WO2011015735A1 - Procede de controle d'ecoulement d'un fluide d'admission pour un moteur a combustion interne et moteur pour la mise en œuvre dudit procede - Google Patents

Procede de controle d'ecoulement d'un fluide d'admission pour un moteur a combustion interne et moteur pour la mise en œuvre dudit procede Download PDF

Info

Publication number
WO2011015735A1
WO2011015735A1 PCT/FR2010/051192 FR2010051192W WO2011015735A1 WO 2011015735 A1 WO2011015735 A1 WO 2011015735A1 FR 2010051192 W FR2010051192 W FR 2010051192W WO 2011015735 A1 WO2011015735 A1 WO 2011015735A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
engine
intake
flow
internal combustion
Prior art date
Application number
PCT/FR2010/051192
Other languages
English (en)
Inventor
Grégory BLOKKEEL
Jean-Luc Aider
Benjamin Thiria
José Eduardo WESFREID
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Publication of WO2011015735A1 publication Critical patent/WO2011015735A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M23/04Apparatus for adding secondary air to fuel-air mixture with automatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4235Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • a method of controlling flow of an intake fluid for an internal combustion engine and engine for carrying out said method is a method of controlling flow of an intake fluid for an internal combustion engine and engine for carrying out said method.
  • the invention relates to internal combustion engines, and more particularly the control of the combustion air intake.
  • document FR2761406 discloses a direct injection internal combustion engine comprising an intake manifold for bringing a flow of combustion air into a combustion chamber.
  • the intake manifold is shaped geometrically to print, by the forced guidance of the combustion air flow in the curved end portion of the intake manifold, a swirling motion of "swirl" type in the engine cylinder.
  • the intake manifold further comprises a device to support the formation of the swirling motion.
  • Said device comprises, on the one hand, the injection into the combustion air stream of an additional incoming air flow.
  • the device may also include suction of an additional outgoing air stream.
  • the additional air flows are supplied by air supply ducts and distributed in a plurality of partial flows through inlet orifices and outlet orifices arranged in the form of a ring around the periphery of the intake duct. inlet ports being approximately opposite the outlet ports, remote from the intake valve, in the curved end portion of the intake manifold.
  • the additional incoming and outgoing air flows are supplied to the orifices by respective air supply ducts and the control of the flow rates of these additional air flows passing through the ducts is effected by control flaps mounted in said ducts. .
  • the deviation of the combustion air flow is obtained by virtue of the fact that the vector resulting from the directions of the additional fluid flows in the intake manifold is oriented in the direction of the swirling motion to be generated.
  • the additional flows are brought to the side of the combustion air flow which is placed at the rear with reference to the direction of the swirling motion.
  • the resulting vector of the directions of the additional fluid flows is oriented so as to intensify and support, by printing an additional kinetic moment, the rotational movement of the combustion air flow.
  • such a device for controlling the flow rate by adjustment flap does not allow precise quantitative regulation of the flow rates of the injected additional flows.
  • such a control means by adjustment flap does not make it possible to regulate the intensity of the precise swirling movement because it is not able to follow the variations of the operating points with a short response time. .
  • this device is dedicated to the amplification of a swirling air movement around the longitudinal axis of the so-called "swirl" cylinder
  • the document FR2761406 does not propose an embodiment and does not say anything about relates to the control of a swirling air movement of "tumble" type around a main axis of rotation substantially perpendicular to that of the engine cylinder.
  • the invention aims to overcome the aforementioned drawbacks by proposing a new process capable of finely and reactively controlling a vortex movement of the "tumble" type.
  • the invention therefore relates to a flow control method of an intake fluid for an internal combustion engine comprising at least one intake manifold of said fluid with a curved end portion opening into a driving cylinder, means for injection of an additional fluid, the curved terminal portion being shaped to impart to the intake fluid a basic swirling motion in the engine cylinder along a main axis of rotation substantially perpendicular to that of the engine cylinder, characterized in that the additional fluid is injected, through at least one outlet section disposed upstream of the curved terminal portion, with a predetermined injection speed, so as to modify the intensity of the basic swirling motion by a disturbance of the boundary layer of the intake fluid.
  • the principle here is not to seek to print an additional kinetic moment to the intake fluid entering the engine cylinder by a driving effect as in the prior art, which requires a high additional air flow , but to generate a small disturbance which by its natural amplification will have an impact on the entire flow of the intake fluid.
  • the control of the swirling motion according to the invention is therefore done here with less effort.
  • the invention may comprise one or more of the following characteristics: the intake fluid flowing into the intake manifold with a determined speed of flow, the intensity of the basic swirling motion is reduced for a ratio between the injection speed and the flow rate of the intake fluid below a critical threshold. Indeed it has become apparent that the relationship between the flow rate of the intake fluid and the injection speed is decisive in the control of vortex movement.
  • the intensity of the basic vortex movement is increased for a ratio between the injection speed and the flow rate of the intake fluid greater than the critical threshold.
  • the injection speed is adapted during a running cycle of the engine. Indeed, especially during the intake phase, the flow rate of the intake fluid entering the engine cylinder is variable. By adjusting the injection speed, this makes it possible not to disturb the flow when it is not necessary or to control the intensity of the disturbance by adjusting the injection speed to the state of the flow.
  • the subject of the invention is also an internal combustion engine comprising at least one intake manifold with a curved end portion opening into a driving cylinder, the curved end portion being shaped to impart to the intake fluid a swirling movement.
  • the motor implements the method of the invention.
  • the engine operating parameters are chosen from at least one of the following parameters: the engine speed, the engine load, these two parameters are in fact of first order in the control of the swirling motion.
  • the output sections can in particular be circular with a diameter of between 0.5 and 1 mm, in order to obtain micro-jets making it possible to generate high injection speeds for low airflows and to target the disruption of the injection fluid flow at the injection point at the boundary layer.
  • the outlet sections are distributed in a plane perpendicular to the flow of the intake fluid and separated by a distance of between 1 and 5 times the diameter of said outlet sections. This arrangement makes it possible to generate one or more disturbances at the periphery of the tubing, in the boundary layer.
  • the exit sections may be rectangular with a width of between 0.4 and 2 mm and a length of between 1 and 10 times the width of said exit sections. This arrangement makes it possible to create a continuous disturbance on a portion of the periphery of the tubing.
  • FIG. 1 is a schematic representation of an internal combustion engine with an air jet flow control device.
  • FIG. 2 is a schematic representation of the flow lines of the intake fluid into the intake manifold without additional air injection.
  • FIG. 3 is a schematic representation of the flow lines of the intake fluid in the intake manifold with an additional air injection into the boundary layer having the effect of making the current lines re-stick.
  • FIG. 4 is a schematic representation of the flow lines of the intake fluid in the intake manifold with an additional air injection into the boundary layer having the effect of massively loosening the current lines.
  • FIG. 5 is a schematic representation of distribution of outlet sections in the intake manifold.
  • FIG. 8 is a detail of the geometrical parameters for rectangular outlet sections in incidence with the main direction of the flow.
  • FIG. 9 is a schematic representation of an additional air injection with a blow angle in a plane passing through a diameter of the tubing.
  • FIG. 10 is a schematic representation of an additional air injection with a blow angle in a plane perpendicular to the flow of the intake fluid.
  • FIG. 1 shows an internal combustion engine comprising at least one cylinder 1 of longitudinal axis XX, closed at the top by a cylinder head 2. Inside this cylinder is housed a piston 3 which makes it possible to define a chamber 4 of combustion formed by the side wall of the cylinder 1, the portion of the yoke 2 facing the piston 3 and the upper part of said piston 3 and inside which is admitted a fluid to achieve the combustion of a mixture carbide.
  • the engine also comprises intake means 5, generally carried by the cylinder head 2, which comprise at least one intake manifold 6 opening through an orifice 7 in the combustion chamber 4.
  • a valve seat 8 whose central bore corresponds to the orifice 7 and which is used with an intake valve of which only the general axis 9 is shown in Figure 1 for reasons of clarity.
  • the intake manifold 6 has an end portion A of curved tubing whose concavity is opposite to the cylinder.
  • the intake manifold 6 thus comprises a lower surface 10 close to the cylinder and an extrados 1 1 opposite the intrados.
  • the engine comprises exhaust means, of which only the general center line 12 is shown in FIG. 1 for the sake of clarity, which makes it possible to evacuate the flue gases contained in the combustion chamber 4.
  • the conformation curves the end portion A of the intake manifold makes it possible to introduce the intake fluid into the combustion chamber 4 in such a way that this fluid has a circular base movement T around an axis of rotation YY which is substantially perpendicular to that XX of the engine cylinder.
  • This swirling movement is better known by the term "tumble".
  • the fluid admitted into the combustion chamber 4 may as well be a supercharged or non-supercharged air introduced through the pipe 6 to be then mixed with a fuel that a fuel-based fuel mixture mixed with supercharged air or not, possibly added with recirculated flue gas.
  • the intake manifold 6 comprises at least one outlet section 13, upstream of the curved end portion A, through which an additional fluid is injected.
  • the additional fluid is, for reasons of simplicity, air.
  • the outlet sections 13 are connected to at least one injection means 14 of an additional fluid, preferably of the fluidic micro-actuator type capable of generating an air flow.
  • micro-actuator 14 is advantageously a device belonging to the known family of microsystems or MEMS (for the acronym of Micro Electrode
  • micro-actuators can advantageously be arranged at the outlet of the intake manifold 6. Indeed, conventional mechanical solutions do not allow in particular to meet the constraints of space, low energy consumption and low production cost.
  • the air jets can be generated collectively, a micro-actuator 14 feeding all the output sections 13.
  • the air jets can also be generated more individually, a micro-actuator 14 feeding each output section 13 or a part of the sections of exit 13. It is expected that the operation of the micro-actuator 14 is controlled by a control and calculation means 15.
  • the control and calculation means may be an Electronic Control Unit also called ECU.
  • Figure 2 is a visualization of the flow lines 17 of the intake fluid flowing into the intake manifold, without additional air flow, so without flow control.
  • the intake fluid flows in the direction of the arrow F.
  • the streamlines are substantially parallel, including near the wall of the tubing.
  • the streamlines near the wall of the tubular take off to form a swirl zone 19.
  • the swirling motion T base is imposed by the geometric conformation of the intake manifold 6.
  • FIG 3 shows a visualization of the flow lines 17 of the intake fluid flowing in the intake manifold with a flow rate U 0 , with an additional flow of injected air, on the lower side 10, with a flow rate U ⁇ nj in the straight portion 18, at the injection point 20, upstream of the terminal portion A curve of the tube 6.
  • the purpose of injecting air jets is to obtain an interaction with the boundary layer L of the flow in order to modify its properties. Indeed, it appeared that a small disturbance of the boundary layer L was sufficient to significantly modify the flow downstream of said disturbance.
  • boundary layer refers to the slowed-down fluid layer in the vicinity of the wall of the pipe 6. This boundary layer L has a variable thickness depending on whether the flow is laminar or turbulent and has an order of magnitude of one millimeter.
  • the operating principle is therefore not here to seek to print at the injection point 20 an additional pulse to all of the intake fluid entering the combustion chamber 4, which requires an air flow rate additional important and therefore a voluminous and bulky actuator 14.
  • the operating principle here is to print at the boundary layer L a small initial disturbance which, developing naturally, will ultimately impact the entire flow of the intake fluid. Indeed, opening into the boundary layer L, the additional air jet is at the origin of contra-rotating longitudinal vortices which develop in the tubing 6, downstream of the injection point 20.
  • Flow rate means the speed of the flow obtained by the ratio between the volume flow rate and the passage section of the flow. In the case illustrated in FIG. 3, the ratio between the injection speed U ⁇ nj and the speed of the flow U 0 is less than a critical threshold S 0 .
  • the effect of the additional air flow here is to allow the current lines to be re-bonded. Indeed, the disappearance of the swirl zone 19 visible in FIG. 2 and a substantially parallel hold of the current lines in the terminal portion A of the curved pipe are observed. Thus, a portion of the current lines 17 being folded towards the intrados 10 of the intake manifold 6, the intensity of the swirling movement T (FIG. 1) is reduced.
  • FIG. 4 shows a visualization of the flow lines 17 of the intake fluid flowing in the intake manifold with a flow rate U 0 , with an additional flow of injected air, on the lower side 10, with a flow rate U ⁇ nj in the straight portion 18, at the injection point 20, upstream of the curved end portion A of the tubing 6.
  • the ratio between the injection speed U ⁇ nj and the speed of the flow U 0 is greater than the critical threshold S c .
  • the effect of the additional flux is here to accentuate the takeoff of the current lines with respect to the case without the addition of additional flux illustrated in FIG. 2.
  • a vortex 21 is formed which makes obstacle to the current lines.
  • the intake fluid is thus deviated massively in the direction of the extrados 1 1 of the tubing. It should be noted, however, that despite the presence of this vortex 21, the flow in the curved end portion A of the tubing does not present a swirl zone 19 as illustrated in FIG. 2. Thus, a portion of the stream lines 17 being deflected towards the upper surface 1 1 of the intake manifold 6, the intensity of the swirling movement T (FIG. 1) of determined "tumble" base is increased imposed by the geometric conformation of the intake manifold 6.
  • the critical threshold Sc is between 3 and 8. Indeed, tests have shown that for a ratio between the injection speed U ⁇ nj and the flow velocity U 0 of the order of 3, a recollement while for a ratio between the injection speed U ⁇ nj and the flow velocity U 0 of the order of 8 ensures a free liftoff.
  • the ECU 15 comprises a map 16 containing, as a function of engine operating parameters, the different injection speed values U ⁇ nj of the additional air flow to be injected.
  • the engine operating parameters are chosen from at least one of the following parameters: the engine speed N, the engine load C.
  • mapping 16 may be carried out beforehand on engine bench or by numerical simulation and then stored in the ECU 15.
  • Figure 5 illustrates an example of distribution of outlet sections 13 in the intake manifold 6, in a row on the side of the intrados 10 of said manifold, perpendicular to the flow of the intake fluid.
  • the outlet sections 13 it is possible to arrange the outlet sections 13 over the entire perimeter of the tubing 6 and thus have the possibility, as needed, of generating air jets at the appropriate locations along the perimeter of the tubing 6. It can also be provided to intensify the disturbance of the boundary layer by arranging the outlet sections 13 in several successive rows substantially perpendicular to the flow of the intake fluid in order to impact the boundary layer L over a larger area, always in upstream of the terminal portion A curve of the intake manifold 6.
  • FIG. 6 shows a detail of the geometry of the output sections 13.
  • the geometrical parameters of the output sections 13 are intrinsic to the system and must be defined a priori at the time of engine design.
  • the outlet sections 13 are circular and have a diameter D between a few hundred microns and a few millimeters and preferably between 0.5 mm and 1 mm.
  • the outlet sections 13 distributed along a plane YOZ (shown diagrammatically in FIG. 10) perpendicular to the flow of the intake fluid and are separated by a distance D e , determined here by the distance between the centers of two sections. successive output 13, between 1 and 5 times the diameter D of the output section.
  • Figures 7 and 8 show variants on the basis of rectangular outlet sections 13 of length L 0 and width l a .
  • the dimensions of the width l a are between 0.4 and 2 mm for lengths L 0 of exit sections 13 of the order of 0.1 to 10 times the width l a .
  • the outlet sections 13 may be arranged in incidence, that is to say with a major axis forming an angle ⁇ with respect to the principal direction of the materialized flow. by the arrow F.
  • the direction of the additional air flows can be adjusted to form, with respect to the wall of the tubing 6, an angle ⁇ in a plane XOZ passing through the diameter of the tubing 6 as shown in FIG. 9.
  • the angle ⁇ can be between 0 and 180 °. However, preferably the angle ⁇ forms a substantially right angle with respect to the wall of the tubing 6.
  • the direction of additional air flows can be further adjusted to form, relative to the wall of the pipe 6, an angle ⁇ in a plane YOZ perpendicular to the flow (Figure 10).
  • the direction of the additional air flows is substantially perpendicular to the wall of the tubing 6.
  • the angle ⁇ may be between 0 and 180 °.
  • the angle ⁇ forms substantially a right angle with respect to the tangent to the wall of the tubing 6.
  • the position of the output sections 13 is a parameter to be taken into account to determine the effectiveness of the system and its integration . Indeed, depending on the engine and geometric constraints, we will integrate the output sections at a position X j upstream of the curved portion of the tubing 6 ( Figure 2) which will present the best compromise.
  • the additional air flows can be continuous or pulsed.
  • the injection speed U ⁇ nj is adapted during a motor cycle and in particular during the intake phase. In fact, by adapting the injection speed U ⁇ nj to the speed U 0 of the intake fluid in the tubing 6, the intensity of the disturbance at the injection point 20 is constantly monitored and consequently the intensity of the swirling motion T.
  • the invention has the advantage of allowing effective active control of the flow in the intake manifold 6 and the intensity of the swirling movement T by acting at a distance from the inlet orifice 7 of the inlet fluid, more judiciously upstream of the curved terminal portion A of the tubing 6, for an optimum effect on the swirling motion T from a low initial disturbance, which furthermore allows the installation of the fluidic micro-actuator (s) 14 in an area easier to instrument.

Abstract

L'invention concerne un procédé de contrôle d'écoulement d'un fluide d'admission pour un moteur à combustion interne comportant au moins une tubulure (6) d'admission dudit fluide avec une portion terminale (A) courbe débouchant dans un cylindre moteur (1), un moyen d'injection (14) d'un fluide additionnel, la portion terminale courbe (A) étant conformée pour imprimer au fluide d'admission un mouvement tourbillonnaire (T) de base dans le cylindre moteur (1 ) suivant un axe de rotation principal (YY) sensiblement perpendiculaire à celui du cylindre moteur (1 ), caractérisé en ce que le fluide additionnel est injecté, au travers d'au moins une section de sortie (13) disposée en amont de la portion terminale (A) courbe, avec une vitesse d'injection prédéterminée, de manière à modifier l'intensité du mouvement tourbillonnaire (T) de base par une perturbation de la couche limite du fluide d'admission. L'invention a aussi pour objet un moteur pour la mise en œuvre dudit procédé.

Description

Procédé de contrôle d'écoulement d'un fluide d'admission pour un moteur à combustion interne et moteur pour la mise en œuvre dudit procédé.
Domaine technique de l'invention
L'invention concerne les moteurs à combustion interne, et plus particulièrement le contrôle de l'admission d'air de combustion.
Arrière-plan technologique
Les contraintes sur les normes européennes et internationales sur les émissions de polluants et de gaz à effet de serre devenant de plus en plus sévères, il est plus que jamais indispensable de rechercher de nouvelles voies pour limiter les émissions à la source des moteurs à combustion interne. Au cœur de cette problématique, le système de combustion et son environnement (aérodynamique, système d'injection...) doivent relever de nouveaux challenges en terme d'efficacité et de contrôle.
Dans le cas des moteurs à combustion interne, cette efficacité est fortement influencée par un meilleur contrôle de la préparation du mélange et des structures aérodynamiques de l'écoulement. La combustion, sa tolérance aux mélanges fortement dilués ou pauvres et la réduction des émissions à l'échappement se trouvent alors directement liées à la faculté de maîtriser ces processus.
Pour arriver à de tels résultats, il est connu de générer une forte turbulence dans les chambres de combustion. Pour ce faire on crée dans le cylindre moteur un mouvement tourbillonnaire dit de «tumble» dont l'axe de rotation principal est sensiblement perpendiculaire à celui du cylindre moteur ou encore un mouvement tourbillonnaire dit de « swirl » dont l'axe de rotation est sensiblement autour de l'axe longitudinal du cylindre moteur.
De nombreux dispositifs ont été proposés pour créer et / ou intensifier ces mouvements tourbillonnaires.
Parmi ces dispositifs, on connait du document FR2761406 un moteur à combustion interne à injection directe comprenant une tubulure d'admission pour amener un flux d'air de combustion dans une chambre de combustion. La tubulure d'admission est conformée géométriquement pour imprimer, par le guidage forcé du flux d'air de combustion dans le tronçon terminal courbe de la tubulure d'admission, un mouvement tourbillonnaire de type « swirl » dans le cylindre moteur. La tubulure d'amission comprend de plus un dispositif pour soutenir la formation du mouvement tourbillonnaire. Ledit dispositif comprend, d'une part, l'injection au flux d'air de combustion d'un flux d'air additionnel entrant. Dans une variante, le dispositif peut aussi comprendre l'aspiration d'un flux d'air additionnel sortant. Les flux d'air additionnels sont amenés par des conduits d'alimentation d'air et répartis en plusieurs flux partiels par des orifices d'entrée et des orifices de sortie disposés en forme d'anneau sur le pourtour du canal d'admission, les orifices d'entrée étant à peu près en regard des orifices de sortie, à distance de la soupape d'admission, dans le tronçon terminal courbe de la tubulure d'admission. Les flux d'air additionnels entrants et sortants sont amenés aux orifices par des conduites d'alimentation d'air respectives et le contrôle des débits de ces flux d'air additionnels transitant dans les conduites est réalisé par des volets de réglage montés dans lesdites conduites.
La déviation du flux d'air de combustion est obtenue grâce au fait que le vecteur résultant des sens des écoulements de fluide additionnels dans la tubulure d'admission est orienté dans le sens du mouvement tourbillonnaire à engendrer. Les flux additionnels sont amenés sur le coté du flux d'air de combustion qui est placé à l'arrière en référence au sens du mouvement tourbillonnaire. Ainsi, le vecteur résultant des sens des écoulements de fluide additionnels est orienté de façon à intensifier et soutenir, en imprimant un moment cinétique supplémentaire, le mouvement de rotation du flux d'air de combustion.
Cependant, d'une part, un tel dispositif de contrôle du débit par volet de réglage, ne permet pas faire une régulation quantitative précise des débits des flux additionnels injectés. D'autre part un tel moyen de contrôle par volet de réglage ne permet pas de faire une régulation de l'intensité du mouvement tourbillonnaire précise car il n'est pas apte à suivre avec un faible temps de réponse les variations des points de fonctionnement moteur.
De plus, ce dispositif est dédié à l'amplification d'un mouvement d'air tourbillonnaire autour de l'axe longitudinal du cylindre dit de « swirl », le document FR2761406 ne propose pas de mode de réalisation et ne dit rien en ce qui concerne le contrôle d'un mouvement d'air tourbillonnaire de type « tumble » autour d'un axe de rotation principal sensiblement perpendiculaire à celui du cylindre moteur.
L'invention a pour but de pallier les inconvénients précités en proposant un nouveau procédé apte à contrôler finement et de manière réactive un mouvement tourbillonnaire de type « tumble ». L'invention concerne donc un procédé de contrôle d'écoulement d'un fluide d'admission pour un moteur à combustion interne comportant au moins une tubulure d'admission dudit fluide avec une portion terminale courbe débouchant dans un cylindre moteur, un moyen d'injection d'un fluide additionnel, la portion terminale courbe étant conformée pour imprimer au fluide d'admission un mouvement tourbillonnaire de base dans le cylindre moteur suivant un axe de rotation principal sensiblement perpendiculaire à celui du cylindre moteur, caractérisé en ce que le fluide additionnel est injecté, au travers d'au moins une section de sortie disposée en amont de la portion terminale courbe, avec une vitesse d'injection prédéterminée, de manière à modifier l'intensité du mouvement tourbillonnaire de base par une perturbation de la couche limite du fluide d'admission. En effet, le principe est ici non pas de chercher à imprimer un moment cinétique supplémentaire au fluide d'admission entrant dans le cylindre moteur par un effet d'entrainement comme dans l'art antérieur, ce qui nécessite un débit d'air additionnel élevé, mais de générer une faible perturbation qui par son amplification naturelle aura un impact sur l'ensemble de l'écoulement du fluide d'admission. Le contrôle du mouvement tourbillonnaire selon l'invention se fait donc ici avec un effort moindre.
Par ailleurs, l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes : - le fluide d'admission s'écoulant dans la tubulure d'admission avec une vitesse débitante déterminée, on diminue l'intensité du mouvement tourbillonnaire de base pour un ratio entre la vitesse d'injection et la vitesse débitante du fluide d'admission inférieur à un seuil critique. En effet il est apparu que la relation entre la vitesse débitante du fluide d'admission et la vitesse d'injection est déterminant dans le contrôle du mouvement tourbillonnaire.
- d'autre part, on augmente l'intensité du mouvement tourbillonnaire de base pour un ratio entre la vitesse d'injection et la vitesse débitante du fluide d'admission supérieur au seuil critique.
- la vitesse d'injection est adaptée au cours d'un cycle de fonctionnement du moteur. En effet, notamment au cours de la phase d'admission, la vitesse débitante du fluide d'admission entrant dans le cylindre moteur est variable. En adaptant la vitesse d'injection, ceci permet de ne pas perturber l'écoulement quand cela n'est pas nécessaire ou de contrôler l'intensité de la perturbation en ajustant la vitesse d'injection à l'état de l'écoulement. Par ailleurs, l'invention a aussi pour objet un moteur à combustion interne comportant au moins une tubulure d'admission avec une portion terminale courbe débouchant dans un cylindre moteur, la portion terminale courbe étant conformée pour imprimer au fluide d'admission un mouvement tourbillonnaire de base dans le cylindre moteur suivant un axe de rotation principal sensiblement perpendiculaire à celui du cylindre moteur, un moyen d'injection d'un fluide additionnel, des moyens de commandes et de calcul du moyen d'injection en fonction de points de fonctionnement moteur, caractérisé en ce qu'il comprend au moins une section de sortie disposée en amont de la portion terminale courbe par laquelle est injecté le fluide additionnel.
De plus, le moteur met en œuvre le procédé de l'invention.
De préférence, les paramètres de fonctionnement moteur sont choisis parmi au moins un des paramètres suivants : le régime moteur, la charge moteur, ces deux paramètres sont en effet de premier ordre dans le contrôle du mouvement tourbillonnaire.
- les sections de sorties peuvent notamment être circulaires avec un diamètre compris entre 0,5 et 1 mm, afin de d'obtenir des micro-jets permettant de générer des vitesses d'injection élevées pour des débits d'air faibles et de cibler la perturbation de l'écoulement du fluide d'admission au point d'injection au niveau de la couche limite.
- les sections de sortie sont réparties selon un plan perpendiculaire à l'écoulement du fluide d'admission et séparées d'une distance comprise entre 1 et 5 fois le diamètre des dites sections de sorties. Cette disposition permet de pouvoir générer une ou plusieurs perturbations à la périphérie de la tubulure, dans la couche limite.
- les sections de sortie peuvent être rectangulaires avec une largeur comprise entre 0,4 et 2 mm et une longueur comprise entre 1 et 10 fois la largeur des dites sections de sortie. Cette disposition permet de créer sur une portion de la périphérie de la tubulure une perturbation continue.
Brève description des dessins
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après d'un mode particulier de réalisation, non limitatif de l'invention, faite en référence aux figures dans lesquelles : - La figure 1 est une représentation schématique d'un moteur à combustion interne doté d'un dispositif de contrôle d'écoulement par jets d'air.
- La figure 2 est une représentation schématique des lignes de courant du fluide d'admission dans la tubulure d'admission sans injection d'air additionnel.
- la figure 3 est une représentation schématique des lignes de courant du fluide d'admission dans la tubulure d'admission avec une injection d'air additionnel dans la couche limite ayant pour effet de faire recoller les lignes de courant.
- La figure 4 est une représentation schématique des lignes de courant du fluide d'admission dans la tubulure d'admission avec une injection d'air additionnel dans la couche limite ayant pour effet de faire décoller massivement les lignes de courant.
- La figure 5 est une représentation schématique de distribution de sections de sortie dans la tubulure d'admission.
- La figure 6 est un détail des paramètres géométriques pour des sections de sorties circulaires.
- La figure 7 est un détail des paramètres géométriques pour des sections de sorties rectangulaires.
- La figure 8 est un détail des paramètres géométriques pour des sections de sorties rectangulaires en incidence avec la direction principale de l'écoulement.
- La figure 9 est une représentation schématique d'une injection d'air additionnel avec un angle de soufflage dans un plan passant par un diamètre de la tubulure.
- La figure 10 est une représentation schématique d'une injection d'air additionnel avec un angle de soufflage dans un plan perpendiculaire à l'écoulement du fluide d'admission.
Description détaillée
Sur la figure 1 est présenté un moteur à combustion interne comprenant au moins un cylindre 1 d'axe longitudinal XX, fermé en partie supérieure par une culasse 2. A l'intérieur de ce cylindre est logé un piston 3 qui permet de délimiter une chambre de combustion 4 formée par la paroi latérale du cylindre 1 , la partie de la culasse 2 en regard du piston 3 ainsi que la partie supérieure dudit piston 3 et à l'intérieur de laquelle est admis un fluide pour réaliser la combustion d'un mélange carburé. Le moteur comprend également des moyens d'admission 5, généralement porté par la culasse 2, qui comprennent au moins une tubulure d'admission 6 débouchant par un orifice 7 dans la chambre de combustion 4. Au niveau de l'orifice 7 est placé en outre inséré dans la culasse 2, un siège de soupape 8 dont l'alésage central correspond à l'orifice 7 et qui est utilisé avec une soupape d'admission dont seul l'axe général 9 est représenté sur la figure 1 pour des raisons de clarté. La tubulure d'admission 6 présente une portion terminale A de tubulure courbe dont la concavité est opposée au cylindre. La tubulure 6 d'admission comprend ainsi un intrados 10 proche du cylindre et un extrados 1 1 opposé à l'intrados. De plus, le moteur comprend des moyens d'échappement, dont seul le trait d'axe général 12 est représenté sur la figure 1 pour des raisons de clarté, qui permettent d'évacuer les gaz brûlés contenus dans la chambre de combustion 4.
La conformation courbe la portion terminale A de la tubulure d'admission permet d'introduire le fluide d'admission dans la chambre de combustion 4 d'une manière telle que ce fluide y ait un mouvement circulaire de base T autour d'un axe de rotation YY qui est sensiblement perpendiculaire à celui XX du cylindre du moteur. Ce mouvement tourbillonnaire est mieux connu par le terme de « tumble ». Le fluide admis dans la chambre de combustion 4 peut aussi bien être un air suralimenté ou non suralimenté introduit par la tubulure 6 pour y être ensuite mélangé avec un carburant qu'un mélange carburé à base carburant mélangé avec de l'air suralimenté ou non, éventuellement additionnés de gaz brûlés recirculés. De préférence, la tubulure 6 d'admission comprend au moins une section de sortie 13, en amont de la portion terminale A courbe, par laquelle est injecté un fluide additionnel. Avantageusement, le fluide additionnel est, pour des raisons de simplicité, de l'air.
Les sections de sortie 13 sont reliées à au moins moyen d'injection 14 d'un fluide additionnel de préférence du type micro-actionneur fluidique apte à générer un flux d'air.
Un tel micro-actionneur 14 est avantageusement un dispositif appartenant à la famille connue des microsystèmes ou MEMS (pour l'acronyme anglais de Micro Electro
Mechanical Systems). D'encombrement réduit, de tels micro-actionneurs peuvent avantageusement être disposés au niveau de la sortie de la tubulure 6 d'admission. En effet, les solutions mécaniques classiques ne permettent pas notamment de respecter les contraintes d'encombrement, de faibles consommations d'énergie et de faible coût de production.
Les jets air peuvent être générés collectivement, un micro-actionneur 14 alimentant toutes les sections de sortie 13. Les jets air peuvent aussi être générés de manière plus individuel, un micro-actionneur 14 alimentant chaque section de sortie 13 ou une partie des sections de sortie 13. II est prévu que le fonctionnement du micro-actionneur 14 soit piloté par un moyen de commande et de calcul 15. Le moyen de commande et de calcul peut être une Unité de Contrôle Electronique encore nommée UCE.
La figure 2 est une visualisation des lignes de courant 17 du fluide d'admission s'écoulant dans la tubulure d'admission, sans flux additionnel d'air, donc sans contrôle d'écoulement. Le fluide d'admission s'écoule suivant le sens de la flèche F. Dans la portion rectiligne 18, les lignes de courant sont sensiblement parallèles, y compris à proximité de la paroi de la tubulure. Au passage du fluide dans la portion terminale A de la tubulure, du coté intrados 10, les lignes de courant aux abords de la paroi de la tubulure décollent pour former une zone tourbillonnaire 19. Dans ce cas, le mouvement tourbillonnaire T de base est imposé par la conformation géométrique de la tubulure 6 d'admission. La figure 3 présente une visualisation des lignes de courant 17 du fluide d'admission s'écoulant dans la tubulure d'admission avec une vitesse débitante U0, avec un flux additionnel d'air injecté, coté intrados 10, avec une vitesse débitante Uιnj dans la portion rectiligne 18, au niveau du point d'injection 20, en amont de la portion terminale A courbe de la tubulure 6.
Conformément à l'invention, l'injection de jets d'air a pour but d'obtenir une interaction avec la couche limite L de l'écoulement pour en modifier les propriétés. En effet, il est apparu qu'une faible perturbation de la couche limite L suffisait pour modifier significativement l'écoulement en aval de ladite perturbation. On entend par couche limite, la couche de fluide ralenti au voisinage de la paroi de la tubulure 6. Cette couche limite L à une épaisseur variable selon que l'écoulement est laminaire ou turbulent et a un ordre de grandeur du millimètre.
Le principe de fonctionnement n'est donc pas ici de chercher à imprimer au niveau du point d'injection 20 une impulsion supplémentaire à l'ensemble du fluide d'admission entrant dans la chambre de combustion 4, ce qui nécessite un débit d'air additionnel important et donc un actionneur 14 volumineux et encombrant. Le principe de fonctionnement est ici de venir imprimer au niveau de la couche limite L une petite perturbation initiale qui, en se développant naturellement, va finalement impacter l'ensemble de l'écoulement du fluide d'admission. En effet, en débouchant dans la couche limite L, le jet d'air additionnel est à l'origine de tourbillons longitudinaux contra-rotatifs qui se développent dans la tubulure 6, en aval du point d'injection 20. On entend par vitesse débitante, la vitesse de l'écoulement obtenue par le rapport entre le débit volumique et la section de passage de l'écoulement. Dans le cas illustré en figure 3, le ratio entre la vitesse d'injection Uιnj et la vitesse de l'écoulement U0 est inférieur à un seuil critique S0. L'effet du flux d'air additionnel est ici de permettre de faire recoller les lignes de courant. On constate en effet la disparition de la zone tourbillonnaire 19 visible en figure 2 et un maintien sensiblement parallèles des lignes de courant dans la portion terminale A de la tubulure courbe. Ainsi, une partie des lignes de courant 17 étant rabattues vers l'intrados 10 de la tubulure 6 d'admission, on diminue l'intensité du mouvement tourbillonnaire T (figure 1 ) de base.
La figure 4 présente une visualisation des lignes de courant 17 du fluide d'admission s'écoulant dans la tubulure d'admission avec une vitesse débitante U0, avec un flux additionnel d'air injecté, coté intrados 10, avec une vitesse débitante Uιnj dans la portion rectiligne 18, au niveau du point d'injection 20, en amont de la portion terminale A courbe de la tubulure 6. Dans ce cas, le ratio entre la vitesse d'injection Uιnj et la vitesse de l'écoulement U0 est supérieur au seuil critique Sc. Dans ce cas, l'effet du flux additionnel est ici d'accentuer le décollage des lignes de courant par rapport au cas sans addition de flux additionnel illustré en figure 2. Immédiatement en amont du point d'injection se forme un tourbillon 21 qui fait office d'obstacle aux lignes de courant. Le fluide d'admission est ainsi dévié massivement dans la direction de l'extrados 1 1 de la tubulure. On note toutefois, que malgré la présence de ce tourbillon 21 , l'écoulement dans la partie terminale A courbe de la tubulure ne présente pas de zone tourbillonnaire 19 comme illustré en figure 2. Ainsi, une partie des lignes de courant 17 étant dévié vers l'extrados 1 1 de la tubulure 6 d'admission, on augmente l'intensité du mouvement tourbillonnaire T (figure 1 ) de « tumble » de base déterminé imposé par la conformation géométrique de la tubulure 6 d'admission.
Avantageusement, le seuil critique Sc est compris entre 3 et 8. En effet, des essais ont montré que pour un ratio entre la vitesse d'injection Uιnj et la vitesse de l'écoulement U0 de l'ordre de 3 on assure un recollement tandis que pour un ratio entre la vitesse d'injection Uιnj et la vitesse de l'écoulement U0 de l'ordre de 8 on assure un franc décollement. Avantageusement, l'UCE 15 comporte une cartographie 16 contenant, en fonction de paramètres de fonctionnement moteur, les différentes valeurs de vitesse d'injection Uιnj de flux d'air additionnel à injecter. De préférence, les paramètres de fonctionnement moteur sont choisis parmi au moins un des paramètres suivants : le régime moteur N, la charge moteur C.
Une telle cartographie 16 peut être réalisée préalablement sur banc moteur ou par simulation numérique puis mémorisée dans l'UCE 15.
La figure 5 illustre un exemple de distribution de sections de sortie 13 dans la tubulure 6 d'admission, sur une rangée du coté de l'intrados 10 de ladite tubulure, perpendiculairement à l'écoulement du fluide d'admission. On peut cependant prévoir de disposer les sections de sortie 13 sur tout le périmètre de la tubulure 6 et ainsi avoir la possibilité, en fonction des besoins, de générer des jets d'air aux endroits adéquats le long du périmètre de la tubulure 6. On peut aussi prévoir d'intensifier la perturbation de la couche limite en disposant les sections de sorties 13 sur plusieurs rangées successives sensiblement perpendiculairement à l'écoulement du fluide d'admission afin d'impacter la couche limite L sur une plus grande surface, toujours en amont de la portion terminale A courbe de la tubulure 6 d'admission.
La figure 6 présente un détail de la géométrie des sections de sortie 13. Les paramètres géométriques des sections de sorties 13 sont intrinsèques au système et doivent être défini a priori au moment de la conception du moteur. Toutefois, à titre indicatif, pour une tubulure 6 d'admission de moteur à combustion pour automobile ayant un diamètre d'ordre de grandeur de 2 cm en amont de la soupape d'admission, avantageusement, les sections de sortie 13 sont circulaires et ont un diamètre D compris entre quelques centaines de microns et quelques millimètres et de préférence entre 0,5 mm et 1 mm. Avantageusement encore, les sections de sortie 13 réparties selon un plan YOZ (schématisé en figure 10) perpendiculaire à l'écoulement du fluide d'admission et sont séparées d'une distance De, déterminée ici par la distance entre les centres de deux sections de sortie 13 successives, comprise entre 1 et 5 fois le diamètre D de la section de sortie.
Les figures 7 et 8 présentent des variantes sur la base de sections de sorties 13 rectangulaires de longueur L0 et de largeur la. De préférence, selon cette géométrie de sections de sortie 13, les dimensions de la largeur la sont comprises entre 0,4 et 2 mm pour des longueurs L0 de sections de sortie 13 de l'ordre de 0,1 à 10 fois la largeur la. De plus, comme l'illustre plus particulièrement la figure 8, les sections de sortie 13 peuvent être disposées en incidence, c'est-à-dire avec un grand axe faisant un angle α par rapport à la direction principale de l'écoulement matérialisée par la flèche F. La direction des flux d'air additionnels peut être ajustée pour former, par rapport à la paroi de la tubulure 6, un angle β dans un plan XOZ passant par le diamètre de la tubulure 6 comme présenté en figure 9. L'angle β peut être compris entre O et 180°. Cependant, de préférence l'angle β forme sensiblement un angle droit par rapport à la paroi de la tubulure 6.
La direction des flux d'air additionnels peut encore être ajustée pour former, par rapport à la paroi de la tubulure 6, un angle θ dans un plan YOZ perpendiculaire à l'écoulement (figure 10). Avantageusement, la direction des flux d'air additionnels est sensiblement perpendiculaire à la paroi de la tubulure 6. L'angle θ peut être compris entre O et 180°. Cependant, de préférence l'angle θ forme sensiblement un angle droit par rapport à la tangente à la paroi de la tubulure 6. La position des sections de sortie 13 est un paramètre à prendre en compte pour déterminer l'efficacité du système et son intégration. En effet, en fonction du moteur et des contraintes géométriques, on intégrera les sections de sortie à une position Xj en amont de la partie courbe de la tubulure 6 (figure 2) qui présentera le meilleur compromis. Avantageusement, les flux d'air additionnels peuvent être continus ou puisés. Avantageusement encore, la vitesse d'injection Uιnj est adaptée au cours d'un cycle moteur et notamment pendant la phase d'admission. En effet, en adaptant la vitesse d'injection Uιnj à la vitesse U0 du fluide d'admission dans la tubulure 6, on contrôle en permanence l'intensité de la perturbation au niveau du point d'injection 20 et par voie de conséquence on module l'intensité du mouvement tourbillonnaire T.
L'invention a pour avantage de permettre un contrôle actif efficace de l'écoulement dans la tubulure 6 d'amission et de l'intensité du mouvement tourbillonnaire T en agissant à distance de l'orifice 7 d'entrée du fluide d'admission, plus judicieusement en amont de la portion terminale A courbe de la tubulure 6, pour un effet optimum sur le mouvement tourbillonnaire T à partir d'une faible perturbation initiale, ce qui autorise de plus l'installation du ou des micro-actionneurs fluidique 14 dans une zone plus facile à instrumenter.

Claims

Revendications
1 . Procédé de contrôle d'écoulement d'un fluide d'admission pour un moteur à combustion interne comportant au moins une tubulure (6) d'admission dudit fluide avec une portion terminale (A) courbe débouchant dans un cylindre moteur (1 ), un moyen d'injection (14) d'un fluide additionnel, la portion terminale courbe (A) étant conformée pour imprimer au fluide d'admission un mouvement tourbillonnaire (T) de base dans le cylindre moteur (1 ) suivant un axe de rotation principal (YY) sensiblement perpendiculaire à celui du cylindre moteur (1 ), caractérisé en ce que le fluide additionnel est injecté, au travers d'au moins une section de sortie (13) disposée en amont de la portion terminale (A) courbe, avec une vitesse d'injection (Uιnj) prédéterminée, de manière à modifier l'intensité du mouvement tourbillonnaire (T) de base par une perturbation de la couche limite (L) du fluide d'admission.
2. Procédé selon la revendication 1 , le fluide d'admission s'écoulant dans la tubulure d'admission avec une vitesse débitante (U0) déterminée, caractérisé en ce que l'on diminue l'intensité du mouvement tourbillonnaire (T) de base pour un ratio entre la vitesse d'injection (Uιnj) et la vitesse débitante du fluide d'admission (U0) inférieur à un seuil critique (Sc).
3. Procédé selon la revendication 2, caractérisé en ce que l'on augmente l'intensité du mouvement tourbillonnaire (T) de base pour un ratio entre la vitesse d'injection (Uιnj) et la vitesse débitante du fluide d'admission (U0) supérieur au seuil critique (Sc).
4. Procédé selon l'une des revendications précédentes, caractérisée en ce que la vitesse d'injection (Uιnj) est adaptée au cours d'un cycle de fonctionnement du moteur.
5. Moteur à combustion interne comportant au moins une tubulure (6) d'admission avec une portion terminale courbe (A) débouchant dans un cylindre moteur (1 ), la portion terminale courbe (A) étant conformée pour imprimer au fluide d'admission un mouvement tourbillonnaire (T) de base dans le cylindre moteur (1 ) suivant un axe de rotation principal (YY) sensiblement perpendiculaire à celui du cylindre moteur (1 ), un moyen d'injection (14) d'un fluide additionnel, des moyens (15) de commandes et de calcul du moyen d'injection (14) en fonction de points de fonctionnement moteur, caractérisé en ce qu'il comprend au moins une section de sortie (13) disposée en amont de la portion terminale (A) courbe par laquelle est injecté le fluide additionnel et en ce qu'il met en œuvre le procédé selon l'une des revendications 1 à 4.
6. Moteur à combustion interne selon la revendication 5, caractérisé en ce que les paramètres de fonctionnement moteur sont choisis parmi au moins un des paramètres suivants : le régime moteur (N), la charge moteur (C).
7. Moteur à combustion interne selon la revendication 5 ou 6, caractérisé en ce que les sections de sorties (13) sont circulaires avec un diamètre (D) compris entre 0,5 et
1 mm.
8. Moteur à combustion interne selon la revendication 7, caractérisé en ce que les sections de sortie (13) sont réparties selon un plan perpendiculaire (YOZ) à l'écoulement du fluide d'admission et séparées d'une distance (De) comprise entre 1 et 5 fois le diamètre (D) des dites sections de sorties (13).
9. Moteur à combustion interne selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que les sections de sortie (13) sont rectangulaires avec une largeur (la) comprise entre 0,4 et 2 mm et une longueur (L0) comprise entre 1 et 10 fois la largeur (la) des dites sections de sortie (13).
PCT/FR2010/051192 2009-07-30 2010-06-16 Procede de controle d'ecoulement d'un fluide d'admission pour un moteur a combustion interne et moteur pour la mise en œuvre dudit procede WO2011015735A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0955348 2009-07-30
FR0955348A FR2948728B1 (fr) 2009-07-30 2009-07-30 Procede de controle d'ecoulement d'un fluide d'admission pour un moteur a combustion interne et moteur pour la mise en oeuvre dudit procede

Publications (1)

Publication Number Publication Date
WO2011015735A1 true WO2011015735A1 (fr) 2011-02-10

Family

ID=41692865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051192 WO2011015735A1 (fr) 2009-07-30 2010-06-16 Procede de controle d'ecoulement d'un fluide d'admission pour un moteur a combustion interne et moteur pour la mise en œuvre dudit procede

Country Status (2)

Country Link
FR (1) FR2948728B1 (fr)
WO (1) WO2011015735A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4209684A1 (de) * 1992-03-25 1993-09-30 Porsche Ag Einrichtung zur Beeinflussung der Strömung in Gaswechselkanälen einer Brennkraftmaschine
JPH06159075A (ja) * 1992-11-26 1994-06-07 Fuji Heavy Ind Ltd エンジンの吸気装置
US5566655A (en) * 1994-10-24 1996-10-22 Daimler-Benz Ag Method for controlling the flow of fluid through an intake pipe of an internal combustion engine
DE19647301A1 (de) * 1996-11-15 1998-05-20 Daimler Benz Ag Verfahren zur Gemischbereitung für eine Otto-Brennkraftmaschine sowie Brennkraftmaschine zur Durchführung des Verfahrens
FR2761406A1 (fr) 1997-03-25 1998-10-02 Daimler Benz Ag Procede de formation du melange pour un moteur a combustion interne a injection directe
DE10224719A1 (de) * 2002-05-30 2003-12-24 Iav Gmbh Einrichtung und Verfahren zum Speisen von Zylindern von aufgeladenen Verbrennungsmotoren
EP1529939A1 (fr) * 2003-11-10 2005-05-11 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Système d' admission pour un moteur à combustion interne
US20070246008A1 (en) * 2004-10-01 2007-10-25 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Method and device for increasing the torque of a reciprocating piston internal combustion engine, in particular of a diesel engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4209684A1 (de) * 1992-03-25 1993-09-30 Porsche Ag Einrichtung zur Beeinflussung der Strömung in Gaswechselkanälen einer Brennkraftmaschine
JPH06159075A (ja) * 1992-11-26 1994-06-07 Fuji Heavy Ind Ltd エンジンの吸気装置
US5566655A (en) * 1994-10-24 1996-10-22 Daimler-Benz Ag Method for controlling the flow of fluid through an intake pipe of an internal combustion engine
DE19647301A1 (de) * 1996-11-15 1998-05-20 Daimler Benz Ag Verfahren zur Gemischbereitung für eine Otto-Brennkraftmaschine sowie Brennkraftmaschine zur Durchführung des Verfahrens
FR2761406A1 (fr) 1997-03-25 1998-10-02 Daimler Benz Ag Procede de formation du melange pour un moteur a combustion interne a injection directe
DE10224719A1 (de) * 2002-05-30 2003-12-24 Iav Gmbh Einrichtung und Verfahren zum Speisen von Zylindern von aufgeladenen Verbrennungsmotoren
EP1529939A1 (fr) * 2003-11-10 2005-05-11 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Système d' admission pour un moteur à combustion interne
US20070246008A1 (en) * 2004-10-01 2007-10-25 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Method and device for increasing the torque of a reciprocating piston internal combustion engine, in particular of a diesel engine

Also Published As

Publication number Publication date
FR2948728B1 (fr) 2011-12-30
FR2948728A1 (fr) 2011-02-04

Similar Documents

Publication Publication Date Title
EP2539638B1 (fr) Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection d'air ameliorant le melange air-carburant
FR2924408A1 (fr) Nacelle de turboreacteur et procede de controle du decollement dans une nacelle de turboreacteur
EP2976572B1 (fr) Systeme d'injection pour chambre de combustion de turbomachine comportant une paroi annulaire a profil interne convergent
FR2908466A1 (fr) Ensemble de distributeur de reacteur a double flux et procede pour faire fonctionner celui-ci
FR2929334A1 (fr) Dispositif de reduction du bruit genere par reacteur d'aeronef a conduits de fluide coudes
CA2925565A1 (fr) Chambre de combustion de turbomachine pourvue de moyens de deflection d'air pour reduire le sillage cree par une bougie d'allumage
CA2695626C (fr) Turbomoteur a emission de bruit reduite pour aeronef
FR2680830A1 (fr) Procede pour ameliorer les caracteristiques de performances d'une nacelle de moteur a turbine d'avion et nacelle ainsi qu'entree de nacelle obtenues a l'aide de ce procede.
EP0715072B1 (fr) Injecteur à jupe de dispersion de carburant
EP3356209B1 (fr) Système aérodynamique à générateur de vortex alimenté par des gaz d'échappement
CN100378318C (zh) 内燃机的进气结构
WO2011015735A1 (fr) Procede de controle d'ecoulement d'un fluide d'admission pour un moteur a combustion interne et moteur pour la mise en œuvre dudit procede
CA2980794C (fr) Dispositif a grilles d'ejection de microjets pour la reduction du bruit de jet d'une turbomachine
EP1859128B1 (fr) Dispositif d'amplification de l'aspiration de gaz recirculant dans le conduit d'admission d'un moteur à combustion interne.
FR2910541A1 (fr) Systeme d'admission de gaz pour la generation d'ecoulement de rotation energetique de tumble
EP3767086B1 (fr) Capteur de mesure de propriétés de gaz
FR2602271A1 (fr) Dispositif d'injection, pour turbomachines, a vrille de turbulence a calage variable
FR2887585A1 (fr) Dispositif, pour moteur a combustion interne, de generation d'aerodynamique variable dans les conduits d'admission de la culasse
FR2889247A3 (fr) Dispositif, pour moteur a combustion interne, de generation d'aerodynamique variable a partir d'injection d'air dans les conduits d'admission de la culasse
FR2505406A1 (fr) Structure d'admission pour moteurs a combustion interne
FR2957659A1 (fr) Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection de carburant en sortie d'une double vrille d'admission d'air
FR3094041A1 (fr) Conduit d’admission optimisé pour moteur Diesel à injection directe
FR2992685A1 (fr) Procede de commande d'une section de tuyere variable d'un aeronef
FR2813345A1 (fr) Systeme de reinjection des gaz d'echappement dans un moteur a combustion interne
FR2927125A1 (fr) Dispositif d'admission d'air a conduit divise.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10734244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10734244

Country of ref document: EP

Kind code of ref document: A1