WO2011015064A1 - 正交频分复用系统的功率调整方法和基站 - Google Patents

正交频分复用系统的功率调整方法和基站 Download PDF

Info

Publication number
WO2011015064A1
WO2011015064A1 PCT/CN2010/072137 CN2010072137W WO2011015064A1 WO 2011015064 A1 WO2011015064 A1 WO 2011015064A1 CN 2010072137 W CN2010072137 W CN 2010072137W WO 2011015064 A1 WO2011015064 A1 WO 2011015064A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
redundancy
base station
current power
preset
Prior art date
Application number
PCT/CN2010/072137
Other languages
English (en)
French (fr)
Inventor
赵刚
曾召华
秦洪峰
周晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011015064A1 publication Critical patent/WO2011015064A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an orthogonal frequency division multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM systems Like traditional wireless cellular networks, OFDM systems also increase spectrum utilization by reducing the frequency reuse factor. Although the problem of intra-sector interference in OFDM systems is well solved, as the frequency reuse factor decreases, Inter-Cell Interference (ICI) increases due to the close proximity of co-channel interference sources. This makes this problem a major obstacle to the performance of OFDM systems.
  • ICI Inter-Cell Interference
  • the rationality of power configuration is a key factor in determining system performance.
  • the power configuration of the OFDM system should meet the following requirements:
  • the technical problem to be solved by the present invention is to provide a downlink power adjustment method and a base station of an Orthogonal Frequency Division Multiplexing (OFDM) system, which can effectively solve the power control of the downlink interference of the OFDM system, so that the power redundancy can be fully released and fully It takes advantage of the throughput of the community and is easy to design and implement.
  • OFDM Orthogonal Frequency Division Multiplexing
  • an embodiment of the present invention provides a power adjustment method for an Orthogonal Frequency Division Multiplexing system, including:
  • the base station acquires downlink channel quality information, and obtains a level of the modulation and coding scheme according to the downlink channel quality information;
  • the base station acquires downlink transmission quality information, and acquires current power redundancy according to the downlink transmission quality information
  • the base station adjusts the current power according to the preset power adjustment amount according to the current power redundancy, and/or adjusts the level of the modulation and coding scheme according to a preset modulation coding scheme level adjustment amount.
  • the step of obtaining the downlink channel quality information by the base station, and obtaining the level of the modulation and coding scheme according to the downlink channel quality information is specifically as follows:
  • the post-processing of the downlink channel quality information by the base station is specifically:
  • the base station performs filtering processing on the downlink channel quality information CQI according to the formula “ ⁇ - ⁇ + ⁇ , where ⁇ is the downlink channel quality information CQI value calculated after the last filtering, which is the current acquisition by the base station.
  • the CQI value ⁇ is a filter factor and 0 ⁇ ⁇ 1, ⁇ is a positive integer.
  • the step of acquiring the downlink transmission quality information by the base station, and acquiring the current power redundancy according to the downlink transmission quality information is specifically:
  • the base station obtains current downlink transmission quality information reported by the terminal, or calculates current downlink transmission quality information according to the feedback information of the terminal, and compares the current downlink transmission quality information with a preset threshold, if the current downlink transmission quality If the information is greater than the preset threshold, the current power redundancy is negative redundancy. Otherwise, the current power redundancy is positive redundancy.
  • the preset threshold is at least one, and when the threshold is more than one, the preset thresholds are different;
  • Comparing the current downlink transmission quality information with a preset threshold is specifically:
  • the current downlink transmission quality information is compared with each preset threshold according to a preset threshold value in descending order, to obtain current power redundancy.
  • the method further includes:
  • the base station acquires system interference information, where the system interference information includes: first interference information of the neighboring cell to the local area and/or second interference information of the local cell to the neighboring cell;
  • the step of the base station adjusting the current power according to the preset power adjustment amount according to the current power redundancy and/or adjusting the level of the modulation and coding scheme according to the preset modulation and coding scheme level adjustment amount includes:
  • the preset power adjustment amount is used to increase the current power or to reduce the level of the modulation and coding scheme according to a preset modulation and coding scheme level adjustment amount. If the current power redundancy is positive redundancy, the preset power adjustment amount is decreased according to the preset power adjustment amount. The current power or the level of the modulation coding scheme is increased according to a preset modulation coding scheme level adjustment amount.
  • the method further includes:
  • the base station acquires system load information
  • the step of the base station adjusting the current power according to the preset power adjustment amount according to the current power redundancy and/or adjusting the level of the modulation and coding scheme according to the preset modulation and coding scheme level adjustment amount includes:
  • the current power is increased according to the preset power adjustment amount; when the current power is positive redundancy, according to the pre- Setting a modulation coding scheme level adjustment amount to increase the level of the modulation coding scheme; when the system load information indicates that the current system load is low, when the current power redundancy is negative redundancy, according to a preset modulation coding scheme level
  • the adjustment amount reduces the level of the modulation and coding scheme; when the current power redundancy is positive redundancy, the current power is reduced according to the preset power adjustment amount.
  • the method further includes:
  • the base station obtains uplink channel quality information, and determines symmetry of the downlink channel and the uplink channel according to the uplink channel quality information and the downlink channel quality information, where the power adjustment amount is a power boost amount or a power reduction amount;
  • the step of the base station adjusting the current power according to the preset power adjustment according to the current power redundancy is specifically:
  • the base station decreases the power boost amount or increases the power reduction amount;
  • the base station reduces the power boost amount or The amount of power reduction is increased.
  • an embodiment of the present invention further provides a base station, including: a first acquiring unit, configured to acquire downlink channel quality information, and obtain a level of a modulation and coding scheme according to the downlink channel quality information;
  • a second acquiring unit configured to acquire downlink transmission quality information, and obtain current power redundancy according to the downlink transmission quality information
  • an adjusting unit configured to adjust the current power according to the preset power adjustment amount according to the current power redundancy, and/or adjust the level of the modulation and coding scheme according to a preset modulation coding scheme level adjustment amount.
  • the base station further includes:
  • a third acquiring unit configured to acquire system interference information, where the system interference information includes: first interference information of the neighboring cell to the local cell and/or second interference information of the local cell to the neighboring cell;
  • the adjusting unit adjusts the current power according to the preset power adjustment amount according to the current power redundancy, and/or adjusts the level of the modulation and coding scheme according to a preset modulation and coding scheme level adjustment amount:
  • An interference information is used to determine a resource location where the neighboring cell generates high interference to the local cell, and determining, according to the second interference information, a resource location that the local cell generates high interference to the neighboring cell; and in the high interference resource location, if the current power If the redundancy is negative redundancy, the current power is increased according to the preset power adjustment amount or the level of the modulation and coding scheme is decreased according to the preset modulation coding scheme level adjustment amount, if the current power redundancy is positive redundancy, Then, the current power is decreased according to a preset power adjustment amount or the level of the modulation and coding scheme is increased according to a preset modulation and coding scheme level adjustment amount.
  • the base station further includes:
  • a fourth acquiring unit configured to acquire system load information
  • the adjusting unit adjusts the current power according to the preset power adjustment amount according to the current power redundancy, and/or adjusts the modulation and coding scheme according to a preset modulation and coding scheme level adjustment amount, and the like.
  • the level is: when the system load information indicates that the current system load is high, when the current power redundancy is negative redundancy, the current power is increased according to the preset power adjustment amount; when the current power is positive redundancy And raising a level of the modulation and coding scheme according to a preset modulation coding scheme level adjustment amount; when the system load information indicates that the current system load is low, when the current power redundancy is negative redundancy, according to preset modulation
  • the coding scheme level adjustment amount reduces the level of the modulation coding scheme; when the current power redundancy is positive redundancy, the current power is reduced according to the preset power adjustment amount.
  • the base station further includes:
  • a fifth acquiring unit configured to obtain uplink channel quality information, and determine symmetry of the downlink channel and the uplink channel according to the uplink channel quality information and the downlink channel quality information, where the power adjustment amount is specifically a power boost amount Or the amount of power reduction;
  • the adjusting unit adjusts the current power according to the preset power adjustment amount according to the current power redundancy, and/or adjusts the level of the modulation and coding scheme according to a preset modulation and coding scheme level adjustment amount: in the downlink channel and When the uplink channel is symmetric, when the current power redundancy is positive redundancy, the base station decreases the power boost amount or increases the power reduction amount; the current power redundancy is negative When redundant, the base station reduces or increases the power boost amount.
  • the power redundancy degree is determined by the CQI information acquisition and processing process, the TQI statistics and the processing process, and the power and/or modulation coding scheme MCS is adjusted according to the degree of power redundancy to accurately release the redundant power.
  • Reduce the inter-cell interference level give full play to the cell's throughput capacity and be easy to design and implement.
  • FIG. 1 is a schematic flowchart of a power adjustment method of an Orthogonal Frequency Division Multiplexing (OFDM) system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a specific application process of the method shown in FIG. 1 in an LTE system;
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 3 is a schematic diagram of a specific application flow of the method shown in FIG. 2 in a WiMax system; 4 is a schematic structural diagram of a base station according to an embodiment of the present invention;
  • FIG. 5 is a schematic structural diagram of a specific application of the base station shown in FIG. 4.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the technical problems, technical solutions, and advantages of the present invention more comprehensible, the detailed description will be made in conjunction with the accompanying drawings and specific embodiments.
  • the present invention is directed to a strategy for power allocation such as sub-carriers in the conventional OFDM system, which cannot fully release the redundant power causing interference and fully utilize the problem of cell throughput, and provides a power control capable of effectively solving downlink interference of the OFDM system, so that A power adjustment method and a base station of an orthogonal frequency division multiplexing system capable of sufficiently releasing power redundancy, fully utilizing a throughput capability of a cell, and being easy to implement.
  • a power adjustment method of an Orthogonal Frequency Division Multiplexing system includes: Step 11: Base station Obtaining channel quality information (CQI), and obtaining a level of a Modulation and Coding Scheme (MCS) according to the downlink channel quality information CQI.
  • CQI channel quality information
  • MCS Modulation and Coding Scheme
  • the CQI information may include one or any combination of the following: Carrier to Interference plus Noise Ratio (CINR), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (Signal Noise Ratio, SIR), Signal and Signal to Interference (SNR).
  • CINR Carrier to Interference plus Noise Ratio
  • SINR Signal to Interference plus Noise Ratio
  • SINR Signal to Interference plus Noise Ratio
  • SIR Signal to Noise Ratio
  • SNR Signal and Signal to Interference
  • Step 12 The base station acquires downlink transmission quality information (TQI), and acquires current power redundancy according to the downlink transmission quality information TQI.
  • TQI downlink transmission quality information
  • the TQI information may mainly include one or any combination of the following: Block Error Rate (BLER), Packet Error Rate (PER), and Bit Error Rate (BER).
  • BLER Block Error Rate
  • PER Packet Error Rate
  • BER Bit Error Rate
  • Step 13 The base station adjusts the current power according to the preset power adjustment according to the current power redundancy, and/or adjusts the level of the modulation and coding scheme (MCS) according to a preset modulation and coding scheme level adjustment amount.
  • MCS modulation and coding scheme
  • the base station obtains the downlink channel quality information CQI and the downlink transmission quality information TQI, and maps the current modulation coding scheme MCS according to the CQI, and calculates the current power redundancy according to the TQI.
  • the current power is adjusted according to the preset power adjustment amount, and/or the MCS level is adjusted according to the preset MCS level adjustment amount. For example, if the power redundancy is positive redundancy, the preset power may be used. If the power is reduced to a negative level, the power can be increased according to the preset power adjustment amount.
  • the MCS level can be reduced at the same time according to the preset MCS level adjustment amount or the MCS level can be kept unchanged, so that the OFDM system can fully release the redundant power causing interference and fully utilize the cell throughput capability.
  • step 11 may be specifically:
  • the base station acquires downlink channel quality information CQI, and performs post-processing (such as filtering processing and averaging processing) on the downlink channel quality information CQI to obtain valid downlink channel quality information CQI_new, and according to the valid downlink channel quality information.
  • CQI_new acquires the level of the modulation and coding scheme MCS.
  • the step of performing filtering processing on the downlink channel quality information by the base station includes: the base station according to the formula of the downlink channel quality information CQI
  • ⁇ G- ⁇ x ⁇ + ax Cm performs filtering processing, where ⁇ is the downlink channel quality information CQI value calculated after the last filtering, and is the CQI value currently obtained by the base station is a filtering factor and 0 ⁇ ⁇ , "When 1 means no filtering, n is a positive integer.
  • step 12 may be specifically:
  • the feedback information of the terminal calculates the current downlink transmission quality information TQI_new, and compares the current downlink transmission quality information TQI_new with the preset threshold TQI_thd. If the current downlink transmission quality information TQI_new is greater than the preset threshold, that is, TQI_new > TQI_thd, the current power value is considered to be small, the current power redundancy is negative redundancy, or the MCS level is high (ie, MCS is positively redundant). Otherwise, the current power value is considered to be too large, the current power redundancy is positive redundancy or the MCS level is low (ie MCS negative redundancy).
  • At least two TQI thresholds may be preset, that is, (TQI_thd_l ⁇ TQI_thd_2 ⁇ ... ⁇ TQI_thd_n), and the current downlink transmission quality information TQI_new is in descending order of a preset threshold. Compare with each preset threshold to obtain the current power redundancy. To achieve precise positioning of power and MCS redundancy.
  • the at least two TQI thresholds can be determined by theoretical derivation, simulation or actual measurement.
  • the method may further include the following steps: the base station acquires system interference information, where the system interference information includes: first interference information of the neighboring cell to the local cell and/or second of the neighboring cell of the local cell Interference information.
  • the base station measurement or the terminal measurement reports the Neighbor-cell Interference Information (NIL) caused by the neighboring cell to the local cell, the first interference information, or the base interferes with the neighboring cell transmitted by the neighboring cell from the neighboring cell.
  • NIL Neighbor-cell Interference Information
  • SIL Serving-cell Interference Information
  • Step 13 may specifically include:
  • Step 131 The base station determines, according to the first interference information, a resource location that the neighboring cell generates a high interference to the local cell, and determines, according to the second interference information, a resource location that the local cell generates a high interference to the neighboring cell.
  • the base station will obtain the newly obtained NIL_new (that is, the interference level information generated by the latest neighboring cell to the local cell) and SIL_new (that is, the latest interference caused by the local cell to the neighboring cell).
  • the flat information is compared with the preset threshold values NIL_thd and SIL_thd, respectively. If NIL_new > NIL_thd, the interference level of the neighboring cell to the local cell is considered to be high, otherwise the interference level of the neighboring cell to the local cell is considered to be low; if SIL_new > SIL_thd, the interference level of the neighboring cell to the neighboring cell is considered to be high, otherwise the cell The level of interference to neighboring cells is low.
  • NIL_thd_l NIL_thd_2 ⁇ ... ⁇ NIL_thd_m
  • SIL_thd_l ⁇ SIL_thd_2 ⁇ ... ⁇ SIL_thd_t NIL_new and SIL_new Comparing with the thresholds of each level, the current interference level can be judged relatively accurately.
  • the threshold values of the plurality of NILs and SILs can also be determined by theoretical derivation, simulation or actual measurement.
  • Step 132 In the high interference resource location, if the current power redundancy is negative redundancy, the current power is increased according to a preset power adjustment amount or the modulation code is decreased according to a preset modulation coding scheme level adjustment amount. The level of the solution, if the current power redundancy is positive redundancy, the current power is decreased according to a preset power adjustment amount or the level of the modulation and coding scheme is increased according to a preset modulation coding scheme level adjustment amount.
  • the power and MCS levels can be adjusted independently or jointly adjusted to increase system flexibility.
  • the method shown in FIG. 1 may further include the following steps: the base station acquires system load information, specifically, the base station determines, according to the data amount in the downlink data buffer or the statistics information of the time-frequency resource scheduling amount in a period of time System load degree LSI.
  • the above step 13 may specifically include:
  • Step 133 When the system load information indicates that the current system load is high, when the current power redundancy is negative redundancy, the current power is increased according to the preset power adjustment amount; when the current power is positive redundancy And raising a level of the modulation and coding scheme according to a preset modulation coding scheme level adjustment amount; when the system load information indicates that the current system load is low, when the current power redundancy is negative redundancy, according to preset modulation
  • the coding scheme level adjustment amount reduces the modulation coding side The level of the case; when the current power redundancy is positive redundancy, the current power is reduced according to the preset power adjustment amount.
  • the base station calculates the current system load LSI
  • the newly obtained LSI_new is compared with a preset threshold LSI_thd. If LSI_new > LSI_thd, the system load is considered to be large, and the system is likely to cause interference.
  • the power or MCS level must be increased by a small amount; otherwise, the system load is considered to be small, and the system can easily avoid the interference by adjusting the time-frequency resources, which is less likely to cause interference. At this time, the power or MCS can be greatly increased. grade.
  • the method shown in FIG. 1 may further include the following steps: the base station acquires uplink channel quality information UCQ, and determines symmetry of the downlink channel and the uplink channel according to the uplink channel quality information UCQ and the downlink channel quality information CQI;
  • the power adjustment amount may specifically be: a power boost amount or a power reduction amount, and the base station maintains the power boost amount and the power reduction amount.
  • the step of the base station adjusting the current power according to the preset power adjustment according to the current power redundancy may be specifically:
  • Step 134 If the downlink channel and the uplink channel are symmetric, when the current power redundancy is positive redundancy, the base station decreases the power boost amount or increases the power reduction amount; When the current power redundancy is negative redundancy, the base station decreases the power boost amount or increases the power reduction amount.
  • the base station determines the change trend of the downlink channel according to the recently measured UCQ information, and appropriately compensates the power adjustment amplitude value. Specifically, the symmetry analysis of the uplink and downlink channels is performed. Methods as below: The trend of the downlink CQI and the uplink UCQ in a period of time is counted. If the trend is the same, the uplink and downlink channels are considered symmetric, otherwise the uplink and downlink channels are considered to be asymmetric.
  • the power boosting amount can be appropriately reduced or the power reduction amount can be appropriately increased; when the UCQ shows that the channel conditions are deteriorated, the power boosting amount can be appropriately increased or The amount of power reduction is appropriately reduced.
  • the base station adjusts the power by adjusting the power value or adjusting the power target value. It should be noted that: Each level of MCS has a power target value.
  • the base station calculates a power adjustment amount Delta_Power based on one or more of power redundancy, interference level, and/or system load based on step 11.
  • Delta_Power can be cumulatively adjusted. The cumulative adjustment depends on the size of the power redundancy. The larger the power redundancy, the larger the adjustment value. The smaller the power redundancy, the smaller the adjustment value. If the CQI information is coarse, multiple Delta_Power values ( Delta_Power_l ⁇ Delta_Power_2 ⁇ ... ⁇ Delta_Power_r ) can be preset, and the appropriate value can be selected according to the power redundancy. At the same time, the base station can implement compensation for Delta_Power according to the symmetrical characteristics of the uplink and downlink channels.
  • FIG. 2 is a schematic diagram of a specific application process of the method shown in FIG. 1 in an LTE system, and implements a downlink power control scheme for an LTE system, where the method includes:
  • Step 201 The user accesses the network, and the system configures initial power allocation.
  • Step 202 The user reports the downlink channel transmission quality information CQI to the base station, and the base station selects the CQI information to perform ARMR filtering processing ⁇ - ⁇ ⁇ ⁇ + "xc according to the need to calculate the effective CQI.
  • c is the CQI value reported by the current terminal, "is a filtering factor and 0 ⁇ "1,"1 means no filtering, and n is a positive integer.
  • the base station maps the MCS level according to the effective CQI; at the same time, the system maintains an MCS level adjustment. The whole amount.
  • Step 203 The base station receives the acknowledgement (ACK) / no acknowledgement (NACK) information reported by the terminal to calculate the BLER, and gives two threshold values X and y, and x > y. If BLER > x , it means power negative redundancy or MCS positive redundancy; if y ⁇ BLER ⁇ x , it means that power and MCS are in a reasonable interval; if BLER ⁇ y , it means power positive redundancy or MCS negative redundancy.
  • ACK acknowledgement
  • NACK no acknowledgement
  • Step 204 First, the base station side maintains a neighbor cell list ICIC_CellList, and the base station receives relative Narrowband TX Power (RNTP) information ⁇ RNTP1, RNTP2, RNTP3, RNTPn ⁇ of the n neighboring cells through the X2 interface, and calculates according to this.
  • the interference situation of the neighboring cell to all resource locations of the cell and the resource locations that may generate high interference with each other.
  • a resource location where there may be high interference if the power is negatively redundant, the level of the MCS is lowered; if the power is redundant, the power is reduced; if it is in a reasonable interval, no adjustment is made.
  • the power In a resource location where high interference is not generated, if the power is negatively redundant, the power can be increased and the MCS level can be lowered; if the power is positively redundant, the power can be reduced and the MCS level can be improved.
  • Step 205 The base station determines the system load degree according to the data amount in the downlink data buffer or the statistical information of the time-frequency resource scheduling amount in a period of time. In a resource location that does not generate high interference, if the system load is high, the power is increased when the power is negatively redundant, and the MCS level is raised when the power is positively redundant; if the system load is low, when the power is negatively redundant Reduce the level of MCS and reduce power when power is positive.
  • Step 206 The trend of the downlink CQI and the uplink SINR is measured in a period of time. If the trend is the same, the uplink and downlink channels are considered to be symmetric, otherwise the uplink and downlink channels are considered to be asymmetric.
  • the power adjustment amount of the system maintenance includes: a power downward adjustment amount dec-PC and an upward adjustment amount inc-PC, and the power control follows the principle of fast rise and fall; if the downlink channel and the uplink channel are symmetric, When the current power redundancy is positive redundancy, the base station decreases the power boost amount (ie, the upward adjustment amount) or increases the power reduction amount (ie, the downward adjustment amount); When the power redundancy is negative redundancy, the base station reduces the power boost amount Small or increase the amount of power reduction.
  • Both the power and MCS levels should be adjusted to continuously limit the limits to prevent system imbalance.
  • the power boost amount is appropriately reduced or the power drop amount is appropriately increased; when the SINR is deteriorated, the power boost amount is appropriately increased or the power is appropriately reduced. Reduce the amount.
  • the base station may adjust the power and/or MCS level according to the interference level of the system, the load degree of the system, and the symmetry of the uplink and downlink channels according to the power redundancy, and may also consider the interference level of the system.
  • the load of the system and the symmetry of the uplink and downlink channels adjust the level of power and/or MCS.
  • FIG. 3 is a schematic diagram of a specific application flow of the method shown in FIG. 2 in a WiMax system, and implements a downlink power control scheme for a Wimax system, where the method includes:
  • Step 301 The user accesses the network, and the system configures initial power allocation.
  • Step 302 The user reports the downlink CINR information to the base station, and the base station records the CA ⁇ obtained each time by using a sliding window, and averages (or weights averages) the CINR in the window, and calculates a valid CINR, which is expressed as CINR_eff.
  • the base station maps DIUC according to the effective CINR_eff (the DIUC has a certain mapping relationship with the MCS), and when the effective CINR falls in two levels of adjacent DIUC_i (threshold value is CINR_i) and DIUC_i+l (threshold value is CINR_i+l) When the threshold value is between, that is, when CINR_i ⁇ CINR_eff ⁇ CINR_i + l, the current DIUC is selected as DIUC_i.
  • Step 303 The base station receives the ACK/NACK information reported by the terminal to calculate a packet error rate (PER), and gives a threshold value X, x ⁇ lo if PER > x, indicating power negative redundancy or DIUC positive redundancy; if PER ⁇ X , indicating power positive redundancy or DIUC negative redundancy.
  • PER packet error rate
  • Step 304 The system maintains a DIUC threshold adjustment amount DIUC, and adjusts the power according to the difference between the CINR_eff and the threshold CINR_i of the DIUC_i.
  • the method can further include:
  • the base station side maintains a neighbor cell list ICIC_CellList, and the base station receives the RNTP information ⁇ RNTP1, RNTP2, RNTP3, RNTPn ⁇ of the n neighboring cells through the X2 interface, and calculates the interference situation of the neighboring cell to all the resource locations of the cell according to the Resource locations that may create high interference with each other.
  • the MCS level is lowered; if the power is positively redundant, the power is reduced; if it is in a reasonable interval, no adjustment is made.
  • resource locations that do not generate high interference if the power is negatively redundant, the power can be increased and the MCS level can be lowered; if the power is positively redundant, the power can be reduced and the MCS level can be increased.
  • the base station determines the system load according to the amount of data in the downlink data buffer or the statistical information of the time-frequency resource scheduling amount in a period of time. In a resource location that does not generate high interference, if the system load is high, the power is boosted when the power is negatively redundant, and the MCS level is raised when the power is positively redundant; if the system load is low, when the power is negatively redundant Reduce the level of MCS and reduce power when power is positive.
  • the trend of the downlink CQI and the uplink SINR is calculated in a period of time. If the trend is the same, the uplink and downlink channels are considered symmetric, otherwise the uplink and downlink channels are considered to be asymmetric.
  • the system When adjusting the power, the system maintains a power down adjustment amount dec-PC and an upward adjustment amount inc-PC, and the power control follows the principle of fast rise and fall; if the downlink channel and the uplink channel are symmetric, When the current power redundancy is positive redundancy, the base station decreases the power boost amount (ie, the upward adjustment amount) or increases the power reduction amount (ie, the downward adjustment amount); When the redundancy is negative redundancy, the base station decreases the power boost amount or increases the power reduction amount.
  • the power boost amount ie, the upward adjustment amount
  • the power reduction amount ie, the downward adjustment amount
  • the system maintains an MCS level adjustment.
  • the base station can also adjust the power and/or MCS level according to the interference level of the system, the load degree of the system, and the symmetry of the uplink and downlink channels, respectively, according to the power redundancy, and can also consider the interference of the system.
  • the level, the load of the system, and the symmetry of the uplink and downlink channels are used to adjust the level of power and/or MCS.
  • the above embodiments of the present invention can implement the OFDM system by using the CQI information acquisition and processing process, the TQI statistics and processing process, the inter-frame interference information processing process, the system load degree processing process, the uplink and downlink channel symmetry processing process, and the power adjustment process.
  • the interference suppression function analyzes the redundant power and system interference caused by the interference, and effectively reduces the interference to the edge users of the neighboring cells by releasing the redundant power, improves the edge coverage and throughput of the system, and controls the interference level to be ideal. Balanced state, effectively improving the overall capacity and coverage of the system.
  • the CQI information acquisition and processing process is responsible for receiving, by the base station, the CQI information, the CQI information, and the uplink channel quality and the MCS mapping.
  • the TQI statistics and processing process statistics the data transmission success/failure indication information fed back by the terminal, and estimate the current downlink power and the degree of redundancy of the MCS;
  • the inter-cell interference information processing process acquires mutual interference information between neighboring cells by means of base station measurement, terminal reporting, and/or inter-base station communication, determines the interference state of the system, and determines the power/MCS adjustment direction according to the TQI information (see Table 1). ) ;
  • the MCS has a low-interference high, and the area has a lower-than-neighbor ratio.
  • the power system load processing process is used to determine the downlink load level of the system, and provides reference for downlink power adjustment; the uplink and downlink channel symmetry processing process determines the symmetry of the uplink and downlink channels by statistically comparing the uplink and downlink channel quality;
  • the power adjustment process performs comprehensive processing according to the above information to obtain the current power adjustment value or
  • the amount of adjustment of the MCS level The specific embodiment selects all or part of the process to be applied as needed.
  • the downlink power adjustment method of the orthogonal frequency division multiplexing system provided by the invention can accurately determine the interference state and the power redundancy degree by using various information, accurately release the redundant power, fully reduce the inter-cell interference level, and fully utilize the cell throughput. Ability and ease of system design and implementation.
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 4, an embodiment of the present invention further provides a base station 40, including:
  • the first obtaining unit 41 is configured to acquire downlink channel quality information, and obtain a level of the modulation and coding scheme according to the downlink channel quality information.
  • the second obtaining unit 42 is configured to acquire downlink transmission quality information, and obtain current power redundancy according to the downlink transmission quality information.
  • the adjusting unit 43 is configured to adjust the current power according to the preset power adjustment amount according to the current power redundancy, and/or adjust the modulation and coding scheme according to a preset modulation coding scheme level adjustment amount. The level.
  • the base station 40 further includes:
  • a third acquiring unit configured to acquire system interference information, where the system interference information includes: first interference information of the neighboring cell to the local cell and/or second interference information of the local cell to the neighboring cell;
  • the adjusting unit 43 specifically includes:
  • a first adjustment subunit configured to determine, according to the first interference information, a resource location that the neighboring cell generates high interference to the local cell, and determine, according to the second interference information, a resource location that the local cell generates high interference to the neighboring cell; If the current power redundancy is negative redundancy, the current power is increased according to the preset power adjustment amount or the level of the modulation and coding scheme is decreased according to the preset modulation coding level adjustment amount. If the current power redundancy is positive redundancy, the current power is decreased according to a preset power adjustment amount or the level of the modulation and coding scheme is increased according to a preset modulation coding level adjustment amount.
  • the base station 40 may further include:
  • a fourth acquiring unit configured to acquire system load information
  • the adjusting unit 43 is specifically:
  • a second adjusting subunit configured to: when the current system load is high, when the current power redundancy is negative, the current power is increased according to a preset power adjustment amount; when the current power is When it is positive redundancy, the level of the modulation and coding scheme is increased according to a preset modulation and coding scheme level adjustment amount; when the system load information indicates that the current system load is low, when the current power redundancy is negative redundancy And reducing the level of the modulation and coding scheme according to a preset modulation coding scheme level adjustment amount; when the current power redundancy is positive redundancy, reducing the current power according to the preset power adjustment amount.
  • the base station 40 may further include:
  • a fifth acquiring unit configured to acquire uplink channel quality information, and determine symmetry of the downlink channel and the uplink channel according to the uplink channel quality information and the downlink channel quality information;
  • the power adjustment amount may be specifically a power boost amount or a power reduction amount, and the base station maintains the power boost amount and the power reduction amount;
  • the adjusting unit 43 is specifically:
  • a third adjusting subunit configured to: when the current channel redundancy is positive redundancy, when the downlink channel and the uplink channel are symmetric, the base station reduces the power boosting amount or the power The amount of decrease is increased; when the current power redundancy is negative redundancy, the base station decreases the power boost amount by d, or increases the power reduction amount.
  • the base station is a serving base station, and the base station includes:
  • the first acquiring unit 41 in the foregoing serving base station is specifically an adaptive coded modulation (AMC) module in the serving base station, configured to receive downlink channel quality information CQI reported by the terminal, and map the corresponding modulation and coding scheme MCS according to the CQI information.
  • AMC adaptive coded modulation
  • the second obtaining unit 42 in the foregoing base station 40 is specifically a TQI processing module in the serving base station, configured to receive transmission quality feedback (ie, transmission quality information TQI information) reported by the terminal, and calculate a current power redundancy level according to the TQI information. (that is, power redundancy), if the TQI information is greater than the preset threshold and is greater than the preset threshold, the current power is considered to be high, and the power redundancy is positive redundancy, otherwise it is negative redundancy;
  • the third obtaining unit 44 of the foregoing base station 40 may be specifically configured to be an interference information processing module of the serving base point, configured to receive interference NIL information caused by the neighboring cell reported by the terminal to the local cell, and determine, according to the NIL information, the neighboring cell to the local cell.
  • the interference state for example, can determine the resource location of the neighboring cell with high local interference;
  • the interference information processing module may further acquire the interference information NIL of the neighboring cell to the local cell from the neighboring cell base station, and determine, according to the NIL information, the resource bit of the neighboring cell with high interference to the local cell;
  • the fourth obtaining unit 45 in the foregoing base station 40 may be specifically a system load in the serving base station.
  • a calculation module configured to acquire a current system load degree
  • the fifth obtaining unit 46 in the foregoing base station 40 may be specifically an uplink and downlink signaling fatigue symmetry processing module in the serving base station, which is used to collect the trend of the downlink CQI and the uplink UCQ in a period of time, and if the trend is the same, the uplink and downlink are considered to be uplink and downlink.
  • the channel is symmetric. Otherwise, the uplink and downlink channels are considered to be asymmetric. If the uplink and downlink channels are symmetric, the power can be adjusted according to the UCQ channel quality.
  • the adjusting unit 43 in the foregoing base station 40 may be specifically a power control module in the serving base station, configured to perform current power and/or according to currently calculated power redundancy, interference state, system load, and/or UCQ channel quality.
  • the level of the MCS is adjusted. For example, when the calculated current power redundancy is positive redundancy, the current power can be reduced, and the MCS level can be increased or the MCS level can be maintained unchanged. In the case of power negative redundancy, the level can be improved. The current power can also lower the MCS level accordingly;
  • the current power and/or MCS level may be adjusted according to the adjustment method shown in Table 1 above;
  • the current power and/or MCS level can also be adjusted according to the corresponding adjustment unit in the base station 40.
  • the downlink power adjustment method and the base station of the orthogonal frequency division multiplexing system provided by the present invention can accurately determine the interference state and the power redundancy degree by using various information, accurately release the redundant power, fully reduce the interval interference level, and fully utilize the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

正交频分复用系统的功率调整方法和基站 技术领域
本发明涉及一种无线通讯技术领域, 特别涉及一种正交频分复用
( Orthogonal Frequency Division Multiplexing , OFDM ) 系统的下行功率调 整方法和基站。 背景技术
作为新一代无线通信技术的标志, OFDM在无线通信系统的发展显示 出其强大的优势, 被多种标准所采纳。 OFDM 系统的主要技术优势在于频 谱效率高, 带宽扩展性强, 抗多径衰落能力强, 便于灵活分配频谱资源, 便于实现多输入多输出( Multiple-Input Multiple-Out-put, MIMO )或者空间 多样技术等。
和传统的无线蜂窝网络相同, OFDM 系统也通过降低频率复用因子的 方式提高频谱利用率。 虽然 OFDM系统的小区 (扇区) 内干扰的问题得到 很好的解决, 但随着频率复用因子的降低, 小区间干扰 ( Inter-Cell Interference, ICI ) 由于同频干扰源位置的接近而增加, 使该问题成为制约 OFDM系统性能的主要障碍。
在干扰抑制技术中, 功率配置的合理与否是决定系统性能的关键因素。 为了有效抑制干扰的发生, OFDM系统的功率配置应满足如下要求:
1、 能够充分释放功率冗余, 提升小区边缘吞吐率。
2、 能够充分利用信道状况, 并充分发挥小区的吞吐能力。
3、 易于系统设计和实现。
传统的 OFDM系统通常采用子载波等功率分配的方案, 这种方式实现 相对筒单, 但失去了各用户间的公平性。 因为小区边缘用户需要较大的发 射功率来抵抗大尺度衰落, 而小区中心用户则需要较低的功率来降低小区 间的干扰。 为了解决这个问题, 通常采用功率分配的方法, 即在不同子载 波上固定地分配不同功率, 使得相邻小区之间由于采用不同的分配方式错 开了干扰。 这种方式缺乏灵活性, 虽然筒单易行并在一定程度上降低了小 区间的干扰, 但以牺牲小区吞吐率为代价, 不能充分释放造成干扰的冗余 功率和充分发挥小区吞吐能力。 发明内容
本发明要解决的技术问题是提供一种正交频分复用(OFDM )系统的下 行功率调整方法和基站, 能够有效解决 OFDM系统下行干扰的功率控制, 使之能够充分释放功率冗余、 充分发挥小区的吞吐能力并且易于系统设计 和实现。
为解决上述技术问题, 本发明的实施例提供一种正交频分复用系统的 功率调整方法, 包括:
基站获取下行信道质量信息, 并根据所述下行信道质量信息获取调制 编码方案的等级;
所述基站获取下行传输质量信息, 并根据所述下行传输质量信息获取 当前功率冗余度;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等级。
其中, 所述基站获取下行信道质量信息, 并根据所述下行信道质量信 息获取调制编码方案的等级步骤具体为:
所述基站获取下行信道质量信息, 并对所述下行信道质量信息进行后 处理, 获得有效的下行信道质量信息, 并根据所述有效的下行信道质量信 息获取所述调制编码方案的等级。
其中, 所述基站对所述下行信道质量信息进行后处理具体为: 所述基站对所述下 行信道质 量信 息 CQI 按照 公式 " ΐ- ^^^ + ^进行滤波处理,其中, ^^是上次滤波之后计算出 的下行信道质量信息 CQI值, 是所述基站当前获取的 CQI值^为滤波 因子且 0< α 1,η为正整数。
其中, 所述基站获取下行传输质量信息, 并根据所述下行传输质量信 息获取当前功率冗余度的步骤具体为:
所述基站获取终端上报的当前下行传输质量信息或者根据所述终端的 反馈信息计算出当前下行传输质量信息, 并将所述当前下行传输质量信息 与预设门限比较, 若所述当前下行传输质量信息大于所述预设门限, 则当 前功率冗余度为负冗余, 否则, 当前功率冗余度为正冗余。
其中, 所述预设门限为至少 1个, 在所述门限值多于 1个时, 所述预 设门限值各不相同;
将所述当前下行传输质量信息与预设门限进行比较具体为:
将所述当前下行传输质量信息按照预设门限值从大到小的顺序分别与 各个预设门限进行比较, 获取当前功率冗余度。
其中, 该方法还包括:
所述基站获取系统干扰信息, 所述系统干扰信息包括: 邻小区对本小 区的第一干扰信息和 /或本小区对邻小区的第二干扰信息;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等级的 步骤包括:
所述基站根据所述第一干扰信息确定邻小区对本小区产生高干扰的资 源位置, 并根据所述第二干扰信息确定本小区对邻小区产生高干扰的资源 位置;
在所述高干扰的资源位置, 若所述当前功率冗余度为负冗余, 则按照 预设功率调整量提升当前功率或者按照预设调制编码方案等级调整量降低 所述调制编码方案的等级, 若所述当前功率冗余度为正冗余, 则按照预设 功率调整量降低所述当前功率或者按照预设调制编码方案等级调整量提升 所述调制编码方案的等级。
其中, 该方法还包括:
所述基站获取系统负荷信息;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等级的 步骤包括:
在所述系统负荷信息表示当前系统负荷高时, 当所述当前功率冗余度 为负冗余时, 按照预设功率调整量提升当前功率; 当所述当前功率为正冗 余时, 按照预设调制编码方案等级调整量提升所述调制编码方案的等级; 在所述系统负荷信息表示当前系统负荷低时, 当所述当前功率冗余度 为负冗余时, 按照预设调制编码方案等级调整量降低所述调制编码方案的 等级; 当所述当前功率冗余度为正冗余时, 按照预设功率调整量降低当前 功率。
其中, 该方法还包括:
所述基站获取上行信道质量信息, 并根据所述上行信道质量信息和所 述下行信道质量信息判断下行信道和上行信道的对称性; 其中, 所述功率 调整量为功率提升量或者功率降低量;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率的步骤具体为:
若所述下行信道和所述上行信道对称, 在所述当前功率冗余度为正冗 余时, 所述基站将所述功率提升量减小或者将所述功率降低量增大; 在所 述当前功率冗余度为负冗余时, 所述基站将所述功率提升量减小或者将所 述功率降低量增大。
为解决上述技术问题, 本发明的实施例还提供一种基站, 包括: 第一获取单元, 用于获取下行信道质量信息, 并根据所述下行信道质 量信息获取调制编码方案的等级;
第二获取单元, 用于获取下行传输质量信息, 并根据所述下行传输质 量信息获取当前功率冗余度;
调整单元, 用于根据所述当前功率冗余度, 按照预设功率调整量调整 当前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的 等级。
其中, 所述基站还包括:
第三获取单元, 用于获取系统干扰信息, 所述系统干扰信息包括: 邻 小区对本小区的第一干扰信息和 /或本小区对邻小区的第二干扰信息;
所述调整单元根据所述当前功率冗余度, 按照预设功率调整量调整当 前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等 级为: 用于根据所述第一干扰信息确定邻小区对本小区产生高干扰的资源 位置, 并根据所述第二干扰信息确定本小区对邻小区产生高干扰的资源位 置; 在所述高干扰的资源位置, 若所述当前功率冗余度为负冗余, 则按照 预设功率调整量提升当前功率或者按照预设调制编码方案等级调整量降低 所述调制编码方案的等级, 若所述当前功率冗余度为正冗余, 则按照预设 功率调整量降低所述当前功率或者按照预设调制编码方案等级调整量提升 所述调制编码方案的等级。
其中, 所述基站还包括:
第四获取单元, 用于获取系统负荷信息;
所述调整单元根据所述当前功率冗余度, 按照预设功率调整量调整当 前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等 级为: 在所述系统负荷信息表示当前系统负荷高时, 当所述当前功率冗余 度为负冗余时, 按照预设功率调整量提升当前功率; 当所述当前功率为正 冗余时, 按照预设调制编码方案等级调整量提升所述调制编码方案的等级; 在所述系统负荷信息表示当前系统负荷低时, 当所述当前功率冗余度为负 冗余时, 按照预设调制编码方案等级调整量降低所述调制编码方案的等级; 当所述当前功率冗余度为正冗余时, 按照预设功率调整量降低当前功率。
其中, 所述基站还包括:
第五获取单元, 用于获取上行信道质量信息, 并根据所述上行信道质 量信息和所述下行信道质量信息判断下行信道和上行信道的对称性; 其中, 所述功率调整量具体为功率提升量或者功率降低量;
所述调整单元根据所述当前功率冗余度, 按照预设功率调整量调整当 前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等 级为: 在所述下行信道和所述上行信道对称时, 所述当前功率冗余度为正 冗余时, 所述基站将所述功率提升量减小或者将所述功率降低量增大; 所 述当前功率冗余度为负冗余时, 所述基站将所述功率提升量减小或者将所 述功率降低量增大。
本发明的上述技术方案的有益效果如下:
上述方案中, 利用通过 CQI信息获取和处理过程、 TQI统计及处理过 程判断功率冗余程度, 并根据功率冗余程度对功率和 /调制编码方案 MCS 的等级进行调整, 准确释放冗余功率, 充分降低小区间干扰水平, 充分发 挥小区的吞吐能力并且易于系统设计和实现。 附图说明
图 1为本发明的实施例正交频分复用系统的功率调整方法流程示意图; 图 2为图 1所示方法在 LTE系统中的具体应用流程示意图;
图 3为图 2所示方法在 WiMax系统中的具体应用流程示意图; 图 4为本发明的实施例基站的结构示意图;
图 5为图 4所示基站的一个具体应用结构示意图。 具体实施方式 为使本发明要解决的技术问题、 技术方案和优点更加清楚, 下面将结 合附图及具体实施例进行详细描述。
本发明针对现有 OFDM系统通常采用子载波等功率分配的策略, 不能 充分释放造成干扰的冗余功率和充分发挥小区吞吐能力问题, 提供一种能 够有效解决 OFDM系统下行干扰的功率控制,使之能够充分释放功率冗余、 充分发挥小区的吞吐能力并且易于实现的正交频分复用系统的功率调整方 法和基站。
图 1为本发明的实施例正交频分复用系统的功率调整方法流程示意图, 如图 1所示, 本发明的实施例正交频分复用系统的功率调整方法包括: 步骤 11 : 基站获取下行信道质量信息 (Channel Quality Information, CQI ) , 并根据所述下行信道质量信息 CQI获取调制编码方案(Modulation and Coding Scheme, MCS ) 的等级。
这里, CQI信息可以包括以下一项或任意项的组合: 载波与干扰噪声 比( Carrier to Interference plus Noise Ratio, CINR )、信号与干扰噪声比( Signal to Interference plus Noise Ratio, SINR )、信噪比( Signal Noise Ratio, SIR ) 、 信号与干 4尤比(Signal to Interference, SNR ) 。
步骤 12 : 所述基站获取下行传输质量信息 (Transmission Quality Information, TQI ) , 并根据所述下行传输质量信息 TQI获取当前功率冗余 度。
这里, TQI信息主要可以包括以下一项或任意项的组合:误块率( Block Error Rate, BLER )、 误包率( Packet Error Rate , PER )、 误码率(Bit Error Rate, BER ) 。 步骤 13: 所述基站根据所述当前功率冗余度, 按照预设的功率调整量 调整当前功率和 /或按照预设的调制编码方案等级调整量调整所述调制编码 方案 (MCS ) 的等级。
该实施例中, OFDM系统中, 基站通过获取下行信道质量信息 CQI和 下行传输质量信息 TQI,并根据该 CQI映射出当前的调制编码方案 MCS的 等级, 根据该 TQI计算出当前功率冗余度, 并根据该功率冗余度, 按照预 设功率调整量调整当前功率和 /或按照预设 MCS等级调整量调整 MCS的等 级, 例如, 若功率冗余度为正冗余, 则可以按照预设功率调整量降低功率, 也可以同时按照预设 MCS等级调整量提高 MCS 的等级或者保持该 MCS 的等级不变, 若功率冗余度为负冗余, 则可以按照预设功率调整量提升功 率, 也可同时按照预设 MCS等级调整量降低 MCS 的等级或者保持 MCS 的等级不变, 这样, 可以使 OFDM系统充分释放造成干扰的冗余功率和充 分发挥小区吞吐能力。
在上述方法中, 步骤 11可具体为:
所述基站获取下行信道质量信息 CQI,并对所述下行信道质量信息 CQI 进行后处理 (如滤波处理、 平均处理) , 获得有效的下行信道质量信息 CQI_new, 并根据所述有效的下行信道质量信息 CQI_new获取所述调制编 码方案 MCS的等级。
具体来讲, 基站对所述下行信道质量信息进行滤波处理的步骤包括: 所述基站对所述下 行信道质 量信 息 CQI 按照 公式
^^ G- ^ x^^ + a x Cm进行滤波处理,其中, ^^是上次滤波之后计算出 的下行信道质量信息 CQI值, 是所述基站当前获取的 CQI值^为滤波 因子且 0< α , "为 1时表示不滤波, n为正整数。
另外, 上述步骤 12可具体为:
所述基站获取终端上报的当前下行传输质量信息 TQI或者根据所述终 端的反馈信息(如终端的 ACK/NACK消息,其中, ACK为应答消息, NACK 为没有应答)计算出当前下行传输质量信息 TQI_new, 并将所述当前下行 传输质量信息 TQI_new与预设门限 TQI_thd比较, 若所述当前下行传输质 量信息 TQI_new大于所述预设门限, 即 TQI_new > TQI_thd, 则认为当前 功率值偏小, 当前功率冗余度为负冗余或者 MCS等级偏高 (即 MCS正冗 余); 否则, 认为当前功率值偏大, 当前功率冗余度为正冗余或者 MCS等 级偏低(即 MCS负冗余) 。
优选的, 还可以预先设定至少两个 TQI 门限值, 即 (TQI_thd_l< TQI_thd_2 < ...< TQI_thd_n ) , 将所述当前下行传输质量信息 TQI_new按 照预设门限值从大到小的顺序分别与各个预设门限进行比较, 获取当前功 率冗余度。 以实现对功率及 MCS的冗余程度精确定位。 其中, 该至少两个 TQI门限值, 可以通过理论推导、 仿真或者实际测量确定。
在上述图 1 所示方法中, 还可以包括如下步骤: 所述基站获取系统干 扰信息, 所述系统干扰信息包括: 邻小区对本小区的第一干扰信息和 /或本 小区对邻小区的第二干扰信息。
如, 基站测量或终端测量上报邻小区对本小区造成的干扰水平信息 ( Neighbor-cell Interference Information, NIL ) , 第一干扰信息、, 或者基占 接收来自邻区基站传递的本小区对邻小区造成干扰信息 ( Serving-cell Interference Information, SIL ) , 即第二干扰信息。
则步骤 13可具体包括:
步骤 131 :所述基站根据所述第一干扰信息确定邻小区对本小区产生高 干扰的资源位置, 并根据所述第二干扰信息确定本小区对邻小区产生高干 扰的资源位置。
具体来讲, 基站将最新获得的 NIL_new (即最新的邻小区对本小区造 成的干扰水平信息)和 SIL_new (即最新的本小区对邻小区造成的干扰水 平信息)分别与预先设定的门限值 NIL_thd和 SIL_thd比较。如果 NIL_new > NIL_thd, 则认为邻小区对本小区的干扰水平较高, 否则认为邻小区对本 小区的干扰水平较低; 如果 SIL_new > SIL_thd, 则认为本小区对邻小区的 干扰水平较高, 否则本小区对邻小区的干扰水平较低。
同样, 该步骤中, 还可以预先设定多个 NIL 和 SIL 的门限值, 即 ( NIL_thd_l< NIL_thd_2 < ...< NIL_thd_m )及( SIL_thd_l< SIL_thd_2 < ...< SIL_thd_t ) , 将 NIL_new和 SIL_new分别与其各级门限值比较, 可相对精 确地判断出当前的干扰水平。 其中, 该多个 NIL和 SIL的门限值也可以通 过理论推导、 仿真或者实际测量确定。
步骤 132:在所述高干扰的资源位置,若所述当前功率冗余度为负冗余, 则按照预设功率调整量提升当前功率或者按照预设调制编码方案等级调整 量降低所述调制编码方案的等级, 若所述当前功率冗余度为正冗余, 则按 照预设功率调整量降低所述当前功率或者按照预设调制编码方案等级调整 量提升所述调制编码方案的等级。
当然在该步骤中, 功率与 MCS的等级可独立调整, 也可联合调整, 增 加系统灵活性。
在上述图 1 所示方法中, 还可以包括如下步骤: 所述基站获取系统负 荷信息, 具体来讲, 基站根据一段时间内下行数据緩存器中的数据量或者 时频资源调度量的统计信息确定系统负荷度 LSI。
上述步骤 13可具体包括:
步骤 133: 在所述系统负荷信息表示当前系统负荷高时, 当所述当前功 率冗余度为负冗余时, 按照预设功率调整量提升当前功率; 当所述当前功 率为正冗余时, 按照预设调制编码方案等级调整量提升所述调制编码方案 的等级; 在所述系统负荷信息表示当前系统负荷低时, 当所述当前功率冗 余度为负冗余时, 按照预设调制编码方案等级调整量降低所述调制编码方 案的等级; 当所述当前功率冗余度为正冗余时, 按照预设功率调整量降低 当前功率。
具体来讲, 如基站计算当前系统负荷 LSI, 将最新获得的 LSI_new与 预先设定的门限值 LSI_thd比较, 如果 LSI _new > LSI_thd, 则认为系统负 荷较大, 系统造成干扰的可能性较大, 须以较小幅度提升功率或 MCS的等 级; 否则认为系统负荷较小, 系统较容易通过调整时频资源来回避干扰, 造成干扰的可能性较小, 此时可以较大幅度提升功率或 MCS的等级。
该方案中, 如果同时考虑上述系统干扰信息, 则在不会产生高干扰的 资源位置, 如果系统负荷度高, 则当功率负冗余时提升功率, 当功率正冗 余时提升 MCS的等级; 如果系统负荷度低, 则当功率负冗余时降低 MCS 的等级, 当功率正冗余时降低功率。
在上述图 1 所示方法中, 还可以包括如下步骤: 基站获取上行信道质 量信息 UCQ, 并根据所述上行信道质量信息 UCQ和所述下行信道质量信 息 CQI判断下行信道和上行信道的对称性; 其中, 上述功率调整量具体可 以为: 功率提升量或者功率降低量, 基站并维护该功率提升量和功率降低 量。
上述步骤 13中, 所述基站根据所述当前功率冗余度, 按照预设的功率 调整量调整当前功率的步骤可具体为:
步骤 134: 若所述下行信道和所述上行信道对称, 在所述当前功率冗余 度为正冗余时, 所述基站将所述功率提升量减小或者将所述功率降低量增 大; 在所述当前功率冗余度为负冗余时, 所述基站将所述功率提升量减小 或者将所述功率降低量增大。
对于 TDD系统, 可通过分析上下行信道的对称性, 基站根据最近测量 的 UCQ信息判断下行信道的变化趋势, 对功率调整幅度值进行适当补偿, 具体来讲, 上述上下行信道的对称性的分析方法如下: 统计一段时间内下行 CQI与上行 UCQ的变化趋势,如果趋势相同,则 认为上下行信道对称, 否则认为上下行信道不对称。 如果上下行信道对称, 当 UCQ显示信道条件变好时,可将功率提升量适当减小或将功率降低量适 当加大; 当 UCQ显示信道条件变差时, 可将功率提升量适当加大或将功率 降低量适当减小。
综上, 基站对功率的调整, 通过调整功率值或者调整功率目标值的形 式实现, 需要说明的是: 每一等级的 MCS均拥有一个功率目标值。
基站在步骤 11的基础上结合功率冗余、干扰水平和 /或系统负荷度中的 一个或多个结果计算功率调整量 Delta_Power。
Delta_Power可累积调整, 累积调整量取决于功率冗余的大小, 功率冗 余越大, 调整值越大; 功率冗余越小, 调整值越小。 CQI信息如果比较粗 糙, 可预先设定多个 Delta_Power值( Delta_Power_l< Delta_Power_2 < ...< Delta_Power_r ) , 根据功率冗余大小选择适当的取值。 同时, 基站可根据 上下行信道的对称特性来实现对于 Delta_Power的补偿。
下面结合具体 OFDM系统, 说明上述方法的具体实现:
图 2为图 1所示方法在 LTE系统中的具体应用流程示意图, 实现了一 种针对 LTE系统下行功率控制方案, 该方法包括:
步骤 201 : 用户接入网络, 系统配置初始功率分配。
步骤 202: 用户上报下行信道传输质量信息 CQI给基站, 基站根据需 要选择对 CQI信息进行 ARMR滤波处理^^ ^Ι - ^ Χ ^ + "xc , 计算出 有效 CQI。
其中, 是上次滤波之后计算出的下行信道质量信息 CQI值, c 是 当前终端上报的 CQI值, "为滤波因子且 0< " 1 , "取 1表示不滤波, n为 正整数。
基站根据有效 CQI映射 MCS的等级; 同时系统维护一个 MCS等级调 整量。
步骤 203 : 基站接收终端上报的应答(ACK ) /没有应答(NACK )信 息计算 BLER, 给定两个门限值 X和 y , 且 x > y。 如果 BLER > x , 表示功 率负冗余或 MCS正冗余; 如果 y < BLER < x , 表示功率和 MCS处于合理 区间; 如果 BLER < y , 表示功率正冗余或 MCS负冗余。
步骤 204: 首先基站侧维护一个相邻小区列表 ICIC_CellList,基站通过 X2接口接收 n个邻区的相对窄带发射功率( Relative Narrowband TX Power, RNTP )信息 {RNTPl, RNTP2, RNTP3, RNTPn} ,据此计算出相邻小区对 本小区的在所有资源位置的干扰情况以及可能相互产生高干扰的资源位 置。在可能存在高干扰的资源位置,如果功率负冗余,则降低 MCS的等级; 如果功率正冗余, 则降低功率; 如果处于合理区间则不作调整。 在不会产 生高干扰的资源位置, 如果功率负冗余, 则可以提升功率也可以降低 MCS 的等级; 如功率正冗余, 则可以降低功率也可以提升 MCS的等级。
步骤 205 :基站根据一段时间内下行数据緩存器中的数据量或者时频资 源调度量的统计信息确定系统负荷度。 在不会产生高干扰的资源位置, 如 果系统负荷度高, 则当功率负冗余时提升功率, 当功率正冗余时提升 MCS 的等级; 如果系统负荷度低, 则当功率负冗余时降低 MCS的等级, 当功率 正冗余时降低功率。
步骤 206: 统计一段时间内下行 CQI与上行 SINR的变化趋势, 如果趋 势相同, 则认为上下行信道对称, 否则认为上下行信道不对称。
系统维护的功率调整量包括: 一个功率向下调整量 dec-PC和一个向 上调整量 inc-PC , 功率控制遵循快升慢降的原则; 若所述下行信道和所 述上行信道对称, 在所述当前功率冗余度为正冗余时, 所述基站将所述功 率提升量(即向上调整量)减小或者将所述功率降低量(即向下调整量) 增大; 在所述当前功率冗余度为负冗余时, 所述基站将所述功率提升量减 小或者将所述功率降低量增大。
功率和 MCS等级的调整均应设定连续调整极限,防止系统失衡。另外, 如果考虑上下行信道对称性, 当 SINR变好时,适当减小功率提升量小或适 当加大功率降^^量; 当 SINR变差时,适当加大功率提升量或适当减小功率 降低量。
该实施例中, 基站可以根据功率冗余, 可以分别考虑系统的干扰水平、 系统的负荷度、上下行信道的对称性来调整功率和 /或 MCS的等级,也可以 同时考虑系统的干扰水平、 系统的负荷度和上下行信道的对称性来调整功 率和 /或 MCS的等级。
图 3为图 2所示方法在 WiMax系统中的具体应用流程示意图, 实现了 一种针对 Wimax系统下行功率控制方案, 该方法包括:
步骤 301 : 用户接入网络, 系统配置初始功率分配。
步骤 302: 用户上报下行 CINR信息给基站, 基站利用滑动窗口记录每 次获得的 C A^, 对窗口内的 CINR进行平均 (或加权平均) , 计算出有效 CINR, 表示为 CINR_eff。
基站根据有效 CINR_eff映射 DIUC(该 DIUC与 MCS具有一定的映射 关系) , 当有效 CINR 落在两级相邻的 DIUC_i (门限值为 CINR_i ) 和 DIUC_i+l (门限值为 CINR_i+l )的门限值之间时,即当 CINR_i < CINR_eff < CINR_i+l时, 选择当前的 DIUC为 DIUC_i。
步骤 303: 基站接收终端上报的 ACK/NACK信息计算误包率(PER ) , 给定一个门限值 X , x < l o如果 PER > x, 表示功率负冗余或 DIUC正冗余; 如果 PER < X , 表示功率正冗余或 DIUC负冗余。 当 DIUC正冗余时, 提升 DIUC的门限值, 当 DIUC负冗余时降低各级 DIUC的门限值。
步骤 304: 系统维护一个 DIUC门限值调整量 DIUC, 根据 CINR_eff 与 DIUC_i的门限 CINR_i之间的差值调整功率。 当然, 该方法还可进一步包括:
基站侧维护一个相邻小区列表 ICIC_CellList, 基站通过 X2接口接收 n 个邻区的 RNTP信息 {RNTP1, RNTP2, RNTP3, RNTPn} , 据此计算出相 邻小区对本小区的在所有资源位置的干扰情况以及可能相互产生高干扰的 资源位置。 在可能存在高干扰的资源位置, 如果功率负冗余, 则降低 MCS 的等级; 如果功率正冗余, 则降低功率; 如果处于合理区间则不作调整。 在不会产生高干扰的资源位置, 如果功率负冗余, 则可以提升功率也可以 降低 MCS的等级; 如功率正冗余, 则可以降低功率也可以提升 MCS的等 级。
该实施例还可进一步包括:
基站根据一段时间内下行数据緩存器中的数据量或者时频资源调度量 的统计信息确定系统负荷度。 在不会产生高干扰的资源位置, 如果系统负 荷度高, 则当功率负冗余时提升功率, 当功率正冗余时提升 MCS的等级; 如果系统负荷度低, 则当功率负冗余时降低 MCS的等级, 当功率正冗余时 降低功率。
该实施例还可进一步包括:
统计一段时间内下行 CQI与上行 SINR的变化趋势, 如果趋势相同, 则认为上下行信道对称, 否则认为上下行信道不对称。
在调整功率时, 系统维护一个功率向下调整量 dec-PC和一个向上调 整量 inc-PC , 功率控制遵循快升慢降的原则; 若所述下行信道和所述上 行信道对称, 在所述当前功率冗余度为正冗余时, 所述基站将所述功率提 升量(即向上调整量)减小或者将所述功率降低量(即向下调整量)增大; 在所述当前功率冗余度为负冗余时, 所述基站将所述功率提升量减小或者 将所述功率降低量增大。
同时系统维护一个 MCS等级调整量。根据上述步骤确定调整方向进行 功率或 MCS等级的调整。功率和 MCS等级的调整均应设定连续调整极限, 防止系统失衡。
该实施例中, 基站也同样可以根据功率冗余, 可以分别考虑系统的干 扰水平、系统的负荷度、上下行信道的对称性来调整功率和 /或 MCS的等级, 也可以同时考虑系统的干扰水平、 系统的负荷度和上下行信道的对称性来 调整功率和 /或 MCS的等级。
本发明的上述实施例通过 CQI信息获取和处理过程、 TQI统计及处理 过程、 小区间干扰信息处理过程、 系统负荷度处理过程、 上下行信道对称 性处理过程以及功率调整过程, 可以实现 OFDM系统的干扰抑制功能, 分 析造成干扰的冗余功率和系统干扰状况, 通过释放冗余功率来有效降低对 于相邻小区边缘用户的干扰, 提高系统的边缘覆盖和吞吐能力, 将干扰水 平控制在较为理想的平衡状态, 有效提高系统的整体容量和覆盖性能。
其中, CQI信息获取及处理过程负责基站接收终端反馈的 CQI信息、 CQI信息后处理、 检测上行信道质量及 MCS映射;
TQI统计及处理过程统计终端反馈的数据传输成功 /失败指示信息, 估 计当前下行功率及 MCS的冗余程度;
小区间干扰信息处理过程通过基站测量、 终端上报和 /或基站间通信的 方式获取相邻小区间的相互干扰信息, 判断系统的干扰状态并根据 TQI信 息决定功率/ MCS的调整方向 (见表 1 ) ;
表 1
Figure imgf000018_0001
优先升 邻区对本区干 优先升功
MCS 的 等 低 扰高, 本区对邻区干 率其次降 MCS
级, 其次降 扰低 的等级
功率
优先降 邻区对本区干 优 先 降
功率, 其次 高 扰低, 本区对邻区干 MCS的等级,
升 MCS的等 扰高 其次升功率
级 低
优先升 优先升功
MCS 的 等 低 低干扰 率, 其次降
级, 其次降 MCS的等级
功率 系统负荷度处理过程用于确定系统的下行负荷程度, 为下行功率调整 提供参考; 上下行信道对称性处理过程通过对上下行信道质量的统计对比, 判断上下行信道的对称性;
功率调整过程根据上述信息进行综合处理得出本次功率的调整值或者
MCS等级的调整量。 具体实施例根据需要选择全部或部分过程加以应用。
本发明提供的正交频分复用系统的下行功率调整方法, 能够利用多种 信息准确判断干扰状态和功率冗余程度, 准确释放冗余功率, 充分降低小 区间干扰水平, 充分发挥小区的吞吐能力并且易于系统设计和实现。
图 4为本发明的实施例基站的结构示意图, 如图 4所示, 本发明的实 施例还提供一种基站 40, 包括:
第一获取单元 41 , 用于获取下行信道质量信息, 并根据所述下行信道 质量信息获取调制编码方案的等级;
第二获取单元 42, 用于获取下行传输质量信息, 并根据所述下行传输 质量信息获取当前功率冗余度;
调整单元 43 , 用于根据所述当前功率冗余度, 按照预设功率调整量调 整当前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案 的等级。
优选的, 该基站 40还可包括:
第三获取单元, 用于获取系统干扰信息, 所述系统干扰信息包括: 邻 小区对本小区的第一干扰信息和 /或本小区对邻小区的第二干扰信息;
所述调整单元 43具体包括:
第一调整子单元, 用于根据所述第一干扰信息确定邻小区对本小区产 生高干扰的资源位置, 并根据所述第二干扰信息确定本小区对邻小区产生 高干扰的资源位置; 在所述高干扰的资源位置, 若所述当前功率冗余度为 负冗余, 则按照预设功率调整量提升当前功率或者按照预设调制编码等级 调整量降低所述调制编码方案的等级, 若所述当前功率冗余度为正冗余, 则按照预设功率调整量降低所述当前功率或者按照预设调制编码等级调整 量提升所述调制编码方案的等级。
优选的, 该基站 40还可进一步包括:
第四获取单元, 用于获取系统负荷信息;
所述调整单元 43具体为:
第二调整子单元, 用于在所述系统负荷信息表示当前系统负荷高时, 当所述当前功率冗余度为负冗余时, 按照预设功率调整量提升当前功率; 当所述当前功率为正冗余时, 按照预设调制编码方案等级调整量提升所述 调制编码方案的等级; 在所述系统负荷信息表示当前系统负荷低时, 当所 述当前功率冗余度为负冗余时, 按照预设调制编码方案等级调整量降低所 述调制编码方案的等级; 当所述当前功率冗余度为正冗余时, 按照预设功 率调整量降低当前功率。
优选的, 该基站 40还可进一步包括:
第五获取单元, 用于获取上行信道质量信息, 并根据所述上行信道质 量信息和所述下行信道质量信息判断下行信道和上行信道的对称性; 其中, 所述功率调整量可具体为功率提升量或功率降低量, 基站并维护该功率提 升量和功率降低量;
所述调整单元 43具体为:
第三调整子单元, 用于在所述下行信道和所述上行信道对称时, 所述 当前功率冗余度为正冗余时, 所述基站将所述功率提升量减小或者将所述 功率降低量增大; 所述当前功率冗余度为负冗余时, 所述基站将所述功率 提升量减 d、或者将所述功率降低量增大。
下面结合图 5说明本发明的上述基站所应用的系统的整体结构示意图; 本发明的上述实施例中基站为一服务基站, 该基站包括有:
上述服务基站中的第一获取单元 41具体为该服务基站中的自适应编码 调制 (AMC )模块, 用于接收终端上报的下行信道质量信息 CQI, 并根据 该 CQI信息映射相应的调制编码方案 MCS的等级;
上述基站 40中的第二获取单元 42具体为该服务基站中的 TQI处理模 块, 用于接收终端上报的传输质量反馈(即传输质量信息 TQI信息) , 并 根据该 TQI信息计算当前功率冗余程度(即功率冗余度) , 若 TQI信息与 一预设门限比较, 大于该预设门限, 则认为当前功率偏高, 该功率冗余度 为正冗余, 否则为负冗余;
上述基站 40中的第三获取单元 44具体可以为该服务基点的干扰信息 处理模块, 用于接收终端上报的邻小区对本小区造成的干扰 NIL信息, 并 根据该 NIL信息, 确定邻小区对本小区的干扰状态, 如可以确定出邻小区 对本小干扰高的资源位置;
当然, 该干扰信息处理模块还可以从邻区基站获取邻小区对本小区的 干扰信息 NIL, 从而根据该 NIL信息确定出邻小区对本小区高干扰的资源 位;
上述基站 40中的第四获取单元 45可具体为该服务基站中的系统负荷 计算模块, 用于获取当前系统负荷度;
上述基站 40中的第五获取单元 46可具体为该服务基站中的上下行信 疲乏对称性处理模块,用于统计一段时间内下行 CQI与上行 UCQ的变化趋 势, 如果趋势相同, 则认为上下行信道对称, 否则认为上下行信道不对称, 如果上下行信道对称, 则可以根据该 UCQ信道质量对功率进行调整;
上述基站 40中的调整单元 43可具体为该服务基站中的功率控制模块, 用于根据当前计算出来的功率冗余度、干扰状态、 系统负荷和 /或 UCQ信道 质量,对当前功率和 /或 MCS的等级进行调整,如在计算出来的当前功率冗 余度为正冗余时, 可以降低当前功率, 也可以相应提升 MCS的等级或者保 持 MCS等级不变; 在功率负冗余时, 可以提高当前功率, 也可以相应降低 MCS的等级;
在考虑系统干扰状态时, 可以如上述表 1 所示的调整方法对当前功率 和 /或 MCS的等级进行调整;
同样的, 在考虑系统负荷或者上下行信道对称性时, 也同样可以按照 上述基站 40中的相应调整单元对当前功率和 /或 MCS的等级进行调整。
本发明提供的正交频分复用系统的下行功率调整方法和基站, 能够利 用多种信息准确判断干扰状态和功率冗余程度, 准确释放冗余功率, 充分 降低 、区间干扰水平, 充分发挥小区的吞吐能力并且易于系统设计和实现。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改 进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1. 一种正交频分复用系统的功率调整方法, 其特征在于, 该方法包括: 基站获取下行信道质量信息, 并根据所述下行信道质量信息获取调制 编码方案的等级;
所述基站获取下行传输质量信息, 并根据所述下行传输质量信息获取 当前功率冗余度;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等级。
2. 根据权利要求 1所述的方法, 其特征在于, 所述基站获取下行信道 质量信息, 并根据所述下行信道质量信息获取调制编码方案的等级为: 所述基站获取下行信道质量信息, 并对所述下行信道质量信息进行后 处理, 获得有效的下行信道质量信息, 之后根据所述有效的下行信道质量 信息获取所述调制编码方案的等级。
3. 根据权利要求 2所述的方法, 其特征在于, 所述基站对所述下行信 道质量信息进行后处理具体为:
所述基站对所述下 行信道质 量信 息 CQI 按照 公式
^^ G- ^ x^^ + a x Cm进行滤波处理,其中, ^^是上次滤波之后计算出 的下行信道质量信息 CQI值, 是所述基站当前获取的 CQI值^为滤波 因子且 0< a < 1 , n为正整数。
4. 根据权利要求 1所述的方法, 其特征在于, 所述基站获取下行传输 质量信息, 并根据所述下行传输质量信息获取当前功率冗余度为:
所述基站获取终端上报的当前下行传输质量信息或者根据所述终端的 反馈信息计算出当前下行传输质量信息, 并将所述当前下行传输质量信息 与预设门限比较, 所述当前下行传输质量信息大于所述预设门限, 则当前 功率冗余度为负冗余; 否则, 当前功率冗余度为正冗余。
5. 根据权利要求 4所述的方法, 其特征在于, 所述预设门限为至少一 个, 在所述门限值多于一个时, 所述预设门限值各不相同;
所述将所述当前下行传输质量信息与预设门限进行比较具体为: 将所述当前下行传输质量信息按照预设门限值从大到小的顺序分别与 各个预设门限进行比较, 获取当前功率冗余度。
6. 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 所述基 站获取系统干扰信息, 所述系统干扰信息包括: 邻小区对本小区的第一干 扰信息和 /或本小区对邻小区的第二干扰信息;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等级的 步骤包括:
所述基站根据所述第一干扰信息确定邻小区对本小区产生高干扰的资 源位置, 并根据所述第二干扰信息确定本小区对邻小区产生高干扰的资源 位置;
在所述高干扰的资源位置, 所述当前功率冗余度为负冗余, 则按照预 设功率调整量提升当前功率或者按照预设调制编码方案等级调整量降低所 述调制编码方案的等级; 所述当前功率冗余度为正冗余, 则按照预设功率 调整量降低所述当前功率或者按照预设调制编码方案等级调整量提升所述 调制编码方案的等级。
7. 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 所述基 站获取系统负荷信息;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等级的 步骤包括:
在所述系统负荷信息表示当前系统负荷高时, 所述当前功率冗余度为 负冗余, 则按照预设功率调整量提升当前功率; 所述当前功率为正冗余, 则按照预设调制编码方案等级调整量提升所述调制编码方案的等级;
在所述系统负荷信息表示当前系统负荷低时, 所述当前功率冗余度为 负冗余, 则按照预设调制编码方案等级调整量降低所述调制编码方案的等 级; 所述当前功率冗余度为正冗余, 则按照预设功率调整量降低当前功率。
8. 根据权利要求 1所述的方法, 其特征在于, 该还包括: 所述基站获 取上行信道质量信息, 并根据所述上行信道质量信息和所述下行信道质量 信息判断下行信道和上行信道的对称性; 其中, 所述功率调整量为功率提 升量或者功率降低量;
所述基站根据所述当前功率冗余度, 按照预设功率调整量调整当前功 率的步骤包括:
所述下行信道和所述上行信道对称, 且所述当前功率冗余度为正冗余, 则所述基站将所述功率提升量减小或者将所述功率降低量增大; 所述当前 功率冗余度为负冗余, 则所述基站将所述功率提升量减小或者将所述功率 降低量增大。
9. 一种基站, 其特征在于, 该包括: 第一获取单元、 第二获取单元、 调整单元; 其中,
所述第一获取单元, 用于获取下行信道质量信息, 并根据所述下行信 道质量信息获取调制编码方案的等级;
所述第二获取单元, 用于获取下行传输质量信息, 并根据所述下行传 输质量信息获取当前功率冗余度;
所述调整单元, 用于根据所述当前功率冗余度, 按照预设功率调整量 调整当前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方 案的等级。
10. 根据权利要求 9所述的基站, 其特征在于, 该基站还包括: 第三获取单元, 用于获取系统干扰信息, 所述系统干扰信息包括: 邻 小区对本小区的第一干扰信息和 /或本小区对邻小区的第二干扰信息;
所述调整单元根据所述当前功率冗余度, 按照预设功率调整量调整当 前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等 级为:
根据所述第一干扰信息确定邻小区对本小区产生高干扰的资源位置, 并根据所述第二干扰信息确定本小区对邻小区产生高干扰的资源位置; 在 所述高干扰的资源位置, 所述当前功率冗余度为负冗余, 则按照预设功率 调整量提升当前功率或者按照预设调制编码方案等级调整量降低所述调制 编码方案的等级; 所述当前功率冗余度为正冗余, 则按照预设功率调整量 降低所述当前功率或者按照预设调制编码方案等级调整量提升所述调制编 码方案的等级。
11. 根据权利要求 9所述的基站, 其特征在于, 该基站还包括第四获 取单元, 用于获取系统负荷信息;
所述调整单元根据所述当前功率冗余度, 按照预设功率调整量调整当 前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等 级为:
在所述系统负荷信息表示当前系统负荷高, 且所述当前功率冗余度为 负冗余时, 按照预设功率调整量提升当前功率; 当所述当前功率为正冗余 时, 按照预设调制编码方案等级调整量提升所述调制编码方案的等级; 在 所述系统负荷信息表示当前系统负荷低, 且所述当前功率冗余度为负冗余 时, 按照预设调制编码方案等级调整量降低所述调制编码方案的等级; 当 所述当前功率冗余度为正冗余时, 按照预设功率调整量降低当前功率。
12. 根据权利要求 9所述的基站, 其特征在于, 该基站还包括第五获 取单元, 用于获取上行信道质量信息, 并根据所述上行信道质量信息和所 述下行信道质量信息判断下行信道和上行信道的对称性; 其中, 所述功率 调整量具体为功率提升量或者功率降低量;
所述调整单元根据所述当前功率冗余度, 按照预设功率调整量调整当 前功率和 /或按照预设调制编码方案等级调整量调整所述调制编码方案的等 级为:
在所述下行信道和所述上行信道对称时, 所述当前功率冗余度为正冗 余时, 所述基站将所述功率提升量减小或者将所述功率降低量增大; 所述 当前功率冗余度为负冗余时, 所述基站将所述功率提升量减小或者将所述 功率降低量增大。
PCT/CN2010/072137 2009-08-04 2010-04-23 正交频分复用系统的功率调整方法和基站 WO2011015064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100902705A CN101990288B (zh) 2009-08-04 2009-08-04 正交频分复用系统的功率调整方法和基站
CN200910090270.5 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011015064A1 true WO2011015064A1 (zh) 2011-02-10

Family

ID=43543896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072137 WO2011015064A1 (zh) 2009-08-04 2010-04-23 正交频分复用系统的功率调整方法和基站

Country Status (2)

Country Link
CN (1) CN101990288B (zh)
WO (1) WO2011015064A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099627A (zh) * 2014-05-23 2015-11-25 三星电子株式会社 移动通信系统中低成本终端的数据发送/接收方法和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE032725T2 (en) * 2011-04-01 2017-10-30 Intel Corp Support segment support for wireless networks
CN102158910B (zh) * 2011-04-14 2013-11-20 电信科学技术研究院 一种进行干扰协调的方法、系统和设备
CN102137478B (zh) * 2011-04-20 2015-09-09 大唐移动通信设备有限公司 功率信息上报、转发及功率调整方法、系统和设备
CN102724016B (zh) * 2012-06-05 2017-02-08 青岛艾特网络发展有限公司 调制编码方案的自适应调整方法及装置
CN103516495B (zh) * 2012-06-28 2017-11-28 中兴通讯股份有限公司 一种下行自适应调制与编码方法与装置
CN103078714B (zh) * 2013-01-28 2016-03-30 复旦大学 一种基于协作决策和自适应功率分配的下行协作多点传输方法
CN104468025B (zh) * 2013-09-23 2018-03-16 联芯科技有限公司 信道质量指示cqi的选择方法和装置
WO2015096091A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 协同多小区调度方法和装置
CN105101375A (zh) * 2014-05-23 2015-11-25 西安中兴新软件有限责任公司 一种上行数据传输方法、装置和终端
CN107113738B (zh) * 2015-03-31 2020-07-07 华为技术有限公司 一种发射功率调整方法及设备
CN107465484B (zh) * 2016-06-03 2019-11-22 大唐移动通信设备有限公司 一种自适应调制编码amc调整方法和系统
CN110392390B (zh) * 2018-04-23 2021-09-14 华为技术有限公司 无线局域网发射功率设置方法、设置装置以及无线接入点
CN108738055B (zh) * 2018-05-21 2021-12-28 京信网络系统股份有限公司 调制编码方式调整方法、装置、基站和存储介质
CN111447041B (zh) * 2019-01-16 2023-07-18 北京小米松果电子有限公司 调制与编码策略的控制方法、装置、存储介质和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538634A (zh) * 2003-04-14 2004-10-20 ��ʽ����Ntt����Ħ 传输控制装置、无线基站及传输速率控制方法
CN1567758A (zh) * 2003-06-27 2005-01-19 上海贝尔阿尔卡特股份有限公司 基于信道信息二阶统计的自适应调制和编码的方法及装置
CN1853391A (zh) * 2003-09-17 2006-10-25 英特尔公司 用于正交频分复用系统的调制方案等
CN1943152A (zh) * 2004-02-13 2007-04-04 桥扬科技有限公司 用于具有自适应发射和反馈的多载波通信系统的方法和设备
CN101087286A (zh) * 2006-06-05 2007-12-12 中兴通讯股份有限公司 一种正交频分复用系统中的自适应调制和编码方法
CN101110635A (zh) * 2006-07-21 2008-01-23 中兴通讯股份有限公司 正交频分复用系统中区域功率控制的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538634A (zh) * 2003-04-14 2004-10-20 ��ʽ����Ntt����Ħ 传输控制装置、无线基站及传输速率控制方法
CN1567758A (zh) * 2003-06-27 2005-01-19 上海贝尔阿尔卡特股份有限公司 基于信道信息二阶统计的自适应调制和编码的方法及装置
CN1853391A (zh) * 2003-09-17 2006-10-25 英特尔公司 用于正交频分复用系统的调制方案等
CN1943152A (zh) * 2004-02-13 2007-04-04 桥扬科技有限公司 用于具有自适应发射和反馈的多载波通信系统的方法和设备
CN101087286A (zh) * 2006-06-05 2007-12-12 中兴通讯股份有限公司 一种正交频分复用系统中的自适应调制和编码方法
CN101110635A (zh) * 2006-07-21 2008-01-23 中兴通讯股份有限公司 正交频分复用系统中区域功率控制的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099627A (zh) * 2014-05-23 2015-11-25 三星电子株式会社 移动通信系统中低成本终端的数据发送/接收方法和装置

Also Published As

Publication number Publication date
CN101990288A (zh) 2011-03-23
CN101990288B (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2011015064A1 (zh) 正交频分复用系统的功率调整方法和基站
Saito et al. System-level performance evaluation of downlink non-orthogonal multiple access (NOMA)
US8989752B2 (en) Base station for implementing inter-cell interference coordination and method for inter-cell interference coordination
Simonsson et al. Uplink power control in LTE-overview and performance, subtitle: principles and benefits of utilizing rather than compensating for SINR variations
US8442572B2 (en) Method and apparatus for adjustments for delta-based power control in wireless communication systems
USRE47744E1 (en) Method and system for controlling power in a communication system
US8849216B2 (en) System and method for adjusting downlink channel quality index in a wireless communications system
CN101635588B (zh) 一种功率控制的方法及装置
KR20090116775A (ko) 통신 시스템에서의 업링크 전력 제어를 위한 방법 및 장치
WO2012113183A1 (zh) 上行资源配置方法及装置
Doppler et al. Interference aware scheduling for soft frequency reuse
WO2013056527A1 (zh) 控制信令发送方法及系统
Lu et al. Channel-aware frequency domain packet scheduling for MBMS in LTE
WO2013139301A1 (zh) 降低信道干扰的方法和基站
WO2010102482A1 (zh) 正交频分复用接入系统及其功率控制方法
Falconetti et al. Distributed uplink macro diversity for cooperating base stations
JP6242387B2 (ja) 協調マルチポイントダウンリンク送信のためのネットワークセントリックなリンク適応
Nonchev et al. Advanced radio resource management for multi antenna packet radio systems
JP5484547B1 (ja) Lte無線通信システムの基地局における送信電力制御方法及び基地局
JP5683724B2 (ja) Lte無線通信システムの基地局における送信電力制御方法及び基地局
Chen et al. Analysis of capacity and error ratio in 3GPP LTE systems using signal flow graph models
Madi et al. Energy-aware subchannels power allocation for downlink transmissions in OFDMA systems
Jiang et al. Measurement-based optimizing algorithm for modulation and coding scheme selection in downlink LTE self-organizing networks
Liu et al. IoT control based on uplink inter-cell power control in LTE system
Li et al. A novel power control scheme in OFDMA uplink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805968

Country of ref document: EP

Kind code of ref document: A1