WO2011016411A1 - Drive device and lens drive device - Google Patents

Drive device and lens drive device Download PDF

Info

Publication number
WO2011016411A1
WO2011016411A1 PCT/JP2010/063004 JP2010063004W WO2011016411A1 WO 2011016411 A1 WO2011016411 A1 WO 2011016411A1 JP 2010063004 W JP2010063004 W JP 2010063004W WO 2011016411 A1 WO2011016411 A1 WO 2011016411A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
movement
lens
drive
sma actuator
Prior art date
Application number
PCT/JP2010/063004
Other languages
French (fr)
Japanese (ja)
Inventor
篤広 野田
滋 和田
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011525876A priority Critical patent/JPWO2011016411A1/en
Publication of WO2011016411A1 publication Critical patent/WO2011016411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to a drive device that drives a driven body that requires a small and fine operation, such as a lens of a digital camera mounted on a mobile phone, a portable information terminal, or the like.
  • a small mobile terminal such as a mobile phone, a personal digital assistant (PDA), or a portable music player is equipped with a digital camera for taking an image.
  • a digital camera mounted on the small mobile terminal is required not only to take an image but also to take a high-quality image.
  • a method of adding an optical function such as a focus function and a zoom function to the digital camera is used.
  • a driving device for driving the lens (and the lens support) provided in the digital camera In order to add the optical function as described above, it is necessary to mount a driving device for driving the lens (and the lens support) provided in the digital camera.
  • the digital camera is mounted in a limited space of the small portable terminal, and the driving device mounted on the digital camera needs to be small and light.
  • a drive device including a shape memory alloy (hereinafter referred to as SMA) actuator has been proposed.
  • Examples of the drive device provided with the SMA actuator include drive devices described in Japanese Patent Application Laid-Open Nos. 2007-58075, 2007-58076, and 2007-60530.
  • a SMA wire SMA actuator
  • a temperature change caused by self-heating thus, the driven object is moved.
  • lens position information is detected by a method such as conversion from a resistance value of a position sensor or an SMA actuator, and servo control is performed based on the position information.
  • the lens position is controlled as follows.
  • the lens and the lens support are moved stepwise from one end to the other end of the movable range.
  • Position information at each stage and information necessary for control are detected in advance.
  • Information necessary for control in each stage is examined and servo control is performed based on the position information when it becomes the best, and the lens and the lens support are moved.
  • the position control is autofocus control
  • a focus signal at each stage is detected as information necessary for control, and the best value of the focus signal is set as a focus position, based on position information at that position. Electric power is supplied to the SMA actuator to move the lens and the lens support to the in-focus position.
  • a constant current may flow through the SMA actuator for a certain period of time when the driven object is in contact with the other end and stopped.
  • the SMA actuator is supplied with a constant current for a certain period of time while the contraction is restricted.
  • the SMA actuator has a characteristic that the temperature rapidly increases when a current of a predetermined value or more flows in a state where the contraction is limited.
  • the SMA actuator has a characteristic that the stress rapidly increases as the temperature rises in a state where the length does not change (a state in which contraction is restricted).
  • the SMA actuator When the driven object comes into contact with the other end and a constant current flows through the SMA actuator for a certain period of time, the SMA actuator accumulates the stress increased by the restriction of contraction and the stress increased by the temperature rise. Acted. That is, when contraction of the SMA actuator is restricted, when a constant current flows through the SMA actuator for a certain period of time, the acting stress rapidly increases. When high stress acts on the SMA actuator, it deteriorates even if the acting time is short.
  • the SMA actuator When the SMA actuator deteriorates, the current value necessary for driving becomes larger than the current value before deterioration, and the accuracy of servo control is reduced. When the deterioration further progresses, the SMA actuator is broken (in the case of a line, it is disconnected), which becomes a fatal defect that makes it impossible to drive the driven object.
  • an object of the present invention is to provide a drive device that can suppress deterioration of a shape memory alloy actuator and perform position control with high accuracy over a long period of time.
  • a driving apparatus includes a driving frame that holds a driven object, a guide portion that guides the driving frame to move in a predetermined direction, and a drive that moves the driving frame.
  • a shape memory alloy actuator that applies force; and a movement restricting portion that contacts the drive frame and restricts the movement of the drive frame when the drive frame moves to an end of a movable range.
  • the drive device is a delay that delays a time until the drive frame moves by the driving force of the shape memory alloy actuator and contacts the movement restriction unit immediately before the movement restriction unit restricts the movement. Department.
  • the delay unit delays the time from when the drive frame approaches the movement restriction unit until it comes into contact with the movement restriction unit. Accordingly, it is possible to suppress a constant current from flowing through the shape memory alloy actuator for a certain period of time in a state where the contraction of the shape memory alloy actuator is regulated.
  • the delay unit may be a movement direction conversion unit that moves the movement direction of the drive frame in a direction different from the predetermined direction in the vicinity of the movement restriction unit.
  • the drive frame moves in a direction different from the predetermined direction, so that the drive frame does not stop at the moment when the drive frame comes into contact with the movement restriction unit.
  • the shape memory alloy actuator continues to contract even if there is a time lag after the drive frame comes into contact with the movement restricting portion until the output of the driving force from the shape memory alloy actuator is stopped. And a sudden increase in stress can be suppressed.
  • the position sensor that detects the position of the drive frame, and the supply of power applied to the shape memory alloy actuator based on the position information detected by the position sensor are controlled, and the drive is performed by the position sensor.
  • a controller that performs emergency stop control for stopping the supply of electric power to the shape memory alloy actuator when movement of the frame in a direction different from a predetermined direction is detected.
  • the drive frame can be servo-controlled based on the position information, it is possible to improve the accuracy of position control of the drive frame.
  • the position sensor may be a resistance detection unit that detects a change in electrical resistance of the shape memory alloy actuator.
  • the controller may perform the emergency stop control when a predetermined maximum current or maximum voltage is applied to the shape memory alloy actuator for a predetermined time or more.
  • the shape memory alloy actuator may be linear.
  • the shape is not limited to a linear shape, and a shape that can accurately move the drive frame in a predetermined direction, such as a rod shape, a belt shape, or a plate shape, can be widely employed.
  • the guide portion may include a pair of flat plate springs arranged in parallel to each other to hold both ends of the drive frame in the moving direction.
  • the guide portion is not limited to a pair of leaf springs arranged in parallel, and can guide movement of the drive frame in the predetermined direction, such as an engaging portion that engages with a rail shape extending in the predetermined direction.
  • a device that can cope with movement of the drive frame in a direction other than a predetermined direction by the movement direction conversion unit can be widely used.
  • the movement direction conversion unit may be formed such that a rotational moment acts on the drive frame when contacting the movement restriction unit.
  • the movement direction conversion unit that generates such a moment for example, the movement direction conversion unit protrudes from the edge of the surface of the drive frame facing the movement restriction unit toward the movement restriction unit. Can be mentioned.
  • the movement direction conversion unit is formed on a surface of the drive frame that faces the movement limitation unit, and the movement limitation unit includes a convex portion that contacts the movement direction conversion unit, and the movement At least one of the tip of the direction changing portion and the convex portion may be cut obliquely.
  • a lens driving device that drives an imaging lens of a digital camera can be used as the driving device described above.
  • the present invention it is possible to provide a driving device capable of suppressing the deterioration of the shape memory alloy actuator and performing position control with high accuracy over a long period of time.
  • FIG. 1 It is a schematic plan view of the lens drive device using an example of the drive device concerning this invention. It is the side view which looked at the lens drive device shown in FIG. 1 from the II side. It is a block diagram of the principal part of the lens drive device shown in FIG. It is a figure showing the relationship between the position of a lens and time when performing an autofocus process with the lens drive device shown in FIG. It is a flowchart which shows the process of performing an autofocus process with the lens drive device shown in FIG. It is a side view when the moving direction conversion part of the lens drive device shown in FIG. 2 contacts the movement restricting part. It is a side view when the lens drive frame of the lens drive device shown in FIG. 6 is rotating.
  • FIG. 1 is a schematic plan view of a lens driving device using an example of a driving device according to the present invention
  • FIG. 2 is a side view of the lens driving device shown in FIG.
  • illustration of the movement limiting unit 5, the top plate unit 6, the upper plate spring 71, the lower plate spring 72, and the bias spring 8 is omitted.
  • the lens driving device La includes a base unit 1, a lens unit 2 that is an imaging optical system, and the lens unit 2 that is disposed on the base unit 1 and moves along the optical axis AX direction.
  • a top plate portion 6 (see FIG. 2) disposed between the base plate 4 and the top plate portion 6, and an upper plate spring 71 and a lower plate spring 72 (which hold the lens unit 2). 2) and a bias spring 8 (see FIG. 2) for pressing the lens unit 1.
  • the base unit 1 constitutes the bottom of the lens driving device La, and is a member fixed to a member (for example, a frame of a mobile phone or a mount substrate) to which the lens driving device La is attached.
  • the base portion 1 is a plate-like member having a square shape in plan view, but is not limited thereto.
  • the base portion 1 may have a shape that matches a member to be attached, such as a circular shape or a polygonal shape in plan view.
  • the base portion 1 is a resin molded body, but is not limited thereto, and a plate-like one can be widely used.
  • the base unit 1, the movement limiting unit 5 and the top plate unit 6 may be connected via a support column or the like, or may be integrally formed.
  • the base unit 1, the movement limiting unit 5, and the top plate unit 6 are fixed members that do not move when the lens unit 2 moves. Further, the movement restricting unit 5 can substitute a part of a member to be attached to which the lens driving device La is attached.
  • the lens unit 2 includes an imaging lens 21 which is a driven body, and a lens holding frame (driving frame) 22 on which the imaging lens 21 is held.
  • the imaging lens 21 includes an objective lens, a focus lens, a zoom lens, and the like, and constitutes an imaging optical system for an imaging element (not shown).
  • the imaging lens 21 is composed of a plurality of lenses, but may be composed of a single lens.
  • the lens drive frame 22 is a cylindrical frame (so-called ball frame) and is arranged so that the central axis and the optical axis AX overlap.
  • a pair of support portions 23 protruding in the radial direction and having an angular difference of 180 degrees are formed on the side peripheral wall of the objective-side tip (tip on the movement restricting portion 5 side) of the lens drive frame 22.
  • the lens unit 2 is inserted into the opening formed in the top plate portion 6 and is disposed on the base portion 1 so that the pair of support portions 23 are positioned in the vicinity of the pair of diagonals of the base portion 1 in plan view.
  • An upper leaf spring 71 and a lower leaf spring 72 are attached to the top plate portion 6 and the base portion 1 so as to be parallel to each other, and the lens unit 2 is held up and down by the upper leaf spring 71 and the lower leaf spring 72. ing.
  • the lens unit 2 is supported so as to be displaceable with respect to the base portion 1, the movement restricting portion 5 and the top plate portion 6, and the degree of freedom of the displacement is restricted in the direction along the optical axis AX. .
  • a spring receiver 24 for receiving the bias spring 8 is formed on the end surface of the lens drive frame 22 on the movement restricting portion 5 side.
  • the spring receiver 24 has a cylindrical shape that protrudes in the axial direction from the edge of the end face of the lens driving frame 22 on the movement restricting portion 5 side.
  • One end (lower end in the figure) of the bias spring 8 is fitted into the spring receiver 24, and the other end (upper end in the figure) is in contact with the movement restricting portion 5.
  • the bias spring 8 is a coil spring, and biases a force (bias force) that pushes the lens unit 2 toward the base portion 1 along the optical axis AX.
  • the lens drive frame 22 is formed with a movement direction conversion section 25 that protrudes from the end of the spring receiver 24 on the movement restriction section 5 side.
  • the movement direction conversion unit 25 is an example of a delay unit that delays the time from when the lens drive frame 22 approaches the movement restriction unit 5 until it comes into contact.
  • the movement direction conversion unit 25 comes into contact first and converts the movement direction of the lens unit 2.
  • the moving direction converting portion 25 is formed at a position having an angle difference of 90 degrees with each of the pair of supporting portions 23.
  • the moving direction conversion unit 25 is a rectangular parallelepiped shape, but is not limited thereto, and the movement limiting unit 5 side is formed in a curved surface shape. Or a pointed cone shape.
  • the connection surface with the spring receiver 24 is not limited to a rectangle, and a shape that can be connected to the spring receiver 24 such as a circle, an ellipse, or a polygon can be widely used.
  • the lever portion 3 engages with the lens unit 2 via a pair of support portions 23, and applies a driving force upward in the optical axis AX direction (direction toward the movement restriction portion 5) to the lens unit 2.
  • the lever portion 3 includes an arm portion 31 having a circular arc shape in plan view, and an extending portion 32 formed so as to be orthogonal to the arm portion 31 from an intermediate base end portion of the arm portion 31. It is an L-shaped member rotated 180 degrees.
  • the arm portion 31 has a symmetrical shape across the base end portion, and is divided into two forks while being close to the outer peripheral surface of the lens unit 2, and is formed so as to surround one half of the lens unit 2.
  • the distal ends (both ends) of the arm portion 31 reach positions where they overlap with the pair of support portions 23 of the lens unit 2 in plan view.
  • a distal end of the arm part 31 is in contact with the support part 23, and a displacement output part 311 for applying a driving force to the support part 23 is formed.
  • the extended portion 32 is connected to the arm portion 31 at the upper end.
  • the extended portion 32 is driven to drive the lens unit 2 via the lever portion 3 with the drive portion 4 engaged with a lower end portion (an end portion on the opposite side to which the arm portion 31 is connected).
  • a displacement input unit 321 to which a force is applied is provided.
  • the lever portion 3 is disposed in the vicinity of the corner portion of the base portion 1 other than the corner portion where the pair of support portions 23 are located.
  • a support leg portion 11 that is erected on the base portion 1 is provided.
  • the support portion 111 of the support leg 11 has a cylindrical curved surface extending in a direction orthogonal to the optical axis AX direction and parallel to the base portion 1.
  • a bent portion 33 which becomes a boundary between the arm portion 31 and the extending portion 32 of the lever portion 3 is in contact with the support portion 111, and thereby the lever portion 3 is supported so as to be swingable around the support portion 111. Yes.
  • the drive unit 4 includes a SMA actuator 41 in which a shape memory alloy (Shape Memory Alloy, hereinafter referred to as SMA) is linearly formed, and a pair of electrodes 42 for fixing both ends of the SMA actuator 41 and energizing the SMA actuator 41. And.
  • SMA shape memory alloy
  • the SMA actuator 41 for example, a Ni-Ti alloy or the like formed in a wire shape can be used.
  • the SMA actuator is not limited to a wire-like one, and a shape (for example, a rod shape, a belt shape, a plate shape, etc.) that can move the arm portion can be widely adopted.
  • the SMA actuator 41 is wound around a displacement input portion 321 formed in the extending portion 32 of the lever portion 3, and is arranged in a V shape that is folded back by the extending portion 32. Yes.
  • the pair of electrodes 42 are respectively disposed in the vicinity of the corner portion of the base portion 1 where the support portion 23 of the lens unit 2 is disposed.
  • the pair of electrodes 42 energize the SMA actuator 41 and receive a force generated from the SMA actuator 41 during operation, and are firmly fixed to the base portion 1.
  • Each of the pair of electrodes 42 is disposed so that the length from the V-shaped folding point (displacement input portion 321) of the SMA actuator 41 to each electrode 42 is equal.
  • the amount of expansion / contraction on both sides of the displacement input portion 321 of the SMA actuator 41 becomes equal, and the tilt when the lever portion 3 is moved can be suppressed.
  • friction (and wear) due to displacement between the SMA actuator 41 and the lever portion 3 during driving can be suppressed.
  • the extending portion 321 is provided with a groove having a V-shaped cross section, and the SMA actuator 41 is bridged so as to fit into the V-shaped groove. Thereby, the SMA actuator 41 is not easily displaced in the direction along the side surface of the extended portion 321, and is stably suspended on the lever portion 3.
  • the bottom surface of the lens unit 2 is in contact with the base unit 1.
  • the SMA actuator 41 is attached in a tensioned state, and the SMA actuator 41 pulls the displacement input unit 321.
  • the displacement output part 311 of the lever part 3 is lifted, and the displacement output part 311 contacts the lower part of the support part 23.
  • the SMA has a crystalline phase that changes with its own temperature.
  • the SMA actuator 41 is a martensite phase when in a low temperature state, and an austenite phase when in a high temperature state. And the SMA actuator 41 can repeat a phase transformation reversibly by a temperature change.
  • the SMA actuator 41 expands or contracts due to phase transformation.
  • the SMA actuator 41 is a conductor having a predetermined electrical resistance, and Joule heat is generated when the SMA actuator 41 is energized. The SMA actuator 41 changes its temperature by this Joule heat and expands and contracts by phase transformation.
  • the lens driving device La when the driving unit 4 is not operating, that is, when the SMA actuator 41 is not energized, the lens unit 2 is biased by the bias spring 8 and is in contact with the base unit 1. Stopped at the origin (home position). At this time, the position of the lens unit 2 is determined by the lower end portion of the lens driving frame 22 coming into contact with the base portion 1.
  • the SMA actuator 41 When electric power is supplied through the electrode 42, the SMA actuator 41 generates Joule heat and the temperature rises. As the temperature of the SMA actuator increases, the SMA actuator undergoes phase transformation from the martensite phase to the austenite phase and contracts. As the SMA actuator 41 contracts, a tensile force F ⁇ b> 1 acts on the displacement input unit 321.
  • the lever portion 3 swings around the support portion 111, and a displacement output portion 311 formed at the tip of the arm portion 31 pushes the support portion 23 in the direction opposite to the direction in which the bias force is applied. Thereby, the lens unit 2 moves toward the movement restricting unit 5 along the optical axis AX direction.
  • the amount of heat generation can be adjusted, and the amount of the tensile force F1 can be adjusted.
  • the amount of displacement of the lens unit 2 can be adjusted by adjusting the tensile force F1.
  • the drive unit 4 can displace the lens unit 2 along the optical axis AX by switching the energization ON / OFF to the SMA actuator 41. Further, by adjusting the magnitude of the energization current to the SMA actuator 41, the amount of the tensile force F1 can be adjusted, and the displacement amount of the lens unit 2 can also be adjusted.
  • SMA also has the characteristic that the resistance value changes according to the phase change. That is, there is a correlation between the resistance value of the SMA actuator 41 and the contraction amount, or the resistance value of the SMA actuator 41 and the position of the lens unit 2. Using this characteristic, the lens driving device La uses the resistance value of the SMA actuator 41 as the position information of the lens unit 2. Note that the SMA actuator 41 is controlled to be supplied with a predetermined current (constant current control). At that time, by measuring the voltage at both ends of the SMA actuator 41, the resistance value of the SMA actuator 41 can be detected from the current value and the voltage value.
  • FIG. 3 is a block diagram of a main part of the lens driving device shown in FIG.
  • the lens driving device La includes a driving power source (constant current source) Ps that supplies a driving current to the SMA actuator 41 and a control unit Cont that controls driving of the SMA actuator 41.
  • the control unit Cont is described as performing the drive control of the SMA actuator 41, but the present invention is not limited to this, and other controls may be performed.
  • the control unit Cont includes an arithmetic processing unit such as a CPU.
  • the control unit Cont detects the resistance value of the SMA actuator, the calculation unit C1, the processing program executed by the calculation unit C1, the storage unit M1 in which information such as information necessary for processing and information obtained by the processing is stored.
  • a resistance detecting unit R1 for measuring time and a time measuring unit Tm for measuring time are utilized as resistance detection part R1 in control part Cont, it is not limited to it.
  • the resistance detector R1 measures the voltage across the SMA actuator 41 in a state where a predetermined current is flowing, and detects the resistance value of the SMA actuator 41 based on the current value and the voltage value.
  • the calculation unit C1 calculates a drive current value for driving the lens unit 2 to the target position based on the resistance value of the SMA actuator 41 detected by the resistance detection unit R1.
  • the calculation unit C1 instructs the drive power supply Ps to energize the calculated drive current value to the SMA actuator 41.
  • a weak current that does not move the lens unit 2 is applied to the SMA actuator 41.
  • the resistance value is detected based on the voltage values at both ends of the SMA actuator 41 at this time, and is set as the resistance value of the SMA actuator 41 when the lens unit 2 is at the home position.
  • the SMA actuator 41 is in the most extended state and the resistance value is the largest.
  • FIG. 4 is a diagram showing the relationship between the lens position and time when autofocus processing is performed by the lens driving device shown in FIG. 1, and FIG. 5 shows the steps of performing autofocus processing by the lens driving device shown in FIG. It is a flowchart.
  • the control unit Cont sends an instruction to the drive power supply Ps, and applies a current to the SMA actuator 41 so as to move the lens unit 2 stepwise from the home position.
  • the controller Cont stores the resistance value (position information of the lens unit 2) of the SMA actuator 41 and the focus information at each stage, and determines the focus position based on the focus information. Then, the controller Cont energizes the SMA actuator 41 so that the resistance value of the SMA actuator 41 becomes the resistance value at the in-focus position. As a result, the lens unit 2 moves to the in-focus position.
  • the lens unit 2 is moved in a plurality of stages to determine the in-focus position.
  • the number of steps for measuring the focus information of the lens unit 2 is arbitrary, but in FIG. 4, the focus information is measured in 15 steps.
  • the details of the autofocus process will be described with reference to FIG.
  • the calculation unit C1 needs to recognize from which stage in FIG. 4 the lens unit 2 is currently moving to the next stage. Therefore, in the autofocus process, an argument N for confirming from which stage the lens unit 2 has moved is used.
  • the lens unit 2 moves from the home position to the first stage, and 1 is input to the argument N (step S01).
  • the calculation unit C1 calls the target resistance value R of the SMA actuator 41 from the storage unit M1 based on the argument N (step S02).
  • the target resistance value R is the resistance value of the SMA actuator 41 when the lens unit 2 moves to the next stage position. For example, when the argument N is 1, it is the resistance value after the SMA actuator 41 has moved to the first stage position. At the start of control, the resistance value of the SMA actuator 41 is not detected, and the current value cannot be calculated. Therefore, it is necessary to distinguish between when the lens unit 2 starts from the home position (when control is started) and other times. In order to determine whether or not the focus control is immediately after the start, the calculation unit C1 determines whether or not the argument N is 1 (step S03).
  • the calculation unit C1 recognizes that it is immediately after the driving of the lens unit 2 is started. At this time, the lens unit 2 is at the home position, and the SMA actuator 41 is not energized.
  • the calculation unit C1 sets a predetermined current value for measuring the resistance value of the SMA actuator 41 when the lens unit 2 is at the home position (step S04). As described above, the predetermined current value is a weak current value such that the lens unit 2 does not move, and is called from the storage unit M1.
  • the difference value dr of the resistance value calculated in step S08 described later is calculated at least once.
  • the calculation unit C1 calculates a current value applied to the SMA actuator 41 based on the difference value dr (step S05).
  • the current value calculated in step S05 is an optimal current value that does not heat the SMA actuator 41 excessively even when applied to the SMA actuator 41. That is, the current value calculated in step S05 generates Joule heat that is optimal for moving the lens unit 2 in the SMA actuator 41, and quickly brings the resistance value r of the SMA actuator 41 close to the target resistance value R (difference value). current value that brings dr close to 0).
  • the calculation unit C1 instructs the drive power supply Ps to apply the SMA actuator 41 to the SMA actuator 41 with the predetermined current value set in step S04 or the current value calculated in step S05 as the drive current value Ap.
  • the received drive power supply Ps applies a current having a drive current value Ap to the SMA actuator 41 (step S06).
  • step S06 after the drive current value Ap is supplied to the SMA actuator 41, the resistance detection unit R1 detects the resistance value r of the SMA actuator 41 (step S07).
  • the method of detecting the resistance value r is as described above, and is performed using the voltage values at both ends of the SMA actuator 41.
  • the calculation unit C1 calculates a difference value dr between the resistance value r of the SMA actuator 41 detected by the resistance detection unit R1 in step S07 and the target resistance value R called in step S02 (step S08), and the difference value dr is calculated. It is determined whether or not the detected resistance value r is equal to the target resistance value R (step S09). When the difference value dr is 0 (YES in step S09), the calculation unit C1 recognizes that the lens unit 2 has moved to a predetermined position (a predetermined stage in FIG. 4), and at that time, an image sensor or the like is used. Then, focus information is detected (step S10).
  • step S11 the focus information detected in step S10 and the resistance value r are stored in a database provided in the storage unit M1 (step S11).
  • the focus information contrast information extracted from image information obtained from an image sensor or the like is used, but the focus information is not limited thereto.
  • step S11 after the focus information and the resistance value r are stored in the database, 1 is added to the current argument N as an argument to obtain a new argument N (step S12).
  • the calculation unit C1 repeats from the setting of the target resistance value R in the next stage.
  • the movement of the lens unit 2 is restricted by contact with the movement restriction unit 5 of the lens unit 2 while a current larger than a predetermined current value (current threshold value As) flows through the SMA actuator 41.
  • a current threshold value As current threshold value As
  • the internal stress of the SMA actuator 41 increases.
  • the temperature of the SMA actuator 41 also rises, and the stress further rises due to the temperature rise.
  • the stress of the SMA actuator 41 exceeds the limit stress, the SMA actuator 41 deteriorates, and when the deterioration progresses, it breaks.
  • the current threshold value As is the maximum current value (maximum current) when the SMA actuator 41 is heated rapidly when applied to the SMA actuator 41 and the stress due to the temperature rise does not exceed the limit stress of the SMA actuator 41.
  • the current value when the resistance value r becomes the target resistance value R does not become the current threshold value As, and the current that allows the displacement input unit 321 to continue to input the tensile force that can stop the lens unit 2. Value (smaller than the current threshold As).
  • the difference value dr between the resistance value r of the SMA actuator 41 and the target resistance value R does not become 0, and the duration time during which the drive current value Ap continuously exceeds the current threshold value As is acting on the SMA actuator 41.
  • the limit time set smaller than the sum of the times when the stress exceeds the limit stress is exceeded, it can be determined that the lens unit 2 is stopped.
  • the controller Cont controls the SMA actuator 41 in accordance with this theory.
  • the calculation unit C1 compares the drive current value Ap with a predetermined current threshold value As. (Step S13). When the drive current value Ap is smaller than the current threshold As (NO in step S13), the calculation unit C1 determines that the resistance value r of the SMA actuator 41 is larger than the target resistance value R and / or the current value is small. Recognize and return to step S05 to recalculate the current value.
  • the calculation unit C1 calls an elapsed time in which the drive current value Ap is continuously greater than the current threshold value As from the time measuring unit Tm, and the elapsed time. Is determined to exceed a predetermined time (limit time) (step S14). When the elapsed time does not exceed a predetermined time (limit time) (NO in step S14), the control unit Cont is in the middle of contracting operation of the SMA actuator 41 and the lens unit 2 is moving. Then, the process returns to step S07 while maintaining the energized state, and the resistance value r of the SMA actuator 41 is detected.
  • the calculation unit C1 recognizes that the lens unit 2 is stopped (in contact with the movement limiting unit 5, etc.), and turns on the power source Ps.
  • An instruction is sent to stop energization of the SMA actuator 41 (step S15), and driving of the SMA actuator 41 is stopped. Thereby, the heating of the SMA actuator 41 is stopped (cooled), the SMA actuator 41 extends, and the lens unit 2 returns to the home position.
  • the database of the storage unit M1 stores the resistance value and focus information of the SMA actuator 41 at each stage, and the calculation unit C1 determines the in-focus position based on each focus information, and the SMA actuator at that time A resistance value rp of 41 is determined.
  • the calculation unit C1 calculates a drive current value based on the resistance value rp at the in-focus position, and sends an instruction to the drive power supply Ps so as to energize the SMA actuator 41 with the drive current value.
  • the driving power source Ps energizes the SMA actuator 41 and the operation unit C1 confirms that the resistance value detected by the resistance detection unit R1 is the resistance value rp at the in-focus position
  • the lens driving device La is the lens unit. 41 is moved to the in-focus position, and the autofocus process is completed (see FIG. 4).
  • the calculation unit C1 sends an instruction to the drive power source Ps and ends the energization of the SMA actuator 41.
  • the force from the SMA actuator 41 acting on the lens unit 2 is reduced, and the lens unit 2 returns to the home position.
  • the contents of the database storing the resistance value and the focus information in the storage unit M1 may be erased or kept after the imaging is completed.
  • the resistance detection unit R1 serves as a position sensor for detecting the position of the lens unit, but detects the position of the lens unit 2 instead of the resistance detection unit R1.
  • a position sensor may be provided.
  • the calculation unit C1 uses the position information of the lens unit from the position sensor instead of the resistance value of the SMA actuator 41 to perform positioning control of the lens unit 2 (determination of the drive current value to the SMA actuator 41). Is possible. Further, both the resistance value and the position information may be detected, and the drive current value may be determined using both information. Since the resistance of the SMA actuator 41 increases, the degree of deterioration of the SMA actuator 41 can be confirmed by comparing the resistance value and the position information.
  • the control is performed with the current value supplied to the SMA actuator 41, but the control (constant voltage control) is performed with the applied voltage. There may be.
  • the SMA actuator 41 When the contraction of the SMA actuator 41 is restricted in a state where a current exceeding a predetermined value flows, the temperature rapidly increases.
  • the SMA actuator 41 also has a characteristic that stress increases as the temperature rises in a state where the length does not change.
  • the lens unit 2 comes into contact with the movement restricting unit 5 and stops moving in the lens driving device La, the increase in stress due to the inhibition of the contraction of the SMA actuator 41 and the increase in stress due to the temperature rise are integrated. . That is, when a current of a predetermined value or more flows through the SMA actuator 41 in a state where the movement of the lens unit 2 is stopped, the internal stress of the SMA actuator 41 rapidly increases even for a short time.
  • the SMA actuator 41 is deteriorated by a sudden increase in internal stress.
  • the lens driving device La using the driving device of the present invention is provided with a moving direction converting portion 25 protruding in the axial direction from the spring receiver 24 in order to suppress a rapid increase in internal stress of the SMA actuator 41. Yes.
  • the operation after the lens driving device using the driving device according to the present invention comes into contact with the movement limiting unit will be described with reference to the drawings.
  • 6 is a side view when the moving direction conversion unit of the lens driving device shown in FIG. 1 comes into contact with the movement restricting unit
  • FIG. 7 is when the lens driving frame of the lens driving device shown in FIG. 6 rotates.
  • the moving direction converting portion 25 protrudes toward a movement restricting portion 5 from a part of the spring receiver 24 (a position having an angle difference of 90 degrees with each of the pair of supporting portions 23).
  • the movement direction conversion unit 25 contacts the movement restriction unit 5
  • the movement of the lens drive frame 22 in the direction along the optical axis AX is restricted.
  • the maximum current (or current exceeding it) flows through the SMA actuator 41.
  • the maximum current is a maximum current value at which when the SMA actuator 41 is suddenly heated when applied to the SMA actuator 41, the stress due to the temperature rise does not exceed the limit stress of the SMA actuator 41. .
  • the lens driving frame 22 When a force from the displacement output unit 311 is applied to the support unit 23 in a state where the movement direction conversion unit 25 is in contact with the movement restriction unit 5, the lens driving frame 22 has a spring bearing around the movement direction conversion unit 25. A moment Mt that rotates the other part of the 24 in a direction in contact with the movement restriction unit 5 acts (see FIG. 6).
  • the lens driving frame 22 can be rotated around the moving direction conversion unit 25, and the lens driving frame 22 moves while elastically deforming the upper leaf spring 71 and the lower leaf spring 72 by the action of the moment Mt. It rotates around the direction changer 25 (see FIG. 7).
  • the SMA actuator 41 is in a state where a maximum current (or a current exceeding it) flows, the SMA actuator 41 can contract while the lens driving frame 22 rotates, and the stress is prevented from increasing rapidly. be able to.
  • the control unit Cont can detect that the lens unit 2 is in contact with the movement limiting unit 5 and the lens unit 2 is stopped.
  • the shape and size of the movement direction conversion unit 25 is determined so that the lens drive frame 22 is rotated for a predetermined time after the movement direction conversion unit 25 contacts the movement restriction unit 5 (in step S14 in FIG. 5). The predetermined time is preferably exceeded.
  • the SMA actuator 41 Since the deterioration of the SMA actuator 41 can be suppressed by using the driving device shown above, a driving device that can stably drive the driven object (lens unit 2) with high accuracy over a long period of time is provided. It is possible.
  • the SMA actuator 41 is controlled by the current value applied to the SMA actuator 41, but is not limited thereto, and may be performed by the voltage value.
  • FIG. 8 is a side view of a lens driving device using another example of the driving device according to the present invention
  • FIG. 9 is a side view showing a state where the lens driving device shown in FIG. 8 is in contact with the movement restricting portion.
  • the lens driving device Lb has one support portion 23b formed on the lens drive frame 22b, and the SMA actuator 41 is directly engaged with the support portion 23b.
  • Other portions have the same configuration as the lens driving device La, and substantially the same portions are denoted by the same reference numerals. Detailed descriptions of substantially the same parts are omitted.
  • the SMA actuator 41 is inclined with respect to the moving direction of the lens driving frame 22b. As the SMA actuator 41 contracts, a driving force in the optical axis AX direction acts on the lens driving frame 22b.
  • the moving direction converting portion 25 is arranged side by side in the radial direction of the support portion 23b and the lens driving frame 22b in plan view.
  • the SMA actuator 41 contracts in a state where the movement direction conversion unit 25 is in contact with the movement restriction unit 5, a moment that rotates the lens drive frame 22b around the movement direction conversion unit 25 acts. By this moment, the lens driving frame 22b rotates while elastically deforming the upper leaf spring 71 and the lower leaf spring 72. Even during this rotation, the SMA actuator 41 can be contracted while a maximum current (or a current exceeding it) is applied. Therefore, a rapid increase in stress of the SMA actuator 41 can be suppressed, and deterioration of the SMA actuator 41 can be suppressed. It is possible.
  • FIG. 10 is a plan view of a lens driving device using still another example of the driving device according to the present invention
  • FIG. 11 is a side view of the lens driving device shown in FIG.
  • the lens driving device Lc has the same configuration as the lens driving device Lb except that it includes a lens driving frame 22c and a guide shaft 26 extending in the optical axis AX direction as a guide for the lens driving frame 22c.
  • the same parts are denoted by the same reference numerals. Detailed descriptions of substantially the same parts are omitted.
  • a cylindrical guided portion 221c is formed on the outer periphery of the lens driving frame 22c, and the guide shaft 26 penetrates the guided portion 221c.
  • the inner diameter of the guided portion 221 c is formed larger than the outer diameter of the guide shaft 26, and the guided portion 221 c is loosely fitted on the guide shaft 26.
  • the bias spring 8c is externally fitted to the guide shaft 26. One end of the bias spring 8c is in contact with the guided portion 221c and the other end is in contact with the movement restricting portion 5, and the guided portion 221c is brought into contact with the base portion 1. A force is applied (downward in FIG. 11). Further, in the lens driving frame 22c, the support portion 23c is formed on the opposite side of the imaging lens with the guide shaft 26 of the guided portion 221c interposed therebetween.
  • the SMA actuator 41 is formed in a V shape that is folded back by the support portion 23c in plan view. Furthermore, both end portions of the SMA actuator 41 are fixed to the electrode 42 and are fixed at positions closer to the movement limiting portion 5 in the optical axis AX direction than the support portion 23c of the electrode 42. As a result, when the SMA actuator 41 contracts, a driving force toward the movement restricting portion 5 along the guide shaft 26 acts on the support portion 23c.
  • the moving direction converting portion 25c is formed at a position where the central angle about the central axis of the guided portion 221c and the lens driving frame 22c is 90 degrees. As shown in FIG. 11, when the lens drive frame 22c comes into contact with the movement restriction unit 5, the lens driving frame 22c rotates around the movement direction conversion unit 25c. By forming the moving direction converting portion 25c so as to be 90 degrees with the guided portion 221c, even if the gap between the guided portion 221c and the guide shaft 26 is small, the rotation amount of the lens driving frame 22c may be increased. Is possible.
  • the movement direction conversion part 25c is not limited to a 90 degree position with respect to the to-be-guided part 25c.
  • FIG. 12 is a side view of a lens driving device using another example of the driving device according to the present invention.
  • the lens drive device Ld shown in FIG. 12 has the same configuration as the lens drive device La except that the movement direction conversion unit 25d and the movement restriction unit 5d are different, and substantially the same parts are denoted by the same reference numerals. . Detailed descriptions of substantially the same parts are omitted.
  • the movement direction conversion section 25d of the lens driving device Ld has an end face 251d on the movement limiting section 5d side formed obliquely.
  • the movement restricting portion 5d includes a convex portion 51d, and the tip portion of the convex portion 51d is formed to be parallel or substantially parallel to the end surface 251d of the moving direction converting portion 25d.
  • the present invention can be used for a driving device that moves a minute member such as an imaging lens of a digital camera.

Abstract

A drive device (La) is provided with a drive frame (22) which holds an object to be driven, guide sections (71, 72) which guide the drive frame (22) so that the guide frame (22) moves in a predetermined direction, and a shape memory alloy actuator (41) which applies a drive force. The drive device (La) is also provided with a movement direction changing section (25) which, when the drive frame (22) has moved to an end, makes contact with a movement limiting section (5) and moves, near the movement limiting section (5), the drive frame (22) in a direction different from the predetermined direction.

Description

駆動装置及びレンズ駆動装置Driving device and lens driving device
 本発明は、例えば携帯電話、携帯情報端末等に搭載されたデジタルカメラのレンズのような、小型で精細な動作を要する被駆動体の駆動を行う駆動装置に関するものである。 The present invention relates to a drive device that drives a driven body that requires a small and fine operation, such as a lens of a digital camera mounted on a mobile phone, a portable information terminal, or the like.
 携帯電話や携帯情報端末(PDA)、携帯型音楽プレーヤ等の小型携帯端末には、画像を撮影するためのデジタルカメラが搭載されている場合が多い。近年、前記小型携帯端末に搭載されたデジタルカメラは、画像を撮影できるだけでなく、高品質な画像を撮影できることが要求されている。前記デジタルカメラで高品質な画像を撮影するための方法のひとつとして、前記デジタルカメラにフォーカス機能、ズーム機能等の光学機能を付加する方法が用いられている。 In many cases, a small mobile terminal such as a mobile phone, a personal digital assistant (PDA), or a portable music player is equipped with a digital camera for taking an image. In recent years, a digital camera mounted on the small mobile terminal is required not only to take an image but also to take a high-quality image. As one of methods for taking a high-quality image with the digital camera, a method of adding an optical function such as a focus function and a zoom function to the digital camera is used.
 上述のような光学機能を付加するためには、前記デジタルカメラに備えられたレンズ(及びレンズ支持体)を駆動するための駆動装置を搭載する必要がある。前記デジタルカメラは前記小型携帯端末の限られたスペースに搭載されるものであり、そのデジタルカメラに搭載される前記駆動装置は小型及び軽量である必要がある。このような、小型、軽量の条件を満たす駆動装置として、形状記憶合金(Shape Memory Alloy:以下、SMAという)アクチュエータを備えた駆動装置が提案されている。 In order to add the optical function as described above, it is necessary to mount a driving device for driving the lens (and the lens support) provided in the digital camera. The digital camera is mounted in a limited space of the small portable terminal, and the driving device mounted on the digital camera needs to be small and light. As such a drive device that satisfies the requirements for small size and light weight, a drive device including a shape memory alloy (hereinafter referred to as SMA) actuator has been proposed.
 SMAアクチュエータを備えた駆動装置として、例えば、特開2007-58075号公報、特開2007-58076号公報、特開2007-60530号公報に記載された駆動装置がある。これらの文献に記載の駆動装置は、片持ちのレバーにSMAワイヤー(SMAアクチュエータ)が巻きまわされており、前記SMAアクチュエータに電流を印加し、自己発熱による温度変化で伸縮させ、前記レバーを回転させて被駆動物体を移動させる構成を有している。 Examples of the drive device provided with the SMA actuator include drive devices described in Japanese Patent Application Laid-Open Nos. 2007-58075, 2007-58076, and 2007-60530. In the drive devices described in these documents, a SMA wire (SMA actuator) is wound around a cantilever lever, an electric current is applied to the SMA actuator, and the lever is rotated by a temperature change caused by self-heating. Thus, the driven object is moved.
 例えば、前記デジタルカメラに精度の高いフォーカス機能やズーム機能等を付加する場合、レンズ及びレンズ支持体(被駆動物体)を正確な位置に停止させる必要がある。前記レンズの位置制御の方法として、位置センサ、SMAアクチュエータの抵抗値から換算する等の方法でレンズ位置情報を検知し、その位置情報をもとにサーボ制御を行うことが知られている。 For example, when a highly accurate focus function or zoom function is added to the digital camera, it is necessary to stop the lens and the lens support (driven object) at an accurate position. As a method for controlling the position of the lens, it is known that lens position information is detected by a method such as conversion from a resistance value of a position sensor or an SMA actuator, and servo control is performed based on the position information.
 駆動装置において前記レンズの位置制御は次のようにして行われる。前記レンズ及びレンズ支持体をその移動可能な範囲の一端から他端まで段階的に移動させる。各段階における位置情報と制御に必要な情報とを検知しておく。各段階における制御に必要な情報を精査し最良となったときの位置情報を元にサーボ制御を行い、前記レンズ及びレンズ支持体を移動させる。例えば、前記位置制御がオートフォーカス制御である場合、制御に必要な情報として各段階でのフォーカス信号を検知し、前記フォーカス信号の最良値を合焦位置として、その位置での位置情報を基にSMAアクチュエータに電力を供給し、前記レンズ及び前記レンズ支持体を合焦位置に移動させる。 In the driving device, the lens position is controlled as follows. The lens and the lens support are moved stepwise from one end to the other end of the movable range. Position information at each stage and information necessary for control are detected in advance. Information necessary for control in each stage is examined and servo control is performed based on the position information when it becomes the best, and the lens and the lens support are moved. For example, when the position control is autofocus control, a focus signal at each stage is detected as information necessary for control, and the best value of the focus signal is set as a focus position, based on position information at that position. Electric power is supplied to the SMA actuator to move the lens and the lens support to the in-focus position.
特開2007-58075号公報JP 2007-58075 A 特開2007-58076号公報JP 2007-58076 A 特開2007-60530号公報JP 2007-60530 A
 前述の方法で位置制御を行う場合、前記被駆動物体が他端と接触し、停止した状態で、前記SMAアクチュエータに一定時間一定電流が流れる場合がある。この場合、前記SMAアクチュエータは収縮が規制された状態で一定時間一定電流が流される。前記SMAアクチュエータは、収縮が制限された状態で所定値以上の電流が流れると、急激に温度が上昇する特性を有している。また、前記SMAアクチュエータは、長さが変化しない状態(収縮が規制された状態)で、温度が上昇すると応力が急激に増大するという特性も有している。 When performing position control by the above-described method, a constant current may flow through the SMA actuator for a certain period of time when the driven object is in contact with the other end and stopped. In this case, the SMA actuator is supplied with a constant current for a certain period of time while the contraction is restricted. The SMA actuator has a characteristic that the temperature rapidly increases when a current of a predetermined value or more flows in a state where the contraction is limited. In addition, the SMA actuator has a characteristic that the stress rapidly increases as the temperature rises in a state where the length does not change (a state in which contraction is restricted).
 前記被駆動物体が他端に当接し、前記SMAアクチュエータに一定時間一定電流が流れると、前記SMAアクチュエータには、収縮が規制されたことにより増大した応力と、温度の上昇により増大した応力が積算されて作用する。すなわち、SMAアクチュエーの収縮が規制されているとき、前記SMAアクチュエータに一定時間一定電流が流れると、作用する応力が急激に増大する。前記SMAアクチュエータは高い応力が作用すると、作用している時間が短くても劣化する。 When the driven object comes into contact with the other end and a constant current flows through the SMA actuator for a certain period of time, the SMA actuator accumulates the stress increased by the restriction of contraction and the stress increased by the temperature rise. Acted. That is, when contraction of the SMA actuator is restricted, when a constant current flows through the SMA actuator for a certain period of time, the acting stress rapidly increases. When high stress acts on the SMA actuator, it deteriorates even if the acting time is short.
 前記SMAアクチュエータは、劣化すると、駆動に必要な電流値が劣化前の電流値よりも大きくなり、サーボ制御の精度が低下する。そして、劣化がさらに進むと前記SMAアクチュエータが破損(線状の場合、断線)してしまい、前記被駆動物体を駆動できなくなってしまう致命的な欠陥となる。 When the SMA actuator deteriorates, the current value necessary for driving becomes larger than the current value before deterioration, and the accuracy of servo control is reduced. When the deterioration further progresses, the SMA actuator is broken (in the case of a line, it is disconnected), which becomes a fatal defect that makes it impossible to drive the driven object.
 そこで本発明は、形状記憶合金アクチュエータの劣化を抑制し、長期間にわたって精度良く位置制御を行うことができる駆動装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a drive device that can suppress deterioration of a shape memory alloy actuator and perform position control with high accuracy over a long period of time.
 上記目的を達成するために本発明にかかる駆動装置は被駆動物体を保持する駆動枠と、前記駆動枠が所定方向に移動するようにガイドするガイド部と、前記駆動枠を移動させるための駆動力を付与する形状記憶合金アクチュエータと、前記駆動枠が移動可能範囲の端部に移動したときに前記駆動枠と接触し前記駆動枠の移動を制限する移動制限部とを備えている。そして、前記駆動装置は、前記駆動枠が前記形状記憶合金アクチュエータの駆動力により移動し、前記移動制限部で移動を制限される直前で、前記移動制限部に接触するまでの時間を遅延する遅延部を備えている。 To achieve the above object, a driving apparatus according to the present invention includes a driving frame that holds a driven object, a guide portion that guides the driving frame to move in a predetermined direction, and a drive that moves the driving frame. A shape memory alloy actuator that applies force; and a movement restricting portion that contacts the drive frame and restricts the movement of the drive frame when the drive frame moves to an end of a movable range. The drive device is a delay that delays a time until the drive frame moves by the driving force of the shape memory alloy actuator and contacts the movement restriction unit immediately before the movement restriction unit restricts the movement. Department.
 この構成によると、前記遅延部が、前記駆動枠が前記移動制限部に接近してから、前記移動制限部に接触するまでの時間を遅延させる。これにより、前記形状記憶合金アクチュエータの収縮が規制された状態で、前記形状記憶合金アクチュエータに一定時間一定電流が流れるのを抑制することができる。 According to this configuration, the delay unit delays the time from when the drive frame approaches the movement restriction unit until it comes into contact with the movement restriction unit. Accordingly, it is possible to suppress a constant current from flowing through the shape memory alloy actuator for a certain period of time in a state where the contraction of the shape memory alloy actuator is regulated.
 これにより、前記形状記憶合金アクチュエータの劣化を抑制し、移動の精度が低下するのを抑制することができる。また、劣化を抑制することで、SMAアクチュエータの寿命を延ばすことができ、駆動装置を長期にわたり安定して使用することができる。 Thereby, it is possible to suppress the deterioration of the shape memory alloy actuator and to suppress the movement accuracy. Further, by suppressing the degradation, the life of the SMA actuator can be extended, and the drive device can be used stably over a long period of time.
 上記構成において、前記遅延部として、前記移動制限部の近傍で前記駆動枠の移動方向を前記所定方向とは異なる方向に移動させる移動方向変換部とすることが可能である。 In the above-described configuration, the delay unit may be a movement direction conversion unit that moves the movement direction of the drive frame in a direction different from the predetermined direction in the vicinity of the movement restriction unit.
 この構成によると、前記駆動枠が前記移動制限部に接触した後も、前記所定方向と異なる方向に移動するので、前記駆動枠が前記移動制限部に接触した瞬間に前記駆動枠が停止しない。これにより、前記駆動枠が前記移動制限部に接触してから、前記形状記憶合金アクチュエータからの駆動力の出力が停止されるまでにタイムラグがあっても、前記形状記憶合金アクチュエータは収縮を続けることができ、急激に応力が増加するのを抑制することができる。 According to this configuration, even after the drive frame comes into contact with the movement restriction unit, the drive frame moves in a direction different from the predetermined direction, so that the drive frame does not stop at the moment when the drive frame comes into contact with the movement restriction unit. As a result, the shape memory alloy actuator continues to contract even if there is a time lag after the drive frame comes into contact with the movement restricting portion until the output of the driving force from the shape memory alloy actuator is stopped. And a sudden increase in stress can be suppressed.
 これにより、前記形状記憶合金アクチュエータの劣化を抑制し、移動の精度が低下するのを抑制することができる。また、劣化を抑制することで、前記形状記憶合金アクチュエータの寿命を延ばすことができ、駆動装置を長期にわたり安定して使用することができる。 Thereby, it is possible to suppress the deterioration of the shape memory alloy actuator and to suppress the movement accuracy. Further, by suppressing the deterioration, the life of the shape memory alloy actuator can be extended, and the drive device can be used stably over a long period of time.
 上記構成において、前記駆動枠の位置を検知する位置センサと、前記位置センサが検知した位置情報を基に前記形状記憶合金アクチュエータへ印加される電力の供給を制御するとともに、前記位置センサによって前記駆動枠の所定方向と異なる方向への移動が検知されると前記形状記憶合金アクチュエータへの電力の供給を停止する緊急停止制御を行う制御部とを備えていてもよい。 In the above configuration, the position sensor that detects the position of the drive frame, and the supply of power applied to the shape memory alloy actuator based on the position information detected by the position sensor are controlled, and the drive is performed by the position sensor. And a controller that performs emergency stop control for stopping the supply of electric power to the shape memory alloy actuator when movement of the frame in a direction different from a predetermined direction is detected.
 この構成によると、前記緊急停止制御を行うことで前記形状記憶合金アクチュエータの応力が急激に増加するのを抑制することができる。位置情報を基に前記駆動枠をサーボ制御することができるので、前記駆動枠の位置制御の精度を高めることが可能である。 According to this configuration, it is possible to suppress an abrupt increase in the stress of the shape memory alloy actuator by performing the emergency stop control. Since the drive frame can be servo-controlled based on the position information, it is possible to improve the accuracy of position control of the drive frame.
 上記構成において、前記位置センサは前記形状記憶合金アクチュエータの電気抵抗の変化を検知する抵抗検知部であってもよい。これにより、別途、位置センサを設けなくてもよく、駆動装置の構成を簡略にすることが可能である。 In the above configuration, the position sensor may be a resistance detection unit that detects a change in electrical resistance of the shape memory alloy actuator. Thereby, it is not necessary to provide a position sensor separately, and it is possible to simplify the structure of a drive device.
 上記構成において、前記制御部は前記形状記憶合金アクチュエータに対し、予め決められている最大電流又は最大電圧が所定時間以上印加されたとき前記緊急停止制御を行うものであってもよい。 In the above configuration, the controller may perform the emergency stop control when a predetermined maximum current or maximum voltage is applied to the shape memory alloy actuator for a predetermined time or more.
 上記構成において、前記形状記憶合金アクチュエータは線状であるものを挙げることができる。また、線状に限定されるものではなく、棒状、帯状、板状等前記駆動枠を正確に所定方向に移動させることができる形状を広く採用することができる。 In the above configuration, the shape memory alloy actuator may be linear. Further, the shape is not limited to a linear shape, and a shape that can accurately move the drive frame in a predetermined direction, such as a rod shape, a belt shape, or a plate shape, can be widely employed.
 上記構成において、ガイド部は前記駆動枠の移動方向の両端部を保持する互いに平行に配置された平板状の一対の板ばねを備えていてもよい。前記ガイド部は平行に配置された一対の板ばねに限定されるものではなく、前記所定方向に伸びるレール状と係合する係合部等、前記駆動枠の前記所定方向への移動をガイドでき、前記駆動枠の前記移動方向変換部による所定方向以外の方向への移動にも対応できるものを広く採用することができる。 In the above configuration, the guide portion may include a pair of flat plate springs arranged in parallel to each other to hold both ends of the drive frame in the moving direction. The guide portion is not limited to a pair of leaf springs arranged in parallel, and can guide movement of the drive frame in the predetermined direction, such as an engaging portion that engages with a rail shape extending in the predetermined direction. A device that can cope with movement of the drive frame in a direction other than a predetermined direction by the movement direction conversion unit can be widely used.
 上記構成において、前記移動方向変換部は前記移動制限部と接触したとき、前記駆動枠に回転モーメントが作用するように形成されていてもよい。このようなモーメントを発生する移動方向変換部として、例えば、前記移動方向変換部は前記駆動枠の前記移動制限部と対向する面の端縁部より、前記移動制限部に向けて突出した突出部を挙げることができる。 In the above configuration, the movement direction conversion unit may be formed such that a rotational moment acts on the drive frame when contacting the movement restriction unit. As the movement direction conversion unit that generates such a moment, for example, the movement direction conversion unit protrudes from the edge of the surface of the drive frame facing the movement restriction unit toward the movement restriction unit. Can be mentioned.
 上記構成において、前記移動方向変換部が前記駆動枠の前記移動制限部と対向する面に形成されており、前記移動制限部は前記移動方向変換部と接触する凸部を備えており、前記移動方向変換部の先端及び凸部の少なくとも一方の先端は斜めに切断されているものであってもよい。 In the above configuration, the movement direction conversion unit is formed on a surface of the drive frame that faces the movement limitation unit, and the movement limitation unit includes a convex portion that contacts the movement direction conversion unit, and the movement At least one of the tip of the direction changing portion and the convex portion may be cut obliquely.
 上述した駆動装置が用いられているものとして、デジタルカメラの撮像レンズを駆動するレンズ駆動装置を挙げることができる。 A lens driving device that drives an imaging lens of a digital camera can be used as the driving device described above.
 本発明によると、形状記憶合金アクチュエータの劣化を抑制し、長期間にわたって精度良く位置制御を行うことができる駆動装置を提供することができる。 According to the present invention, it is possible to provide a driving device capable of suppressing the deterioration of the shape memory alloy actuator and performing position control with high accuracy over a long period of time.
本発明にかかる駆動装置の一例を用いたレンズ駆動装置の概略平面図である。It is a schematic plan view of the lens drive device using an example of the drive device concerning this invention. 図1に示すレンズ駆動装置をII側から見た側面図である。It is the side view which looked at the lens drive device shown in FIG. 1 from the II side. 図2に示すレンズ駆動装置の要部のブロック図である。It is a block diagram of the principal part of the lens drive device shown in FIG. 図1に示すレンズ駆動装置でオートフォーカス処理を行うときのレンズの位置と時間の関係を表す図である。It is a figure showing the relationship between the position of a lens and time when performing an autofocus process with the lens drive device shown in FIG. 図1に示すレンズ駆動装置でオートフォーカス処理を行う工程を示すフローチャートである。It is a flowchart which shows the process of performing an autofocus process with the lens drive device shown in FIG. 図2に示すレンズ駆動装置の移動方向変換部が移動制限部と接触したときの側面図である。It is a side view when the moving direction conversion part of the lens drive device shown in FIG. 2 contacts the movement restricting part. 図6に示すレンズ駆動装置のレンズ駆動枠が回動しているときの側面図である。It is a side view when the lens drive frame of the lens drive device shown in FIG. 6 is rotating. 本発明にかかる駆動装置の他の例を用いたレンズ駆動装置の側面図である。It is a side view of the lens drive device using the other example of the drive device concerning the present invention. 図8に示すレンズ駆動装置が移動規制部と接触した状態を示す側面図である。It is a side view which shows the state which the lens drive device shown in FIG. 8 contacted the movement control part. 本発明にかかる駆動装置のさらに他の例を用いたレンズ駆動装置の平面図である。It is a top view of the lens drive device using the further another example of the drive device concerning the present invention. 図10に示すレンズ駆動装置の側面図である。It is a side view of the lens drive device shown in FIG. 本発明にかかる駆動装置の他の例を用いたレンズ駆動装置の側面図である。It is a side view of the lens drive device using the other example of the drive device concerning the present invention.
 以下に本発明の実施形態を図面を参照して説明する。図1は本発明にかかる駆動装置の一例を用いたレンズ駆動装置の概略平面図であり、図2は図1に示すレンズ駆動装置をII側から見た側面図である。なお、図1において、便宜上、移動制限部5、天板部6、上板ばね71、下板ばね72及びバイアスばね8の図示は省略している。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic plan view of a lens driving device using an example of a driving device according to the present invention, and FIG. 2 is a side view of the lens driving device shown in FIG. In FIG. 1, for the sake of convenience, illustration of the movement limiting unit 5, the top plate unit 6, the upper plate spring 71, the lower plate spring 72, and the bias spring 8 is omitted.
 図1及び図2に示すように、レンズ駆動装置Laはベース部1と、結像光学系であるレンズユニット2と、ベース部1上に配置されレンズユニット2を光軸AX方向に沿って移動させるレバー部3と、ベース部1上に配置されレバー部3を駆動する駆動部4と、ベース部1と平行となるように配置された移動制限部5(図2参照)と、ベース部1と移動制限部5との間に配置された天板部6(図2参照)と、ベース部4及び天板部6に固定されレンズユニット2を保持する上板ばね71、下板ばね72(図2参照)と、レンズユニット1を押圧するバイアスばね8(図2参照)とを備えている。 As shown in FIGS. 1 and 2, the lens driving device La includes a base unit 1, a lens unit 2 that is an imaging optical system, and the lens unit 2 that is disposed on the base unit 1 and moves along the optical axis AX direction. A lever portion 3 to be driven, a drive portion 4 disposed on the base portion 1 to drive the lever portion 3, a movement restricting portion 5 (see FIG. 2) disposed so as to be parallel to the base portion 1, and the base portion 1 And a top plate portion 6 (see FIG. 2) disposed between the base plate 4 and the top plate portion 6, and an upper plate spring 71 and a lower plate spring 72 (which hold the lens unit 2). 2) and a bias spring 8 (see FIG. 2) for pressing the lens unit 1.
 ベース部1はレンズ駆動装置Laの底部を構成するものであり、レンズ駆動装置Laの取り付け対象となる部材(例えば携帯電話機のフレームやマウント基板等)に固定される部材である。ベース部1は平面視正方形の板状部材であるが、それに限定されるものではなく、平面視円形、多角形等、取り付け対象となる部材にあわせた形状とすることが可能である。また、ベース部1は樹脂の成型体であるが、それに限定されるものではなく、板状のものを広く採用することが可能である。 The base unit 1 constitutes the bottom of the lens driving device La, and is a member fixed to a member (for example, a frame of a mobile phone or a mount substrate) to which the lens driving device La is attached. The base portion 1 is a plate-like member having a square shape in plan view, but is not limited thereto. The base portion 1 may have a shape that matches a member to be attached, such as a circular shape or a polygonal shape in plan view. Further, the base portion 1 is a resin molded body, but is not limited thereto, and a plate-like one can be widely used.
 ベース部1、移動制限部5及び天板部6は支柱等を介して連結されていてもよく、一体で形成されていてもよい。ベース部1、移動制限部5及び天板部6はレンズユニット2が移動するときに、移動しない固定の部材である。また、移動制限部5はレンズ駆動装置Laが取り付けられる取り付け対象となる部材の一部を代用することも可能である。 The base unit 1, the movement limiting unit 5 and the top plate unit 6 may be connected via a support column or the like, or may be integrally formed. The base unit 1, the movement limiting unit 5, and the top plate unit 6 are fixed members that do not move when the lens unit 2 moves. Further, the movement restricting unit 5 can substitute a part of a member to be attached to which the lens driving device La is attached.
 レンズユニット2は、被駆動体である撮像レンズ21と、撮像レンズ21が保持されたレンズ保持枠(駆動枠)22とを備えている。撮像レンズ21は、対物レンズ、フォーカスレンズ、ズームレンズ等を有し、図示を省略した撮像素子に対する結像光学系を構成している。なお、撮像レンズ21は複数のレンズで構成されているが、単一のレンズで構成されていてもよい。 The lens unit 2 includes an imaging lens 21 which is a driven body, and a lens holding frame (driving frame) 22 on which the imaging lens 21 is held. The imaging lens 21 includes an objective lens, a focus lens, a zoom lens, and the like, and constitutes an imaging optical system for an imaging element (not shown). The imaging lens 21 is composed of a plurality of lenses, but may be composed of a single lens.
 レンズ駆動枠22は円筒形状の枠体(いわゆる玉枠)であって中心軸と光軸AXとが重なるように配置されている。レンズ駆動枠22の対物側先端(移動制限部5側の先端)の側周壁には、径方向に突出し、180度の角度差を有する一対の支持部23が形成されている。 The lens drive frame 22 is a cylindrical frame (so-called ball frame) and is arranged so that the central axis and the optical axis AX overlap. A pair of support portions 23 protruding in the radial direction and having an angular difference of 180 degrees are formed on the side peripheral wall of the objective-side tip (tip on the movement restricting portion 5 side) of the lens drive frame 22.
 レンズユニット2は天板部6に形成された開口に挿入され、且つ、平面視において一対の支持部23がベース部1の一対の対角の近傍に位置するように、ベース部1上に配置されている。天板部6及びベース部1にはそれぞれ上側板ばね71及び下側板ばね72が互いに平行となるように取り付けられており、レンズユニット2は上側板ばね71及び下側板ばね72に上下を保持されている。これにより、レンズユニット2はベース部1、移動制限部5及び天板部6に対して変位可能に支持されており、なおかつ、その変位の自由度は光軸AXに沿った方向に規制される。 The lens unit 2 is inserted into the opening formed in the top plate portion 6 and is disposed on the base portion 1 so that the pair of support portions 23 are positioned in the vicinity of the pair of diagonals of the base portion 1 in plan view. Has been. An upper leaf spring 71 and a lower leaf spring 72 are attached to the top plate portion 6 and the base portion 1 so as to be parallel to each other, and the lens unit 2 is held up and down by the upper leaf spring 71 and the lower leaf spring 72. ing. Thereby, the lens unit 2 is supported so as to be displaceable with respect to the base portion 1, the movement restricting portion 5 and the top plate portion 6, and the degree of freedom of the displacement is restricted in the direction along the optical axis AX. .
 レンズ駆動枠22の移動制限部5側の端面はバイアスばね8を受けるためのばね受け24が形成されている。ばね受け24はレンズ駆動枠22の移動制限部5側の端面の辺縁部より軸方向に突出した円筒形状を有している。バイアスばね8は一方の端部(図中下端部)がばね受け24に内嵌しており、他方の端部(図中上端部)が移動制限部5と当接している。バイアスばね8はコイルばねであり、レンズユニット2を光軸AXに沿ってベース部1方向に押す力(バイアス力)を付勢している。 A spring receiver 24 for receiving the bias spring 8 is formed on the end surface of the lens drive frame 22 on the movement restricting portion 5 side. The spring receiver 24 has a cylindrical shape that protrudes in the axial direction from the edge of the end face of the lens driving frame 22 on the movement restricting portion 5 side. One end (lower end in the figure) of the bias spring 8 is fitted into the spring receiver 24, and the other end (upper end in the figure) is in contact with the movement restricting portion 5. The bias spring 8 is a coil spring, and biases a force (bias force) that pushes the lens unit 2 toward the base portion 1 along the optical axis AX.
 そして、レンズ駆動枠22には、ばね受け24の移動制限部5側の端部より突出した移動方向変換部25が形成されている。移動方向変換部25はレンズ駆動枠22が移動制限部5に接近してから、接触するまでの時間を遅延する遅延部の一例である。移動方向変換部25はレンズユニット2が移動制限部5と接触するときに最初に接触し、レンズユニット2の移動方向を変換する。移動方向変換部25は一対の支持部23のそれぞれと90度の角度差を有する位置に形成されている。 The lens drive frame 22 is formed with a movement direction conversion section 25 that protrudes from the end of the spring receiver 24 on the movement restriction section 5 side. The movement direction conversion unit 25 is an example of a delay unit that delays the time from when the lens drive frame 22 approaches the movement restriction unit 5 until it comes into contact. When the lens unit 2 comes into contact with the movement restriction unit 5, the movement direction conversion unit 25 comes into contact first and converts the movement direction of the lens unit 2. The moving direction converting portion 25 is formed at a position having an angle difference of 90 degrees with each of the pair of supporting portions 23.
 なお、図1、図2に示すレンズユニット2において、移動方向変換部25は直方体形状のものが採用されているが、それに限定されるものではなく、移動制限部5側が曲面状に形成されているものや、尖った錐体形状のものであってもよい。また、ばね受け24との接続面も長方形に限定されるものではなく、円形、楕円形、多角形等ばね受け24と接続可能な形状を広く採用することが可能である。 In the lens unit 2 shown in FIGS. 1 and 2, the moving direction conversion unit 25 is a rectangular parallelepiped shape, but is not limited thereto, and the movement limiting unit 5 side is formed in a curved surface shape. Or a pointed cone shape. Also, the connection surface with the spring receiver 24 is not limited to a rectangle, and a shape that can be connected to the spring receiver 24 such as a circle, an ellipse, or a polygon can be widely used.
 レバー部3は、一対の支持部23を介してレンズユニット2と係合し、レンズユニット2に光軸AX方向上向き(移動制限部5に向かう方向)の駆動力を付与するものである。レバー部3は、平面視円弧状のアーム部31と、アーム部31の中間の基端部分よりアーム部31と直交するように形成された延設部32とを有しており、側面視において180度回転させたL字形状の部材である。 The lever portion 3 engages with the lens unit 2 via a pair of support portions 23, and applies a driving force upward in the optical axis AX direction (direction toward the movement restriction portion 5) to the lens unit 2. The lever portion 3 includes an arm portion 31 having a circular arc shape in plan view, and an extending portion 32 formed so as to be orthogonal to the arm portion 31 from an intermediate base end portion of the arm portion 31. It is an L-shaped member rotated 180 degrees.
 アーム部31は基端部分を挟んで対称の形状を有しており、レンズユニット2の外周面に近接しつつ二股に分かれ、レンズユニット2の片側半分を包囲するように形成されている。アーム部31の先端(両端)は、平面視において、レンズユニット2の一対の支持部23のそれぞれと重なる位置まで達している。アーム部31の先端は支持部23と接触し、支持部23に駆動力を付与する変位出力部311が形成されている。 The arm portion 31 has a symmetrical shape across the base end portion, and is divided into two forks while being close to the outer peripheral surface of the lens unit 2, and is formed so as to surround one half of the lens unit 2. The distal ends (both ends) of the arm portion 31 reach positions where they overlap with the pair of support portions 23 of the lens unit 2 in plan view. A distal end of the arm part 31 is in contact with the support part 23, and a displacement output part 311 for applying a driving force to the support part 23 is formed.
 延設部32は上端部でアーム部31と連結されている。延設部32は、下端部(アーム部31が連結されているのと反対側の端部)に、駆動部4が係合し、レバー部3を介してレンズユニット2を駆動するための駆動力が付与される変位入力部321を備えている。 The extended portion 32 is connected to the arm portion 31 at the upper end. The extended portion 32 is driven to drive the lens unit 2 via the lever portion 3 with the drive portion 4 engaged with a lower end portion (an end portion on the opposite side to which the arm portion 31 is connected). A displacement input unit 321 to which a force is applied is provided.
 レバー部3はベース部1の角部のうち、一対の支持部23が位置する角部以外の角部の近傍に配置されている。ベース部1のレバー部3が配置される角部の近傍には、ベース部1に立設配置された支持脚部11が備えられている。支持脚部11の支持部111は光軸AX方向と直交し、ベース部1と平行となる方向に延びる円柱状の曲面を有している。レバー部3のアーム部31と延設部32との境界となる屈曲部33が、支持部111と接触しており、これにより、レバー部3が支持部111周りに揺動可能に支持されている。 The lever portion 3 is disposed in the vicinity of the corner portion of the base portion 1 other than the corner portion where the pair of support portions 23 are located. In the vicinity of the corner portion where the lever portion 3 of the base portion 1 is disposed, a support leg portion 11 that is erected on the base portion 1 is provided. The support portion 111 of the support leg 11 has a cylindrical curved surface extending in a direction orthogonal to the optical axis AX direction and parallel to the base portion 1. A bent portion 33 which becomes a boundary between the arm portion 31 and the extending portion 32 of the lever portion 3 is in contact with the support portion 111, and thereby the lever portion 3 is supported so as to be swingable around the support portion 111. Yes.
 駆動部4は、形状記憶合金(Shape Memory Alloy、以下SMAという)を線状に形成したSMAアクチュエータ41と、SMAアクチュエータ41の両端部を固定し、SMAアクチュエータ41に通電するための一対の電極42とを備えている。 The drive unit 4 includes a SMA actuator 41 in which a shape memory alloy (Shape Memory Alloy, hereinafter referred to as SMA) is linearly formed, and a pair of electrodes 42 for fixing both ends of the SMA actuator 41 and energizing the SMA actuator 41. And.
 SMAアクチュエータ41として例えばNi-Ti合金等をワイヤー状に形成したものを挙げることができる。また、SMAアクチュエータとして、ワイヤー状のものに限定されるものではなく、アーム部を動かすことのできる形状(例えば、棒状、帯状、板状等)のものを広く採用することが可能である。 As the SMA actuator 41, for example, a Ni-Ti alloy or the like formed in a wire shape can be used. In addition, the SMA actuator is not limited to a wire-like one, and a shape (for example, a rod shape, a belt shape, a plate shape, etc.) that can move the arm portion can be widely adopted.
 図1、図2に示すように、SMAアクチュエータ41はレバー部3の延設部32に形成された変位入力部321に巻きまわされており、延設部32で折り返すV字状に配置されている。一対の電極42はベース部1の角部のうち、レンズユニット2の支持部23が配置されている角部の近傍にそれぞれ配置されている。一対の電極42はSMAアクチュエータ41に通電するとともに、作動時にSMAアクチュエータ41から発生する力を受けるものであり、ベース部1にしっかりと固定されている。一対の電極42のそれぞれはSMAアクチュエータ41のV字状の折り返し点(変位入力部321)から各電極42までの長さが等しくなるように配置されている。これにより、SMAアクチュエータ41の変位入力部321を挟んで両側の伸縮量が等しくなり、レバー部3の移動時の傾きを抑えることができる。また、駆動時のSMAアクチュエータ41とレバー部3とのずれによる摩擦(及び磨耗)を抑制することができる。 As shown in FIGS. 1 and 2, the SMA actuator 41 is wound around a displacement input portion 321 formed in the extending portion 32 of the lever portion 3, and is arranged in a V shape that is folded back by the extending portion 32. Yes. The pair of electrodes 42 are respectively disposed in the vicinity of the corner portion of the base portion 1 where the support portion 23 of the lens unit 2 is disposed. The pair of electrodes 42 energize the SMA actuator 41 and receive a force generated from the SMA actuator 41 during operation, and are firmly fixed to the base portion 1. Each of the pair of electrodes 42 is disposed so that the length from the V-shaped folding point (displacement input portion 321) of the SMA actuator 41 to each electrode 42 is equal. As a result, the amount of expansion / contraction on both sides of the displacement input portion 321 of the SMA actuator 41 becomes equal, and the tilt when the lever portion 3 is moved can be suppressed. In addition, friction (and wear) due to displacement between the SMA actuator 41 and the lever portion 3 during driving can be suppressed.
 また、延設部321は断面V字の溝を備えており、SMAアクチュエータ41はV字の溝にはまり込むように架け渡されている。これにより、SMAアクチュエータ41は延設部321の側面に沿う方向にずれにくく、安定的にレバー部3に懸架されている。 Further, the extending portion 321 is provided with a groove having a V-shaped cross section, and the SMA actuator 41 is bridged so as to fit into the V-shaped groove. Thereby, the SMA actuator 41 is not easily displaced in the direction along the side surface of the extended portion 321, and is stably suspended on the lever portion 3.
 駆動部4が駆動されていないとき、レンズユニット2の底面はベース部1と接触している。このとき、SMAアクチュエータ41は緊張した状態で取り付けられており、SMAアクチュエータ41は変位入力部321を引っ張る。レバー部3の変位出力部311が持ち上げられ、変位出力部311が支持部23の下部と接触する。 When the drive unit 4 is not driven, the bottom surface of the lens unit 2 is in contact with the base unit 1. At this time, the SMA actuator 41 is attached in a tensioned state, and the SMA actuator 41 pulls the displacement input unit 321. The displacement output part 311 of the lever part 3 is lifted, and the displacement output part 311 contacts the lower part of the support part 23.
 SMAはそれ自体の温度によって結晶相が変化するものである。SMAアクチュエータ41は、低温状態のときはマルテンサイト相であり、高温状態のときはオーステナイト相である。そして、SMAアクチュエータ41は温度変化によって可逆的に相変態を繰り返すことができる。SMAアクチュエータ41は相変態することで伸長又は収縮する。また、SMAアクチュエータ41は所定の電気抵抗を有する導体であり、SMAアクチュエータ41に通電することでジュール熱が発生する。SMAアクチュエータ41はこのジュール熱によってそれ自体の温度を変化させ、相変態することで伸縮する。 SMA has a crystalline phase that changes with its own temperature. The SMA actuator 41 is a martensite phase when in a low temperature state, and an austenite phase when in a high temperature state. And the SMA actuator 41 can repeat a phase transformation reversibly by a temperature change. The SMA actuator 41 expands or contracts due to phase transformation. The SMA actuator 41 is a conductor having a predetermined electrical resistance, and Joule heat is generated when the SMA actuator 41 is energized. The SMA actuator 41 changes its temperature by this Joule heat and expands and contracts by phase transformation.
 レンズ駆動装置Laでは、駆動部4が作動していない、すなわち、SMAアクチュエータ41に通電されていないとき、レンズユニット2はバイアスばね8によってバイアス力が付勢されており、ベース部1と接触した原点(ホームポジション)で停止している。このとき、レンズ駆動枠22の下端部がベース部1と当接することで、レンズユニット2の位置が決定されている。 In the lens driving device La, when the driving unit 4 is not operating, that is, when the SMA actuator 41 is not energized, the lens unit 2 is biased by the bias spring 8 and is in contact with the base unit 1. Stopped at the origin (home position). At this time, the position of the lens unit 2 is determined by the lower end portion of the lens driving frame 22 coming into contact with the base portion 1.
 電極42を介して電力が供給されると、SMAアクチュエータ41はジュール発熱し、温度が上昇する。SMAアクチュエータの温度の上昇によって、SMAアクチュエータはマルテンサイト相からオーステナイト相に相変態し収縮する。SMAアクチュエータ41が収縮することで、変位入力部321に引張力F1が作用する。レバー部3は支持部111を中心に揺動し、アーム部31の先端に形成された変位出力部311が支持部23をバイアス力の作用方向と反対方向に押す。これにより、レンズユニット2は光軸AX方向に沿って移動制限部5に向けて移動する。 When electric power is supplied through the electrode 42, the SMA actuator 41 generates Joule heat and the temperature rises. As the temperature of the SMA actuator increases, the SMA actuator undergoes phase transformation from the martensite phase to the austenite phase and contracts. As the SMA actuator 41 contracts, a tensile force F <b> 1 acts on the displacement input unit 321. The lever portion 3 swings around the support portion 111, and a displacement output portion 311 formed at the tip of the arm portion 31 pushes the support portion 23 in the direction opposite to the direction in which the bias force is applied. Thereby, the lens unit 2 moves toward the movement restricting unit 5 along the optical axis AX direction.
 このとき、SMAアクチュエータ41への通電電流を調整することで、発熱量を調整し、引張力F1の力量を調整することができる。引張力F1を調整することで、レンズユニット2の変位量を調整することができる。 At this time, by adjusting the energization current to the SMA actuator 41, the amount of heat generation can be adjusted, and the amount of the tensile force F1 can be adjusted. The amount of displacement of the lens unit 2 can be adjusted by adjusting the tensile force F1.
 そして、SMAアクチュエータ41への通電が停止(又は、電圧が所定の値まで低下)されると、SMAアクチュエータ41のジュール発熱量が減少し、SMAアクチュエータ41の温度が低下する。SMAアクチュエータ41の温度が低下するとオーステナイト相からマルテンサイト相に相変態する。この相変態によって、SMAアクチュエータ41は伸長し、変位入力部321に作用していた引張力F1が消失し、レンズユニット2はバイアス力によってホームポジションに戻る。 When the energization to the SMA actuator 41 is stopped (or the voltage is reduced to a predetermined value), the amount of Joule heat generated by the SMA actuator 41 is reduced, and the temperature of the SMA actuator 41 is lowered. When the temperature of the SMA actuator 41 decreases, the austenite phase is transformed into the martensite phase. By this phase transformation, the SMA actuator 41 extends, the tensile force F1 acting on the displacement input unit 321 disappears, and the lens unit 2 returns to the home position by the bias force.
 このように、駆動部4はSMAアクチュエータ41への通電ON-OFFの切り替えによって、レンズユニット2を光軸AXに沿って変位させることができる。また、SMAアクチュエータ41への通電電流の大きさを調整することで引張力F1の力量を調整し、レンズユニット2の変位量も調整することができる。 Thus, the drive unit 4 can displace the lens unit 2 along the optical axis AX by switching the energization ON / OFF to the SMA actuator 41. Further, by adjusting the magnitude of the energization current to the SMA actuator 41, the amount of the tensile force F1 can be adjusted, and the displacement amount of the lens unit 2 can also be adjusted.
 SMAは相変化に応じて抵抗値が変化する特性も有している。すなわち、SMAアクチュエータ41の抵抗値と収縮量、或いは、SMAアクチュエータ41の抵抗値とレンズユニット2の位置との間には相関がある。この特性を利用してレンズ駆動装置Laでは、レンズユニット2の位置情報として、SMAアクチュエータ41の抵抗値を用いている。なお、SMAアクチュエータ41は予め定められた電流が印加される制御(定電流制御)が行われている。そのとき、SMAアクチュエータ41の両端での電圧を測定することで、電流値と電圧値とからSMAアクチュエータ41の抵抗値を検知することが可能である。 SMA also has the characteristic that the resistance value changes according to the phase change. That is, there is a correlation between the resistance value of the SMA actuator 41 and the contraction amount, or the resistance value of the SMA actuator 41 and the position of the lens unit 2. Using this characteristic, the lens driving device La uses the resistance value of the SMA actuator 41 as the position information of the lens unit 2. Note that the SMA actuator 41 is controlled to be supplied with a predetermined current (constant current control). At that time, by measuring the voltage at both ends of the SMA actuator 41, the resistance value of the SMA actuator 41 can be detected from the current value and the voltage value.
 以下に、レンズ駆動装置Laにおけるレンズユニットの位置制御について図面を参照して説明する。図3は図2に示すレンズ駆動装置の要部のブロック図である。図3に示すように、レンズ駆動装置Laは、SMAアクチュエータ41に駆動電流を供給する駆動電源(定電流源)Psと、SMAアクチュエータ41の駆動を制御する制御部Contとを備えている。なお、以下の説明では、制御部ContはSMAアクチュエータ41の駆動の制御を行うものとして説明するが、それに限定されるものではなく、他の制御もできるものであってもかまわない。 Hereinafter, the position control of the lens unit in the lens driving device La will be described with reference to the drawings. FIG. 3 is a block diagram of a main part of the lens driving device shown in FIG. As illustrated in FIG. 3, the lens driving device La includes a driving power source (constant current source) Ps that supplies a driving current to the SMA actuator 41 and a control unit Cont that controls driving of the SMA actuator 41. In the following description, the control unit Cont is described as performing the drive control of the SMA actuator 41, but the present invention is not limited to this, and other controls may be performed.
 まず、制御部Contについて説明する。制御部ContはCPU等の演算処理装置を含むものである。制御部Contは演算部C1と、演算部C1によって実行される処理プログラム、処理に必要な情報及び処理によって得られた情報等の情報が格納される記憶部M1と、SMAアクチュエータの抵抗値を検知する抵抗検知部R1と、時間を測定する計時部Tmとを備えている。なお、制御部Contにおいて、抵抗検知部R1として、CPU等のA/Dポートを利用しているが、それには限定されない。 First, the control unit Cont will be described. The control unit Cont includes an arithmetic processing unit such as a CPU. The control unit Cont detects the resistance value of the SMA actuator, the calculation unit C1, the processing program executed by the calculation unit C1, the storage unit M1 in which information such as information necessary for processing and information obtained by the processing is stored. A resistance detecting unit R1 for measuring time and a time measuring unit Tm for measuring time. In addition, although A / D ports, such as CPU, are utilized as resistance detection part R1 in control part Cont, it is not limited to it.
 抵抗検知部R1は所定の電流が流れている状態のSMAアクチュエータ41の両端の電圧を測定し、電流値及び電圧値を基にSMAアクチュエータ41の抵抗値を検知する。演算部C1は抵抗検知部R1にて検知されたSMAアクチュエータ41の抵抗値を基にレンズユニット2を目標位置に駆動するための駆動電流値を算出する。演算部C1は駆動電源Psに対して、SMAアクチュエータ41に算出された駆動電流値を通電させる指示を出す。 The resistance detector R1 measures the voltage across the SMA actuator 41 in a state where a predetermined current is flowing, and detects the resistance value of the SMA actuator 41 based on the current value and the voltage value. The calculation unit C1 calculates a drive current value for driving the lens unit 2 to the target position based on the resistance value of the SMA actuator 41 detected by the resistance detection unit R1. The calculation unit C1 instructs the drive power supply Ps to energize the calculated drive current value to the SMA actuator 41.
 レンズユニット2がホームポジションにあるときの抵抗値を検知するため、SMAアクチュエータ41にはレンズユニット2が移動しない程度の微弱な電流が印加される。このときのSMAアクチュエータ41の両端部の電圧値をもとに抵抗値を検知し、レンズユニット2がホームポジションにあるときのSMAアクチュエータ41の抵抗値とする。また、レンズユニット2がホームポジションにあるとき、SMAアクチュエータ41は最も伸長した状態で、抵抗値は最も大きい。 In order to detect the resistance value when the lens unit 2 is at the home position, a weak current that does not move the lens unit 2 is applied to the SMA actuator 41. The resistance value is detected based on the voltage values at both ends of the SMA actuator 41 at this time, and is set as the resistance value of the SMA actuator 41 when the lens unit 2 is at the home position. When the lens unit 2 is at the home position, the SMA actuator 41 is in the most extended state and the resistance value is the largest.
 レンズ駆動装置Laにおける位置制御のひとつであるオートフォーカス処理について図面を参照して説明する。図4は図1に示すレンズ駆動装置でオートフォーカス処理を行うときのレンズの位置と時間の関係を表す図であり、図5は図1に示すレンズ駆動装置でオートフォーカス処理を行う工程を示すフローチャートである。 An autofocus process which is one of position controls in the lens driving device La will be described with reference to the drawings. FIG. 4 is a diagram showing the relationship between the lens position and time when autofocus processing is performed by the lens driving device shown in FIG. 1, and FIG. 5 shows the steps of performing autofocus processing by the lens driving device shown in FIG. It is a flowchart.
 図4に示すように、制御部Contは駆動電源Psに指示を送り、レンズユニット2をホームポジションから段階的に移動するようにSMAアクチュエータ41に電流を印加する。制御部Contは各段階におけるSMAアクチュエータ41の抵抗値(レンズユニット2の位置情報)とフォーカス情報とを記憶しておき、フォーカス情報を基に合焦位置を決定する。そして、制御部Contは駆動電源PsにSMAアクチュエータ41の抵抗値が合焦位置での抵抗値となるよにSMAアクチュエータ41に通電させる。これにより、レンズユニット2は合焦位置に移動する。 As shown in FIG. 4, the control unit Cont sends an instruction to the drive power supply Ps, and applies a current to the SMA actuator 41 so as to move the lens unit 2 stepwise from the home position. The controller Cont stores the resistance value (position information of the lens unit 2) of the SMA actuator 41 and the focus information at each stage, and determines the focus position based on the focus information. Then, the controller Cont energizes the SMA actuator 41 so that the resistance value of the SMA actuator 41 becomes the resistance value at the in-focus position. As a result, the lens unit 2 moves to the in-focus position.
 オートフォーカス処理では、図4に示すように、複数の段階に分けてレンズユニット2を移動させ、合焦位置を決定している。レンズユニット2のフォーカス情報を測定する段階の段数については任意であるが、図4では、15段階に分けてフォーカス情報を測定している。なお、段階の数が多いほどオートフォーカスの精度は上がるが、合焦位置の決定に時間がかかることは言うまでもない。 In the autofocus process, as shown in FIG. 4, the lens unit 2 is moved in a plurality of stages to determine the in-focus position. The number of steps for measuring the focus information of the lens unit 2 is arbitrary, but in FIG. 4, the focus information is measured in 15 steps. Although the accuracy of autofocus increases as the number of steps increases, it goes without saying that it takes time to determine the in-focus position.
 図5を参照して、オートフォーカス処理の詳細について説明する。演算部C1は、現在、レンズユニット2が図4におけるどの段階から次の段階へ移動しているのかを認識する必要がある。そこで、オートフォーカス処理において、レンズユニット2がどの段階からどの段階に移動しているのかを確認するための引数Nが用いられている。オートフォーカス処理が開始されたとき、レンズユニット2はホームポジションから第1段目に移動するものであり、引数Nに1が入力される(ステップS01)。 The details of the autofocus process will be described with reference to FIG. The calculation unit C1 needs to recognize from which stage in FIG. 4 the lens unit 2 is currently moving to the next stage. Therefore, in the autofocus process, an argument N for confirming from which stage the lens unit 2 has moved is used. When the autofocus process is started, the lens unit 2 moves from the home position to the first stage, and 1 is input to the argument N (step S01).
 演算部C1は、引数Nを基に記憶部M1よりSMAアクチュエータ41の目標抵抗値Rを呼び出す(ステップS02)。この目標抵抗値Rとは、レンズユニット2が次の段階の位置に移動したときのSMAアクチュエータ41の抵抗値である。例えば、引数Nが1のときはSMAアクチュエータ41が第1段目の位置に移動した後の抵抗値である。制御開始時において、SMAアクチュエータ41の抵抗値は検知されておらず、電流値の演算ができない。そこで、レンズユニット2がホームポジションからスタートしたとき(制御が開始されたとき)とそれ以外のときとで区別する必要がある。このフォーカス制御がスタート直後であるかどうかを判別するため、演算部C1は引数Nが1であるかどうか判断する(ステップS03)。 The calculation unit C1 calls the target resistance value R of the SMA actuator 41 from the storage unit M1 based on the argument N (step S02). The target resistance value R is the resistance value of the SMA actuator 41 when the lens unit 2 moves to the next stage position. For example, when the argument N is 1, it is the resistance value after the SMA actuator 41 has moved to the first stage position. At the start of control, the resistance value of the SMA actuator 41 is not detected, and the current value cannot be calculated. Therefore, it is necessary to distinguish between when the lens unit 2 starts from the home position (when control is started) and other times. In order to determine whether or not the focus control is immediately after the start, the calculation unit C1 determines whether or not the argument N is 1 (step S03).
 引数Nが1のとき(ステップS03でYESのとき)、演算部C1はレンズユニット2の駆動が開始された直後であると認識する。このとき、レンズユニット2はホームポジションにあり、SMAアクチュエータ41には通電されていない。演算部C1は、レンズユニット2がホームポジションにあるときのSMAアクチュエータ41の抵抗値を測定するための所定電流値を設定する(ステップS04)。この所定電流値は上述したとおり、レンズユニット2が移動しない程度の微弱な電流値であり、記憶部M1から呼び出されるものである。 When the argument N is 1 (YES in step S03), the calculation unit C1 recognizes that it is immediately after the driving of the lens unit 2 is started. At this time, the lens unit 2 is at the home position, and the SMA actuator 41 is not energized. The calculation unit C1 sets a predetermined current value for measuring the resistance value of the SMA actuator 41 when the lens unit 2 is at the home position (step S04). As described above, the predetermined current value is a weak current value such that the lens unit 2 does not move, and is called from the storage unit M1.
 一方、オートフォーカス処理が開始直後でない、すなわち、引数Nが1でないとき(ステップS03でNOのとき)、少なくとも1回は後述のステップS08で算出された抵抗値の差分値drが算出されている。演算部C1はその差分値drを基にSMAアクチュエータ41に印加する電流値を算出する(ステップS05)。 On the other hand, when the autofocus process is not immediately after starting, that is, when the argument N is not 1 (NO in step S03), the difference value dr of the resistance value calculated in step S08 described later is calculated at least once. . The calculation unit C1 calculates a current value applied to the SMA actuator 41 based on the difference value dr (step S05).
 ステップS05で演算された電流値はSMAアクチュエータ41に印加してもSMAアクチュエータ41が過剰に加熱されない最適な電流値である。すなわち、ステップS05で演算される電流値は、SMAアクチュエータ41にレンズユニット2を移動させるのに最適なジュール熱を発生させ、SMAアクチュエータ41の抵抗値rを目標抵抗値Rにすばやく近づける(差分値drを0に近づける)電流値である。 The current value calculated in step S05 is an optimal current value that does not heat the SMA actuator 41 excessively even when applied to the SMA actuator 41. That is, the current value calculated in step S05 generates Joule heat that is optimal for moving the lens unit 2 in the SMA actuator 41, and quickly brings the resistance value r of the SMA actuator 41 close to the target resistance value R (difference value). current value that brings dr close to 0).
 演算部C1は駆動電源Psに対し、SMAアクチュエータ41にステップS04で設定された所定電流値又はステップS05で算出された電流値を駆動電流値ApとしてSMAアクチュエータ41に印加させる指示を出し、指示を受けた駆動電源PsはSMAアクチュエータ41に駆動電流値Apの電流を印加する(ステップS06)。 The calculation unit C1 instructs the drive power supply Ps to apply the SMA actuator 41 to the SMA actuator 41 with the predetermined current value set in step S04 or the current value calculated in step S05 as the drive current value Ap. The received drive power supply Ps applies a current having a drive current value Ap to the SMA actuator 41 (step S06).
 ステップS06において、SMAアクチュエータ41に駆動電流値Apが通電された後、抵抗検知部R1は、SMAアクチュエータ41の抵抗値rを検知する(ステップS07)。抵抗値rの検知方法は上述したとおりであり、SMAアクチュエータ41の両端の電圧値を用いて行われる。 In step S06, after the drive current value Ap is supplied to the SMA actuator 41, the resistance detection unit R1 detects the resistance value r of the SMA actuator 41 (step S07). The method of detecting the resistance value r is as described above, and is performed using the voltage values at both ends of the SMA actuator 41.
 演算部C1はステップS07において抵抗検知部R1が検知したSMAアクチュエータ41の抵抗値rと、ステップS02で呼び出された目標抵抗値Rとの差分値drを算出し(ステップS08)、差分値drが0(すなわち、検知された抵抗値rが目標抵抗値Rと同じ)かどうか判別する(ステップS09)。差分値drが0のとき(ステップS09でYESのとき)、演算部C1はレンズユニット2が所定の位置(図4における所定の段階)に移動したと認識し、そのときに撮像素子等を用いてフォーカス情報を検知する(ステップS10)。 The calculation unit C1 calculates a difference value dr between the resistance value r of the SMA actuator 41 detected by the resistance detection unit R1 in step S07 and the target resistance value R called in step S02 (step S08), and the difference value dr is calculated. It is determined whether or not the detected resistance value r is equal to the target resistance value R (step S09). When the difference value dr is 0 (YES in step S09), the calculation unit C1 recognizes that the lens unit 2 has moved to a predetermined position (a predetermined stage in FIG. 4), and at that time, an image sensor or the like is used. Then, focus information is detected (step S10).
 そして、ステップS10で検知したフォーカス情報と抵抗値rとを記憶部M1に備えられているデータベースに格納する(ステップS11)。なお、フォーカス情報としては、撮像素子等から得られる画像情報から抽出されるコントラスト情報を用いているが、それに限定されるものではない。ステップS11において、フォーカス情報及び抵抗値rをデータベースに格納した後、引数として現在の引数Nに1を足して新たな引数Nとする(ステップS12)。ステップS02に戻り、新たな引数Nを用いて、演算部C1は次の段階の目標抵抗値Rの設定より繰り返す。 Then, the focus information detected in step S10 and the resistance value r are stored in a database provided in the storage unit M1 (step S11). As the focus information, contrast information extracted from image information obtained from an image sensor or the like is used, but the focus information is not limited thereto. In step S11, after the focus information and the resistance value r are stored in the database, 1 is added to the current argument N as an argument to obtain a new argument N (step S12). Returning to step S02, using the new argument N, the calculation unit C1 repeats from the setting of the target resistance value R in the next stage.
 一方、SMAアクチュエータ41に所定の電流値(電流閾値As)よりも大きな電流が流れている状態で、レンズユニット2の移動制限部5への当接等により、レンズユニット2の移動が制限されると、SMAアクチュエータ41の内部応力は大きくなる。このとき、SMAアクチュエータ41の温度も上昇し、温度上昇によってさらに応力が上昇する。SMAアクチュエータ41の応力が限界応力を超えると劣化し、劣化が進むと破断してしまう。 On the other hand, the movement of the lens unit 2 is restricted by contact with the movement restriction unit 5 of the lens unit 2 while a current larger than a predetermined current value (current threshold value As) flows through the SMA actuator 41. As a result, the internal stress of the SMA actuator 41 increases. At this time, the temperature of the SMA actuator 41 also rises, and the stress further rises due to the temperature rise. When the stress of the SMA actuator 41 exceeds the limit stress, the SMA actuator 41 deteriorates, and when the deterioration progresses, it breaks.
 ここで、電流閾値Asは、SMAアクチュエータ41に印加したとき、SMAアクチュエータ41が急激に加熱され、温度上昇による応力がSMAアクチュエータ41の限界応力を超えない最大の電流値(最大電流)である。また、抵抗値rが目標抵抗値Rになったときの電流値は電流閾値Asにはならず、レンズユニット2を静止することができる引張力を変位入力部321に入力させ続けることができる電流値(電流閾値Asよりも小さい)となる。 Here, the current threshold value As is the maximum current value (maximum current) when the SMA actuator 41 is heated rapidly when applied to the SMA actuator 41 and the stress due to the temperature rise does not exceed the limit stress of the SMA actuator 41. In addition, the current value when the resistance value r becomes the target resistance value R does not become the current threshold value As, and the current that allows the displacement input unit 321 to continue to input the tensile force that can stop the lens unit 2. Value (smaller than the current threshold As).
 SMAアクチュエータ41の抵抗値rと目標抵抗値Rとの差分値drが0にならず、駆動電流値Apが電流閾値Asを連続して超えている継続時間が、SMAアクチュエータ41に作用している応力が限界応力を超える時間を積算したものより小さく設定されている限界時間を超えると、レンズユニット2が停止していると判断することができる。制御部Contはこの理屈に則ってSMAアクチュエータ41を制御している。 The difference value dr between the resistance value r of the SMA actuator 41 and the target resistance value R does not become 0, and the duration time during which the drive current value Ap continuously exceeds the current threshold value As is acting on the SMA actuator 41. When the limit time set smaller than the sum of the times when the stress exceeds the limit stress is exceeded, it can be determined that the lens unit 2 is stopped. The controller Cont controls the SMA actuator 41 in accordance with this theory.
 すなわち、ステップ09において差分値drが0でない(すなわち、検知された抵抗値rが目標抵抗値Rと異なる)とき、演算部C1は駆動電流値Apと予め決定されている電流閾値Asとを比較する(ステップS13)。駆動電流値Apが電流閾値Asよりも小さい場合(ステップS13でNOの場合)、演算部C1はSMAアクチュエータ41の抵抗値rが目標抵抗値Rよりも大きい、及び(又は)電流値が小さいと認識し、ステップS05に戻り電流値の演算をやり直す。 That is, when the difference value dr is not 0 in step 09 (that is, the detected resistance value r is different from the target resistance value R), the calculation unit C1 compares the drive current value Ap with a predetermined current threshold value As. (Step S13). When the drive current value Ap is smaller than the current threshold As (NO in step S13), the calculation unit C1 determines that the resistance value r of the SMA actuator 41 is larger than the target resistance value R and / or the current value is small. Recognize and return to step S05 to recalculate the current value.
 駆動電流値Apが電流閾値Asよりも大きい場合(ステップS13でYESの場合)、演算部C1は駆動電流値Apが電流閾値Asよりも連続して大きい経過時間を計時部Tmより呼び出し、経過時間が所定の時間(限界時間)を超えているかどうか判定する(ステップS14)。経過時間が予め決められている時間(限界時間)を超えていない時(ステップS14でNOのとき)、制御部ContはSMAアクチュエータ41が収縮動作の最中で、レンズユニット2は移動中であると認識し、引き続き通電状態を維持したままステップS07に戻りSMAアクチュエータ41の抵抗値rの検知を行う。 When the drive current value Ap is greater than the current threshold value As (YES in step S13), the calculation unit C1 calls an elapsed time in which the drive current value Ap is continuously greater than the current threshold value As from the time measuring unit Tm, and the elapsed time. Is determined to exceed a predetermined time (limit time) (step S14). When the elapsed time does not exceed a predetermined time (limit time) (NO in step S14), the control unit Cont is in the middle of contracting operation of the SMA actuator 41 and the lens unit 2 is moving. Then, the process returns to step S07 while maintaining the energized state, and the resistance value r of the SMA actuator 41 is detected.
 経過時間が所定の時間を超えている場合(ステップS14でYESの場合)、演算部C1はレンズユニット2が(移動制限部5と接触等して)停止していると認識し、電源Psに指示を送りSMAアクチュエータ41への通電を中止(ステップS15)し、SMAアクチュエータ41の駆動を中止する。これにより、SMAアクチュエータ41の加熱は中止(冷却)され、SMAアクチュエータ41は伸長し、レンズユニット2はホームポジションに戻る。 When the elapsed time exceeds the predetermined time (in the case of YES at step S14), the calculation unit C1 recognizes that the lens unit 2 is stopped (in contact with the movement limiting unit 5, etc.), and turns on the power source Ps. An instruction is sent to stop energization of the SMA actuator 41 (step S15), and driving of the SMA actuator 41 is stopped. Thereby, the heating of the SMA actuator 41 is stopped (cooled), the SMA actuator 41 extends, and the lens unit 2 returns to the home position.
 以上のように、図4に示すどの段階への移動であるかを引数を用いて確認し、目標抵抗値Rを段階ごとに変更することで、レンズユニット2を次の段階に移動させるための目標抵抗値を正確に呼び出すことができ、正確にレンズユニット2を移動させることができる。記憶部M1のデータベースには、各段階でのSMAアクチュエータ41の抵抗値とフォーカス情報とが格納されており、演算部C1は各フォーカス情報を基に合焦位置を決定し、そのときのSMAアクチュエータ41の抵抗値rpを決定する。 As described above, the stage to which the movement shown in FIG. 4 is confirmed using the argument, and the target resistance value R is changed for each stage, thereby moving the lens unit 2 to the next stage. The target resistance value can be accurately called and the lens unit 2 can be moved accurately. The database of the storage unit M1 stores the resistance value and focus information of the SMA actuator 41 at each stage, and the calculation unit C1 determines the in-focus position based on each focus information, and the SMA actuator at that time A resistance value rp of 41 is determined.
 演算部C1は合焦位置での抵抗値rpを基に駆動電流値を算出し、その駆動電流値をSMAアクチュエータ41に通電するように駆動電源Psに指示を送る。駆動電源PsがSMAアクチュエータ41に通電し、抵抗検知部R1で検知された抵抗値が合焦位置での抵抗値rpであることが演算部C1で確認された状態でレンズ駆動装置Laはレンズユニット41を合焦位置に移動させ、オートフォーカス処理は完了する(図4参照)。合焦位置において、撮像素子で被写体画像の撮像が行われた後、演算部C1は駆動電源Psに指示を送り、SMAアクチュエータ41への通電を終了する。これにより、レンズユニット2に作用しているSMAアクチュエータ41からの力が小さくなり、レンズユニット2はホームポジションに戻る。なお、撮像終了後、記憶部M1にある抵抗値とフォーカス情報を格納したデータベースの中身は消去しても良く、保持し続けていてもよい。 The calculation unit C1 calculates a drive current value based on the resistance value rp at the in-focus position, and sends an instruction to the drive power supply Ps so as to energize the SMA actuator 41 with the drive current value. When the driving power source Ps energizes the SMA actuator 41 and the operation unit C1 confirms that the resistance value detected by the resistance detection unit R1 is the resistance value rp at the in-focus position, the lens driving device La is the lens unit. 41 is moved to the in-focus position, and the autofocus process is completed (see FIG. 4). After the subject image is picked up by the image pickup device at the in-focus position, the calculation unit C1 sends an instruction to the drive power source Ps and ends the energization of the SMA actuator 41. Thereby, the force from the SMA actuator 41 acting on the lens unit 2 is reduced, and the lens unit 2 returns to the home position. Note that the contents of the database storing the resistance value and the focus information in the storage unit M1 may be erased or kept after the imaging is completed.
 以上示したように、レンズ駆動装置Laにおいて抵抗検知部R1は、レンズユニットの位置を検知するための位置センサとしての役目を果たしているが、抵抗検知部R1の変わりにレンズユニット2の位置を検知する位置センサを備えていてもよい。その場合、演算部C1はSMAアクチュエータ41の抵抗値の変わりに位置センサからのレンズユニットの位置情報を利用し、レンズユニット2の位置決め制御(SMAアクチュエータ41への駆動電流値の決定)を行うことが可能である。また、抵抗値と位置情報と両方を検知できる構成とし、両方の情報を用いて駆動電流値を決定するようにしても良い。SMAアクチュエータ41は劣化すると抵抗が大きくなるので、抵抗値と位置情報とを比較することで、SMAアクチュエータ41の劣化の程度を確認することも可能である。 As described above, in the lens driving device La, the resistance detection unit R1 serves as a position sensor for detecting the position of the lens unit, but detects the position of the lens unit 2 instead of the resistance detection unit R1. A position sensor may be provided. In that case, the calculation unit C1 uses the position information of the lens unit from the position sensor instead of the resistance value of the SMA actuator 41 to perform positioning control of the lens unit 2 (determination of the drive current value to the SMA actuator 41). Is possible. Further, both the resistance value and the position information may be detected, and the drive current value may be determined using both information. Since the resistance of the SMA actuator 41 increases, the degree of deterioration of the SMA actuator 41 can be confirmed by comparing the resistance value and the position information.
 上述したレンズユニットの位置決め制御では、SMAアクチュエータ41に通電する電流値で制御(定電流制御)を行っているものが記載されているが、印加する電圧で制御(定電圧制御)を行うものであってもよい。 In the positioning control of the lens unit described above, the control (constant current control) is performed with the current value supplied to the SMA actuator 41, but the control (constant voltage control) is performed with the applied voltage. There may be.
 SMAアクチュエータ41は、所定値以上の電流が流れている状態で収縮が制限されると、温度が急激に上昇する。SMAアクチュエータ41は、長さが変化しない状態において、温度が上昇すると応力が増大するという特性も有している。レンズ駆動装置Laにおいてレンズユニット2が移動制限部5に接触し、移動が停止されると、SMAアクチュエータ41の収縮が妨げられたことによる応力の増大と、温度上昇による応力の増大が積算される。すなわち、レンズユニット2の移動が停止した状態でSMAアクチュエータ41に所定値以上の電流が流れると、短時間であってもSMAアクチュエータ41の内部応力は急激に上昇する。SMAアクチュエータ41は内部応力の急激な増大により劣化してしまう。 When the contraction of the SMA actuator 41 is restricted in a state where a current exceeding a predetermined value flows, the temperature rapidly increases. The SMA actuator 41 also has a characteristic that stress increases as the temperature rises in a state where the length does not change. When the lens unit 2 comes into contact with the movement restricting unit 5 and stops moving in the lens driving device La, the increase in stress due to the inhibition of the contraction of the SMA actuator 41 and the increase in stress due to the temperature rise are integrated. . That is, when a current of a predetermined value or more flows through the SMA actuator 41 in a state where the movement of the lens unit 2 is stopped, the internal stress of the SMA actuator 41 rapidly increases even for a short time. The SMA actuator 41 is deteriorated by a sudden increase in internal stress.
 そこで本発明の駆動装置を用いたレンズ駆動装置Laには、SMAアクチュエータ41の内部応力の急激な増加を抑制するために、ばね受け24より軸方向に突出した移動方向変換部25が備えられている。本発明にかかる駆動装置を用いたレンズ駆動装置が移動制限部と接触した後の動作について図面を参照して説明する。図6は図1に示すレンズ駆動装置の移動方向変換部が移動制限部と接触したときの側面図であり、図7は図6に示すレンズ駆動装置のレンズ駆動枠が回動しているときの側面図である。 Therefore, the lens driving device La using the driving device of the present invention is provided with a moving direction converting portion 25 protruding in the axial direction from the spring receiver 24 in order to suppress a rapid increase in internal stress of the SMA actuator 41. Yes. The operation after the lens driving device using the driving device according to the present invention comes into contact with the movement limiting unit will be described with reference to the drawings. 6 is a side view when the moving direction conversion unit of the lens driving device shown in FIG. 1 comes into contact with the movement restricting unit, and FIG. 7 is when the lens driving frame of the lens driving device shown in FIG. 6 rotates. FIG.
 レンズ駆動装置Laにおいて、移動方向変換部25はばね受け24の一部(一対の支持部23のそれぞれと90度の角度差を有する位置)より移動制限部5に向かって突出している。移動方向変換部25が移動制限部5に当接すると、レンズ駆動枠22の光軸AXに沿う方向への移動は制限される。このとき、SMAアクチュエータ41には、最大電流(或いはそれを超える電流)が流れている。ここで、最大電流とは、上述したように、SMAアクチュエータ41に印加したとき、SMAアクチュエータ41が急激に加熱され、温度上昇による応力がSMAアクチュエータ41の限界応力を超えない最大の電流値である。移動方向変換部25が移動制限部5に当接した状態で変位出力部311からの力が支持部23に付与されると、レンズ駆動枠22には移動方向変換部25を中心に、ばね受け24の他の部分を移動制限部5と接触する方向に回転させるモーメントMtが作用する(図6参照)。 In the lens driving device La, the moving direction converting portion 25 protrudes toward a movement restricting portion 5 from a part of the spring receiver 24 (a position having an angle difference of 90 degrees with each of the pair of supporting portions 23). When the movement direction conversion unit 25 contacts the movement restriction unit 5, the movement of the lens drive frame 22 in the direction along the optical axis AX is restricted. At this time, the maximum current (or current exceeding it) flows through the SMA actuator 41. Here, as described above, the maximum current is a maximum current value at which when the SMA actuator 41 is suddenly heated when applied to the SMA actuator 41, the stress due to the temperature rise does not exceed the limit stress of the SMA actuator 41. . When a force from the displacement output unit 311 is applied to the support unit 23 in a state where the movement direction conversion unit 25 is in contact with the movement restriction unit 5, the lens driving frame 22 has a spring bearing around the movement direction conversion unit 25. A moment Mt that rotates the other part of the 24 in a direction in contact with the movement restriction unit 5 acts (see FIG. 6).
 このとき、レンズ駆動枠22は移動方向変換部25を中心に回動可能であり、レンズ駆動枠22は、モーメントMtの作用によって、上板ばね71及び下板ばね72を弾性変形させつつ、移動方向変換部25を中心に回動する(図7参照)。SMAアクチュエータ41には最大電流(或いはそれを超える電流)が流れている状態であるが、レンズ駆動枠22が回動する間、SMAアクチュエータ41は収縮でき、応力が急激に増大するのを抑制することができる。この回動している間に、制御部Contはレンズユニット2が移動制限部5と接触しレンズユニット2が停止していることを検知することができる。そして、制御部ContはSMAアクチュエータ41に限界応力が作用する前に通電を停止することができるので、SMAアクチュエータ41の劣化を抑制することができる。なお、移動方向変換部25の形状及び大きさが、移動方向変換部25が移動制限部5に接触した後、レンズ駆動枠22が回転している間に所定の時間(図5のステップS14で示す所定時間)を超えるように形成されていることが好ましい。 At this time, the lens driving frame 22 can be rotated around the moving direction conversion unit 25, and the lens driving frame 22 moves while elastically deforming the upper leaf spring 71 and the lower leaf spring 72 by the action of the moment Mt. It rotates around the direction changer 25 (see FIG. 7). Although the SMA actuator 41 is in a state where a maximum current (or a current exceeding it) flows, the SMA actuator 41 can contract while the lens driving frame 22 rotates, and the stress is prevented from increasing rapidly. be able to. During this rotation, the control unit Cont can detect that the lens unit 2 is in contact with the movement limiting unit 5 and the lens unit 2 is stopped. And since the control part Cont can stop electricity supply before a limit stress acts on the SMA actuator 41, degradation of the SMA actuator 41 can be suppressed. It should be noted that the shape and size of the movement direction conversion unit 25 is determined so that the lens drive frame 22 is rotated for a predetermined time after the movement direction conversion unit 25 contacts the movement restriction unit 5 (in step S14 in FIG. 5). The predetermined time is preferably exceeded.
 以上示した駆動装置を用いることで、SMAアクチュエータ41の劣化を抑えることができるので、長期間にわたり、安定して被駆動物体(レンズユニット2)を精度良く駆動することができる駆動装置を提供することが可能である。上記構成において、SMAアクチュエータ41の制御をSMAアクチュエータ41に印加する電流値で行っているが、それに限定されるものではなく、電圧値で行ってもよい。 Since the deterioration of the SMA actuator 41 can be suppressed by using the driving device shown above, a driving device that can stably drive the driven object (lens unit 2) with high accuracy over a long period of time is provided. It is possible. In the above configuration, the SMA actuator 41 is controlled by the current value applied to the SMA actuator 41, but is not limited thereto, and may be performed by the voltage value.
 本発明にかかる駆動装置の他の例を用いたレンズ駆動装置について図面を参照して説明する。図8は本発明にかかる駆動装置の他の例を用いたレンズ駆動装置の側面図であり、図9は図8に示すレンズ駆動装置が移動規制部と接触した状態を示す側面図である。レンズ駆動装置Lbは、レンズ駆動枠22bに形成されている支持部23bが1個であり、支持部23bにSMAアクチュエータ41が直接係合されている。それ以外の部分はレンズ駆動装置Laと同じ構成を有しており、実質上同じ部分には同じ符号が付してある。また、実質上同じ部分の詳細な説明は省略する。 A lens driving device using another example of the driving device according to the present invention will be described with reference to the drawings. FIG. 8 is a side view of a lens driving device using another example of the driving device according to the present invention, and FIG. 9 is a side view showing a state where the lens driving device shown in FIG. 8 is in contact with the movement restricting portion. The lens driving device Lb has one support portion 23b formed on the lens drive frame 22b, and the SMA actuator 41 is directly engaged with the support portion 23b. Other portions have the same configuration as the lens driving device La, and substantially the same portions are denoted by the same reference numerals. Detailed descriptions of substantially the same parts are omitted.
 図8、図9に示すように、SMAアクチュエータ41は、レンズ駆動枠22bの移動方向に対して傾いて配置されている。SMAアクチュエータ41が収縮することでレンズ駆動枠22bに光軸AX方向の駆動力が作用する。 As shown in FIGS. 8 and 9, the SMA actuator 41 is inclined with respect to the moving direction of the lens driving frame 22b. As the SMA actuator 41 contracts, a driving force in the optical axis AX direction acts on the lens driving frame 22b.
 移動方向変換部25は平面視において支持部23bとレンズ駆動枠22bの径方向に並んで配置されている。移動方向変換部25が移動制限部5と接触した状態でSMAアクチュエータ41が収縮すると、移動方向変換部25を中心としてレンズ駆動枠22bを回動させるモーメントが作用する。このモーメントによって、レンズ駆動枠22bは上板ばね71、下板ばね72を弾性変形させながら回動する。この回動の間もSMAアクチュエータ41は最大電流(或いはそれを超える電流)が印加されつつ収縮できるので、SMAアクチュエータ41の応力の急激な増加を抑制することができ、SMAアクチュエータ41の劣化を抑えることが可能である。 The moving direction converting portion 25 is arranged side by side in the radial direction of the support portion 23b and the lens driving frame 22b in plan view. When the SMA actuator 41 contracts in a state where the movement direction conversion unit 25 is in contact with the movement restriction unit 5, a moment that rotates the lens drive frame 22b around the movement direction conversion unit 25 acts. By this moment, the lens driving frame 22b rotates while elastically deforming the upper leaf spring 71 and the lower leaf spring 72. Even during this rotation, the SMA actuator 41 can be contracted while a maximum current (or a current exceeding it) is applied. Therefore, a rapid increase in stress of the SMA actuator 41 can be suppressed, and deterioration of the SMA actuator 41 can be suppressed. It is possible.
 本発明にかかる駆動装置のさらに他の例を用いたレンズ駆動装置について図面を参照して説明する。図10は本発明にかかる駆動装置のさらに他の例を用いたレンズ駆動装置の平面図であり、図11は図10に示すレンズ駆動装置の側面図である。レンズ駆動装置Lcは、レンズ駆動枠22cと、レンズ駆動枠22cのガイドとして、光軸AX方向に伸びるガイド軸26を備えている以外は、レンズ駆動装置Lbと同じ構成を有しており、実質上同じ部分には、同じ符号が付してある。また、実質上同じ部分の詳細な説明は省略する。 A lens driving device using still another example of the driving device according to the present invention will be described with reference to the drawings. FIG. 10 is a plan view of a lens driving device using still another example of the driving device according to the present invention, and FIG. 11 is a side view of the lens driving device shown in FIG. The lens driving device Lc has the same configuration as the lens driving device Lb except that it includes a lens driving frame 22c and a guide shaft 26 extending in the optical axis AX direction as a guide for the lens driving frame 22c. The same parts are denoted by the same reference numerals. Detailed descriptions of substantially the same parts are omitted.
 図10に示すレンズ駆動装置Lcは、レンズ駆動枠22cの外周部に円筒形状の被ガイド部221cが形成されており、ガイド軸26が被ガイド部221cを貫通している。被ガイド部221cの内径はガイド軸26の外径よりも大きく形成されており、被ガイド部221cはガイド軸26に遊嵌されている。そして、バイアスばね8cはガイド軸26に外嵌しており、一方の端部が被ガイド部221cと、他方の端部が移動制限部5とそれぞれ接触し、被ガイド部221cをベース部1に(図11中下方に)向かって力を付与している。さらに、レンズ駆動枠22cでは、支持部23cが被ガイド部221cのガイド軸26を挟んで撮像レンズと反対側に形成されている。 In the lens driving device Lc shown in FIG. 10, a cylindrical guided portion 221c is formed on the outer periphery of the lens driving frame 22c, and the guide shaft 26 penetrates the guided portion 221c. The inner diameter of the guided portion 221 c is formed larger than the outer diameter of the guide shaft 26, and the guided portion 221 c is loosely fitted on the guide shaft 26. The bias spring 8c is externally fitted to the guide shaft 26. One end of the bias spring 8c is in contact with the guided portion 221c and the other end is in contact with the movement restricting portion 5, and the guided portion 221c is brought into contact with the base portion 1. A force is applied (downward in FIG. 11). Further, in the lens driving frame 22c, the support portion 23c is formed on the opposite side of the imaging lens with the guide shaft 26 of the guided portion 221c interposed therebetween.
 SMAアクチュエータ41は、平面視において、支持部23cで折り返すV字状に形成されている。さらに、SMAアクチュエータ41の両端部は、電極42に固定されているものであり、電極42の支持部23cよりも、光軸AX方向に移動制限部5に近接した位置で固定されている。これにより、SMAアクチュエータ41が収縮すると、支持部23cにガイド軸26に沿って移動制限部5に向かう駆動力が作用する。 The SMA actuator 41 is formed in a V shape that is folded back by the support portion 23c in plan view. Furthermore, both end portions of the SMA actuator 41 are fixed to the electrode 42 and are fixed at positions closer to the movement limiting portion 5 in the optical axis AX direction than the support portion 23c of the electrode 42. As a result, when the SMA actuator 41 contracts, a driving force toward the movement restricting portion 5 along the guide shaft 26 acts on the support portion 23c.
 さらに、レンズ駆動枠22cにおいて、移動方向変換部25cは被ガイド部221cとレンズ駆動枠22cの中心軸を中心とする中心角度が90度となる位置に形成されている。図11に示すように、レンズ駆動枠22cが移動制限部5と接触するとき、移動方向変換部25cを中心に回転する。移動方向変換部25cを被ガイド部221cと90度となるように形成することで、被ガイド部221cとガイド軸26との隙間が小さくても、レンズ駆動枠22cの回動量を多くすることが可能である。なお、移動方向変換部25cは被ガイド部25cに対して90度の位置に限定されるものではない。 Further, in the lens driving frame 22c, the moving direction converting portion 25c is formed at a position where the central angle about the central axis of the guided portion 221c and the lens driving frame 22c is 90 degrees. As shown in FIG. 11, when the lens drive frame 22c comes into contact with the movement restriction unit 5, the lens driving frame 22c rotates around the movement direction conversion unit 25c. By forming the moving direction converting portion 25c so as to be 90 degrees with the guided portion 221c, even if the gap between the guided portion 221c and the guide shaft 26 is small, the rotation amount of the lens driving frame 22c may be increased. Is possible. In addition, the movement direction conversion part 25c is not limited to a 90 degree position with respect to the to-be-guided part 25c.
 本発明にかかる駆動機構の他の例を用いたレンズ駆動装置について図面を参照して説明する。図12は本発明にかかる駆動装置の他の例を用いたレンズ駆動装置の側面図である。図12に示すレンズ駆動装置Ldは移動方向変換部25dと移動制限部5dとが異なる以外、レンズ駆動装置Laと同じ構成を有するものであり、実質上同じ部分には同じ符号が付してある。また、実質上同じ部分についての詳細な説明は省略する。 A lens driving device using another example of the driving mechanism according to the present invention will be described with reference to the drawings. FIG. 12 is a side view of a lens driving device using another example of the driving device according to the present invention. The lens drive device Ld shown in FIG. 12 has the same configuration as the lens drive device La except that the movement direction conversion unit 25d and the movement restriction unit 5d are different, and substantially the same parts are denoted by the same reference numerals. . Detailed descriptions of substantially the same parts are omitted.
 図12に示すように、レンズ駆動装置Ldの移動方向変換部25dは、移動制限部5d側の端面251dが斜めに形成されている。また、移動制限部5dは凸部51dを備えており、凸部51dの先端部は移動方向変換部25dの端面251dと平行又は略平行となるように形成されている。レンズ駆動枠22dが移動制限部5dに向かって移動し、移動方向変換部25dの端面251dが移動制限部5dの凸部51dと接触すると、端面251dが凸部51dに沿っていどうするので、レンズ駆動枠22dは移動制限部5dに沿う方向に移動方向が変更される。これにより、SMAアクチュエータ41はレンズ駆動枠22dと移動制限部5dとが接触した後も、収縮を続けることができるので、急激な応力の上昇を抑制でき、劣化を抑えることができる。 As shown in FIG. 12, the movement direction conversion section 25d of the lens driving device Ld has an end face 251d on the movement limiting section 5d side formed obliquely. Further, the movement restricting portion 5d includes a convex portion 51d, and the tip portion of the convex portion 51d is formed to be parallel or substantially parallel to the end surface 251d of the moving direction converting portion 25d. When the lens driving frame 22d moves toward the movement restricting portion 5d and the end surface 251d of the moving direction converting portion 25d comes into contact with the convex portion 51d of the movement restricting portion 5d, the end surface 251d moves along the convex portion 51d. The moving direction of the frame 22d is changed in a direction along the movement restricting portion 5d. As a result, the SMA actuator 41 can continue to contract even after the lens drive frame 22d and the movement restricting portion 5d come into contact with each other, so that an abrupt increase in stress can be suppressed and deterioration can be suppressed.
 本発明は、デジタルカメラの撮像レンズ等の微少な部材を移動させる駆動装置に利用することができる。 The present invention can be used for a driving device that moves a minute member such as an imaging lens of a digital camera.
1 ベース部
2 レンズユニット
21 撮像レンズ
22 レンズ駆動枠
23 支持部
24 ばね受け
25 移動方向変換部
3 レバー部
31 アーム部
311 変位出力部
32 延設部
321 変位入力部
4 駆動部
5 移動制限部
6 天板部
71 上板ばね
72 下板ばね
8 バイアスばね
DESCRIPTION OF SYMBOLS 1 Base part 2 Lens unit 21 Imaging lens 22 Lens drive frame 23 Support part 24 Spring receiver 25 Movement direction conversion part 3 Lever part 31 Arm part 311 Displacement output part 32 Extension part 321 Displacement input part 4 Drive part 5 Movement restriction part 6 Top plate portion 71 Upper plate spring 72 Lower plate spring 8 Bias spring

Claims (11)

  1.  被駆動物体を保持する駆動枠と、
     前記駆動枠が所定方向に移動するようにガイドするガイド部と、
     前記駆動枠を移動させるための駆動力を付与する形状記憶合金アクチュエータと、
     前記駆動枠が移動可能範囲の端部に移動したときに前記駆動枠と接触し前記駆動枠の移動を制限する移動制限部とを備え、
     前記駆動枠が、前記形状記憶合金アクチュエータの駆動力により移動し、前記移動制限部で移動を制限される直前で、前記移動制限部に接触するまでの時間を遅延する遅延部を備えていることを特徴とする駆動装置。
    A drive frame for holding a driven object;
    A guide portion for guiding the drive frame to move in a predetermined direction;
    A shape memory alloy actuator for applying a driving force for moving the driving frame;
    A movement restriction unit that contacts the drive frame when the drive frame moves to an end of the movable range and restricts the movement of the drive frame;
    The drive frame moves by the driving force of the shape memory alloy actuator, and includes a delay unit that delays the time until the movement limit unit comes into contact immediately before the movement limit unit restricts the movement. A drive device characterized by the above.
  2.  前記遅延部は、前記移動制限部の近傍で前記駆動枠の移動方向を前記所定方向とは異なる方向に移動させる移動方向変換部である請求項1に記載の駆動装置。 2. The drive device according to claim 1, wherein the delay unit is a movement direction conversion unit that moves a movement direction of the drive frame in a direction different from the predetermined direction in the vicinity of the movement restriction unit.
  3.  前記駆動枠の位置を検知する位置センサと、
     前記位置センサが検知した位置情報を基に前記形状記憶合金アクチュエータへ印加される電力の供給を制御するとともに、前記位置センサによって前記駆動枠の所定方向と異なる方向への移動が検知されると前記形状記憶合金アクチュエータへの電力の供給を停止する緊急停止制御を行う制御部とを備えている請求項2に記載の駆動装置。
    A position sensor for detecting the position of the drive frame;
    The power supply applied to the shape memory alloy actuator is controlled based on the position information detected by the position sensor, and the movement of the drive frame in a direction different from the predetermined direction is detected by the position sensor. The drive device according to claim 2, further comprising: a controller that performs emergency stop control for stopping power supply to the shape memory alloy actuator.
  4.  前記位置センサは前記形状記憶合金アクチュエータの電気抵抗の変化を検知する抵抗検知部を備えている請求項3に記載の駆動装置。 The drive device according to claim 3, wherein the position sensor includes a resistance detection unit that detects a change in electrical resistance of the shape memory alloy actuator.
  5.  前記制御部は前記形状記憶合金アクチュエータに対し、予め決められている最大電流又は最大電圧が所定時間以上印加されたとき前記緊急停止制御を行う請求項3に記載の駆動装置。 The drive unit according to claim 3, wherein the control unit performs the emergency stop control when a predetermined maximum current or maximum voltage is applied to the shape memory alloy actuator for a predetermined time or more.
  6.  前記形状記憶合金アクチュエータは線状である請求項1に記載の駆動装置。 The drive device according to claim 1, wherein the shape memory alloy actuator is linear.
  7.  前記ガイド部は前記駆動枠の移動方向の両端部を保持し、互いに平行に配置された平板状の一対の板ばねを備えている請求項1に記載の駆動装置。 The drive device according to claim 1, wherein the guide portion includes a pair of flat plate springs that hold both ends of the drive frame in the moving direction and are arranged in parallel to each other.
  8.  前記移動方向変換部は前記移動制限部と接触したとき、前記駆動枠に回転モーメントが作用するように形成されている請求項2に記載の駆動装置。 3. The driving device according to claim 2, wherein the moving direction converting portion is formed so that a rotational moment acts on the driving frame when the moving direction changing portion comes into contact with the movement restricting portion.
  9.  前記移動方向変換部は前記駆動枠の前記移動制限部と対向する面の端縁部より、前記移動制限部に向けて突出した突出部である請求項8に記載の駆動装置。 The driving device according to claim 8, wherein the moving direction conversion unit is a protruding portion that protrudes toward the movement limiting unit from an edge portion of a surface of the driving frame that faces the movement limiting unit.
  10.  前記移動方向変換部は前記駆動枠の前記移動制限部と対向する面に形成されており、前記移動制限部は前記移動方向変換部と接触する凸部を備えており、
     前記移動方向変換部の先端及び凸部の少なくとも一方の先端は斜めに切断されている請求項2に記載の駆動装置。
    The movement direction conversion part is formed on a surface of the drive frame that faces the movement restriction part, and the movement restriction part includes a convex part that contacts the movement direction conversion part,
    The drive device according to claim 2, wherein at least one of the tip of the moving direction converting portion and the convex portion is cut obliquely.
  11.  請求項1に記載の駆動装置を用いて、撮像レンズを駆動するレンズ駆動装置。 A lens driving device for driving an imaging lens using the driving device according to claim 1.
PCT/JP2010/063004 2009-08-06 2010-08-02 Drive device and lens drive device WO2011016411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011525876A JPWO2011016411A1 (en) 2009-08-06 2010-08-02 Driving device and lens driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-183186 2009-08-06
JP2009183186 2009-08-06

Publications (1)

Publication Number Publication Date
WO2011016411A1 true WO2011016411A1 (en) 2011-02-10

Family

ID=43544307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063004 WO2011016411A1 (en) 2009-08-06 2010-08-02 Drive device and lens drive device

Country Status (2)

Country Link
JP (1) JPWO2011016411A1 (en)
WO (1) WO2011016411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154003B2 (en) 2011-03-16 2015-10-06 Hitachi Maxell, Ltd. Non-contact power transmission system, receiving apparatus and transmitting apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251728A (en) * 2005-03-14 2006-09-21 Mitsumi Electric Co Ltd Actuator for automatic focusing
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module
JP2009134291A (en) * 2007-11-07 2009-06-18 Seiko Instruments Inc Drive module and electronic device equipped with the same
JP2009174360A (en) * 2008-01-23 2009-08-06 Konica Minolta Opto Inc Drive mechanism and drive device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098416A (en) * 2007-10-17 2009-05-07 Seiko Instruments Inc Shape memory alloy actuator and electronic equipment furnished with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251728A (en) * 2005-03-14 2006-09-21 Mitsumi Electric Co Ltd Actuator for automatic focusing
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module
JP2009134291A (en) * 2007-11-07 2009-06-18 Seiko Instruments Inc Drive module and electronic device equipped with the same
JP2009174360A (en) * 2008-01-23 2009-08-06 Konica Minolta Opto Inc Drive mechanism and drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154003B2 (en) 2011-03-16 2015-10-06 Hitachi Maxell, Ltd. Non-contact power transmission system, receiving apparatus and transmitting apparatus
US10050474B2 (en) 2011-03-16 2018-08-14 Maxell, Ltd. Non-contact power transmission system, receiving apparatus and transmitting apparatus

Also Published As

Publication number Publication date
JPWO2011016411A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP4591632B2 (en) Shape memory alloy actuator driving apparatus and method, and imaging apparatus using the same
JP5296086B2 (en) Shape memory alloy drive unit
US8446475B2 (en) Shape memory alloy actuation apparatus
JP4539784B2 (en) Shape memory alloy drive unit
JP5221672B2 (en) Control of shape memory alloy working structure
JP2010518438A5 (en)
JP4798289B2 (en) Shape memory alloy drive unit
US20110255184A1 (en) Shape memory alloy actuation apparatus
JP4918021B2 (en) Shape memory alloy actuator and electronic device including the same
WO2011016411A1 (en) Drive device and lens drive device
JP2009086142A (en) Driving device and lens driving device
WO2011111686A1 (en) Driving mechanism, driving device, and method of manufacturing driving device
WO2011145463A1 (en) Apparatus and method for driving actuator
WO2012093567A1 (en) Shape-memory alloy actuator control device and optical component drive unit
WO2011108209A1 (en) Position control device, position control method, driving device and imaging device
WO2011114604A1 (en) Optical system drive device, image capture device provided with optical system drive device, and mobile device mounted with image capture device
WO2012005072A1 (en) Shape-memory alloy actuator control device and optical component drive unit
JP4972795B2 (en) Shape memory alloy stress adjustment device
JP2009098416A (en) Shape memory alloy actuator and electronic equipment furnished with the same
JP2010003344A (en) Optical disk device and its control method
JP2009128423A (en) Drive control device
CN115769120A (en) Actuator
JP2008298805A (en) Lens driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525876

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806410

Country of ref document: EP

Kind code of ref document: A1