WO2011016108A1 - 風力発電装置及びその組み立て方法 - Google Patents
風力発電装置及びその組み立て方法 Download PDFInfo
- Publication number
- WO2011016108A1 WO2011016108A1 PCT/JP2009/063767 JP2009063767W WO2011016108A1 WO 2011016108 A1 WO2011016108 A1 WO 2011016108A1 JP 2009063767 W JP2009063767 W JP 2009063767W WO 2011016108 A1 WO2011016108 A1 WO 2011016108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main shaft
- generator
- sleeve
- shrink fit
- rotor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 7
- 239000012530 fluid Substances 0.000 claims abstract description 17
- 230000008878 coupling Effects 0.000 claims description 19
- 238000010168 coupling process Methods 0.000 claims description 19
- 238000005859 coupling reaction Methods 0.000 claims description 19
- 230000001681 protective effect Effects 0.000 claims description 13
- 238000010586 diagram Methods 0.000 description 3
- 240000004050 Pentaglottis sempervirens Species 0.000 description 2
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
- H02K7/183—Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
- H02K7/1838—Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D1/00—Couplings for rigidly connecting two coaxial shafts or other movable machine elements
- F16D1/06—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
- F16D1/08—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
- F16D1/09—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to axial loading of at least one pair of conical surfaces
- F16D1/091—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to axial loading of at least one pair of conical surfaces and comprising a chamber including a tapered piston moved axially by fluid pressure to effect clamping
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
- H02K1/185—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
- H02K1/30—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/60—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/60—Control system actuates through
- F05B2270/604—Control system actuates through hydraulic actuators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/09—Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a wind turbine generator and an assembling method thereof, and more particularly, to a coupling structure of a main shaft and a generator rotor in the wind turbine generator.
- One of the known structures for connecting the main shaft and the generator rotor is a method in which the rotor plate of the generator rotor is connected to a cylindrical sleeve, and the sleeve is connected by tightening with a shrink fit (shrink disk).
- This structure is preferable in that the coupling strength between the main shaft and the generator rotor can be easily adjusted, and the generator rotor can be connected to the main shaft by a generally available shrink fit, so that the cost can be reduced.
- Patent Document 1 discloses a coupling structure in which a rotor bearing (corresponding to a sleeve of the present application) to which a generator rotor is joined by a shrink disk (corresponding to the shrink fit of the present application) is fastened to a main shaft.
- the shrink disk is located between the generator and the bearing, and the rotor bearing is fastened to the main shaft at that position.
- the shrink disk is composed of a fixed disk and a movable disk, and the fixed disk and the movable disk are connected by a bolt.
- the bolt is inserted in parallel with the central axis of the main shaft.
- the bolt is tightened, the movable disk is pressed against the fixed disk, the inner diameter of the shrink disk is narrowed, and the rotor bearing is tightened to the main shaft.
- an object of the present invention is to provide a coupling structure of a main shaft and a generator rotor that can shorten the interval between the bearing that supports the main shaft and the generator.
- a wind turbine generator in one aspect of the present invention, includes a main shaft that supports a wind turbine rotor, a main bearing that rotatably supports the main shaft, a generator that includes a generator rotor and a stator, and a generator rotor.
- the sleeve includes a sleeve that is coupled and inserted into the main shaft, and a hydraulic shrink fit that is provided outside the sleeve and is coupled to the sleeve by tightening the sleeve to the main shaft.
- the hydraulic shrink fit is configured to tighten the sleeve to the main shaft by decreasing the inner diameter by supplying the working fluid.
- Hydraulic shrink fit can be provided in various positions. It is desirable that a hydraulic shrink fit is provided in the space inside the generator.
- the stator includes a stator magnetic pole arranged side by side in the circumferential direction of the main shaft, and first and second stator plates arranged in the axial direction of the main shaft that supports the stator magnetic pole, and the first stator plate and the main shaft Is relatively rotatable by the first generator bearing, the second stator plate and the main shaft are relatively rotatable by the second generator bearing, and the generator rotor is arranged side by side in the circumferential direction of the main shaft
- the hydraulic shrink fit is performed between the rotor support member and the first stator plate. May be provided.
- the first stator plate is preferably provided with an opening for supplying the working fluid to the hydraulic shrink fit at a position corresponding to the hydraulic shrink fit.
- the procedure for tightening the hydraulic shrink fit includes the steps of inserting the temporary protective cylinder into the opening provided in the first stator plate so that the port of the hydraulic shrink fit is positioned inside the temporary protective cylinder; It is preferable to include a step of connecting the hydraulic piping to the port inside the protective cylinder, and a step of supplying the working fluid to the hydraulic shrink fit via the hydraulic piping and fastening the sleeve to the main shaft by the hydraulic shrink fit.
- a slit is provided in a portion of the sleeve where the hydraulic shrink fit is brought into contact.
- the sleeve is divided at a position where the hydraulic shrink fit comes into contact.
- the sleeve includes first and second sleeve members arranged side by side in the axial direction of the main shaft, and the end of the first sleeve member is provided side by side in the circumferential direction of the main shaft.
- a plurality of first protrusions protruding in the main shaft are provided, and a plurality of second protrusions protruding in the axial direction of the main shaft are provided at the end of the second sleeve member.
- Each of the first protrusions is preferably inserted between two of the plurality of second protrusions.
- the hydraulic shrink fit is provided so as to abut on the first protrusion and the second protrusion.
- a wind turbine generator in another aspect of the present invention, includes a main shaft that supports a wind turbine rotor, a main bearing that rotatably supports the main shaft, a generator that includes a generator rotor and a stator, and a generator rotor. And a sleeve inserted into the main shaft, and a hydraulic shrink fit provided between the sleeve and the main shaft. The hydraulic shrink fit is configured to couple the sleeve and the main shaft by increasing the outer diameter by supplying the working fluid.
- the stator includes a stator magnetic pole arranged in a circumferential direction with respect to the main shaft, and first and second stator plates arranged in the axial direction of the main shaft that support the stator magnetic pole,
- the first stator plate and the main shaft may be relatively rotatable by the first generator bearing
- the second stator plate and the main shaft may be relatively rotatable by the second generator bearing.
- the hydraulic shrink fit is provided at a position that does not face the first and second generator bearings in the radial direction of the main shaft.
- the portion of the sleeve between the position where the first and second generator bearings are provided and the position where the sleeve abuts against the hydraulic shrink fit is configured to absorb strain generated by fastening the hydraulic shrink fit. Is preferred.
- FIG. 1 It is a conceptual diagram which shows roughly the structure of the wind power generator in one Embodiment of this invention. It is sectional drawing which shows the structure of the wind power generator in 1st Embodiment. It is sectional drawing which shows the example of the structure of a hydraulic shrink fit. It is sectional drawing which shows the example of the structure which supports a field magnet and a backplate. It is sectional drawing which shows the other example of the structure which supports a field magnet and a backplate. It is sectional drawing which shows the further another example of the structure which supports a field magnet and a backplate. It is sectional drawing which shows the example of the coupling
- FIG. 1 is a conceptual diagram schematically showing the structure of a wind turbine generator 1 in a first embodiment of the present invention.
- the wind power generator 1 of the present embodiment includes a tower 2, a nacelle base plate 3, a main shaft 4, bearings 5 and 6, bearing bases 7 and 8, and a generator 9.
- the nacelle base plate 3 is placed on the upper end of the tower 2 so as to be able to turn the yaw.
- the main shaft 4 is rotatably supported by two bearings 5 and 6, and the bearings 5 and 6 are fixed to the nacelle base plate 3 by bearing bases 7 and 8.
- a windmill rotor (not shown) is joined to one end of the main shaft 4, and the rotor of the generator 9 is connected to the other end.
- the main shaft 4 is shared by the wind turbine rotor and the generator rotor, and the wind turbine generator 1 of the present embodiment is configured as a so-called direct drive wind turbine generator.
- FIG. 2A is a cross-sectional view showing in detail the structure of the wind turbine generator 1 in the vicinity of the generator 9, in particular, the structure of the generator 9 and the combined structure of the generator 9 and the main shaft 4.
- the generator 9 includes a generator rotor 11 and a stator 12.
- the generator rotor 11 includes a field magnet 13 (rotor magnetic pole), a back plate 14 that supports the field magnet 13, and rotor plates 15 and 16 that support the back plate 14.
- the stator 12 includes a stator winding (stator magnetic pole) 17 and stator plates 18 and 19 that support the stator winding 17.
- the stator 12 is connected and fixed to the nacelle base plate 3 by a support mechanism (not shown).
- Bearing fixing members 20a and 20b are used for fixing the bearing 6 to the main shaft 4. Specifically, bearing fixing rings 20 a and 20 b are inserted into the main shaft 4, and the bearing 6 is sandwiched between the bearing fixing rings 20 a and 20 b and fixed to the main shaft 4.
- FIG. 2B is a cross-sectional view showing an example of the structure of the hydraulic shrink fit 25.
- the hydraulic shrink fit 25 includes a fixed ring 26, a movable ring 27, a support ring 28, and a ring nut 29.
- the movable ring 27 is provided with a tightening port 30a and a release port 30b.
- working fluid typically working oil
- the movable ring 27 moves in the direction of arrow A and is pressed against the fixed ring 26.
- the inner diameter 26 of the fixing ring that is, the inner diameter of the hydraulic shrink fit 25
- the sleeve 21 is fastened to the main shaft 4.
- the generator rotor 11 is fixed to the main shaft 4 by fastening the sleeve 21 coupled to the generator rotor 11 to the main shaft 4.
- a hydraulic shrink fit 25 is used to fasten the sleeve 21 to the main shaft 4.
- the movable ring 27 moves in the direction of arrow B and the tightening is released.
- the end plate 22 is used to prevent the sleeve 21 from being displaced in the axial direction (a direction parallel to the center line of the main shaft 4; the same applies hereinafter). Specifically, the end plate 22 is attached so as to straddle the end of the sleeve 21 and the end of the main shaft 4, and the sleeve 21 is sandwiched between the bearing fixing ring 20 b and the end plate 22. Thereby, the movement of the sleeve 21 in the axial direction is suppressed.
- generator bearings 23 and 24 are provided on the stator plates 18 and 19 of the stator 12, and the main shaft 4 and the sleeve 21 support the stator plates 18 and 19 via the generator bearings 23 and 24.
- the main shaft 4 and the sleeve 21 are rotatable with respect to the stator plates 18 and 19 by the generator bearings 23 and 24. This structure is effective for distributing the mechanical load due to the weight of the generator 9.
- the rotor plates 15 and 16 are used as support members for supporting the field magnet 13 and the back plate 14, but the structure for supporting the field magnet 13 and the back plate 14 can be variously changed.
- one rotor plate 15A as a support member for supporting the field magnet 13 and the back plate 14, and a reinforcing rib 31 joined to the back plate 14 and the rotor plate 15A, 32 may be used.
- a cone-shaped rotor plate 15B may be used.
- a rotor plate 15C and a reinforcing arm 15D having one end joined to the back plate 14 and the other end joined to both the rotor plate 15C may be used.
- the advantage of the structure of the wind turbine generator 1 of the present embodiment is that the distance between the bearing 6 and the generator 9 can be shortened by fixing the sleeve 21 with the hydraulic shrink fit 25.
- a hydraulic shrink fit 25 that operates with a working fluid is used, a working space is provided between the bearing 6 and the hydraulic shrink fit 25 to perform the work of tightening the hydraulic shrink fit 25 (unlike the shrink fit using bolts). There is no need.
- This makes it possible to shorten the distance between the bearing 6 and the generator 9.
- shortening the distance between the bearing 6 and the generator 9 is effective for reducing the mechanical load and the length of the main shaft.
- the use of the hydraulic shrink fit 25 in which the port for receiving the working fluid is configured so as to supply the working fluid in the radial direction of the main shaft 4 reduces the distance between the bearing 6 and the generator 9. It is further useful for conversion.
- the hydraulic shrink fit 25 is located between the bearing 6 and the generator 9, but the hydraulic shrink fit 25 may also be provided inside the generator 9. It is preferable that the hydraulic shrink fit 25 is provided inside the generator 9 in that the distance between the bearing 6 and the generator 9 can be further shortened.
- the hydraulic shrink fit 25 may be provided between the stator plate 18 and the rotor plate 15 on the bearing 6 side. Further, as shown in FIG. 5, a hydraulic shrink fit 25 may be provided between the rotor plates 15 and 16. Further, as shown in FIG. 6, it may be provided between the rotor plate 16 and the stator plate 19.
- a hydraulic shrink fit 25 may be provided at a position between the generator 9 and the end of the main shaft 4 as shown in FIG.
- a plurality of hydraulic shrink fits may be used to tighten the sleeve 21 to the main shaft 4.
- the hydraulic shrink fit 25 ⁇ / b> A is provided at a position between the generator 9 and the end of the main shaft 4, and the hydraulic shrink fit 25 ⁇ / b> B is provided at a position between the generator 9 and the bearing 6.
- two hydraulic shrink fits 25 ⁇ / b> A and 25 ⁇ / b> B are both provided inside the generator 9.
- a hydraulic shrink fit 25A is provided between the stator plate 19 and the rotor plate 16
- a hydraulic shrink fit 25B is provided between the stator plate 19 and the rotor plate 16.
- the hydraulic shrink fit 25 When the hydraulic shrink fit 25 is provided inside the generator 9, it is necessary to perform an operation for tightening the hydraulic shrink fit 25, such as supplying a working fluid to the hydraulic shrink fit 25. If foreign matter enters the generator 9 during this work, the foreign matter may cause damage to the generator 9.
- a temporary protective cylinder 40 as shown in FIG.
- An opening 18a is provided at a position near the port of the hydraulic shrink fit 25 of the stator plate 18, and the hypothetical protection cylinder 40 is inserted into the opening 18a.
- the temporary protection cylinder 40 is installed so that the port of the hydraulic shrink fit 25 is positioned inside the temporary protection cylinder 40, and the work for tightening the hydraulic shrink fit 25 is performed inside the hypothetical protection cylinder 40, thereby preventing foreign matter from entering. be able to.
- a protective tube 41 and a flexible tube 42 are used as the temporary protective cylinder 40.
- an operation of tightening the hydraulic shrink fit 25 is performed according to the following procedure. First, in a state where one end of the flexible tube 42 is connected to the end of the protective tube 41, the protective tube 41 is inserted into the opening 18 a of the stator plate 18 and fixed. At this time, the other end of the flexible tube 42 is connected to the vicinity of the port while surrounding the port of the hydraulic shrink fit 25. Further, a hydraulic pipe 43 is passed through the protective tube 41 and the flexible tube 42, and the hydraulic pipe 43 is connected to the port.
- a working fluid (typically, working oil) is supplied to the port via the hydraulic pipe 43 and the hydraulic shrink fit 25 is tightened. Thereafter, after the port is sealed, the protective tube 41, the flexible tube 42, and the hydraulic piping 43 are removed. Finally, the opening 18a is covered and the operation is completed.
- working oil typically, working oil
- FIG. 9 the generator rotor 11 having the structure of FIG. 3A is used, but those skilled in the art will understand that various structures can be used as the generator rotor 11.
- the generator rotor 11 is coupled to the main shaft 4 by the sleeve 21 being inserted into the main shaft 4 after the rotor plates 15 and 16 of the generator rotor 11 are coupled to the sleeve 21.
- the gap between the main shaft 4 and the sleeve 21 is wide when the sleeve 21 is inserted into the main shaft 4. For example, if the clearance between the main shaft 4 and the sleeve 21 is 0.5 mm or more, the sleeve 21 can be easily inserted into the main shaft 4.
- the sleeve 21 is configured so that the rigidity of the portion of the sleeve 21 that contacts the hydraulic shrink fit 25 is lower than the other portions. .
- a slit is formed in the portion of the sleeve 21 that contacts the hydraulic shrink fit 25.
- a plurality of slits 21c are provided at the end portion of the sleeve 21 as shown in FIG. 10B. It is preferable.
- reference numeral 21 d indicates a portion with which the hydraulic shrink fit 25 is brought into contact.
- the slits 21 c are formed in a shape that is long in the axial direction of the main shaft 4, and are arranged side by side in the circumferential direction of the main shaft 4.
- a plurality of slits 21c may be provided in the middle of the sleeve 21, as shown in FIG. 11B.
- the slits 21 c are formed in a shape that is long in the axial direction of the main shaft 4, and are arranged side by side in the circumferential direction of the main shaft 4.
- FIG. 11C is a side view showing an example of the structure of the sleeve 21 having a split structure.
- the sleeve 21 illustrated in FIG. 11C includes two sleeve members 51 and 52 arranged in the axial direction of the main shaft 4.
- the end of the sleeve member 51 is provided side by side in the circumferential direction of the main shaft 4, and a plurality of projecting portions 53 that protrude in the axial direction of the main shaft 4 are provided.
- the end of the sleeve member 52 is provided side by side in the circumferential direction.
- a plurality of projecting portions 54 projecting in the axial direction are provided.
- the sleeve members 51 and 52 are meshed with the protrusions 53 and 54. That is, each of the protrusions 53 of the sleeve member 51 is inserted between two of the protrusions 54 of the sleeve member 52.
- the hydraulic shrink fit 25 is fastened to a portion where the protrusions 53 and 54 are engaged with each other. Even with such a structure, the rigidity of the portion of the sleeve 21 that comes into contact with the hydraulic shrink fit 25 can be reduced.
- FIG. 12 is a cross-sectional view showing the structure of the wind turbine generator 1 according to the second embodiment of the present invention, and in particular, a cross-sectional view showing the coupling structure of the generator rotor 11 and the main shaft 4.
- a cylindrical hydraulic shrink fit 25 ⁇ / b> C is provided between the main shaft 4 and the sleeve 21.
- the hydraulic shrink fit 25C is formed so as to increase its outer diameter upon receiving a supply of working fluid (typically working oil).
- working fluid typically working oil
- the main shaft 4 and the sleeve 21 can be combined. Even in the structure in which the hydraulic shrink fit 25C as shown in FIG. 12 is provided between the main shaft 4 and the sleeve 21, no working space is required between the generator 9 and the bearing 6. The distance between the bearings 6 can be shortened.
- the hydraulic shrink fit 25C is provided between the main shaft 4 and the sleeve 21 .
- an excessive mechanical load acts on the generator bearings 23 and 24.
- the hydraulic shrink fit 25 ⁇ / b> C is provided at a position that does not face the generator bearings 23 and 24 in the radial direction of the main shaft 4.
- the portion of the sleeve 21 between the position where the generator bearings 23 and 24 are provided and the position where the generator bearings 23 and 24 abut against the hydraulic shrink fit 25C is configured to absorb the strain generated by the fastening of the hydraulic shrink fit 25C.
- the sleeve 21 has a thickness of the sleeve 21 at the cross-sections B and C where the generator bearings 23 and 24 of the sleeve 21 are provided. It is configured so as to be thinner than the thickness of the sleeve 21 in the cross section A of the portion in contact with the hydraulic shrink fit 25C.
- notches 55 and 56 may be provided at positions between the portion of the sleeve 21 that contacts the hydraulic shrink fit 25 ⁇ / b> C and the generator bearings 23 and 24.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
図1は、本発明の第1の実施形態における風力発電装置1の構造を概略的に示す概念図である。本実施形態の風力発電装置1は、タワー2と、ナセル台板3と、主軸4と、軸受5、6と、軸受台7、8、発電機9とを備えている。ナセル台板3は、タワー2の上端にヨー旋回可能に載置されている。主軸4は、2つの軸受5、6によって回転可能に支持されており、軸受5、6が、軸受台7、8によってナセル台板3に固定されている。主軸4の一端には風車ロータ(図示されない)が接合され、他端には発電機9のロータが連結されている。本実施形態の風力発電装置1では主軸4が風車ロータと発電機ロータとに共用されており、本実施形態の風力発電装置1は、いわゆるダイレクトドライブ風力発電装置として構成されている。
発電機9は、発電機ロータ11とステータ12とを備えている。発電機ロータ11は、界磁磁石13(ロータ磁極)と、界磁磁石13を支持するバックプレート14と、バックプレート14を支持するロータプレート15、16とを備えている。ステータ12は、ステータ巻線(ステータ磁極)17と、ステータ巻線17を支持するステータプレート18、19とを備えている。ステータ12は、図示されない支持機構により、ナセル台板3に連結されて固定されている。
図12は、本発明の第2の実施形態における風力発電装置1の構造を示す断面図であり、特に、発電機ロータ11と主軸4の結合構造を示す断面図である。第2の実施形態では、筒状の油圧シュリンクフィット25Cが、主軸4とスリーブ21との間に設けられる。油圧シュリンクフィット25Cは、作動流体(典型的には作業油)の供給を受けてその外径が増大するように形成されている。油圧シュリンクフィット25Cの外径が増大すると、主軸4と油圧シュリンクフィット25Cとの間に作用する摩擦力、及び、油圧シュリンクフィット25Cとスリーブ21との間に作用する摩擦力が増大し、これにより、主軸4とスリーブ21を結合させることができる。図12に示されているような油圧シュリンクフィット25Cが主軸4とスリーブ21との間に設けられる構造においても、発電機9と軸受6の間に作業スペースを必要としないから、発電機9と軸受6の間の距離を短縮することができる。
Claims (10)
- 風車ロータを支持する主軸と、
前記主軸を回転可能に支持する主軸受と、
発電機ロータとステータとを備えた発電機と、
前記発電機ロータと結合されると共に前記主軸に挿入されたスリーブと、
前記スリーブの外側に設けられ、前記スリーブを前記主軸に締め付けて結合する油圧シュリンクフィット
とを具備し、
前記油圧シュリンクフィットは、作動流体の供給によって内径が小さくなることによって前記スリーブを前記主軸に締め付けるように構成された
風力発電装置。 - 請求の範囲1に記載の風力発電装置であって、
前記油圧シュリンクフィットが前記発電機の内部の空間に設けられている
風力発電装置。 - 請求の範囲2に記載の風力発電装置であって、
第1及び第2発電機軸受を更に具備し、
前記ステータは、
前記主軸の周方向に並んで配置されたステータ磁極と、
前記ステータ磁極を支持する、前記主軸の軸方向に並べられた第1及び第2ステータプレート
とを備え、
前記第1ステータプレートと前記主軸は、前記第1発電機軸受によって相対的に回転可能であり、
前記第2ステータプレートと前記主軸は、前記第2発電機軸受によって相対的に回転可能であり、
前記発電機ロータは、
前記主軸の周方向に並んで配置されたロータ磁極と、
前記第1ステータプレートと前記第2ステータプレートの間に設けられた、前記ロータ磁極を支持するためロータ支持部材
とを備え、
前記油圧シュリンクフィットは、前記ロータ支持部材と、前記第1ステータプレートの間に設けられた
風力発電装置。 - 請求の範囲3に記載の風力発電装置であって、
前記第1ステータプレートには、前記油圧シュリンクフィットに対応する位置に、前記作動流体を前記油圧シュリンクフィットに供給するための開口が設けられている
風力発電装置。 - 請求の範囲1乃至4のいずれかに記載の風力発電装置であって、
前記スリーブの前記油圧シュリンクフィットが当接される部分にスリットが設けられた
風力発電装置。 - 請求の範囲1乃至4のいずれかに記載の風力発電装置であって、
前記スリーブは、
前記主軸の軸方向に並んで配置された第1及び第2スリーブ部材を備え、
前記第1スリーブ部材の端には、前記主軸の周方向に並んで設けられ、前記主軸の軸方向に突出する複数の第1突出部が設けられ、
前記第2スリーブ部材の端には、前記主軸の周方向に並んで設けられ、前記主軸の軸方向に突出する複数の第2突出部が設けられ、
前記複数の第1突出部のそれぞれは、前記複数の第2突出部のうちの2つの間に挿入され、
前記油圧シュリンクフィットは、前記第1突出部及び前記第2突出部に当接される
風力発電装置。 - 風車ロータを支持する主軸と、
前記主軸を回転可能に支持する主軸受と、
発電機ロータとステータとを備えた発電機と、
前記発電機ロータと結合されると共に前記主軸に挿入されたスリーブと、
前記スリーブと前記主軸の間に設けられた油圧シュリンクフィット
とを具備し、
前記油圧シュリンクフィットは、作動流体の供給によって外径が増大することによって前記スリーブと前記主軸とを結合するように構成された
風力発電装置。 - 請求の範囲7に記載の風力発電装置であって、
第1及び第2発電機軸受を更に具備し、
前記ステータは、
前記主軸に対して周方向に並んで配置されたステータ磁極と、
前記ステータ磁極を支持する、前記主軸の軸方向に並べられた第1及び第2ステータプレート
とを備え、
前記第1ステータプレートと前記主軸は、前記第1発電機軸受によって相対的に回転可能であり、
前記第2ステータプレートと前記主軸は、前記第2発電機軸受によって相対的に回転可能であり、
前記油圧シュリンクフィットが、前記主軸の半径方向において前記第1及び前記第2発電機軸受と対向しない位置に設けられている
風力発電装置。 - 請求の範囲8に記載の風力発電装置であって、
前記スリーブの前記第1及び前記第2発電機軸受が設けられる位置と前記油圧シュリンクフィットに当接する位置との間の部分が、前記油圧シュリンクフィットの締結によって発生するひずみを吸収するように構成されている
風力発電装置。 - 請求の範囲4に記載の風力発電装置の組立方法であって、
前記第1ステータプレートに設けられた前記開口に、仮設保護筒を、前記油圧シュリンクフィットのポートが前記仮設保護筒の内部に位置するように挿入する工程と、
前記仮設保護筒の内部で油圧配管を前記ポートに接続するステップと、
前記油圧配管を介して前記作動流体を前記油圧シュリンクフィットに供給して前記油圧シュリンクフィットで前記スリーブを前記主軸に締め付けるステップ
とを備える
組立方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/674,490 US8334613B2 (en) | 2008-08-22 | 2009-08-03 | Wind turbine generator and assembling method thereof |
KR1020107021914A KR101168548B1 (ko) | 2009-08-03 | 2009-08-03 | 풍력 발전 장치 및 그 조립 방법 |
CA2715939A CA2715939A1 (en) | 2009-08-03 | 2009-08-03 | Wind turbine generator and assembling method thereof |
CN200980111874.1A CN102124212B (zh) | 2009-08-03 | 2009-08-03 | 风力发电装置及其组装方法 |
PCT/JP2009/063767 WO2011016108A1 (ja) | 2009-08-03 | 2009-08-03 | 風力発電装置及びその組み立て方法 |
EP09807524A EP2463510A1 (en) | 2009-08-03 | 2009-08-03 | Wind driven generator and method of assembling same |
JP2010505500A JP5010734B2 (ja) | 2009-08-03 | 2009-08-03 | 風力発電装置及びその組み立て方法 |
AU2009342698A AU2009342698B2 (en) | 2009-08-03 | 2009-08-03 | Wind turbine generator and assembling method thereof |
BRPI0909457A BRPI0909457A2 (pt) | 2009-08-03 | 2009-08-03 | gerador de turbina eólica, e, método de montagem do mesmo. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/063767 WO2011016108A1 (ja) | 2009-08-03 | 2009-08-03 | 風力発電装置及びその組み立て方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016108A1 true WO2011016108A1 (ja) | 2011-02-10 |
Family
ID=43535857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063767 WO2011016108A1 (ja) | 2008-08-22 | 2009-08-03 | 風力発電装置及びその組み立て方法 |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2463510A1 (ja) |
JP (1) | JP5010734B2 (ja) |
KR (1) | KR101168548B1 (ja) |
CN (1) | CN102124212B (ja) |
AU (1) | AU2009342698B2 (ja) |
BR (1) | BRPI0909457A2 (ja) |
CA (1) | CA2715939A1 (ja) |
WO (1) | WO2011016108A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130181455A1 (en) * | 2011-07-06 | 2013-07-18 | Guodian United Power Technology Co., Ltd | Large scale disc-type multi-stator permanent magnet direct-drive wind power generator |
WO2014002296A1 (ja) | 2012-06-29 | 2014-01-03 | 三菱重工業株式会社 | 再生エネルギー型発電装置の軸系組立て方法及び軸系組立て治具 |
WO2021018351A1 (de) | 2019-07-29 | 2021-02-04 | Heliatek Gmbh | Organische halbleitende verbindung mit einer indolgruppe, organisches optoelektronisches bauelement mit einer solchen verbindung, und verwendung einer solchen verbindung |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012217622A1 (de) * | 2012-09-27 | 2014-03-27 | Siemens Aktiengesellschaft | Elektrogroßantrieb |
JP7242337B2 (ja) * | 2019-02-20 | 2023-03-20 | 三菱重工業株式会社 | 回転電機機械及び風力発電設備 |
EP3835574A1 (de) * | 2019-12-12 | 2021-06-16 | Wepfer Technics AG | Generator für eine direktangetriebene windkraftanlage, direktangetriebene windkraftanlage mit einem solchen generator und verfahren zum demontieren eines generators von einer hauptwelle einer direktangetriebenen windkraftanlage |
WO2021259412A1 (de) * | 2020-06-22 | 2021-12-30 | Schaeffler Technologies AG & Co. KG | Rotor und radialflussmaschine |
EP4344027A4 (en) * | 2021-05-18 | 2024-04-24 | Panasonic Intellectual Property Management Co., Ltd. | ROTOR AND ELECTRIC MOTOR |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304094A (ja) * | 2000-04-18 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | 増速機付き風力発電装置 |
JP2006046107A (ja) * | 2004-08-02 | 2006-02-16 | Yanmar Co Ltd | 風力発電装置 |
JP2007198167A (ja) * | 2006-01-24 | 2007-08-09 | Fuji Heavy Ind Ltd | 水平軸風車 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4525916A (en) * | 1982-09-08 | 1985-07-02 | Escher Wyss Gmbh | Method of coupling coaxial shafts |
DE4019747C1 (ja) * | 1990-06-21 | 1991-09-19 | J.M. Voith Gmbh, 7920 Heidenheim, De | |
DE19938436C1 (de) * | 1999-08-13 | 2001-04-12 | Otto Feller | Spannsatz |
JP2001204094A (ja) * | 2000-01-24 | 2001-07-27 | Matsushita Electric Ind Co Ltd | スピーカ |
DE10242707B3 (de) * | 2002-09-13 | 2004-04-15 | Aerodyn Engineering Gmbh | Windenergieanlge mit konzentrischer Getriebe/Generator-Anordnung |
KR100695012B1 (ko) * | 2006-03-24 | 2007-03-14 | 유니슨 주식회사 | 풍력 발전기 |
-
2009
- 2009-08-03 KR KR1020107021914A patent/KR101168548B1/ko not_active IP Right Cessation
- 2009-08-03 EP EP09807524A patent/EP2463510A1/en not_active Withdrawn
- 2009-08-03 AU AU2009342698A patent/AU2009342698B2/en not_active Ceased
- 2009-08-03 CN CN200980111874.1A patent/CN102124212B/zh not_active Expired - Fee Related
- 2009-08-03 BR BRPI0909457A patent/BRPI0909457A2/pt not_active IP Right Cessation
- 2009-08-03 JP JP2010505500A patent/JP5010734B2/ja not_active Expired - Fee Related
- 2009-08-03 WO PCT/JP2009/063767 patent/WO2011016108A1/ja active Application Filing
- 2009-08-03 CA CA2715939A patent/CA2715939A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304094A (ja) * | 2000-04-18 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | 増速機付き風力発電装置 |
JP2006046107A (ja) * | 2004-08-02 | 2006-02-16 | Yanmar Co Ltd | 風力発電装置 |
JP2007198167A (ja) * | 2006-01-24 | 2007-08-09 | Fuji Heavy Ind Ltd | 水平軸風車 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130181455A1 (en) * | 2011-07-06 | 2013-07-18 | Guodian United Power Technology Co., Ltd | Large scale disc-type multi-stator permanent magnet direct-drive wind power generator |
WO2014002296A1 (ja) | 2012-06-29 | 2014-01-03 | 三菱重工業株式会社 | 再生エネルギー型発電装置の軸系組立て方法及び軸系組立て治具 |
WO2014002297A1 (ja) | 2012-06-29 | 2014-01-03 | 三菱重工業株式会社 | 再生エネルギー型発電装置の軸系組立て方法および軸系組立て治具 |
WO2021018351A1 (de) | 2019-07-29 | 2021-02-04 | Heliatek Gmbh | Organische halbleitende verbindung mit einer indolgruppe, organisches optoelektronisches bauelement mit einer solchen verbindung, und verwendung einer solchen verbindung |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011016108A1 (ja) | 2013-01-10 |
CN102124212A (zh) | 2011-07-13 |
JP5010734B2 (ja) | 2012-08-29 |
KR101168548B1 (ko) | 2012-07-30 |
AU2009342698B2 (en) | 2012-11-01 |
BRPI0909457A2 (pt) | 2015-12-22 |
CA2715939A1 (en) | 2011-02-03 |
EP2463510A1 (en) | 2012-06-13 |
CN102124212B (zh) | 2014-05-14 |
KR20110033104A (ko) | 2011-03-30 |
AU2009342698A1 (en) | 2011-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5010734B2 (ja) | 風力発電装置及びその組み立て方法 | |
US8334613B2 (en) | Wind turbine generator and assembling method thereof | |
US9151275B2 (en) | Drive system for a wind turbine | |
JP5079001B2 (ja) | 風力発電装置 | |
WO2011092812A1 (ja) | 風力発電装置及びその保守方法 | |
JP5340383B2 (ja) | 直接駆動発電機及び風車 | |
CN102237750A (zh) | 风力涡轮机发电机以及装备有这种发电机的风力涡轮机 | |
US20110266806A1 (en) | Direct-drive wind turbine generator and bearing structure | |
US8662850B2 (en) | Wind turbine | |
US9273732B2 (en) | Bearing with a supporting element and method of supporting a first ring of a bearing | |
US8684672B2 (en) | Brake system with expansion absorbing means, generator and wind turbine | |
US20130172141A1 (en) | Drive system for a wind turbine | |
WO2012137508A1 (ja) | ハイブリッド建設機械 | |
JP2016540927A (ja) | タイロッドを介してインペラのセットを組み立てる方法、インペラ及びターボ機械 | |
US10823156B2 (en) | Segmented pitch ring for a wind turbine blade pitch system | |
JP5383817B2 (ja) | 永久磁石式回転電機及び車両用永久磁石式回転電機システム | |
US10103590B2 (en) | Permanent magnet rotor assembly for a wind turbine using a wedge attachment mechanism | |
EP2435699B1 (en) | Shaft connection using a band | |
JP2011024331A (ja) | 回転電機 | |
RU2545184C2 (ru) | Вращающаяся электрическая машина | |
TW201105858A (en) | Wind turbine apparatus and assembling method thereof | |
TW201126061A (en) | Wind-power generator and maintenance method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980111874.1 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2010505500 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009807524 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12674490 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2715939 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20107021914 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009342698 Country of ref document: AU Ref document number: 6186/CHENP/2010 Country of ref document: IN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09807524 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0909457 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100930 |