 5 antagonist activity. In another aspect, the compound exhibits SIP 5 agonist activity.
  • the compound exhibits SIP 4 antagonist activity. In another aspect, the compound exhibits SIP 4 agonist activity.
  • the invention is directed to the examples having formula (I), pharmaceutically acceptable salts thereof, or when the example having formula (I) is a salt, a free base of that salt.
  • the compound of formula (I) can be a compound of formula (Ha)-(IId):
  • the compound is of formula (Ha), (Ilia) or (HIb).
  • SlP sphingosine-1 -phosphate
  • SIP 1 - 5 SlP receptor types 1-5
  • GPCR G-protein coupled receptor
  • SAR structure-activity relationship
  • EDG endothelial cell differentiation gene
  • EAE experimental autoimmune encephalomyelitis
  • NOD non-obese diabetic TNF ⁇ , tumor necrosis factor alpha
  • HDL high density lipoprotein
  • RT-PCR reverse transcriptase polymerase chain reaction.
  • radicals, substituents, and ranges are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.
  • the disclosed compounds include compounds of formula I having any combination of the values, specific values, more specific values, and preferred values described herein.
  • halogen or "halo” includes bromo, chloro, fluoro, and iodo.
  • haloalkyl refers to an alkyl radical bearing at least one halogen substituent, non-limiting examples include, but are not limited to, chloromethyl, fluoroethyl, trichloromethyl, or trifluoromethyl and the like.
  • C 1 -C 20 alkyl refers to a branched or linear alkyl group having from one to twenty carbons.
  • Non-limiting examples include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, butyl, iso-butyl, sec -butyl, tert-butyl, pentyl, hexyl, heptyl, oroctyl and the like.
  • C 2 -C 2 0 alkenyl refers to an olefinically unsaturated branched or linear group having from two to twenty carbon atoms and at least one double bond.
  • C 2 -C 20 alkenyl groups include, but are not limited to, 1-propenyl, 2-propenyl, 1,3-butadienyl, 1-butenyl, hexenyl, pentenyl, hexenyl, heptenyl, or octenyl and the like.
  • (C 2 -C 2 o)alkynyl can be ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1- hexynyl, 2-hexynyl, 3-hexynyl, A- hexynyl, or 5-hexynyl, and the like.
  • (Ci-Cio)alkoxy refers to an alkyl group attached through an oxygen atom.
  • Examples of (Ci-Cio)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexyloxy, and the like.
  • (C 3 -Ci 2 )cycloalkyl refers to a cyclic alkyl group, such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl, and the like.
  • Cyloalkyl groups include bicyclic groups such as decalinyl, bridged bicyclic groups such as norbornyl or bicyclo[2.2.2]octyl, tricyclic, bridged tricyclic such as adamantyl, or spiro-linked bicyclic or tricyclic groups.
  • (C 6 -Ci 4 )aryl refers to a monocyclic, bicyclic, or tricyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, benzyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, or anthracyl, and the like.
  • aryl(Ci-C 2 o)alkyl or "arylalkyl” or “aralkyl” refers to an alkyl group substituted with a mono or bicyclic carbocyclic ring system having one or two aromatic rings including, a group such as phenyl, naphthyl, tetrahydronaphthyl, indanyl, or indenyl, and the like.
  • arylalkyl include benzyl, or phenylethyl, and the like.
  • (Ci-Ci 4 )heterocyclic group refers to an optionally substituted mono- or bicyclic carbocyclic ring system containing one, two, three, or four heteroatoms (optionally in each ring) wherein the heteroatoms are oxygen, sulfur, and nitrogen.
  • (C 4 -Ci 4 )heteroaryl refers to an optionally substituted mono- or bicyclic cyclic ring system containing one, two, or three heteroatoms (optionally in each ring) wherein the heteroatoms are oxygen, sulfur, or nitrogen.
  • heteroaryl groups include furyl, thienyl, or pyridyl, and the like.
  • phosphate analog and phosphonate analog comprise analogs of phosphate and phosphonate wherein the phosphorous atom is in the +5 oxidation state and one or more of the oxygen atoms is replaced with a non-oxygen moiety, including for example, the phosphate analogs phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, or boronophosphates, and the like, including associated counterions, e.g., H + , NH 4 + , Na + , or K + , and the like if such counterions are present.
  • counterions e.g., H + , NH 4 + , Na + , or K +
  • pharmaceutically acceptable carrier includes any of the standard 5 pharmaceutical carriers, such as a phosphate buffered saline solution, hydroxypropyl beta- cyclodextrins (HO-propyl beta cyclodextrins), water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents.
  • pharmaceutically acceptable carrier includes any of the standard 5 pharmaceutical carriers, such as a phosphate buffered saline solution, hydroxypropyl beta- cyclodextrins (HO-propyl beta cyclodextrins), water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents.
  • emulsions such as an oil/water or water/oil emulsion
  • various types of wetting agents such as an oil/water or water/oil emulsion
  • the term also encompasses any of the agents approved by a regulatory agency of the U.S. Federal
  • Pharmacopeia for use in animals, including humans.
  • pharmaceutically-acceptable salt refers to salts which retain the biological effectiveness and properties of the disclosed compounds and which are not biologically or otherwise undesirable.
  • the disclosed compounds are capable of forming acid or base salts by virtue of the presence of amino or carboxyl groups or groups similar thereto.
  • prodrug refers to a compound that is converted under physiological5 conditions, e.g., by solvolysis or metabolically, to a compound that is pharmaceutically active, such as a compound of formula (I).
  • a prodrug may be a derivative of a compound of formula (I) that contains a carboxylic or phosphoric acid ester or amide moiety that may be cleaved under physiological conditions.
  • a prodrug containing such a moiety may be prepared according to conventional procedures, for example, by treatment of a compound of this invention containingo an amino, amido or hydroxyl moiety with a suitable derivatizing agent, for example, a carboxylic or phosphoric acid halide or acid anhydride, or by converting a carboxyl moiety to an ester or amide.
  • a suitable derivatizing agent for example, a carboxylic or phosphoric acid halide or acid anhydride
  • Metabolites of the compounds of formula (I) may also be pharmaceutically active as well.
  • an “effective amount” means an amount sufficient to produce a selected effect.
  • an effective amount of an SlP receptor agonist is an amount that decreases the cell5 signaling activity of the SlP receptor.
  • the disclosed compounds can contain one or more asymmetric centers in the molecule.
  • stereochemistry is to be understood as embracing all the various optical isomers (e.g., diastereomers and enantiomers), as well as mixtures thereof (such as a racemic mixture).
  • Theo compounds can be isotopically-labeled compounds, for example, compounds including various isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, iodine, or chlorine.
  • the disclosed compounds may exist in tautomeric forms and the invention includes both mixtures and separate individual tautomers. For example, the following structure:
  • HN ⁇ N is understood to represent a mixture of the structures:
  • SlP modulating agent refers a compound or composition that is capable of inducing a detectable change in SlP receptor activity in vivo or in vitro ⁇ e.g., at least 10% increase or decrease in SlP activity as measured by a given assay such as the bioassay described in the examples and known in the art.
  • SlP receptor refers to all of the SlP receptor subtypes (for example, the SlP receptors SlPi, SlP 2 , SlP 3 , SIP 4 , or SIP 5 ), unless the specific subtype is indicated.
  • stereoisomeric form or mixtures thereof. It is well known in the art how to prepare such optically active forms (for example, resolution of the racemic form by recrystallization techniques, synthesis from optically-active starting materials, by chiral synthesis, or
  • SlP receptor agonist and SlPi receptor type selective agonists particularly, include, but are not limited to, prevention or treatement of a pathological condition or symptom in a mammal.
  • the condition can include asthma, inflammatory neuropathies, arthritis, lupus erythematosis, psoriasis, ischemia-reperfusion injury, solid tumours, tumour metastasis, diseases associated with angiogenesis, vascular diseases, pain conditions, acute viral diseases, or insulin and non-insulin dependant diabetes.
  • the condition can alter lymphocyte trafficking as a method of treatment for neuropathic pain, inflammation-induced pain (e.g., where prostaglandins are involved) or treatment of autoimmune pathologies such as uveitis, type I diabetes, rheumatoid arthritis, chronic inflammatory disorders, inflammatory bowel diseases (e.g., Crohn's disease and ulcerative colitis), multiple sclerosis, and in drug- eluting stents. Additional uses can include treatment of brain degenerative diseases, heart diseases, cancers, or hepatitis C. See, for example, WO 2005/085295, WO 2004/010987, WO 03/097028, and WO 2006/072562, each of which is incorporated by reference in its entirety.
  • a class of SlP agonist compounds are described in provisional U.S. Application no. 60/956,111, filed August 15, 2007, and PCT/US2008/073378, filed August 15, 2008, each of which is incorporated by reference in its entirety.
  • SlP receptor antagonist and SIP 5 receptor type selective antagonists particularly, include, but are not limited to, prevention or treatement of a pathological condition or symptom in a mammal.
  • the condition can include inhibited cell migration of oligodendrocyte precursor cells (OPCs).
  • OPCs oligodendrocyte precursor cells
  • an SIP 5 receptor type selective antagonist may not induce lymphopenia, thereby achieving partial efficacy without
  • SlP receptor antagonist and SIP 4 receptor type selective antagonists particularly, include, but are not limited to, prevention or treatement of a pathological condition or symptom in a mammal.
  • Treatment of multiple sclerosis includes treating various forms of the disease including relapsing-remitting, chronic progressive, and the SlP receptor agonists/antagonists can be used alone or in conjunction with other agents to relieve signs and symptoms of the disease as well as prophylactically.
  • the disclosed compounds can be used for altering lymphocyte trafficking as a method for prolonging allograft survival, for example transplantation including solid organ transplants, treatment of graft vs. host disease, bone marrow transplantation, and the like.
  • the disclosed compounds can be used to inhibit autotaxin.
  • Autotaxin a plasma phosphodiesterase, has been demonstrated to undergo end product inhibition. Autotaxin hydrolyzes several substrates to yield lysophosphatidic acid and sphingosine 1 -phosphate, and has been implicated in cancer progression and angiogenesis. Therefore, SlP receptor agonist prodrugs of the disclosed compounds can be used to inhibit autotaxin. This activity may be combined with agonism at SlP receptors or may be independent of such activity.
  • Disclosed compounds can be useful for inhibition of sphingosine kinase (i.e., of sphingosine kinase I, sphingosine kinase II, or both).
  • Sphingosine kinase is an intracellular enzyme that catalyzes the formation of SlP from sphingosine and a nucleotide triphosphate (e.g., ATP).
  • Inhibition of sphingosine kinase can reduce the formation of SlP and thereby reduce the supply of SlP available to activate signaling at SlP receptors.
  • sphingosine kinase inhibitors can be useful in modulating immune system function. Therefore, the disclosed compounds can be used to inhibit sphingosine kinase. This inhibition could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
  • SlP lyase is an intracellular enzyme that irreversibly degrades SlP. Inhibition of SlP lyase disrupts lymphocyte trafficking with concomitant lymphopenia. Accordingly, SlP lyase inhibitors can be useful in modulating immune system function. Therefore, the disclosed compounds can be used to inhibit SlP lyase. This inhibition could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
  • CBi antagonism is associated with a decrease in body weight and an improvement in blood lipid profiles.
  • the CBi antagonism could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
  • disclosed compounds can be useful for inhibition of group IVA cytosolic PLA 2 (cPLA 2 ).
  • cPLA 2 catalyzes the release of eicosanoic acids (e.g., arachidonic acid).
  • the eicosanoic acids are transformed to pro-inflammatory eicosanoids such as prostaglandins and leukotrienes.
  • disclosed compounds may be useful as anti-inflammatory agents. This inhibition could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
  • lipid kinase MuLK
  • MuLK multiple substrate lipid kinase
  • compositions can include the compounds of formula I. More particularly, such compounds can be formulated as pharmaceutical compositions using standard
  • a pharmaceutical composition including a compound of formula I, or a salt, analog, derivative, or modification thereof, as described herein, is used to administer the appropriate compound to a subject.
  • the compounds of formula I are useful for treating a disease or disorder including administering to a subject in need thereof of a therapeutically acceptable amount of a compound of formula I, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula I, and a pharmaceutically-acceptable carrier.
  • the disclosed compounds and method are directed to sphingosine 1-phosphate (SlP) analogs that have activity as receptor agonists or receptor antagonists at one or more SlP receptors, specifically the SlPi, SlP 4 or SIP 5 receptor types.
  • SlP sphingosine 1-phosphate
  • the disclosed compounds and method include both compounds that have a phosphate moiety as well as compounds with hydrolysis-resistant phosphate surrogates such as phosphonates, alpha- substituted phosphonates (particularly where the alpha substitution is a halogen), or phosphothionates.
  • compositions of formula I are sufficiently basic or acidic to form stable nontoxic acid or base salts
  • preparation and administration of the compounds as pharmaceutically acceptable salts may be appropriate.
  • pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, ⁇ - ketoglutarate, or ⁇ -glycerophosphate.
  • Inorganic salts may also be formed, including
  • hydrochloride hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
  • salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion.
  • a sufficiently basic compound such as an amine
  • a suitable acid affording a physiologically acceptable anion.
  • Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.
  • Salts from inorganic bases include but are not limited to, sodium, potassium, lithium, ammonium, calcium or magnesium salts.
  • Salts derived from organic bases include, but are not limited to, salts of primary, secondary or tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substituted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, substituted cycloalkyl amines, substituted cyclo
  • amines where the two or three substituents, together with the amino nitrogen, form a heterocyclic or heteroaryl group.
  • Non-limiting examples of amines include, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2- dimethylaminoethanol, tromethamine, lysine, arginine, histidine, caffeine, procaine,
  • carboxylic acid derivatives would be useful, for example, carboxylic acid amides, including carboxamides, lower alkyl carboxamides, or dialkyl carboxamides, and the like.
  • the compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration, e.g., orally or parenterally, as eyedrops, by intravenous, intramuscular, topical or subcutaneous routes.
  • the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet.
  • a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier.
  • the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, or wafers, and the like.
  • Such compositions and preparations should contain at least about 0.1% of active compound.
  • compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form.
  • the amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
  • the tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added.
  • binders such as gum tragacanth, acacia, corn starch or gelatin
  • excipients such as dicalcium phosphate
  • a disintegrating agent such as
  • the unit dosage form When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like.
  • a syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl or propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor.
  • any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
  • the active compound may be incorporated into sustained-release preparations and devices.
  • the active compound may also be administered intravenously or intraperitoneally by infusion or injection.
  • Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of
  • Exemplary pharmaceutical dosage forms for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes.
  • the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, or nontoxic glyceryl esters, and mixtures thereof.
  • the proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants.
  • the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, or thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate or gelatin.
  • Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
  • the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
  • the present compounds may be applied in pure form, e.g., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
  • a dermatologically acceptable carrier which may be a solid or a liquid.
  • Exemplary solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like.
  • Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants.
  • Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use.
  • the resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
  • Thickeners such as synthetic polymers, fatty acids, fatty acid salts or esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
  • Examples of useful dermatological compositions which can be used to deliver the compounds of formula I to the skin are known to the art; for example, see Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508), each of which is incorporated by reference in its entirety.
  • Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949, which is incorporated by reference in its entirety.
  • the concentration of the compound(s) of formula I in a liquid composition will be from about 0.1 to about 25 weight percent, preferably from about 0.5-10 weight percent.
  • concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 weight percent based on the total weight of the composition.
  • the amount of the compound, or an active salt or derivative thereof, required for use in treatment will vary not only with the particular salt selected but also with the route of
  • a dose will be in the range of from about 0.1 to about 10 mg/kg of body weight per day.
  • the compound is conveniently administered in unit dosage form; for example, containing 0.01 to 10 mg, or 0.05 to 1 mg, of active ingredient per unit dosage form. In some embodiments, a dose of 5 mg/kg or less is suitable.
  • the active ingredient should be administered to achieve peak plasma
  • concentrations of the active compound of from about 0.5 to about 75 ⁇ M, preferably, about 1 to 50 ⁇ M, most preferably, about 2 to about 30 ⁇ M. This may be achieved, for example, by the intravenous injection of a 0.05 to 5% solution of the active ingredient, optionally in saline, or orally administered as a bolus containing about 1-100 mg of the active ingredient. Desirable blood levels may be maintained by continuous infusion to provide about 0.01-5.0 mg/kg/hr or by intermittent infusions containing about 0.4-15 mg/kg of the active ingredient(s).
  • the desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four, or more sub-doses per day.
  • the sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator or by application of a plurality of drops into the eye.
  • the disclosed method includes a kit comprising a compound of formula I and
  • instructional material which describes administering the compound or a composition comprising the compound to a cell or a subject.
  • the subject is a human.
  • Compounds can have an EC 50 of between 5 nM and 3 ⁇ M when acting as selective agonists for SlPi receptors. While the EC 50 of certain compounds acting as agonists to SlPi and SIP 3 receptors can be greater than 5000 nM, these same compounds can have an EC 50 of 0.2 nM - 700 nM when acting as selective antagonists for SIP 5 receptors and 50 nM - 3 ⁇ M when acting as selective antagonists for SIP 4 receptors.
  • Cis-4-?-butylcyclohexanol (6.0 g, 38.5 mmol, 1.0 eq.) was dissolved in dichloromethane (10 mL). Then methanesulfonic anhydride (8.03 g, 46.2 mmol, 1.1 eq.) was added to the mixture slowly at 0 0 C. Then triethylamine (6.4 mL, 46.2 mmol, 1.5 eq.) was added to the mixture and the mixture stirred at room temperature for 3h. The mixture was extracted with dichloromethane and the organic layer was concentrated to give product as a white power (8.0 g, yield: 90%). The product was used to next step without further purification.
  • 6-bromonaphthalen-2-ol (CAS no. 15231-91-1) (3.0 g, 14.8 mmol, 1.0 eq.) was dissolved in a mixture of £-butanol/2-butanone (4 mL/2 rnL). Then cesium carbonate (12 g, 37.2 mmol, 2.5 eq.) was added to the mixture and the mixture was stirred at 110 0 C for 10 min. Then trans-4- te/t-butylcyclohexyl methanesulfonate (3.48 g, 16.2 mmol, 1.1 eq.) was added to the mixture. The suspension was stirred at 110 0 C under a nitrogen atmosphere for 15 h.
  • Example 11 methyl 2-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoate
  • Example 13 ethyl 3-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methylamino) butanoate NaBH(OAc)3, AcOH, DCE, r.t.,
  • CD 3 OD CD 3 OD
  • Example 17 ethyl 3-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoate
  • Example 20 methyl l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 22 methyl l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)pyrrolidine-3-carboxylate
  • the title compound was synthesized as described for ethyl 2-(((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methyl)(methyl)amino)acetate.
  • Example 27 methyl l-((6-(trans-4-ter ⁇ butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen- 2-yl)methyl)azetidine-3-carboxylate
  • Example 28 l-((6-(trans-4-ter ⁇ butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
  • Example 29 ethyl 3-((6-(trans-4-ter ⁇ butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)propanoate
  • Example 31 methyl 6-(trans-4-t ⁇ r/-butylcyclohexyloxy)-2-naphthoate
  • Methyl 6-(trans-4-te/t-butylcyclohexyloxy)-2-naphthoate (950 mg, 0.0028 mol) was dissolved in tetrahydrofuran (20 mL, 0.2 mol) and 1.0 M lithium tetrahydroaluminate in tetrahydrofuran (8.4 mL, 0.0084 mol) was then added at 0 0 C. After stirring at room temperature for 2 hours, ethyl acetate and Rochele's salt was added and the mixture was then stirred at room temperature for 1 hour.
  • azodicarboxylate (1.17 mL, 0.00593 mol) was then added dropwise and the resulting mixture was refluxed for 6 hours. The mixture was then diluted with dichloromethane and subjected to chromatographic purification with ethyl acetate:hexane (0:100 to 40:60) to give methyl 6- (spiro[5.5]undecan-3-yloxy)-2-naphthoate as a white solid. (1.09 g, 62%).
  • 6-(4-fer?-Butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (503.27 mg, 1.6212 mmol) was combined with in methanol (10 mL, 200 mmol) and acetic acid (9.2 ⁇ L, 0.16 mmol).
  • Example 52 3-ter ⁇ butoxycarbonylamino-4-[5-(trans-4-ter/-butyl-cyclohexyloxy)-2,3- dihydro-indol-l-yl]-4-oxo-butyric acid tert-butyl ester
  • Example 53 3-amino-4-[5-(trans-4-ter/-butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-4-oxo- butyric acid
  • Example 54 l-[5-(trans-4-ter/-butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-2-chloro- ethanone
  • 6-bromo-2-hydroxyquinoline was treated with cis-4-te/t-butylcyclohexanol under Mitsunobu conditions, affording 6-bromo-2-((trans)-4-te/t-butylcyclohexyloxy)quinoline.
  • 6- bromo-2-((trans)-4-te/t-butylcyclohexyloxy)quinoline was then exposed to n-butyllithium and DMF, providing 6-formyl-2-((trans)-4-te/t-butylcyclohexyloxy)quinoline.
  • TBHP tertbutyl hydrogen peroxide 6-hydroxy-2-methylquinoline was treated with cis-4-te/t-butylcyclohexanol under Mitsunobu conditions, affording 6-((trans)-4-fert-butylcyclohexyloxy)-2-methylquinoline, which in turn was oxidized with tert-butyl hydrogen peroxide and selenium dioxide in dioxane, providing 6-((trans)-4-fert-butylcyclohexyloxy)-2-formylquinoline.
  • Example 62 3-((6-((trans)-4-ter ⁇ butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)-N-(methylsulfonyl)propanamide
  • Example 63 ethyl 3-(ter/-butoxycarbonyl((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen- 2-yl)methyl)amino)propanoate
  • Example 64 3-(ter/-butoxycarbonyl((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)amino)propanoic acid
  • Example 65 tert-butyl (6-((trans)-4-ter ⁇ butylcyclohexyloxy)naphthalen-2-yl)methyl(3- (cyclopropanesulfonamido)-3-oxopropyl)carbamate (0 15 equiv),
  • Example 70 4-((6-((trans)-4-ter ⁇ butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)butanoic acid
  • Example 71 methyl l-((6-((trans)-4-t ⁇ r ⁇ butylcyclohexyloxy)-5-fluoronaphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 72 ethyl l-((6-((trans)-4-ter ⁇ butylcyclohexyloxy)-5-chloronaphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 77 methyl 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-methylpropanoate
  • Example 83 6-((trans)-4-ter/-butylcyclohexyloxy)-2-naphthonitrile
  • Example 90 l-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)methyl)cyclopropanecarboxylic acid
  • Example 92 methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(ethyl)amino)propanoate
  • Example 95 methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(propyl)amino)propanoate
  • Example 96 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(propyl)amino)propanoic acid
  • Example 100 N-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)cyclopentanamine
  • Example 101 methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclopentyl)amino)propanoate
  • Example 104 methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclohexyl)amino)propanoate
  • Example 107 methyl 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-(hydroxymethyl)propanoate
  • Example 109 ethyl 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)cyclobutanecarboxylate
  • Example 110 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)cyclobutanecarboxylic acid
  • Example 115 tert-buty ⁇ 3-amino-3-oxopropyl((6-((trans)-4-ter/- butylcyclohexyloxy)naphthalen-2-yl)methyl)carbamate
  • Example 116 N-acetyl-3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanamide
  • Example 118 methyl 3-(2-(6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)propan-2- ylamino)propanoate
  • Example 120 2-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)acetonitrile 0 eq )
  • Example 122 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanenitrile 0 eq )
  • Example 125 methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)-5-iodonaphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Methyl l-((6-((trans)-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate (410 mg, 1 mmol) and NIS (247 mg, 1.1 mmol, 2.0 eq.) were dissolved in CH 3 CN (5 mL). Then CF 3 COOH (35 mg, 0.3 mmol, 0.3 eq.) was added to the mixture dropwise at 0 0 C. The mixture was warmed to r.t. and stirred for another 1.5 h.
  • Example 126 methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)-5-methylnaphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 130 methyl l-((6-(ter ⁇ butyldimethylsilyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
  • Example 132 methyl l-((6-(4-(trifluoromethyl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate To a vial was added methyl l-((6-hydroxynaphthalen-2-yl)methyl)azetidine-3- carboxylate (271 mg, 1.0 mmol), 4-(trifluoromethyl) cyclohexanol (252 mg, 1.5 mmol, 1.5 equiv), PPh 3 (524 mg, 2.0 mmol, 2.0 equiv) and toluene (0.8 mL) under N 2 atmosphere.
  • Example 133 methyl l-((6-((lR,3s,5S)-bicyclo[3.1.0]hexan-3-yloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 134 methyl l-((6-(bi(cyclohexan)-4-yloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
  • Example 135 methyl l-((6-(cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
  • Example 136 methyl l-((6-((trans)-4-cyclopentylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 137 methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 138 methyl l-((6-(4-methylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
  • Example 139 methyl l-((6-(4-propylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
  • Example 141 methyl l-((6-(4-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
  • Example 147 methyl l-((6-((trans)-4-(2-methoxypropan-2-yl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
  • Example 148 methyl l-((6-(4-isopropylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
  • Example 149 l-((6-(4-(trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid
  • Example 150 l-((6-((trans)-4-(l,l-difluoroethyl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
  • Example 151 l-((6-((trans)-4-(l,l-difluoropropyl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
  • Example 156 l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid
  • Example 158 l-((6-(4-propylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid
  • Hexamethylphosphoramide (697 uL, 3.97 mmol) in N,N-Dimethylformamide (4.30 mL) was degassed by stirring under vacuum and replacing the vacuum with Argon (4 times).
  • Copper(I) iodide (263 mg, 1.38 mmol) and Methyl fluorosulphonyldifluoroacetate (520 uL, 3.97 mmol) was stirred under an atmosphere of Argon for 2h @ 55 0 C, then at 80 0 C for 16 hours.
  • the reaction was evaporated, then diluted with methylene chloride. Silica gel was added and the solvent removed.
  • 6-Methoxy-2-methyl-4-trifluoromethyl-quinoline (0.894 g, 3.71 mmol) was dissolved in Methylene chloride (60 mL), and cooled to -78 0 C. A solution of 1.0 M of Boron tribromide in Methylene chloride(l 1.0 mL, 11.0 mmol) was then added dropwise. The reaction mixture was then warmed up to 23 0 C. The reaction was allowed to stir 22h at room temperature. After cooling in an ice bath, saturated sodium bicarbonate solution was added with stirring. The mixture was extracted with methylene chloride and ethyl acetate. The organics were dried over sodium sulfate, filtered and evaporated.
  • Di-te/t-butyl peroxide (0.186 mL, 1.01 mmol) was added to a suspension of Selenium dioxide (0.252 g, 2.27 mmol) in 1,4-Dioxane (6.0 mL). The mixture was stirred for 30 minutes, then 6-(4-fer?-Butyl-cyclohexyloxy)-2-methyl-4-trifluoromethyl-quinoline (0.366 g, 1.00 mmol) was added as a solution in 1,4-Dioxane (2.0 mL). The mixture was sealed and was heated at 50 0 C for 2Oh. The reaction was filtered through Celite and washed with dioxane.
  • N,N-Diisopropylethylamine (39 uL, 0.22 mmol) was added to a solution of 6-(4-trans- fert-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinoline-2-carbaldehyde (61 mg, 0.16 mmol) and Azetidine-3-carboxylic acid methyl ester hydrochloride salt (34 mg, 0.22 mmol) in 1,2- Dichloroethane (2.50 mL) and the mixture was stirred for 1 hour at room temperature. Sodium triacetoxyborohydride (54 mg, 0.25 mmol) was then added and stirring was continued.
  • Example 170 l-[6-(trans-4-t ⁇ r/-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl] -pyrrolidine-3-carboxylic acid
  • dichloromethane (1:1) (17 mg, 0.021 mmol), 2 M of Potassium carbonate in Water(0.306 mL, 0.613 mmol) and N,N-Dimethylformamide (2.5 mL) was added to a 40 mL vial equipped with a magnetic stir bar.
  • the vial was degassed by stirring under a flow of Ar.
  • the reaction mixture was stirred at 60 0 C under Ar for 3d.
  • the reaction was cooled, diluted with water and extracted with ethyl acetate. The organics were washed with saturated sodium chloride, dried with sodium sulfate, filtered and evaporated.
  • Example 176 l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-methyl-quinolin-2-ylmethyl]- azetidine-3-carboxylic acid
  • Example 184 2-(trans-4-ter/-Butyl-cyclohexyloxy)-quinoline-6-carbaldehyde To 6-Bromo-2-(trans-4-fert-butyl-cyclohexyloxy)-quinoline (1.0933 g, 3.0176 mmol) in Tetrahydrofuran (24 niL) was added 1.6 M of n-Butyllithium in hexane(5.6 niL, 9.0 mmol) at - 78 0 C and the reaction was stirred for 15min. N,N-Dimethylformamide (1.2 mL) was added and the reaction was stirred for 30 minutes. 1 M HCl was added and the reaction allowed to warm to RT.
  • Example 188 6-(trans-4-t ⁇ r/-butylcyclohexyloxy)-2-methylquinoline.
  • Example 192 l-[6-(trans 4-ter/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]-pyrrolidine-3- carboxylic acid
  • Example 196 l-[6-(trans 4-Cyclopentyl-cyclohexyloxy)-quinolin-2-ylmethyl]-pyrrolidine-3- carboxylic acid
  • Example 200 l- ⁇ 6-[trans 4-(l,l-Dimethyl-propyl)-cyclohexyloxy]-quinolin-2-ylmethyl ⁇ - azetidine- 3-carboxylic acid
  • Triphenylphosphine (5.14 g, 19.6 mmol) was added to a solution of 3-Methyl- isoquinolin-7-ol (2.08 g, 13.1 mmol) and cis-4-te/t-butylcyclohexanol (3.06 g, 19.6 mmol) in Toluene (60 mL, 600 mmol). The mixture was stirred for 15 minutes then Diisopropyl azodicarboxylate (3.86 mL, 19.6 mmol) was added. The mixture was then stirred at room temperature overnight. The solvent was removed under vacuum.
  • Example 207 tert-buty ⁇ 3-((7-(trans-4-t ⁇ r/-butylcyclohexyloxy) isoquinolin-3-yl)
  • Triethylamine (0.07356 mL, 0.5278 mmol) was added to a solution of 7-(trans-4-te/t- Butyl-cyclohexyloxy)-isoquinoline-3-carbaldehyde (0.1174 g, 0.3770 mmol) and 3-Amino- propionic acid ethyl ester HCl salt; (0.08107 g, 0.5278 mmol) in 1,2-Dichloroethane (5.00 mL, 63.5 mmol) and the mixture was stirred for 1 hour at room temperature.
  • Sodium ethylamine 0.07356 mL, 0.5278 mmol
  • Example 208 3-((7-(trans-4-t ⁇ r/-butylcyclohexyloxy) isoquinolin-3-yl) methylamino) propanoic acid
  • Example 210 l-[7-(trans-4-ter/-Butyl-cyclohexyloxy)-isoquinolin-3-ylmethyl]-azetidine-3- carboxylic acid
  • Example 212 l-[7-(trans-4-Cyclopentyl-cyclohexyloxy)-isoquinolin-3-ylmethyl]-azetidine- 3- carboxylic acid
  • Example 214 l-(7-(trans-4-t ⁇ r/-pentylcyclohexyloxy) isoquinolin-3-yl) methyl) pyrrolidine- 3-carboxylic acid
  • Example 215 l-(7-(trans-4-t ⁇ r/-pentylcyclohexyloxy) isoquinolin-3-yl) methyl)-azetidine-3- carboxylic acid
  • Example 216 3-((7-(trans-4-t ⁇ r/-pentylcyclohexyloxy)isoquinolin-3-yl) methylamino) propanoic acid
  • Example 217 6-bromo-2-(trans-4-ter/-butylcyclohexyloxy)-l-(trifluoromethyl) naphthalene
  • 6-bromo-2-(trans-4- ⁇ r?-butylcyclohexyloxy)-l-(trifluoromethyl)naphthalene (2.58 g, 6.01 mmol) was dissolved in Tetrahydrofuran (100 niL, 1000 mmol) and cooled to -78 0 C in a dry ice/acetone bath.
  • 1.6 M of n-Butyllithium in Hexane (7.512 rnL, 12.02 mmol) was slowly added and the mixture was stirred for 30 minutes.
  • N,N-Dimethylformamide (1.396 mL, 18.03 mmol) was then slowly added and the mixture was allowed to reach room temperature.
  • Taurine (0.03737 g, 0.2986 mmol) was added to a solution of 6-(trans-4-tert- butylcyclohexyloxy)-5-(trifluoromethyl)-2-naphthaldehyde (0.1130 g, 0.2986 mmol) in Ethanol (3.00 mL, 51.4 mmol) and the mixture was refluxed for 1 hour. The mixture was cooled to room temperature and Sodium cyanoborohydride (0.02252 g, 0.3583 mmol) was added. The mixture was then refluxed overnight. The reaction mixture was cooled to room temperature, washed with saturated aqueous citric acid solution (4ml), then concentrated to dryness under reduced pressure.
  • Example 220 2- ⁇ [6-(trans-4-ter ⁇ Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino ⁇ - ethanesulfonic acid
  • Example 223 l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)-4- methylpyrrolidine-3-carboxylic acid
  • cyanoborohydride (35.1 mg, 0.558 mmol) was added and was heated to reflux for Ih. After cooled down to rt, DCM, water and citric acid were added along with some brine to clear up the layers. Concentration of the cloudy organic layer gave a precipitate that was dissolved in methanol and filtered before purification by prepartive HPLC.
  • Example 225 2-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)octahydrocyclopenta[c]pyrrole- 3a-carboxylic acid
  • Example 231 methyl l-(l-(6-((trans)-4-ter ⁇ butylcyclohexyloxy)quinolin-2- yl)ethyl)azetidine-3-carboxylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Communicable Diseases (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)

Abstract

Compounds that have agonist activity at one or more of the SlP receptors are provided. The compounds are sphingosine analogs that, after phosphorylation, can behave as agonists at SlP receptors.

Description

BICYCLIC ARYL SPHINGOSINE 1 -PHOSPHATE ANALOGS
Background
Sphingosine 1-phosphate (SlP) is a lysophospholipid mediator that evokes a variety of cellular responses by stimulation of five members of the endothelial cell differentiation gene (EDG) receptor family. The EDG receptors are G-protein coupled receptors (GPCRs) and on stimulation propagate second messenger signals via activation of heterotrimeric G-protein alpha (Gα) subunits and beta-gamma (Gβγ) dimers. Ultimately, this S IP-driven signaling results in cell survival, increased cell migration and, often, mitogenesis. The recent development of agonists targeting SlP receptors has provided insight regarding the role of this signaling system in physiologic homeostasis. For example, the immunomodulator, FTY720 (2-amino-2-[2-(4- octylphenyl) ethyl] propane 1,3-diol), that following phosphorylation, is an agonist at 4 of 5 SlP receptors, revealed that affecting SlP receptor activity influences lymphocyte trafficking.
Further, SlP type 1 receptor (SlPi) antagonists cause leakage of the lung capillary endothelium, which suggests that SlP may be involved in maintaining the integrity of the endothelial barrier in some tissue beds. SlP type 4 receptors (SlP4) are expressed mainly in leukocytes, and specifically SIP4 mediates immunosuppressive effects of SlP by inhibiting proliferation and secretion of effector cytokines, while enhancing secretion of the suppressive cytokine IL-IO. See, for example, Wang, W. et. al., (2005) FASEB J. 19(12): 1731-3, which is incorporated by reference in its entirety. SlP type 5 receptors (SIP5) are exclusively expressed in
oligodendrocytes and oligodendrocyte precursor cells (OPCs) and are vital for cell migration. Stimulation of SIP5 inhibits OPC migration, which normally migrate considerable distances during brain development. See, for example, Novgorodov, A. et al., (2007) FASEB J, 21: 1503- 1514, which is incorporated by reference in its entirety.
SlP has been demonstrated to induce many cellular processes, including those that result in platelet aggregation, cell proliferation, cell morphology, tumor-cell invasion, endothelial cell chemotaxis and angiogenesis. For these reasons, SlP receptors are good targets for therapeutic applications such as wound healing, tumor growth inhibition, and autoimmune diseases.
Sphingosine- 1-phosphate signals cells in part via a set of G protein-coupled receptors named SlPi, SlP2, SlP3, SlP4, and SlP5 (formerly EDGl, EDG5, EDG3, EDG6 and EDG8). The EDG receptors are G-protein coupled receptors (GPCRs) and on stimulation propagate second messenger signals via activation of heterotrimeric G-protein alpha (Gα) subunits and beta-gamma (Gβγ) dimers. These receptors share 50-55% amino acid sequence identity and cluster with three other receptors (LPAi, LPA2, and LPA3 (formerly EDG2, EDG4 and EDG7) for the structurally related lysophosphatidic acid (LPA).
A conformational shift is induced in the G-Protein Coupled Receptor (GPCR) when the ligand binds to that receptor, causing GDP to be replaced by GTP on the α-subunit of the associated G-proteins and subsequent release of the G-proteins into the cytoplasm. The α-subunit then dissociates from the βγ-subunit and each subunit can then associate with effector proteins, which activate second messengers leading to a cellular response. Eventually the GTP on the G-proteins is hydrolyzed to GDP and the subunits of the G-proteins reassociate with each other and then with the receptor. Amplification plays a major role in the general GPCR pathway. The binding of one ligand to one receptor leads to the activation of many G-proteins, each capable of associating with many effector proteins leading to an amplified cellular response. Generally, compounds can switch from antagonists to agonist depending on what G protein is downstream of the receptor. When Gq is downstream a compound targeting the SlP4 receptor can act as an antagonist. It is possible that with a different G protein (G1) downstream an agonist compound may be an agonist.
SlP receptors make good drug targets because individual receptors are both tissue and response specific. Tissue specificity of the SlP receptors is desirable because development of an agonist or antagonist selective for one receptor localizes the cellular response to tissues containing that receptor, limiting unwanted side effects. Response specificity of the SlP receptors is also of importance because it allows for the development of agonists or antagonists that initiate or suppress certain cellular responses without affecting other responses. For example, the response specificity of the SlP receptors could allow for an SlP mimetic that initiates platelet aggregation without affecting cell morphology.
Sphingosine-1 -phosphate is formed as a metabolite of sphingosine in its reaction with sphingosine kinase and is stored in abundance in the aggregates of platelets where high levels of sphingosine kinase exist and sphingosine lyase is lacking. SlP is released during platelet aggregation, accumulates in serum, and is also found in malignant ascites. Reversible
biodegradation of S IP most likely proceeds via hydrolysis by ectophosphohydrolases, specifically the sphingosine 1- phosphate phosphohydrolases. Irreversible degradation of SlP is catalyzed by SlP lyase yielding ethanolamine phosphate and hexadecenal.
Summary
Currently, there is a need for novel, potent, and selective agents that are agonists of the
SlP receptor having enhanced potency, selectivity, and oral bioavailability. In addition, there is a need in the art for identification of, as well as the synthesis and use of, such compounds.
In one aspect, a compound can have formula (I):
Figure imgf000004_0001
In formula (I), A1 can be -CX1=, -C(X^2-, -N=, -NX1-, -O-, -S-, or a bond; A2 can be
-CX2=, -C(X2)2-, -N=, -NX2-, -O-, or -S-; A3 can be -CX3=, -C(X3)2-, -N=, -NX3-, -O-, -S-, or a bond; A4 can be -CX4=, -C(X4)2-, -N=, -NX4-, -O-, -S-, or a bond; A5 can be -CX5=, -C(X5)2-, -N=, -NX5-, -O-, or -S-; A6 can be -CX6=, -C(X6)2-, -N=, -NX6-, -O-, -S-, or a bond; A7 can be -C(R3)=, -C(R3Rf)-, or -NR3-; and A8 can be -C(- W-Cy)=, -C(-W-Cy)(Rf)-, or -N(-W-Cy)-.
^CH ^ ^ I Il I B1 can be I , H , or I ; and B2 can be ^ - , /0^, or /N^ .
In formula (I), no more than 1 of A1, A3, A4, and A6 is a bond; B1 and B2 are not both
I
simultaneously ' ^ ; and no more than 4 ring atoms of Ax-A8 and B^B2 are N, O, or S.
Each of X1, X2, X3, X4, X5, and X6, independently, can be hydrogen, halo, hydroxy, nitro, cyano, alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkoxy, haloalkoxy, cycloalkoxy,
halocycloalkoxy, acyl, aminoacyl, -N(RfRg), -N(Rf)SO2Rg, -SO2Rf, -S(O)2N(RfRg), -C02Rf, trialkylamino, aryl, or heteroaryl.
W can be -C(RfRg)-, -N(Rf)-, -O-, -S-, -S(O)-, or -S(O)2-.
Cy can be cycloalkyl, spirocycloalkyl, cycloalkenyl, spirocycloalkenyl, heterocyclyl, spiroheterocyclyl, aryl, or heteroaryl. Cy can be optionally substituted by 1-6 substituents selected from the group consisting of halo, hydroxy, nitro, cyano, -N(RfRg), alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
Figure imgf000005_0001
L1 can be -C(O)-, -S(O)2-, -N(Rf)C(0)-, -N(Rf)-, -C(RfRg)-, -C(RfRg)-C(RfRg)-, or a bond.
J can be -[C(RfRg)]n-, -N(Rf)-[C(RfRg)]n-, or a bond, wherein each n, independently, can bean integer from 0 to 5; or J can be
Figure imgf000005_0002
/ / .
— N — CRf
where each of D and D , independently, can be \ , or \ .
D2 can be -[C(RfRg)]k-, -[C(RfRg)]k-N(Rf)-, -[C(RfRg)]k-0-, -N(Rf)-, or
-N(Rf)-[(CRfRg)]k-. D4 can be -[C(RfRg)]m-. k can be 1 or 2; and m can be 0, 1, 2, or 3. No more than 2 ring atoms of D^D4 can be N or O.
L2 can be -C(RfRg)-, -C(RfG)-, -C(G)2-, -C(RfRg)-C(RfRg)-, -C(RfRg)-C(RfG)-,
-C(RfRg)-C(G)2-, or a bond.
At least one of L1, J, and L2 can be other than a bond.
T1 can be -C(0)(0Rf), -C(O)N(Rf)S(O)2Rf, tetrazolyl, -S(O)2ORf, -C(0)NHC(0)-Rf,
-Si(O)OH, -B(OH)2, -N(Rf)S(0)2Rf, -S(0)2NRf, -0-P(0)(0Rf)0Rf, or -P(0)2(0Rf).
Each G, independently, can be hydrogen, hydroxy, a halogen, or trifluoromethyl.
Each Rf, independently, can be hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl or NH2. Each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle can be optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG3, -OH, -NO2, alkyl, -OCG3, alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino,
dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, or
dialkylamino sulf onyl .
Each Rg, independently, can be hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, or heterocyclyl. Each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle can be optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG3, -OH, -NO2, alkyl, -OCG3, alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino, dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, can be
dialkylamino sulfonyl .
The compound can be in the form of a pharmaceutically acceptable salt. In some circumstances, A7 can be -CR3=, A8 can be -C(- W-Cy)=, B1 can be Il , and
Il
B2 can be ^ ^ . Of A^A6, 0, 1, or 2 ring atoms of Ax-A6 can be N. The remaining ring atoms of Ax-A6 can each be C. A1 can be -CX1=, A2 can be -CX2=, and A6 can be -CX6=. A3 can be -CX3=, A4 can be -CX4=, and A5 can be -CX5=.
In some circumstances, A1 can be -CX1=, A2 can be -CX2=, A6 can be -CX6=, A8 can be
^c^ Il
-C(- W-Cy)=, B1 is H , B2 can be ^C^ , and A3, A7, A4, and A5, can be, respectively: -NX3-, -C(R3Rf)-, a bond, and -C(X5)2-; -C(X3)2-, -NR3-, -C(X4)2-, and -C(X5)2-; -C(X3)2-, -C(R3Rf)-, -NX4-, and -C(X5)2-; -N=, -CR3=, -CX4=, and -CX5=; -N=, -CR3=, -N=, and -CX5=; -CX3=, -CR3=, -N=, and -CX5=; -N=, -CR3=, -CX4=, and -N=; -CX3=, -CR3=, -CX4=, and -N=; -CX3=, -CR3=, -N=, and -N=; -NX3-, -CR3=, a bond, and -CX5=; or -CX3=, -CR3=, a bond, and -NX5-.
In some circumstances, A3 can be -CX3=, A4 can be -CX4=, A5 can be -CX5=, A7 can be
-CR3=, B1 can be II , B2 can be ^°\ , and A2, A1, A8, and A6, can be, respectively: -CX2=, -CX1=, -C(-W-Cy), and -N=; -CX2=, -N=, -C(-W-Cy), and -N=; -NX2-, -CX1=, -C(-W-Cy)=, and a bond; -NX2-, a bond, -C(-W-Cy)=, and -CX6=; or -CX2=, a bond, -C(- W-Cy)=, and -NX6-.
In some circumstances, each ring atom of A1, A2, A5-A8 and B^B2 is C, and each of A3 and A4 is, independently, C or N. L1 can be -C(RfRg)- and J can be -NRf- or
Figure imgf000006_0001
wherein each of D 1 and D 3 , independently, is ~Nv \ , or ~ C\ \Rf ;
D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(RfK -[C(RfRg)]k-O-, -N(Rf)-, or -N(Rf)-[(CRfRg)]k-; and D4 is -[C(RfRg)]m-;
wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of D^D4 are N or O. Each Rf and Rg, independently, can be hydrogen or alkyl. T1 can be -C(O)(ORf). T1 can be -C(O)N(Rf)S(O2Rf), - O-P(O)(ORf)ORf, -P(O2)(ORf), tetrazolyl or -S(O)2ORf. X6 can be an electron withdrawing group. X6 can be halo, alkyl, or haloalkyl. Each G, independently, can be fluoro or hydroxy.
In some circumstances, Cy can have the formula:
Figure imgf000007_0001
Z1 can be a bond, -[C(RdRe)]x-, -CRd=CRe-, -O-, or -NRf-.
Z2 can be a bond, -[C(RdRe)]y-, -CRd=CRe-, -O-, or -NRf-.
Z3 can be a bond, -[C(RdRe)]z-, -CRd=CRe-, -O-, or -NRf-.
Each of x, y, and z, independently, can be 1, 2, or 3.
Each Rd, and each Re, independently, can be hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl.
Rla and Rlb, independently, can be hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl. Rla and Rlb, when taken together, can be C2-C5 alkylene or C2-C5 alkenylene.
R2a and R2b, independently, can be hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
Rla and R2a, when taken together, can be Ci-C5 alkylene or C2-C5 alkenylene.
Rla , Rlb, R2a, and R2b can be each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NRfRg, or -CO2Rf. Rla and R2a can be both hydrogen. Z1 can be -CH2CH2-. Z2 can be -CH2-. Z3 can be a bond.
Rlb can be fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1-dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t- butoxy, n-pentyloxy, i-pentyloxy, 1,1-dimethylpropoxy, neopentyloxy, cyclopentyloxy, n- hexyloxy, or cyclohexyloxy.
In some circumstances, W is O, Z1 is -[C(RdRe)]x-, Z2 is -[C(RdRe)]y-, and Z3 is
-[C(RdRe)]z-. In some circumstances, X2 is methyl. In some circumstances, W is -O-. In some circumstances, each ring atom of A*-A8 and B^B2 is C. In some circumstances, each ring atom of A^A3, A5-A8 and B^B2 is C, and A4 is N. In some circumstances, each ring atom of A^A2, A4- A8 and B^B2 is C, and A3 is N. The compound can be in the form of a pharmaceutically acceptable salt.
In some circumstances, A2 can be -CX2=, and X2 is fluoro, chloro, bromo, methyl, difluoromethyl, trifluoromethyl, ethyl, propyl, isopropyl or butyl.
In some circumstances, A1 can be CH; A2 can be -CX2=, and X2 is fluoro, chloro, bromo, methyl, difluoromethyl, trifluoromethyl, ethyl, propyl, isopropyl or butyl. A3 can be CH; A4 can be CH; A5 can be CH; A6 can be CH; A7 can be C(R3); A8 can be C(-W-Cy); B1 can be Il ; and B2 can be -^ ^ .
Each ring atom of A1, A2, A5-A8 and B^B2 is C, and each of A3 and A4 is, independently,
C or N. L1 can be -C(RfRg)- and J can be -NRf- or
Figure imgf000008_0001
wherein
/ / .
— N — CRf
each of D and D , independently, is \ , or \ ;
D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(RfK -[C(RfRg)]k-0-, -N(Rf)-, or
-N(Rf)-[(CRfRg)]k-; and
D4 is -[C(RfRg)]m-; wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of D^D4 are N or O. Each Rf and Rg, independently, can be hydrogen or alkyl. T1 can be -C(O)(ORf). T1 can be -C(O)N(Rf)S(O2Rf), -O-P(O)(ORf)ORf, -P(O2)(ORf), tetrazolyl or -S(O)2ORf. X6 can be an electron withdrawing group. X6 can be halo, alkyl, or haloalkyl. Each G, independently, can be fluoro or hydroxy.
In some circumstances, Cy can have the formula:
Figure imgf000009_0001
Z1 can be a bond, -[C(RdRe)]x-, -CRd=CRe-, -O-, or -NRf-.
Z2 can be a bond, -[C(RdRe)]y-, -CRd=CRe-, -O-, or -NRf-.
Z3 can be a bond, -[C(RdRe)]z-, -CRd=CRe-, -O-, or -NRf-.
Each of x, y, and z, independently, can be 1, 2, or 3.
Each Rd, and each Re, independently, can be hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl.
Rla and Rlb, independently, can be hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl. Rla and Rlb, when taken together, can be C2-Cs alkylene or C2-Cs alkenylene.
R2a and R2b, independently, can be hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl.
Rla and R2a, when taken together, can be C1-C5 alkylene or C2-C5 alkenylene.
Rla, Rlb, R2a, and R2b can be each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NRfRg, or -CO2Rf. Rla and R2a can be both hydrogen. Z1 can be -CH2CH2-. Z2 can be -CH2-. Z3 can be a bond.
Rlb can be fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1-dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t- butoxy, n-pentyloxy, i-pentyloxy, 1,1-dimethylpropoxy, neopentyloxy, cyclopentyloxy, n- hexyloxy, or cyclohexyloxy.
In some circumstances, W is O, Z1 is -[C(RdRe)]x-, Z2 is -[C(RdRe)]y-, and Z3 is
-[C(RdRe)]z-. In some circumstances, X2 is methyl. In some circumstances, W is -O-.
In another aspect, a pharmaceutical composition includes a pharmaceutically acceptable carrier and a compound of formula (I), as defined above.
In another aspect, a method for prevention or treatment of a pathological condition or symptom in a mammal, wherein the activity of sphingosine 1 -phosphate receptors is implicated and agonism of such activity is desired includes administering to said mammal an effective amount of a compound of formula (I).
In another aspect, a method for prevention or treatment of a pathological condition or symptom in a mammal, wherein the activity SlP lyase implicated and inhibition of the SlP lyase is desired includes administering to said mammal an effective amount of a compound of formula
(I).
In another aspect, a method for prevention or treatment of a pathological condition or symptom in a mammal, wherein the activity of sphingosine 1 -phosphate receptors is implicated and antagonism of such activity is desired includes administering to said mammal an effective amount of a compound of formula (I).
In another aspect, the pathological condition can be multiple sclerosis, autoimmune diseases, chronic inflammatory disorders, asthma, inflammatory neuropathies, arthritis, transplantation, Crohn's disease, ulcerative colitis, lupus erythematosis, psoriasis, ischemia- reperfusion injury, solid tumours, tumour metastasis, diseases associated with angiogenesis, vascular diseases, pain conditions, acute viral diseases, inflammatory bowel conditions, insulin or non-insulin dependant diabetes, inhibited cell migration, over-proliferation and secretion of effector cytokines, or lack of secretion of the suppressive cytokine IL-IO. In another aspect, the compound exhibits SlPi agonist activity. In another aspect, the compound exhibits SlPi agonist activity and is substantially free of SlP3 agonist and antagonist activity.
In another aspect, the compound exhibits SIP5 antagonist activity. In another aspect, the compound exhibits SIP5 agonist activity.
In another aspect, the compound exhibits SIP4 antagonist activity. In another aspect, the compound exhibits SIP4 agonist activity.
In another embodiment, the invention is directed to the examples having formula (I), pharmaceutically acceptable salts thereof, or when the example having formula (I) is a salt, a free base of that salt.
The compound of formula (I) can be a compound of formula (Ha)-(IId):
Figure imgf000011_0001
(lie) (Hd)
a compound of formula (HIa)-(IIIg):
Figure imgf000012_0001
a compound of formula (IVa)-(IVc):
Figure imgf000012_0002
a compound of formula (Va)-(Vc):
Figure imgf000012_0003
or a compound of formula (VIa)-(VIc):
Figure imgf000012_0004
In certain circumstances, the compound is of formula (Ha), (Ilia) or (HIb). The details of one or more embodiments are set forth in the accompanying description below. Other features, objects, and advantages will be apparent from the description and from the claims. Detailed Description
The following abbreviations are used herein: SlP, sphingosine-1 -phosphate; SIP1-5, SlP receptor types 1-5; GPCR, G-protein coupled receptor; SAR, structure-activity relationship; EDG, endothelial cell differentiation gene; EAE, experimental autoimmune encephalomyelitis; NOD non-obese diabetic; TNFα, tumor necrosis factor alpha; HDL, high density lipoprotein; and RT-PCR, reverse transcriptase polymerase chain reaction.
The values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents. The disclosed compounds include compounds of formula I having any combination of the values, specific values, more specific values, and preferred values described herein.
The term "halogen" or "halo" includes bromo, chloro, fluoro, and iodo. The term
"haloalkyl", refers to an alkyl radical bearing at least one halogen substituent, non-limiting examples include, but are not limited to, chloromethyl, fluoroethyl, trichloromethyl, or trifluoromethyl and the like.
The term "C1-C20 alkyl" refers to a branched or linear alkyl group having from one to twenty carbons. Non-limiting examples include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, butyl, iso-butyl, sec -butyl, tert-butyl, pentyl, hexyl, heptyl, oroctyl and the like.
The term "C2-C20 alkenyl", refers to an olefinically unsaturated branched or linear group having from two to twenty carbon atoms and at least one double bond. Typically, C2-C20 alkenyl groups include, but are not limited to, 1-propenyl, 2-propenyl, 1,3-butadienyl, 1-butenyl, hexenyl, pentenyl, hexenyl, heptenyl, or octenyl and the like.
The term (C2-C2o)alkynyl can be ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1- hexynyl, 2-hexynyl, 3-hexynyl, A- hexynyl, or 5-hexynyl, and the like. The term "(Ci-Cio)alkoxy" refers to an alkyl group attached through an oxygen atom. Examples of (Ci-Cio)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexyloxy, and the like.
The term "(C3-Ci2)cycloalkyl" refers to a cyclic alkyl group, such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl, and the like.
Cyloalkyl groups include bicyclic groups such as decalinyl, bridged bicyclic groups such as norbornyl or bicyclo[2.2.2]octyl, tricyclic, bridged tricyclic such as adamantyl, or spiro-linked bicyclic or tricyclic groups.
The term "(C6-Ci4)aryl" refers to a monocyclic, bicyclic, or tricyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, benzyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, or anthracyl, and the like.
The term "aryl(Ci-C2o)alkyl" or "arylalkyl" or "aralkyl" refers to an alkyl group substituted with a mono or bicyclic carbocyclic ring system having one or two aromatic rings including, a group such as phenyl, naphthyl, tetrahydronaphthyl, indanyl, or indenyl, and the like. Non-limiting examples of arylalkyl include benzyl, or phenylethyl, and the like.
The term "(Ci-Ci4)heterocyclic group" refers to an optionally substituted mono- or bicyclic carbocyclic ring system containing one, two, three, or four heteroatoms (optionally in each ring) wherein the heteroatoms are oxygen, sulfur, and nitrogen.
The term "(C4-Ci4)heteroaryl" refers to an optionally substituted mono- or bicyclic cyclic ring system containing one, two, or three heteroatoms (optionally in each ring) wherein the heteroatoms are oxygen, sulfur, or nitrogen. Non-limiting examples of heteroaryl groups include furyl, thienyl, or pyridyl, and the like.
The term "phosphate analog" and "phosphonate analog" comprise analogs of phosphate and phosphonate wherein the phosphorous atom is in the +5 oxidation state and one or more of the oxygen atoms is replaced with a non-oxygen moiety, including for example, the phosphate analogs phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, or boronophosphates, and the like, including associated counterions, e.g., H+, NH4 +, Na+, or K+, and the like if such counterions are present. The term "α/p/zα-substituted phosphonate" includes phosphonate (-CH2PO3H2) groups that are substituted on the alpha-carbon such as -CHFPO3H2, -CF2PO3H2, -CHOHPO3H2, or -C=OPO3H2) and the like.
The term "pharmaceutically acceptable carrier" includes any of the standard 5 pharmaceutical carriers, such as a phosphate buffered saline solution, hydroxypropyl beta- cyclodextrins (HO-propyl beta cyclodextrins), water, emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents. The term also encompasses any of the agents approved by a regulatory agency of the U.S. Federal government or listed in the U.S.
Pharmacopeia for use in animals, including humans.
0 The term "pharmaceutically-acceptable salt" refers to salts which retain the biological effectiveness and properties of the disclosed compounds and which are not biologically or otherwise undesirable. In many cases, the disclosed compounds are capable of forming acid or base salts by virtue of the presence of amino or carboxyl groups or groups similar thereto.
The term "prodrug" refers to a compound that is converted under physiological5 conditions, e.g., by solvolysis or metabolically, to a compound that is pharmaceutically active, such as a compound of formula (I). A prodrug may be a derivative of a compound of formula (I) that contains a carboxylic or phosphoric acid ester or amide moiety that may be cleaved under physiological conditions. A prodrug containing such a moiety may be prepared according to conventional procedures, for example, by treatment of a compound of this invention containingo an amino, amido or hydroxyl moiety with a suitable derivatizing agent, for example, a carboxylic or phosphoric acid halide or acid anhydride, or by converting a carboxyl moiety to an ester or amide. Metabolites of the compounds of formula (I) may also be pharmaceutically active as well.
An "effective amount" means an amount sufficient to produce a selected effect. For example, an effective amount of an SlP receptor agonist is an amount that decreases the cell5 signaling activity of the SlP receptor.
The disclosed compounds can contain one or more asymmetric centers in the molecule. In accordance with the present disclosure any structure that does not designate the
stereochemistry is to be understood as embracing all the various optical isomers (e.g., diastereomers and enantiomers), as well as mixtures thereof (such as a racemic mixture). Theo compounds can be isotopically-labeled compounds, for example, compounds including various isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, iodine, or chlorine. The disclosed compounds may exist in tautomeric forms and the invention includes both mixtures and separate individual tautomers. For example, the following structure:
HN^N is understood to represent a mixture of the structures:
HN^N N^NH as well as
An "SlP modulating agent" refers a compound or composition that is capable of inducing a detectable change in SlP receptor activity in vivo or in vitro {e.g., at least 10% increase or decrease in SlP activity as measured by a given assay such as the bioassay described in the examples and known in the art. "SlP receptor," refers to all of the SlP receptor subtypes (for example, the SlP receptors SlPi, SlP2, SlP3, SIP4, or SIP5), unless the specific subtype is indicated.
It will be appreciated by those skilled in the art that the disclosed compounds having chiral centers may exist in and be isolated in optically active and racemic forms. It is to be understood that the disclosed compounds encompass any racemic, optically active or
stereoisomeric form, or mixtures thereof. It is well known in the art how to prepare such optically active forms (for example, resolution of the racemic form by recrystallization techniques, synthesis from optically-active starting materials, by chiral synthesis, or
chromatographic separation using a chiral stationary phase) and how to determine SlP agonist activity using the standard tests described herein, or using other similar tests which are well known in the art. In addition, some compounds may exhibit polymorphism.
Potential uses of an SlP receptor agonist, and SlPi receptor type selective agonists particularly, include, but are not limited to, prevention or treatement of a pathological condition or symptom in a mammal. For example, the condition can include asthma, inflammatory neuropathies, arthritis, lupus erythematosis, psoriasis, ischemia-reperfusion injury, solid tumours, tumour metastasis, diseases associated with angiogenesis, vascular diseases, pain conditions, acute viral diseases, or insulin and non-insulin dependant diabetes. The condition can alter lymphocyte trafficking as a method of treatment for neuropathic pain, inflammation-induced pain (e.g., where prostaglandins are involved) or treatment of autoimmune pathologies such as uveitis, type I diabetes, rheumatoid arthritis, chronic inflammatory disorders, inflammatory bowel diseases (e.g., Crohn's disease and ulcerative colitis), multiple sclerosis, and in drug- eluting stents. Additional uses can include treatment of brain degenerative diseases, heart diseases, cancers, or hepatitis C. See, for example, WO 2005/085295, WO 2004/010987, WO 03/097028, and WO 2006/072562, each of which is incorporated by reference in its entirety. A class of SlP agonist compounds are described in provisional U.S. Application no. 60/956,111, filed August 15, 2007, and PCT/US2008/073378, filed August 15, 2008, each of which is incorporated by reference in its entirety.
Potential uses of an SlP receptor antagonist, and SIP5 receptor type selective antagonists particularly, include, but are not limited to, prevention or treatement of a pathological condition or symptom in a mammal. For example, the condition can include inhibited cell migration of oligodendrocyte precursor cells (OPCs). In another example, an SIP5 receptor type selective antagonist may not induce lymphopenia, thereby achieving partial efficacy without
immuno suppres sion .
Potential uses of an SlP receptor antagonist, and SIP4 receptor type selective antagonists particularly, include, but are not limited to, prevention or treatement of a pathological condition or symptom in a mammal.
"Treatment" of multiple sclerosis includes treating various forms of the disease including relapsing-remitting, chronic progressive, and the SlP receptor agonists/antagonists can be used alone or in conjunction with other agents to relieve signs and symptoms of the disease as well as prophylactically.
In addition, the disclosed compounds can be used for altering lymphocyte trafficking as a method for prolonging allograft survival, for example transplantation including solid organ transplants, treatment of graft vs. host disease, bone marrow transplantation, and the like.
In addition, the disclosed compounds can be used to inhibit autotaxin. Autotaxin, a plasma phosphodiesterase, has been demonstrated to undergo end product inhibition. Autotaxin hydrolyzes several substrates to yield lysophosphatidic acid and sphingosine 1 -phosphate, and has been implicated in cancer progression and angiogenesis. Therefore, SlP receptor agonist prodrugs of the disclosed compounds can be used to inhibit autotaxin. This activity may be combined with agonism at SlP receptors or may be independent of such activity.
Disclosed compounds can be useful for inhibition of sphingosine kinase (i.e., of sphingosine kinase I, sphingosine kinase II, or both). Sphingosine kinase is an intracellular enzyme that catalyzes the formation of SlP from sphingosine and a nucleotide triphosphate (e.g., ATP). Inhibition of sphingosine kinase can reduce the formation of SlP and thereby reduce the supply of SlP available to activate signaling at SlP receptors. Accordingly, sphingosine kinase inhibitors can be useful in modulating immune system function. Therefore, the disclosed compounds can be used to inhibit sphingosine kinase. This inhibition could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
In addition, disclosed compounds can be useful for inhibition of SlP lyase. SlP lyase is an intracellular enzyme that irreversibly degrades SlP. Inhibition of SlP lyase disrupts lymphocyte trafficking with concomitant lymphopenia. Accordingly, SlP lyase inhibitors can be useful in modulating immune system function. Therefore, the disclosed compounds can be used to inhibit SlP lyase. This inhibition could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
In addition, disclosed compounds can be useful as antagonists of the cannabinoid CBi receptor. CBi antagonism is associated with a decrease in body weight and an improvement in blood lipid profiles. The CBi antagonism could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
In addition, disclosed compounds can be useful for inhibition of group IVA cytosolic PLA2 (cPLA2). cPLA2 catalyzes the release of eicosanoic acids (e.g., arachidonic acid). The eicosanoic acids are transformed to pro-inflammatory eicosanoids such as prostaglandins and leukotrienes. Thus, disclosed compounds may be useful as anti-inflammatory agents. This inhibition could be in concert with SlP receptor activity, or be independent of activity at any SlP receptor.
In addition, disclosed compounds may be useful for inhibition of the multiple substrate lipid kinase (MuLK). MuLK is highly expressed in many human tumor cells and thus its inhibition might slow the growth or spread of tumors.
Pharmaceutical compositions can include the compounds of formula I. More particularly, such compounds can be formulated as pharmaceutical compositions using standard
pharmaceutically acceptable carriers, fillers, solubilizing agents and stabilizers known to those skilled in the art. For example, a pharmaceutical composition including a compound of formula I, or a salt, analog, derivative, or modification thereof, as described herein, is used to administer the appropriate compound to a subject. The compounds of formula I are useful for treating a disease or disorder including administering to a subject in need thereof of a therapeutically acceptable amount of a compound of formula I, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula I, and a pharmaceutically-acceptable carrier.
The disclosed compounds and method are directed to sphingosine 1-phosphate (SlP) analogs that have activity as receptor agonists or receptor antagonists at one or more SlP receptors, specifically the SlPi, SlP4 or SIP5 receptor types. The disclosed compounds and method include both compounds that have a phosphate moiety as well as compounds with hydrolysis-resistant phosphate surrogates such as phosphonates, alpha- substituted phosphonates (particularly where the alpha substitution is a halogen), or phosphothionates.
In cases where compounds of formula I are sufficiently basic or acidic to form stable nontoxic acid or base salts, preparation and administration of the compounds as pharmaceutically acceptable salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, α- ketoglutarate, or α-glycerophosphate. Inorganic salts may also be formed, including
hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.
Pharmaceutically-acceptable base addition salts can be prepared from inorganic and organic bases. Salts from inorganic bases, include but are not limited to, sodium, potassium, lithium, ammonium, calcium or magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary or tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substituted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, disubstituted cycloalkyl amine, trisubstituted cycloalkyl amines, cycloalkenyl amines, di(cycloalkenyl) amines, tri(cycloalkenyl) amines, substituted cycloalkenyl amines, disubstituted cycloalkenyl amine, trisubstituted cycloalkenyl amines, aryl amines, diaryl amines, triaryl amines, heteroaryl amines, diheteroaryl amines, triheteroaryl amines, heterocyclic amines, diheterocyclic amines, triheterocyclic amines, or mixed di- and tri-amines where at least two of the substituents on the amine are different and are alkyl, substituted alkyl, alkenyl, substituted alkenyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic and the like. Also included are amines where the two or three substituents, together with the amino nitrogen, form a heterocyclic or heteroaryl group. Non-limiting examples of amines include, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2- dimethylaminoethanol, tromethamine, lysine, arginine, histidine, caffeine, procaine,
hydrabamine, choline, betaine, ethylenediamine, glucosamine, N-alkylglucamines, theobromine, purines, piperazine, piperidine, morpholine, or N-ethylpiperidine, and the like. It should also be understood that other carboxylic acid derivatives would be useful, for example, carboxylic acid amides, including carboxamides, lower alkyl carboxamides, or dialkyl carboxamides, and the like.
The compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration, e.g., orally or parenterally, as eyedrops, by intravenous, intramuscular, topical or subcutaneous routes.
Thus, the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, or wafers, and the like. Such compositions and preparations should contain at least about 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained. The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl or propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices.
The active compound may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of
microorganisms.
Exemplary pharmaceutical dosage forms for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, or nontoxic glyceryl esters, and mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, or thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate or gelatin.
Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
For topical administration, the present compounds may be applied in pure form, e.g., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
Exemplary solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
Thickeners such as synthetic polymers, fatty acids, fatty acid salts or esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
Examples of useful dermatological compositions which can be used to deliver the compounds of formula I to the skin are known to the art; for example, see Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508), each of which is incorporated by reference in its entirety.
Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949, which is incorporated by reference in its entirety.
Generally, the concentration of the compound(s) of formula I in a liquid composition, such as a lotion, will be from about 0.1 to about 25 weight percent, preferably from about 0.5-10 weight percent. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 weight percent based on the total weight of the composition.
The amount of the compound, or an active salt or derivative thereof, required for use in treatment will vary not only with the particular salt selected but also with the route of
administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician. In general, however, a dose will be in the range of from about 0.1 to about 10 mg/kg of body weight per day.
The compound is conveniently administered in unit dosage form; for example, containing 0.01 to 10 mg, or 0.05 to 1 mg, of active ingredient per unit dosage form. In some embodiments, a dose of 5 mg/kg or less is suitable.
Ideally, the active ingredient should be administered to achieve peak plasma
concentrations of the active compound of from about 0.5 to about 75 μM, preferably, about 1 to 50 μM, most preferably, about 2 to about 30 μM. This may be achieved, for example, by the intravenous injection of a 0.05 to 5% solution of the active ingredient, optionally in saline, or orally administered as a bolus containing about 1-100 mg of the active ingredient. Desirable blood levels may be maintained by continuous infusion to provide about 0.01-5.0 mg/kg/hr or by intermittent infusions containing about 0.4-15 mg/kg of the active ingredient(s).
The desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four, or more sub-doses per day. The sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator or by application of a plurality of drops into the eye.
The disclosed method includes a kit comprising a compound of formula I and
instructional material which describes administering the compound or a composition comprising the compound to a cell or a subject. This should be construed to include other embodiments of kits that are known to those skilled in the art, such as a kit comprising a (preferably sterile) solvent for dissolving or suspending the compound or composition prior to administering the compound or composition to a cell or a subject. Preferably, the subject is a human.
Compounds can have an EC50 of between 5 nM and 3 μM when acting as selective agonists for SlPi receptors. While the EC50 of certain compounds acting as agonists to SlPi and SIP3 receptors can be greater than 5000 nM, these same compounds can have an EC50 of 0.2 nM - 700 nM when acting as selective antagonists for SIP5 receptors and 50 nM - 3 μM when acting as selective antagonists for SIP4 receptors.
In accordance with the disclosed compounds and methods, as described above or as discussed in the Examples below, there can be employed conventional chemical, cellular, histochemical, biochemical, molecular biology, microbiology, and in vivo techniques which are known to those of skill in the art. Such techniques are explained fully in the literature.
The following working examples are provided for the purpose of illustration only, and are not to be construed as limiting in any way the remainder of the disclosure. Therefore, the examples should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.
Examples
Example 1: cis-4-tør/-butylcyclohexyl methanesulfonate
Figure imgf000024_0001
Cis-4-?-butylcyclohexanol (6.0 g, 38.5 mmol, 1.0 eq.) was dissolved in dichloromethane (10 mL). Then methanesulfonic anhydride (8.03 g, 46.2 mmol, 1.1 eq.) was added to the mixture slowly at 0 0C. Then triethylamine (6.4 mL, 46.2 mmol, 1.5 eq.) was added to the mixture and the mixture stirred at room temperature for 3h. The mixture was extracted with dichloromethane and the organic layer was concentrated to give product as a white power (8.0 g, yield: 90%). The product was used to next step without further purification. 1H NMR (400 MHz, CDCl3) δ 4.99- 4.98 (m, IH), 3.02 (s, 3H), 2.14-2.12 (m, 2H), 1.65-1.28 (m, 7H), 0.84 (s, 9H).
Example 2: 2-bromo-6-(trans-4-ter/-butylcyclohexyloxy)naphthalene
Figure imgf000025_0001
t-butanol/2-butanone (2/1 ;
1 1 O0C, 15h
6-bromonaphthalen-2-ol (CAS no. 15231-91-1) (3.0 g, 14.8 mmol, 1.0 eq.) was dissolved in a mixture of £-butanol/2-butanone (4 mL/2 rnL). Then cesium carbonate (12 g, 37.2 mmol, 2.5 eq.) was added to the mixture and the mixture was stirred at 110 0C for 10 min. Then trans-4- te/t-butylcyclohexyl methanesulfonate (3.48 g, 16.2 mmol, 1.1 eq.) was added to the mixture. The suspension was stirred at 110 0C under a nitrogen atmosphere for 15 h. The reaction mixture was extracted with ethyl acetate and the organic layer was purified by silica gel column chromatography using petroleum ether as eluent to give 2-bromo-6-(trans-4-tert- butylcyclohexyloxy)naphthalene as a slight yellow solid (1.7 g, yield: 32%). ESI-MS: 361.0 (M+H)+. 1U NMR (400 MHz, CDCl3) δ 7.89 (s, IH), 7.63 (d, IH), 7.56 (d, IH), 7.47 (d, IH), 7.15-7.11 (m, 2H), 4.26-4.24 (m, IH), 2.27-2.25 (m, 2H), 1.89-1.87 (m, 2H), 1.45-1.09 (m, 5H), 0.89 (s, 9H). Example 3: 6-(trans-4-tør/-butylcyclohexyloxy)-2-naphthaldehyde min
Figure imgf000025_0002
2-bromo-6-(trans-4-tert-butylcyclohexyloxy)naphthalene (2.249 g, 6.25 mmol, 1.0 eq.) was dissolved in THF (10 mL) under nitrogen atmosphere. Then the mixture was cooled down to -78 0C and a solution of n-BuLi in THF (2.5 M, 7.5 mL, 18.8 mmol, 3.0 eq.) was added to the mixture dropwise. The mixture was stirred at -78 0C for 15 min. Then DMF (2.4 mL, 31.2 mmol, 5.0 eq.) was added to the mixture and stirred at -78 0C for 1 h. When the reaction completed, 1 M HCl was added to adjust the pH to 6. The mixture was extracted with EtOAc and the organic layer was concentrated and purified by silica gel chromatography using petroleum ether/ethyl acetate (10/1) as eluent to give 6-(trans-4-te/t-butylcyclohexyloxy)-2-naphthaldehyde as a white solid (1.16 g, 60 %). EDI-MS: 311.1 (M+H)+. 1H NMR (400 MHz, CDCl3) δ 10.08 (s, IH), 8.24 (s, IH), 7.92-7.87 (m, 2H), 7.77 (d, IH), 7.22-7.19 (m, 2H), 4.42-4.30 (m, IH), 2.30-2.28 (m, 2H), 1.93-1.90 (m, 2H), 1.48-1.11 (m, 5H), 0.82 (s, 9H).
Example 4: 2-bromo-6-(trans-4-ter/-butylcyclohexyloxy)naphthalene (alternate synthesis)
Figure imgf000026_0001
To a solution of 6-bromonaphthalen-2-ol (100.0 g, 450.1 mmol), triphenylphosphine (230 g, 877.8 mmol, 2.0 eq) and ds-4-£-butylcyclohexanol (105.4 g, 675.7 mmol; 1.5 eq) in toluene (1.5 L), was added dropwise diisopropyl azodicarboxylate (170 g, 850.0 mmol, 2.0 eq) at 0 0C. The addition took ~2 hrs and the resulting mixture was warmed to 26-30 0C. After 24 hrs, thin layer chromatography showed near complete consumption of 6-bromonaphthalen-2-ol. The mixture was then cooled to 5 0C and stirred at that temperature for 2 hrs, over which solids precipitated and were filtered. The filtrate was concentrated to near dryness to afford an oil, which was taken up in 200 mL methylene chloride and purified by silica gel chromatography with 100% petroleum ether. After concentration, 127 g product was obtained as a white solid (yield: 79.1%). EDI-MS: 361.1 (M+H)\.
Example 5: 6-bromo-2-(trans-4-tør/-butylcyclohexyloxy)-l-iodonaphthalene
Figure imgf000026_0002
A solution of 2-bromo-6-(trans-4-tert-butylcyclohexyloxy)naphthalene
(160.0 g, 444.4 mmol) in methylene chloride (2.5 L) was purged under an atmosphere of argon. N-iodosuccinimide (202.1 g, 888.8 mmol) and zirconium tetrachloride (20.4 g, 88.9 mmol) was added and the reaction was stirred at room temperature under an atmosphere of argon. The reaction was monitored by 1H NMR and showed complete conversion to product after 30 minutes. The mixture was then concentrated under reduced pressure to give -250 g crude as a brown solid. The crude material was purified by silica gel chromatography with hexanes to give 200 g of desired product as a brown solid (yield: 92.6%). EDI-MS: 487.1 (M+H)+.
Example 6: 6-bromo-2-(trans-4-ter/-butylcyclohexyloxy)-l-(trifluoromethyl)naphthalene
Figure imgf000027_0001
A solution of 6-bromo-2-(trans-4-tert-butylcyclohexyloxy)-l-iodonaphthalene
(210.0 g, 433 mmol), hexamethylphosphoramide (386.4 g, 2.16 mol; 5 eq) in N,N- dimethylformamide (2.0 L) was degassed by stirring under vacuum and replacing the vacuum with argon (4 times). To this mixture was added copper(I) iodide (140.0 g, 735 mmol; 1.7 eq) and methyl fluorosulphonyldifluoroacetate (415 g, 2.16 mol; 5 eq). The reaction mixture was warmed to 80 0C under an atmosphere of argon. After stirring for 6 hrs, thin layer
chromatography showed complete conversion to product. Saturated NaHCO3 solution was added to adjust the final pH to 9-10 followed by adding EtOAc (3.5 L). The mixture was extracted with EtOAc (2.5 L x 3), and washed with brine (1.0 L x 4), then dried over Na2SO4 (500 g). The solvent was removed under reduced pressure to give crude 195 g as a sticky off white solid with purity of >90%, which was purified by silica gel chromatography with 0-30% EtOAc in hexanes to give the final product (156 g, 84.3%). EDI-MS: 430.0 (M+H)+.
Example 7: tert-butyl 3-oxo-3-(phenylsulfonamido)propylcarbamate
Figure imgf000027_0002
3-(rer?-butoxycarbonylamino)propanoic acid (4 g, 21.2 mmol, 1.0 equiv) was dissolved in DCM (100 mL). Then phenylsulfonamide (15.1 mmol, 0.7 equiv), EDCI (3.45 g, 18.2 mmol, 0.85 equiv) and DMAP (0.37 g, 3 mmol, 0.15 equiv) were added to the mixture and stirred for 2 h at room temperature. The reaction mixture was cooled down to 0 0C, ice water (100 mL) was added. The mixture was stirred for 15 min, separated and the water layer was extracted twice with dichloromethane. The combined organic layer was washed by 5% HCl, brine, dried over Na2SO4, concentrated to give tert-butyl 3-oxo-3-(phenylsulfonamido)propylcarbamate 5.3 g, gray oil, 100%. EDI-MS: 329.0 (M+H)\. 1U NMR (400 MHz, CDCl3) δ: 9.52-9.43 (brs, IH), 8.02-7.96 (m, 2H), 7.61-7.55 (m, IH), 7.50-7.45 (m, 2H), 5.02-4.93 (m, IH), 3.30-3.24 (m, 2H), 2.48-2.41 (m, 2H), 1.34 (s, 9H). Example 8: 3-amino-N-(phenylsulfonyl)propanamide
Figure imgf000028_0001
Tert-butyl 3-oxo-3-(phenylsulfonamido)propylcarbamate (3.6 g, 15.1 mmol) was dissolved in dichloromethane (60 niL). Then CF3COOH (1.1 niL, 0.3 mmol, 20 equiv ) was added to the mixture at 0 0C and stirred for 2 h at 0 0C The reaction mixture was concentrated and purified by flash chromatography to give 3-amino-N-(phenylsulfonyl)propanamide as a white solid (1.4 g, 40%). EDI-MS: 229.0 (M+H)+. 1H NMR (400 MHz, DMSO-d6) δ: 7.79-7.71 (m, 2H), 7.70-7.43 (brs, 3H), 7.42-7.34 (m, 3H), 2.83 (t, 2H), 2.24 (t, 2H).
Example 9: 3-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methylamino)-N- (phenylsulfonyl)propanamide
Figure imgf000028_0002
6-(Trans-4-te/t-butylcyclohexyloxy)-2-naphthaldehyde (300 mg, 0.96 mmol, 1 equiv) and 3-amino-N-(phenylsulfonyl)propanamide (1.19 mmol, 1.5 equiv) were dissolved in anhydrous ethanol. The mixture was stirred at 800C for 1 h. Then NaBH3CN (110 mg, 1.74 mmol, 2 equiv) was added to the mixture and stirred at 80 0C for 16 h. The organic layer was concentrated and purified by preparative thin layer chromatography (mobile phase was methanol: dichloromethane 1:10) to give 3-((6-(trans-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-N-(phenylsulfonyl)propanamideas a white solid..284 mg, white solid, 62%. ESI-MS: 523.0 (M+H)+. HPLC: 99.42%. 1H NMR (400 MHz, DMSO-d6) δ: 7.91 (s, IH), 7.85-7.82 (m, 2H), 7.74-7.72 (m, 2H), 7.53~7.51(m, IH), 7.41~7.35(m, 4H), 7.20-7.15 (m, IH), 4.45-4.40 (m, IH), 4.23 (s, 2H), 2.99 (t, 2H), 2.33 (t, 2H), 2.28-2.16 (m, 2H), 1.89-1.78 (m, 2H), 1.41-1.31 (m, 2H), 1.27-1.17 (m, 2H), 1.13-1.06 (m, IH), 0.89 (s, 9H). Example 10: 3-((6-(trans-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)-N-(phenylsulfonyl)propanamide
Figure imgf000029_0001
6-(trans-4-fer?-butylcyclohexyloxy)-5-(trifluoromethyl)-2-naphthaldehyde (300 mg, 0.96 mmol, 1 equiv) and 3-amino-N-(phenylsulfonyl)propanamide (1.19 mmol, 1.5 equiv) were dissolved in anhydrous ethanol. The mixture was stirred at 800C for 1 h. Then NaBH3CN (110 mg, 1.74 mmol, 2 equiv) was added to the mixture and stirred at 80 0C for 16 h. The organic layer was concentrated and purified by preparative thin layer chromatography (mobile phase was methanol :dichloromethane 1:10) to give 3-((6-(trans-4-tert-butylcyclohexyloxy)-5- (trifluoromethyl)naphthalen-2-yl)methylamino)-N-(phenylsulfonyl)propanamide as a white solid. 120 mg, white solid, 53%. ESI-MS: 591.0 (M+H)\. HPLC: 98.05%. 1H NMR (400 MHz, DMSOd6) δ: 8.22-8.13 (m, IH), 8.11-8.04 (m, 2H), 7.79-7.63 (m, 4H), 7.45~7.30(m, 3H), 4.63~4.49(m, IH), 4.27 (s, 2H), 2.99 (t, 2H), 2.32 (t, 2H), 2.19-2.07 (m, 2H), 1.85-1.74 (m, 2H), 1.45-1.30 (m, 2H), 125-1.12 (m, 2H), 1.10-0.97 (m, IH), 0.86 (s, 9H).
Example 11: methyl 2-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoate
Figure imgf000029_0002
NaBH3CN , AcOH , DCE, ref lux, 2h
A mixture of 6-(trans-4-te/t-butylcyclohexyloxy)-2-naphthaldehyde (155 mg, 0.5 mmol), methyl 2-aminopropanoate (103 mg, 1.0 mmol, 2.0 equiv) and AcOH (59 mg, 1.0 mmol, 2.0 equiv) in anhydrous dichloroethane (20 mL) was refluxed for 30 min, cooled to 23 0C, NaBH3CN (60 mg, 1.0 mmol, 2.0 equiv) was added, the resulted mixture was refluxed for 1 h. The reaction mixture was concentrated in vacuum and the residue was purified by
chromatography with silica gel (dichloromethane: methanol 20:1) to give methyl 2-((6-(trans-4- fer?-butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoate as a white solid (277 mg, yield: 70%). ESI-MS: 398.1 (M+H)+. HPLC: 96.09%. 1H NMR (400 MHz, CD3OD) δ: 7.83 (s, IH), 7.79 (d, IH), 7.74 (d, IH), 7.43 (dd, IH), 7.22 (d, IH), 7.10 (dd, IH), 4.28-4.33 (m, 3H), 4.13 (q, IH), 3.80 (s, 3H), 2.21 (d, 2H), 1.85 (d, 2H), 1.56 (d, 3H), 1.31-1.37 (m, 2H), 1.17-1.24 (m, 2H), 1.05-1.11 (m, IH), 0.85 (s, 9H). Example 12: 2-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoic acid
Figure imgf000030_0001
To a solution of methyl 2-((6-(trans-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoate (100 mg, 0.25 mmol) in ethanol (10 mL) was added aqueous NaOH (3 mL, 20%, 5.0 eq.) and refluxed for 1 hr. Then the reaction was cooled to 0 0C, the pH of the solution was adjusted to 6 with 1 M HCl, concentrated and the residue was dissolved in dichloromethane, washed with water, dried and concentrated to give 2-((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid as a white solid (70 mg, yield: 75%). ESI-MS: 384.1 (M+H)+. HPLC: 97.18%. 1H NMR (400 MHz, CD3OD) δ: 7.88 (s, IH), 7.83 (d, IH), 7.73 (d, IH), 7.49 (dd, IH), 7.26 (d, IH), 7.15 (dd, IH), 4.29-4.38 (m, 3H), 4.04 (q, IH), 2.25 (d, 2H), 1.90 (d, 2H), 1.60 (d, 3H), 1.36-1.44 (m, 2H), 1.21-1.31 (m, 2H),1.09-1.15 (m, IH), 0.89 (s, 9H).
Example 13: ethyl 3-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methylamino) butanoate
Figure imgf000031_0001
NaBH(OAc)3, AcOH, DCE, r.t.,
6-(trans-4-fer?-butylcyclohexyloxy)-2-naphthaldehyde (30 mg, 0.097 mmol), ethyl 3- aminobutanoate (CAS no. 5303-65-l)(19 mg, 0.145 mmol), and acetic acid (17 mg, 0.291 mmol) were dissolved in dichloroethane (2 mL). The mixture was stirred at r.t. for 10 min under nitrogen atmosphere. Then NaBH(OAc)3 (41 mg, 0.194 mmol) was added to the mixture and the mixture was stirred at r.t. for 15 h. Then saturated NaHCO3 was added to the mixture to adjust the pH to 8. The mixture was extracted with ethyl acetate and the organic layer was purified by silica gel column chromatography using dichloromethane:methanol 10:1 to give product ethyl 3- ((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methylamino)butanoate (40 mg, 88%) as a slight yellow solid. ESI-MS: 426.1 (M+H)+. 1H NMR (400 MHz, CDCl3) δ 7.70-7.65 (m, 3H), 7.41 (d, IH), 7.13-7.09 (m, 2H), 4.28-4.23 (m, IH), 4.12 (q, 2H), 3.98-3.88 (m, 2H), 3.22-3.18 (m, IH), 2.53-2.42 (m, 2H), 2.28-2.25 (m, 2H), 1.90-1.87 (m, 2H), 1.45-1.42 (m, 2H), 1.26-1.09 (m, 9H), 0.90 (s, 9H).
Example 14: 3-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methylamino)butanoic acid
Figure imgf000031_0002
Synthesis was performed as described for 2-((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid.
9 mg, slight yellow oil, yield: 27%. ESI-MS: 398.1 (M+H)+. HPLC: 91.26%. 1H NMR (400 MHz, CDCl3) δ 7.70-7.61 (m, 3H), 7.45 (d, IH), 7.07 (t, 2H), 4.20-4.17 (m, 2H), 3.98-3.95 (m, IH), 3.18-3.16 (m, IH), 2.43-2.42 (m, 2H), 2.24-2.18 (m, 2H), 1.87-1.84 (m, 2H), 1.34-1.17 (m, 8H), 0.91 (s, 9H). Example 15: ethyl 2-(((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(methyl)amino)acetate
Figure imgf000032_0001
A mixture of 6-(trans-4-?er?-butylcyclohexyloxy)-2-naphthaldehyde (155 mg, 0.5 mmol) and ethyl 2-(methylamino)acetate (117 mg, 1.0 mmol, 2.0 equiv) in anhydrous ethanol (20 mL) was refluxed for 2 hr and evaporated in vacuum to dryness. Anhydrous EtOH was added and refluxed for 1 hr, and then the mixture was cooled to 23 0C. NaBH3CN (60 mg, 1.0 mmol, 2.0 equiv) was added. The resulted mixture was refluxed for 1 h. The reaction mixture was concentrated in vacuum and the residue was purified by chromatography with silica gel
(dichloromethane: methanol 20:1) to give product ethyl 2-(((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methyl)(methyl)amino)acetate as a white solid (82 mg, yield: 40%). ESI-MS: 411.3 (M+H)+. HPLC: 98.93%. 1H NMR (400 MHz, CDCl3) δ 7.71-7.67 (m, 3H), 7.00 (d, IH), 7.14-7.13 (m, 2H), 4.30-4.28 (m, IH), 4.18 (q, 2H), 3.82 (s, 3H), 3.30 (s, 2H), 2.45 (s, 3H), 2.29-2.27 (m, 2H), 1.91-1.88 (m, 2H), 1.46-1.42 (m, 2H), 1.29-1.22 (m, 3H), 0.90 (s, 9H).
Example 16: 2-(((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(methyl)amino) acetic acid
Figure imgf000032_0002
Synthesis was performed as described for 2-((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid.
14mg, gray solid, yield: 75%. ESI-MS: 383.3 (M+H)\. HPLC: 95.11%. 1U NMR (400 MHz,
CD3OD) δ 7.98 (s, IH), 7.91-7.85 (m, 2H), 7.59-7.57 (m, IH), 7.33 (s, IH), 7.22 (d, IH), 4.55 (s, 2H), 4.42-4.40 (m, IH), 4.10 (s, 2H), 2.95 (s, 3H), 2.32-2.29 (m, 2H), 1.96-1.93 (m, 2H), 1.47- 1.41 (m, 2H), 1.35-1.25 (m, 3H), 0.95 (s, 9H).
Example 17: ethyl 3-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoate
Figure imgf000033_0001
The title compound was synthesized as described for ethyl 3-((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino) butanoate. 730 mg, white solid, 40.9%. ESI- MS: 412.3 (M+H)+. 1U NMR (400 MHz, CDCl3) δ: 7.75 (s, IH), 7.72-7.67 (m, 2H), 7.50 (dd, IH), 7.12-7.10 (m, IH), 7.07 (d, IH), 4.20 (m, IH), 4.11 (q, 2H), 4.01 (s, 2H), 3.05 (t, 2H), 2.81 (t, 2H), 2.22-2.20 (m, 2H), 1.87-1.84 (m, 2H), 1.41-1.38 (m, 2H), 1.22 (t, 3H), 1.17-1.07 (m, 3H), 0.89 (s, 9H).
Example 18: 3-((6-(trans-4-tør/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoic acid
Figure imgf000033_0002
Synthesis was performed as described for 2-((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid.
593 mg, beige solid, yield: 87.2%. ESI-MS: 384.1 (M+H)+. HPLC: 100%. 1U NMR (400 MHz, CD3OD) δ: 7.84 (s, IH), 7.81-7.75 (m, 2H), 7.45 (dd, IH), 7.22 (d, IH), 7.14 (dd, IH), 4.34-4.32 (m, IH), 4.28 (s, 2H), 3.17 (t, 2H), 2.49 (t, 2H), 2.28-2.25 (m, 2H), 1.92-1.88 (m, 2H), 1.43-1.40 (m, 2H), 1.25-1.22 (m, 2H), 1.13-1.10 (m, IH), 0.90 (s, 9H). Example 19: ethyl 3-(((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(methyl)amino)propanoate NaCNBH31CH2O
Figure imgf000034_0002
DCE, reflux, 2h
The title compound was synthesized as described for methyl 2-((6-(trans-4-tert- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoate.
100 mg, white solid, yield: 70%. ESI-MS: 426.3 (M+H)+. HPLC: 90.71%. IH NMR (400 MHz, CD3OD) δ: 7.73-7.76 (m, 3H), 7.43 (dd, IH), 7.24 (d, IH), 7.12 (dd, IH), 4.31-4.37(m, IH), 4.12-4.17 (m, 2H), 3.87 (s, 2H), 2.96 (t, 2H), 2.66 (t, 2H), 2.40 (s, 3H), 2.28 (d, 2H), 1.91 (d, 2H), 1.39-1.46 (m, 2H), 1.22-1.31 (m, 5H), 1.10-1.17 (m, IH), 0.93 (s, 9H).
Example 20: 3-(((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(methyl)amino) propanoic acid
Synthesis was performed as described for 2-((6-(trans-4-tert- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid.
70 mg, white solid, yield: 75%. ESI-MS: 398.3 (M+H)+. HPLC: 94.61%. 1U NMR (400 MHz, DMSOd6) δ: 7.97 (s, IH), 7.87 (d, IH), 7.83 (d, IH), 7.62 (d, IH), 7.43 (d, IH), 7.19 (dd, IH), 4.39-4.44 (m, 3H), 3.27 (br, 2H), 2.85 (t, 2H), 2.67 (s, 3H), 2.21 (d, 2H), 1.82 (d, 2H), 1.32-1.38 (m, 2H), 1.18-1.27 (m, 2H), 1.03-1.08 (m, IH), 0.88 (s, 9H).
Example 20: methyl l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000035_0001
The title compound was synthesized as described for methyl 2-((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoate. 150 mg, white solid, yield: 61%. ESI-MS: 410.3 (M+H)\. HPLC: 92.03%. 1H NMR (400 MHz, CD3OD) δ: 7.88 (s, IH), 7.84 (d, IH), 7.82 (d, IH), 7.44 (dd, IH), 7.28 (d, IH), 7.17 (dd, IH), 4.51 (s, 2H), 4.32-4.39 (m, 5H), 3.72-3.77 (m, 4H), 2.26 (d, 2H), 1.90 (d, 2H), 1.36-1.47 (m, 2H), 1.24-1.31 (m, 2H), 1.11-1.17 (m, IH), 0.91 (s, 9H). Example 21: l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid
Figure imgf000035_0002
70%
Synthesis was performed as described for 2-((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid.
70 mg, white solid, yield: 70%. ESI-MS: 396.3 (M+H)\. HPLC: 90.04%. 1U NMR (400 MHz, CD3OD) δ: 7.91 (s, IH), 7.86 (d, IH), 7.83 (d, IH), 7.47 (dd, IH), 7.30 (s, IH), 7.19 (dd, IH), 4.53 (s, 2H), 4.30-4.51 (m, 5H), 3.66-3.70 (m, IH), 2.29 (d, 2H), 1.93 (d, 2H), 1.39-1.48 (m, 2H), 1.24-1.33 (m, 2H),1.14-1.17 (m, IH), 0.93 (s, 9H). Example 22: methyl l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)pyrrolidine-3-carboxylate
Figure imgf000035_0003
The title compound was synthesized as described for ethyl 2-(((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methyl)(methyl)amino)acetate.
150 mg, white solid, yield: 55%. ESI-MS: 423.3 (M+H)\. HPLC: 98.59%. 1U NMR (400 MHz, CDCl3) δ 7.69-7.67 (m, 3H), 7.42 (d, IH), 7.12 (t, 2H), 4.27-4.25 (m, IH), 3.87 (s, 2H), 3.69 (s, 3H), 3.12-3.06 (m, 2H), 2.88-2.84 (m, 2H), 2.73-2.70 (m, IH), 2.28-2.25 (m, 2H), 2.18-2.16 (m, 2H), 1.90-1.87 (m, 2H), 1.45-1.42 (m, 2H), 1.25-1.12 (m, 3H), 0.89 (s, 9H).
Example 23: l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)pyrrolidine-3- carboxylic acid
Figure imgf000036_0001
70%
Synthesis was performed as described for 2-((6-(trans-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanoic acid.
80 mg, white solid, yield: 55%. ESI-MS: 409.3 (M+H)\. HPLC: 93.50%. 1H NMR (400 MHz, CD3OD) δ 7.95 (s, IH), 7.83 (dd, 2H), 7.55 (d, IH), 7.28 (s, IH), 7.18 (d, IH), 4.55-4.47 (m, 2H), 4.41-4.34 (m, IH) 3.63-3.37 (m, 2H), 3.32 (s, 2H), 3.28-3.20 (m, IH), 2.42-2.27 (m, 4H), 1.94-1.90 (m, 2H), 1.48-1.38 (m, 2H), 1.33-1.23 (m, 2H), 1.23-1.14 (m, IH), 0.89 (s, 9H).
Example 24: ethyl l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)piperidine-4-carboxylate
Figure imgf000036_0002
The title compound was synthesized as described for ethyl 2-(((6-(trans-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methyl)(methyl)amino)acetate. 100 mg, white solid, yield: 46%. ESI-MS: 451.3 (M+H)\. HPLC: 92.64%. 1U NMR (400 MHz, CDCl3) δ 7.75-7.72 (m, 3H), 7.48 (dd, IH), 7.17 (d, 2H), 4.30-4.28 (m, IH), 4.16 (q, 2H), 3.96 (s, 2H), 3.09-3.08 (m, 2H), 2.53-2.51 (m, 3H), 2.29-2.26 (m, 2H), 2.10-2.03 (m, 4H), 1.91-1.88 (m, 2H), 1.43-1.43 (m, 2H), 1.18-1.13 (m, 6H), 0.88 (s, 9H). Example 25: l-((6-(trans-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl)piperidine-4- carboxylic acid
Figure imgf000037_0001
Synthesis was performed as described for 2-((6-(tram-4-tert- butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid.
70 mg, white solid, yield: 87%. ESI-MS: 423.3 (M+H)\. HPLC: 94.25%. 1U NMR (400 MHz, CD3OD) δ 7.90 (s, IH), 7.86 (dd, 2H), 7.56 (d, IH), 7.32 (s, IH), 7.20 (dd, IH), 4.46 (s, 2H), 4.42-4.39 (m, IH), 3.61-3.59 (m, 2H), 3.19-3.15 (m, 2H), 2.72-2.60 (m, IH), 2.31-2.27 (m, 4H), 1.95-1.92 (m, 4H), 1.46-1.42 (m, 2H), 1.34-1.27 (m, 3H), 0.93 (s, 9H).
Example 26: 6-(trans-4-ter/-butylcyclohexyloxy)-5-(trifluoromethyl)-2-naphthaldehyde
Figure imgf000037_0002
To a solution of 6-bromo-2-(trans-4-te/t-butylcyclohexyloxy)-l-
(trifluoromethyl)naphthalene (1 g, 2.3 mmol) in THF (30 rnL) was added n-BuLi (2.8 rnL, 2.5M in THF, 3.0 equiv) dropwise at -78 0C in 30 min, then DMF (840 mg, 11.5 mmol, 5.0 equiv) was added slowly at -78 0C. The reaction mixture was stirred at -78 0C for 1.5 h. Then saturated NH4Cl solution was added to the mixture to quench the reaction. The mixture was extracted with EtOAc and purified by silica gel chromatography (petroleum etheπethyl acetate 10:1) to give product 6-(trans-4-fert-butylcyclohexyloxy)-5-(trifluoromethyl)-2-naphthaldehyde as a yellow solid (608 mg, 70%) ESI-MS: 379.2 (M+H)\. 1H NMR (400 MHz, CDCl3) δ: 10.13 (s, IH), 8.28 (d, 2H), 8.08 (d, IH), 7.98-8.01 (dd, IH), 7.41 (d, IH), 4.39 (m, IH), 2.21 (d, 2H), 1.90 (d, 2H), 1.49-1.58 (q, 2H), 1.10-1.17 (m, 3H), 0.86 (s, 9H)
Example 27: methyl l-((6-(trans-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen- 2-yl)methyl)azetidine-3-carboxylate
Figure imgf000038_0001
A mixture of 6-(trans-4-^r?-butylcyclohexyloxy)-5-(trifluoromethyl)-2-naphthaldehyde (300 mg, 0.8 mmol) and methyl azetidine-3-carboxylate (184 mg, 1.6 mmol, 2.0 equiv) in anhydrous ethanol (20 mL) was refluxed for 2 h. Then the solvent was removed in vacuo, fresh ethanol and NaBH3CN (150 mg, 2.4 mmol, 3.0 equiv) was added, the resulting mixture was refluxed for 1 h. The reaction mixture was concentrated and the residue was purified by chromatography with silica gel (dichloromethane: methanol 20:1) to give product methyl l-((6- (trans-4-fer?-butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3- carboxylate as a white solid (150 mg, yield: 40%). ESI-MS: 477.3 (M+H)+. HPLC: 85.67% 1U NMR (400 MHz, CD3OD) δ: 8.09 (dd, IH), 8.01 (d, IH), 7.56 (s, IH), 7.46-7.51 (m, 2H), 4.42 (m, IH), 3.77 (s, 2H), 3.71 (s, 3H),3.57 (t, 2H), 3.45 (t, 2H), 3.35-3.39 (m, IH), 2.18 (d, 2H), 1.88 (d, 2H), 1.43-1.52 (q, 2H), 1.09-1.22 (m, 3H), 0.89 (s, 9H)
Example 28: l-((6-(trans-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
Figure imgf000038_0002
To a solution of methyl l-((6-(trans-4-te/t-butylcyclohexyloxy)-5-
(trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3-carboxylate (100 mg, 0.25 mmol) in ethanol (10 mL) was added aqueous NaOH (3 mL, 20%) and refluxed for Ih. Then the reaction was cooled to 0 0C, the pH of the solution was adjusted to 6 with 1 M HCl, and concentrated. The residue was dissolved in dichloromethane, washed with water, dried and concentrated to give 1- ((6-(trans-4-fer?-butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid as a white solid (70 mg, yield: 70%). ESI-MS: 464.2 (M+H)+..HPLC: 98.64% 1U NMR (400 MHz, DMSO-d6) δ: 8.19 (d, 2H), 8.08 (d, 2H), 7.72 (d, IH), 7.67 (d, IH), 4.60-4.58 (m, IH), 4.51 (s, 2H), 4.21 (d, 4H), 3.55-3.67 (m, IH), 2.13 (d, 2H), 1.80 (d, 2H), 1.35-1.43 (q, 2H), 1.03-1.22 (m, 3H), 0.86 (s, 9H).
Example 29: ethyl 3-((6-(trans-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)propanoate
Figure imgf000039_0001
Synthesis was performed as described for methyl l-((6-(trans-4-te/t- butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3-carboxylate. 50 mg, white solid (yield: 20%). ESI-MS: 480.3 (M+H)+. HPLC: 89.20% 1H NMR (400 MHz, DMSO- d6) δ: 8.22 (d, IH), 8.97 (d, IH), 7.90 (s, IH), 7.52 (d, IH), 7.33 (d, IH), 4.30-4.28 (m, IH), 4.14-4.20 (m, 4H), 3.17 (s, 2H), 2.77 (s, 2H), 2.16 (d, 2H), 1.86 (d, 2H), 1.47-1.55 (q, 2H), 1.25 (t, 3H), 1.09-1.13 (m, 3H), 0.87 (s, 9H).
Example 30: 3-((6-(trans-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)propanoic acid
(5 Oeq)
1 h
Figure imgf000039_0003
Figure imgf000039_0002
Synthesis was performed as described for l-((6-(trans-4-te/t-butylcyclohexyloxy)-5- (trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 30 mg, white solid (yield: 70%). ESI-MS: 452.2 (M+H)+. HPLC: 94.35% 1H NMR (400 MHz, DMSOd6) δ: 8.12 (d, IH), 8.01 (d, IH), 7.91 (s, IH), 7.62 (d, 2H), 4.54-4.52 (m, IH), 3.93 (s, 2H), 2.79 (t, 2H), 2.36 (t, 2H), 2.12 (d, 2H), 1.79 (d, 2H), 1.35-1.41 (q, 2H), 1.03-1.22 (m, 3H), 0.86 (s, 9H).
Example 31: methyl 6-(trans-4-tør/-butylcyclohexyloxy)-2-naphthoate
Figure imgf000039_0004
A mixture of cis-4-te/t-butylcyclohexanol (927 mg, 0.00593 mol), 6-hydroxy- naphthalene-2-carboxylic acid methyl ester (1.00 g, 0.00494 mol) and triphenylphosphine (1560 mg, 0.00593 mol) in toluene (10 mL, 0.1 mol) was heated to reflux, and diisopropyl
azodicarboxylate (1.17 mL, 0.00593 mol) was added dropwise and was stirred and refluxed for 6 hours. The mixture was taken up into dichloromethane and was purified via column
chromatography with ethyl acetate:hexane (0:100 to 40:60) to give methyl 6-(tmns-4-te rt- butylcyclohexyloxy)-2-naphthoate as a white solid (0.95g, 56%). 1H NMR (400 MHz, CDCl3) δ 8.52 (s, IH), 8.01 (dd, J = 8.7, 1.7 Hz, IH), 7.84 (d, J = 9.6 Hz, IH), 7.73 (d, J = 8.7 Hz, IH), 7.17 (m, 2H), 4.34 (m, IH), 3.97 (s, 3H), 2.30 (m, 2H), 1.92 (m, 2H), 1.52-1.14 (m, 5H), 0.91 (s, 9H).
Example 32: (6-trans-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methanol
Figure imgf000040_0001
Methyl 6-(trans-4-te/t-butylcyclohexyloxy)-2-naphthoate (950 mg, 0.0028 mol) was dissolved in tetrahydrofuran (20 mL, 0.2 mol) and 1.0 M lithium tetrahydroaluminate in tetrahydrofuran (8.4 mL, 0.0084 mol) was then added at 0 0C. After stirring at room temperature for 2 hours, ethyl acetate and Rochele's salt was added and the mixture was then stirred at room temperature for 1 hour. After extraction with ethyl acetate followed by concentration nder reduced pressure, the product (6-trans-4-fert-Butylcyclohexyloxy)naphthalen-2-yl)methanol was obtained as a white solid (770mg, 88%). 1U NMR (400 MHz, CDCl3) δ 7.71 (m, 2H), 7.45 (d, J= 10.1 Hz, IH), 7.15 (m, 3H), 4.82 (AB, J= 16.1, 16.1Hz, 2H), 4.28 (m, IH), 2.27-2.31 (m, 2H), 1.89-1.92 (m, 2H), 1.11-1.50 (m, 5H), 0.91 (s, 9H).
Example 33: 6-(trans-4-ter/-Butylcyclohexyloxy)-2-naphthaldehyde
Figure imgf000040_0002
To (6-trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methanol (150 mg, 0.480 mmol) in methylene chloride (5 mL, 80 mmol) was added the Dess-Martin periodinane (0.285 g, 0.672 mmol) and the mixture was stirred at room temperature for 1 hour. The crude reaction mixture was then passed through a silica gel plug and the filtrate was then concentrated under reduced pressure to give the product as a white solid (0.150 g, 100%). 1H NMR (400 MHz, CDCl3) δ 10.10 (s, IH), 8.25 (s, IH), 7.92-7.87 (m, 2H), 7.78 (d, J = 8.5Hz, IH), 7.23-7.19 (m, 2H), 4.38- 4.30 (m, IH), 2.31-2.29 (m, 2H), 1.94-1.91 (m, 2H), 1.54-1.11 (m, 5H), 0.92 (s, 9H).
Example 34: 3-((6-(trans-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)-2,2- difluoropropanoic acid
HpN
Figure imgf000041_0001
A solution of 6-(4-fert-Butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (150 mg, 0.483 mmol) and 3-amino-2,2-difluoro-propionic acid (60.4 mg, 0.483 mmol) in ethanol (0.7 mL, 10 mmol) was heated to reflux for 2h. The yellow solution was then cooled to room temperature and sodium cyanoborohydride (36.4 mg, 0.580 mmol) was added to the stirring solution. The resulting mixture was heated to reflux for Ih. After cooling to room temperature, citric acid was added, and the solvent removed under vacuum. The resulting solid was suspended in water and collected via filtration. The filtrate was washed thoroughly with water (4x), ether (3x), and hexane (3x). The resulting solid was dried on the filter to give the title compound as a white solid (128.8 mg, 64%) . 1H NMR (400 MHz, CDCl3) δ: 7.92 (s, IH), 7.87 (d, J = 8.5Hz, IH), 7.82 (d, J = 9.1 Hz, IH), 7.52 (dd, J = 8.4, 1.8 Hz, IH), 7.30 (d, J = 2.2 Hz, IH), 7.19 (dd, J = 9.0, 2.4Hz, IH), 4.45 (s, 2H), 4.40 (m, IH), 3.61 (t, J = 13.8 Hz, 2H), 2.28-2.31 (m, 2H), 1.92-1.95 (m, 2H), 1.49-1.14 (m, 5H), 0.94 (s, 9H).
Example 35: methyl 6-(spiro[5.5]undecan-3-yloxy)-2-naphthoate
Figure imgf000041_0002
A mixture of spiro[5.5]undecan-3-ol (0.999 g, 0.00593 mol), 6-hydroxy-naphthalene-2- carboxylic acid methyl ester (1.00 g, 0.00494 mol) and triphenylphosphine
(1.56 g, 0.00593 mol) in toluene (10 mL, 0.1 mol) was heated to reflux. Diisopropyl
azodicarboxylate (1.17 mL, 0.00593 mol) was then added dropwise and the resulting mixture was refluxed for 6 hours. The mixture was then diluted with dichloromethane and subjected to chromatographic purification with ethyl acetate:hexane (0:100 to 40:60) to give methyl 6- (spiro[5.5]undecan-3-yloxy)-2-naphthoate as a white solid. (1.09 g, 62%). 1H NMR (400 MHz, CDCl3) δ 8.52 (s, IH), 8.01 (dd, J = 8.7, 1.7 Hz, IH), 7.84 (d, J = 9.6 Hz, IH), 7.72 (d, J = 8.7 Hz, IH), 7.17 (m, 2H), 4.45 (m, IH), 3.97 (s, 3H), 1.93-1.28 (m, 18H).
Example 36: (6-(spiro[5.5]undecan-3-yloxy)naphthalen-2-yl)methanol
Figure imgf000042_0001
To a solution of 6-(Spiro[5.5]undec-3-yloxy)-naphthalene-2-carboxylic acid methyl ester (0.374 g, 0.00106 mol) in tetrahydrofuran (10 mL, 0.1 mol) was added 1.0 M of lithium tetrahydroaluminate in tetrahydrofuran (3.18 mL, 0.00318 mol) at 0 0C. The reaction was then allowed to warm to room temperature while stirring for 2h, Rochele's salt was then added and stirred the resulting mixture was stirred at room temperature for Ih. After extraction with ethyl acetate, and solvent removal under vacuum, (6-(spiro[5.5]undecan-3-yloxy)naphthalen-2- yl)methanol was obtained as a white solid (0.28 g, 83%). ESI-MS: 307.5 (M+H)+. 100%). 1U NMR (400 MHz, CDCl3) δ 7.74-7.70 (m, 3H), 7.44 (d, J= 10.0 Hz, IH), 7.16 (m, 2H), 4.81 (s, 2H), 4.40 (m, IH), 1.94-1.26 (m, 18H).
Example 37: 6-(spiro[5.5]undecan-3-yloxy)-2-naphthaldehyde
Figure imgf000042_0002
To [6-(Spiro[5.5]undec-3-yloxy)-naphthalen-2-yl]-methanol (150 mg, 0.46 mmol) in methylene chloride (5 mL, 80 mmol) was added Dess-Martin periodinane (0.274 g, 0.647 mmol) and the resulting solution was stirred at room temperature for 1 hour. The crude reaction was then passed through a silica gel plug, the filtrate was removed under vacuum to give 6- (spiro[5.5]undecan-3-yloxy)-2-naphthaldehyde as a colorless solid. (0.150 g, 100%). IH NMR (400 MHz, CDC13) δ 10.09 (s, IH), 8.25 (s, IH), 7.92-7.89 (m, 2H), 7.78 (d, J = 8.7Hz, IH), 7.24-7.19 (m, 2H), 4.48 (m, IH), 1.96-1.29 (m, 18H). Example 38: 2,2-difluoro-3-((6-(spiro[5.5]undecan-3-yloxy)naphthalen-2- yl)methylamino)propanoic acid
Figure imgf000043_0001
A solution of 6-(spiro[5.5]undec-3-yloxy)-naphthalene-2-carbaldehyde (150 mg, 0.46 mmol) and 3-amino-2,2-difluoro-propionic acid (58.2 mg, 0.465 mmol) in ethanol (0.7 niL, 10 mmol) was heated to reflux for 2h. The yellow solution was then cooled to room temperature and sodium cyanoborohydride (35.1 mg, 0.558 mmol) was added portionwise. The resulting mixture was heated to reflux for Ih. The reaction was then cooled to room temperature, and citric acid was added. The solution was stirred for several minutes and the solvent removed under vacuum. The resulting solid was suspended in water and filtered, and the collected solid was washed thoroughly with water (4x), ether (5x), and hexane (5x) to give (82.1 mg, 41%) of 2,2-difluoro-3- ((6-(spiro[5.5]undecan-3-yloxy)naphthalen-2-yl)methylamino)propanoic acid. 1H NMR (400 MHz, CDCl3) δ: 7.93 (s, IH), 7.86 (d, J = 8.5Hz, IH), 7.83 (d, J = 9.1 Hz, IH), 7.52 (dd, J = 8.4, 1.8 Hz, IH), 7.30 (d, J = 2.2 Hz, IH), 7.22 (dd, J = 9.0, 2.4Hz, IH), 4.52 (m, IH), 4.45 (s, 2H), 3.60 (t, J = 15.9 Hz, 2H), 1.76-1.35 (m, 18H).
Example 39: (R)-ethyl l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)piperidine-3-carboxylate
Figure imgf000043_0002
6-(4-fer?-Butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (500 mg, 2 mmol) was combined with (R)-piperidine-3-carboxylic acid ethyl ester (0.51 g, 3.2 mmol) in methanol (10 mL, 200 mmol) and acetic acid (9.2 μL, 0.16 mmol). Sodium cyanoborohydride (0.25 g, 4.0 mmol) was then added and the reaction was stirred overnight at room temperature. The reaction was then quenched with water and extracted three times with ethyl acetate. Organics were combined and dried over MgSO4. Solids were removed via filtration and 10 g of silica gel was added. All solvent was then removed and the resulting silica gel was loaded onto a 24 g column and the product was eluted using a gradient of 0-60% ethyl acetate/hexanes and then dried under vacuum to give the title compound as a colorless oil. EDI-MS: 438.1 (M+H)+. Example 40: (R)-l-((6-(trans-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl)piperidine- 3-carboxylic acid
Figure imgf000044_0001
(R)-l-[6-(4-fert-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-piperidine-3-carboxylic acid ethyl ester (363.4 mg, 0.8046 mmol) was dissolved in ethanol (5 rnL, 80 mmol) then treated with 1 M aqueous sodium hydroxide (5 rnL, 5 mmol). The mixture was stirred vigorously for 18 hours. pH was adjusted to 3-4 with 3 N HCl and reaction was then extracted three times with ethyl acetate. Organics were combined then dried over MgSO4, filtered and concentrated to dryness under reduced pressure. Ethyl ether was then added and a white precipitate formed which was removed via filtration to give a white solid that 86% pure by HPLC. The process was repeated two additional times to give the title compound as a white solid (156 mg, 44 %). EDI- MS: 424.2 (M+H)+. 1H NMR (400MHz, MeOD) δ = 7.82 (s, 1 H), 7.74-7.62 (m, 2 H), 7.42 (d, J = 2.3, 1 H), 7.19 (d, J = 2.3 Hz, 1 H), 7.08 (d, J = 2.5, 1 H), 4.43 - 4.34 (m, 1 H), 4.33 - 4.22 (m, 2 H), 2.71 (br. s., 1 H), 2.16 (d, J = 2.0 Hz, 2 H), 1.88-167 (m, 4 H), 1.40 - 1.25 (m, 3 H), 1.24 - 1.11 (m, 4 H), 1.10 - 0.95 (m, 5 H), 0.79 (s, 9 H)
Example 41: (S)-methyl l-((6-(trans-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)piperidine-3-carboxylate
Figure imgf000044_0002
6-(4-fer?-Butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (503.27 mg, 1.6212 mmol) was combined with in methanol (10 mL, 200 mmol) and acetic acid (9.2 μL, 0.16 mmol).
Sodium cyanoborohydride (252.76 mg, 4.0221 mmol) was then added and the reaction was stirred overnight at room temperature. The reaction was then quenched with water and extracted three times with ethyl acetate. Organics were combined and dried over MgSO4. Solids were removed via filtration and 7 g of silica gel was added. All solvent was then removed and the resulting silica was loaded onto a 24 g column and the product was eluted using a gradient of 0- 60% ethyl acetate/hexanes and then dried under vacuum to give the title compound as a colorless oil (366 mg, 45%). EDI-MS: 438.3 (M+H)+.
Example 42: (S)-l-((6-(trans-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl)piperidine- 3-carboxylic acid
Figure imgf000045_0001
(S)-l-[6-(4-fer?-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-piperidine-3-carboxylic acid ethyl ester (151.23 mg, 0.33484 mmol) was dissolved in ethanol (5 mL, 80 mmol) then treated with 1 M sodium hydroxide in water (5 mL, 5 mmol). The mixture was stirred vigorously for 18 hours. pH was adjust to 3-4 with 3 N HCl and reaction was then extracted three times with ethyl acetate. Organics were combined then dried over MgSO4, filtered and concentrated to dryness under reduced pressure. Diethyl ether was then added and a white precipitate formed which was removed via filtration to give the title compound as a white solid (21 mg, 13%). EDI- MS: 424.1 (M+H)+. 1U NMR (400MHz, MeOD) δ = 7.82 (s, 1 H), 7.74-7.62 (m, 2 H), 7.44 (d, / = 2.3, 1 H), 7.19 (d, /= 2.3 Hz, 1 H), 7.08 (d, / = 2.5, 1 H), 4.43 - 4.34 (m, 1 H), 4.33 - 4.22 (m, 2 H), 2.71 (br. s., 1 H), 2.16 (d, /= 2.0 Hz, 2 H), 1.88-167 (m, 4 H), 1.40 - 1.25 (m, 3 H), 1.24 - 1.11 (m, 4 H), 1.11 - 0.94 (m, 5 H), 0.80 (s, 9 H).
Example 43: 4-{[6-(trans-4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- butyric acid tert-butyl ester
Figure imgf000045_0002
A solution of 6-(4-fert-butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (45 mg, 0.15 mmol, 4-amino-butyric acid tert-butyl ester HCl salt (115 mg, 0.59 mmol), and triethylamine (81 μL, 0.58 mmol) in 1,2-dichloroethane (1.5 mL) was treated with sodium triacetoxyborohydride (65 mg, 0.29 mmol). After stirring at room temperature over night, the mixture was diluted with dichloromethane and washed with aqueous sodium bicarbonate. The organic phase was dried over MgSO4, filtered and concentrated and residue was purified by silica gel column eluted with ethyl acetate in hexane from O to 100% to give colorless oil (33 mg, yield: 50%). ESI-MS: 454.4 (M+H)+; 1U NMR (400 MHz, CDCl3) δ = 7.65-7.70 (m, 3H), 7.38-7.40 (dd, IH), 7.10-7.14 (m, 2H), 4.22-4.28 (m, IH), 3.90 (s, 2H), 2.67 (t, 2H), 2.28 (t, 4H), 1.89 (d, 2H), 1.81 (t, 2H), 1.40 (m, IH), 1.42 (s, 9H), 1.30 (m, 4H), 0.9 (s, 9H).
Example 44: 4-{[6-(trans-4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- butyric acid
Figure imgf000046_0001
A solution of 4- { [6-(4-te/t-butyl-cyclohexyloxy)-naphthalen-2-ylmethyl] -amino } -butyric acid tert-butyl ester (33 mg, 0.073 mmol) in 4 M HCl in dioxane (1.50 mL) was stirred at room temperature overnight to form a white precipitate. The precipitate was filtered and washed with ether to give product as the HCl salt (20 mg, yield: 63%). ESI-MS: 398.1 (M+H)+; (400 MHz, CD3OD) δ = 7.90 (s, IH), 7.84 (d, IH), 7.81 (d, IH), 7.49 (dd, IH), 7.28 (d, IH), 7.17 (dd, IH), (m, 2H), 4.37 (m, IH), 4.33 (s, 2H), 3.15 (t, 2H), 2.47 (t, 2H), 2.28 (t, 2H), 2.0 (m, 2H), 1.92 (d, 2H), 1.43 (q, 2H), 1.27 (q, 2H), 1.13 (m, IH), 0.92 (s, 9H).
Example 45: {[6-(trans-4-ter^Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}-acetic acid ethyl ester
Figure imgf000046_0002
A solution of 6-(4-fert-butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (90 mg, 0.29 mmol), glycine ethyl ester hydrochloride (162 mg, 1.16 mmol), and triethylamine (0.16 mL, 1.16 mmol) in 1,2-dichloroethane (2 mL) was treated with sodium triacetoxyborohydride (129 mg, 0.58 mmol). The mixture was stirred at room temperature overnight. The solution was diluted with dichloromethane and washed with aqueous sodium bicarbonate. The organic phase was dried over MgSO4 and concentrated. The residue was purified with a silica gel column eluted with ethyl acetate in hexane from 0 to 100% to give product (64 mg, yield: 55%). ESI-MS: 420.30 (M+23)+; 1U NMR (400 MHz, CDCl3) δ = 7.66-7.70 (m, 3H), 7.41 (dd, IH), 7.11-7.14 (m, 2H), 4.26 (m, IH), 4.19 (q, 2H), 3.93 (s, 2H), 3.43 (s, 2H), 2.28 (d, 4H), 1.89 (d, 2H), 1.44 (q, 2H), 1.27 (t, 3H), 1.09-1.20 (m, 3H), 0.89 (s, 9H).
Example 46: {[6-(trans-4-ter^Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}-acetic acid
Figure imgf000047_0001
To a solution of { [6-(4-fert-butyl-cyclohexyloxy)-naphthalen-2-ylmethyl] -amino} -acetic acid ethyl ester (60 mg, 0.15 mmol) in methanol (1 mL) was added aqueous lithium hydroxide (4.2 M, 0.5 mL, 2 mmol) to form a white precipitate. The mixture slurry was stirred at room temperature for 3 hrs then at 50 0C for 2 hrs. The slurry was neutralized with 1 N HCl to pH 6 and the white precipitate was filtered and dried under vacuum to give white precipitate (48 mg, yield: 86%). ESI-MS: 392.3 (M+23)+; 1U NMR (400 MHz, DMSO) δ = 7.77-7.82 (m, 3H), 7.48 (dd, IH), 7.37 (d, IH), 7.15 (dd, IH), 4.38 (m, IH), 4.07 (s, 2H), 3.16 (s, 2H), 2.20 (d, 2H), 1.82 (d, 2H), 1.35 (m, 2H), 1.10-1.25 (m, 3H), 0.89 (s, 9H).
Example 47: (2-{[6-(trans-4-ter^Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- ethyl)-phosphonic acid diethyl ester
Figure imgf000047_0002
r.t, 18h
Figure imgf000047_0003
To a solution of (2-amino-ethyl)-phosphonic acid diethyl ester oxalic acid salt (200 mg, 0.74 mmol) in 1,2-dichloroethane (3 mL) was added 6-(4-te/t-butyl-cyclohexyloxy)- naphthalene-2-carbaldehyde (343 mg, 1.1 mmol). The mixture was stirred at room temperature for 1 hour, then sodium triacetoxyborohydride (329 mg, 1.5 mmol) was added. After being stirred at room temperature overnight, the reaction mixture was quenched with water, stirred at room temperature for 30 min, then diluted with ethyl acetate, and washed with aqueous NaHCO3. The organic layer was dried over MgSO4 and purified with a silica gel column eluted with ethyl acetate (100%), then eluted with methanol in dichloromethane from 0 to 15% to give sticky oil (130 mg, yield: 25%). ESI-MS: 476.3 (M+H)+. Example 48: (2-{[6-(trans-4-ter^Butyl-cydohexyloxy)-naphthalen-2-ylmethyl]-amino}- ethyl)phosphonic acid
Figure imgf000048_0001
To a solution of (2-{ [6-(4-fer?-butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- ethyl) -phosphonic acid diethyl ester (65.00 mg, 0.14 mmol) in acetonitrile (1 mL) was added bromotrimethylsilane (1 mL, 7.58 mmol). The reaction was then stirred at 50 0C overnight. After the solvent was concentrated, the residue was purified with HPLC (acetonitrile-water, 15-85%) to give white precipitate (33 mg, yield: 58). ESI-MS: 420.2 (M+H)+; 1U NMR (400 MHz, DMSO) δ = 7.81-7.91 (m, 3H), 7.51 (dd, IH), 7.41 (d, IH), 7.19 (dd, IH), 4.40 (m, IH), 4.31 (s, 2H), 3.12 (m, 2H), 2.21 (d, 2H), 1.97 (m, 2H), 1.82 (d, 2H), 1.36 (q, 2H), 1.22 (q, 2H), 1.08 (m, IH), 0.88 (s, 9H).
Example 49: 5-Hydroxy-2,3-dihydro-indole-l-carboxylic acid tert-butyl ester
Figure imgf000048_0002
A mixture of 2,3-dihydro-lH-indol-5-ol (1.0 g, 7.8 mmol), di-te/t-butyldicarbonate (4.0 g, 18 mmol), chloroform (20 mL) and saturated sodium bicarbonate aq. (8 mL) was stirred at room temperature over night. The organic phase was separated and washed twice with water, dried over MgSO4, filtered and concentrated to give crude product. The crude material was treated with ether and filtered to give product (1.1 g, yield: 60%). ESI-MS: 258.10 (M+23)+, 1H NMR (400 MHz, DMSO) δ 9.00 (s, IH), 7.48 (ws, IH), 6.61 (d, IH), 6.51 (dd, IH), 3.84 (t, 2H), 2.96 (t, 2H), 1.48 (s, 9H). Example 50: 5-(trans-4-ter/-Butyl-cyclohexyloxy)-2,3-dihydro-indole-l-carboxylic acid tert- butyl ester
-OMs
Figure imgf000049_0001
A mixture of 5-hydroxy-2,3-dihydro-indole-l-carboxylic acid tert-butyl ester (0.6 g, 2.6 mmol) in tert-butyl alcohol (8 rnL) and 2-butanone (4 rnL) was added cesium carbonate (2.5 g, 7.7 mmol) followed by methanesulfonic acid 4-te/t-butyl-cyclohexyl ester (1.9 g, 7.7 mmol). The mixture was heated in a sealed vial at 100 0C over night to form precipitate. The mixture was treated with dichloromethane and the precipitate was filtered off and the solvent was concentrated. The residue was purified with a silica gel column eluted with ethyl acetate in hexanes from 0 to 30% to give precipitate (0.96 g, yield: 100%). ESI-MS: 373.30 (M)+.
Example 51: 5-(trans-4-tør/-Butyl-cyclohexyloxy)-2,3-dihydro-lH-indole
Figure imgf000049_0002
To a solution of 5-(4-fert-butyl-cyclohexyloxy)-2,3-dihydro-indole-l-carboxylic acid tert-butyl ester (0.92 g, 2.5 mmol) in THF (10 mL) was added 4 M HCl in dioxane (6 mL, 25 mmol). The mixture was stirred at room temperature for 48 hrs to form white precipitate. This mixture was partitioned between dichloromethane and aqueous sodium bicarbonate, and the organic phase was dried over MgSO4, filtered and concentrated. The crude was purified with a silica gel column eluted with methanol in dichloromethane from 0 to 8% to give precipitate (0.67 g, yield: 99%). ESI-MS: 274.2 (M+H)+.
Example 52: 3-ter^butoxycarbonylamino-4-[5-(trans-4-ter/-butyl-cyclohexyloxy)-2,3- dihydro-indol-l-yl]-4-oxo-butyric acid tert-butyl ester
Figure imgf000050_0001
7O 0C
To a solution of 5-(4-fert-butyl-cyclohexyloxy)-2,3-dihydro-lH-indole (110 mg, 0.4 mmol) in dimethylformamide (2 niL) was added HOBT monohydrate (10 mg, 0.1 mmol), 2-tert- butoxycarbonylamino-succinic acid 4-te/t-butyl ester (230 mg, 0.8 mmol) and finally N-(3- dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (92 mg, 0.48 mmol). The reaction was heated at 50 0C overnight. The solution was diluted with ether and washed twice with water. The organic phase was dried over MgSO4, filtered and concentrated to give crude product (220 mg, yield: 100%). The crude was used directly in Example 53. ESI-MS: 545.4 (M+H)+. Example 53: 3-amino-4-[5-(trans-4-ter/-butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-4-oxo- butyric acid
Figure imgf000050_0002
To a solution of 3-fert-butoxycarbonylamino-4-[5-(4-fer?-butyl-cyclohexyloxy)-2,3- dihydro-indol-l-yl]-4-oxo-butyric acid tert-butyl ester (220 mg, 0.4 mmol) in dichloromethane (1 mL) was added trifluoroacetic acid (TFA) (0.8 mL, 10 mmol). The reaction was stirred at room temperature over night. The solvent was concentrated and residue was purified with HPLC to give white precipitate product TFA salt (22 mg, yield: 13%). ESI-MS: 389.3 (M+H)+; 1H NMR (400 MHz, DMSO) δ 7.96 (d, IH), 6.92 (d, IH), 6.76 (dd, IH), 4.45 (m, IH), 4.11-4.25 (m, 3H), 3.15 (t, 2H), 3.04 (dd, IH), 2.70 (dd, IH), 2.09 (d, 2H), 1.77 (d, 2H), 1.45 (s, IH), 1.27 (q, 2H), 1.13 (q, 2H), 1.04 (m, IH), 0.85 (s, 9H).
Example 54: l-[5-(trans-4-ter/-butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-2-chloro- ethanone
Figure imgf000051_0001
A solution of 5-(4-fert-butyl-cyclohexyloxy)-2,3-dihydro-lH-indole (0.55 g, 2 mmol), triethylamine (0.56 niL, 4 mmol) in dichloromethane (8 mL) was added chloroacetyl chloride (0.2 mL, 2.6 mmol) at 0 0C. The solution was stirred from 0 0C to room temperature for 4 hrs. The solution was diluted with dichloromethane and washed with 5% aqueous citric acid, aqueous sodium biocarbonate, and water, dried over MgSO4, and concetrated. The residue was purified with silica gel column eluted with ethyl acetate in hexane to give product (0.37 g, yield: 52%). ESI-MS: 350.2 (M+H)+. Example 55: (2-{2-[5-(trans-4-ter/-butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-2-oxo- ethylamino}-ethyl)-phosphonic acid diethyl ester
Figure imgf000051_0002
To a solution of l-[5-(4-fer?-butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-2-chloro- ethanone (60 mg, 0.2 mmol) and (2-amino-ethyl)-phosphonic acid diethyl ester, oxalic acid salt (93 mg, 0.34 mmol) in dimethylformamide (1.5 mL) was added lithium bromide (18 mg, 0.2 mmol) and potassium carbonate (76 mg, 0.55 mmol). After being stirred at 70 0C overnight, the mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with 5% aqueous citric acid, aqueous sodium biocarbonate, and water, dried over MgSO4 and concentrated. The residue was purified on a silica gel column to give product (20 mg, yield: 25%). ESI-MS: 495.3 (M+H)+
Example 56: (2-{2-[5-(trans-4-ter/-Butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-2-oxo- ethylamino}-ethyl)-phosphonic acid
Figure imgf000052_0001
To stirring solution of (2-{2-[5-(4-fert-butyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]-2- oxo-ethylamino}-ethyl)-phosphonic acid diethyl ester (16 mg, 0.03 mmol) in acetonitrile (0.5 rnL) was added bromotrimethylsilane (0.5 rnL, 4 mmol). The reaction mixture was stirred at 50 0C overnight. After the solvent was concentrated, the residue was purified by HPLC
(acetonitrile-water) to give white precipitate product (7.5 mg, yield: 53%). ESI-MS: 439.2 (M+H)+
Example 57: 3-((2-((trans)-4-ter/-butylcyclohexyloxy)quinolin-6-yl)methylamino)propanoic acid
Figure imgf000052_0002
6-bromo-2-hydroxyquinoline was treated with cis-4-te/t-butylcyclohexanol under Mitsunobu conditions, affording 6-bromo-2-((trans)-4-te/t-butylcyclohexyloxy)quinoline. 6- bromo-2-((trans)-4-te/t-butylcyclohexyloxy)quinoline was then exposed to n-butyllithium and DMF, providing 6-formyl-2-((trans)-4-te/t-butylcyclohexyloxy)quinoline. This aldehyde was then treated with 3-aminopropionic acid and sodium cyanoborohydride to afford the title compound, 3-((2-((trans)-4-fert-butylcyclohexyloxy)quinolin-6-yl)methylamino)propanoic acid.
Example 58: 3-((6-((trans)-4-ter/-butylcyclohexyloxy)quinolin-2-yl)methylamino)propanoic acid
Figure imgf000052_0003
TBHP= tertbutyl hydrogen peroxide
Figure imgf000052_0004
Figure imgf000052_0005
6-hydroxy-2-methylquinoline was treated with cis-4-te/t-butylcyclohexanol under Mitsunobu conditions, affording 6-((trans)-4-fert-butylcyclohexyloxy)-2-methylquinoline, which in turn was oxidized with tert-butyl hydrogen peroxide and selenium dioxide in dioxane, providing 6-((trans)-4-fert-butylcyclohexyloxy)-2-formylquinoline. This aldehyde was then treated with t-butyl 3-aminopropionate and sodium cyanoborohydride in dichloroethane to afford t-butyl 3-(((6-((trans)-4-?er?-butylcyclohexyloxy)-quinolin-2-yl)methyl)amino)propionate.
Treatment with lithium hydroxide in methanol/THF gave the title compound, 3-((6-((trans)-4- te/t-butylcyclohexyloxy)quinolin-2-yl)methylamino)propanoic acid. Example 59: tert-butyl 3-(methylsulfonamido)-3-oxopropylcarbamate
Figure imgf000053_0001
3-(fert-butoxycarbonylamino)propanoic acid (4 g, 21.2 mmol, 1.0 equiv) was dissolved in DCM (100 mL). Then methanesulfonamide (1.43 g, 15.1 mmol, 0.7 equiv), EDCI (3.45 g, 18.2 mmol, 0.85 equiv) and DMAP (0.37 g, 3 mmol, 0.15 equiv) were added to the mixture and stirred for 2 h at r.t.. The reaction mixture was cooled down to 0 0C, ice water (100 mL) was added. The mixture was stirred for 15 min, separated and the water layer was extracted twice with DCM. The combined organic layer was washed by 5% HCl, brine, dried over Na2SO4, concentrated to give tert-butyl 3-(methylsulfonamido)-3-oxopropylcarbamate as a gray oil (3.6 g, 90%). ESI-MS (M+H)+: 267.1. 1H NMR (400 MHz, DMSO-J6) δ: 6.91-6.83 (brs, IH), 3.36 (s, 3H), 3.19-3.12 (m, 2H), 2.41 (t, 2H), 1.37 (s, 9H).
Example 60: 3-amino-N-(methylsulfonyl)propanamide
Figure imgf000053_0002
tert-butyl 3-(methylsulfonamido)-3-oxopropylcarbamate (3.6 g, 15.1 mmol) was dissolved in DCM (60 mL). Then CF3COOH (1.1 mL, 0.3 mmol, 20 equiv ) was added to the mixture at 0 0C and stirred for 2 h at 0 0C. The reaction mixture was concentrated. The residue was purified by flash chromatography to give 3-amino-N-(methylsulfonyl)propanamide as a transparent solid (1.8 g, 80%). (mobile phase: CH3OH/H2O = 0~ 5%). ESI-MS (M+l)+: 167.0. 1U NMR (400 MHz, CD3OD) δ: 3.21-3.11 (m, 2H), 3.07 (s, 3H), 2.60-2.54 (m, 2H). Example 61: 3-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)-N- (methylsulfonyl)propanamide
Figure imgf000054_0001
6-((trans)-4-fer?-butylcyclohexyloxy)-2-naphthaldehyde (300 mg, 0.96 mmol, 1 equiv) and 3-amino-N-(methylsulfonyl)propanamide (239 mg, 1.19 mmol, 1.5 equiv) were dissolved in anhydrous EtOH. The mixture was stirred at 800C for 1 h. Then NaBH3CN (110 mg, 1.74 mmol, 2 equiv) was added to the mixture and stirred at 80 0C for 16 h. The organic layer was concentrated and purified by prep-TLC to give 3-((6-((trans)-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)-N-(methylsulfonyl)propanamide as a white solid (62 mg, 14%). (mobile phase: CH30H/DCM = 1:10). ESI-MS (M+l)+: 461.2, HPLC:
96.38%. 1H NMR (400 MHz, DMSO-J6) δ: 7.93 (s, IH), 7.85-7.77 (m, 2H), 7.59-7.49 (m, IH), 7.43~7.35(m, IH), 7.20-7. ll(m, IH), 4.45-4.33 (m, IH), 4.20 (s, 2H), 2.98 (t, 2H), 2.77 (s, 3H), 2.35 (t, 2H), 2.26-2.14 (m, 2H), 1.86-1.75 (m, 2H), 1.41-1.30 (m, 2H), 1.27-1.14 (m, 2H), 1.13-1.02 (m, IH), 0.89 (s, 9H). Example 62: 3-((6-((trans)-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)-N-(methylsulfonyl)propanamide
Figure imgf000054_0002
Preparation was done as describe in Example 61 utilizing 6-((trans)-4-te/t- butylcyclohexyloxy)-5-(trifluoromethyl)-2-naphthaldehyde in place of 6-((lr,4r)-4-tert- butylcyclohexyloxy)-2-naphthaldehyde. 71 mg, white solid, yield: 17%. (mobile phase:
CH30H/DCM = 1:10). ESI-MS (M+l)+: 529.2. HPLC: 98.69%. 1H NMR (400 MHz, CD3OD) δ: 8.25-8.20 (m, IH), 8.13-8.08 (m, IH), 8.04-8.01 (m, IH), 7.68~7.63(m, IH), 7.60~7.55(m, IH), 4.54-4.43 (m, IH), 4.40 (s, 2H), 3.36 (t, 2H), 3.24 (s, 3H), 2.82 (t, 2H), 2.24-2.16 (m, 2H), 1.94-1.86 (m, 2H), 1.55-1.43 (m, 2H), 1.29-1.16 (m, 2H), 1.15-1.07 (m, IH), 0.90 (s, 9H).
Example 63: ethyl 3-(ter/-butoxycarbonyl((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen- 2-yl)methyl)amino)propanoate
Figure imgf000055_0001
Ethyl 3-((6-(trans-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoate, (491 mg, 1.2 mmol, 1 equiv) was dissolved in DCM (20 niL). Then Et3N (360 mg, 3.56 mmol, 3 equiv), DMAP (15 mg, 0.13 mmol, 0.1 equiv) and (BoC)2O (520 mg, 2.38 mmol, 2 equiv) was added to the mixture and stirred for 18 h at r.t. The reaction was washed by 5% HCl, brine, dried over Na2SO4, concentrated and purified by prep-TLC to give ethyl 3-(te/t-butoxycarbonyl((6- ((trans)-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)amino)propanoate as a yellow oil (478 mg, 78%). (mobile phase:EA/PE=l:8). ESI-MS (M+l)+: 512.3. 1H NMR (400 MHz, CDCl3) δ: 7.71-7.63 (m, 2H), 7.61-7.53 (m, IH), 7.38-7.27 (m, IH), 7.15-7.10 (m, 2H), 4.57 (s, 2H), 4.30-4.21 (m, IH), 4.07 (q, 2H), 3.57-3.37 (m, 2H), 2.60-2.45 (m, 2H), 2.31-2.23 (m, 2H), 1.93-1.85 (m, 2H), 1.58-1.36 (m, HH), 1.26-1.04 (m, 6H), 0.89 (s, 9H).
Example 64: 3-(ter/-butoxycarbonyl((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)amino)propanoic acid
Figure imgf000055_0002
To a solution of ethyl 3-(tert-butoxycarbonyl((6-((trans)-4-tert- butylcyclohexyloxy)naphthalen-2-yl)methyl)amino)propanoate (485 mg, 0.94 mmol) in EtOH (10 mL) was added aqueous NaOH (2 mL, 20%, 5.0 equiv) and refluxed for 2 h. Then the reaction was cooled to O0C, the pH of the solution was adjusted to 6 using IM HCl, concentrated and the residue was dissolved in DCM, washed with water, dried and concentrated to give 3- (fer?-butoxycarbonyl((6-((trans)-4-fer?-butylcyclohexyloxy)naphthalen-2- yl)methyl)amino)propanoic acid as a gray oil (392mg, 75%). ESI-MS (M+H+): 484.3. 1H NMR (400 MHz, DMSO-J6) δ: 7.79-7.72 (m, 2H), 7.62-7.57 (m, IH), 7.35-7.26 (m, 2H), 7.14-7.08 (m, IH), 4.49 (s, 2H), 4.41-4.30 (m, IH), 3.38-3.26 (m, 2H), 2.33-2.26 (t, 2H), 2.23-2.15 (m, 2H), 1.95-1.84 (m, 2H), 1.47-1.28 (m, HH), 1.27-1.15 (m, 2H), 1.11-1.02 (m, IH), 0.87 (s, 9H).
Example 65: tert-butyl (6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl(3- (cyclopropanesulfonamido)-3-oxopropyl)carbamate (0 15 equiv),
Figure imgf000056_0001
Figure imgf000056_0002
Procedure for tert-buty\ 3-(methylsulfonamido)-3-oxopropylcarbamate was utilized to give tert-butyX (6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2-yl)methyl(3-
(cyclopropanesulfonamido)-3-oxopropyl)carbamate. 435 mg, gray oil, 100%. ESI-MS (M+l)+: 587.3. 1U NMR (400 MHz, DMSO-J6) δ: 7.80-7.73 (m, 2H), 7.64-7.59 (m, IH), 7.36-7.27 (m, 2H), 7.15-7.10 (m, IH), 4.50 (s, 2H), 4.40-4.32 (m, IH), 3.45-3.45 (m, 2H), 2.94-2.86 (m, IH), 2.56-2.52 (m, 2H), 2.24-2.15 (m, 2H), 1.85-1.77 (m, 2H), 1.51-1.27 (m, HH), 1.25-0.99 (m, 7H), 0.87 (s, 9H).
Example 66: 3-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)-N- (cyclopropylsulfonyl)propanamide equv)
h,
Figure imgf000056_0004
Figure imgf000056_0003
The procedure for 3-amino-N-(methylsulfonyl)propanamide was used to give 3-((6-
((trans)-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methylamino)-N-
(cyclopropylsulfonyl)propanamide. 92 mg, white solid, 25%. ESI-MS (M+l)+: 487.3. 1H NMR (400 MHz, DMSO-J6) δ: 7.94-7.90 (m, IH), 7.86-7.79 (m, 2H), 7.55-7.50 (m, IH), 7.41-7.38 (m, IH), 7.20-7.14 (m, IH), 4.44-4.34 (m, IH), 4.23 (s, 2H), 3.02 (t, 2H), 2.79-2.71 (m, IH), 2.37 (t, 2H), 2.25-2.16 (m, 2H), 1.86-1.76 (m, 2H), 1.41-1.28 (m, 2H), 1.27-1.15 (m, 2H), 1.11-1.03 (m, IH), 0.88 (s, 9H), 0.83-0.78 (m, 2H), 0.73-0.66 (m, 2H). Example 67: ethyl 2-((6-((trans)-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen- 2-yl)methylamino)acetate
Figure imgf000057_0001
Procedure was done as described in example 27 to give ethyl 2-((6-((trans)-4-tert- butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methylamino)acetate. ESI-MS (M+H+): 466.3. HPLC: 92.65%. 1H NMR (400 MHz, CD3OD) δ: 8.09 (d, IH), 7.99 (d, IH), 7.78 (s, IH), 7.56 (dd, IH), 7.45 (d, IH), 4.43-4.36 (m, IH), 4.17 (q, 2H), 3.90 (s, 2H), 3.40 (s, 2H), 2.17 (d, 2H), 1.86 (d, 2H), 1.48 (q, 2H), 1.26-1.13 (m, 5H), 1.10-1.03 (m, IH), 0.88 (s, 9H). Example 68: 2-((6-((trans)-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)acetic acid
(5 0 eq)
h
Figure imgf000057_0002
Figure imgf000057_0003
Procedure was done as described in example 28 to give 2-((6-((trans)-4-te/t- butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methylamino)acetic acid. 50 mg, purified by HPLC-preparation (0.05% TFA / water: MeOH = 0 ~ 95%), white solid (yield: 44%). ESI-MS (M+H+): 438.2 HPLC: 96.18%. 1H NMR (400 MHz, CD3OD) δ: 8.20 (d, IH), 8.08 (d, IH), 7.98 (s, IH), 7.61 (dd, IH), 7.55 (d, IH), 4.50-4.45 (m, IH), 4.33 (s, 2H), 3.53 (s, 2H), 2.20 (d, 2H), 1.90 (d, 2H), 1.47 (q, 2H), 1.25, (q, 2H), 1.15-1.08 (m, IH), 0.91 (s, 9H). Example 69: ethyl 4-((6-((trans)-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen- 2-yl)methylamino)butanoate
Figure imgf000057_0004
Procedure was done as described in example 27 to give ethyl 4-((6-((trans)-4-te/t- butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methylamino)butanoate 160 mg, purified by HPLC-preparation (0.05% TFA / water: MeOH = 0 ~ 95%), white solid (yield: 61%). ESI-MS (M+H+): 494.3. HPLC: 95.66%. 1H NMR (400 MHz, CD3OD) δ: 8.22 (d, IH), 8.11 (d, IH), 8.03 (s, IH), 7.66 (dd, IH), 7.58 (d, IH), 4.50-4.46 (m, IH), 4.37 (s, 2H), 4.13 (q, 2H), 3.16 (t, 2H), 2.49 (t, 2H), 2.21 (d, 2H), 2.04 (t, 2H), 1.90 (d, 2H), 1.49 (q, 2H), 1.34-1.30 (m, 5H), 1.14-1.09 (m, IH), 0.91 (s, 9H).
Example 70: 4-((6-((trans)-4-ter^butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)butanoic acid
Figure imgf000058_0001
To a solution of ethyl 4-((6-((trans)-4-te/t-butylcyclohexyloxy)-5- (trifluoromethyl)naphthalen-2-yl)methylamino)butanoate (150 mg, 0.30 mmol) in THF (15 niL) was added IM HCl (3 niL) and refluxed for 1 h. Then the reaction was concentrated to give 4- ((6-((trans)-4-fert-butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)butanoic acid as a white solid, purified by HPLC -preparation (0.05% TFA / water: MeOH = 0 ~ 95%), 50 mg, white solid (yield: 34%). ESI-MS (M+H+): 466.3 HPLC: 96.13%. 1H NMR (400 MHz, CD3OD) δ: 8.20 (d, IH), 8.10 (d, IH), 8.01 (d, IH), 7.65 (dd, IH), 7.57 (d, IH), 4.50-4.46 (m, IH), 4.34 (s, 2H), 3.16 (t, 2H), 2.46 (d, 2H), 2.21 (d, 2H), 1.98 (t, 2H), 1.90 (d, 2H), 1.49 (q, 2H), 1.25 (q, 2H), 1.14-1.08 (m, IH), 0.91 (s, 9H).
Example 71: methyl l-((6-((trans)-4-tør^butylcyclohexyloxy)-5-fluoronaphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000058_0002
A mixture of compound methyl l-((6-(trans-4-te/t-butylcyclohexyloxy)-5- (trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3-carboxylate (150 mg, 0.37 mmol) and NFSI (175 mg, 0.56 mmol, 1.5 eq.) was heated to 80 0C and stirred for 4 h under N2 atmosphere. Then the mixture was purified by silica gel chromatography using PE/EA (6/1) as eluent to give product methyl 1 -((6-(trans-4-fert-butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methyl)azetidine-3-carboxylate as a slight yellow oil (40 mg, 34%). EDI-MS (M+l)+: 428.1. 1U NMR (400 MHz, CDCl3) δ 7.97 (d, IH), 7.65-7.62 (m, IH), 7.52-7.41 (m, 2H), 7.25-7.22 (m, IH), 4.22-4.17 (m, IH), 3.74 (s, 2H), 3.71 (s, 3H), 3.59-3.54 (m, 2H), 3.37-3.36 (m, 3H), 2.22- 2.19 (m, 2H), 1.86-1.84 (m, 2H), 1.54-1.45 (m, 2H), 1.19-1.08 (m, 3H), 0.86 (s, 9H).
Example 72: ethyl l-((6-((trans)-4-ter^butylcyclohexyloxy)-5-chloronaphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000059_0001
Compound methyl l-((6-(trans-4-te/t-butylcyclohexyloxy)-5- (trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3-carboxylate (140 mg, 0.34 mmol) and NCS (90 mg, 0.68 mmol, 2.0 eq.) were dissolved in MeCN (5 mL). Then CF3COOH (12 mg, 0.1 mmol, 0.3 eq.) was added to the mixture at 0 0C. The mixture was warmed to r.t. and stirred for 1 h. Then the pH of the solution was adjusted to 7 with saturated Na2CO3, concentrated and the mixture was extracted by EtOAc. The organic layer was concentrated and purified by silica gel chromatography using PE/EA (6/1) to give product methyl l-((6-((trans)-4-te/t- butylcyclohexyloxy)-5-chloronaphthalen-2-yl)methyl)azetidine-3-carboxylate (65 mg, 43%) as a slight yellow oil. EDI-MS (M+l) +: 444.0. 1U NMR (400 MHz, CDCl3) δ 8.16 (d, IH), 7.69-7.66 (m, 2H), 7.50-7.47 (m, IH), 7.28-7.27 (m, IH), 4.25-4.19 (m, IH), 3.77 (s, 2H), 3.72 (s, 3H), 3.59-3.58 (m, 2H), 3.38-3.37 (m, 3H), 2.23-2.20 (m, 2H), 1.88-1.85 (m, 2H), 1.61-1.52 (m, 2H), 1.12-1.07 (m, 3H), 0.87 (s, 9H).
Example 73: l-((6-((trans)-4-ter^butylcyclohexyloxy)-5-fluoronaphthalen-2- yl)methyl)azetidine-3-carboxylic acid )
(10:1)
Figure imgf000059_0002
Figure imgf000059_0003
78%
To a solution of methyl l-((6-((trans)-4-fer?-butylcyclohexyloxy)-5-fluoronaphthalen-2- yl)methyl)azetidine-3-carboxylate 40 mg, 0.09 mmol) in EtOH (3 mL) was added aqueous NaOH (2 niL, 1%, 5.0 eq.) and refluxed for 1 h. Then the reaction was cooled to 0 0C, the pH of the solution was adjusted to 6 with IM HCl, concentrated and the residue was washed with DCM and water, dried in vacuum to give product l-((6-((trans)-4-te/t-butylcyclohexyloxy)-5- fluoronaphthalen-2-yl)methyl)azetidine-3-carboxylic acid (30 mg, 78%) as a white solid. EDI- MS (M+l) +: 414.0. HPLC: 91.27 %. 1H NMR (400 MHz, CD3OD) δ 8.09-8.01 (m, 2H), 7.74- 7.71 (m, IH), 7.59-7.58 (m, IH), 7.48 (t, IH), 4.57 (s, 2H), 4.38-4.32 (m, 5H), 3.76-3.70 (m, IH), 2.21-2.19 (m, 2H), 1.91-1.88 (m, 2H), 1.53-1.44 (m, 2H), 1.24-1.10 (m, 3H), 0.90 (s, 9H).
Example 74: l-((6-((trans)-4-ter^butylcyclohexyloxy)-5-chloronaphthalen-2- yl)methyl)azetidine-3-carboxylic acid )
(10:1)
Figure imgf000060_0001
Figure imgf000060_0002
56%
Procedure was done as peformed for l-((6-((trans)-4-te/t-butylcyclohexyloxy)-5- fluoronaphthalen-2-yl)methyl)azetidine-3-carboxylic acid to give the title compound solid (35 mg, 56 %). EDI-MS (M+l) +: 430.0. HPLC: 91.27 %. 1H NMR (400 MHz, CD3OD) δ 8.29-8.26 (m, IH), 8.00-7.90 (m, 2H), 7.64-7.53 (m, 2H), 4.49 (s, 2H), 4.45-4.38 (m, IH), 4.22-4.19 (m, 4H), 3.49-3.42 (m, IH), 2.28-2.24 (m, 2H), 1.96-1.92 (m, 2H), 1.60-1.51 (m, 2H), 1.30-1.16 (m, 3H), 0.94 (s, 9H).
Example 75: methyl 3-(benzylamino)-2-methylpropanoate
Figure imgf000060_0003
A mixture of methyl methacrylate (7 mL, 0.067 mol, 1.0 equiv), benzylamine (6 mL, 0.055 mol, 0.8 equiv) in methanol (5 mL) was stirred at 70 0C for 2 days. After evaporation of the volatiles, the crude product was purified by flash chromatography (DCM: MeOH = 20:1) to give compound methyl 3-(benzylamino)-2-methylpropanoate 9 g, yield: 65%) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ: 7.32-7.24 (m, 5H), 3.79 (s, 2H), 3.68 (s, 3H), 2.88-2.85 (m, IH), 2.71-2.63 (m, 2H), 1.16 (d, 3H). Example 76: methyl 3-amino-2-methylpropanoate
Figure imgf000061_0001
Y: 83%
To a solution of methyl 3-(benzylamino)-2-methylpropanoate (3 g, 14 mmol, 1.0 equiv) and acetic acid (87 mg, 1.4 mmol, 0.1 equiv) in methanol (30 mL) was added Pd/C (10%, 0.3 g). The resulting mixture was stirred under hydrogen at 25 0C for 16 h. The catalyst was filtered off, and the filtrate was concentrated to give methyl 3-amino-2-methylpropanoate (1.4g, yield: 83%) as a yellow oil. 1U NMR (400 MHz, CDCl3) δ: 3.72 (s, 3H), 3.06-3.01 (m, IH), 2.91-2.86 (m, IH), 2.77-2.72 (m, IH), 1.95 (s, 2H), 1.22 (d, 3H).
Example 77: methyl 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-methylpropanoate
Figure imgf000061_0002
The preparation of methyl 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-methylpropanoate was done as described for example 27. 110 mg, pale yellow solid, yield: 35%. ESI-MS (M+H) +: 412.1. HPLC: 93.41%. 1H NMR (400 MHz, CDCl3) δ: 7.70-7.65 (m, 3H), 7.34 (d, IH), 7.10 (dd, IH), 7.01 (d, IH), 4.16-4.09 (m, IH), 3.96 (s, 2H), 3.65 (s, 3H), 3.143-3.138 (m, IH), 2.92 (d, 2H), 2.16-2.12 (m, 2H), 1.84-1.81 (m, 2H), 1.39-1.26 (m, 2H), 1.15-1.05 (m, 6H), 0.88 (s, 9H).
Example 78: 3-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)-2- methylpropanoic acid
Figure imgf000061_0003
Y: 94% The preparation of 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-methylpropanoic acid was done as described for example 77. 100 mg, yellow solid, yield: 94%. ESI-MS (M+H) +: 398.1. HPLC: 97.60%. 1U NMR (400 MHz, CDCl3) δ: 7.84 (s, IH), 7.72-7.68 (m, 2H), 7.59 (d, IH), 7.15-7.10 (m, 2H), 4.33-4.24 (m, 3H), 3.11-2.82 (m, 3H), 2.25-2.21 (m, 2H), 1.89-1.86 (m, 2H), 1.48-1.11 (m, 9H), 0.89 (s, 9H).
Example 79: ethyl 2-cyano-2-methylpropanoate
O CH3l (3eq.),NaH (4eq.) Q
NC^0^ NC>Aθ^
° THF, r.t, 3 h /\
85%
A solution of ethyl 2-cyanoacetate (3 g, 0.026 mol, 1.0 equiv) in tetrahydrofuran (80 rnL) was cooled at ice-salt bath, followed by the addition of sodium hydride (2.6 g, 0.104 mol, 4.0 equiv) in several portions. The suspension was stirred at r.t.. Then iodomethane (11 g, 0.078 mmol, 3.0 equiv) was added and the reaction mixture was stirred at r.t for 3 h before quenched with water. The mixture was extracted with ethyl acetate and washed with brine, dried over Na2SO4 and concentrated to obtain crude product ethyl 2-cyano-2-methylpropanoate (3.2 g, yield: 85%) as a dark green oil. 1H NMR (400 MHz, CDCl3) δ: All (q, 2H), 1.62 (s, 6H), 1.34 (t, 3H).
Example 80: ethyl 3-amino-2,2-dimethylpropanoate
Figure imgf000062_0001
r.t, 1 6 h
Y: 70%
To a solution of ethyl 2-cyano-2-methylpropanoate (0.6 g, 4.2 mmol, 1.0 equiv) in 6 mL of ethanol/ammonium hydroxide (10:1) was added Ra/Ni (20%, 0.12 g). The resulting mixture was stirred under hydrogen at r.t. for 16 h. The catalyst was filtered off, and the filtrate was concentrated to give ethyl 3-amino-2,2-dimethylpropanoate (0.43 g, yield: 70%) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ: 4.15 (q, 2H), 2.77 (s, 2H), 1.76 (s, 2H), 1.26 (t, 3H), 1.18 (s, 6H). Example 81: ethyl 3-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)- 2,2-dimethylpropanoate
Figure imgf000063_0001
Y 68%
The preparation of ethyl 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2,2-dimethylpropanoate was performed as described in example 27. 230 mg, colorless oil, yield: 68%. ESI-MS (M+H) +: 440.1. HPLC: 89.40%. 1U NMR (400 MHz, CDCl3) δ: 7.70-7.65 (m, 3H), 7.42 (d, IH), 7.13-7.11 (m, 2H), 4.29-4.23 (m, IH), 4.12 (q, 2H), 3.95 (s, 2H), 2.70 (s, 2H), 2.29-2.26 (m, 2H), 1.91-1.88 (m, 2H), 1.48-1.42 (m, 2H), 1.25-1.09 (m, 12H), 0.90 (s, 9H).
Example 82: 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methylamino)-2,2- dimethylpropanoic acid
Figure imgf000063_0002
C2H5OH/H2O(10:1)
80 0C, 1 h
Y: 98%
The preparation of 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2,2-dimethylpropanoic acid was performed as described in example 28. 210 mg, pale yellow solid, yield: 98%. ESI-MS (M+H) +: 412.1. HPLC: 96.40%. 1U NMR (400 MHz, CDCl3) ^7.75 (s, IH), 7.69-7.67 (m, 2H), 7.58 (d, IH), 7.14-7.09 (m, 2H), 4.26-4.21 (m, 3H), 2.78 (s, 2H), 2.24-2.22 (m, 2H), 1.89-1.86 (m, 2H), 1.45-1.37 (m, 2H), 1.28-1.08 (m, 9H), 0.89 (s, 9H).
Example 83: 6-((trans)-4-ter/-butylcyclohexyloxy)-2-naphthonitrile
Figure imgf000063_0003
Compound 2-bromo-6-((trans)-4-te/t-butylcyclohexyloxy)naphthalene (2.0 g, 5.55 mmol, 1.0 eq.) and CuCN (742 mg, 8.34 mmol, 1.5 eq.) was dissolved in DMSO (5 mL). Then the mixture was stirred at 125 0C for 15 h. Water was added and the mixture was extracted with ethyl acetate and the organic layer was purified by silica gel column chromatography using PE/EA (10/1) to give product as a slight yellow solid (1.423 g, 82%). EDI-MS (M+l)+: 308.0 1H NMR (400 MHz, CDCl3) δ 8.12 (s, IH), 7.78-7.73 (m, 2H), 7.54 (dd, IH), 7.22 (dd, IH), 7.14 (s, IH), 4.33-4.30 (m, IH), 2.29-2.25 (m, 2H), 1.93-1.90 (m, 2H), 1.48-1.26 (m, 2H), 1.25-1.10 (m, 3H), 0.91 (s, 9H). Example 84: (6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methanamine
63%
Compound 6-((trans)-4-fert-butylcyclohexyloxy)-2-naphthonitrile (1.7 g, 5.53 mmol, 1.0 eq.) and NH4OH (0.3 mL, 6.65 mmol, 1.2 eq.) was dissolved in MeOH (5 mL). Then Raney Ni (64 mg, 1.11 mmol, 0.2 eq.) was added to the mixture and the suspension solution was stirred at r.t. under hydrogen atmosphere for 15 h. The mixture was filtrated and purified by silica gel column chromatography using DCM/MeOH (10/1) as eluent to give product as a pale solid (1.76 g, 63%). ESI-MS (M-NH2)+ : 295.1. 1H NMR (400 MHz, CDCl3) δ 7.71-7.65 (m, 3H), 7.38 (dd, IH), 7.15-7.11 (m, 2H),4.28-4.24 (m, IH), 3.98 (s, 2H), 2.30-2.26 (m, 2H), 1.91-1.87 (m, 2H), 1.76 (s, 2H), 1.46-1.40 (m, 2H), 1.21-1.12 (m, 3H), 0.90 (s, 9H).
Example 85: ethyl 3-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)- 2-hydroxypropanoate
Figure imgf000064_0002
35%
(6-((trans)-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methanamine (311 mg, 1.0 mmol, 1.0 eq.) and ethyl oxirane-2-carboxylate (116 mg, 1.0 mmol, 1.0 eq.) was dissolved in EtOH (5 mL). Then the mixture was refluxed for 2h. The mixture was concentrated and purified by silica gel column chromatography using DCM/MeOH (10/1) as eluent to give product as a slight yellow oil (311 mg, 35 %). EDI-MS (M+l)+: 428.1. HPLC: 92.02%. 1U NMR (400 MHz, CDCl3) δ 7.70-7.64 (m, 3H), 7.38 (dd, IH), 7.13-7.11 (m, 2H), 4.31-4.21 (m, 4H), 3.93 (q, 2H), 3.06-2.88 (AB, 2H), 2.60 (b, 2H), 2.28-2.26 (m, 2H), 1.90-1.87 (m, 2H), 1.45-1.41 (m, 2H), 1.26 (t, 3H), 1.20-1.09 (m, 3H), 0.89 (s, 9H).
Example 86: 3-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)-2- hydroxypropanoic acid
Figure imgf000065_0001
The preparation of 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-hydroxypropanoic acid was done as described for example 28. 50 mg, white solid, yield: 38%. ESI-MS (M+H)+: 400.2. HPLC: 99.87%. 1H NMR (400 MHz, CD3OD) δ: 7.46-7.36 (m, 3H), 7.24 (s, IH), 6.93-6.87 (m, 2H), 4.23-4.20 (m, IH), 4.04-4.02 (m, IH), 3.72 (s, 2H), 2.94-2.92 (m, 2H), 2.10-2.07 (m, 2H), 1.75-1.73 (m, 2H), 1.31-1.24 (m, 2H), 1.07-1.01 (m, 3H), 0.89 (s, 9H).
Example 87: ethyl 1-cyanocyclopropanecarboxylate
Figure imgf000065_0002
100%
Ethyl 2-cyanoacetate (0.85 g, 7.5 mmol, 1 equiv), 1,2-dibromoethane (1.3 mL, 15 mmol, 2 equiv) and K2CO3 (3.18 g, 22.5 mmol, 3 equiv) was dissolved in acetone (6 mL), and the mixture was stirred for 16 h at 80 0C. The reaction mixture was filtred, concentrated to give the crude product as a yellow oil (1.84 g, 100%). 1U NMR (400 MHz, DMSO-d6) δ: 4.18 (t, 2H), 1.75 (t, 2H), 1.60 (m, 2H), 1.20 (t, 3H). Example 88: ethyl l-(aminomethyl)cyclopropanecarboxylate
Figure imgf000066_0001
The preparation of ethyl l-(aminomethyl)cyclopropanecarboxylate as a yellow oil (783 mg, 73%) was performed as described for the synthesis of ethyl 3-amino-2,2-dimethylpropanoate (Example 80). ESI-MS (M+l)+: 144.1. 1H NMR (400 MHz, DMSOd6) δ: 4.03 (t, 2H), 3.59 (s, 2H), 1.17 (t, 3H), 0.99 (t, 2H), 0.84 (t, 2H).
Example 89: ethyl l-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)methyl)cyclopropanecarboxylate
Figure imgf000066_0002
The preparation of ethyl l-(((6-((trans)-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methylamino)methyl)cyclopropanecarboxylate was performed as described in example 27 as a slight yellow oil (211 mg, 37%). ESI-MS (M+l)+: 438.3. 1U NMR (400 MHz, CDCl3)
«5:7.73-7.64 (m, 3H), 7.45-7.39 (m, IH), 7.19-7.09 (m, 2H), 4.31-4.20 (m, IH), 4.16-4.07 (m, 2H), 3.66 (s, 2H), 2.73-2.71 (m, 2H), 2.31-2.23 (m, 2H), 1.93-1.85 (m, 2H), 1.50-1.36 (m, 2H), 1.29-1.04 (m, 8H), 0.89 (s, 9H), 0.82-0.76 (m, 2H).
Example 90: l-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)methyl)cyclopropanecarboxylic acid
Figure imgf000066_0003
The preparation of l-(((6-((trans)-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methylamino)methyl)cyclopropanecarboxylic acid was performed as described for example 28 as a white solid (162 mg, 94%). ESI-MS (M+l)+: 410.3. HPLC: 97.07%. 1U NMR (400 MHz, DMSOd6) «5:7.93-7.73 (m, 3H), 7.59-7.50 (m, IH), 7.42-7.36 (m, IH), 7.19-7.10 (m, IH), 4.43-4.33 (m, IH), 4.20-4.09 (brs, 2H), 3.00-2.89 (m, 2H), 2.26-2.14 (m, 2H), 1.85-1.75 (m, 2H), 1.40-1.29 (m, 2H), 1.27-1.14 (m, 3H), 1.13-1.00 (m, 2H), 0.96-0.76 (m, HH). Example 91 : N-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)ethanamine
Figure imgf000067_0001
6-((trans)-4-fer?-butylcyclohexyloxy)-2-naphthaldehyde (200 mg, 0.64 mmol, 1 equiv), ethanamine (58 mg, 1.05 mmol, 2 equiv) and AcOH (62 mg, 1.05 mmol, 2 equiv) were dissolved in DCM (15 mL), and the mixture was stirred at r.t. for 2 h. Then NaBH3CN (101 mg, 1.9 mmol, 3 equiv) was added to the mixture and stirred for 16 h at r.t.. The reaction mixture was washed by brine, dried over Na2SO4, and concentrated to give the title compound as a gray oil (250 mg, 100%). ESI-MS (M+l)+: 340.3. 1U NMR (400 MHz, CDCl3) δ: 7.73-7.63 (m, 3H), 7.42-7.31 (m, IH), 7.16-7.09 (m, 2H), 4.30-4.21 (m, IH), 3.91 (s, 2H), 2.73 (q, 2H), 2.31-2.23 (m, 2H), 1.93-1.83 (m, 2H), 1.49-1.36 (m, 2H), 1.27-1.18 (m, 2H), 1.15 (t, 3H), 1.12-1.05 (m, IH), 0.89 (s, 9H).
Example 92: methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(ethyl)amino)propanoate
Figure imgf000067_0002
N-((6-((trans)-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)ethanamine
(250 mg, 0.64 mmol, 1 equiv) was dissolved in CH3OH (1 mL). Then methyl acrylate (4 mL, 44 mmol, 70 equiv) was added to the mixture and stirred at r.t. for 16 h. The reaction was concentrated and purified by prep-TLC to give the title compound as a white solid (217 mg,
52%). (mobile phase: EAZPE=I: 8). ESI-MS (M+l)+: 426.3, HPLC: 97.34%. 1H NMR (400 MHz, CDCl3) δ: 7.71-7.60 (m, 3H), 7.44-7.38 (m, IH), 7.16-7.09 (m, 2H), 4.30-4.20 (m, IH), 3.69 (s, 2H), 3.64 (s, 3H), 2.85 (t, 2H), 2.65-2.46 (m, 4H), 2.31-2.24 (m, 2H), 1.92-1.85 (m, 2H), 1.49-1.37 (m, 2H), 1.30-1.10 (m, 3H), 1.05 (t, 3H), 0.89 (s, 9H).
Example 93: 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(ethyl)amino)propanoic acid
Figure imgf000068_0001
60%
The preparation of 3-(((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)(ethyl)amino)propanoic acid was performed as described for example 28 to give the title compound as a white solid (126 mg, 60%). ESI-MS (M+l)+: 412.3, HPLC: 96.12%. 1U NMR (400 MHz, DMSOd6) «5:7.91 (m, IH), 7.84-7.76 (m, 2H), 7.61-7.55 (m, IH),
7.40~7.31(m, IH), 7.18-7.12 (m, IH), 4.43-4.34 (m, IH), 4.12 (s, 2H), 3.03 (t, 2H), 2.90-2.78 (m, 2H), 2.66 (t, 2H), 2.25-2.17 (m, 2H), 1.86-1.76 (m, 2H), 1.41-1.29 (m, 2H), 1.25-1.12 (m, 5H), 1.10-1.02 (m, IH), 0.89 (s, 9H).
Example 94: N-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl)propan-l- amine
Figure imgf000068_0002
The preparation of N-((6-((trans)-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methyl)propan-l -amine was done as described for N-((6-((trans)-4-tert- butylcyclohexyloxy)naphthalen-2-yl)methyl)ethanamine (Example 91) to give the title compound as a gray oil (429 mg, 100%). ESI-MS (M+l)+: 354.3. 1U NMR (400 MHz, DMSO- d6) δ: 7.76-7.66 (m, 3H), 7.44-7.40 (m, IH), 7.32-7.30 (m, IH), 7.12-7.06 (m, IH), 4.40-4.30 (m, IH), 3.78 (s, 2H), 2.46 (t, 2H), 2.23-2.15 (m, 2H), 1.85-1.76 (m, 2H), 1.44 (q, 2H), 1.39-1.27 (m, 2H), 1.26-1.15 (m, 3H), 0.87 (s, 9H), 0.86 (t, 3H).
Example 95: methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(propyl)amino)propanoate
Figure imgf000068_0003
The preparation of methyl 3-(((6-((trans)-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methyl)(propyl)amino)propanoate was performed as described for methyl 3-(((6-((trans)-4- fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)(ethyl)amino)propanoate (Example 93) to give the title compound as a white solid (195 mg, 46%). (mobile phase: EA/PE=1:8). ESI-MS (M+l)+: 440.3, HPLC: 95.63%. 1U NMR (400 MHz, CDCl3) δ: 7.71-7.60 (m, 3H), 7.44-7.39 (m, IH), 7.16-7.09 (m, 2H), 4.30-4.20 (m, IH), 3.67 (s, 2H), 3.64 (s, 3H), 2.83 (t, 2H), 2.50 (t, 2H), 2.41 (t, 2H), 2.31-2.23 (m, 2H), 1.93-1.84 (m, 2H), 1.55-1.37 (m, 4H), 1.25-1.05 (m, 3H), 0.89 (s, 9H), 0.84 (t, 3H).
Example 96: 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(propyl)amino)propanoic acid
Figure imgf000069_0001
The preparation of 3-(((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)(propyl)amino)propanoic acid was same performed as described for example 28 as a white solid (147 mg, 78%) ESI-MS (M+l)+: 426.3, HPLC: 99.49%. 1U NMR (400 MHz, DMSO- d6) δ:l.86-7.76 (m, 3H), 7.55-7.49 (m, IH), 7.39-7.34 (m, IH), 7.17-7.10 (m, IH), 4.43-4.33 (m, IH), 4.02 (s, 2H), 2.96 (t, 2H), 2.70-2.55 (m, 4H), 2.24-1.16 (m, 2H), 1.86-1.76 (m, 2H), 1.63-1.53 (m, 2H), 1.40-1.28 (m, 2H), 1.26-1.14 (m, 2H), 1.07-1.02 (m, IH), 0.89 (s, 9H), 0.82 (t, 3H).
Example 97: N-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)cyclobutanamine
Figure imgf000069_0002
The preparation of N-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)cyclobutanamine was performed as described for example 27 to give the title compound as a gray oil (282 mg, 100%). ESI-MS (M+l)+: 366.3. 1U NMR (400 MHz, CDCl3) δ: 7.76-7.62 (m, 3H), 7.43-7.37 (m, IH), 7.17-7.08 (m, 2H), 4.31-4.19 (m, IH), 3.82 (s, 2H), 3.37-3.29 (m, IH), 2.37-2.18 (m, 4H), 1.98-1.84 (m, 4H), 1.76-1.67 (m, 2H), 1.49-1.36 (m, 2H), 1.26-1.04 (m, 3H), 0.89 (s, 9H). Example 98: methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclobutyl)amino)propanoate
Figure imgf000070_0001
The synthesis of methyl 3-(((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclobutyl)amino)propanoate was performed as described for methyl 3-(((6-((trans)- 4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methyl)(ethyl)amino)propanoate (Example 95) to give the title compound as a white solid ( 240 mg, 55%). (mobile phase: EA/PE=1:8). ESI-MS (M+l)+: 452.3, HPLC: 97.45%. 1H NMR (400 MHz, CDCl3) δ: 7.72-7.58 (m, 3H), 7.44-7.38 (m, IH), 7.15-7.09 (m, 2H), 4.30-4.20 (m, IH), 3.62 (s, 2H), 3.60 (s, 3H), 3.20-3.11 (m, IH), 2.75 (t, 2H), 2.41 (t, 2H), 2.31-2.23 (m, 2H), 1.95-1.83 (m, 4H), 1.71-1.52 (m, 2H), 1.50-1.31 (m, 2H), 1.26-1.05 (m, 5H), 0.89 (s, 9H).
Example 99: 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclobutyl)amino)propanoic acid
Figure imgf000070_0002
The preparation of 3-(((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclobutyl)amino)propanoic acid was performed as described for example 28 to give the title compound as a white solid (152 mg, 65%) ESI-MS (M+l)+: 438.3, HPLC: 98.55%. 1H NMR (400 MHz, DMSOd6) δ: 7.78-7.66 (m, 3H), 7.44-7.37 (m, IH), 7.34-7.30 (m, IH), 7.14-7.06 (m, IH), 4.41-4.31 (m, IH), 3.64 (s, 2H), 3.22-3.14 (m, IH), 2.64 (t, 2H), 2.35 (t,
2H), 2.25 ~ 2.14 (m, 2H), 2.03-1.93 (m, 2H), 1.90-1.76 (m, 4H), 1.64-1.49 (m, 2H), 1.40-1.27 (m, 2H), 1.26-1.14 (m, 2H), 1.10-1.01 (m, IH), 0.87 (s, 9H). Example 100: N-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)cyclopentanamine
Figure imgf000071_0001
The preparation of N-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)cyclopentanamine was performed as described in example 27 to give the title compound as a gray oil (356 mg, 100%). ESI-MS (M+H)+: 380.3. 1U NMR (400 MHz, CDCl3) δ: 7.73-7.63 (m, 3H), 7.44-7.39 (m, IH), 7.15-7.08 (m, 2H), 4.30-4.20 (m, IH), 3.90 (s, 2H), 3.18-3.10 (m, IH), 2.31-2.22 (m, 2H), 1.93-1.84 (m, 2H), 1.78-1.06 (m, 13H), 0.89 (s, 9H).
Example 101: methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclopentyl)amino)propanoate
Figure imgf000071_0002
The synthesis of methyl 3-(((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclopentyl)amino)propanoate was performed as described for methyl 3-(((6-((trans)- 4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methyl)(cyclobutyl)amino)propanoate (Example 98) to give the title compound as a white solid (258 mg, 69%). (mobile phase: EA/PE=1:8)
ESI-MS (M+l)+: 466.3, HPLC: 95.23%. 1H NMR (400 MHz, CDCl3) δ: 7.72-7.61 (m, 3H),
7.45-7.40 (m, IH), 7.16-7.08 (m, 2H), 4.30-4.21 (m, IH), 3.72 (s, 2H), 3.60 (s, 3H), 3.15-3.06 (m, IH), 2.87 (t, 2H), 2.45 (t, 2H), 2.31-2.24 (m, 2H), 1.93-1.85 (m, 2H), 1.83-1.73 (m, 2H), 1.69-1.61 (m, 2H), 1.54-1.36 (m, 6H), 1.26-1.03 (m, 3H), 0.89 (s, 9H). Example 102: 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclopentyl)amino)propanoic acid
Figure imgf000071_0003
The preparation of 3-(((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclopentyl)amino)propanoic acid was performed as described for example 28 to give the title compound as a white solid (171 mg, 58%) ESI-MS (M+l)+: 452.3, HPLC: 95.83%. 1H NMR (400 MHz, DMSO-d6) δ: 8.01-7.93 (m, IH), 7.86-7.77 (m, 2H), 7.70-7.64 (m, IH), 7.43-7.37 (m, IH), 7.21-7.14 (m, IH), 4.45-4.35 (m, IH), 4.28 (s, 2H), 3.58-3.45 (m, IH), 3.11-3.01 (m, 2H), 2.75-2.62 (m, 2H), 2.26-2.14 (m, 2H), 2.06-1.93 (m, 2H), 1.90-1.77 (m, 4H), 1.76-1.65 (m, 2H), 1.59-1.47 (m, 2H), 1.40-1.30 (m, 2H), 1.27-1.16 (m, 2H), 1.12-1.02 (m, IH), 0.88 (s, 9H).
Example 103: N-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)cyclohexanamine
Figure imgf000072_0001
95%
The preparation of N-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)cyclohexanamine was performed as described for example 27 to give the title compound as a white solid (420 mg, 95%). ESI-MS (M+H)+: 394.2. 1U NMR (400 MHz, CDCl3) δ: 7.82-7.70 (m, 3H), 7.47-7.45 (m, IH), 7.15-7.07 (m, 2H), 4.23-4.17 (m, IH), 4.06 (s, 2H), 2.86-2.80 (m, IH), 2.22-2.18 (m, 2H), 1.89-1.85 (m, 2H), 1.73-1.59 (m, 4H), 1.43-1.08 (m, HH), 0.90 (s, 9H).
Example 104: methyl 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclohexyl)amino)propanoate
Figure imgf000072_0002
The synthesis of methyl 3-(((6-((trans)-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclohexyl)amino)propanoate was performed as described for methyl 3-(((6-((trans)- 4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methyl)(cyclobutyl)amino)propanoate (Example 98) to give the title compound as a white solid (80 mg, 16%) (mobile phase: EA/PE=1:8). ESI-MS (M+H)+: 480.2. 1U NMR (400 MHz, CDCl3) δ: 7.74-7.62 (m, 3H), 7.44-7.41 (m, IH), 7.14-7.09 (m, 2H), 4.29-4.23 (m, IH), 3.74 (s, 2H), 3.60 (s, 3H), 2.86 (t, 2H), 2.49-2.39 (m, 3H), 2.29-2.26 (m, 2H), 1.91-1.78 (m, 5H), 1.56-1.10 (m, 12H), 0.90 (s, 9H). Example 105: 3-(((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclohexyl)amino)propanoic acid
Figure imgf000073_0001
The preparation of 3-(((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)(cyclohexyl)amino)propanoic acid was performed as described for example 28 to give the title compound, 65mg, slight yellow solid, yield: 84%. ESI-MS (M+H)+: 466.1. HPLC:
96.99%. 1U NMR (400 MHz, DMSOd6) δ: 7.86-7.77 (m, 3H), 7.54 (d, IH), 7.38 (d, IH), 7.15 (dd, IH), 4.41-4.35 (m, IH), 4.10 (br, 2H), 3.04 (t, 2H), 2.86-2.84 (m, IH), 2.22-2.19 (m, 2H), 1.97-1.94 (m, 2H), 1.83-1.75 (m, 4H), 1.57-1.07 (m, 13H), 0.88 (s, 9H). Example 106: methyl 2-(hydroxymethyl)acrylate
Figure imgf000073_0002
44%
A saturated aqueous solution (10 mL) of K2CO3 (3.5 g, 117 mmol, 1.6 eq.) was slowly added to a rapidly stirred solution of trimethylphosphonoacetate (5.46 g, 30 mmol, 1.0 eq.) and paraformaldehyde (6.63 g, 48 mmol, 4.0 eq.) at r.t.. After the addition the mixture was stirred for 2 h. Then the mixture was extracted with DCM. The organic layer was concentrated to give the compound (1.5 g, 44%) as a yellow oil. 1U NMR (400 MHz, CD3OD) δ: 6.29 (s, IH), 5.83 (s, IH), 3.75 (s, 3H), 3.72 (s, 2H).
Example 107: methyl 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-(hydroxymethyl)propanoate
Figure imgf000074_0001
Compounds (6-((trans)-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methanamine (311 mg, 1.0 mmol, 1.0 eq.) and methyl 2-(hydroxymethyl)acrylate (116 mg, 1.0 mmol, 1.0 eq.) was dissolved in MeOH (5 mL). The mixture was stirred at r.t. for 2 h. Then the mixture was concentrated and purified by silica gel column chromatography using DCM/CH3OH (10/1) to give product (250 mg, 58%) as a slight yellow oil. ESI-MS (M+H)+: 428.3. HPLC: 90.18%. 1H NMR (400 MHz, CDCl3) δ 7.68 (t, 2H), 7.63 (s, IH), 7.37 (dd, IH), 7.14-7.11 (m, 2H), 4.27- 4.25 (m, IH), 4.01-3.96 (m, 2H), 3.91 (s, 2H), 3.71 (s, 3H), 3.18-2.93 (AB, 2H), 2.73-2.71 (m, IH), 2.28-2.25 (m, 2H), 1.90-1.87 (m, 2H), 1.45-1.40 (m, 2H), 1.25-1.09 (m, 3H), 0.89 (s, 9H).
Example 108: 3-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methylamino)-2- (hydroxymethyl)propanoic acid
Figure imgf000074_0002
The preparation of 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)-2-(hydroxymethyl)propanoic acid was performed as described for example 28 to give the title compound 50 mg, white solid, yield: 21%. ESI-MS (M+H)+: 414.3. HPLC: 94.23%. 1H NMR (400 MHz, CDCl3) δ 7.59 (s, IH), 7.52 (d, IH), 7.43 (d, IH), 7.37-7.35 (m, IH), 6.93 (d, IH), 6.88 (s, IH), 4.07-4.05 (m, IH), 3.95 (s, 2H), 3.73-3.61 (m, 2H), 3.04-2.83 (AB, 2H), 2.74-2.72 (m, IH), 2.12-2.09 (m, 2H), 1.79-1.76 (m, 2H), 1.32-1.25 (m, 2H), 1.09- 1.01 (m, 3H), 0.85 (s, 9H).
Example 109: ethyl 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)cyclobutanecarboxylate
Figure imgf000074_0003
34% The preparation of ethyl 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)cyclobutanecarboxylate was performed as described for example 27 to give the title compound ESI-MS (M+l)+: 438.3. 1U NMR (400 MHz, CDCl3) δ: 7.73-7.63 (m, 3H), 7.42-7.37 (m, IH), 7.15-7.08 (m, 2H), 4.29-4.21 (m, IH), 4.11 (q, 2H), 3.85 (d, 2H), 3.30-3.24 (m, IH), 2.75-2.69 (m, IH), 2.53-2.46 (m, 2H), 2.30-2.22 (m, 2H), 2.05-1.98 (m, 2H), 1.92-1.85 (m, 2H), 1.47-1.38 (m, 2H), 1.27-1.15 (m, 5H), 1.14-1.05 (m, IH), 0.89 (s, 9H).
Example 110: 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)cyclobutanecarboxylic acid
Figure imgf000075_0001
The preparation of 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)cyclobutanecarboxylic acid was performed as described for example 28 to give the title compound ESI-MS (M+l)+: 410.3. HPLC: 96.18%. 1H NMR (400 MHz, CD3OD) <5:7.85-7.73 (m, 3H), 7.47-7.41 (m, IH), 7.26-7.21 (m, IH), 7.16-7.08 (m, IH), 4.37-4.28 (m, IH), 4.15-4.07 (m, 2H), 3.65-3.54 (m, IH), 2.84-2.77 (m, IH), 2.58-2.51 (m, 2H), 2.30-2.18 (m, 4H), 1.93-1.85 (m, 2H), 1.46-1.33 (m, 2H), 1.30-1.18 (m, 2H), 1.13-1.08 (m, IH), 0.89 (s, 9H).
Example 111: (S)-methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)pyrrolidine-2-carboxylate
Figure imgf000075_0002
The preparation of (S)-methyl l-((6-((trans)-4-tert-butylcyclohexyloxy)naphthalen-2- yl)methyl)pyrrolidine-2-carboxylate was performed as described for example 27 to give the title compound. ESI-MS (M+l)+: 424.3. 1H NMR (400 MHz, CDCl3) δ: 7.70-7.64 (m, 3H), 7.45 (d, IH), 7.13-7.09 (m, 2H), 4.28-4.23 (m, IH), 4.06-4.00 (m, IH), 3.77-3.71 (m, IH), 3.61 (s, 3H), 3.33-3.31 (m, IH), 3.11-3.07 (m, IH), 2.45-2.41 (m, IH), 2.27 (d, 2H), 2.20-2.16 (m, IH), 2.01- 1.96 (m, IH), 1.89 (d, 2H), 1.73-1.69 (m, 2H), 1.46-1.42 (m, 2H), 1.23-1.09 (m, 3H), 0.89 (s, 9H).
Example 112: (S)-l-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2- yl)methyl)pyrrolidine-2-carboxylic acid
Figure imgf000076_0001
The preparation of (S)-l-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)pyrrolidine-2-carboxylic acid was performed as described for example 28 to give the title compound as a white solid (50 mg, 70%). ESI-MS (M+l)+: 410.3. HPLC: 98.10%. 1U NMR (400 MHz, CD3OD) <S:7.95 (s, IH), 7.86 (d, IH), 7.83 (d, IH), 7.54 (dd, IH), 7.29 (d, IH), 7.19 (dd, IH), 4.69 (d, IH), 4.46-4.37 (m, 3H), 3.62-3.54 (m, IH), 3.44-3.40 (m, IH), 2.66-2.62 (m, IH), 2.28 (d, 2H), 2.25-2.16 (m, 2H), 2.02-1.98 (m, IH), 1.93 (d, 2H), 1.46-1.41 (m, 2H), 1.30-1.25 (m, 2H), 1.17-1.13 (m, IH), 0.91 (s, 9H). Example 113: methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-2-carboxylate 0 eq),
Figure imgf000076_0003
2 h
Figure imgf000076_0002
61 %
The preparation of methyl l-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-2-carboxylate was performed as described for example 27 to give the title compound. ESI-MS (M+l)+: 410.3. 1U NMR (400 MHz, CD3OD) δ: 7.73-7.66 (m, 3H), 7.38 (dd, IH), 7.21 (d, IH), 7.09 (dd, IH), 4.37-4.31 (m, IH), 3.93-3.83 (m, IH), 3.73 (d, 2H), 3.56 (s, 3H), 3.29-3.21 (m, IH), 3.13-3.08 (m, IH), 2.29-2.25 (m, 4H), 1.92 (d, 2H), 1.45-1.40 (m, 2H), 1.30-1.09 (m, 3H), 0.93 (s, 9H). Example 114: l-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-2- carboxylic acid
Figure imgf000077_0001
The preparation of l-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-2-carboxylic acid was performed as described for example 28 to give the title compound as a white solid (50 mg, 70%). ESI-MS (M+l)+: 396.3. HPLC: 96.99%. 1U NMR (400 MHz, CD3OD) δ: δ:l.S2 (s, IH), 7.75 (d, 2H), 7.43 (dd, IH), 7.14 (d, 2H), 4.94-4.90 (m, IH), 4.49-4.41 (m, 2H), 4.30-4.23 (m, IH), 4.06-4.01 (m, IH), 3.86-3.81 (m, IH), 2.64-2.59 (m, 2H), 2.23 (d, 2H), 1.87 (d, 2H), 1.44-1.38 (m, 2H), 1.22-1.07 (m, 3H), 0.86 (s, 9H).
Example 115: tert-buty\ 3-amino-3-oxopropyl((6-((trans)-4-ter/- butylcyclohexyloxy)naphthalen-2-yl)methyl)carbamate
eq)
eq)
_
Figure imgf000077_0002
Figure imgf000077_0003
70%
The mixture of 3-(fer?-butoxycarbonyl((6-((trans)-4-fer?-butylcyclohexyloxy)naphthalen- 2-yl)methyl)amino)propanoic acid (483 mg, 1.0 mmol), NH4Cl (215 mg, 5.0 mmol, 5.0 equiv), Et3N (510 mg, 5.0 mmol, 5.0 equiv) and HATU (760 mg, 2.0 mmol, 2.0 equiv) in anhydrous THF (20 mL) was stirred at 450C for 15 min. The reaction mixture was concentrated in vacuum and the residue was purified by chromatography with silica gel (DCM/MeOH=20/l) to give compound the title compound as a white solid (337 mg, yield: 70%). ESI-MS (M+H+): 483.3. 1U NMR (400 MHz, DMSOd6) δ: 7.76 (d, 2H), 7.60 (s, IH), 7.34 (s, IH), 7.30 (d, IH), 7.12 (dd, IH), 4.49 (s, 2H), 4.38-4.31 (m, IH), 3.30 (t, 2H), 2.30 (t, 2H), 2.19 (d, 2H), 1.81 (d, 2H), 1.45-1.33 (m, HH), 1.23-1.16 (m, 3H), 0.88 (s, 9H).
Example 116: N-acetyl-3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanamide
Figure imgf000077_0004
The mixture of tert-butyl 3-amino-3-oxopropyl((6-((trans)-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methyl)carbamate (241 mg, 0.5 mmol) in Ac2O and AcOH (6 rnL, 1:5), was stirred at 90 0C for 2 h. The reaction mixture was concentrated in vacuum and the residue was purified by chromatography with silica gel (DCM / MeOH =15/1) to give the title compound as a white solid (100 mg, yield: 50%). ESI-MS (M+H+): 425.3. HPLC: 94.82%. 1H NMR (400 MHz, CDCl3) δ: 7.70 (d, IH), 7.68 (d, IH), 7.49 (s, IH), 7.21 (d, IH), 7.17-7.14 (m, 2H), 6.50 (br, IH), 5.49 (br, IH), 4.71 (s, 2H), 4.24-4.30 (m, IH), 3.71 (t, 2H), 2.57 (t, 2H), 2.27 (d, 2H), 2.18 (s, 3H), 1.89 (d, 2H), 1.48-1.42 (m, 2H), 1.09-1.20 (m, 3H), 0.88 (s, 9H). Example 116: 6-((trans)-4-tør^butylcyclohexyloxy)-2-naphthonitrile
Figure imgf000078_0001
cas : 52927-22-7
To a vial charged with 6-hydroxy-2-naphthonitrile (3.38 g, 0.02 mol, 1.0 eq.), cis-4-tert- butylcyclohexanol (6.24 g, 0.04 mol, 2.0 eq.), PPh3 (10.5 g, 0.04 mol, 2.0 eq.) and toluene (20 mL), was added DIAD (12 mL, 0.06 mol, 3.0 eq.) under nitrogen atmosphere at r.t. and stirred for 15 h. Water was added and extracted with EtOAc. The organic layer was purified by silica gel chromatography (PE: EA = 10:1) to give the title compound (9.0 g, 86%) as a slight yellow solid. EDI-MS (M+l)+: 308.0. 1H NMR (400 MHz, CDCl3) δ 8.12 (s, IH), 7.78-7.73 (m, 2H), 7.54 (dd, IH), 7.22 (dd, IH), 7.14 (s, IH), 4.33-4.30 (m, IH), 2.29-2.25 (m, 2H), 1.93-1.90 (m, 2H), 1.48-1.26 (m, 2H), 1.25-1.10 (m, 3H), 0.91 (s, 9H).
Example 117: 2-(6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)propan-2-amine eq.)
h
Figure imgf000078_0003
Figure imgf000078_0002
To a vial charged with 6-((trans)-4-te/t-butylcyclohexyloxy)-2-naphthonitrile (500 mg, 1.63 mmol, 1.0 eq.), CeCl3 (1.2 g, 4.89 mmol, 3.0 eq.) and THF (10 mL), was added MeLi (1.5 M solution in diethoxymethane, 10 mL, 16.3 mmol, 10.0 eq.) under nitrogen atmosphere at -78 0C. The mixture was stirred at -78 0C for 1 h. Saturated ammonium chloride solution was added and extracted with EtOAc. The organic layer was purified by silica gel chromatography (DCM: MeOH = 10:1) to give the title compound (140 mg, 25%) as a slight yellow oil. 1H NMR (400 MHz, CDCl3) δ: 7.84 (s, IH), 7.72-7.66 (m, 2H), 7.59 (d, IH), 7.13-7.09 (m, 2H), 4.28-4.23 (m, IH), 2.29 (b, 2H), 2.28-2.25 (m, 2H), 1.90-1.87 (m, 2H), 1.61 (s, 6H), 1.48-1.39 (m, 2H), 1.25- 1.09 (m, 3H), 0.89 (s, 9H).
Example 118: methyl 3-(2-(6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)propan-2- ylamino)propanoate
Figure imgf000079_0001
2-(6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2-yl)propan-2-amine (113 mg, 0.33 mmol, 1.0 eq.) and methyl acrylate (86 mg, 0.99 mmol, 3.0 eq.) was dissolved in MeOH (2 mL). The mixture was reflux for 16 h. The mixture was concentrated and purified by silica gel chromatography (DCM: MeOH = 20:1) to give the title compound (100 mg, 71%) as a slight yellow oil. 1H NMR (400 MHz, CDCl3) δ: 7.73-7.68 (m, 3H), 7.60 (dd, IH), 7.13-7.16 (m, 2H), 4.26-4.23 (m, IH), 3.66 (s, 3H), 2.62 (t, 2H), 2.50 (t, 2H), 2.28-2.26 (m, 2H), 1.90-1.87 (m, 2H), 1.58 (s, 6H), 1.45-1.38 (m, 2H), 1.19-1.09 (m, 3H), 0.89 (s, 9H).
Example 119: 3-(2-(6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)propan-2- ylamino)propanoic acid
Figure imgf000079_0002
The preparation of 3-(2-(6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2-yl)propan-2- ylamino)propanoic acid was performed as described in example 28 to give the title compound as a white solid (75 mg, 78%). HPLC: 96.91%. 1H NMR (400 MHz, CD3OD) δ: 7.97 (s, IH), 7.89- 7.83 (m, 2H), 7.64 (dd, IH), 7.27 (s, IH), 7.17 (dd, IH), 4.39-4.36 (m, IH), 2.94 (t, 2H), 2.58 (t, 2H), 2.29-2.27 (m, 2H), 1.94-1.92 (m, 2H), 1.90 (s, 6H), 1.45-1.41 (m, 2H), 1.32-1.13 (m, 3H), 0.92 (s, 9H).
Example 120: 2-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)acetonitrile 0 eq )
0 eq )
h
Figure imgf000080_0002
Figure imgf000080_0001
6-((trans)-4-fer?-butylcyclohexyloxy)-2-naphthaldehyde (310 mg, 1 mmol), 2- aminoacetonitrile (112 mg, 2 mmol, 2.0 eq) and acetic acid (180 mg, 3 mmol, 3.0 eq) in DCE (10 mL) was stirred at rt for 10 min. Then NaBH(OAc)3 (636 mg, 3 mmol, 3.0 eq) was added to the mixture and the mixture was stirred at rt for 15 h. Then saturated NaHCO3 was added to the mixture until pH=8. The mixture was extracted with DCM (20 mL x 3). The organic layer was concentrated and the residue was purified by silica gel column chromatography eluting with DCM/CH3OH (20/1) to give product the title compound as a colorless oil (240 mg, yield: 69%). ESI-MS (M+H+): 351.2. 1U NMR (400 MHz, CDCl3) δ: 7.70 (dd, 2H), 7.68 (s, IH), 7.41 (dd, IH), 7.13 (d, 2H), 4.30-4.23 (m, IH), 4.05 (s, 2H), 3.57 (s, 2H), 2.26 (d, 2H), 1.90 (d, 2H), 1.48- 1.42 (m, 2H), 1.20-1.09 (m, 3H), 0.90 (s, 9H).
Example 121: N-((lH-tetrazol-5-yl)methyl)-l-(6-((trans)-4-ter/- butylcyclohexyloxy)naphthalen-2-yl)methanamine eq)
Figure imgf000080_0003
8 h
Figure imgf000080_0004
To a solution of 2-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)acetonitrile (240 mg, 0.69 mmol) in water and isopropanol (10 mL, 1:5) was added NaN3 (50 mg, 0.76 mmol, 1.1 eq) and ZnBr2 (153 mg, 0.69 mmol, 1.0 eq), then refluxed for 18 h. The reaction was cooled to 0 0C and saturated NaHCO3 was added. The mixture was extracted with DCM (20 mL x 3) and the aqueous layer was destroyed by NaClO solution. The organic layer was concentrated and the residue was the title compound as a white solid (27 mg, yield: 11%).ESI-MS (M+H+): 394.3. HPLC: 91.15%, 1U NMR (400 MHz, CD3OD) δ: 7.82 (s, IH), 7.79-7.72 (m, 2H), 7.42 (d, IH), 7.16 (d, 2H), 4.47-4.31 (m, 5H), 2.26 (d, 2H), 1.89 (d, 2H), 1.45-1.41 (m, 2H), 1.24-1.09 (m, 3H), 0.88 (s, 9H)
Example 122: 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanenitrile 0 eq )
0 eq )
h
Figure imgf000081_0002
Figure imgf000081_0001
Procedure was followed as described for 2-((6-((trans)-4-te/t- butylcyclohexyloxy)naphthalen-2-yl)methylamino)acetonitrile (Example 120) to give the title compound 240 mg, white solid (yield: 62%). ESI-MS (M+H+): 365.3.1H NMR (400 MHz, CDCl3) δ: 7.69 (dd, 2H), 7.66 (s, IH), 7.40 (dd, IH), 7.13 (d, 2H), 4.30-4.23 (m, IH), 3.95 (s, 2H), 2.97 (t, 2H), 2.56 (t, 2H), 2.29 (d, 2H), 1.90 (d, 2H), 1.46-1.42 (m, 2H), 1.20-1.12 (m, 3H), 0.90 (s, 9H)
Example 123: N-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)-2-(lH- tetrazol-5-yl)ethanamine
Figure imgf000081_0003
The procedure was followed as described for N-((lH-tetrazol-5-yl)methyl)-l-(6-((trans)- 4-te/t-butylcyclohexyloxy)naphthalen-2-yl)methanamine (Example 121) to give the title compound 20 mg, white solid (yield: 11%). ESI-MS (M+H+): 408.3 HPLC: 98.66% 1U NMR (400 MHz, CD3OD) δ: 7.93 (s, IH), 7.85 (dd, 2H), 7.53 (dd, IH), 7.30 (d, IH) 7.19 (dd, IH), 4.45 (s, 2H), 4.42-4.36 (m, IH), 3.61 (t, 2H), 3.43 (t, 2H), 2.29 (d, 2H), 1.93 (d, 2H), 1.43-1.39 (m, 2H), 1.33-1.11 (m, 3H), 0.88 (s, 9H)
Example 124; 3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanamide
Figure imgf000081_0004
To a solution of 3-((6-((trans)-4-te/t-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propanenitrile (233 mg, 0.64 mmol) in DMSO (2 mL) was added K2CO3 (265 mg, 2 mmol, 3.0 eq), the mixture was then cooled to 00C, and followed by addition of aq. 30 % H2O2 (0.3 mL). The reaction mixture was stirred at rt for 1 h, and quenched with water (10 mL). The solvent was removed by freezen-dried. The crude product was purified by flash chromatography to give the title compound as a white solid (111 mg, 45%) (mobile phase:
MeOH/H2O: 0%~80%). ESI-MS (M+l)+: 383.3. HPLC: 97.84%. 1U NMR (400 MHz, CD3OD) δ: 7.86-7.79 (m, 3H), 7.53-7.50 (m, IH), 7.33-7.30 (m, IH), 7.21-7.16 (m, IH), 4.42-4.35 (m, 3H), 3.34-3.27 (m, 2H), 2.71 (t, 2H), 2.32-2.24 (m, 2H), 1.96-1.87 (m, 2H), 1.51-1.39 (m, 2H), 1.33-1.20 (m, 2H), 1.17-1.09 (m, IH), 0.92 (s, 9H).
Example 125: methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)-5-iodonaphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000082_0001
Methyl l-((6-((trans)-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate (410 mg, 1 mmol) and NIS (247 mg, 1.1 mmol, 2.0 eq.) were dissolved in CH3CN (5 mL). Then CF3COOH (35 mg, 0.3 mmol, 0.3 eq.) was added to the mixture dropwise at 0 0C. The mixture was warmed to r.t. and stirred for another 1.5 h. Then the mixture was extracted with EtOAc and the organic layer was concentrated and purified by silica gel chromatography using PE/EA (1/1) as eluent to give product the title compound as a slight red solid (300 mg, 56 %). ESI-MS (M+H+): 536.2. 1H NMR (400 MHz, CDCl3) δ: 8.19 (d, IH), 7.93 (s, IH), 7.81 (d, IH), 7.62 (d, IH), 7.22 (d, IH), 4.34-4.28 (m, 4H), 3.91-3.67 (m, IH), 3.80-3.78 (m, 3H), 3.75 (s, 3H), 2.24-2.21 (m, 2H), 1.90-1.88 (m, 2H), 1.62-1.58 (m, 2H), 1.15-1.12 (m, 3H), 0.89 (s, 9H).
Example 126: methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)-5-methylnaphthalen-2- yl)methyl)azetidine-3-carboxylate
(0 1 eq)
Figure imgf000082_0002
Figure imgf000082_0003
5 h
33 %
A flask charged with compound methyl l-((6-((trans)-4-te/t-butylcyclohexyloxy)-5- iodonaphthalen-2-yl)methyl)azetidine-3-carboxylate (300 mg, 0.56 mmol), methylboronic acid (66 mg, 1.1 mmol, 2.0 eq), 2 M aq K2CO3 (5 niL, 3.0 equiv) and [1,1-bis (diphenylphosphino) ferroene] dichloropalladium (II) complex with dichloromethane (1:1) (45 mg, 0.05 mmol, 0.1 equiv) was flushed with nitrogen. 1, 4-Dioxane (20 mL) was added and the reaction was stirred at 90 0C for 5 h. The solution was cooled to room temperature. The solvent was removed and the residue was purified by column chromatography (PE/EA=1:1) to give compound the title compound as a white solid (80 mg, 33%). ESI-MS (M+H+): 424.3. 1H NMR (400 MHz, CDCl3) δ: 7.88 (d, IH), 7.64-7.61 (m, 2H), 7.40 (dd, IH), 7.23 (d, IH), 4.10-4.08 (m, IH), 3.79 (s, 2H), 3.74 (s, 3H), 3.59-3.56 (m, 2H), 3.39-3.36 (m, 3H), 2.53 (s, 3H), 2.20-2.17 (m, 2H), 1.86-1.83 (m, 2H), 1.48-1.43 (m, 2H), 1.10-1.26 (m, 3H), 0.86 (s, 9H)
Example 127: l-((6-((trans)-4-ter^butylcyclohexyloxy)-5-methylnaphthalen-2- yl)methyl)azetidine-3-carboxylic acid (5 0 eq)
h *"
Figure imgf000083_0002
Figure imgf000083_0001
To a solution of methyl l-((6-((trans)-4-tert-butylcyclohexyloxy)-5-methylnaphthalen-2- yl)methyl)azetidine-3-carboxylate (80 mg, 0.18 mmol) in EtOH (10 mL) was added aqueous NaOH (2 mL, 20%, 5.0 eq) and 85 0C for 1 h. Then the reaction was cooled to 0 0C, the pH of the solution was adjusted to 6 using IM HCl, concentrated and the residue was dissolved in DCM, washed with water, dried and concentrated to give the title compound as a white solid (40 mg, yield: 52%). ESI-MS (M+H+): 410.3. HPLC: 97.77% 1U NMR (400 MHz, CD3OD) δ: 8.04 (d, IH), 7.92 (s, IH), 7.77 (d, IH), 7.50 (dd, IH), 7.41 (d, IH), 4.54 (s, 2H), 4.34-4.26 (m, 5H), 3.74-3.70 (m, IH), 2.52 (s, 3H), 2.21-2.18 (m, 2H), 1.91-1.88 (m, 2H), 1.49-1.44 (m, 2H), 1.23- 1.11 (m, 3H), 0.90 (s, 9H).
Example 128: (6-bromonaphthalen-2-yloxy)(ter/-butyl)dimethylsilane
Figure imgf000083_0003
76% To a solution of compound 6-bromonaphthalen-2-ol (10 g, 0.044 mol, 1.0 equiv) and imidazole (6 g, 0.088 mol, 2.0 equiv) in dry DMF (10OmL) was added TBDMSCl (1Og, 0.066 mol, 1.5 equiv) at 0 0C . Then the reaction mixture was warmed to r.t and stirred for 3 h. Then DMF was removed under reduced pressure. The mixture was extracted with ethyl acetate and washed with brine, dried over Na2SO4 and concentrated to obtain crude product. The crude product was purified by silica gel chromatography (PE: EA = 30:1) to give compound to give the title compound as a yellow solid (23g, 76%). ESI-MS (M+H)+: 336.9. 1H NMR (400 MHz, CDCl3) δ: 7.91-7.92 (m, IH), 7.64-7.46 (m, 3H), 7.15-7.08 (m, 2H), 1.01 (s, 9H), 0.24 (s, 6H).
Example 129: 6-(ter/-butyldimethylsilyloxy)-2-naphthaldehyde
Figure imgf000084_0001
64%
To a solution of (6-bromonaphthalen-2-yloxy)(te/t-butyl)dimethylsilane (4 g, 0.01 mol, 1.0 equiv) in dry THF (30 mL) at -78 0C under N2 atmosphere was added n-BuLi (2.5 M, 12 mL, 3.0 equiv) dropwise and stirred for 30 min. Then DMF (7.3 g, 0.1 mol, 10 equiv) was added and stirred for another 1 h, then quenched with water, extracted with ethyl acetate and washed with brine, dried over Na2SO4 and concentrated to obtain crude product. The crude product was purified by silica gel chromatography (PE: EA = 20:1) to give compound the title compound (2.2 g, 64%) as a yellow liquid. ESI-MS (M+l)+: 287.0. 1H NMR (400 MHz, CDCl3) δ: 10.10 (s, IH), 8.26 (s, IH), 7.91-7.88 (m, 2H), 7.78-7.76 (m, IH), 7.24-7.16(m, 2H), 1.03 (s, 9H), 0.28 (s, 6H).
Example 130: methyl l-((6-(ter^butyldimethylsilyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
Figure imgf000084_0002
50% 6-(te/t-butyldimethylsilyloxy)-2-naphthaldehyde (4.0 g, 14 mmol), AcOH (1.8 g, 28 mmol) and methyl azetidine-3-carboxylate (3.2 g, 28 mmol, 2.0 equiv) in DCE (30 mL) were stirred at 85 0C for Ih. Then NaBH3CN (1.8 g, 28 mmol, 2.0 equiv) was added to the mixture at 50 0C and stirred for 2 h at 85 0C. The reaction mixture was quenched with water, extracted with DCM and washed with brine, dried over Na2SO4 and concentrated to obtain crude product. The crude product was purified by silica gel chromatography (DCM: MeOH = 40:1) to give the title compound (2.7 g, 50%) as a yellow oil. ESI-MS (M+l)+: 386.2. 1H NMR (400 MHz, CDCl3) δ: 7.72-7.68 (m, 3H), 7.37-7.34 (m, IH), 7.15-7.10 (m, 2H), 3.94 (s, 2H), 3.81-3.76 (m, 4H), 3.74 (s, 3H), 3.50-3.44 (m, IH), 1.02 (s, 9H), 0.25 (s, 6H).
Example 131: methyl l-((6-hydroxynaphthalen-2-yl)methyl)azetidine-3-carboxylate
Figure imgf000085_0001
To a solution of methyl l-((6-(tert-butyldimethylsiryloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate (4.5 g, 11.7 mmol) in methanol (50 mL) at 0 0C was added con. HCl (5 mL) dropwise. The reaction mixture was stirred at r.t for 1 h. The mixture was neutralized by sat. NaHCO3 and evaporated off most of solvent, extracted with DCM and washed with brine, dried over Na2SO4 and concentrated to obtain crude product. The crude product was purified by silica gel chromatography (DCM: MeOH = 40:1), extracted with DCM and washed with brine, dried over Na2SO4 and concentrated to obtain crude product. The crude product was purified by silica gel chromatography (DCM: MeOH = 40:1) to give the title compound (1.5 g, 47%) as a gray solid. ESI-MS (M+l)+: 272.0. 1H NMR (400 MHz, CDCl3) δ: 8.14 (s, IH), 7.59- 7.52 (m, 2H), 7.39-7.28 (m, 2H), 7.09-7.04 (m, 2H), 3.92 (s, 2H), 3.86-3.82 (m, 2H), 3.70 (s, 3H), 3.63-3.59 (m, 2H), 3.52-3.46 (m, IH). Example 132: methyl l-((6-(4-(trifluoromethyl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000085_0002
To a vial was added methyl l-((6-hydroxynaphthalen-2-yl)methyl)azetidine-3- carboxylate (271 mg, 1.0 mmol), 4-(trifluoromethyl) cyclohexanol (252 mg, 1.5 mmol, 1.5 equiv), PPh3 (524 mg, 2.0 mmol, 2.0 equiv) and toluene (0.8 mL) under N2 atmosphere. While stirring, DIAD (404 mg, 2.0 mmol, 2.0 equiv) was added to the reaction mixture quickly at r.t and stirred for 10 min. The reaction mixture was then purified by silica gel chromatography (PE: EA = 5:1) to give the title compound (114 mg, 28%) as a slight yellow oil. ESI-MS (M+l)+: 408.2. 1H NMR (400 MHz, CD3OD) δ: 7.76 (d, IH), 7.70 (d, IH), 7.66 (s, IH), 7.36 (dd, IH), 7.24 (d, IH), 7.17 (dd, IH), 4.86-4.76 (m, IH), 3.74 (s, 2H), 3.70 (s, 3H), 3.56-3.51 (m, 2H), 3.32-3.34 (m, 3H), 2.33-2.22 (m, IH), 2.20 (d, 2H), 1.82-1.67 (m, 6H).
Example 133: methyl l-((6-((lR,3s,5S)-bicyclo[3.1.0]hexan-3-yloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000086_0001
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example
132).100mg, slight yellow oil, yield: 27% ESI-MS (M+l)+:351.2. 1H NMR (400 MHz, CD3OD) δ: 7.72 (d, IH), 7.70 (d, IH), 7.66 (s, IH), 7.36 (dd, IH), 7.16 (d, IH), 7.08 (dd, IH), 4.67-4.61 (m, IH), 3.75 (s, 2H), 3.72 (s, 3H), 3.55 (t, 2H), 3.44 (t, 2H), 3.39-3.35 (m, IH), 2.45 (q, 2H), 1.97-1.93 (m, 2H), 1.44-1.40 (m, 2H), 0.51-0.48 (m, IH), 0.20 (q, IH) .
Example 134: methyl l-((6-(bi(cyclohexan)-4-yloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
Figure imgf000086_0002
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132). lOOmg, slight yellow oil, yield: 26% ESI-MS (M+l)+: 435.3 1H NMR (400 MHz, CD3OD) δ: 7.76-7.70 (m, 2H), 7.66 (s, IH), 7.36 (dd, IH), 7.21 (d, IH), 7.10 (dd, IH), 4.33-4.39 (m, IH), 3.77 (s, 2H), 3.72 (s, 3H), 3.57 (t, 2H), 3.46 (t, 2H), 3.39-3.35 (m, IH), 2.26 (d, 2H), 1.89-1.40 (m, 9H), 1.30-1.09 (m, 9H)
Example 135: methyl l-((6-(cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
Figure imgf000087_0001
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132). 100 mg, slight yellow oil, yield: 20%. ESI-MS (M+l)+: 354.2 1H NMR (400 MHz, CDCl3) δ: 7.71-7.63 (m, 3H), 7.37 (dd, IH), 7.13 (dd, 2H), 5.01-4.95 (m, 2H), 4.42-4.36 (m, IH), 3.78-3.76 (m, 2H), 3.71 (s, 3H), 3.63-3.61 (m, IH), 3.40-3.38 (m, 2H), 2.07 (d, 2H), 1.82 (d, 2H), 1.60- 1.54 (m, 3H), 1.43-1.37 (m, 3H)
Example 136: methyl l-((6-((trans)-4-cyclopentylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000087_0002
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132). 217 mg, slight yellow oil, yield: 46%. ESI-MS (M+l)+: 422.3. 1H NMR (400 MHz, CDCl3) δ: 7.73-7.59 (m, 3H), 7.38-7.31 (m, IH), 7.16-7.08 (m, 2H), 4.32-4.22 (m, IH), 3.72 (s, 2H), 3.71 (s, 3H), 3.57-3.56 (m, 2H), 3.38-3.34 (m, 3H), 2.26-2.17 (m, 2H), 1.96-1.87 (m, 2H), 1.83-1.71 (m, 2H), 1.68-1.39 (m, 12H).
Example 137: methyl l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000088_0001
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132). 67 mg, slight yellow oil, yield: 17%. ESI-MS (M+l)+: 410.3 1U NMR (400 MHz, CDCl3) δ: 7.72-7.65 (m, 3H), 7.38 (d, IH), 7.16 (dd, 2H), 4.68-6.66 (m, IH), 3.80 (s, 2H), 3.72 (s, 3H), 3.66-3.64 (m, 2H), 3.42-3.40 (m, 3H), 2.18 (d, 2H), 1.59-1.49 (m, 7H), 0.89 (s, 9H)
Example 138: methyl l-((6-(4-methylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
— ( VOH (2 equiv)
Figure imgf000088_0002
PPh3(2 equiv), DIAD (3 equiv),
toluene, r t, 15 min
Figure imgf000088_0003
64%
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132). 216 mg, slight yellow oil, yield: 64%. ESI-MS (M+l)+: 368.2. 1U NMR (400 MHz, CDCl3) δ: 7.74-7.61 (m, 3H), 7.38-7.32 (m, IH), 7.18-7.08 (m, 2H), 4.66-4.24 (m, IH), 3.75 (s, 2H), 3.71 (s, 3H), 3.62-3.52 (m, 2H), 3.43-3.31 (m, 3H), 2.23-2.01 (m, 2H), 1.65-1.56 (m, 2H),
1.54-1.38 (m, 5H), 0.99-0.90 (m, 3H).
Example 139: methyl l-((6-(4-propylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
Figure imgf000088_0004
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132). ESI-MS (M+l)+: 396.3. 1U NMR (400 MHz, CDCl3) δ: 7.72-7.66 (m, 3H), 7.37 (d, IH), 7.16- 7.12 (m, 2H), 4.76-4.66 (m, IH), 3.74-3.66 (m, 5H), 3.59-3.52 (m, 2H), 3.40-3.33 (m, 3H), 2.25- 1.85 (m, 2H), 1.60-1.55 (m, HH), 0.90 (t, 3H). Example 140: methyl l-((6-(4-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
Figure imgf000089_0001
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132) . 292 mg, slight yellow oil, yield: 76%. ESI-MS (M+l)+: 410.3. 1H NMR (400 MHz, CDCl3) δ: 7.73-7.60 (m, 3H), 7.39-7.32 (m, IH), 7.18-7.09 (m, 2H), 4.67-4.20 (m, IH), 3.75 (s, 2H), 3.71 (s, 3H), 3.65-3.52 (m, 2H), 3.42-3.33 (m, 3H), 2.25-2.05 (m, 2H), 1.92-1.83 (m, 2H),
1.61-1.37 (m, 6H), 1.17-0.98 (m, 5H), 0.93-0.80 (m, 3H).
Example 141: methyl l-((6-(4-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
Figure imgf000089_0002
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate (Example 132) . ESI-MS (M+l)+: 424.3. 1U NMR (400 MHz, CD3OD) δ: 7.73-7.64 (m, 3H), 7.34 (dd, IH), 7.20 (d, IH), 7.09 (dd, IH), 4.40-4.30 (m, IH), 3.76-3.66 (m, 5H), 3.55-3.32 (m, 5H), 2.28-2.25 (m, 2H), 1.85-1.82 (m, 2H), 1.39-1.27 (m, 7H), 0.91-0.81 (m, 9H). Example 142: (trans)-methyl 4-hydroxycyclohexanecarboxylate
Figure imgf000089_0003
100%
To a solution of (trans)-4-hydroxycyclohexanecarboxylic acid (4.32 g, 30 mmol) in MeOH (20 mL) was added SOCl2 (7.08 g, 60 mmol, 2.0 eq) dropwise at rt. Then the mixture was stirred at 70 0C for 18 h, and the solvent was removed in vacuo to give the title compound as a colorless oil (4.74 g, yield: 100%).1U NMR (400 MHz, DMSO-d6) δ: 4.33 (br, IH), 3.68-3.60 (m, IH), 3.57 (s, 3H), 2.37-2.31 (m, IH), 1.82-1.74 (m, 2H), 1.53-1.45 (m, 6H).
Example 143: (trans)-methyl 4-(tetrahydro-2H-pyran-2-yloxy)cyclohexanecarboxylate
Figure imgf000090_0001
To a solution of (trans)-methyl 4-hydroxycyclohexanecarboxylate (4.74 g, 30 mmol) and THP (3.06 g, 3.6 mmol, 1.2 eq) in DCM (20 mL) was added p-TsOH (1.18 g, 6 mmol, 0.2 eq) slowly at rt. Then the mixture was stirred at rt for 18 h, and the solvent was removed in vacuo. The residue was purified on silica gel (EA/PE = 1:20) to give the title compound as a colorless oil (3.12 g, yield: 43%). 1U NMR (400 MHz, CDCl3) δ: 4.68 (t, IH), 3.91-3.88 (m, IH), 3.84- 3.81 (m, IH), 3.67 (s, 3H), 3.51-3.46 (m, IH), 2.40-2.36 (m, IH), 2.00-1.82 (m, 4H), 1.76-1.51 (m, 10H).
Example 144: 2-((trans)-4-(tetrahydro-2H-pyran-2-yloxy)cyclohexyl)propan-2-ol
Figure imgf000090_0002
To a solution of (trans)-methyl 4-(tetrahydro-2H-pyran-2-yloxy)cyclohexanecarboxylate (3.12 g, 13 mmol) in THF (10 mL) was added MeLi (65 mL, 1 M, 5.0 eq) dropwise at -78 0C, then the mixture was stirred at -78 0C for 2 h. Water (20 mL) was added and the mixture was extracted with EA (30 mL x 3), dried and concentrated. The residue was purified on silica gel (EA/PE = 1:10) to give the title compound as a colorless oil (1.56 g, yield: 50%). 1H NMR (400 MHz, CDCl3) δ: 4.65 (t, IH), 3.93-3.89 (m, 2H), 3.51-3.47 (m, IH), 2.05-1.84 (m, 3H), 1.73- 1.68 (m, IH), 1.59-1.53 (m, 7H), 1.35-1.31 (m, 4H), 1.17 (d, 6H).
Example 145: 2-((trans)-4-(2-methoxypropan-2-yl)cyclohexyloxy)tetrahydro-2H-pyran
Figure imgf000091_0001
72%
To a solution of 2-((trans)-4-(tetrahydro-2H-pyran-2-yloxy)cyclohexyl)propan-2-ol (1.56 g, 6.5 mmol) in THF (10 niL) was added NaH (300 mg, 13 mmol, 2.0 eq) slowly at r.t. and then CH3I (1.96 g, 13 mmol, 2.0 eq) was added in one portion. The mixture was stirred at 50 0C for 2 h, Water (10 mL) was added and the mixture was extracted with EA (30 mL x 3), dried and concentrated to give the title compound as a colorless oil (1.2 g, yield: 72%).1H NMR (400 MHz, CDCl3) δ: 4.64 (t, IH), 3.93-3.89 (m, 2H), 3.51-3.47 (m, IH), 3.17 (s, 3H), 1.97-1.85 (m, 3H), 1.70-1.67 (m, IH), 1.58-1.43 (m, 9H), 1.34-1.27 (m, 2H), 1.09 (d, 6H). Example 146: (trans)-4-(2-methoxypropan-2-yl)cyclohexanol
Figure imgf000091_0002
To a solution of 2-((trans)-4-(2-methoxypropan-2-yl)cyclohexyloxy)tetrahydro-2H-pyran (1.2 g, 4.7 mmol) in MeOH (10 mL) was added p-TsOH (8.9 g, 4.7 mmol, 1.0 eq) slowly at rt. Then the mixture was stirred at rt for 2 h, and the solvent was removed in vacuo. The residue was purified on silica gel (EA/PE = 1:3) to give the title compound as a colorless oil (660 mg, yield: 82%). 1U NMR (400 MHz, CDCl3) δ: 4.07-4.05 (m, IH), 3.17 (s, 3H), 1.87-1.82 (m, 2H), 1.55-1.38 (m, 7H), 1.10 (s, 6H).
Example 147: methyl l-((6-((trans)-4-(2-methoxypropan-2-yl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate
Figure imgf000091_0003
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate. ESI-MS (M+l)+: 426.3. 1H NMR (400 MHz, CDCl3) δ: 7.80-7.75 (m, 3H), 7.37 (d, IH), 7.17-7.14 (m, 2H), 4.32-4.26 (m, IH), 3.73-3.68 (m, 10H), 3.20 (s, 3H), 2.30-2.28 (m, 2H), 1.89-1.87 (m, 2H), 1.69-1.65 (m, 2H), 1.48-1.42 (m, 3H), 1.12 (s, 6H).
Example 148: methyl l-((6-(4-isopropylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylate
Figure imgf000092_0001
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylate. ESI-MS (M+l)+:396.3. 1H NMR (400 MHz, CD3OD) δ: 7.73-7.64 (m, 3H), 7.38 (dd, IH), 7.20-7.17 (m, 2H), 4.29-4.25 (m, IH), 3.82 (s, 2H), 3.73-3.67 (m, 5H), 3.45-3.39 (m, 3H), 2.30-2.10 (m, 2H), 1.85-1.82 (m, 2H), 1.52-1.43 (m, 4H), 1.27-1.15 (m, 2H), 0.90 (d, 6H).
Example 149: l-((6-(4-(trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid
Figure imgf000092_0002
To a solution of methyl l-((6-(4-(trifluoromethyl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylate (100 mg, 0.26 mmol) in EtOH (15 mL) was added aqueous NaOH (3 mL, 20%, 5.0 eq.) and refluxed for 1 h. Then the reaction was cooled to O0C, the pH of the solution was adjusted to 6 using IM HCl, concentrated and the residue was dissolved in DCM, washed with water, dried and concentrated to give the title compound as a slight yellow solid (50mg, yield: 52%). ESI-MS (M+l)+: 408.2 HPLC: 94.97%.1H NMR (400 MHz, CD3OD) δ: 1.11 (d, IH), 7.69 (d, IH), 7.64 (s, IH), 7.33 (d, IH), 7.31 (s, IH), 7.16 (dd, IH), 4.80-4.71 (m, IH), 3.57 (s, 2H), 3.25 (t, 2H), 3.09 (t, 2H), 2.79-2.73 (m, IH), 2.41 (br, IH), 2.07 (d, 2H), 1.80-1.60 (m, 6H).
Example 150: l-((6-((trans)-4-(l,l-difluoroethyl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
Figure imgf000093_0001
1.8%
(trans)-4-(l,l-difluoroethyl)cyclohexyl methanesulfonate (WO 2010051030) (0.98 mmol, 236 mg, 1.0 eq.), methyl l-((6-hydroxynaphthalen-2-yl)methyl)azetidine-3-carboxylate (1.17 mmol, 317 mg, 1.2 mmol) and Cs2CO3 (4.41 mmol, 1.4 g, 4.5 eq.) were dissolved in t- butanol (4 mL) and 2-butanone (2 mL). The mixture was stirred at 110 0C for 16 h. 1 M aq. HCl solution was added to the mixture to adjust pH=6. Then the mixture was extracted with EtOAc. The organic layer was purified by silica gel column chromatography using DCM/CH3OH (10/1) as eluent to give product (7 mg, 1.8%) as a white solid. ESI-MS (M+l)+: 404.1. HPLC: 89.46%. 1U NMR (400 MHz, CD3OD) δ: 7.89 (s, IH), 7.86-7.81 (m, 2H), 7.46 (dd, IH), 7.31 (s, IH), 7.19 (dd, IH), 4.47 (s, 2H), 4.43-4.41 (m, IH), 4.21 (d, 4H), 3.45-3.41 (m, IH), 2.32-2.30 (m, 2H), 2.02-1.99 (m, 2H), 1.64-1.54 (m, 3H), 1.51-1.45 (m, 3H), 1.36-1.28 (m, 2H).
Example 151: l-((6-((trans)-4-(l,l-difluoropropyl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
Figure imgf000093_0002
10%
The preparation of the title compound was performed as described for l-((6-((trans)-4- (l,l-difluoroethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid (Example 150). 22 mg, slight yellow solid, yield: 10%. ESI-MS (M+l)+: 418.1. HPLC: 93.94%. 1U NMR (400 MHz, CD3OD) δ: 7.91 (s, IH), 7.87-7.82 (m, 2H), 7.46 (dd, IH), 7.31 (s, IH), 7.19 (dd, IH), 4.53 (s, 2H), 4.44-4.40 (m, IH), 4.34 (d, 4H), 3.74-3.69 (m, IH), 2.32-2.30 (m, 2H), 1.98- 1.85 (m, 5H), 1.51-1.46 (m, 4H), 1.02 (t, 3H). Example 152: l-((6-((lR,3s,5S)-bicyclo[3.1.0]hexan-3-yloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
0 eq)
Figure imgf000094_0002
1 h
Figure imgf000094_0001
19-0006e 60%
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 50 mg, slight yellow solid, yield: 60%. ESI-MS (M+l)+: 338.2. HPLC: 97.96%. 1U NMR (400 MHz, CD3OD) δ: 7.85 (s, IH), 7.80-7.78 (m, 2H), 7.45 (d, IH), 7.19 (dd, IH), 7.14 (s, IH), 4.65-4.58 (m, IH), 4.41 (s, 2H), 4.21-4.15 (m, 4H), 3.39-3.37 (m, IH), 2.48 (q, 2H), 2.04-1.98 (m, 2H), 1.46-1.42 (m, 2H), 0.56-0.53 (m, IH), 0.17-0.15 (m, IH).
Example 153: l-((6-(bi(cyclohexan)-4-yloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid 0 eq)
1 h
Figure imgf000094_0004
Figure imgf000094_0003
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 50 mg, slight yellow solid, yield: 58%. ESI-MS (M+l)+: 422.3 HPLC: 93.30%. 1U NMR (400 MHz, CD3OD) δ: 7.81-7.77 (m, 3H), 7.41 (d, IH), 7.20 (s, 2H), 4.75-4.72 (m, IH), 4.33 (s, 2H), 4.16- 4.14 (m, 2H), 4.08-4.06 (m, 2H), 3.39-3.37 (m, IH), 2.27 (d, 2H), 1.91-1.46 (m, 9H), 1.30-1.02 (m, 9H)
Example 154: l-((6-(cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid eq)
1 h
Figure imgf000094_0005
Figure imgf000094_0006
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 50 mg, slight yellow solid, yield: 65%. ESI-MS (M+l)+: 340.2 HPLC: 95.48%. 1U NMR (400 MHz, CD3OD) δ: 7.76-7.73 (m, 3H), 7.39 (d, IH), 7.16 (dd, 2H), 4.45-4.40 (m, IH), 4.21 (s, 2H), 3.97 (br, 4H), 3.37-3.32 (m, IH), 2.04 (dd, 2H), 1.83 (dd, 2H), 1.63-1.48 (m, 3H), 1.46-1.33 (m, 3H)
Example 155: l-((6-((trans)-4-cyclopentylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine- 3-carboxylic acid
Figure imgf000095_0001
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 78 mg, slight yellow solid, yield: 46%. ESI-MS (M+l)+: 408.3 HPLC: 98.97%. 1U NMR (400 MHz, CD3OD) δ: 7.89 (s, IH), 7.83 (dd, 2H), 7.44 (dd, IH), 7.27 (d, IH), 7.18 (dd, IH), 4.51 (s, 2H), 4.42-4.37 (m, IH), 4.33-4.31 (m, 4H), 3.72-3.64 (m, IH), 2.21 (dd, 2H), 1.95 (dd, 2H) 1.83-1.78 (m, 2H), 1.65-1.42 (m, 7H), 1.22-1.14 (m, 5H)
Example 156: l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid
Figure imgf000095_0002
77%
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid.27 mg, slight yellow solid, yield: 77%. ESI-MS (M+l)+: 396.3 HPLC: 100%. 1U NMR (400 MHz, CD3OD) δ: 7.90 (s, IH), 7.85 (dd, 2H), 7.45 (dd, IH), 7.29 (d, IH), 7.24 (dd, IH), 4.77-4.75 (m, IH), 4.47 (s, 2H), 4.22-4.20 (m, 4H), 3.45-3.40 (m, IH), 2.20 (d, 2H), 1.65-1.49 (m, 6H), 1.20- 1.14 (m, IH), 0.93 (s, 9H)
Example 157: l-((6-(4-methylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid
Figure imgf000096_0001
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid.83 mg, slight yellow solid, yield: 40%. ESI-MS (M+l)+: 354.2 HPLC: 96.69%. 1H NMR (400 MHz, CD3OD) δ: 7.87 (s, IH), 7.81 (dd, 2H), 7.43 (dd, IH), 7.25 (d, IH), 7.20 (dd, IH), 4.73-4.69 (m, IH), 4.50 (s, 2H), 4.35-4.30 (m, 4H), 3.71-3.64 (m, IH), 2.02-1.98 (m, 2H), 1.83-1.38 (m, 7H), 0.94 (d, 3H).
Example 158: l-((6-(4-propylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid
0 eq)
1 h
Figure imgf000096_0002
Figure imgf000096_0003
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid.65 mg, yield: 69% ESI-MS (M+l)+: 382.2 HPLC: 96.32%. 1U NMR (400 MHz, CD3OD) δ: 7.85-7.78 (m, 3H), 7.43 (dd, IH), 7.22-7.15 (m, 2H), 4.75-4.71 (m, IH), 4.36 (s, 2H), 4.12-4.10 (m, 4H), 3.41-3.36 (m, IH), 2.23-1.86 (m, 2H), 1.68-1.57 (m, 3H), 1.46-1.24 (m, 8H), 0.93 (t, 3H).
Example 159: l-((6-(4-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid
Figure imgf000096_0004
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 60 mg, slight yellow solid, yield: 31%. ESI-MS (M+l)+: 396.3 HPLC: 98.15%. 1H NMR (400 MHz, DMSO-d6) δ: 7.94 (s, IH), 7.85 (dd, 2H), 7.53 (dd, IH), 7.39 (dd, IH), 7.20 (dd, IH), 4.76-4.74 (m, IH), 4.45 (s, 2H), 4.15-4.13 (m, 4H), 3.66-3.60 (m, IH), 2.16 (d, IH), 1.95 (d, IH), 1.82 (d, IH), 1.64-1.11 (m, 12H), 0.90 (t, 3H). Example 160: l-((6-((trans)-4-ter/-pentylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid
0 eq)
1 h
Figure imgf000097_0001
Figure imgf000097_0002
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 50 mg, yield: 63% ESI-MS (M+l)+: 410.3 HPLC: 93.22%.1H NMR (400 MHz, CD3OD) δ: 7.91-7.82 (m, 3H), 7.46 (dd, IH), 7.29 (d, IH), 7.19 (dd, IH), 4.53 (s, 2H), 4.39-4.34 (m, 5H), 3.74-3.70 (m, IH), 2.30-2.27 (m, 2H), 1.89-1.86 (m, 2H), 1.45-1.26 (m, 7H), 0.85-0.88 (m, 9H). Example 161: l-((6-((trans)-4-(2-methoxypropan-2-yl)cyclohexyloxy)naphthalen-2- yl)methyl)azetidine-3-carboxylic acid
Figure imgf000097_0003
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 60 mg, yield: 52% SI-MS (M+l)+: 412.2 PLC: 92.12%. 1H NMR (400 MHz, CD3OD) δ: 7.80-7.75 (m, 3H), 7.37 (d, IH), 7.17-7.14 (m, 2H), 4.36-4.30 (m, 3H), 4.13-4.07 (m, 4H), 3.36-3.31 (m, IH), 3.19 (s, 3H), 2.29-2.26 (m, 2H), 1.88-1.85 (m, 2H), 1.59-1.10 (m, 3H), 1.31-1.21 (m, 2H), 1.14 (s, 6H). Example 162: l-((6-(4-isopropylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid
0 eq)
1 h
Figure imgf000097_0004
Figure imgf000097_0005
The preparation of the title compound was performed as described for methyl l-((6-(4- (trifluoromethyl)cyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid. 0 mg, yield: 72% SI-MS (M+l)+: 382.2 PLC: 92.20%. 1U NMR (400 MHz, CD3OD) δ: 7.83-7.76 (m, 3H), 7.40 (dd, IH), 7.23-7.15 (m, 2H), 4.39-4.34 (m, 3H), 4.16-4.11 (m, 4H), 4.38-4.34 (m, IH), 2.26- 2.10 (m, 2H), 1.87-1.84 (m, IH), 1.61-1.43 (m, 5H), 1.22-1.16 (m, 2H), 0.94-0.90 (m, 6H).
Example 163: 6-Methoxy-2-methyl-4-trifluoromethyl-quinoline
Figure imgf000098_0001
A solution of 4-Bromo-6-methoxy-2-methyl-quinoline (0.202 g, 0.801 mmol),
Hexamethylphosphoramide (697 uL, 3.97 mmol) in N,N-Dimethylformamide (4.30 mL) was degassed by stirring under vacuum and replacing the vacuum with Argon (4 times). To this was added Copper(I) iodide (263 mg, 1.38 mmol) and Methyl fluorosulphonyldifluoroacetate (520 uL, 3.97 mmol) and the reaction was stirred under an atmosphere of Argon for 2h @ 55 0C, then at 80 0C for 16 hours. The reaction was evaporated, then diluted with methylene chloride. Silica gel was added and the solvent removed. The material was purified by silica gel chromatography using 0-50% ethyl acetate in hexanes as eluent (Rf =0.78 in 1:1 ethyl acetate/hexanes) to give the product in 40.5 mg yield (21%). ESI-MS(M+H+): 242.10.
Example 164: 2-Methyl-4-trifluoromethyl-quinolin-6-ol
Figure imgf000098_0002
6-Methoxy-2-methyl-4-trifluoromethyl-quinoline (0.894 g, 3.71 mmol) was dissolved in Methylene chloride (60 mL), and cooled to -78 0C. A solution of 1.0 M of Boron tribromide in Methylene chloride(l 1.0 mL, 11.0 mmol) was then added dropwise. The reaction mixture was then warmed up to 23 0C. The reaction was allowed to stir 22h at room temperature. After cooling in an ice bath, saturated sodium bicarbonate solution was added with stirring. The mixture was extracted with methylene chloride and ethyl acetate. The organics were dried over sodium sulfate, filtered and evaporated. The residue was purified by silica gel chromatography using 0-15% methanol in methylene chloride to give the product (Rf =0.49 in 10% methanol in methylene chloride) in 771 mg yield (92%). ESI-MS(M+H+): 228.10. Example 165: 6-(trans-4-ter/-Butyl-cyclohexyloxy)-2-methyl-4-trifluoromethyl-quinoline
Figure imgf000099_0001
2-Methyl-4-trifluoromethyl-quinolin-6-ol (0.771 g, 0.00339 mol, cis-4-tert-Butyl- cyclohexanol (0.8570 g, 0.005484 mol) and Triphenylphosphine (1.423 g, 0.005425 mol) were placed in a flask, and dissolved in Toluene (25 mL). For the Mitsunobu reaction of certain analogs, THF was substituted for toluene as solvent. Diisopropyl azodicarboxylate (1.137 mL, 0.005430 mol) was then added dropwise. After 3d stirring at RT, the reaction was evaporated to dryness. The residue was purified by silica gel chromatography using 0-30% ethyl acetate in hexanes as eluent (Rf =0.38 in 3:1 hexanes/ethyl acetate). Isolated was 0.739 g of product (60%). ESI-MS(M+H+): 366.20.
Example 166: 6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinoline-2- carbaldehyde tBuOOtBu,
SeO2, dioxane
Figure imgf000099_0003
Figure imgf000099_0002
Di-te/t-butyl peroxide (0.186 mL, 1.01 mmol) was added to a suspension of Selenium dioxide (0.252 g, 2.27 mmol) in 1,4-Dioxane (6.0 mL). The mixture was stirred for 30 minutes, then 6-(4-fer?-Butyl-cyclohexyloxy)-2-methyl-4-trifluoromethyl-quinoline (0.366 g, 1.00 mmol) was added as a solution in 1,4-Dioxane (2.0 mL). The mixture was sealed and was heated at 50 0C for 2Oh. The reaction was filtered through Celite and washed with dioxane. The solvent was evaporated and the residue was purified on silica gel column using 0-20% ethyl acetate in hexanes as eluent. Isolated was (Rf =0.70 in 3:1 hexanes/ethyl acetate) the product (212 mg, 56%). ESI-MS(M+H+): 380.20. Example 167: l-[6-(trans-4-ter^Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid methyl ester
Figure imgf000100_0001
N,N-Diisopropylethylamine (39 uL, 0.22 mmol) was added to a solution of 6-(4-trans- fert-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinoline-2-carbaldehyde (61 mg, 0.16 mmol) and Azetidine-3-carboxylic acid methyl ester hydrochloride salt (34 mg, 0.22 mmol) in 1,2- Dichloroethane (2.50 mL) and the mixture was stirred for 1 hour at room temperature. Sodium triacetoxyborohydride (54 mg, 0.25 mmol) was then added and stirring was continued. After 1.5h, the reaction was diluted in methylene chloride and washed with saturated aq. sodium bicarbonate. The organic phase was dried over magnesium sulfate, filtered, evaporated and purified by flash chromatography (0-5% methanol in methylene chloride) to give the product (Rf=0.30 in 5% methanol/methylene chloride) in 65.8 mg yield (86%). ESI-MS(M+H+): 479.30. Example 168: l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl] -azetidine-3-carboxylic acid
Figure imgf000100_0002
2 M of Lithium hydroxide, monohydrate in Water (0.500 mL, 1.00 mmol) was added to a solution of 1 - [6-(4-trans-fert-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2-ylmethyl] - azetidine-3-carboxylic acid methyl ester (0.0658 g, 0.137 mmol) in Tetrahydrofuran (0.500 mL) and Methanol (0.500 mL). The mixture was stirred at room temperature. After 1 hour, the solvent was concentrated under reduced pressure. The residue was dissolved in methylene chloride and treated with 1.00 M of Hydrogen chloride in water(1.00 mL). The organic phases were dried with magnesium sulfate, filtered and concentrated. Purification by preparative HPLC gave the product in 37.0 mg yield (39 %) as bis-TFA salt. ESI-MS(M+H+): 465.3; IH NMR (400 MHz, METHANOL-d4) Shift 8.16 (d, J = 9.29 Hz, IH), 7.83 (s, IH), 7.58 (dd, J = 2.51, 9.29 Hz, IH), 7.39 (br. s., IH), 4.90 (s, 2H), 4.35 - 4.44 (m, IH), 3.83 (t, J = 7.78 Hz, IH), 2.29 (d, J = 10.79 Hz, 2H), 1.89 - 2.00 (m, 2H), 1.42 - 1.56 (m, 2H), 1.08 - 1.34 (m, 3H), 0.94 (s, 9H). 1.6 TFA per molecule. Example 169: 3-{[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl] -amino }-propionic acid
Synthesized as per l-[6-(trans-4-fert-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid (Example 168) using the appropriate amine. ESI- MS(M+H+): 453.2; IH NMR (400 MHz, METHANOL-d4) Shift 8.15 (d, J = 9.29 Hz, IH), 7.85 (s, IH), 7.56 (dd, J = 2.26, 9.29 Hz, IH), 7.38 (br. s., IH), 4.65 (s, 2H), 4.28 - 4.45 (m, IH), 3.48 (t, J = 6.65 Hz, 2H), 2.88 (t, J = 6.78 Hz, 2H), 2.27 (d, J = 10.79 Hz, 2H), 1.74 - 2.03 (m, 2H),
1.38 - 1.54 (m, 2H), 1.18 - 1.32 (m, 2H), 1.04 - 1.18 (m, IH), 0.79 - 0.94 (m, 9H). 1.6 TFA per molecule. Example 170: l-[6-(trans-4-tør/-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl] -pyrrolidine-3-carboxylic acid
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid (Example 168) using the appropriate amine. ESI- MS(M+H+): 479.2; IH NMR (400 MHz, METHANOL-d4) Shift 8.17 (d, J = 9.29 Hz, IH), 7.85 (s, IH), 7.58 (dd, J = 2.38, 9.41 Hz, IH), 7.39 (br. s., IH), 4.85 (br. s., 2H), 4.32 - 4.44 (m, IH),
3.39 - 3.53 (m, IH), 2.51 (br. s., IH), 2.41 (br. s., IH), 2.27 (d, J = 10.79 Hz, 2H), 1.86 - 1.99 (m, 2H), 1.34 - 1.55 (m, 2H), 1.19 - 1.34 (m, 2H), 1.03 - 1.19 (m, IH), 0.91 (s, 9H). 1.3 TFA per molecule. Example 171: 4-Bromo-2-methyl-quinolin-6-ol
Figure imgf000101_0001
Synthesized as per 2-Methyl-4-trifluoromethyl-quinolin-6-ol using 4-Bromo-6-methoxy- 2-methyl-quinoline as starting material. ESI-MS(M+H+): 238.00/240.00. Example 172: 4-Bromo-6-(trans-4-ter^butyl-cyclohexyloxy)-2-methyl-quinoline
Figure imgf000102_0001
Synthesized as per 6-(trans-4-fer?-Butyl-cyclohexyloxy)-2-methyl-4-trifluoromethyl- quinoline using 4-Bromo-2-methyl-quinolin-6-ol as starting material. ESI-MS(M+H+): 378.1.
Example 173: 4-Bromo-6-(trans-4-ter^butyl-cyclohexyloxy)-quinoline-2-carbaldehyde
Seθ2, dioxane
Figure imgf000102_0002
Figure imgf000102_0003
To a suspension of Selenium dioxide (0.333 g, 3.00 mmol) in 1,4-Dioxane (8.0 mL) was added a solution of 4-Bromo-6-(4-fert-butyl-cyclohexyloxy)-2-methyl-quinoline (0.469 g, 1.25 mmol) in 1,4-Dioxane (4.0 mL). The mixture was sealed and was heated at 50 0C in an oil bath. After 4d, the reaction was filtered through Celite and washed with dioxane. The solvent was evaporated and the residue was purified on silica gel column using 0-25% ethyl acetate in hexanes as eluent. Isolated was the product (Rf=O.68 in 3:1 hexanes/ethyl acetate) in 362 mg yield, 74%. ESI(M+H+): 390.10/392.10.
Example 174: l-[4-Bromo-6-(trans-4-ter/-butyl-cyclohexyloxy)-quinoh'n-2-ylmethyl]- azetidine-3-carboxylic acid methyl ester
Figure imgf000102_0004
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid methyl ester using 4-Bromo-6-(trans-4-te/t-butyl- cyclohexyloxy)-quinoline-2-carbaldehyde as starting material. ESI-MS(M+H+): 489.20/491.20. Example 175: l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-methyl-quinolin-2-ylmethyl]- azetidine-3-carboxylic acid methyl ester
Figure imgf000103_0001
A mixture of l-[4-Bromo-6-(trans-4-fer?-butyl-cyclohexyloxy)-quinolin-2-ylmethyl]- azetidine-3-carboxylic acid methyl ester (0.100 g, 0.204 mmol), methylboronic acid (39 mg, 0.65 mmol), [l,r-Bis(diphenylphosphino)ferrocene]dichloropalladium(II),complex with
dichloromethane (1:1) (17 mg, 0.021 mmol), 2 M of Potassium carbonate in Water(0.306 mL, 0.613 mmol) and N,N-Dimethylformamide (2.5 mL) was added to a 40 mL vial equipped with a magnetic stir bar. The vial was degassed by stirring under a flow of Ar. The reaction mixture was stirred at 60 0C under Ar for 3d. The reaction was cooled, diluted with water and extracted with ethyl acetate. The organics were washed with saturated sodium chloride, dried with sodium sulfate, filtered and evaporated. The residue was purified by silica gel chromatography using 0- 10% methanol in methylene chloride as eluent (Rf =0.44 in 10% methanol/methylene chloride). Appropriate fractions were combined and evaporated. The product was further purified by preparative HPLC to give the product in 33 mg yield (25%) as bis-TFA salt. ESI-MS(M+H+): 425.30.
Example 176: l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-methyl-quinolin-2-ylmethyl]- azetidine-3-carboxylic acid
Figure imgf000103_0002
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid using l-[6-(trans-4-te/t-Butyl-cyclohexyloxy)-4-methyl- quinolin-2-ylmethyl]-azetidine-3-carboxylic acid methyl ester as starting material. ESI- MS(M+H+): 411.30; IH NMR (400 MHz, METHANOL-d4) Shift 7.97 (d, J = 9.29 Hz, IH), 7.41 (dd, J = 2.64, 9.16 Hz, IH), 7.36 (d, J = 2.51 Hz, IH), 7.27 (s, IH), 4.73 (s, 2H), 4.45 - 4.59 (m, 4H), 4.36 - 4.45 (m, IH), 3.71 - 3.86 (m, IH), 2.69 (s, 3H), 2.28 (d, J = 11.29 Hz, 2H), 1.92 (d, J = 10.79 Hz, 2H), 1.37 - 1.52 (m, 2H), 1.19 - 1.36 (m, 2H), 1.06 - 1.19 (m, IH), 0.92 (s, 9H).
Example 177: l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-methyl-quinolin-2-ylmethyl]- pyrrolidine-3-carboxylic acid
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-methyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid using the appropriate amine. ESI-MS(M+H+): 425.3; IH NMR (400 MHz, METHAN0L-d4) Shift 8.00 (d, J = 9.29 Hz, IH), 7.43 (dd, J = 2.51, 9.29 Hz, IH), 7.38 (d, J = 2.51 Hz, IH), 7.32 (s, IH), 4.63 - 4.76 (m, 2H), 4.36 - 4.49 (m, IH), 3.68 - 3.90 (m, 2H), 3.54 - 3.68 (m, 2H), 3.37 - 3.51 (m, IH), 2.71 (s, 3H), 2.45 - 2.57 (m, IH), 2.34 - 2.45 (m, IH), 2.29 (d, J = 10.54 Hz, 2H), 1.87 - 1.98 (m, 2H), 1.37 - 1.53 (m, 2H), 1.20 - 1.37 (m, 2H), 1.07 - 1.20 (m, IH), 0.92 (s, 9H).
Example 178: 3-{[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-methyl-quinolin-2-ylmethyl]- amino}-propionic acid
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-methyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid using the appropriate amine. ESI-MS(M+H+): 399.3; IH NMR (300 MHz, METHAN0L-d4) Shift 7.88 (d, J = 9.06 Hz, IH), 7.26 - 7.35 (m, 2H), 7.21 (s, IH), 4.40 (s, 2H), 4.27 - 4.38 (m, IH), 3.31 - 3.38 (m, 2H), 2.77 (t, J = 6.61 Hz, 2H), 2.61 (s, 3H), 2.19 (d, J = 9.44 Hz, 2H), 1.77 - 1.89 (m, 2H), 1.28 - 1.43 (m, 2H), 1.10 - 1.26 (m, 2H), 0.97 - 1.10 (m, IH), 0.83 (s, 9H).
Example 179: l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-cyclopropyl-quinolin-2-ylmethyl]- azetidine-3-carboxylic acid methyl ester THF
Figure imgf000104_0001
Figure imgf000104_0002
l-[4-Bromo-6-(trans-4-fer?-butyl-cyclohexyloxy)-quinolin-2-ylmethyl]-azetidine-3- carboxylic acid methyl ester (0.100 g, 0.000204 mol), cyclopropyl trifluoroborate potassium salt (0.050 g, 0.00034 mol), [l,r-Bis(diphenylphosphino)ferrocene]dichloropalladium(II),complex with dichloromethane (1:1) (0.019 g, 0.000023 mol), Cesium Carbonate (0.215 g, 0.000660 mol), Tetrahydrofuran (2.50 niL) and Water (0.25 rnL) were added to a 4OmL vial equipped with a magnetic stir bar. The vial was degassed by stirring under a flow of Ar. The reaction was stirred under Ar for 3d at 80 0C. The reaction was cooled, diluted with water and extracted with ethyl acetate. The organics were washed with saturated sodium chloride, dried with sodium sulfate, filtered and evaporated. The residue was purified by silica gel chromatography using 0- 10% methanol in DCM as eluent (Rf =0.44 in 10% methanol/DCM). The product was further purified by preparative HPLC. Appropriate fractions were combined to give the product in 76 mg yield (55%) as bis-TFA salt. ESI-MS(M+H+): 451.30. Example 180: l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-cyclopropyl-quinolin-2-ylmethyl]- azetidine-3-carboxylic acid
Figure imgf000105_0001
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid using l-[6-(trans-4-te/t-Butyl-cyclohexyloxy)-4- cyclopropyl-quinolin-2-ylmethyl]-azetidine-3-carboxylic acid methyl ester as starting material. ESI-MS(M+H+): 437.3; IH NMR (400 MHz, METHAN0L-d4) Shift 7.97 (d, J = 9.04 Hz, IH), 7.70 (d, J = 2.76 Hz, IH), 7.41 (dd, J = 2.64, 9.16 Hz, IH), 7.08 (s, IH), 4.71 (s, 2H), 4.36 - 4.59 (m, 5H), 3.70 - 3.86 (m, IH), 2.38 - 2.51 (m, IH), 2.30 (d, J = 10.54 Hz, 2H), 1.85 - 1.99 (m, 2H), 1.37 - 1.53 (m, 2H), 1.19 - 1.34 (m, 4H), 1.05 - 1.19 (m, IH), 0.92 (s, 9H), 0.81 - 0.89 (m, 2H).
Example 181: l-[6-(trans-4-ter/-Butyl-cyclohexyloxy)-4-cyclopropyl-quinolin-2-ylmethyl]- pyrrolidine-3-carboxylic acid
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-cyclopropyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid using the appropriate intermediate available from the synthesis of l-[6-(trans-4-fert-Butyl-cyclohexyloxy)-4-methyl-quinolin-2-ylmethyl]-pyrrolidine- 3-carboxylic acid). ESI-MS(M+H+): 451.3; IH NMR (400 MHz, METHANOL-d4) Shift 7.99 (d, J = 9.29 Hz, IH), 7.70 (d, J = 2.51 Hz, IH), 7.42 (dd, J = 2.64, 9.16 Hz, IH), 7.13 (s, IH), 4.60 - 4.72 (m, 2H), 4.35 - 4.49 (m, IH), 3.81 (dd, J = 6.53, 12.05 Hz, IH), 3.72 (dd, J = 8.66, 11.92 Hz, IH), 3.50 - 3.66 (m, 2H), 3.37 - 3.49 (m, IH), 2.42 - 2.55 (m, 2H), 2.38 (td, J = 6.96, 13.68 Hz, IH), 2.29 (d, J = 10.29 Hz, 2H), 1.85 - 1.98 (m, 2H), 1.36 - 1.52 (m, 2H), 1.18 - 1.34 (m, 4H), 1.03 - 1.18 (m, IH), 0.91 (s, 9H), 0.79 - 0.89 (m, 2H).
Example 182: 3-{[6-(trans-4-ter^Butyl-cyclohexyloxy)-4-cyclopropyl-quinolin-2-ylmethyl]- amino}-propionic acid
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-cyclopropyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid using the appropriate intermediate available from the synthesis of 3-{ [6-(trans-4-fert-Butyl-cyclohexyloxy)-4-methyl-quinolin-2-ylmethyl] -amino }- propionic acid.) ESI-MS(M+H+): 425.3; IH NMR (400 MHz, METHANOL-d4) Shift 8.00 (d, J = 9.29 Hz, IH), 7.72 (d, J = 2.51 Hz, IH), 7.43 (dd, J = 2.64, 9.16 Hz, IH), 7.14 (s, IH), 4.50 (s, 2H), 4.40 - 4.49 (m, IH), 3.44 (t, J = 6.78 Hz, 2H), 2.87 (t, J = 6.65 Hz, 2H), 2.44 - 2.54 (m, IH), 2.32 (d, J = 11.04 Hz, 2H), 1.91 - 1.99 (m, 2H), 1.42 - 1.54 (m, 2H), 1.21 - 1.36 (m, 4H), 1.07 - 1.21 (m, IH), 0.94 (s, 9H), 0.84 - 0.92 (m, 2H).
Example 183: 6-Bromo-2-(4-tør/-butyl-cyclohexyloxy)-quinoline
Figure imgf000106_0001
Synthesized as per 6-(trans-4-fert-Butyl-cyclohexyloxy)-2-methyl-4-trifluoromethyl- quinoline using 6-Bromo-quinolin-2-ol as starting material. Alkylation was confirmed to be on the oxygen by 2D NMR (HMQC) of the subsequent intermediate. ESI-MS(M+H+):
362.1/364.10).
Example 184: 2-(trans-4-ter/-Butyl-cyclohexyloxy)-quinoline-6-carbaldehyde
Figure imgf000106_0002
To 6-Bromo-2-(trans-4-fert-butyl-cyclohexyloxy)-quinoline (1.0933 g, 3.0176 mmol) in Tetrahydrofuran (24 niL) was added 1.6 M of n-Butyllithium in hexane(5.6 niL, 9.0 mmol) at - 78 0C and the reaction was stirred for 15min. N,N-Dimethylformamide (1.2 mL) was added and the reaction was stirred for 30 minutes. 1 M HCl was added and the reaction allowed to warm to RT. Saturated sodium bicarbonate solution was added and the mixture extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride, dried with sodium sulfate, filtered and evaporated. The residue was purified by silica gel chromatography using
hexanes/ethyl acetate (0-50%) as eluent to give product in 603 mg yield (64 %). ESI- MS(M+H+): 312.20.
Example 185: l-[2-(trans-4-ter/-Butyl-cyclohexyloxy)-quinolin-6-ylmethyl]-azetidine-3- carboxylic acid methyl ester
Figure imgf000107_0001
Synthesized as per l-[6-(trans-4-fert-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid methyl ester using 2-(trans-4-te/t-Butyl-cyclohexyloxy)- quinoline-6-carbaldehyde as starting material. ESI-MS(M+H+): 411.30.
Example 186: l-[2-(trans-4-ter/-Butyl-cyclohexyloxy)-quinolin-6-ylmethyl]-azetidine-3- carboxylic acid
Figure imgf000107_0002
Synthesized as per l-[6-(trans-4-fer?-Butyl-cyclohexyloxy)-4-trifluoromethyl-quinolin-2- ylmethyl]-azetidine-3-carboxylic acid using l-[2-(trans-4-fert-Butyl-cyclohexyloxy)-quinolin-6- ylmethyl]-azetidine-3-carboxylic acid methyl ester as starting material. ESI-MS(M+H+):
397.39; IH NMR (400 MHz, METHANOL-d4) Shift 8.15 (d, J = 8.78 Hz, IH), 7.89 - 7.94 (m, IH), 7.86 (d, J = 8.78 Hz, IH), 7.67 (dd, J = 1.88, 8.66 Hz, IH), 6.96 (d, J = 8.78 Hz, IH), 5.10 - 5.22 (m, IH), 4.55 (s, 2H), 4.20 - 4.47 (m, 4H), 3.71 (quin, J = 8.28 Hz, IH), 2.28 (d, J = 9.54 Hz, 2H), 1.92 (d, J = 14.31 Hz, 2H), 1.36 - 1.52 (m, 2H), 1.19 - 1.36 (m, 2H), 1.06 - 1.19 (m, IH), 0.92 (s, 9H).
Example 187: l-[2-(trans-4-ter^Butyl-cyclohexyloxy)-quinolin-6-ylmethyl]-pyrrolidine-3- carboxylic acid
Synthesized as per l-[2-(trans-4-fer?-Butyl-cyclohexyloxy)-quinolin-6-ylmethyl]- azetidine-3-carboxylic acid using the appropriate amine. ESI-MS(M+H+): 411.41; IH NMR (400 MHz, METHANOL-d4) Shift 8.14 (d, J = 8.78 Hz, IH), 7.90 - 7.98 (m, IH), 7.86 (d, J =
8.53 Hz, IH), 7.72 (dd, J = 1.88, 8.66 Hz, IH), 6.95 (d, J = 8.78 Hz, IH), 5.04 - 5.27 (m, IH),
4.54 (br. s., 2H), 3.31 - 4.11 (m, 5H), 2.15 - 2.61 (m, 4H), 1.90 (d, J = 13.05 Hz, 2H), 1.35 - 1.52 (m, 2H), 1.17 - 1.35 (m, 2H), 1.03 - 1.17 (m, IH), 0.91 (s, 9H).
Example 188: 6-(trans-4-tør/-butylcyclohexyloxy)-2-methylquinoline.
Figure imgf000108_0001
To a solution of 2-Methyl-quinolin-6-ol (4.13 g, 0.0259 mol), cis 4-tert-Butyl- cyclohexanol (4.86 g, 0.0311 mol) and triphenylphosphine (9.53 g, 0.0363 mol; Supplier = Aldrich) in tetrahydrofuran (100 mL, 1 mol; Supplier = Acros), cooled in an ice bath, was added diisopropyl azodicarboxylate (7.61 mL, 0.0363 mol; Supplier = Acros) in Tetrahydrofuran (10 mL, 0.1 mol; Supplier = Acros). The reaction mixture was stirred for 72 h allowing to reach room temperature. The solvent was removed under reduced pressure and the residue was taken up in methylene chloride, adsorbed onto silica gel and purified by flash chromatography (0-30% ethyl acetate in hexanes) to give the title compound in 56% yield. ESI-MS (M+H+): 298.3.
Example 189: 6-(trans-4-ter/-butylcyclohexyloxy)quinoline-2-carbaldehyde
Figure imgf000108_0002
dioxane
Figure imgf000108_0003
Figure imgf000108_0004
Di-te/t-butyl peroxide (1.93 mL, 10.5 mmol) was added to a suspension of Selenium dioxide (2.68 g, 24.1 mmol) in 1,4-Dioxane (24.00 mL, 307.5 mmol). The mixture was stirred for 30 minutes, then 6-(trans-4-fer?-Butyl-cyclohexyloxy)-2-methyl-quinoline (3.12 g, 10.5 mmol) was added as a solution in 1,4-Dioxane and the mixture was heated overnight at 50 0C . The reaction mixture was then cooled to room temperature, diluted in chloroform and filtered through a pad of celite. The filtrate was washed with water. The layers were separated and the combined organic phase was dried over MgSO4, filtered, concentrated under reduced pressure, adsorbed onto silica gel and purified by flash chromatography (0-30% EtOAc in hexanes) to give the title compound as a pale yellow solid in 20% yield. ESI-MS (M+H+): 312.27.
Example 190: tert-buty\ 3-((6-(trans-4-ter/-butylcyclohexyloxy) quinolin-2yl)
methylamino) propanoate
Figure imgf000109_0001
A solution of triethylamine (0.07356 mL, 0.5278 mmol), 6-(trans-4-te/t-Butyl- cyclohexyloxy)-quinoline-2-carbaldehyde (0.1259 g, 0.4043 mmol) and β-alanine t-butyl ester HCl salt (0.08813 g, 0.4851 mmol) in 1,2-Dichloroethane (5.00 mL, 63.5 mmol) was stirred for 1 hour at room temperature. Sodium triacetoxyborohydride (0.1714 g, 0.8086 mmol) was then added and the mixture was stirred overnight. The reaction was diluted in methylene chloride and washed with saturated aq. sodium bicarbonate. The organic phase was dried over MgSO4, filtered, adsorbed onto silica gel and purified by flash chromatography (0-5% MeOH in methylene chloride) to give the title compound in 66% yield. ESI-MS (M+H+): 441.50.
Example 191: 3-((6-((trans-4-tør/-butylcyclohexyloxy) quinolin-2-yl) methylamino)
propanoic acid
Figure imgf000109_0002
2 M of Lithium hydroxide, monohydrate in Water (1.00 mL, 2.00 mmol) was added to a solution of 3- { [6-(trans-4-fert-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl] -amino} -propionic acid tert-butyl ester (0.2416 g, 0.5483 mmol) in Tetrahydrofuran (1.00 mL, 12.3 mmol) and Methanol (1.00 mL, 24.7 mmol). The mixture was stirred overnight at room temperature. The solvent was removed under reduced pressure and the residue was dissolved in methylene chloride and washed with water. The organic phase was concentrated under reduced pressure to give the title compound. ESI-MS (M+H+): 385.42. IH NMR (400 MHz, MeOD) Shift 8.16 (d, J = 8.53 Hz, IH), 7.86 (d, J = 9.04 Hz, IH), 7.51 (d, J = 8.53 Hz, IH), 7.31 (dd, J = 2.76, 9.04 Hz, IH), 7.24 (d, J = 2.51 Hz, IH), 4.29 - 4.39 (m, IH), 3.99 (s, 2H), 2.86 (t, J = 6.90 Hz, 2H), 2.42 (t, J = 6.90 Hz, 2H), 2.22 - 2.30 (m, 2H), 1.85 - 1.93 (m, 2H), 1.34 - 1.47 (m, 2H), 1.19 - 1.31 (m, 2H), 1.04 - 1.15 (m, IH), 0.89 (s, 9H)
The following compounds were synthesized as 3-(6-(trans-4-te/t-butylcyclohexyloxy)quinolin-2- yl) methylamino) propanoic acid using the appropriate cyclohexanols and aminoesters:
Example 192: l-[6-(trans 4-ter/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]-pyrrolidine-3- carboxylic acid
ESI-MS(M+H+): 411.64; IH NMR (400 MHz, METHANOL-d4) Shift 8.56 (d, J = 8.53 Hz, IH), 8.11 (d, J = 9.29 Hz, IH), 7.75 (d, J = 8.53 Hz, IH), 7.55 (dd, J = 2.76, 9.29 Hz, IH), 7.48 (d, J = 2.76 Hz, IH), 4.90 (d, J = 2.51 Hz, 2H), 4.40 - 4.51 (m, IH), 3.78 - 3.93 (m, 2H), 3.60 - 3.74 (m, 2H), 3.45 - 3.55 (m, IH), 2.54 (dt, J = 6.96, 8.91 Hz, IH), 2.37 - 2.47 (m, IH), 2.29 (d, J = 2.76 Hz, 2H), 1.89 - 1.98 (m, 2H), 1.41 - 1.53 (m, 2H), 1.24 - 1.37 (m, 2H), 1.11 - 1.20 (m, IH), 0.92 (s, 9H)
Example 193: l-[6-(trans 4-ter/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]-azetidine-3- carboxylic acid
ESI-MS(M+H+): 397.44; IH NMR (400 MHz, MeOD) Shift 8.26 (d, J = 8.03 Hz, IH), 7.97 (d, J = 9.04 Hz, IH), 7.37 - 7.42 (m, 2H), 7.30 - 7.34 (m, IH), 4.79 (s, 2H), 4.48 - 4.59 (m, 4H), 4.34 - 4.44 (m, IH), 2.66 (s, IH), 2.25 - 2.33 (m, J = 11.55 Hz, 2H), 1.89 - 1.97 (m, 2H), 1.38 - 1.51 (m, 2H), 1.22 - 1.35 (m, 2H), 1.07 - 1.19 (m, J = 11.80 Hz, IH), 0.93 (s, 9H)
Example 194: l-[6-(trans 4-ter/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]-pyrrolidine-3- carboxylic acid
Enantiomer 1, separated by chiral HPLC. ESI-MS(M+H+): 411.35; IH NMR (400 MHz,
DMSO-d6) Shift 8.16 (d, J = 8.28 Hz, IH), 7.83 (s, IH), 7.50 (d, J = 8.28 Hz, IH), 7.38 (s, IH), 7.31 (dd, J = 2.76, 9.04 Hz, IH), 4.31 - 4.42 (m, IH), 3.77 (d, J = 5.02 Hz, 2H), 2.80 - 2.90 (m, IH), 2.69 - 2.77 (m, IH), 2.52 - 2.67 (m, 4H), 2.15 - 2.24 (m, 2H), 1.88 - 2.00 (m, 2H), 1.76 - 1.85 (m, 2H), 1.28 - 1.40 (m, 2H), 1.14 - 1.27 (m, 2H), 0.87 (s, 9H) Example 195: l-[6-(trans 4-ter/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]-pyrrolidine-3- carboxylic acid
Enantiomer 2, separated by chiral HPLC. ESI-MS(M+H+): 411.36; IH NMR (400 MHz, DMSO-d6) Shift 8.16 (d, J = 8.53 Hz, IH), 7.82 (d, J = 9.04 Hz, IH), 7.50 (d, J = 8.53 Hz, IH), 7.38 (s, IH), 7.28 - 7.34 (m, IH), 4.32 - 4.42 (m, IH), 3.78 (d, J = 5.02 Hz, 2H), 2.83 - 2.92 (m, IH), 2.71 - 2.77 (m, IH), 2.51 - 2.68 (m, 4H), 2.17 - 2.24 (m, 2H), 1.89 - 2.00 (m, 2H), 1.77 - 1.85 (m, 2H), 1.29 - 1.41 (m, 2H), 1.14 - 1.27 (m, 2H), 0.87 (s, 9H)
Example 196: l-[6-(trans 4-Cyclopentyl-cyclohexyloxy)-quinolin-2-ylmethyl]-pyrrolidine-3- carboxylic acid
ESI-MS(M+H+): 423.33; IH NMR (400 MHz, MeOD) Shift 8.29 (d, J = 8.28 Hz, IH),
8.01 (d, J = 9.29 Hz, IH), 7.40 - 7.48 (m, 2H), 7.34 (d, J = 2.76 Hz, IH), 4.77 (d, J = 6.27 Hz, 2H), 4.38 - 4.49 (m, IH), 3.79 (d, J = 2.51 Hz, 2H), 3.65 (br. s., 2H), 3.43 - 3.52 (m, IH), 2.52 (dq, J = 7.02, 8.82 Hz, IH), 2.43 (dt, J = 6.87, 13.62 Hz, IH), 2.20 - 2.29 (m, 2H), 1.93 - 2.02 (m, 2H), 1.78 - 1.89 (m, 2H), 1.41 - 1.71 (m, 7H), 1.11 - 1.30 (m, 5H)
Example 197: l-[6-(trans 4-Cyclopentyl-cyclohexyloxy)-quinolin-2-ylmethyl]-azetidine-3- carboxylic acid
ESI-MS(M+H+): 409.33; IH NMR (400 MHz, MeOD) Shift 8.26 (d, J = 8.53 Hz, IH),
7.98 (d, J = 9.29 Hz, IH), 7.41 - 7.43 (m, IH), 7.38 - 7.41 (m, IH), 7.32 (d, J = 2.51 Hz, IH), 4.80 (s, 2H), 4.48 - 4.61 (m, 4H), 4.38 - 4.47 (m, IH), 3.81 (quin, J = 8.35 Hz, IH), 2.20 - 2.28
(m, 2H), 1.93 - 2.01 (m, 2H), 1.79 - 1.88 (m, 2H), 1.40 - 1.71 (m, 7H), 1.12 - 1.29 (m, 5H)
Example 198: 3-{[6-(trans 4-Cyclopentyl-cyclohexyloxy)-quinolin-2-ylmethyl]-amino}- propionic acid
ESI-MS(M+H+): 397.01 ; IH NMR (400 MHz, MeOD) Shift 8.27 (d, J = 8.28 Hz, IH),
7.99 (d, J = 9.29 Hz, IH), 7.44 (d, J = 8.53 Hz, IH), 7.41 (dd, J = 2.76, 9.29 Hz, IH), 7.32 (d, J = 2.76 Hz, IH), 4.56 (s, 2H), 4.38 - 4.47 (m, IH), 3.47 (t, J = 6.65 Hz, 2H), 2.88 (t, J = 6.78 Hz, 2H), 2.20 - 2.28 (m, 2H), 1.93 - 2.00 (m, 2H), 1.78 - 1.88 (m, 2H), 1.40 - 1.71 (m, 8H), 1.11 - 1.29 (m, 5H) Example 199: l-{6-[trans 4-(l,l-Dimethyl-propyl)-cyclohexyloxy]-quinolin-2-ylmethyl}- pyrrolidine-3-carboxylic acid
ESI-MS(M+H+): 425.31; IH NMR (400 MHz, MeOD) Shift 8.29 (d, J = 8.28 Hz, IH), 8.01 (d, J = 9.29 Hz, IH), 7.40 - 7.47 (m, 2H), 7.34 (d, J = 2.76 Hz, IH), 4.77 (d, J = 6.02 Hz, 2H), 4.36 - 4.46 (m, IH), 3.73 - 3.93 (m, 2H), 3.65 (br. s., 2H), 3.42 - 3.53 (m, IH), 2.36 - 2.59 (m, 2H), 2.26 - 2.34 (m, 2H), 1.83 - 1.93 (m, 2H), 1.40 - 1.52 (m, 2H), 1.23 - 1.39 (m, 5H), 0.82 0.91 (m, 9H)
Example 200: l-{6-[trans 4-(l,l-Dimethyl-propyl)-cyclohexyloxy]-quinolin-2-ylmethyl}- azetidine- 3-carboxylic acid
ESI-MS(M+H+): 411.32; IH NMR (400 MHz, MeOD) Shift 8.26 (d, J = 8.28 Hz, IH),
7.97 (d, J = 9.29 Hz, IH), 7.41 - 7.43 (m, IH), 7.37 - 7.40 (m, IH), 7.32 (d, J = 2.51 Hz, IH), 4.80 (s, 2H), 4.48 - 4.60 (m, 4H), 4.35 - 4.44 (m, IH), 3.81 (quin, J = 8.35 Hz, IH), 2.25 - 2.34 (m, 2H), 1.84 - 1.92 (m, 2H), 1.23 - 1.51 (m, 7H), 0.82 - 0.91 (m, 9H) Example 201: 3-({6-[trans 4-(l,l-Dimethyl-propyl)-cyclohexyloxy]-quinolin-2-ylmethyl}- amino)- propionic acid
ESI-MS(M+H+): 399.32; IH NMR (400 MHz, MeOD) Shift 8.27 (d, J = 8.28 Hz, IH),
7.98 (d, J = 9.29 Hz, IH), 7.44 (d, J = 8.53 Hz, IH), 7.40 (dd, J = 2.76, 9.29 Hz, IH), 7.32 (d, J = 2.76 Hz, IH), 4.56 (s, 2H), 4.35 - 4.44 (m, IH), 3.46 (t, J = 6.78 Hz, 2H), 2.88 (t, J = 6.78 Hz, 2H), 2.26 - 2.33 (m, 2H), 1.84 - 1.91 (m, 2H), 1.38 - 1.51 (m, 2H), 1.23 - 1.38 (m, 5H), 0.82 - 0.90 (m, 10H)
Example 202: (lS,2R)-2-{[6-(trans 4-tør/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]- amino}- cyclohexanecarboxylic acid
ESI-MS(M+H+): 439.35; IH NMR (400 MHz, MeOD) Shift 8.28 (d, J = 8.28 Hz, IH),
7.99 (d, J = 9.04 Hz, IH), 7.46 (d, J = 8.28 Hz, IH), 7.42 (dd, J = 2.76, 9.29 Hz, IH), 7.34 (d, J = 2.76 Hz, IH), 4.60 (s, 2H), 4.36 - 4.45 (m, IH), 3.50 (dt, IH), 2.04 - 2.35 (m, 2H), 1.89 - 1.99 (m, J = 12.05 Hz, 3H), 1.59 - 1.69 (m, 2H), 1.40 - 1.53 (m, 3H), 1.14 - 1.36 (m, 3H), 0.93 (s, 9H)
Example 203: (lS,2S)-2-{[6-(trans-4-ter/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]- amino}- cyclohexanecarboxylic acid
ESI-MS(M+H+): 439.36; IH NMR (400 MHz, MeOD) Shift 8.29 (d, J = 8.28 Hz, IH), 7.98 (d, J = 9.04 Hz, IH), 7.47 (d, J = 8.53 Hz, IH), 7.41 (dd, J = 2.76, 9.29 Hz, IH), 7.34 (d, J = 2.76 Hz, IH), 4.69 (d, J = 15.31 Hz, IH), 4.56 (d, J = 15.31 Hz, IH), 4.36 - 4.46 (m, IH), 3.48 - 3.60 (m, IH), 2.65 - 2.75 (m, IH), 2.26 - 2.39 (m, 4H), 1.90 - 1.99 (m, 3H), 1.86 (d, IH), 1.36 - 1.60 (m, 5H), 1.24 - 1.36 (m, 2H), 1.17 (dt, IH), 0.94 (s, 9H)
Example 204: (lS,2R)-2-{[6-(trans-4-/er/-Butyl-cyclohexyloxy)-quinolin-2-ylmethyl]- amino}- cyclopentanecarboxylic acid
ESI-MS(M+H+): 425.52; IH NMR (400 MHz, MeOD) Shift 8.26 - 8.31 (m, IH), 7.96 - 8.02 (m, IH), 7.43 - 7.48 (m, IH), 7.41 (dd, J = 2.76, 9.29 Hz, IH), 7.34 (d, J = 2.76 Hz, IH), 4.51 - 4.66 (m, 2H), 4.36 - 4.46 (m, IH), 3.82 - 4.13 (m, IH), 2.22 - 2.34 (m, 3H), 2.10 - 2.21 (m, IH), 1.89 - 2.06 (m, 4H), 1.74 - 1.85 (m, IH), 1.39 - 1.52 (m, 2H), 1.23 - 1.36 (m, 2H), 1.11 - 1.20 (m, IH), 0.95 (s, 9H) Example 205: 7-(trans 4-ter/-butylcyclohexyloxy)-3-methylisoquinoline
»OH
Figure imgf000113_0001
Triphenylphosphine (5.14 g, 19.6 mmol) was added to a solution of 3-Methyl- isoquinolin-7-ol (2.08 g, 13.1 mmol) and cis-4-te/t-butylcyclohexanol (3.06 g, 19.6 mmol) in Toluene (60 mL, 600 mmol). The mixture was stirred for 15 minutes then Diisopropyl azodicarboxylate (3.86 mL, 19.6 mmol) was added. The mixture was then stirred at room temperature overnight. The solvent was removed under vacuum. The crude product was dissolved in methylene chloride, adsorbed onto silica gel and purified by flash chromatography (0-30% EtOAc in hexanes) to give the title compound in 52% yield. ESI-MS(M+H+): 298.46. Example 206: 7-(trans-4-tør/-butylcyclohexyloxy) isoquinoline-3-carbaldehyde
Figure imgf000114_0001
Selenium dioxide (2.25 g, 20.3 mmol) was added to a solution of 7-(trans-4-te/t-Butyl- cyclohexyloxy)-3-methyl-isoquinoline (2.01 g, 6.76 mmol) in Diphenyl ether (50 mL, 300 mmol) and the mixture was heated at 200 0C in a sealed tube for 4 hours. The reaction was then cooled to room temperature. Silica gel was added and the flask was placed in a cold water bath to solidify the diphenylether solvent. This solid mixture containing the crude product was purified by flash chormatography (0-30% EtOAc in hexanes) to give the title compound in 50% yield. ESI-MS(M+H+): 312.27
Example 207: tert-buty\ 3-((7-(trans-4-tør/-butylcyclohexyloxy) isoquinolin-3-yl)
methylamino) propanoate
Figure imgf000114_0002
Triethylamine (0.07356 mL, 0.5278 mmol) was added to a solution of 7-(trans-4-te/t- Butyl-cyclohexyloxy)-isoquinoline-3-carbaldehyde (0.1174 g, 0.3770 mmol) and 3-Amino- propionic acid ethyl ester HCl salt; (0.08107 g, 0.5278 mmol) in 1,2-Dichloroethane (5.00 mL, 63.5 mmol) and the mixture was stirred for 1 hour at room temperature. Sodium
triacetoxyborohydride (0.1118 g, 0.5278 mmol) was then added and the mixture was stirred for 2 hours. The reaction was diluted in methylene chloride and washed with saturated aq. sodium bicarbonate. The organic phase was dried over MgSO4, filtered, adsorbed onto silica gel and purified by flash chromatography (0-5% MeOH in methylene chloride) to give the title compound in 97% yield. ESI-MS(M+H+): 413.35.
Example 208: 3-((7-(trans-4-tør/-butylcyclohexyloxy) isoquinolin-3-yl) methylamino) propanoic acid
Figure imgf000115_0001
2 M of Lithium hydroxide, monohydrate in water (1.00 rnL, 2.00 mmol) was added to a solution of 3- { [7-(trans-4-fert-butyl-cyclohexyloxy)-isoquinolin-3-ylmethyl] -amino} -propionic acid ethyl ester (0.1505 g, 0.3648 mmol) in Tetrahydrofuran (1.00 mL, 12.3 mmol) and
Methanol (1.00 mL, 24.7 mmol). The mixture was stirred for 2 hours. The solvent was then evaporated under reduced pressure. The resulting residue was dissolved in methylene chloride and washed with a solution of 1 M of Hydrogen chloride in Water (1.999 mL, 1.999 mmol). The organic layer was then concentrated to dryness under reduced pressure. The crude product was dissolved in DMSO and purified by HPLC to give the title compound as a bis-TFA salt. ESI- MS(M+H+): 385.51 [M+l]. IH NMR (400 MHz, MeOD) Shift 9.22 (s, IH), 7.86 (d, J = 9.04 Hz, IH), 7.82 (s, IH), 7.50 (d, J = 2.51 Hz, IH), 7.43 (dd, J = 2.51, 9.04 Hz, IH), 4.46 (s, 2H), 4.40 - 4.46 (m, IH), 3.37 (t, J = 6.65 Hz, 2H), 2.81 (t, J = 6.78 Hz, 2H), 2.25 - 2.34 (m, 2H), 1.89 - 1.98 (m, 2H), 1.40 - 1.52 (m, 2H), 1.24 - 1.37 (m, 2H), 1.10 - 1.20 (m, IH), 0.90 - 0.95 (m, 9H) The following compounds were synthesized as 3-((7-(trans-4-te/t-butylcyclohexyloxy) isoquinolin-3-yl) methylamino) propanoic acid using the appropriate cyclohexanols and aminoesters:
Example 209: l-[7-(trans-4-ter/-Butyl-cyclohexyloxy)-isoquinolin-3-ylmethyl]-pyrrolidine- 3- carboxylic acid
ESI-MS(M+H+): 411.33; IH NMR (400 MHz, MeOD) Shift 9.23 (s, IH), 7.87 (d, J = 9.04 Hz, IH), 7.83 (s, IH), 7.51 (d, J = 2.26 Hz, IH), 7.44 (dd, J = 2.51, 8.78 Hz, IH), 4.56 - 4.68 (m, 2H), 4.39 - 4.49 (m, IH), 3.61 - 3.78 (m, 2H), 3.52 (t, J = 7.28 Hz, 2H), 3.37 - 3.47 (m, IH), 2.33 - 2.52 (m, 2H), 2.25 - 2.33 (m, 2H), 1.88 - 1.97 (m, 2H), 1.39 - 1.51 (m, 2H), 1.23 - 1.35 (m, 2H), 1.09 - 1.18 (m, IH), 0.91 (s, 9H)
Example 210: l-[7-(trans-4-ter/-Butyl-cyclohexyloxy)-isoquinolin-3-ylmethyl]-azetidine-3- carboxylic acid
ESI-MS(M+H+): 397.32; IH NMR (400 MHz, MeOD) Shift 9.20 (s, IH), 7.87 (d, J = 9.04 Hz, IH), 7.80 (s, IH), 7.50 (d, J = 2.51 Hz, IH), 7.44 (dd, J = 2.51, 9.04 Hz, IH), 4.65 (s, 2H), 4.39 - 4.50 (m, 5H), 3.70 - 3.81 (m, IH), 2.26 - 2.35 (m, 2H), 1.90 - 1.99 (m, 2H), 1.41 - 1.53 (m, 2H), 1.30 (qd, 2H), 1.09 - 1.21 (m, J = 2.54, 2.54, 11.48 Hz, IH), 0.93 (s, 9H)
Example 211; l-[7-(trans-4-Cyclopentyl-cyclohexyloxy)-isoquinolin-3-ylmethyl]- pyrrolidine- 3-carboxylic acid
ESI-MS(M+H+): 423.28; IH NMR (400 MHz, MeOD) Shift 9.24 (s, IH), 7.88 (d, J = 9.04 Hz, IH), 7.84 (s, IH), 7.51 (d, J = 2.26 Hz, IH), 7.45 (dd, J = 2.38, 8.91 Hz, IH), 4.59 - 4.69 (m, 2H), 4.43 - 4.54 (m, IH), 3.63 - 3.79 (m, 2H), 3.53 (t, J = 7.28 Hz, 2H), 3.38 - 3.48 (m, IH), 2.32 - 2.54 (m, 2H), 2.21 - 2.29 (m, 2H), 1.93 - 2.02 (m, 2H), 1.79 - 1.88 (m, 2H), 1.42 - 1.71 (m, 6H), 1.11 - 1.31 (m, 6H)
Example 212: l-[7-(trans-4-Cyclopentyl-cyclohexyloxy)-isoquinolin-3-ylmethyl]-azetidine- 3- carboxylic acid
ESI-MS(M+H+): 409.29; IH NMR (400 MHz, MeOD) Shift 9.20 (s, IH), 7.87 (d, J = 9.04 Hz, IH), 7.80 (s, IH), 7.49 (d, J = 2.26 Hz, IH), 7.44 (dd, J = 2.38, 8.91 Hz, IH), 4.65 (s, 2H), 4.39 - 4.52 (m, 5H), 3.70 - 3.81 (m, IH), 2.25 (dd, J = 3.64, 13.18 Hz, 2H), 1.93 - 2.01 (m, 2H), 1.78 - 1.88 (m, 2H), 1.41 - 1.71 (m, 7H), 1.11 - 1.31 (m, 5H)
Example 213: 3-{[7-(trans-4-Cyclopentyl-cyclohexyloxy)-isoquinolin-3-ylmethyl]-amino}- propionic acid
ESI-MS(M+H+): 397.29; IH NMR (400 MHz, MeOD) Shift 9.23 (s, IH), 7.87 (d, J = 8.78 Hz, IH), 7.82 (s, IH), 7.50 (d, J = 2.26 Hz, IH), 7.44 (dd, J = 2.51, 9.04 Hz, IH), 4.43 - 4.53 (m, 3H), 3.35 - 3.41 (m, 2H), 2.82 (t, J = 6.65 Hz, 2H), 2.21 - 2.30 (m, 2H), 1.93 - 2.02 (m, 2H), 1.80 - 1.80 (m, OH), 1.79 - 1.88 (m, J = 6.02 Hz, 2H), 1.41 - 1.71 (m, 7H), 1.12 - 1.30 (m, 5H)
Example 214: l-(7-(trans-4-tør/-pentylcyclohexyloxy) isoquinolin-3-yl) methyl) pyrrolidine- 3-carboxylic acid
ESI-MS(M+H+): 425.31; IH NMR (400 MHz, MeOD) Shift 9.23 (s, IH), 7.86 (d, J = 9.04 Hz, IH), 7.83 (s, IH), 7.50 (d, J = 2.26 Hz, IH), 7.43 (dd, J = 2.38, 8.91 Hz, IH), 4.57 - 4.67 (m, 2H), 4.38 - 4.49 (m, IH), 3.61 - 3.78 (m, 2H), 3.52 (t, J = 7.28 Hz, 2H), 3.37 - 3.46 (m, IH), 2.25 - 2.52 (m, 4H), 1.83 - 1.91 (m, 2H), 1.38 - 1.51 (m, 2H), 1.20 - 1.38 (m, 5H), 0.81 - 0.89 (m, 9H)
Example 215: l-(7-(trans-4-tør/-pentylcyclohexyloxy) isoquinolin-3-yl) methyl)-azetidine-3- carboxylic acid
ESI-MS(M+H+): 411.31; IH NMR (400 MHz, MeOD) Shift 9.20 (s, IH), 7.86 (d, J = 9.04 Hz, IH), 7.80 (s, IH), 7.49 (d, J = 2.26 Hz, IH), 7.43 (dd, J = 2.51, 9.04 Hz, IH), 4.65 (s, 2H), 4.39 - 4.49 (m, 5H), 3.70 - 3.80 (m, IH), 2.26 - 2.34 (m, J = 11.04 Hz, 2H), 1.84 - 1.92 (m, 2H), 1.39 - 1.51 (m, 2H), 1.21 - 1.39 (m, 5H), 0.83 - 0.90 (m, 9H)
Example 216: 3-((7-(trans-4-tør/-pentylcyclohexyloxy)isoquinolin-3-yl) methylamino) propanoic acid
ESI-MS(M+H+): 399.33; IH NMR (400 MHz, MeOD) Shift 9.22 (s, IH), 7.86 (d, J = 8.78 Hz, IH), 7.82 (s, IH), 7.50 (d, J = 2.51 Hz, IH), 7.43 (dd, J = 2.51, 9.04 Hz, IH), 4.46 (s, 2H), 4.39 - 4.45 (m, IH), 3.37 (t, J = 6.65 Hz, 2H), 2.81 (t, J = 6.65 Hz, 2H), 2.26 - 2.34 (m, J = 2.76, 13.05 Hz, 2H), 1.83 - 1.91 (m, 2H), 1.39 - 1.51 (m, J = 11.63, 11.63, 11.63 Hz, 2H), 1.20 - 1.38 (m, 5H), 0.82 - 0.90 (m, 9H).
Example 217: 6-bromo-2-(trans-4-ter/-butylcyclohexyloxy)-l-(trifluoromethyl) naphthalene
Figure imgf000117_0001
6-bromo-2-(trans-4-^r?-butylcyclohexyloxy)-l-(trifluoromethyl)naphthalene (2.58 g, 6.01 mmol) was dissolved in Tetrahydrofuran (100 niL, 1000 mmol) and cooled to -78 0C in a dry ice/acetone bath. 1.6 M of n-Butyllithium in Hexane (7.512 rnL, 12.02 mmol) was slowly added and the mixture was stirred for 30 minutes. N,N-Dimethylformamide (1.396 mL, 18.03 mmol) was then slowly added and the mixture was allowed to reach room temperature. The reaction mixture was poured into IN HCl and extracted with ethyl acetate. The combined organic phase wash washed with sat. aq. sodium bicarbonate solution, brine, then dried over MgSO4, filtered, concentrated and purified by flash chromatography (0-20% EtOAc in hexanes) to give the title compound in 80% yield. ESI-MS(M+H+): 379.41
Example 218: 2-{[6-(trans-4-ter^Butyl-cyclohexyloxy)-5-trifluoromethyl-naphthalen-2- ylmethyl]- amino}-ethanesulfonic acid
Figure imgf000118_0001
Taurine (0.03737 g, 0.2986 mmol) was added to a solution of 6-(trans-4-tert- butylcyclohexyloxy)-5-(trifluoromethyl)-2-naphthaldehyde (0.1130 g, 0.2986 mmol) in Ethanol (3.00 mL, 51.4 mmol) and the mixture was refluxed for 1 hour. The mixture was cooled to room temperature and Sodium cyanoborohydride (0.02252 g, 0.3583 mmol) was added. The mixture was then refluxed overnight. The reaction mixture was cooled to room temperature, washed with saturated aqueous citric acid solution (4ml), then concentrated to dryness under reduced pressure. The resulting solid was washed with water and filtered. The residue was washed with water (1OmL), ether (1OmL) and hexane (1OmL) consecutively, then filtered. The residue was purified by prep HPLC to give the title compound. ESI-MS(M+H+): 488.3; IH NMR (400 MHz, DMSO- d6) Shift 8.46 - 8.52 (m, IH), 7.83 - 7.88 (m, IH), 7.73 - 7.80 (m, 2H), 7.35 - 7.40 (m, 2H), 4.21 - 4.30 (m, IH), 4.02 (br. s., 2H), 2.88 (t, J = 6.78 Hz, 2H), 2.50 (d, J = 13.80 Hz, 2H), 1.77 - 1.85 (m, 2H), 1.43 - 1.52 (m, 2H), 1.00 - 1.13 (m, 2H), 0.67 - 0.92 (m, 3H), 0.53 (s, 9H). The following compound was synthesized as 2-{ [6-(trans-4-te/t-Butyl-cyclohexyloxy)-5- trifluoromethyl-naphthalen-2-ylmethyl]- amino }-ethanesulfonic acid using the appropriate amino sulfone:
Example 219: [6-(trans-4-ter/-Butyl-cyclohexyloxy)-5-trifluoromethyl-naphthalen-2- ylmethyl] -(2-methanesulfonyl-ethyl)-amine
ESI-MS(M+H+): 486.52; IH NMR (400 MHz, MeOD) Shift 8.13 (dd, J = 1.88, 8.91 Hz, IH), 8.03 (d, J = 9.29 Hz, IH), 7.83 (d, J = 1.51 Hz, IH), 7.58 (dd, J = 2.01, 9.04 Hz, IH), 7.49 (d, J = 9.04 Hz, IH), 4.39 - 4.49 (m, IH), 3.96 (s, 2H), 3.36 (d, J = 7.78 Hz, 2H), 3.13 (t, J = 6.27 Hz, 2H), 3.04 (s, 3H), 2.17 - 2.26 (m, 2H), 1.87 - 1.95 (m, 2H), 1.43 - 1.56 (m, 2H), 1.06 - 1.30 (m, 3H), 0.90 (s, 9H)
Example 220: 2-{[6-(trans-4-ter^Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- ethanesulfonic acid
Figure imgf000119_0001
A solution of 6-(trans-4-fert-Butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (0.1662 g, 0.5354 mmol) and Taurine (0.06700 g, 0.5354 mmol) in anhydrous Ethanol (4.00 niL, 68.5 mmol) was refluxed for 2 hours. The mixture was cooled to room temperature and Sodium cyanoborohydride (0.04037 g, 0.6425 mmol) was added. The mixture was then refluxed overnight. The reaction mixture was cooled to room temperature and washed with Sat. aqueous citric acid (4mL). The mixture was then concentrated to dryness under reduced pressure. The resulting solid was suspended in water and filtered. The residue was washed with water, air-dried and purified by prep HPLC to give the title compound. ESI-MS(M+H+): 420.34; IH NMR (400 MHz, DMSO-d6) Shift 8.68 (br. s., IH), 7.84 (br. s., IH), 7.73 - 7.81 (m, 2H), 7.45 (dd, J = 1.76, 8.53 Hz, IH), 7.32 - 7.35 (m, IH), 7.12 (dd, J = 2.51, 8.78 Hz, IH), 4.29 - 4.38 (m, IH), 4.24 (br. s., 2H), 3.13 (d, J = 13.80 Hz, 2H), 2.76 (d, J = 13.55 Hz, 2H), 2.10 - 2.18 (m, 2H), 1.72 - 1.80 (m, 2H), 1.23 - 1.36 (m, 2H), 1.09 - 1.22 (m, 2H), 0.96 - 1.06 (m, IH), 0.81 (s, 9H) The following compounds were synthesized as 2-{ [6-(trans-4-te/t-Butyl-cyclohexyloxy)- naphthalen-2-ylmethyl] -amino }-ethanesulfonic acid using the appropriate amines:
Example 221; 3-{[6-(trans-4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- propane- 1-sulfonic acid
ESI-MS(M+H+): 434.44; IH NMR (400 MHz, MeOD) Shift 7.90 (br. s., IH), 7.85 (d, J
= 8.53 Hz, IH), 7.81 (d, J = 9.04 Hz, IH), 7.51 (dd, J = 1.76, 8.53 Hz, IH), 7.29 (d, J = 2.26 Hz, IH), 7.18 (dd, J = 2.51, 9.04 Hz, IH), 4.34 - 4.43 (m, IH), 4.33 (s, 2H), 2.96 (t, J = 6.65 Hz, 2H), 2.25 - 2.33 (m, 2H), 2.19 (quin, J = 6.90 Hz, 2H), 1.89 - 1.97 (m, 2H), 1.38 - 1.50 (m, 2H), 1.23 - 1.35 (m, 2H), 1.08 - 1.19 (m, IH), 0.92 (s, 9H) Example 222: N-(2-{[6-(trans-4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- ethyl)- 4-trifluoromethyl-benzenesulfonamide
ESI-MS(M+H+): 563.50; IH NMR (400 MHz, DMSO-d6) Shift 7.91 - 8.00 (m, 5H), 7.69 - 7.75 (m, 3H), 7.62 - 7.66 (m, IH), 7.30 - 7.38 (m, 3H), 7.08 - 7.13 (m, IH), 4.30 - 4.40 (m, IH), 3.70 - 3.75 (m, 2H), 2.90 (t, J = 6.53 Hz, 2H), 2.15 - 2.23 (m, 2H), 1.77 - 1.85 (m, 2H), 1.28 - 1.40 (m, 2H), 1.15 - 1.27 (m, 2H), 1.02 - 1.12 (m, IH), 0.87 (s, 9H)
Example 223: l-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2-yl)methyl)-4- methylpyrrolidine-3-carboxylic acid
Figure imgf000120_0001
A solution of 6-(4-fer?-Butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (140 mg, 0.46 mmol) and 4-methylpyrrolidine-3-carboxylic acid (60.1 mg, 0.465 mmol) in Ethanol (0.7 niL, 10 mmol) was heated to reflux for 2h. The yellow solution was cooled to rt and Sodium
cyanoborohydride (35.1 mg, 0.558 mmol) was added and was heated to reflux for Ih. After cooled down to rt, DCM, water and citric acid were added along with some brine to clear up the layers. Concentration of the cloudy organic layer gave a precipitate that was dissolved in methanol and filtered before purification by prepartive HPLC. 1H NMR (400 MHz, DMSOd6) D 7.81 - 7.98 (m, 3H), 7.53 (d, /= 7.28 Hz, IH), 7.42 (d, /= 2.26 Hz, IH), 7.17 - 7.25 (m, / = 2.38, 8.91 Hz, IH), 4.34 - 4.55 (m, 3H), 3.61 (br. s., 2H), 3.05 (br. s., IH), 2.94 (d, /= 5.52 Hz, IH), 2.63 - 2.80 (m, IH), 2.21 (d, /= 10.54 Hz, 2H), 1.83 (d, / = 12.05 Hz, 2H), 1.29 - 1.43 (m, 2H), 1.19 - 1.28 (m, 2H), 1.02 - 1.18 (m, 5H), 0.88 (s, 9H) [M+l] 424.30.
The procedure used for l-((6-((lr,4r)-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)-4- methylpyrrolidine-3-carboxylic acid was used with the appropriate amine to make the following:
Example 224: N-(3-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)propyl)methanesulfonamide 1U NMR (400 MHz, DMSO-d6) D 7.79 - 8.01 (m, 3H), 7.48 - 7.57 (m, IH), 7.42 (d, / = 2.01 Hz, IH), 7.21 (dd, / = 2.26, 9.04 Hz, IH), 4.34 - 4.55 (m, 2H), 3.92 - 4.02 (m, IH), 3.55 - 3.76 (m, IH), 2.93 - 3.12 (m, 2H), 2.77 - 2.90 (m, IH), 2.21 (d, / = 10.54 Hz, 2H), 1.60 - 1.94 (m, 6H), 1.15 - 1.43 (m, 3H), 1.01 - 1.14 (m, IH), 0.88 (s, 9H) [M+l] 447.30
Example 225: 2-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methyl)octahydrocyclopenta[c]pyrrole- 3a-carboxylic acid
1H NMR (400 MHz, DMSOd6) δ 7.80 - 7.98 (m, 3H), 7.49 - 7.58 (m, IH), 7.42 (d, / = 2.01 Hz, IH), 7.21 (dd, / = 2.26, 9.04 Hz, IH), 4.36 - 4.54 (m, 3H), 3.92 - 4.00 (m, IH), 3.57 - 3.66 (m, IH), 2.93 - 3.11 (m, 2H), 2.77 - 2.89 (m, IH), 2.21 (d, / = 10.54 Hz, 2H), 1.72 - 1.95 (m, 5H), 1.66 (br. s., 2H), 1.29 - 1.44 (m, 3H), 1.14 - 1.28 (m, 3H), 1.10 (d, / = 11.55 Hz, IH), 0.88 (s, 9H) [M+l] 450.30
Example 226: l-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl)-4,4- dimethylpyrrolidine- 3-carboxylic acid
[M+l] 438.30
Example 227: l-((6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)methyl)-3- methylpyrrolidine-3-carboxylic acid
IH NMR (400 MHz, DMSO-d6) Shift 7.93 (s, IH), 7.85 (t, J = 9.54 Hz, 2H), 7.54 (d, J =
8.03 Hz, IH), 7.41 (d, J = 2.01 Hz, IH), 7.20 (dd, J = 2.38, 8.91 Hz, IH), 4.34 - 4.50 (m, 2H), 2.21 (d, J = 9.79 Hz, 2H), 1.82 (d, J = 12.30 Hz, 2H), 1.29 - 1.43 (m, 6H), 1.14 - 1.28 (m, 2H), 1.10 (d, J = 11.80 Hz, IH), 0.88 (s, 9H) [M+l] 424.3 Example 228: 2-((6-((trans)-4-ter/-butylcyclohexyloxy)naphthalen-2- yl)methylamino)ethanesulfonamide
1U NMR (400 MHz, CHLOROFORM-d) d 7.75 - 7.93 (m, 3H), 7.49 (d, / = 8.03 Hz, IH), 7.28 (br. s., IH), 7.17 (d, / = 8.78 Hz, IH), 4.40 (br. s., 3H), 3.52 (d, / = 4.02 Hz, 4H), 2.27 (d, /= 10.79 Hz, 2H), 1.91 (d, /= 11.55 Hz, 2H), 1.34 - 1.50 (m, 2H), 1.27 (d, /= 12.55 Hz, 2H), 1.07 - 1.18 (m, IH), 0.85 - 0.96 (m, 9H) [M+l] 441.3 Example 229: 3-(3-(6-((trans)-4-ter^butylcyclohexyloxy)naphthalen-2-yl)oxetan-3- ylamino)propanoic acid
1.EtOH, reflux
Figure imgf000122_0003
Figure imgf000122_0001
Figure imgf000122_0002
2. LiOH
THF
To a mixture of 3-[6-(4-fert-Butyl-cyclohexyloxy)-naphthalen-2-yl]-oxetan-3-ylamine (70 mg, 0.2 mmol) and Methyl acrylate (21 mg, 0.25 mmol) in Ethanol (1.0 rnL, 17 mmol) was heated to reflux for 2d. LCMS monitoring shows 1 : 1 starting material/product, new peak
1.63min (m/z 440.30 [M+l], 20%). After concentration and HPLC gave product as a solid (18mg, 20%). IH NMR (400MHz ,MeOD) d = 7.91 (d, J = 8.7 Hz, 1 H), 7.87 (s, 1 H), 7.84 (d, J = 9.0 Hz, 1 H), 7.38 (dd, J = 2.0, 8.6 Hz, 1 H), 7.30 (d, J = 2.3 Hz, 1 H), 7.20 (dd, J = 2.4, 9.0 Hz, 1 H), 5.26 (d, J = 8.4 Hz, 2 H), 5.13 (d, J = 8.5 Hz, 2 H), 4.43 - 4.31 (m, 1 H), 3.68 (s, 3 H), 3.08 (t, J = 6.3 Hz, 2 H), 2.70 (t, J = 6.3 Hz, 2 H), 2.27 (d, J = 10.4 Hz, 2 H), 1.91 (d, J = 13.0 Hz, 2 H), 1.42 (q, J = 12.9 Hz, 2 H), 1.32 - 1.19 (m, 2H), 1.17 - 1.04 (m, 1 H), 0.91 (s, 9 H).
A solution of 3-{3-[6-(4-fer?-Butyl-cyclohexyloxy)-naphthalen-2-yl]-oxetan-3-ylamino}- propionic acid methyl ester (18.0 mg, 0.0409 mmol) and Lithium hydroxide (6.41 mg, 0.268 mmol) in Tetrahydrofuran (0.6 mL, 8 mmol) and Water (0.2 mL, 9 mmol) was stirred at r.t. overnight. LCMS showed a single desired product peak M+Na at m/z 448.20, RT 1.56 min. The solvent was concentrated and neutralized with citric acid and concentrated and purified on HPLC to give product (5.8mg, 33%). IH NMR (400MHz ,MeOD) d = 7.91 (d, J = 8.4 Hz, 1 H), 7.87 (s, 1 H), 7.83 (d, J = 8.9 Hz, 1 H), 7.38 (d, J = 8.2 Hz, 1 H), 7.31 (s, 1 H), 7.20 (d, J = 6.8 Hz, 1 H), 5.26 (d, J = 7.9 Hz, 2 H), 5.13 (d, J = 7.7 Hz, 2 H), 4.43 - 4.32 (m, 1 H), 3.05 (t, J = 5.1 Hz, 2 H), 2.70 - 2.62 (m, 2 H), 2.27 (d, J = 11.2 Hz, 2 H), 1.96 - 1.85 (m, 2 H), 1.50 - 1.35 (m, 2 H), 1.34 - 1.18 (m, 2 H), 1.17 - 1.04 (m, 1 H), 0.91 (s, 9 H). Example 230: l-(6-((trans)-4-ter/-butylcyclohexyloxy)quinolin-2-yl)ethanone
1. MeMgBr
2. Dess-Martin
Figure imgf000122_0004
Figure imgf000122_0005
6-(trans-4-fer?-butylcyclohexyloxy)quinoline-2-carbaldehyde (1.63 g, 5.23 mmol) was dissolved in Ether (17 rnL, 160 mmol). At 0 0C, 3.0 M of Methylmagnesium bromide in diethyl ether(2.62 mL, 7.85mmol)was added. And after 2h at r.t., Rochelle's salt was added. The reaction mixture was stirred and extracted with EtOAc. LCMS shows single peak. LCMS Rf= 1.47min, m/z 328.20 ([M+l], 100%).CC with MeOH/DCM gave product (1.73g, 100%). IH NMR (400MHz CHLOROFORM-d) d = 8.03 (d, J = 8.5 Hz, 1 H), 7.97 (d, J = 9.1 Hz, 1 H), 7.37 (dd, J = 2.8, 9.2 Hz, 1 H), 7.30 (d, J = 8.5 Hz, 1 H), 7.12 (d, J = 2.7 Hz, 1 H), 5.08 - 4.89 (m, 2 H), 4.33 - 4.21 (m, 1 H), 2.28 (d, J = 14.5 Hz, 2 H), 1.92 (d, J = ILl Hz, 2 H), 1.57 (d, J = 6.4 Hz, 3 H), 1.53 - 1.36 (m, 1 H), 1.30 - 1.01 (m, 4 H), 0.91 (s, 9 H). l-[6-(4-fert-Butyl-cyclohexyloxy)-quinolin-2-yl]-ethanol (1.40 g, 4.28 mmol) in
Methylene chloride (24.5 mL, 382 mmol) was added Dess-Martin periodinane (3.2 g, 7.6 mmol) and was stirred at room temperature for 1 hour. After pass through si gel plug, the solvent was concentrated down to give product as an oil (1.29g, 93%). LCMS 2.28 min at m/z 326.20 ([M+l], 100%).
Example 231: methyl l-(l-(6-((trans)-4-ter^butylcyclohexyloxy)quinolin-2- yl)ethyl)azetidine-3-carboxylate
Figure imgf000123_0001
l-[6-(4-fert-Butyl-cyclohexyloxy)-quinolin-2-yl]-ethanone (68 mg, 0.00021 mol) and
Azetidine-3-carboxylic acid methyl ester (23.9 mg, 0.000207 mol) was dissolved in Ethanol (0.50 mL, 0.0086 mol) and was heated to reflux for 2 hours. After cooling down to rt, Sodium cyanoborohydride (32.4 mg, 0.000516 mol) was added and was heated to reflux for 1 hour. After cooling down to rt and concentration, the mixture was dissolved into DCM and quenched with NEt3 and concentrated. The residue was chromatographed with MeOHZCH2Cl2 to give product (57.2mg, 65%). LCMS 1.66min, at m/z 425.30 ([M+l], 100%). Example 232: l-(l-(6-((trans)-4-ter/-butylcyclohexyloxy)quinolin-2-yl)ethyl)azetidine-3- carboxylic acid
Figure imgf000124_0001
A solution of l-{ l-[6-(4-fer?-Butyl-cyclohexyloxy)-quinolin-2-yl]-ethyl}-azetidine-3- carboxylic acid methyl ester (57.2 mg, 0.135 mmol) and Lithium hydroxide (20.9 mg, 0.874 mmol) in Tetrahydrofuran (2 mL, 20 mmol) and Water (0.5 mL, 30 mmol) was stirred at r.t. overnight. LCMS showed a single desired product peak RT 1.60 min M+l at m/z 413.30, 100%. The solvent was concentrated and neutralized with citric acid and concentrated and Purified on HPLC to give product (26.2mg, 37%). IH NMR (300MHz ,MeOD) d = 8.25 (d, J = 8.3 Hz, 1 H), 7.94 (d, J = 9.4 Hz, 1 H), 7.42 (d, J = 8.3 Hz, 1 H), 7.37 (dd, J = 2.6, 9.1 Hz, 1 H), 7.28 (d, J = 3.0 Hz, 1 H), 4.54 - 4.43 (m, 2 H), 4.42 - 4.18 (m, 3 H), 3.78 - 3.59 (m, 1 H), 2.25 (d, J = 10.2 Hz, 2 H), 1.89 (d, J = 11.3 Hz, 2 H), 1.57 (d, J = 6.8 Hz, 3 H), 1.51 - 0.99 (m, 6 H), 0.89 (s, 9 H).
Example 233: (R,Z)-N-(l-(6-((trans)-4-ter/-butylcyclohexyloxy)quinolin-2-yl)ethylidene)-2- methylpropane-2-sulfinamide
Figure imgf000124_0002
To the solution of l-[6-(4-fer?-Butyl-cyclohexyloxy)-quinolin-2-yl]-ethanone (0.2227 g, 0.0006843 mol) and (s)-(-)-2-Methyl-2-propanesulfinamide (0.0829 g, 0.000684 mol) in
Methylene chloride (1.4 mL, 0.021 mol) was added Ti(OEt)4 (0.488 mL, 0.00171 mol). The reaction was stirred at room temperature for Id. The mixture was then cooled to 0 0C, added equal volume brine, filtrate through celite, and extracted with EtOAc. After died over Na2SO4, the residue was chromatographed 0-50% EA/HE gave product (132 mg, 45%). LCMS 2.39 min m/z 429.30 ([M+l], 100%). Example 234: 2-(6-((trans)-4-ter^butylcyclohexyloxy)quinolin-2-yl)propan-2-amine
Figure imgf000125_0001
To a solution of (S)-2-Methyl-propane-2-sulfinic acid [l-[6-(4-te/t-butyl-cyclohexyloxy)- quinolin-2-yl]-eth-(E)-ylidene] -amide (132.2 mg, 0.3084 mmol) in Toluene (1.0 niL, 9.4 mmol) at -25oC under N2, MeMgBr (3M solution in ether, 0.41 mL/g 3, 4 equiv) was added dropwise. The reaction mixture was stirred at ~ -20 0C for 15 minutes. TLC indicated a complete reaction. The reaction mixture was quenched by addition of saturated NH4C1 at 0 0C. The quenched mixture was diluted with EtOAc. The aqueous layer was removed. The organic layer was washed with brine and dried over Na2SO4. The drying agent was removed and the dried solution was concentrated under vacuum to a residue, which was chromatographed to give product (76.3mg, 56%). LCMS 1.82min m/z 445.30 ([M+l], 100%).
2-Methyl-propane-2-sulfinic acid { l-[6-(4-te/t-butyl-cyclohexyloxy)-quinolin-2-yl]-l- methyl-ethyl} -amide (76.3 mg, 0.172 mmol) in Methanol (1.9 mL, 48 mmol) was added 4.0 M of Hydrogen chloride in 1,4-Dioxane(0.97 mL, 3.9 mmol) and was stirred overnight. After removal of solvent, the residue was dissolved in DMSO, then HPLC give product as a gel (53 mg, 91%). LCMS Rf= 1.58min m/z 341.20 ([M+l], 100%). IH NMR (400MHz
,CHLOROFORM-d) Shift = 8.22 (d, J = 8.4 Hz, 1 H), 8.00 (d, J = 9.2 Hz, 1 H), 7.48 (d, J = 8.3 Hz, 1 H), 7.45 (dd, J = 2.6, 9.2 Hz, 1 H), 7.15 (s, 1 H), 4.38 - 4.24 (m, 1 H), 2.28 (d, J = 10.4 Hz, 2 H), 1.93 (d, J = 12.9 Hz, 2 H), 1.88 (s, 6 H), 1.58 - 1.40 (m, 2 H), 1.31 - 1.01 (m, 3 H), 0.91 (s, 9 H).
Example 235: 3-(2-(6-((trans)-4-ter^butylcyclohexyloxy)quinolin-2-yl)propan-2- ylamino)propanoic acid
Figure imgf000125_0002
To a mixture of l-[6-(4-fert-Butyl-cyclohexyloxy)-quinolin-2-yl]-l-methyl-ethylamine
(53.0 mg, 0.156 mmol) and Methyl acrylate (0.014 mL, 0.16 mmol; Supplier = Aldrich) in Ethanol (0.32 niL, 5.5 mmol) was heated to reflux for overnight. LCMS monitoring shows new peak 1.60min (m/z 427.30 [M+l],20%). After concentration and cc with MeOH/DCM gave product as a oil (35mg, 53%). A solution of 3-{ l-[6-(4-fer?-Butyl-cyclohexyloxy)-quinolin-2-yl]-l-methyl- ethylamino} -propionic acid methyl ester (36.0 mg, 0.0844 mmol) and Lithium hydroxide (20.2 mg, 0.844 mmol) in Tetrahydrofuran (1 mL, 20 mmol) and Water (0.3 mL, 20 mmol) was stirred at r.t. overnight. LCMS showed a single desired product peak RT 1.57 min M+l at m/z 413.30, 100%. The solvent was concentrated and neutralized with citric acid and concentrated and Purified on HPLC to give product (20mg, 57%). IH NMR (400MHz ,CHLOROFORM-d) d = 8.30 (d, J = 8.7 Hz, 1 H), 7.97 (d, J = 9.2 Hz, 1 H), 7.59 (d, J = 8.7 Hz, 1 H), 7.39 (dd, J = 2.7, 9.2 Hz, 1 H), 7.30 (d, J = 2.5 Hz, 1 H), 4.43 - 4.28 (m, 1 H), 3.23 (t, J = 6.6 Hz, 2 H), 2.84 (t, J = 6.6 Hz, 2 H), 2.26 (d, J = 10.4 Hz, 2 H), 1.90 (d, J = 13.6 Hz, 2 H), 1.79 (s, 6 H), 1.49 - 1.32 (m, 2 H), 1.32 - 1.17 (m, 2 H), 1.17 - 1.00 (m, 1 H), 0.90 (s, 9 H).
Example 236: N-(2-Formyl-4-methoxyphenyl)acetamide :
Figure imgf000126_0001
5-Methoxy-2-nitro-benzaldehyde (5.00 g, 0.0276 mol), Platinum dioxide (400 mg, 0.002 mol) and Sodium acetate trihydrate (300 mg, 0.002 mol) were placed in a presure flask, followed by Ethyl acetate (200 mL, 2 mol). The reaction mixture was then purged under N2 at least 3 times, and H2 was introduced (purged 3 times) and maintained at 52 psi for 3 hours. The reaction mixture was then filtered, and cooled to at -20 0C. N,N-Diisopropylethylamine (7.21 mL, 0.0414 mol) was added to the solution followed by Acetyl chloride (2.36 mL, 0.0331 mol). The reaction mixture was allowed to stir for 2 hours, and quenched with KHCO3 (sat). Organic layer was separated, and washed with waster, brine and dried over Na2SO4. Removal of solvent gave a crude product, which was then purified via chromatography (SiO2, 80g, 0-100% ethyl acetate/hexanes; 4.28g, 80%). 1H NMR (300 MHz, CHLOROFORM-J) δ ppm 2.25 (s, 3 H) 3.88 (s, 3 H) 7.10 - 7.26 (m, 2 H) 8.69 (d, /=9.06 Hz, 1 H) 9.90 (s, 1 H) 10.75 - 11.04 (m, 1 H). MS (ESI, M+l): 194.10. Example 237: 6-Methoxy-2-methylquinazoline:
Figure imgf000127_0001
N-(2-Formyl-4-methoxyphenyl)acetamide (2, 2.50 g, 12.9 mmol) was dissolved in Ethanol (300 niL, 5000 mmol) and cooled to at -78 0C in a high pressure reactor. A solution of NH3 saturated in ethanol was added. The reaction mixture was then heated at 135 0C for 2 hours. Cooled to 23 0C, and solvent was removed to give a crude product, which was then purified via chromatography (SiO2, 12Og, 0-20% MeOH/DCM; 1.87g, 83%). 1U NMR (400 MHz,
CHLOROFORM-J) δ ppm 2.91 (s, 3 H) 3.97 (s, 3 H) 7.15 (d, /=2.51 Hz, 1 H) 7.56 (dd, /=9.04, 2.51 Hz, 1 H) 7.93 (d, /=9.04 Hz, 1 H) 9.27 (s, 1 H). MS (ESI, M+l): 175.10.
Example 238: 6-Methoxy-2-quinazolinylmethylaldehyde:
Figure imgf000127_0002
6-Methoxy-2-methyl-quinazoline (3, 2.50 g, 14.4 mmol) was dissolved in 1,4-Dioxane (200 mL, 3000 mmol), followed by Selenium dioxide (11.15 g, 100.4 mmol). The reaction mixture was then heated at 90 0C for 12 hours. The reaction mixture was filtered. Solvent was removed, and the crude mixture was purified via chromatography (SiO2, 80g, 0-100% ethyl acetate/hexanes; 1.85g, 69%). 1U NMR (400 MHz, CHLOROFORM-J) D ppm 4.02 (s, 3 H) 7.23 - 7.31 (m, 1 H) 7.69 (dd, /=9.29, 2.76 Hz, 1 H) 8.16 (d, /=9.29 Hz, 1 H) 9.49 (s, 1 H) 10.23 (s, 1 H). MS (ESI, M+l): 189.10.
Example 239: (R)-l-(6-Methoxyquinazolin-2-ylmethyl)pyrrolidine-3-carboxylic acid methyl ester:
Figure imgf000127_0003
6-Methoxy-2-quinazolinylmethylaldehyde (4, 2.40 g, 12.7 mmol) was dissolved in Methanol (50 mL, 1000 mmol), followed by (R)-Pyrrolidine-3-carboxylic acid methyl ester (3.29 g, 25.5 mmol) at 23 0C. The reaction mixture was stirred for 30 minutes, then Sodium cyanoborohydride (1.60 g, 25.5 mmol) was added at -30 0C. The reaction mixture was gradually warmed up to 23 0C, and stirred for 1 day. Solvent was removed, and the residue was treated with DCM/water. Organic layer was washed with washer (300 X2 mL) and then brine and dried over Na2SO4. The product was purified via chromatography (SiO2, 22Og, 0-10%MeOH/DCM) to give a pure product. IH NMR (CHLOROFORM-d) δ ppm: 9.23 (s, IH), 7.89 (d, J = 9.3 Hz, IH), 7.47 (d, J = 9.3 Hz, IH), 7.07 (br. s., IH), 4.02 (d, J = 3.3 Hz, 2H), 3.88 (s, 3H), 3.61 (s, 3H), 3.03 - 3.25 (m, 2H), 2.96 (d, J = 4.5 Hz, IH), 2.68 (t, J = 8.2 Hz, IH), 2.59 (q, J = 8.0 Hz, IH), 2.11 (d, 2H). MS (ESI, M+l): 302.10.
Example 240: (R)-l-(6-Hydroxy-quinazolin-2-ylmethyl)-pyrrolidine-3-carboxylic acid methyl ester
Figure imgf000128_0001
(R)-l-(6-Methoxy-quinazolin-2-ylmethyl)-pyrrolidine-3-carboxylic acid methyl ester (600.00 mg, 1.9911 mmol) was dissolved in Methylene chloride (20 mL, 300 mmol), and cooled to at -78 0C. A solution of 1.0 M of Boron tribromide in Methylene chloride( 11.947 mL, 11.947 mmol) was then added dropwise. The reaction mixture was then warmed up to 23 0C gradually and then heated at 50 0C for 3 hours. The reaction mixture was then cooled to -78 0C, and cold MeOH (30 mL) was added. The mixutre was then left standing for for 15 hours at 23 0C. Solvent was removed under vacuum, and the residue was treated with K2CO3 (sat) to pH~9, and then adjusted to pH~7.5. Extracted with DCM (100 X 2 mL). Organic layers were washed with water, brine and dried over Na2SO4. The crude product was purified via chromatography (SiO2, 4Og, 0- 10% MeOH/DCM) to give a pure product (540mg, 94%). IH NMR (MeOD) δ ppm: 9.26 (s, IH), 7.86 (d, J = 9.0 Hz, IH), 7.55 (dd, J = 9.2, 2.6 Hz, IH), 7.23 (d, J = 2.5 Hz, IH), 4.00 (d, J = 3.0 Hz, 2H), 3.67 (s, 3H), 3.04 - 3.18 (m, 2H), 2.86 (d, J = 2.5 Hz, 2H), 2.66 - 2.77 (m, IH), 2.10 (s, 2H). MS (ESI, M+l): 288.10.
Example 241: (R)-l-{6-[4-(l,l-Dimethylpropyl)cyclohexyloxy]quinazolin-2-ylmethyl}- pyrrolidine-3-carboxylic acid methyl ester:
Figure imgf000129_0001
(R)- 1 -(ό-Hydroxyquinazolin-l-ylmethy^-pyrrolidine-S-carboxylic acid methyl ester (150.00 mg, 5.2208E-4 mol), cis-4-(l,l-dimethyl)propylcyclohexanol (133.36 mg, 7.8312E-4 mol) and Triphenylphosphine (273.87 mg, 0.0010442 mol) were placed in a 40 mL vial, followed by Toluene (5 mL, 0.04 mol) . A solution of in THF (5mL) was then added dropwise to the reaction mixture at 23 0C. The reaction mixture was allowed to stir for 12 hours. The reaction mixture was then filtered through a celite pad, and concentrated. The crude mixture was purified via chromatography (SiO2, 2Og, 0-35% ethyl acetate/hexanes) to give the desired product (388mg, 80%). IH NMR (CHLOROFORM-d) δ ppm: 9.25 (s, IH), 7.93 (d, J = 9.3 Hz, IH), 7.50 (dd, J = 9.3, 2.8 Hz, IH), 7.13 (d, IH), 4.28 (ddd, J = 10.9, 6.6, 4.4 Hz, IH), 3.99 - 4.16 (m, 2H), 3.67 (s, 3H), 3.22 - 3.34 (m, IH), 3.16 (dd, J = 8.9, 7.4 Hz, IH), 2.98 - 3.10 (m, IH), 2.76 (t, J = 8.4 Hz, IH), 2.66 (q, J = 8.2 Hz, IH), 2.26 (d, J = 13.1 Hz, 2H), 2.06 - 2.21 (m, 2H), 1.76 - 1.92 (m, 2H), 1.36 - 1.55 (m, 2H), 1.29 (q, J = 7.6 Hz, 2H), 1.09 - 1.24 (m, 3H), 0.72 - 0.90 (m, 9H). MS (ESI, M+l): 440.30.
Example 242: l-{6-[4-(l,l-Dimethylpropyl)cyclohexyloxy]quinazolin-2- ylmethyl}pyrrolidine-3-carboxylic acid
Figure imgf000129_0002
1 - { 6-[4-(l , 1 -Dimethyl-propy^-cyclohexyloxy] -quinazolin-2-ylmethyl } -pyrrolidine-3- carboxylic acid methyl ester (229.50 mg, 5.2208E-4 mol) was dissolved in Methanol (5 mL, 0.1 mol) and Tetrahydrofuran (5 mL, 0.06 mol), followed by 2 M of Lithium hydroxide in Water(2 mL, 0.004 mol) at at 23 0C for 10 minutes. Excess of solvents were removed under vacuum, and the solid residue was treated with HCl (2N, 3mL), and extracted with DCM (20 X 3 mL). The organic layers were dried over Na2SO4. Removal of solvent gave a pure product (200mg, 90%). 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.69 - 0.94 (m, 12 H) 1.13 - 1.37 (m, 10 H) 1.39 - 1.59 (m, 2 H) 1.76 - 1.96 (m, 3 H) 2.18 - 2.37 (m, 2 H) 4.84 (br. s., 1 H) 7.16 - 7.38 (m, 2 H) 7.55 - 7.71 (m, 1 H) 7.99 (br. s., 1 H) MS (ESI, M+l): 426.30. The two step procedure used to make l-{6-[4-(l,l-Dimethylpropyl)cyclohexyloxy]quinazolin-2- ylmethyl}pyrrolidine-3-carboxylic acid was utilized with the appropriate alcohol to make the following:
Example 243: l-[6-(4-tør/-Butylcyclohexyloxy)quinazolin-2-ylmethyl]pyrrolidine-3- carboxylic acid
(88% yield). 1H NMR (400 MHz, CHLOROFORM- d) δ ppm: 0.88 - 1.02 (m, 10 H) 1.09
- 1.17 (m, 2 H) 1.17 - 1.35 (m, 8 H) 1.39 - 1.61 (m, 2 H) 1.82 - 2.01 (m, 3 H) 2.18 - 2.37 (m, 2 H) 4.32 (br. s., 0 H) 7.17 - 7.37 (m, 2 H) 7.60 (br. s., 1 H) 7.99 (br. s., 1 H).
MS (ESI, M+l): 412.20.
Example 244: l-[6-(4-Cyclopentylcyclohexyloxy)quinazolin-2-ylmethyl]pyrrolidine-3- carboxylic acid
(95% yield). 1H NMR (400 MHz, CHLOROFORM-J) δ ppm: 1.00 - 1.19 (m, 10 H) 1.37
- 1.57 (m, 8 H) 1.57 - 1.70 (m, 2 H) 1.70 - 1.87 (m, 2 H) 1.87 - 2.02 (m, 3 H) 2.21 (br. s., 2 H) 4.34 (br. s., 1 H) 7.10 - 7.34 (m, 1 H) 7.55 - 7.68 (m, 1 H) 7.85 - 8.07 (m, 2 H) 9.24 - 9.44 (m, 1 H). MS (ESI, M+l): 424.30. Example 245: l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-ethanone
Figure imgf000130_0001
To a solution of 2-Bromo-6-(4-te/t-butyl-cyclohexyloxy)-naphthalene (5 g, 0.01 mol) in 15 mL dry THF stirring at -780C, was added 2.0 M of n-Butyllithium in hexane(8.3 mL, 0.017 mol) dropwise. The reaction was then stirred at -780C for 15 minutes, yellow color results. N- Methoxy-N-methyl-acetamide (1.6 mL, 0.015 mol) in 5 mL THF was then added dropwise while the reaction was stirred at -780C (rxn went colorless upon additon of B). Reaction was then quenched with water and extracted three times with ethyl ether. Organics were dried over MgSO4, filtered, and concentrated to dryness under reduced pressure. Material was purified via column chromatography using a gradient of 0-10% EtOAC/Hexanes (ran neat hexanes for 5 min to elute desbromo SM) on 125 g of SiO2 to give the title compound as a white solid.
Example 246: l-N-Azetidine-3-ethoxycarbonyl-l-ethyl[6-(4-ter/-Butyl- cyclohexyloxy)naphthalene
Figure imgf000131_0001
Azetidine-3-carboxylic acid ethyl ester (407.10 mg, 0.0031520 mol) (HCl salt) was combined with Potassium carbonate (653.01 mg, 0.0047249 mol) in Methanol (10 mL, 0.2 mol) and stirred for 15 minutes. The solids were removed via filtration. Acetic acid (8.9 uL, 0.00016 mol) was then added followed by l-[6-(4-fer?-Butyl-cyclohexyloxy)-naphthalen-2-yl]-ethanone (511.01 mg, 0.0015750 mol) and Sodium cyanoborohydride (245.55 mg, 0.0039074 mol) and the reaction was stirred overnight at RT. Solubility of SM was very poor. Added Methylene chloride (2.5 mL, 0.039 mol). Mixture became homogeneous after a few minutes. The reaction mixture was then heated to 5O0C for 5 hours. The reaction was then left stirring overnight at 5O0C. The reaction was then quenched with water and extracted three times with ethyl ether. Organics were combined and dried over MgSO4. Solids were removed via filtration and 5 g of SiO2 was added. All solvent was then removed and the resulting silica was loaded onto a 24 g column and the reaction was purified using a gradient of 0-60% EtOAc/Hexanes and then dried on the highvac to give the title compound as a colorless oil. Material will be carried on without additional purification.
Example 247: l-Ethyl[6-(4-ter/-Butyl-cyclohexyloxy)naphthal-2-yl-N-azetidine-3-carboxylic acid
Figure imgf000131_0002
l-N-Azetidine-3-ethoxycarbonyl-l-ethyl[6-(4-fer?-Butyl-cyclohexyloxy)naphthalene
(140.1 mg, 0.3307 mmol) was dissolved in Ethanol (2 mL, 40 mmol) then treated with 1 M of Sodium hydroxide in Water(2 mL, 2 mmol). The mixture was stirred vigorously for 1 hour. LCMS shows about 10% conversion to new more polar spot RT=I.75 min M+l=410. Reaction left stirring overnight. LCMS indicates no SM remaining. pH was adjust to 3-4 with 3 N HCl and reaction was then extracted three times with EtOAc. Organics were combined then dried over MgSO4, filtered and concentrated to dryness under reduced pressure. Ethyl ether was then added and a white ppt formed. The ppt. was removed via filtration to give a white solid that 99% pure by NMR and HPLC. 1H NMR (400 MHz, CHLOROFORM- d) δ ppm 0.89 (s, 9 H) 1.02 - 1.29 (m, 3 H) 1.43 (q, /=11.38 Hz, 2 H) 1.53 - 1.72 (m, 3 H) 1.88 (d, /=11.55 Hz, 2 H) 2.26 (d, /=10.54 Hz, 2 H) 3.18 - 3.38 (m, 1 H) 3.72 - 3.98 (m, 2 H) 3.98 - 4.17 (m, 2 H) 4.18 - 4.33 (m, 1 H) 4.38 (br. s., 1 H) 7.05 - 7.18 (m, 2 H) 7.54 (d, /=8.28 Hz, 1 H) 7.72 (t, /=8.28 Hz, 2 H) 7.83 (br. s., 1 H). MS (ESI, M+l): 410.30.
The same 2 step procedure utilized for l-Ethyl[6-(4-te/t-Butyl-cyclohexyloxy)naphthal-2-yl-N- azetidine-3-carboxylic acid was used to make the following compound with the appropriate amine.
Example 248: 3-{l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-ethylamino}-propionic acid.
1U NMR (400 MHz, DMSO-J6) δ ppm 0.81 (br. s., 1 H) 0.87 (s, 9 H) 0.99 - 1.14 (m, 1 H) 1.14 - 1.42 (m, 4 H) 1.64 (d, /=6.78 Hz, 3 H) 1.81 (d, /=12.05 Hz, 2 H) 2.20 (d, /=10.29 Hz, 2 H) 2.57 - 2.72 (m, 2 H) 2.72 - 2.88 (m, 1 H) 2.97 (br. s., 1 H) 3.32 (br. s., 1 H) 4.30 - 4.54 (m, 2 H) 7.18 (dd, /=8.91, 2.13 Hz, 1 H) 7.35 - 7.45 (m, 1 H) 7.66 (d, /=7.78 Hz, 1 H) 7.79 (d, /=8.78 Hz, 1 H) 7.86 (d, /=8.53 Hz, 1 H) 7.94 (s, 1 H)
Example 249: (R)-l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-pyrrolidine-3- carboxylic acid:
Figure imgf000132_0001
(R)-Pyrrolidine-3-carboxylic acid; compound with GENERIC INORGANIC NEUTRAL COMPONENT (98 mg, 0.65 mmol) was combined with Potassium carbonate (114.44 mg, 0.82203 mmol) in Methanol (5 mL, 100 mmol) and stirred for 15 min. The solids were then removed via filtration and 6-(4-tert-Butyl-cyclohexyloxy)-naphthalene-2-carbaldehyde (76.7 mg, 0.247 mmol) was added to the solution followed by Acetic acid (91 uL, 1.6 mmol). Solubility was poor so added Methylene chloride (0.6 rnL, 10 mmol). Mixture was heated to 55 0C for 30 minutes and then cooled to RT. Sodium cyanoborohydride (0.077630 g, 1.2353 mmol) was then added in two small portions and the reaction was stirred at RT for 4 hours. Reaction was then treated with 2 additional eqs. of Sodium cyanoborohydride and heated to 55 0C overnight.
Approximately 3 mL of MeOH was removed on the rotovap and the reaction mixture was trated with 2 mL DMSO to dissolve precipitated solids. The reaction was then purified directly via prep-HPLC on a 19X150 C18 column using a gradient of 10-100% CH3CN/Water (0.1% TFA) to give the the title compound. IH NMR (400MHz ,MeOD) Shift = 8.01 - 7.73 (m, 3 H), 7.59 - 7.43 (m, 1 H), 7.37 - 7.26 (m, 1 H), 7.26 - 7.12 (m, 1 H), 4.61 - 4.49 (m, 2 H), 4.48 - 4.31 (m, 1 H), 3.91 - 3.33 (m, 6 H), 2.60 - 2.09 (m, 5 H), 2.06 - 1.81 (m, 3 H), 1.58 - 1.04 (m, 7 H), 1.01 - 0.80 (m, 9 H). MS (ESI, M+l): 410.30. The procedure for (R)-l-[6-(4-fer?-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-pyrrolidine-3- carboxylic acid was utilized to prepare the following compounds utilizing the appropriate amine.
Example 250: (R)-l-[6-(Bicyclohexyl-4-yloxy)-naphthalen-2-ylmethyl]-pyrrolidine-3- carboxylic acid:
IH NMR (400MHz ,MeOD) Shift = 7.98 - 7.71 (m, 3 H), 7.59 - 7.45 (m, 1 H), 7.39 -
7.09 (m, 2 H), 4.69 - 4.48 (m, 1 H), 4.48 - 4.32 (m, 1 H), 2.51 - 2.08 (m, 4 H), 1.83 (d, J = 7.0 Hz, 7 H), 1.71 - 1.38 (m, 7 H), 1.12 (none, 6 H). MS (ESI, M+l): 436.30.
Example 251 : (R) - 1 - [6-(4- Cyclopentyl-cyclohexyloxy) -naphthalen-2-ylmethyl] -pyrrolidine- 3-carboxylic acid
1U NMR (400 MHz, METHANOL-^) δ ppm 1.05 - 1.34 (m, 7 H) 1.40 - 1.70 (m, 8 H) 1.72 - 1.88 (m, 2 H) 1.89 - 2.07 (m, 2 H) 2.23 (d, /=11.04 Hz, 2 H) 3.41 - 3.53 (m, 2 H) 3.53 - 3.68 (m, 2 H) 4.35 - 4.48 (m, 1 H) 4.53 (br. s., 2 H) 7.20 (dd, /=8.91, 2.38 Hz, 1 H) 7.25 - 7.34 (m, 1 H) 7.52 (dd, /=8.53, 1.51 Hz, 1 H) 7.87 (d, /=8.53 Hz, 1 H) 7.82 (d, /=9.04 Hz, 1 H) 7.93 (s, 1 H). MS (ESI, M+l): 422.20. Example 252: (S)-l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-pyrrolidine-3- carboxylic acid.
IH NMR (400MHz ,MeOD) Shift = 7.96 - 7.92 (m, 2 H), 7.90 - 7.79 (m, 3 H), 7.56 - 7.49 (m, 1 H), 7.33 - 7.28 (m, 1 H), 7.24 - 7.15 (m, 1 H), 4.60 - 4.47 (m, 2 H), 4.44 - 4.33 (m, 1 H), 3.74 - 3.34 (m, 4 H), 2.62 - 2.35 (m, 1 H), 2.33 - 2.20 (m, 2 H), 1.99 - 1.85 (m, 2 H), 1.53 - 1.03 (m, 5 H), 0.93 (s, 9 H). MS (ESI, M+l): 410.30.
Example 252: (R)-l-[6-(trans-4-trifluoromethyl-cyclohexyloxy)-naphthalen-2-ylmethyl]- pyrrolidine-3-carboxylic acid:
1U NMR (400 MHz, METHANOL-^) δ ppm 1.39 - 1.69 (m, 4 H) 1.99 - 2.14 (m, 3 H)
2.19 - 2.49 (m, 5 H) 3.34 - 3.45 (m, 2 H) 3.45 - 3.70 (m, 2 H) 4.40 - 4.62 (m, 3 H) 7.21 (dd, /=8.91, 2.38 Hz, 1 H) 7.36 (d, /=2.01 Hz, 1 H) 7.53 (dd, /=8.53, 1.51 Hz, 1 H) 7.79 - 7.87 (m, 1 H) 7.89 (d, /=8.28 Hz, 1 H) 7.95 (s, 1 H). MS (ESI, M+l): 422.20.
Example 253; (R)-l-[6-(cis-4-trifluoromethyl-cyclohexyloxy)-naphthalen-2-ylmethyl]- pyrrolidine-3-carboxylic acid :
1U NMR (400 MHz, METHANOL-J4) δ ppm 1.60 - 1.90 (m, 6 H) 2.17 - 2.47 (m, 6 H) 3.43 - 3.70 (m, 4 H) 4.54 (br. s., 2 H) 4.83 (br. s., 1 H) 7.27 (dd, /=9.04, 2.26 Hz, 1 H) 7.31 - 7.38 (m, 1 H) 7.54 (dd, /=8.53, 1.51 Hz, 1 H) 7.81 - 7.92 (m, 2 H) 7.96 (s, 1 H). MS (ESI, M+l):
422.20.
Example 254: 3-{[6-(4-Cyclopentylcyclohexyloxy)-naphthalen-2-ylmethyl]-amino}- propionic acid:
IH NMR (400MHz ,DMSO-d6) Shift = 7.87 - 7.61 (m, 3 H), 7.56 - 7.39 (m, 1 H), 7.32 -
7.20 (m, 1 H), 7.15 - 6.96 (m, 1 H), 4.39 - 4.25 (m, 1 H), 4.20 - 4.04 (m, 2 H), 3.20 (s, 2 H), 3.09 - 2.83 (m, 3 H), 2.71 - 2.49 (m, 3 H), 2.14 - 1.90 (m, 3 H), 1.88 - 1.55 (m, 6 H), 1.16 (none, 10 H). Example 256: (R)-l-[6-(4-ter/-Pentyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-pyrrolidine-3- carboxylic acid :
IH NMR (400MHz ,MeOD) Shift = 7.91 - 7.66 (m, 2 H), 7.43 (s, 1 H), 7.20 (d, J = 2.0 Hz, 1 H), 4.43 (s, 1 H), 4.35 - 4.21 (m, 1 H), 3.72 - 3.25 (m, 4 H), 2.18 (d, J = 11.0 Hz, 3 H), 1.75 (br. s., 1 H), 1.38 - 1.06 (m, 5 H), 0.88 - 0.62 (m, 6 H). MS (ESI, M+l): 424.30.
Example 257: (R)-l-[6-(4-Ethyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-pyrrolidine-3- carboxylic acid:
IH NMR (400MHz ,MeOD) Shift = 8.04 - 7.74 (m, 2 H), 7.59 - 7.43 (m, 1 H), 7.37 - 7.20 (m, 1 H), 4.80 - 4.72 (m, 1 H), 4.63 - 4.41 (m, 1 H), 3.80 - 3.37 (m, 4 H), 2.19 - 1.97 (m, 1 H), 1.79 - 1.22 (m, 6 H), 0.94 (s, 3 H). MS (ESI, M+l): 382.20.
Example 258: (R)-l-[6-(4-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-pyrrolidine-3- carboxylic acid.
IH NMR (400MHz ,MeOD) Shift = 7.92 - 7.64 (m, 2 H), 7.42 (d, J = 7.5 Hz, 1 H), 7.19
(d, J = 1.8 Hz, 2 H), 4.68 - 4.57 (m, 0 H), 4.43 (s, 0 H), 4.37 - 4.22 (m, 0 H), 3.74 - 3.25 (m, 0 H), 2.11 (br. s., 0 H), 1.77 (br. s., 0 H), 1.68 - 1.43 (m, 0 H), 1.43 - 0.95 (m, 0 H), 0.82 (t, J = 6.3 Hz, 3 H). MS (ESI, M+l): 410.30. Example 259: (R)-l-[6-(4-Methoxymethyl-cyclohexyloxy)-naphthalen-2-ylmethyl]- pyrrolidine-3-carboxylic acid:
IH NMR (400MHz ,MeOD) Shift = 7.70 - 7.47 (m, 3 H), 7.43 - 7.29 (m, 1 H), 7.23 - 7.06 (m, 1 H), 7.04 - 6.89 (m, 1 H), 4.45 - 4.10 (m, 1 H), 3.79 - 3.53 (m, 2 H), 3.20 - 3.11 (m, 5 H), 3.01 - 2.64 (m, 3 H), 2.55 - 2.32 (m, 2 H), 1.79 (s, 7 H), 1.30 (none, 5H). MS (ESI, M+l): 398.10.
Example 260: {l-[6-(4-/er/-Butyl-cyclohexyloxy)-naphthalen-2-ylmethyl]-pyrrolidin-3-yl}- acetic acid.
IH NMR (400MHz ,MeOD) Shift = 8.00 - 7.77 (m, 5 H), 7.58 - 7.47 (m, 2 H), 7.30 (d, J = 1.5 Hz, 2 H), 7.26 - 7.11 (m, 2 H), 4.50 (s, 3 H), 4.45 - 4.32 (m, 2 H), 3.79 - 3.38 (m, 5 H), 3.19 - 2.65 (m, 3 H), 2.65 - 2.10 (m, 9 H), 2.04 - 1.62 (m, 5 H), 1.52 - 1.04 (m, 9 H), 0.93 (s, 9 H). MS (ESI, M+l): 424.30.
Example 261: 5-(4-tør/-Butyl-cyclohexyloxy)-2-methyl-benzothiazole.
Figure imgf000136_0001
2-Methyl-benzothiazol-5-ol (2.5 g, 0.015 mol), cis^-thert-butylcyclohexanol (2.84 g, 0.0182 mol), and Triphenylphosphine (4.76 g, 0.0182 mol) were combined in dry Toluene (100 mL, 1 mol) and stirred under nitrogen. Diisopropyl azodicarboxylate (3.6 mL, 0.018 mol) was added dropwise. The reaction was then stirred at RT overnight. Reaction was then concentrated to dryness and then residue was dissolved in DCM and 5 g of SiO2 was added. Solvent was removed under reduced pressure and resulting powder was loaded onto a 4Og column and purified via column chromatography using a gradient of 0-60% EtOAC/Hexanes.
Example 262: 5-(4-tør/-Butyl-cyclohexyloxy)-benzothiazole-2-aldehyde.
Figure imgf000136_0002
Selenium dioxide (180 mg, 1.6 mmol) was combined with 1,4-Dioxane (5 mL, 60 mmol) and Water (0.5 mL, 30 mmol) at room, temperature open to the atmosphere. The mixture was then treated with 5-(4-te/t-Butyl-cyclohexyloxy)-2-methyl-benzothiazole (250 mg, 0.82 mmol) and resulting mixture was heated to 650C for 2 hours. The heat was increased to 9O0C and 4 additional eq. of SeO2 were added. Reaction was stirred for additional 5 hours. LCMS shows nearly complete conversion. Reaction become dark and solids formed in reaction mixture.
Reaction was cooled to RT and allowed to stand over night. Solids were removed via filtration. Concentrated to dryness then purified directly via column chromatogrphy using a gradient of 0- 40% Ethylacetate/hexane to give the title compound as a dark solid.
Example 263: (R)-l-[5-(4-ter/-Butyl-cyclohexyloxy)-benzothiazol-2-ylmethyl]-pyrrolidine-3- carboxylic acid
Figure imgf000137_0001
(R)-Pyrrolidine-3-carboxylic acid (100 mg, 0.9 mmol) (HCl salt) was combined with N,N-Diisopropylethylamine (300 uL, 2 mmol) in Methanol (4.0 mL, 98 mmol) and stirred for 15 min. 5-(4-fer?-Butyl-cyclohexyloxy)-benzothiazole-2-carbaldehyde (1.0E2 mg, 0.33 mmol) was then added and the mixture was stirred at RT for 30 minutes. After 30 minutes the reaction was cooled to O0C and Sodium cyanoborohydride (100 mg, 2 mmol) was added in two portions. The reaction was then allowed to warm to RT while stirring overnight. The reaction was then purified directly on the Gilson (10-90% CH3CN/H2O (0.1% TFA), 19x150 cm C18, RT=8.6 min) The product was then dried on the highvac to give the title compound as a white solid. IH NMR (400MHz ,MeOD) Shift = 8.00 - 7.78 (m, 1 H), 7.69 - 7.51 (m, 1 H), 7.27 - 7.05 (m, 1 H), 5.09 - 4.93 (m, 3 H), 4.39 - 4.21 (m, 1 H), 4.01 - 3.39 (m, 4 H), 2.65 - 2.18 (m, 3 H), 2.01 - 1.80 (m, 2 H), 1.53 - 1.04 (m, 6 H), 0.92 (s, 9 H). MS (ESI, M+l): 417.30.
Example 264: l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-2,2,2-trifluoro-ethanone.
Figure imgf000137_0002
To a solution of 2-Bromo-6-(4-te/t-butyl-cyclohexyloxy)-naphthalene (2 g, 0.006 mol) in 15 mL dry THF stirring at -780C, was added dropwise. The reaction was then stirred at -780C for 15 minutes, yellow color results. 2,2,2-Trifluoro-N-methoxy-N-methyl-acetamide (1.0 mL, 0.0083 mol) in 10 mL THF was then added dropwise while the reaction was stirred at -780C. Once all of the starting material was added reaction the reaction was allowed to warm to room temperature while stirring for 2 hours. The Reaction was then quenched with water and extracted three times with EtOAc. Organics were dried over MgSO4, filtered, and concentrated to dryness under reduced pressure. Crude NMR shows about 80% purity (looks like des-bromostarting material). Material was purified via column chromatography using a gradient of hexanes for one column volume followed by 0-10% EtOAC/Hexanes on 25 g of SiO2 to give the title compound as a yellow solid. Material will be carried on without additonal purification Example 265: 3-{l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-2,2,2-trifluoro- ethylamino}-propionic acid tert-butyl ester
Figure imgf000138_0001
3-Amino-propionic acid tert-buty\ ester (106 mg, 0.727 mmol) was combined with N,N- Diisopropylethylamine (575 uL, 3.30 mmol) and l-[6-(4-te/t-Butyl-cyclohexyloxy)-naphthalen- 2-yl]-2,2,2-trifluoro-ethanone (250 mg, 0.66 mmol) in Methylene chloride (4 mL, 60 mmol). 1 M of Titanium(IV) chloride in Methylene chloride(727 uL, 0.727 mmol) was added and the mixture was stirred at RT for 5 hours. TLC (20% EtOAC/Hex) shows only traces of SM with new lower Rf spot. The reaction was cooled to O0C and Sodium cyanoborohydride (208 mg, 3.30 mmol) in methanol (5 mL) was added carefully in two portions (lots of bubbling so remove cap.) The reaction was then diluted with 10 mL DCM and the solids were romoved via filtration. pH was adjust to 10 with 1 M NaOH and the reaction was extracted three times with methylene chloride. Organics were combined and dried over MgSO4. Solids were removed via filtration and the crude reaction was abosorbed onto silica (1 g) and purified via column chromatography on 12 g SiO2 using a gradient of 0-15% Ethylacetate/hexane to give material that was impure by NMR and LCMS (compound eluted around 1% EtOAc.) Material was repurified on 24 g ISCO gold column using a long gradient of 0-10% EtOAc/Hex over 30 minutes (desired compound was 2 nd major peak) to give the title compound as a colorless solid.
Example 266: 3-{l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-2,2,2-trifluoro- ethylamino}-propionic acid methyl ester
Figure imgf000138_0002
3-{ l-[6-(4-fer?-Butyl-cyclohexyloxy)-naphthalen-2-yl]-2,2,2-trifluoro-ethylamino}- propionic acid te/t-butyl ester (0.174 g, 0.343 mmol) was dissolved in 4 M of Hydrogen chloride in 1,4-Dioxane(3 mL, 10 mmol) and stirred at RT for 2.5 hrs. ALL solvent is removed after I purification of the previous step. Reaction was then concentrated to dryness under reduced pressure to give the title compound which was taken directly to the next step.
Example 267: 3-{l-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-2,2,2-trifluoro- ethylamino}-propionic acid (BIO-021973).
Figure imgf000139_0001
3-{ l-[6-(4-fer?-Butyl-cyclohexyloxy)-naphthalen-2-yl]-2,2,2-trifluoro-ethylamino}- propionic acid methyl ester (164 mg, 0.352 mmol) was dissolved in Ethanol (2 mL, 40 mmol) then treated with 1 M of Sodium hydroxide in Water(2 mL, 2 mmol). The mixture was stirred vigorously for 1 hour. pH was adjust to 3-4 with 6 N HCl and reaction was then extracted three times with EtOAc. Organics were combined then dried over MgSO4, filtered and concentrated to dryness under reduced pressure. Ethyl ether was then added and a white ppt formed. The ppt. was removed via filtration to give a white solid that 99% pure by NMR and HPLC-traces of ethanol remain. 1U NMR (400 MHz, METHANOL-J4) δ ppm 0.83 (s, 9 H) 0.93 - 1.10 (m, 1 H) 1.11 - 1.27 (m, 2 H) 1.27 - 1.42 (m, 2 H) 1.73 - 1.89 (m, 2 H) 2.19 (d, /=10.29 Hz, 2 H) 2.67 (t, /=6.53 Hz, 2 H) 3.03 - 3.18 (m, 2 H) 4.22 - 4.37 (m, 1 H) 5.33 - 5.51 (m, 1 H) 7.13 (dd, /=8.91, 2.38 Hz, 1 H) 7.21 - 7.29 (m, 1 H) 7.46 (d, /=8.78 Hz, 1 H) 7.76 (d, /=9.04 Hz, 1 H) 7.85 (d, /=8.78 Hz, 1 H) 7.93 (s, 1 H). Example 268: 4-methoxypent-3-en-2-one
Figure imgf000139_0002
A solution of 2,4-pentanedione (100 g, 1 mol), trimethyl orthoformate (106 g, 1 mol), p- TsOH H2O (2.16 g, 11.4 mmol) in MeOH (248 mL) was heated at 55 0C for 5 hrs. The mixture was cooled to room temperature and concentrated. The residue was diluted with CCl4 (100 mL) and the mixture was concentrated again to give the crude product as a dark-brown oil (-100 g). This residue was subjected to vacuum distillation to give colorless oil (58.0 g, yield: 50%). bp 32-33 °C/3 torr). Example 268: 3-methoxy-l-methylnaphthalene
Figure imgf000140_0001
A solution of t-BuOH (44.5 g, 600 mmol) in dry THF (240 rnL) was added dropwise to a suspension of NaNH2 (84.4 g, 2.2 mmol) in dry THF (480 mL) under nitrogen. The resulting mixture was heated for 2 h at 40-45 0C. After the mixture was cooled, a solution of A- methoxypent-3-en-2-one (68.5 g, 600 mmol) in dry THF (480 mL) was added dropwise at 30-40 0C. The resulting mixture was stirred at 45 0C for 2 h. A solution of bromobenzene (47.1 g, 300 mmol) in dry THF (240 mL) was added and the mixture was stirred at 55 0C for 6 h. The mixture was allowed to cool to room temperature overnight. The mixture was poured into ice, acidified with an aqueous 3 M HCl solution to pH 4-5 and extracted with EtOAc. The combined organic extracts were concentrated under reduced pressure, and the residue was diluted with acetone (480 mL) and stirred with cone. HCl solution (24 mL) for 10 min. The mixture was diluted with EtOAc (200 mL) and washed with saturated brine (200 mL). The aqueous layer was extracted with EtOAc, and the combined organic layers were dried over sodium sulfate, filtered, and concentrated. The residue was subjected to flash chromatography (700 g silica gel with dry- loading, eluting by 2% EtOAc in heptanes to give orange oil (19 g, yield: 37%).
Example 269: 4-Methylnaphthalen-2-ol
Figure imgf000140_0002
A solution of 4-methylnaphthalen-2-ol compound (22 g, 128 mmol) and n-Bu4 (52 g,
141 mmol) in dry dichloromethane (650 mL) was added 1.0 M solution of BCl3 in
dichloromethane (192 mL, 192 mmol) at -78 0C under nitrogen. After 5 min, the solution was allowed to warm to 0 0C and stirred for 1 h. The reaction was quenched with cold water (200 mL) and extracted with dichloromethane. The combined extracts were washed with saturated brine, dried over sodium sulfate, filtered, and concentrated. The residue was subjected to flash chromatography, eluting with a gradient of 10% to 50% EtOAc in heptanes to give brown solid product (16 g, yield: 79%).
Example 270: 3-(4-tør/-butyl-cyclohexyloxy)-l-methyl-naphthalene
Figure imgf000141_0001
A mixture of 4-methyl-naphthalen-2-ol (0.60 g, 3.8 mmol), methanesulfonic acid A-tert- butyl-cyclohexyl ester (1.9 g, 7.6 mmol) and cesium carbonate (3.7 g, 11 mmol) in t-BuOH (10 mL) and 2-butanone (7 mL) was heated at 80 0C overnight. After cooled to room temperature, the mixture was treated with water and ether. The organic phase was dried over MgSO4, filtered and concentrated. The crude was treated with methanol to give solid product (0.55 g, yield: 48%). ESI-MS: 297.20 (M+H)+.
Example 271: 6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalene-2-carbaldehyde (13467- 25)
Figure imgf000141_0002
To a mixture of 3-(4-te/t-butyl-cyclohexyloxy)-l -methyl-naphthalene (450 mg, 1.5 mmol) in 1,2-dichloroethane (9 mL) was added tin tetrachloride (236 uL, 2 mmol) at 0 0C. After stirred at 0 0C for 1 hr, dichloromethyl methyl ether (183 uL, 2 mmol) was added. The solution was stirred at 0 0C for 1 hr and then warmed to room temperature. The mixture was added ice water and stirred for 1 hr, then the dark solution was diluted with dichloromethane and washed with water. The organic phase was washed with sodium bicarbonate aqueous, and dried over MgSO4. The drying agent was filtered off and the solvent was concentrated to dryness to give dark solid product (0.48 g, yield: 97%). ESI-MS: 325.20 (M+H)+.
Example 272: {[6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}- acetic acid methyl ester
Figure imgf000142_0001
A solution of 6-(4-fert-butyl-cyclohexyloxy)-8-methyl-naphthalene-2-carbaldehyde (50 mg, 0.15 mmol), glycine methyl ester, hydrochloride (27 mg, 0.22 mmol) and N,N-diisopropylethylamine (DIEA) (34 uL) in 1,2-dichloroethane (2 mL) was stirred for 1 hour at room temperature. Then sodium triacetoxyborohydride (52 mg, 0.25 mmol) was added and stirred for 3 hrs. The reaction was diluted with methylene chloride and washed with saturated sodium bicarbonate aqueous, dried over MgSO4, filtered, and concentrated. The crude was purified via silica gel column chromatography eluted 0-5% MeOH in methylene chloride to give the light brown solid (53 mg, yield: 86%). ESI-MS: 420.30 (M+23)+.
Example 273: {[6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}- acetic acid
Figure imgf000142_0002
A solution of { [6-(4-fert-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]- amino} -acetic acid methyl ester (40 mg, 0.1 mmol) and lithium hydroxide (16 mg, 0.67 mmol) in THF (1.4 mL) and water (0.5) was stirred at 22 0C overnight. After the solvent was
concentrated, the residue was treated with water. The resulting solid was filtered and washed with water and purified via HPLC to give white precipitate as TFA salt (24 mg, yield: 48%). ESI-MS: 406.30 (M+23)+; 1U NMR (400 MHz, MeOD) δ = 8.075 (d, IH), 8.065 (d, IH), 7.62 (t, IH), 7.48 (dd, IH), 7.38 (s, IH), 4.78 (s, 2H), 4.52 (m, IH), 3.86 (s, IH), 2.75 (s, 3H), 2.66 (s, IH), 2.27 (d, 2H), 1.926 (d, 2H), 1.557 (m, 2H), 1.256 (m, 2H), 1.152 (m, IH), 0.92 (s, 9H).
Example 274: 4-{[6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}- butyric acid
Figure imgf000142_0003
A solution of 6-(4-fert-butyl-cyclohexyloxy)-8-methyl-naphthalene-2-carbaldehyde (50 mg, 0.15 mmol) and 4-aminobutanoic acid (20 mg, 0.19 mmol) in ethanol (0.5 mL) was heated to reflux for 2 hrs. The yellow solution was cooled to room temperature and sodium cyanoborohydride (52 mg) was added. The mixture was heated at 50 0C overnight. The crude product was purified via HPLC to give white solid as TFA salt (9 mg, yield: 11%). ESI-MS: 412.30 (M+H)+; 1U NMR (400 MHz, MeOD) δ 8.06 (d, IH), 8.03 (d, IH), 7.58 - 7.65 (m, IH), 7.48 (t, J= 7.15 Hz, IH), 7.38 (s, IH), 4.68 (s, 2H), 4.53 (m, IH), 3.20 (t, 2H), 2.75 (s, 3H), 2.48 (t, /= 6.90 Hz, 2H), 2.29 (d, /= 10.54 Hz, 2H), 2.04 (quin, /= 7.34 Hz, 2H), 1.94 (d, 2H), 1.54 (m, 2H), 1.28 (m, 2H), 1.16 (m, IH), 0.93 (s, 9H).
Example 275: l-[6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-azetidine- 3-carboxylic acid methyl ester
Figure imgf000143_0001
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid methyl ester (40 mg, yield: 51%). ESI-MS: 424.30 (M+H)+.
Example 276: l-[6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-azetidine- 3-carboxylic acid
Figure imgf000143_0002
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid. The product was treated with IN HCl aqueous gave light yellow solid as HCl salt (30 mg, yield: 86%). ESI-MS: 410.30 (M+H)+. 1U NMR (400 MHz, DMSO) δ 8.10 (d, IH), 7.97 (d, IH), 7.55 (t, IH), 7.47-7.41 (m, 2H), 4.60-4.45 (m, 2H), 3.97 (s, 3H), 3.50-3.33 (m, 2H), 2.68 (s, 3H), 2.16 (d, 2H), 1.81 (d, 2H), 1.47 (quin, 2H), 1.20 (quin, 2H), 1.09 (m, 2H), 0.88 (s, 9H).
Example 277: 3-{[6-(4-/er/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}- propionic acid ethyl ester 81
Figure imgf000144_0001
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid methyl ester (38 mg, yield: 41%). ESI-MS: 426.30 (M+H)+.
Example 278: 3-{[6-(4-/er/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}- propionic acid
Figure imgf000144_0002
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid. The crude was purified via HPLC to give white solid as TFA salt (22 mg, yield: 48%). ESI-MS: 398.20 (M+H)+. 1U NMR (400 MHz, CDC13) D 8.89 (s, 2H), 7.95 (d, IH), 7.91 (d, IH), 7.52 (m, IH), 7.41 (t, IH), 7.13 (s, IH), 4.64 (s, 2H), 4.35 (m, IH), 3.14 (s, 2H), 2.74-2.65 (m, 5H), 2.18 (d, 2H), 1.85 (d, 2H), 1.47 (m, 2H), 1.20-1.02 (m, 3H), 0.88 (s, 9H).
Example 279: l-[6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]- pyrrolidine-3-carboxylic acid methyl ester
Figure imgf000144_0003
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid methyl ester as sticky oil (57 mg, yield: 70%). ESI- MS: 438.30 (M+H)+.
Example 280: l-[6-(4-ter/-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]- pyrrolidine-3-carboxylate
Figure imgf000144_0004
Synthesis was performed as described for { [6-(4-tert-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid. (36 mg, yield: 69%). ESI-MS: 424.30 (M+H)+. 1H NMR (400 MHz, DMSO) δ 8.14 (d, IH), 7.88 (d, IH), 7.44 (t, IH), 7.35 (m, IH), 7.27 (s, IH), 4.31 (m, IH), 3.89 (s, 2H), 2.73 (t, IH), 2.62 (s, 3H), 2.53 (m, 3H), 2.36 (m, IH), 2,12 (d, 2H), 1.90 (m, IH), 1.78 (d, 2H), 1.64 (m, IH), 1.36 (m, 2H), 1.20-1.00 (m, 3H), 0.85 (s, 9H).
Example 281: 3-(4-tør/-butyl-cyclohexyloxy)-l-iodo-naphthalene
Figure imgf000145_0001
A mixture of 4-iodo-naphthalen-2-ol (1.0 g, 3.7 mmol) (See, for example, Australian Journal of Chemistry (1963), 16 401-10. b. Journal of the Chemical Society (1943), 468-9, which is incorporated by reference in its entirety), methanesulfonic acid 4-tert-butyl-cyclohexyl ester (1.8 g, 7.4 mmol) and cesium carbonate (3.6 g, 11 mmol) in tert-butyl alcohol (10 mL) and 2-butanone (7 mL) was heated in a sealed vial at 100 0C for 4 hrs. The mixture was partitioned between water and dichloromethane. The organic phase was washed with brine, dried over MgSO4, filtered and concentrated. The residue was purified via a silica gel column eluted with EtOAc in hexanes from 0 to 30% to give light yellow precipitate (1.10 g, yield: 73%). ESI-MS: 409.10 (M+H)+.
Example 282: 6-(4-ter/-butyl-cyclohexyloxy)-8-iodo-naphthalene-2-carbaldehyde
Figure imgf000145_0002
Synthesis was performed as described for 6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalene-2-carbaldehyde (sticky oil, 700 mg, yield: 98%). ESI-MS: 437.10 (M+H)+.
Example 283: 3-{[6-(4-/er/-butyl-cyclohexyloxy)-8-iodo-naphthalen-2-ylmethyl]-amino}- propionic acid ethyl ester
Figure imgf000145_0003
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid methyl ester (light brown solid, 110 mg, yield: 40%). ESI-MS: 538.20 (M+H)+. Example 284; 3-{[6-(4-/er/-Butyl-cyclohexyloxy)-8-iodo-naphthalen-2-ylmethyl]-amino}- propionic acid; compound with trifluoro-acetic acid
Figure imgf000146_0001
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid. The crude was purified via HPLC to give white solid as TFA salt (7 mg, yield: 30%). ESI-MS: 510.20 (M+H)+. 1U NMR (400 MHz, MeOD) D
8.13 (d, IH), 8.12 (s, IH), 8.05 (d, IH), 7.66 (m, IH), 7.54 (m, IH), 4.72 (s, 2H), 4.54 (m, IH),
3.14 (t, 2H), 2.81 (t, IH), 2.66 (s, IH), 2.28 (d, 2H), 1.94 (d, 2H), 1.60 (m, 2H), 1.30 (m, 2H), 1.16 (m, IH), 0.93 (s, 9H). Example 285: [6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-acetic acid ethyl ester
Figure imgf000146_0002
A solution of 2-bromo-6-(4-te/t-butyl-cyclohexyloxy)-naphthalene (2 g, 5.5 mmol) in ether (10 mL) under nitrogen was added 1.6 M n-butyllithium in hexane(4 mL, 6.4 mmol) at 0 0C. The solution was stirred for 30 min at 0 0C, then treated with copper(I) bromide-dimethyl sulfide complex (0.8 g, 3.9 mmol). After 2 hrs stirring, a solution of ethyl bromoacetate (0.7 mL, 6 mmol) in ether (4 mL) was added. The solution was stirred at 0 0C for 2 hrs, then warmed to room temperature for 3 hrs. The reaction was quenched with 10% HCl aqueous then the insoluble was filtered off. The organic layer was washed with water, sodium bicarbonate aqueous, dried over MgSO4, filtered and concentrated. The crude was purified via silica gel column eluted with EtOAc in hexanes from 0 to 10% to give light yellow solid (0.45 g, yield: 22% yield). ESI-MS: 369.20 (M+H)+.
Example 286: 2-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-ethanol
Figure imgf000147_0001
To a solution of [6-(4-fert-butyl-cyclohexyloxy)-naphthalen-2-yl] -acetic acid ethyl ester (250 mg, 0.68 mmol) in THF (10 rnL) was added 1.0 M of lithium tetrahydroaluminate in THF (2 rnL, 2 mmol) at 0 0C. After stirred at room temperature for 2 hrs, the solution was quenched with ethyl acetate (1 mL), then added Rochelle's salt aqueous (1.5 mL). The solution was stirred for 1 hr, then extracted with ethyl acetate. The organic phase was dried over MgSO4, filtered and concentrated. The resulting crude was purified via a silica gel column eluted with EtOAc in hexanes from 0 to 60% to give white precipitate (0.17 g, yield: 77%). ESI-MS: 327.20 (M+H)+. Example 287: [6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-acetaldehyde
Figure imgf000147_0002
A solution of 2-[6-(4-te/t-butyl-cyclohexyloxy)-naphthalen-2-yl]-ethanol (170 mg, 0.52 mmol) in methylene chloride (5 mL) was added Dess-Martin periodinane (0.31 g, 0.73 mmol). After stirred at room temperature for 1 hour, the solution was diluted with methylene chloride, washed with sodium thiosulfate aqueous, dried over Na2SO4, and concentrated. The crude was purified via silica gel column to afford white solid (120 mg, yield: 70%). ESI-MS: 325.20 (M+H)+.
Example 288: 3-{2-[6-(4-ter/-butyl-cyclohexyloxy)-naphthalen-2-yl]-ethylamino}-propionic acid tert-butyl ester
Figure imgf000147_0003
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid methyl ester as white solid (13 mg, yield: 30%). ESI- MS: 454.40 (M+H)+. Example 289: 3-{2-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-ethylamino}-propionic acid
Figure imgf000148_0001
A solution of 3-{2-[6-(4-fer?-butyl-cyclohexyloxy)-naphthalen-2-yl]-ethylamino}- propionic acid tert-butyl ester (13 mg, 0.028 mmol) in 4 M of HCl in 1,4-dioxane (0.50 rnL) was stirred at room temperature overnight. After the solvent was concentrated, the crude was purified via HPLC to give white solid (7 mg, yield: 49%). ESI-MS: 398.30 (M+H)+. 1H NMR (400 MHz, MeOD) δ 7.73 (d, IH), 7.70 (d, IH), 7.65 (s, IH), 7.33 (dd, IH), 7.21 (d, IH), 7.09 (dd, IH), 4.31 (m, IH), 3.41-3.31 (m, 4H), 3.14 (t, 2H), 2.74 (t, 2H), 2.25 (d, 2H), 1.89 (d, 2H), 1.40 (m, 2H), 1.24 (m, 2H), 1.10 (m, IH), 0.90 (s, 9H).
Example 290: (R)-l-{2-[6-(4-ter/-Butyl-cyclohexyloxy)-naphthalen-2-yl]-ethyl}-pyrrolidine- 3-carboxylic acid
Figure imgf000148_0002
A mixture of (R)-pyrrolidine-3-carboxylic acid, HCl salt (54 mg, 0.35 mmol) and potassium carbonate (0.11 g, 0.79 mmol) in methanol (1.4 mL) was stirred for 15 min. The solids were then removed via filtration, and the filtrate was concentrated. The residue was added [6-(4- fer?-butyl-cyclohexyloxy)-naphthalen-2-yl]-acetaldehyde (57 mg, 0.18 mmol) and sodium triacetoxyborohydride (200 mg, 1 mmol) in 1,2-dichloroethane (2 mL) and acetic acid (0.14 mL, 2.4 mmol). After heating at 80 0C for 2 hrs, the reaction was diluted with dichloromethane and washed with 5% of citric acid aqueous. The organic phase was concentrated and residue was purified via HPLC to give solid as TFA salt (42 mg, yield: 44%). ESI-MS: 424.30 (M+H)+;
Example 291: 6-hydroxy-3,4-dihydro-lH-isoquinoline-2-carboxylic acid tørf-butyl ester
Figure imgf000149_0001
A solution of l,2,3,4-tetrahydro-isoquinolin-6-ol, HCl salt (2 g, 10 mmol) and di-tert- butyldicarbonate (4 g, 18 mmol) in saturated aqueous sodium bicarbonate solution (20 mL) and chloroform (20 mL) was stirred at room temperature overnight. The organic phase was washed with water, dried over MgSO4, filtered and concentrated. The crude was purified via a silica gel column eluted with EtOAc in hexanes from 0 to 100% to give desired product (1.7 g, yield: 65%).
Example 292: 6-(4-ter^Butyl-cyclohexyloxy)-3,4-dihydro-lH-isoquinoline-2-carboxylic acid tert-butyl ester
Figure imgf000149_0002
A mixture of 6-hydroxy-3,4-dihydro-lH-isoquinoline-2-carboxylic acid tert-butyl ester (1.1 g, 4.4 mmol), cesium carbonate (4.3 g, 13 mmol), and methanesulfonic acid 4-tert-buty\- cyclohexyl ester (2.2 g, 8.8 mmol). in t-BuOH (12 mL) and 2-butanone (6.0 mL) was heated in a sealed vial at 100 0C overnight. The mixture was partitioned between water and ether. The organic phase was washed with water, dried over MgSO4, filtered and concentrated. The residue was purified via a silica gel column eluted with EtOAc in hexanes from 0 to 30% to give white precipitate (1.0 g, yield: 58%). 1H NMR (400 MHz, CDCl3) δ 6.99 (d, IH), 6.74 (dd, IH), 6.67 (d, IH), 4.49 (s, 2H), 4.07 (m, IH), 3.61 (s, 2H), 2.78 (m, 2H), 2.18 (d, 2H), 1.85 (d, 2H), 1.48 (s, 9H), 1.37 (m, 2H), 1.18-1.00 (m, 3H), 0.87 (s, 9H).
Example 293; 6-(4-ter/-Butyl-cyclohexyloxy)-l,2,3,4-tetrahydro-isoquinoline
Figure imgf000149_0003
A solution of 6-(4-fert-butyl-cyclohexyloxy)-3,4-dihydro-lH-isoquinoline-2-carboxylic acid tert-butyl ester (0.89 g, 2.3 mmol) in 4 M of HCl in l,4-dioxane(10 rnL, 40 mmol) and ether (40 rnL) was stirred at room temperature for 3 hrs to form white precipitate. The solid was collected by filtration to give desired product as HCl salt (0.73 g, yield: 98%). (400 MHz, DMSO) δ 7.09 (d, IH), 6.81 (d, IH), 6.80 (s, IH), 4.20 (m, IH), 4.14 (m, 2H), 3.31 (m, 2H), 2.95 (t, 2H), 2.09 (d, 2H), 1.77 (d, 2H), 1.27 (m, 2H), 1.20-0.98 (m, 3H), 0.85 (s, 9H).
Example 294: 3-ter/-butoxycarbonylamino-4-[6-(4-ter/-butyl-cyclohexyloxy)-3,4-dihydro- lH-isoquinolin-2-yl]-4-oxo-butyric acid tert-b\xiy\ ester
Figure imgf000150_0001
A mixture of 6-(4-fer?-butyl-cyclohexyloxy)-l,2,3,4-tetrahydro-isoquinoline HCl salt, (80 mg, 0.25 mmol), 2-te/t-butoxycarbonylamino-succinic acid 4-te/t-butyl ester (143 mg, 0.49 mmol), triethylamine (41 uL), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (57 mg, 0.30 mmol) and HOBT monohydrate (10 mg, 0.06 mmol) in DMF (2.0 mL) was heated at 50 0C for 4 hrs. The solution was diluted with ether and washed with water. The organic phase was dried over MgSO4, filtered and concentrated. The residue was purified via a silica gel column eluted with EtOAc in hexanes from 0 to 20% to give desired product (90 mg, yield: 65%). Example 295: 3-amino-4-[6-(4-ter/-butyl-cyclohexyloxy)-3,4-dihydro-lH-isoquinolin-2-yl]- 4-oxo-butyric acid
Figure imgf000150_0002
A solution of 3-fert-butoxycarbonylamino-4-[6-(4-fer?-butyl-cyclohexyloxy)-3,4- dihydro-lH-isoquinolin-2-yl]-4-oxo-butyric acid tert-butyl ester (90 mg, 0.16 mmol) in methylene chloride (1.0 rnL) and trifluoroacetic acid (0.3 rnL) was stirred at room temperature overnight. After the solvent was concentrated, the residue was purified via HPLC to give white solid as TFA salt (48 mg, yield: 58%). ESI-MS: 403.80 (M+H)+; IH NMR (400 MHz, CDCl3) δ 6.95 (dd, IH), 6.70 (d, IH), 6.62 (d, IH), 4.86 (m, IH), 4.61-4.41 (m, 2H), 4.04 (m, IH), 3.73- 3.51 (m, 2H), 2.95-2.75 (m, 3H), 2.70 (m, IH), 2.14 (d, 2H), 1.83 (d, 2H), 1.34 (q, 2H), 1.17- 0.99 (m, 3H), 0.86 (s, 9H). Example 296: 5-hydroxy-2,3-dihydro-indole-l-carboxylic acid tert-h\xϊy\ ester
Figure imgf000151_0001
Synthesis was performed as described for 6-hydroxy-3,4-dihydro-lH-isoquinoline-2- carboxylic acid tot-butyl ester (1.1 g, yield: 60%). ESI-MS: 258.10 (M+23)+. Example 297: 5-(4-Trifluoromethyl-cyclohexyloxy)-2,3-dihydro-indole-l-carboxylic acid tot-butyl ester
Figure imgf000151_0002
A mixture of 5-hydroxy-2,3-dihydro-indole-l-carboxylic acid te/t-butyl ester (0.33 g, 1.4 mmol), cesium carbonate (0.93 g, 2.8 mmol), and methanesulfonic acid 4-trifluoromethyl- cyclohexyl ester (0.70 g, 2.8 mmol) in t-BuOH (5 mL) and 2-butanone (2.5 mL) was heated in a sealed vial at 100 0C overnight. The mixture was treated with dichloromethane to form precipitate. The solid was filtered off and the filtrate was concentrated. The residue was treated with minimum of amount dichloromethane to form solid during 2 days. The solid was filtered and washed with ether to give desired product (200 mg, yield: 40%). ESI-MS: 408.20 (M+23)+. Example 298: 5-(4-Trifluoromethyl-cyclohexyloxy)-2,3-dihydro-lH-indole
Figure imgf000152_0001
Synthesis was performed as described for 3-amino-4-[6-(4-te/t-butyl-cyclohexyloxy)-3,4- dihydro-lH-isoquinolin-2-yl]-4-oxo-butyric acid (130 mg, yield: 88%). ESI-MS: 286.10 (M+H)+.
Example 299: 2-chloro-l-[5-(4-trifluoromethyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]- ethanone
Figure imgf000152_0002
A mixture of 5-(4-trifluoromethyl-cyclohexyloxy)-2,3-dihydro-lH-indole (130 mg, 0.46 mmol) and DIEA (103 uL) in methylene chloride (2 mL) was added chloroacetyl chloride (47 uL, 0.59 mmol) at room temperature. The black solution was stirred for 30 min. The solvent was concentrated to give crude product. The crude was used directly for next step without further purification (80 mg, yield: 77%). ESI-MS: 362.10 (M+H)+.
Example 300: 3-{2-oxo-2-[5-(4-trifluoromethyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]- ethylamino}-propionic acid ethyl ester
Figure imgf000152_0003
A mixture of crude 2-chloro-l-[5-(4-trifluoromethyl-cyclohexyloxy)-2,3-dihydro-indol- l-yl]-ethanone (80 mg, 0.22 mmol), 3-amino-propionic acid ethyl ester as HCl salt (68 mg, 0.44 mmol) and potassium carbonate (98 mg, 0.71 mmol) in acetonitrile (2 mL) was heated to reflux for 4 hrs. The mixture was treated with water and extracted with ether. The organic phase was dried over MgSO4, concentrated, and purified via a silica gel column to give desired product (11 mg, yield 10%). ESI-MS: 443.20 (M+H)+.
Example 301: 3-{2-oxo-2-[5-(4-trifluoromethyl-cyclohexyloxy)-2,3-dihydro-indol-l-yl]- ethylamino}-propionic acid
Figure imgf000153_0001
Synthesis was performed as described for { [6-(4-te/t-butyl-cyclohexyloxy)-8-methyl- naphthalen-2-ylmethyl] -amino} -acetic acid (3.8 mg, yield: 35%). ESI-MS: 415.20 (M+H)+. 1H NMR (400 MHz, MeOD) δ 8.03 (d, IH), 6.89 (s, IH), 6.78 (dd, IH), 4.58 (m, IH), 4.15-4.03 (m, 4H), 3.22 (t, 2H), 2.79 (q, IH), 2.64 (t, 2H), 2.22 (m, IH), 2.11 (d, 2H), 1.78-1.69 (m, 5H), 1.67- 1.56 (m, 2H).
Example 302: 2-((trans)-4-ter^butylcyclohexyloxy)quinoline-6-carbaldehyde
1 . Mitsunobu
Figure imgf000153_0003
Figure imgf000153_0002
The mixture of 6-bromo-quinolin-2-ol (500 mg, 0.002 mol), cis-tert-butyl- cyclohexanol(418.5 mg, 0.002678 mol), and triphenylphosphine (702.4 mg, 0.002678 mol) in toluene (4.754 mL, 0.04463 mol) was heated to reflux, and diisopropyl azodicarboxylate (0.5273 mL, 0.002678 mol) was added dropwise and was stirred and refluxed for 6 hours. The mixture was taken up into DCM and subjected to chromatography purification with EtOAc/hexane (0:100 to 40:60) to give product as a white solid (253 mg, 30%). LCMS Rt = 2.82min (m/z = 364.45, M+2, 100% ).
6-Bromo-2-(4-fert-butyl-cyclohexyloxy)-quinoline (115 mg, 0.317 mmol) in
tetrahydrofuran (2.6 mL, 32 mmol) was added 2.0 M of n-butyllithium in cyclohexane( 0.48 mL, 0.95 mmol) at -78 0C and was stirred for 15min. N,N-dimethylformamide (0.12 mL, 1.6 mmol) was added and was stirred for 30 minutes. When the reaction completed, 1 M HCl was added and after 5min at -78 0C, sat. NaHCO3 was added and extracted with EtOAc. The organic layer was concentrated and purified by silica gel chromatography using PE/EA (0-50%) as eluent to give product as a gel (30.6mg, 31%). LCMS Rt= 2.49min m/z = 312.51 ([M+l], 100%).
Example 303: 3-((2-((trans)-4-ter/-butylcyclohexyloxy)quinolin-6- yl)methylamino)propanoic acid
Figure imgf000154_0001
A solution of 2-(4-fert-butyl-cyclohexyloxy)-quinoline-6-carbaldehyde (30.6 mg, 0.0983 mmol) and Beta-alanine (8.75 mg, 0.0983 mmol) in ethanol (0.7 mL, 10 mmol) was heated to reflux for 2h. The yellow solution was cooled to rt and sodium cyanoborohydride (7.41 mg, 0.118 mmol) was added and was heated to reflux for Ih. After cooled down to rt, citric acid was added and concentrated down. The solid was suspended in water and filtrate, and the collected solid was washed thoroughly with water. HPLC purification of the solid give the product (7.5mg, 15%). LCMS Rt = 1.60 min m/z = 385.49 [M+l]. IH NMR (400MHz ,MeOD) δ = 8.14 (d, J = 8.8 Hz, 1 H), 7.92 (s, 1 H), 7.88 (d, J = 8.7 Hz, 1 H), 7.72 (d, J = 10.7 Hz, 1 H), 6.96 (d, J = 8.8 Hz, 1 H), 5.29 - 5.09 (m, 1 H), 4.40 (s, 2 H), 3.36 (t, J = 5.8 Hz, 2 H), 2.79 (t, J = 6.7 Hz, 2 H), 2.30 (d, J = 10.9 Hz, 2 H), 1.94 (d, J = 12.9 Hz, 2 H), 1.55 - 1.06 (m, 5 H), 0.94 (s, 9 H).
Example 304: methyl 6-(spiro[4.5]decan-8-yloxy)-2-naphthoate
Figure imgf000154_0002
The mixture of spiro[4.5]decan-8-ol (0.915 g, 0.00593 mol), 6-hydroxy-naphthalene-2- carboxylic acid methyl ester (1.00 g, 0.00494 mol) and triphenylphosphine (1.56 g, 0.00593 mol) in toluene (10 mL, 0.1 mol) was heated to reflux, and diisopropyl azodicarboxylate (1.17 mL, 0.00593 mol) was added dropwise and was stirred and refluxed for 6 hours. The mixture was taken up into DCM and subjected to chromatography purification with EtOAc/hexane (0:100 to 40:60) to give product as a white solid (1.02g, 61%). LCMS Rt = 2.58min, m/z = 339.34, (M+l, 100% ). Il
Example 305: (6-(spiro[4.5]decan-8-yloxy)naphthalen-2-yl)methanol
Figure imgf000155_0001
6-(Spiro[4.5]dec-8-yloxy)-naphthalene-2-carboxylic acid methyl ester (0.312 g, 0.000922 mol) in tetrahydrofuran (9 rnL, 0.1 mol) and 1.0 M of lithium tetrahydroaluminate in
tetrahydrofuran(2.76 mL, 0.00276 mol) was added at 0 0C. After stirring at rt for 2h, quench with EtOAc, then Rochele's salt was added and stirred at rt for Ih. Extraction with EtOAc, c/c give the product as a white solid (257.2mg, 90%). LCMS Rt = 2.21min m/z = 293.30 ([M-17], 100%).
Example 306: 6-(spiro[4.5]decan-8-yloxy)-2-naphthaldehyde
Figure imgf000155_0002
[6-(Spiro[4.5]dec-8-yloxy)-naphthalen-2-yl]-methanol (257.2 mg, 0.8285 mmol) in methylene chloride (9 mL, 100 mmol) was added Dess-Martin periodinane (0.492 g, 1.16 mmol) and was stirred at room temperature for 1 hour. After pass through si gel plug, the solvent was concentrated down to give product as a solid (256mg, 100%). LCMS Rt = 2.44min m/z = 309.56 ([M+l],100%).
Example 307: 3-((6-(spiro[4.5]decan-8-yloxy)naphthalen-2-yl)methylamino)propanoic acid
Figure imgf000155_0003
A solution of 6-(Spiro[4.5]dec-8-yloxy)-naphthalene-2-carbaldehyde (229.5 mg, 0.7441 mmol) and Beta-alanine (66.3 mg, 0.744 mmol) in ethanol (ImL, 20 mmol) was heated to reflux for 2h. The yellow solution was cooled to rt and sodium cyanoborohydride (56.1 mg, 0.893 mmol) was added and was heated to reflux for Ih. After cooled down to rt, citric acid was added and concentrated down. Extraction with DCM and prep HPLC gave product as a white solid (88mg, 31%). LCMS Rt = 1.52min m/z = 382.30 [M+l]. 1U NMR (400MHz ,MeOD) δ = 7.89 (s, 1 H), 7.83 (d, / = 8.5 Hz, 1 H), 7.80 (d, /= 9.0 Hz, 1 H), 7.48 (dd, J = 1.7, 8.5 Hz, 1 H), 7.27 (s, 1 H), 7.19 (dd, / = 2.3, 8.9 Hz, 1 H), 4.55 - 4.44 (m, 1 H), 4.35 (s, 2 H), 3.36 - 3.32 (m, 2 H), 2.76 (t, / = 6.8 Hz, 2 H), 2.09 - 1.33 (m, 16 H).
The sequence used to make 3-((6-(spiro[4.5]decan-8-yloxy)naphthalen-2- yl)methylamino)propanoic acid was utilized to synthesize the compound below using the appropriate alcohol as starting material.
Example 308: 3-((6-(spiro[5.5]undecan-3-yloxy)naphthalen-2-yl)methylamino)propanoic acid
Figure imgf000156_0001
A solution of 6-(spiro[5.5]undec-3-yloxy)-naphthalene-2-carbaldehyde (150 mg, 0.46 mmol) and Beta-alanine (41.4 mg, 0.465 mmol) in ethanol (0.7mL, 10 mmol) was heated to reflux for 2h. The yellow solution was cooled to rt and sodium cyanoborohydride (35.1 mg, 0.558 mmol) was added and was heated to reflux for Ih. After cooled down to rt, citric acid was added and concentrated down. LCMS shows 1.59min 396.30 [M+l]. The solid was suspended in water and extracted with DCM. CC with prep HPLC gave product (42mg, 23%). LCMS Rt =1.59min m/z = 396.30 [M+l]. 1H NMR (400MHz ,MeOD) D = 7.89 (br. s., 1 H), 7.86 - 7.74 (m, 2 H), 7.48 (d, / = 8.3 Hz, 1 H), 7.26 (br. s., 1 H), 7.19 (br. s., 1 H), 4.48 (br. s., 1 H), 4.35 (br. s., 2 H), 3.34 (s, 2 H), 2.76 (s, 2 H), 1.91 (br. s., 2 H), 1.68 (br. s., 4 H), 1.55 - 1.21 (m, 10 H).
Example 309: Further compounds of Formula (I)
Each of the following additional compounds of formula (I) were prepared analogously to those described above:
4-(((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)amino)butyric acid;
(R)-l-((2-(trans-4-fer?-butylcyclohexyloxy)naphthalen-6-yl)methyl)piperidine-3-carboxylic acid; (S)-l-((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)piperidine-3-carboxylic acid; 4-((2-(trans-4-te/t-butylcyclohexyloxy)naphthalen-6-yl)methyl)butyric acid;
5-((2-(trans-4-fer?-butylcyclohexyloxy)naphthalen-6-yl)methyl)pentanoic acid;
6-((2-(trans-4-fer?-butylcyclohexyloxy)naphthalen-6-yl)methyl)hexanoic acid; 4-(6-(trans-4-fer?-butylcyclohexyloxy)-3,4-dihydroisoquinolin-2(lH)-yl)butanoic acid;
4-(6-(cis-4-fert-butylcyclohexyloxy)-3,4-dihydroisoquinolin-2(lH)-yl)butanoic acid;
2-(2-(5-(trans-4-fert-butylcyclohexyloxy)indolin-l-yl)-2-oxoethylamino)ethylphosphonic acid; and
3-amino-4-(5-(trans-4-fert-butylcyclohexyloxy)indolin-l-yl)-4-oxo-butanoic acid.
Example 310: Further compounds of Formula (I)
Each of the following additional compounds of formula (I) are prepared analogously to those described above:
l-((6-(spiro[5.5]undecan-3-yloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid;
l-((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)sulfonyl)azetidine-3-carboxylic acid;
3-(((6-(trans-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)amino)-N-
(methylsulfonyl)propionamide;
5-(2-(((6-(trans-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)amino)ethyl)tetrazole;
l-hydroxy-2-(((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2- yl)methyl)amino)ethylphosphonic acid;
3-(((6-(trans-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)amino)propylphosphonic acid;
3-(((6-(trans-4-fer?-butylcyclohexyloxy)quinoxalin-2-yl)methyl)amino)propionic acid;
3-(((7-(trans-4-fer?-butylcyclohexyloxy)quinolin-3-yl)methyl)amino)propionic acid;
3-(((7-(trans-4-fer?-butylcyclohexyloxy)cinnolin-3-yl)methyl)amino)propionic acid;
3-(((5-(trans-4-fert-butylcyclohexyloxy)-l-methylindol-2-yl)methyl)amino)propionic acid;
3-(((6-(trans-4-fert-butylcyclohexyloxy)-l-methylindol-2-yl)methyl)amino)propionic acid;
3-(((2-(trans-4-fert-butylcyclohexyloxy)quinazolin-6-yl)methyl)amino)propionic acid;
3-(((2-(trans-4-fert-butylcyclohexyloxy)-l-methylindol-6-yl)methyl)amino)propionic acid; 3-(((2-(trans-4-fert-butylcyclohexyloxy)-l-methylindol-5-yl)methyl)amino)propionic acid; and
3-(((3-(trans-4-fert-butylcyclohexyloxy)-l-methylindol-6-yl)methyl)amino)propionic acid.
Example 310: Calcium Mobilization
Compounds that are not specific for the SlPi receptor, e.g., have SlP3 activity, can cause undesirable side effects. Accordingly, compounds are tested to identify those that are specific for SlPi activity and have little or no activity, or are antagonists of, SIP3 activity. Accordingly, the test compounds are tested in a calcium mobilization assay to determine agonist activity at either the human SlPi or human SlP3 receptor, and antagonist activity only at the human SIP3 receptor. The procedure is essentially as described in Davis et al. (2005) Journal of Biological Chemistry, vol. 280, pp. 9833-9841, which is incorporated by reference in its entirety with the following modifications. Calcium mobilization assays were performed in recombinant CHEM cells expressing human SlPi, SlP2, SlP3, S IP4, or SIP5 purchased from Millipore (Billerica, MA). To detect free intracellular calcium, SlPi, SlP2, SlP3, SlP4, or SlP5 cells were loaded with FLIPR Calcium 4 dye from Molecular Devices (Sunnyvale, CA). Cells were imaged for calcium mobilization using a FLIPR™11^ equipped with a 96-well dispense head.
Example 311: In vivo Screening Assays
Measurement of circulating lymphocytes: Compounds are dissolved in 30% HPCD. Mice (C57bl/6 male, 6-10 week-old) are administered 0.5 and 5 mg/kg of a compound via oral gavage 30% HPCD is included as a negative control.
Blood is collected from the retro-orbital sinus 5 and 24 hours after drug administration under short isoflurane anesthesia. Whole blood samples are subjected to hematology analysis. Peripheral lymphocyte counts are determined using an automated analyzer (HEMA VET™ 3700). Subpopulations of peripheral blood lymphocytes are stained by fluorochrome-conjugated specific antibodies and analyzed using a fluorescent activating cell sorter (FACSCALIB UR™). Three mice are used to assess the lymphocyte depletion activity of each compound screened.
Compounds of formula (I) can induce full lymphopenia at times as short as 4 hours or less to as long as 48 hours or more; for example, 4 to 36 hours, or 5 to 24 hours. In some cases, a compound of formula can induce full lymphopenia at 5 hours and partial lymphopenia at 24 hours. The dosage required to induce lymphopenia can be in the range of, e.g., 0.001 mg/kg to 100 mg/kg; or 0.01 mg/kg to 10 mg/kg. The dosage can be 10 mg/kg or less, such as 5 mg/kg or less, 1 mg/kg or less, or 0.1 mg/kg or less.
Example 312: Assessment of Heart Effect
One reported undesirable effect of an SlP agonist can be, e.g., bradycardia. Assays are conducted to determine the effect of test compounds on heart function. The effects of compounds on cardiac function are monitored using the ECG genie recording system. ECGs are recorded in conscious mice (C57bl/6 male, 6-10 week-old) before and after compound administration.
Compounds were administered by oral gavage. Three mice are used to assess heart rate effect of each compound. Compounds are found to have little or no effect on heart rate at therapeutic levels.
The abbreviations used herein have their conventional meaning within the clinical, chemical, and biological arts. In the case of any inconsistencies, the present disclosure, including any definitions therein will prevail.
The disclosures of each and every patent, patent application, and publication cited herein are expressly incorporated herein by reference in their entirety into this disclosure. Illustrative embodiments of this disclosure are discussed and reference has been made to possible variations within the scope of this disclosure. These and other variations and modifications in the disclosure will be apparent to those skilled in the art without departing from the scope of the disclosure, and it should be understood that this disclosure and the claims shown below are not limited to the illustrative embodiments set forth herein.

Claims

WHAT IS CLAIMED IS:
1. A compound of formula (I)
Figure imgf000160_0001
wherein:
A1 is -CX1=, -C(X1V, -N=, -NX1-, -O-, -S-, or a bond;
A2 is -CX2=, -C(X2)2-, -N=, -NX2-, -O-, or -S-;
A3 is -CX3=, -C(X3)2-, -N=, -NX3-, -O-, -S-, or a bond;
A4 is -CX4=, -C(X4)2-, -N=, -NX4-, -O-, -S-, or a bond;
A5 is -CX5=, -C(X5)2-, -N=, -NX5-, -O-, or -S-;
A6 is -CX6=, -C(X6)2-, -N=, -NX6-, -O-, -S-, or a bond;
A7 is -C(R3)=, -C(R3Rf)-, or -NR3-;
A8 is -C(- W-Cy)=, -C(-W-Cy)(Rf)-, or -N(-W-Cy)-;
Figure imgf000160_0002
B2 is XH '0^, or ^
provided that no more than 1 of A1, A3, A4, and A6 is a bond;
I
provided that B1 and B2 are not both simultaneously ' ^- ; and
provided that no more than 4 ring atoms of Ax-A8 and B^B2 are N, O, or S;
each of X1, X2, X3, X4, X5, and X6, independently, is hydrogen, halo, hydroxy, nitro, cyano, alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkoxy, haloalkoxy, cycloalkoxy, halocycloalkoxy, acyl, aminoacyl, -N(RfRg), -N(Rf)SO2Rg, -SO2Rf, -S(O)2N(RfRg), -CO2Rf, trialkylamino, aryl, or heteroaryl;
W is -C(RfRg)-, -N(Rf)-, -O-, -S-, -S(O)-, or -S(O)2-;
Cy is cycloalkyl, spirocycloalkyl, cycloalkenyl, spirocycloalkenyl, heterocyclyl, spiroheterocyclyl, aryl, or heteroaryl; wherein Cy is optionally substituted by 1-6 substituents Il selected from the group consisting of halo, hydroxy, nitro, cyano, -N(RfRg), alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl,
heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, and heteroaryl;
Figure imgf000161_0001
L1 is -C(O)-, -S(O)2-, -N(Rf)C(0)-, -N(Rf)-, -C(RfRg)-, -C(RfRg)-C(RfRg)-, or a bond;
J is -[C(RfRg)]n-, -N(Rf)-[C(RfRg)]n-, or a bond, wherein each n, independently, is an integer from 0 to 5; or J is
Figure imgf000161_0002
wherein each of D i and D 3 , independently, is ~Nv \ , or "Φ \ ' ;
D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(Rf)-, -[C(RfRg)]k-0-, -N(Rf)-, or -N(Rf)-[(CRfRg)]k-; and
D4 is -[C(RfRg)]m-;
wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of D^D4 are N or O;
L2 is -C(RfRg)-, -C(RfG)-, -C(G)2-, -C(RfRg)-C(RfRg)-, -C(RfRg)-C(RfG)-,
-C(RfRg)-C(G)2-, or a bond;
provided that at least one of L1, J, and L2 is not a bond;
T1 is -C(0)(0Rf), -C(0)N(Rf)S(0)2Rf, tetrazolyl, -S(O)2ORf, -C(0)NHC(0)-Rf,
-Si(O)OH, -B(OH)2, -N(Rf)S(0)2Rf, -S(0)2NRf, -0-P(0)(0Rf)0Rf, or -P(0)2(0Rf);
each G, independently, is hydrogen, hydroxy, a halogen, or trifruoromethyl;
each Rf, independently, is hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl or NH2; wherein each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle are optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG3, -OH, -NO2, alkyl, -OCG3, alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino, dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, and
dialkylamino sulfonyl ;
each Rg, independently, is hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, or heterocyclyl; wherein each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle are optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG3, -OH, -NO2, alkyl, -OCG3, alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino, dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, and dialkylamino sulfonyl;
or a pharmaceutically acceptable salt thereof.
2. The compound of claim 1, wherein A7 is -CR3=, A8 is -C(-W-Cy)=, B1 is
Figure imgf000162_0001
H , and B2 is ^C^ ;
or a pharmaceutically acceptable salt thereof.
3. The compound of claim 2, wherein 0, 1, or 2 ring atoms of Ax-A6 are N, or a pharmaceutically acceptable salt thereof.
4. The compound of claim 2, wherein 0, 1, or 2 ring atoms of Ax-A6 are N, and the remaining ring atoms of Ax-A6 are each C, or a pharmaceutically acceptable salt thereof.
5. The compound of claim 4, wherein A1 is -CX1=, A2 is -CX2=, and A6 is -CX6=, or a pharmaceutically acceptable salt thereof.
6. The compound of claim 4, wherein A3 is -CX3=, A4 is -CX4=, and A5 is -CX5=, or a pharmaceutically acceptable salt thereof.
7. The compound of claim 1, wherein A1 is -CX1=, A2 is -CX2=, A6 is -CX6=, A8 is
\c/ Ii
-C(-W-Cy)=, B1 is Il , B2 is ^C\ , and A3, A7, A4, and A5, are, respectively:
-NX3-, -C(R3Rf)-, a bond, and -C(X5)2-; -C(X3)2-, -NR3-, -C(X4)2-, and -C(X5)2-;
-C(X3)2-, -C(R3Rf)-, -NX4-, and -C(X5)2-;
-N=, -CR3=, -CX4=, and -CX5=;
-N=, -CR3=, -N=, and -CX5=;
-CX3=, -CR3=, -N=, and -CX5=;
-N=, -CR3=, -CX4=, and -N=;
-CX3=, -CR3=, -CX4=, and -N=;
-CX3=, -CR3=, -N=, and -N=;
-NX3-, -CR3=, a bond, and -CX5=; or
-CX3=, -CR3=, a bond, and -NX5-;
or a pharmaceutically acceptable salt thereof.
8. The compound of claim 1, wherein A3 is -CX3=, A4 is -CX4=, A5 is -CX5=, A7 is
\c/ Ii
-CR3=, B1 is Il , B2 is ^C^ , and A2, A1, A8, and A6, are, respectively:
-CX2=, -CX1=, -C(-W-Cy), and -N=;
-CX2=, -N=, -C(-W-Cy), and -N=;
-NX2-, -CX1=, -C(-W-Cy)=, and a bond;
-NX2-, a bond, -C(- W-Cy)=, and -CX6=; or
-CX2=, a bond, -C(- W-Cy)=, and -NX6-;
or a pharmaceutically acceptable salt thereof.
9. The compound of claim 1, wherein each ring atom of A1, A2, A5-A8 and B^B2 is C, and each of A3 and A4 is, independently, C or N, or a pharmaceutically acceptable salt thereof.
10. The compound of claim 1, wherein L1 is -C(RfRg)- and J is -NRf- or
Figure imgf000163_0001
wherein
— N — CRf
each of D and D , independently, is \ , or \ : D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(RfK -[C(RfRg)]k-O-, -N(Rf)-, or -N(Rf)-[(CRfRg)]k-; and
D4 is -[C(RfRg)]m-;
wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of Ol-O4 are N or O, or a pharmaceutically acceptable salt thereof.
11. The compound of claim 1 , wherein each Rf and Rg, independently, are hydrogen or alkyl, or a pharmaceutically acceptable salt thereof.
12. The compound of claim 1, wherein T1 is -C(O)(ORf), or a pharmaceutically acceptable salt thereof.
13. The compound of claim 1, wherein T1 is -C(O)N(Rf)S(O2Rf), -O-P(O)(ORf)ORf, -P(O2)(OR^, tetrazolyl or -S(O)2ORf; or a pharmaceutically acceptable salt thereof.
14. The compound of claim 1, wherein X6 is an electron withdrawing group, or a pharmaceutically acceptable salt thereof.
15. The compound of claim 1, wherein X6 is halo, alkyl, or haloalkyl, or a pharmaceutically acceptable salt thereof.
16. The compound of claim 1, wherein each G, independently, is fluoro or hydroxy, or a pharmaceutically acceptable salt thereof.
17. The compound of claim 1, wherein Cy has the formula:
Figure imgf000164_0001
wherein: Z1 is a bond, -[C(RdRe)]x-, -CRd=CRe-, -O-, or -NRf-;
Z2 is a bond, -[C(RdRe)]r, -CRd=CRe-, -O-, or -NRf-;
Z3 is a bond, -[C(RdRe)]z-, -CRd=CRe-, -O-, or -NRf-;
each of x, y, and z, independently, is 1, 2, or 3;
each Rd, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl; each Re, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl;
Rla and Rlb, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and Rlb, when taken together, are C2-C5 alkylene or C2-C5 alkenylene;
R2a and R2b, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and R2a, when taken together, are C1-C5 alkylene or C2-C5 alkenylene;
wherein Rla , Rlb, R2a, and R2b are each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NRfRg, or -CO2Rf;
or a pharmaceutically acceptable salt thereof.
18. The compound of claim 17, wherein Rla and R2a are both hydrogen, or a pharmaceutically acceptable salt thereof.
19. The compound of claim 17, wherein Z1 is -CH2CH2-, or a pharmaceutically acceptable salt thereof.
20. The compound of claim 19, wherein Z2 is -CH2-, or a pharmaceutically acceptable salt thereof.
21. The compound of claim 20, wherein Z3 is a bond, or a pharmaceutically acceptable salt thereof.
22. The compound of claim 17, wherein Rlb is fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1- dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t-butoxy, n-pentyloxy, i-pentyloxy, 1,1- dimethylpropoxy, neopentyloxy, cyclopentyloxy, n-hexyloxy, or cyclohexyloxy, or a
pharmaceutically acceptable salt thereof.
23. The compound of claim 17, wherein W is O, Z1 is -[C(RdRe)]x-, Z2 is
-[C(RdRe)]y-, and Z3 is -[C(RdRe)]z-, or a pharmaceutically acceptable salt thereof.
24. The compound of claim 1, wherein X is methyl, or a pharmaceutically acceptable salt thereof.
25. The compound of claim 1, wherein W is -O- , or a pharmaceutically acceptable salt thereof.
26. The compound of claim 1, wherein the compound is of formula (Ha), (Ilia) or
(HIb):
Figure imgf000166_0001
27. A compound of claim 1, wherein A2 is -CX2=, and X2 is fluoro, chloro, bromo, methyl, difluoromethyl, trifluoromethyl, ethyl, propyl, isopropyl or butyl, or a pharmaceutically acceptable salt thereof.
28. The compound of claim 27,
wherein:
A1 is CH;
A3 is CH;
A4 is CH;
A5 is CH;
A6 is CH;
A7 is C(R3);
A8 is C(-W-Cy);
B1 is Il ; and
Il
B2 is ^C\ ;
or a pharmaceutically acceptable salt thereof.
29. The compound of claim 27, wherein each ring atom of A1, A2, A5-A8 and B^B2 is C, and each of A3 and A4 is, independently, C or N, or a pharmaceutically acceptable salt thereof.
30. The compound of claim 27, wherein L1 is -C(RfRg)- and J is -NRf- or
Figure imgf000167_0001
wherein
— N -CRf
each of D1 and D3, independently, is \ , or \ ;
D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(RfK -[C(RfRg)]k-O-, -N(Rf)-, or -N(Rf)-[(CRfRg)]k-; and
D4 is -[C(RfRg)]m-;
wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of Ol-O4 are N or O, or a pharmaceutically acceptable salt thereof.
31. The compound of claim 27, wherein each Rf and Rg, independently, are hydrogen or alkyl, or a pharmaceutically acceptable salt thereof.
32. The compound of claim 27, wherein T1 is -C(O)(ORf), or a pharmaceutically acceptable salt thereof.
33. The compound of claim 27, wherein T1 is -C(O)N(Rf)S(O2Rf), -O-P(O)(ORf)ORf, -P(O2)(OR^, tetrazolyl or -S(O)2ORf; or a pharmaceutically acceptable salt thereof.
34. The compound of claim 27, wherein X6 is an electron withdrawing group, or a pharmaceutically acceptable salt thereof.
35. The compound of claim 27, wherein X6 is halo, alkyl, or haloalkyl, or a pharmaceutically acceptable salt thereof.
36. The compound of claim 27, wherein each G, independently, is fluoro or hydroxy, or a pharmaceutically acceptable salt thereof.
37. The compound of claim 27, wherein Cy has the formula:
Figure imgf000168_0001
wherein:
Z1 is a bond, -[C(RdRe)]x-, -CRd=CRe-, -O-, or -NRf-;
Z2 is a bond, -[C(RdRe)]y-, -CRd=CRe-, -O-, or -NRf-;
Z3 is a bond, -[C(RdRe)]z-, -CRd=CRe-, -O-, or -NRf-;
each of x, y, and z, independently, is 1, 2, or 3;
each Rd, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl; each Re, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl; Rla and Rlb, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and Rlb, when taken together, are C2-C5 alkylene or C2-C5 alkenylene;
R2a and R2b, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and R2a, when taken together, are C1-C5 alkylene or C2-C5 alkenylene;
wherein Rla , Rlb, R2a, and R2b are each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NRfRg, or -CO2Rf;
or a pharmaceutically acceptable salt thereof.
38. The compound of claim 37, wherein Rla and R2a are both hydrogen, or a pharmaceutically acceptable salt thereof.
39. The compound of claim 37, wherein Z1 is -CH2CH2-, or a pharmaceutically acceptable salt thereof.
40. The compound of claim 39, wherein Z2 is -CH2-, or a pharmaceutically acceptable salt thereof.
41. The compound of claim 40, wherein Z3 is a bond, or a pharmaceutically acceptable salt thereof.
42. The compound of claim 37, wherein Rlb is fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1- dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t-butoxy, n-pentyloxy, i-pentyloxy, 1,1- dimethylpropoxy, neopentyloxy, cyclopentyloxy, n-hexyloxy, or cyclohexyloxy, or a pharmaceutically acceptable salt thereof.
43. The compound of claim 37, wherein W is O, Z1 is -[C(RdRe)]x-, Z2 is
-[C(RdRe)]y-, and Z3 is -[C(RdRe)]z-, or a pharmaceutically acceptable salt thereof.
44. The compound of claim 27, wherein X2 is methyl, or a pharmaceutically acceptable salt thereof.
45. The compound of claim 27, wherein W is -O- , or a pharmaceutically acceptable salt thereof.
46. The compound of claim 1, wherein the compound exhibits SIP5 antagonist or agonist activity, or a pharmaceutically acceptable salt thereof.
47. The compound of claim 1, wherein the compound exhibits SIP4 antagonist or agonist activity, or a pharmaceutically acceptable salt thereof.
48. A compound selected from the group consisting of:
3-((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methylamino)-N-
(phenylsulfonyl)propanamide;
3-((6-(trans-4-fer?-butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methylamino)-N-
(phenylsulfonyl)propanamide;
2-((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid;
3-((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methylamino)butanoic acid;
2-(((6-(trans-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)(methyl)amino) acetic acid;
3-((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methylamino)propanoic acid;
3-(((6-(trans-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)(methyl)amino) propanoic acid; l-((6-(trans-4-fert-butylcyclohexyloxy)naphthalen-2-yl)methyl)azetidine-3-carboxylic acid; l-((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methyl)pyrrolidine-3-carboxylic acid; l-((6-(trans-4-fer?-butylcyclohexyloxy)naphthalen-2-yl)methyl)piperidine-4-carboxylic acid; l-((6-(trans-4-fert-butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2-yl)methyl)azetidine-3- carboxylic acid;
3-((6-(trans-4-fert-butylcyclohexyloxy)-5-(trifluoromethyl)naphthalen-2- yl)methylamino)propanoic acid;
3-((6-(trans-4-te^butylcyclohexyloxy)naphthalen-2-yl)methylamino)-2,2-difluoropropanoic acid;
2,2-difluoro-3-((6-(spiro[5.5]undecan-3-yloxy)naphthalen-2-yl)methylamino)propanoic acid;
2-(((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)amino)acetic acid;
4-(((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)amino)butyric acid;
4-(((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)amino)butyric acid;
(R)-l-((2-(trans-4-fer?-butylcyclohexyloxy)naphthalen-6-yl)methyl)piperidine-3-carboxylic acid;
(S)-l-((2-(trans-4-fer?-butylcyclohexyloxy)naphthalen-6-yl)methyl)piperidine-3-carboxylic acid;
4-((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)butyric acid;
5-((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)pentanoic acid;
6-((2-(trans-4-fer?-butylcyclohexyloxy)naphthalen-6-yl)methyl)hexanoic acid;
4-(6-(trans-4-fer?-butylcyclohexyloxy)-3,4-dihydroisoquinolin-2(lH)-yl)butanoic acid;
4-(6-(cis-4-fert-butylcyclohexyloxy)-3,4-dihydroisoquinolin-2(lH)-yl)butanoic acid;
2-(((2-(trans-4-fert-butylcyclohexyloxy)naphthalen-6-yl)methyl)amino)ethylphosphonic acid; 2-(2-(5-(trans-4-fer?-butylcyclohexyloxy)indolin-l-yl)-2-oxoethylamino)ethylphosphonic acid;
3-amino-4-(5-(trans-4-fert-butylcyclohexyloxy)indolin-l-yl)-4-oxo-butanoic acid;
3-{ [6-(4-tert-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}-propionic acid;
{ [6-(4-tert-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}-acetic acid;
4-{ [6-(4-tert-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-amino}-butyric acid;
l-[6-(4-tert-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-azetidine-3-carboxylic acid; and
l-[6-(4-tert-butyl-cyclohexyloxy)-8-methyl-naphthalen-2-ylmethyl]-pyrrolidine-3-carboxylate; or a pharmaceutically acceptable salt thereof.
49. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of formula (I)
Figure imgf000172_0001
wherein:
A1 is -CX1=, -C(X1V, -N=, -NX1-, -O-, -S-, or a bond;
A2 is -CX2=, -C(X2)2-, -N=, -NX2-, -O-, or -S-;
A3 is -CX3=, -C(X3)2-, -N=, -NX3-, -O-, -S-, or a bond;
A4 is -CX4=, -C(X4)2-, -N=, -NX4-, -O-, -S-, or a bond;
A5 is -CX5=, -C(X5)2-, -N=, -NX5-, -O-, or -S-;
A6 is -CX6=, -C(X6)2-, -N=, -NX6-, -O-, -S-, or a bond;
A7 is -C(R3)=, -C(R3Rf)-, or -NR3-;
A8 is -C(- W-Cy)=, -C(-W-Cy)(Rf)-, or -N(-W-Cy)-;
Figure imgf000172_0002
B2 is XH X. or ,N.
provided that no more than 1 of A1, A3, A4, and A6 is a bond;
I
provided that B1 and B2 are not both simultaneously ' ^- ; and
provided that no more than 4 ring atoms of Ax-A8 and B^B2 are N, O, or S;
each of X1, X2, X3, X4, X5, and X6, independently, is hydrogen, halo, hydroxy, nitro, cyano, alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkoxy, haloalkoxy, cycloalkoxy, halocycloalkoxy, acyl, aminoacyl, -N(RfRg), -N(Rf)SO2Rg, -SO2Rf, -S(O)2N(RfRg), -CO2Rf, trialkylamino, aryl, or heteroaryl;
W is -C(RfRg)-, -N(Rf)-, -O-, -S-, -S(O)-, or -S(O)2-;
Cy is cycloalkyl, spirocycloalkyl, cycloalkenyl, spirocycloalkenyl, heterocyclyl, spiroheterocyclyl, aryl, or heteroaryl; wherein Cy is optionally substituted by 1-6 substituents selected from the group consisting of halo, hydroxy, nitro, cyano, -N(RfRg), alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, and heteroaryl;
Figure imgf000173_0001
L1 is -C(O)-, -S(O)2-, -N(Rf)C(0)-, -N(Rf)-, -C(RfRg)-, -C(RfRg)-C(RfRg)-, or a bond;
J is -[C(RfRg)]n-, -N(Rf)-[C(RfRg)]n-, or a bond, wherein each n, independently, is an integer from 0 to 5; or J is
Figure imgf000173_0002
wherein
— N — CRf
each of D and D , independently, is \ , or \ ;
D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(Rf)-, -[C(RfRg)]k-0-, -N(Rf)-, or
-N(Rf)-[(CRfRg)]k-; and
D4 is -[C(RfRg)]m-;
wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of D^D4 are N or O;
L2 is -C(RfRg)-, -C(RfG)-, -C(G)2-, -C(RfRg)-C(RfRg)-, -C(RfRg)-C(RfG)-,
-C(RfRg)-C(G)2-, or a bond;
provided that at least one of L1, J, and L2 is not a bond;
T1 is -C(0)(0Rf), -C(O)N(Rf)S(O)2Rf, tetrazolyl, -S(O)2ORf, -C(0)NHC(0)-Rf, -Si(O)OH, -B(OH)2, -N(Rf)S(0)2Rf, -S(0)2NRf, -0-P(0)(0Rf)0Rf, or -P(0)2(0Rf);
each G, independently, is hydrogen, hydroxy, a halogen, or trifruoromethyl;
each Rf, independently, is hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl or NH2; wherein each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle are optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG3, -OH, -NO2, alkyl, -OCG3, alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino, dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, and
dialkylamino sulfonyl ; each Rg, independently, is hydrogen, hydroxy, halo, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, or heterocyclyl; wherein each of alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle are optionally substituted with 1 to 5 substituents independently selected from the group consisting of halo, oxo, -CN, -CHO, -CG3, -OH, -NO2, alkyl, -OCG3, alkoxy, cycloalkoxy, cycloalkenoxy, amino, alkylamino, dialkylamino, acylamino, aminoacyl, alkylsulfonyl, alkylaminosulfonyl, and dialkylamino sulfonyl;
or a pharmaceutically acceptable salt thereof.
50. The composition of claim 49, wherein A7 is -CR3=, A8 is -C(-W-Cy)=, B1 is
^C Ji
Il , and B2 is ^°^ ;
or a pharmaceutically acceptable salt thereof.
51. The composition of claim 50, wherein 0, 1, or 2 ring atoms of Ax-A6 are N, or a pharmaceutically acceptable salt thereof.
52. The composition of claim 50, wherein 0, 1, or 2 ring atoms of Ax-A6 are N, and the remaining ring atoms of Ax-A6 are each C, or a pharmaceutically acceptable salt thereof.
53. The composition of claim 52, wherein A1 is -CX1=, A2 is -CX2=, and A6 is -CX6=, or a pharmaceutically acceptable salt thereof.
54. The composition of claim 52, wherein A3 is -CX3=, A4 is -CX4=, and A5 is -CX5=, or a pharmaceutically acceptable salt thereof.
55. The composition of claim 49, wherein A1 is -CX1=, A2 is -CX2=, A6 is -CX6=, A8
\c/ Ii
is -C(-W-Cy)=, B1 is II , B2 is ^C^ , and A3, A7, A4, and A5, are, respectively:
-NX3-, -C(R3Rf)-, a bond, and -C(X5)2-;
-C(X3)2-, -NR3-, -C(X4)2-, and -C(X5)2-;
-C(X3)2-, -C(R3Rf)-, -NX4-, and -C(X5)2-;
-N=, -CR3=, -CX4=, and -CX5=; 81
-N=, -CR3=, -N=, and -CX5=;
-CX3=, -CR3=, -N=, and -CX5=;
-N=, -CR3=, -CX4=, and -N=;
-CX3=, -CR3=, -CX4=, and -N=;
-CX3=, -CR3=, -N=, and -N=;
-NX3-, -CR3=, a bond, and -CX5=; or
-CX3=, -CR3=, a bond, and -NX5-;
or a pharmaceutically acceptable salt thereof.
56. The composition of claim 49, wherein A3 is -CX3=, A4 is -CX4=, A5 is -CX5=, A7
\c / Ii
is -CR3=, B1 is Il , B2 is ^C\ , and A2, A1, A8, and A6, are, respectively:
-CX2=, -CX1=, -C(-W-Cy), and -N=;
-CX2=, -N=, -C(-W-Cy), and -N=;
-NX2-, -CX1=, -C(-W-Cy)=, and a bond;
-NX2-, a bond, -C(- W-Cy)=, and -CX6=; or
-CX2=, a bond, -C(- W-Cy)=, and -NX6-;
or a pharmaceutically acceptable salt thereof.
57. The composition of claim 49, wherein each ring atom of A1, A2, A5-A8 and B^B2 is C, and each of A3 and A4 is, independently, C or N, or a pharmaceutically acceptable salt thereof.
58. The composition of claim 49, wherein L1 is -C(RfRg)- and J is -NRf- or
Figure imgf000175_0001
wherein each of D 1 and D 3 , independently, is ~Nv \ , or "Φ \ ' ;
D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(RfK -[C(RfRg)]k-O-, -N(Rf)-, or -N(Rf)-[(CRfRg)]k-; and D4 is -[C(RfRg)]m-;
wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of D^D4 are N or O;
or a pharmaceutically acceptable salt thereof.
59. The composition of claim 49, wherein each Rf and Rg, independently, are hydrogen or alkyl, or a pharmaceutically acceptable salt thereof.
60. The composition of claim 49, wherein T1 is -C(O)(ORf), or a pharmaceutically acceptable salt thereof.
61. The composition of claim 49, wherein T1 is -C(O)N(Rf)S(O2Rf), -O- P(O)(ORf)ORf, -P(O2)(ORf), tetrazolyl or -S(O)2ORf, or a pharmaceutically acceptable salt thereof.
62. The composition of claim 49, wherein X6 is an electron withdrawing group, or a pharmaceutically acceptable salt thereof.
63.. The composition of claim 49, wherein X6 is halo, alkyl, or haloalkyl, or a pharmaceutically acceptable salt thereof.
64. The composition of claim 49, wherein each G, independently, is fluoro or hydroxy, or a pharmaceutically acceptable salt thereof.
65. The composition of claim 49, wherein Cy has the formula:
Figure imgf000176_0001
wherein:
Z1 is a bond, -[C(RdRe)]x-, -CRd=CRe-, -O-, or -NRf-; Z2 is a bond, -[C(RdRe)]r, -CRd=CRe-, -O-, or -NRf-;
Z3 is a bond, -[C(RdRe)]z-, -CRd=CRe-, -O-, or -NRf-;
each of x, y, and z, independently, is 1, 2, or 3;
each Rd, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl; each Re, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl;
Rla and Rlb, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and Rlb, when taken together, are C2-C5 alkylene or C2-C5 alkenylene;
R2a and R2b, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and R2a, when taken together, are C1-C5 alkylene or C2-C5 alkenylene;
wherein Rla , Rlb, R2a, and R2b are each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NRfRg, or -CO2Rf;
or a pharmaceutically acceptable salt thereof.
66. The composition of claim 65, wherein Rla and R2a are both hydrogen, or a pharmaceutically acceptable salt thereof.
67. The composition of claim 65, wherein Z1 is -CH2CH2-, or a pharmaceutically acceptable salt thereof.
68. The composition of claim 67, wherein Z2 is -CH2-, or a pharmaceutically acceptable salt thereof. 1
69. The composition of claim 68, wherein Z3 is a bond, or a pharmaceutically acceptable salt thereof.
70. The composition of claim 65, wherein Rlb is fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1- dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t-butoxy, n-pentyloxy, i-pentyloxy, 1,1- dimethylpropoxy, neopentyloxy, cyclopentyloxy, n-hexyloxy, or cyclohexyloxy, or a
pharmaceutically acceptable salt thereof.
71. The composition of claim 65, wherein W is O, Z1 is -[C(RdRe)]x-, Z2 is
-[C(RdRe)]y-, and Z3 is -[C(RdRe)]z-, or a pharmaceutically acceptable salt thereof.
72. The composition of claim 49, wherein X2 is methyl, or a pharmaceutically acceptable salt thereof.
73. The composition of claim 49, wherein W is -O-, or a pharmaceutically acceptable salt thereof.
74. A composition of claim 49, wherein A is -CX =, and X is fluoro, chloro, bromo, methyl, difluoromethyl, trifluoromethyl, ethyl, propyl, isopropyl or butyl, or a pharmaceutically acceptable salt thereof.
75. A composition of claim 74,
wherein:
A1 is CH;
A3 is CH;
A4 is CH;
A5 is CH;
A6 is CH; A7 is C(R3);
A8 is C(-W-Cy);
B1 Is and
B2 is /C\ ;
or a pharmaceutically acceptable salt thereof.
76. The composition of claim 74, wherein each ring atom of A1, A2, A5-A8 and B^B2 is C, and each of A3 and A4 is, independently, C or N, or a pharmaceutically acceptable salt thereof.
77. The composition of claim 74, wherein L1 is -C(RfRg)- and J is -NRf- or
Figure imgf000179_0001
wherein
— N — CRf
each of D and D , independently, is \ , or \ ;
D2 is -[C(RfRg)]k-, -[C(RfRg)]k-N(RfK -[C(RfRg)]k-O-, -N(Rf)-, or
-N(Rf)-[(CRfRg)]k-; and
D4 is -[C(RfRg)]m-;
wherein k is 1 or 2; and m is 0, 1, 2, or 3;
provided that no more than 2 ring atoms of D^D4 are N or O, or a pharmaceutically acceptable salt thereof.
78. The composition of claim 74, wherein each Rf and Rg, independently, are hydrogen or alkyl, or a pharmaceutically acceptable salt thereof.
79. The composition of claim 75, wherein T1 is -C(O)(ORf), or a pharmaceutically acceptable salt thereof.
80. The composition of claim 75, wherein T1 is -C(O)N(Rf)S(O2Rf),
-O-P(O)(ORf)ORf, -P(O2)(ORf), tetrazolyl or -S(O)2ORf; or a pharmaceutically acceptable salt thereof.
81. The composition of claim 75, wherein X6 is an electron withdrawing group, or a pharmaceutically acceptable salt thereof.
82. The composition of claim 75 wherein X6 is halo, alkyl, or haloalkyl, or a pharmaceutically acceptable salt thereof.
83. The composition of claim 75, wherein each G, independently, is fluoro or hydroxy, or a pharmaceutically acceptable salt thereof.
84. The composition of claim 75, wherein Cy has the formula:
Figure imgf000180_0001
wherein:
Z1 is a bond, -[C(RdRe)]x-, -CRd=CRe-, -O-, or -NRf-;
Z2 is a bond, -[C(RdRe)]r, -CRd=CRe-, -O-, or -NRf-;
Z3 is a bond, -[C(RdRe)]z-, -CRd=CRe-, -O-, or -NRf-;
each of x, y, and z, independently, is 1, 2, or 3;
each Rd, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl; each Re, independently, is hydrogen, halo, hydroxy, alkyl, alkenyl, alkoxy, or cycloalkyl;
Rla and Rlb, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and Rlb, when taken together, are C2-C5 alkylene or C2-C5 alkenylene; R2a and R2b, independently, are hydrogen, halo, hydroxy, nitro, cyano, -NRfRg, alkyl, haloalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, alkoxy, cycloalkylalkoxy, cycloalkenylalkoxy, heterocyclylalkoxy, arylalkoxy, heteroarylalkoxy, acyl, cycloalkylacyl, cycloalkenylacyl, heterocyclylacyl, arylacyl, heteroarylacyl, thioalkyl, alkenyl, alkynyl, cycloalkenyl, heterocyclyl, aryl, or heteroaryl;
or Rla and R2a, when taken together, are C1-C5 alkylene or C2-C5 alkenylene;
wherein Rla , Rlb, R2a, and R2b are each, independently, substituted with 0-5 substituents selected from halo, hydroxy, nitro, cyano, -NRfRg, or -CO2Rf;
or a pharmaceutically acceptable salt thereof.
85. The composition of claim 84, wherein Rla and R2a are both hydrogen, or a pharmaceutically acceptable salt thereof.
86. The composition of claim 84, wherein Z1 is -CH2CH2-, or a pharmaceutically acceptable salt thereof.
87. The composition of claim 86, wherein Z2 is -CH2-, or a pharmaceutically acceptable salt thereof.
88. The composition of claim 87, wherein Z3 is a bond, or a pharmaceutically acceptable salt thereof.
89. The composition of claim 84, wherein Rlb is fluoro, chloro, bromo, iodo, methyl, triflurormethyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, t-butyl, n-pentyl, isopentyl, 1,1- dimethylpropyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t-butoxy, n-pentyloxy, i-pentyloxy, 1,1- dimethylpropoxy, neopentyloxy, cyclopentyloxy, n-hexyloxy, or cyclohexyloxy, or a pharmaceutically acceptable salt thereof.
90. The composition of claim 84, wherein W is O, Z1 is -[C(RdRe)]x-, Z2 is
-[C(RdRe)]y-, and Z3 is -[C(RdRe)]z-, or a pharmaceutically acceptable salt thereof.
91. The composition of claim 75, wherein X is methyl, or a pharmaceutically acceptable salt thereof.
92. The composition of claim 75, wherein W is -O-, or a pharmaceutically acceptable salt thereof.
93. The composition of claim 49, wherein the compound is of formula (Ha), (Ilia) or (HIb):
Figure imgf000182_0001
(I Ia) (Ilia) (1Mb)
94. A method for prevention or treatment of a pathological condition or symptom in a mammal, wherein the activity of sphingosine 1 -phosphate receptors is implicated and agonism of such activity is desired, comprising administering to said mammal an effective amount of a compound of claim 1.
95. The method of claim 94, wherein the pathological condition is multiple sclerosis, autoimmune diseases, chronic inflammatory disorders, asthma, inflammatory neuropathies, arthritis, transplantation, Crohn's disease, ulcerative colitis, lupus erythematosis, psoriasis, ischemia-reperfusion injury, solid tumours, tumour metastasis, diseases associated with angiogenesis, vascular diseases, pain conditions, acute viral diseases, inflammatory bowel conditions, insulin or non- insulin dependant diabetes.
96. The method of claim 94, wherein the pathological condition is neuropathic pain.
97. The method of claim 94, wherein the pathological condition is an autoimmune disease.
98. The method of claim 97, further comprising administering to said mammal an effective amount of a drug selected from the group consisting of: corticosteroids,
bronchodilators, antiasthmatics, antiinflammatories, antirheumatics, immunosuppressants, antimetabolites, immunomodulators, antipsoriatics, and antidiabetics.
99. The method of claim 97, wherein the autoimmune disease is uveitis, type I diabetes, rheumatoid arthritis, inflammatory bowel diseases, or multiple sclerosis.
100. The method of claim 99, wherein the autoimmune disease is multiple sclerosis.
101. The method of claim 94, wherein the prevention or treatment of the pathological condition is altering lymphocyte trafficking.
102. The method of claim 101, wherein altering lymphocyte trafficking provides prolonged allograft survival.
103. The method of claim 102, wherein the allograft is for transplantation.
104. A method for prevention or treatment of a pathological condition or symptom in a mammal, wherein the activity SlP lyase implicated and inhibition of the SlP lyase is desired, comprising administering to said mammal an effective amount of a compound of claim 1.
105. A method for prevention or treatment of a pathological condition or symptom in a mammal, wherein the activity of sphingosine 1 -phosphate receptors is implicated and
antagonism of such activity is desired, comprising administering to said mammal an effective amount of a compound of claim 1.
106. The method of claim 105, wherein the pathological condition is multiple sclerosis, autoimmune diseases, chronic inflammatory disorders, asthma, inflammatory neuropathies, arthritis, transplantation, Crohn's disease, ulcerative colitis, lupus erythematosis, psoriasis, 1 ischemia-reperfusion injury, solid tumours, tumour metastasis, diseases associated with angiogenesis, vascular diseases, pain conditions, acute viral diseases, inflammatory bowel conditions, insulin or non-insulin dependant diabetes, inhibited cell migration, over-proliferation and secretion of effector cytokines, or lack of secretion of the suppressive cytokine IL-IO.
PCT/US2010/044607 2009-05-20 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs WO2011017561A1 (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
MYPI2011005317A MY180702A (en) 2009-05-20 2009-05-20 Determining fluid density
UAA201202539A UA107360C2 (en) 2009-08-05 2010-05-08 Bicyclic aryl sphingosine 1-phosphate analogs
DK10807186.1T DK2461683T3 (en) 2009-08-05 2010-08-05 Bicyclic aryl-sphingosine-1-phosphate analogues
SI201030960T SI2461683T1 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
AU2010279337A AU2010279337B2 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
MX2012001650A MX2012001650A (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs.
RS20150422A RS54091B1 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
CN201080044608.4A CN102548409B (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
EA201200239A EA024435B1 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
MEP-2015-93A ME02157B (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
SG2012003117A SG177675A1 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
BR112012002511-2A BR112012002511B1 (en) 2009-08-05 2010-08-05 ANALOG COMPOUNDS OF ARYL SPHINGOSINE 1-BICYCLIC PHOSPHATE, AND ITS PHARMACEUTICAL COMPOSITION
PL10807186T PL2461683T3 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
US13/389,054 US8802659B2 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
ES10807186.1T ES2539383T3 (en) 2009-08-05 2010-08-05 Bicyclic arylphingosine 1-phosphate analogs
NZ597596A NZ597596A (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
IN1241DEN2012 IN2012DN01241A (en) 2009-08-05 2010-08-05
KR1020127005229A KR101818096B1 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
JP2012523962A JP5893558B2 (en) 2009-08-05 2010-08-05 Bicyclic arylsphingosine 1-phosphate analogue
EP10807186.1A EP2461683B8 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
CA2768858A CA2768858C (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
ZA2012/00505A ZA201200505B (en) 2009-08-05 2012-01-20 Bicyclic aryl sphingosine 1-phosphate analogs
IL217884A IL217884A (en) 2009-08-05 2012-02-02 Bicyclic aryl sphingosine 1-phosphate analogs
US14/306,231 US9186367B2 (en) 2009-08-05 2014-06-17 Bicyclic aryl sphingosine 1-phosphate analogs
SM201500170T SMT201500170B (en) 2009-08-05 2015-07-14 Aryl sfingosine analogs bicyclic 1-phosphate
HRP20150792TT HRP20150792T1 (en) 2009-08-05 2015-07-17 Bicyclic aryl sphingosine 1-phosphate analogs
IL240111A IL240111B (en) 2009-08-05 2015-07-23 Bicyclic aryl sphingosine 1-phosphate analogs
US14/874,600 US9572824B2 (en) 2009-08-05 2015-10-05 Bicyclic aryl sphingosine 1-phosphate analogs
US15/397,421 US9827258B2 (en) 2009-08-05 2017-01-03 Bicyclic aryl sphingosine 1-phosphate analogs
US15/783,809 US10166250B2 (en) 2009-08-05 2017-10-13 Bicyclic aryl sphingosine 1-phosphate analogs
US16/182,845 US20190209592A1 (en) 2009-08-05 2018-11-07 Bicyclic aryl sphingosine 1-phosphate analogs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23153909P 2009-08-05 2009-08-05
US61/231,539 2009-08-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/389,054 A-371-Of-International US8802659B2 (en) 2009-08-05 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs
US14/306,231 Division US9186367B2 (en) 2009-08-05 2014-06-17 Bicyclic aryl sphingosine 1-phosphate analogs

Publications (1)

Publication Number Publication Date
WO2011017561A1 true WO2011017561A1 (en) 2011-02-10

Family

ID=43544674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/044607 WO2011017561A1 (en) 2009-05-20 2010-08-05 Bicyclic aryl sphingosine 1-phosphate analogs

Country Status (30)

Country Link
US (6) US8802659B2 (en)
EP (1) EP2461683B8 (en)
JP (3) JP5893558B2 (en)
KR (1) KR101818096B1 (en)
CN (2) CN105330576B (en)
AU (1) AU2010279337B2 (en)
BR (1) BR112012002511B1 (en)
CA (1) CA2768858C (en)
CO (1) CO6440523A2 (en)
DK (1) DK2461683T3 (en)
EA (1) EA024435B1 (en)
ES (1) ES2539383T3 (en)
HK (1) HK1165214A1 (en)
HR (1) HRP20150792T1 (en)
HU (1) HUE025081T2 (en)
IL (2) IL217884A (en)
IN (1) IN2012DN01241A (en)
ME (1) ME02157B (en)
MX (1) MX2012001650A (en)
MY (1) MY157707A (en)
NZ (1) NZ597596A (en)
PL (1) PL2461683T3 (en)
PT (1) PT2461683E (en)
RS (1) RS54091B1 (en)
SG (1) SG177675A1 (en)
SI (1) SI2461683T1 (en)
SM (1) SMT201500170B (en)
UA (1) UA107360C2 (en)
WO (1) WO2011017561A1 (en)
ZA (1) ZA201200505B (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364089A1 (en) * 2008-10-30 2011-09-14 Biogen Idec MA Inc. Heterobicyclic sphingosine 1-phosphate analogs
CN102212007A (en) * 2011-04-11 2011-10-12 启东东岳药业有限公司 Preparation method of high-purity 2-mehtylol methyl acrylate
US8269043B2 (en) 2008-10-30 2012-09-18 Biogen Idec Ma Inc. Bicyclic aryl sphingosine 1-phosphate analogs
WO2013093850A1 (en) * 2011-12-22 2013-06-27 Novartis Ag Quinoline derivatives
KR101299512B1 (en) * 2011-04-19 2013-08-22 전북대학교산학협력단 Composition used in diseases linked to arthritis comprising sphingosine 1-phosphate as an active ingredient
EP2672823A1 (en) * 2011-02-07 2013-12-18 Biogen Idec MA Inc. S1p modulating agents
WO2014018881A1 (en) 2012-07-27 2014-01-30 Biogen Idec Ma Inc. Atx modulating agents
WO2014018891A1 (en) 2012-07-27 2014-01-30 Biogen Idec Ma Inc. Compounds that are s1p modulating agents and/or atx modulating agents
WO2014018887A1 (en) 2012-07-27 2014-01-30 Biogen Idec Ma Inc. Atx modulating agents
WO2014025708A1 (en) * 2012-08-06 2014-02-13 Biogen Idec Ma Inc. Compounds that are s1p modulating agents and/or atx modulating agents
WO2014025709A1 (en) 2012-08-06 2014-02-13 Biogen Idec Ma Inc. Compounds that are s1p modulating agents and/or atx modulating agents
WO2014081756A1 (en) 2012-11-20 2014-05-30 Biogen Idec Ma Inc. S1p and/or atx modulating agents
WO2014120764A1 (en) 2013-01-29 2014-08-07 Biogen Idec Ma Inc. S1p modulating agents
US9062045B2 (en) 2011-09-15 2015-06-23 Novartis Ag Triazolopyridine compounds
US9181191B2 (en) 2008-10-30 2015-11-10 Biogen Ma Inc. Heterobicyclic sphingosine 1-phosphate analogs
WO2016197009A1 (en) 2015-06-05 2016-12-08 Vertex Pharmaceuticals Incorporated Triazoles for the treatment of demyelinating diseases
US9572824B2 (en) 2009-08-05 2017-02-21 Biogen Ma Inc. Bicyclic aryl sphingosine 1-phosphate analogs
US9802944B2 (en) 2014-03-26 2017-10-31 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
WO2018106643A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Heterocyclic azoles for the treatment of demyelinating diseases
WO2018106641A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Pyrazoles for the treatment of demyelinating diseases
WO2018106646A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Aminotriazoles for the treatment of demyelinating diseases
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design
WO2018237026A1 (en) * 2017-06-20 2018-12-27 C4 Therapeutics, Inc. N/o-linked degrons and degronimers for protein degradation
US10167309B2 (en) 2012-07-13 2019-01-01 Wave Life Sciences Ltd. Asymmetric auxiliary group
WO2019016112A1 (en) 2017-07-17 2019-01-24 AbbVie Deutschland GmbH & Co. KG 1,2,3,4-substituted quinoline compounds as s1p modulators
US10280192B2 (en) 2011-07-19 2019-05-07 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US10307434B2 (en) 2009-07-06 2019-06-04 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US10329318B2 (en) 2008-12-02 2019-06-25 Wave Life Sciences Ltd. Method for the synthesis of phosphorus atom modified nucleic acids
DE102018105524A1 (en) * 2018-03-09 2019-09-12 Universität Duisburg-Essen Use of modulators of sphingosine-1-phosphate signal transduction
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US10633384B2 (en) 2012-06-13 2020-04-28 Hoffmann-La Roche Inc. Diazaspirocycloalkane and azaspirocycloalkane
US10640472B2 (en) 2015-09-04 2020-05-05 Hoffman-La Roche Inc. Phenoxymethyl derivatives
US10647719B2 (en) 2015-09-24 2020-05-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10669268B2 (en) 2012-09-25 2020-06-02 Hoffmann-La Roche Inc. Bicyclic derivatives
US10669285B2 (en) 2014-03-26 2020-06-02 Hoffmann-La Roche Inc. Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10676446B2 (en) 2015-04-10 2020-06-09 Hoffmann-La Roche Inc. Bicyclic quinazolinone derivatives
US10738053B2 (en) 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10752640B2 (en) 2014-08-01 2020-08-25 Nuevolution A/S Compounds active towards bromodomains
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors
US11198699B2 (en) 2019-04-02 2021-12-14 Aligos Therapeutics, Inc. Compounds targeting PRMT5
US11198672B2 (en) 2018-02-22 2021-12-14 Ono Pharmaceutical Co., Ltd. Compounds having S1P5 receptor agonistic activity
US11471436B2 (en) 2014-12-04 2022-10-18 Ono Pharmaceutical Co., Ltd. Dihydronaphthalene derivative
US11492346B2 (en) 2019-06-18 2022-11-08 Pfizer Inc. Benzisoxazole sulfonamide derivatives
US11878968B2 (en) 2021-07-09 2024-01-23 Plexium, Inc. Aryl compounds and pharmaceutical compositions that modulate IKZF2
US11911372B2 (en) 2018-06-28 2024-02-27 Ctxt Pty Ltd Compounds

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111841B2 (en) 2015-06-19 2018-10-30 University Of South Florida Stabilization of alcohol intoxication-induced cardiovascular instability
CA2996741A1 (en) * 2015-08-28 2017-03-09 Udo Lange Fused heterocyclic compounds as s1p modulators
CN106336357A (en) * 2016-08-29 2017-01-18 启东东岳药业有限公司 Preparation method of 2-hydroxymethyl methyl acrylate
WO2020081852A1 (en) * 2018-10-17 2020-04-23 The Research Foundation For The State University Of New York Selective ship inhibitors for treating disease
WO2021032958A1 (en) * 2019-08-16 2021-02-25 Cyclacel Limited Process for the preparation of a pyrimidino-diazepine derivative
BR112022010761A2 (en) * 2019-12-03 2022-08-23 Lg Chemical Ltd SPHINGOSINE-1-PHOSPHATE RECEPTOR AGONIST, METHOD OF PREPARING IT AND PHARMACEUTICAL COMPOSITION CONTAINING IT AS ACTIVE INGREDIENT
KR20220142385A (en) * 2021-04-14 2022-10-21 주식회사 엘지화학 Pharmaceutically acceptable salts of sphingosine-1-phosphate receptor agonist and crystalline forms thereof
WO2022220598A1 (en) * 2021-04-14 2022-10-20 주식회사 엘지화학 Crystal form of sphingosine-1-phosphate receptor agonist
US20240228441A1 (en) * 2021-04-14 2024-07-11 Lg Chem, Ltd. Method for preparing intermediate for synthesis of sphingosine-1-phosphate receptor agonist
KR102658761B1 (en) * 2021-04-14 2024-04-19 주식회사 엘지화학 Method of preparing intermediate for synthesizing sphinosine-1-phosphate receptor agonist
US20240208930A1 (en) * 2021-04-14 2024-06-27 Lg Chem, Ltd. Crystalline form of sphingosine-1-phosphate receptor agonist
KR20220142382A (en) * 2021-04-14 2022-10-21 주식회사 엘지화학 Crystalline form of sphingosine-1-phosphate receptor agonist
KR20220142383A (en) * 2021-04-14 2022-10-21 주식회사 엘지화학 Crystalline form of sphingosine-1-phosphate receptor agonist

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080027036A1 (en) * 2005-11-23 2008-01-31 Epix Delaware, Inc. S1P receptor modulating compounds and use thereof
US20090131400A1 (en) * 2003-05-19 2009-05-21 Irm Llc Immunosuppressant compounds and compositions

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555571B1 (en) 1983-11-28 1986-11-28 Interna Rech Dermatolo Centre NAPHTHALENE DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR APPLICATION IN THE THERAPEUTIC FIELD
IL135495A (en) 1995-09-28 2002-12-01 Hoechst Ag Intermediate compounds for the preparation of substituted quinoline-2-carboxylic acid amides
EP1470137B1 (en) 2002-01-18 2009-09-02 Merck & Co., Inc. Edg receptor agonists
AU2003216054B2 (en) 2002-01-18 2007-01-04 Merck & Co., Inc. Selective S1P1/Edg1 receptor agonists
DE60330047D1 (en) 2002-01-18 2009-12-24 Merck & Co Inc "n-(benzyl)aminoalkyl carboxylate, phosphinate, phosphonate und tetrazole als edg rezeptoragonisten"
JP2005533058A (en) 2002-06-17 2005-11-04 メルク エンド カムパニー インコーポレーテッド 1-((5-Aryl-1,2,4-oxadiazol-3-yl) benzyl) azetidine-3-carboxylate and 1-((5-aryl-1,2,4) as EDG receptor agonists -Oxadiazol-3-yl) benzyl) pyrrolidine-3-carboxylate
CN1774425A (en) * 2003-04-16 2006-05-17 霍夫曼-拉罗奇有限公司 Quinazoline compounds
CN1791395B (en) * 2003-05-19 2012-09-26 Irm责任有限公司 Immunosuppressant compounds and compositions
CN102977016B (en) 2003-06-06 2015-01-14 菲布罗根有限公司 Nitrogen-containing heteroaryl compounds and their use in increasing endogeneous erythropoietin
US7208601B2 (en) * 2003-08-08 2007-04-24 Mjalli Adnan M M Aryl and heteroaryl compounds, compositions, and methods of use
WO2005014533A2 (en) * 2003-08-08 2005-02-17 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions, and methods of use
CN1874991A (en) * 2003-08-29 2006-12-06 小野药品工业株式会社 Compound capable of binding S1P receptor and pharmaceutical use thereof
EP1541143A1 (en) 2003-12-09 2005-06-15 Graffinity Pharmaceuticals Aktiengesellschaft Dpp-iv inhibitors
GB0401332D0 (en) 2004-01-21 2004-02-25 Novartis Ag Organic compounds
WO2005082905A1 (en) 2004-02-26 2005-09-09 Kyowa Hakko Kogyo Co., Ltd. Bicyclic heterocyclic compound
EP1760071A4 (en) 2004-06-23 2008-03-05 Ono Pharmaceutical Co Compound having s1p receptor binding potency and use thereof
US7906549B2 (en) 2004-12-13 2011-03-15 Ono Pharmaceutical Co., Ltd. Aminocarboxylic acid derivative and medicinal use thereof
US7718703B2 (en) * 2005-01-25 2010-05-18 Mitsubishi Tanabe Pharma Corporation Norvaline derivative and method for preparation thereof
CA2596990A1 (en) * 2005-02-14 2006-08-24 University Of Virginia Patent Foundation Sphingosine 1-phosphate agonists comprising cycloalkanes and 5 -membered heterocycles substituted by amino and phenyl groups
AR055319A1 (en) * 2005-03-17 2007-08-15 Wyeth Corp ISOQUINOLEIN DERIVATIVES, PHARMACEUTICAL COMPOSITIONS AND USES
AU2006317689B2 (en) * 2005-11-23 2013-07-25 Epix Delaware, Inc. S1P receptor modulating compounds and use thereof
JP2007169194A (en) 2005-12-21 2007-07-05 Kyorin Pharmaceut Co Ltd Dioxaphosphorinane derivative, its addition salt and sphingosine-1-phosphoric acid (s1p1, s1p4) receptor agonist
WO2007092638A1 (en) * 2006-02-09 2007-08-16 University Of Virginia Patent Foundation Bicyclic sphingosine 1-phosphate analogs
ES2461268T3 (en) 2006-02-15 2014-05-19 Allergan, Inc. Indole-3-carboxylic acid amide, ester, thioamide and thiol ester compounds bearing aryl or heteroaryl groups having sphingosine-1-phosphate receptor antagonist biological activity (S1P)
JO2701B1 (en) * 2006-12-21 2013-03-03 جلاكسو جروب ليميتد Compounds
WO2009023854A1 (en) * 2007-08-15 2009-02-19 University Of Virginia Patent Foundation Bicyclic sphingosine 1-phosphate analogs
US20100042119A1 (en) 2008-08-08 2010-02-18 Otologics, Llc Systems and methods for securing subcutaneous implanted devices
ES2466695T3 (en) 2008-10-30 2014-06-11 Biogen Idec Ma Inc. Bicyclic aryl sphingosine 1-phosphate analogs
US8349849B2 (en) 2008-10-30 2013-01-08 Biogen Idec Ma Inc. Heterobicyclic sphingosine 1-phosphate analogs
UA107360C2 (en) 2009-08-05 2014-12-25 Biogen Idec Inc Bicyclic aryl sphingosine 1-phosphate analogs
SI2672823T1 (en) 2011-02-07 2017-01-31 Biogen Ma Inc. S1p modulating agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131400A1 (en) * 2003-05-19 2009-05-21 Irm Llc Immunosuppressant compounds and compositions
US20080027036A1 (en) * 2005-11-23 2008-01-31 Epix Delaware, Inc. S1P receptor modulating compounds and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461683A4 *

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364089A1 (en) * 2008-10-30 2011-09-14 Biogen Idec MA Inc. Heterobicyclic sphingosine 1-phosphate analogs
US10081646B2 (en) 2008-10-30 2018-09-25 Biogen Ma Inc. Heterobicyclic sphingosine 1-phosphate analogs
EP2364089A4 (en) * 2008-10-30 2012-06-06 Biogen Idec Inc Heterobicyclic sphingosine 1-phosphate analogs
US8269043B2 (en) 2008-10-30 2012-09-18 Biogen Idec Ma Inc. Bicyclic aryl sphingosine 1-phosphate analogs
US8349849B2 (en) 2008-10-30 2013-01-08 Biogen Idec Ma Inc. Heterobicyclic sphingosine 1-phosphate analogs
US8546359B2 (en) 2008-10-30 2013-10-01 Biogen Idec Ma Inc. Bicyclic aryl sphingosine 1-phosphate analogs
US9708353B2 (en) 2008-10-30 2017-07-18 Biogen Ma Inc. Heterobicyclic sphingosine 1-phosphate analogs
US9181191B2 (en) 2008-10-30 2015-11-10 Biogen Ma Inc. Heterobicyclic sphingosine 1-phosphate analogs
US10329318B2 (en) 2008-12-02 2019-06-25 Wave Life Sciences Ltd. Method for the synthesis of phosphorus atom modified nucleic acids
US10307434B2 (en) 2009-07-06 2019-06-04 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US10166250B2 (en) 2009-08-05 2019-01-01 Biogen Ma Inc. Bicyclic aryl sphingosine 1-phosphate analogs
US9572824B2 (en) 2009-08-05 2017-02-21 Biogen Ma Inc. Bicyclic aryl sphingosine 1-phosphate analogs
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US9808449B2 (en) 2011-02-07 2017-11-07 Biogen Ma Inc. S1P modulating agents
KR101857315B1 (en) 2011-02-07 2018-05-11 바이오젠 엠에이 인코포레이티드 S1p modulating agents
US10034869B2 (en) 2011-02-07 2018-07-31 Biogen Ma Inc. S1P modulating agents
US10406144B2 (en) 2011-02-07 2019-09-10 Biogen Ma Inc. SIP modulating agents
EP2672823A4 (en) * 2011-02-07 2014-08-27 Biogen Idec Inc S1p modulating agents
TWI655186B (en) * 2011-02-07 2019-04-01 百健Ma公司 S1P regulator
AU2016262729B2 (en) * 2011-02-07 2018-03-29 Biogen Ma Inc. S1P Modulating Agents
EP2672823A1 (en) * 2011-02-07 2013-12-18 Biogen Idec MA Inc. S1p modulating agents
US10894040B2 (en) 2011-02-07 2021-01-19 Biogen Ma Inc. S1P modulating agents
CN103533835A (en) * 2011-02-07 2014-01-22 比奥根艾迪克Ma公司 S1P modulating agents
EP3150590A1 (en) * 2011-02-07 2017-04-05 Biogen MA Inc. S1p modulating agents
US9340527B2 (en) 2011-02-07 2016-05-17 Biogen Ma Inc. S1P modulating agents
CN103533835B (en) * 2011-02-07 2016-08-24 比奥根Ma公司 S1p regulator
AU2012214707B2 (en) * 2011-02-07 2016-08-25 Biogen Ma Inc. S1P modulating agents
CN106278999A (en) * 2011-02-07 2017-01-04 比奥根Ma公司 S1p regulator
CN102212007A (en) * 2011-04-11 2011-10-12 启东东岳药业有限公司 Preparation method of high-purity 2-mehtylol methyl acrylate
KR101299512B1 (en) * 2011-04-19 2013-08-22 전북대학교산학협력단 Composition used in diseases linked to arthritis comprising sphingosine 1-phosphate as an active ingredient
US10280192B2 (en) 2011-07-19 2019-05-07 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US9474762B2 (en) 2011-09-15 2016-10-25 Novartis Ag Triazolopyridine compounds
US9062045B2 (en) 2011-09-15 2015-06-23 Novartis Ag Triazolopyridine compounds
WO2013093850A1 (en) * 2011-12-22 2013-06-27 Novartis Ag Quinoline derivatives
US10633384B2 (en) 2012-06-13 2020-04-28 Hoffmann-La Roche Inc. Diazaspirocycloalkane and azaspirocycloalkane
US10167309B2 (en) 2012-07-13 2019-01-01 Wave Life Sciences Ltd. Asymmetric auxiliary group
JP2015528811A (en) * 2012-07-27 2015-10-01 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. Compounds that are S1P modulators and / or ATX modulators
WO2014018881A1 (en) 2012-07-27 2014-01-30 Biogen Idec Ma Inc. Atx modulating agents
EA027809B1 (en) * 2012-07-27 2017-09-29 Биоген Айдек Ма Инк. Compounds that are s1p modulating agents and/or atx modulating agents
WO2014018891A1 (en) 2012-07-27 2014-01-30 Biogen Idec Ma Inc. Compounds that are s1p modulating agents and/or atx modulating agents
EP2877185A4 (en) * 2012-07-27 2016-05-11 Biogen Ma Inc Atx modulating agents
EA028364B1 (en) * 2012-07-27 2017-11-30 Биоген Айдек Ма Инк. Autotaxin modulating compounds
JP2015524812A (en) * 2012-07-27 2015-08-27 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. ATX regulator
US9944666B2 (en) 2012-07-27 2018-04-17 Biogen Ma Inc. Compounds that are S1P modulating agents and/or ATX modulating agents
US9522889B2 (en) 2012-07-27 2016-12-20 Biogen Ma Inc. ATX modulating agents
EP2877180A4 (en) * 2012-07-27 2015-12-16 Biogen Ma Inc Compounds that are s1p modulating agents and/or atx modulating agents
WO2014018887A1 (en) 2012-07-27 2014-01-30 Biogen Idec Ma Inc. Atx modulating agents
US9555050B2 (en) 2012-07-27 2017-01-31 Biogen Ma Inc. ATX modulating agents
US10017506B2 (en) 2012-07-27 2018-07-10 Biogen Ma Inc. ATX modulating agents
US9550798B2 (en) 2012-07-27 2017-01-24 Biogen Ma Inc. Compounds that are S1P modulating agents and/or ATX modulating agents
JP2018135379A (en) * 2012-07-27 2018-08-30 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. Atx modulating agents
WO2014025708A1 (en) * 2012-08-06 2014-02-13 Biogen Idec Ma Inc. Compounds that are s1p modulating agents and/or atx modulating agents
WO2014025709A1 (en) 2012-08-06 2014-02-13 Biogen Idec Ma Inc. Compounds that are s1p modulating agents and/or atx modulating agents
US10273234B2 (en) 2012-08-06 2019-04-30 Biogen Ma Inc. Compounds that are S1P modulating agents and/or ATX modulating agents
US9499485B2 (en) 2012-08-06 2016-11-22 Biogen Ma Inc. Compounds that are S1P modulating agents and/or ATX modulating agents
US10669268B2 (en) 2012-09-25 2020-06-02 Hoffmann-La Roche Inc. Bicyclic derivatives
WO2014081756A1 (en) 2012-11-20 2014-05-30 Biogen Idec Ma Inc. S1p and/or atx modulating agents
AU2014212465B2 (en) * 2013-01-29 2018-07-12 Biogen Ma Inc. S1P modulating agents
EP2951148A4 (en) * 2013-01-29 2016-09-21 Biogen Ma Inc S1p modulating agents
WO2014120764A1 (en) 2013-01-29 2014-08-07 Biogen Idec Ma Inc. S1p modulating agents
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design
US10654857B2 (en) 2014-03-26 2020-05-19 Hoffman-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US9802944B2 (en) 2014-03-26 2017-10-31 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US11098048B2 (en) 2014-03-26 2021-08-24 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10669285B2 (en) 2014-03-26 2020-06-02 Hoffmann-La Roche Inc. Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10752640B2 (en) 2014-08-01 2020-08-25 Nuevolution A/S Compounds active towards bromodomains
US11471436B2 (en) 2014-12-04 2022-10-18 Ono Pharmaceutical Co., Ltd. Dihydronaphthalene derivative
US10676446B2 (en) 2015-04-10 2020-06-09 Hoffmann-La Roche Inc. Bicyclic quinazolinone derivatives
WO2016197009A1 (en) 2015-06-05 2016-12-08 Vertex Pharmaceuticals Incorporated Triazoles for the treatment of demyelinating diseases
US11352330B2 (en) 2015-09-04 2022-06-07 Hoffmann-La Roche Inc. Phenoxymethyl derivatives
US10640472B2 (en) 2015-09-04 2020-05-05 Hoffman-La Roche Inc. Phenoxymethyl derivatives
US10647719B2 (en) 2015-09-24 2020-05-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10738053B2 (en) 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10889588B2 (en) 2015-09-24 2021-01-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
WO2018106643A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Heterocyclic azoles for the treatment of demyelinating diseases
WO2018106641A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Pyrazoles for the treatment of demyelinating diseases
WO2018106646A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Aminotriazoles for the treatment of demyelinating diseases
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors
US11673888B2 (en) 2017-03-16 2023-06-13 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
WO2018237026A1 (en) * 2017-06-20 2018-12-27 C4 Therapeutics, Inc. N/o-linked degrons and degronimers for protein degradation
US11459335B2 (en) 2017-06-20 2022-10-04 C4 Therapeutics, Inc. N/O-linked Degrons and Degronimers for protein degradation
WO2019016112A1 (en) 2017-07-17 2019-01-24 AbbVie Deutschland GmbH & Co. KG 1,2,3,4-substituted quinoline compounds as s1p modulators
US11198672B2 (en) 2018-02-22 2021-12-14 Ono Pharmaceutical Co., Ltd. Compounds having S1P5 receptor agonistic activity
US12049445B2 (en) 2018-02-22 2024-07-30 Ono Pharmaceutical Co., Ltd. Compounds having S1P5 receptor agonistic activity
DE102018105524A1 (en) * 2018-03-09 2019-09-12 Universität Duisburg-Essen Use of modulators of sphingosine-1-phosphate signal transduction
US11911372B2 (en) 2018-06-28 2024-02-27 Ctxt Pty Ltd Compounds
US11198699B2 (en) 2019-04-02 2021-12-14 Aligos Therapeutics, Inc. Compounds targeting PRMT5
US11492346B2 (en) 2019-06-18 2022-11-08 Pfizer Inc. Benzisoxazole sulfonamide derivatives
US11878968B2 (en) 2021-07-09 2024-01-23 Plexium, Inc. Aryl compounds and pharmaceutical compositions that modulate IKZF2

Also Published As

Publication number Publication date
US20140309190A1 (en) 2014-10-16
SI2461683T1 (en) 2015-08-31
ME02157B (en) 2015-10-20
EA024435B1 (en) 2016-09-30
US20190209592A1 (en) 2019-07-11
RS54091B1 (en) 2015-10-30
IL217884A0 (en) 2012-03-29
IN2012DN01241A (en) 2015-05-15
PT2461683E (en) 2015-07-09
US20180133233A1 (en) 2018-05-17
EA201200239A1 (en) 2012-12-28
BR112012002511A2 (en) 2020-08-25
US20120190649A1 (en) 2012-07-26
EP2461683A4 (en) 2013-02-20
UA107360C2 (en) 2014-12-25
US20160129023A1 (en) 2016-05-12
MY157707A (en) 2016-07-15
EP2461683B1 (en) 2015-04-29
EP2461683B8 (en) 2015-06-03
CN102548409B (en) 2015-11-25
AU2010279337B2 (en) 2014-09-11
CN102548409A (en) 2012-07-04
ES2539383T3 (en) 2015-06-30
US10166250B2 (en) 2019-01-01
KR20120051726A (en) 2012-05-22
CO6440523A2 (en) 2012-05-15
CN105330576A (en) 2016-02-17
IL217884A (en) 2016-10-31
JP2018123124A (en) 2018-08-09
ZA201200505B (en) 2013-06-26
US9827258B2 (en) 2017-11-28
SG177675A1 (en) 2012-02-28
US9572824B2 (en) 2017-02-21
CA2768858A1 (en) 2011-02-10
KR101818096B1 (en) 2018-01-12
NZ597596A (en) 2014-01-31
CN105330576B (en) 2018-04-10
US20170239280A1 (en) 2017-08-24
US9186367B2 (en) 2015-11-17
DK2461683T3 (en) 2015-07-27
IL240111A0 (en) 2015-09-24
HK1165214A1 (en) 2012-10-05
BR112012002511B1 (en) 2022-03-15
JP2016155824A (en) 2016-09-01
US8802659B2 (en) 2014-08-12
JP6347797B2 (en) 2018-06-27
IL240111B (en) 2019-06-30
HUE025081T2 (en) 2016-01-28
AU2010279337A1 (en) 2012-02-02
PL2461683T3 (en) 2015-10-30
JP5893558B2 (en) 2016-03-23
SMT201500170B (en) 2015-09-07
HRP20150792T1 (en) 2015-08-28
MX2012001650A (en) 2012-05-29
EP2461683A1 (en) 2012-06-13
JP2013501074A (en) 2013-01-10
CA2768858C (en) 2018-09-04

Similar Documents

Publication Publication Date Title
US10166250B2 (en) Bicyclic aryl sphingosine 1-phosphate analogs
EP2364088B1 (en) Bicyclic aryl sphingosine 1-phosphate analogs
EP2364089B1 (en) Heterobicyclic sphingosine 1-phosphate analogs
EP2922821B1 (en) S1p and/or atx modulating agents
WO2010033701A2 (en) Inhibitors of sphingosine kinase 1
EP3201181B1 (en) Sphingosine kinase inhibitors
TW202241845A (en) Substituted cyclohexanecarboxamides, their preparation and their therapeutic application

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044608.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010279337

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2768858

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010279337

Country of ref document: AU

Date of ref document: 20100805

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 217884

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2012523962

Country of ref document: JP

Ref document number: 12012500227

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1201000476

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/001650

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1241/DELNP/2012

Country of ref document: IN

Ref document number: 2010807186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12029572

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20127005229

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201202539

Country of ref document: UA

Ref document number: 201200239

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 13389054

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012002511

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: P-2015/0422

Country of ref document: RS

WWE Wipo information: entry into national phase

Ref document number: 240111

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 112012002511

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120203