WO2011015058A1 - 一种分组数据传输系统和方法 - Google Patents

一种分组数据传输系统和方法 Download PDF

Info

Publication number
WO2011015058A1
WO2011015058A1 PCT/CN2010/071945 CN2010071945W WO2011015058A1 WO 2011015058 A1 WO2011015058 A1 WO 2011015058A1 CN 2010071945 W CN2010071945 W CN 2010071945W WO 2011015058 A1 WO2011015058 A1 WO 2011015058A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
pcu
payload
network protocol
bsc
Prior art date
Application number
PCT/CN2010/071945
Other languages
English (en)
French (fr)
Inventor
赵胜男
郭建林
郭春芳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011015058A1 publication Critical patent/WO2011015058A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers

Definitions

  • the present invention relates to packet data transmission techniques in the field of wireless communications, and more particularly to a packet data transmission system and method. Background technique
  • the Global System for Mobile Communication is the most widely used communication system in mobile communications.
  • the GSM wireless access network equipment is usually called the Base Station System (BSS).
  • BSS Base Station System
  • the role of BSS in GSM mainly includes: On the one hand, BSS is connected to mobile terminals (MS, Mobile Station) via wireless network to perform wireless signal transmission, reception and management of wireless resources; on the other hand, BSS and mobile exchange
  • MSC Mobile Switching Center
  • MSC Sever Mobile Switching Center Sever
  • Mobile Switching Center Sever Mobile Switching Center Sever
  • the typical BSS includes two logical nodes: a base station controller (BSC) and a base transceiver station (BTS, Base Transceiver Station).
  • BSC base station controller
  • BTS Base Transceiver Station
  • the communication interface between the BSC and the BTS is called an Abis interface. Realize the remote interconnection between the BSC and the BTS.
  • the Abis interface uses a standard 2.048 Mbps or 64 Kbps Pulse Code Modulation (PCM) transmission link for data transmission.
  • PCM Pulse Code Modulation
  • GPRS General Packet Service
  • GPRS General Packet Service
  • a GPRS support node a Serving GPRS Support Node (SGSN) and a GPRS Gateway Support Node (GGSN) are introduced on the core network side.
  • SGSN Serving GPRS Support Node
  • GGSN GPRS Gateway Support Node
  • SGSN At the same level as the MSC, as shown in Figure 1. Since the GSM BSS is multiplexed in the GPRS network structure, a packet control unit (PCU, Packet Control Unit) is added to the BSS.
  • PCU Packet Control Unit
  • IP Internet Protocol
  • the main process of the code conversion and packet data transmission method of the IP Abis interface service is as follows:
  • the sender uses the service payload data and the control parameters to form a service frame, and encapsulates multiple service frames in a real-time transmission protocol (RTP, Real- In the Time Transport Protocol, the RTP frame is encapsulated in the network protocol frame by using the network transmission protocol, and the encapsulated network protocol frame is sent through the IP network.
  • RTP Real- In the Time Transport Protocol
  • the receiving end parses the RTP frame from the frame.
  • the service frame is extracted from the parsed RTP frame, and then the service payload data and the control parameters are parsed.
  • the PCU frame structure is adopted in the Abis interface when the packet data service is transmitted, and the PCU load upper layer processing protocol is the RLC (Radio Link Control) protocol.
  • the window mechanism has certain fault tolerance and can sort the PCU payload in the PCU frame. Therefore, compared with the voice service, the packet service is not sensitive to out-of-order and jitter, and the RTP buffer processing mechanism will cause a larger System latency and wasted network resources. Therefore, there is currently no method for transmitting packet data services that is fully applicable to the IP Abis interface. Summary of the invention
  • the main object of the present invention is to provide a packet data transmission system and method capable of optimizing system delay and realizing reliability transmission.
  • the present invention discloses a packet data transmission system, including: a base station controller BSC and a base transceiver station BTS; wherein, the BTS is configured to construct a packet control unit PCU frame and package the assembled PCU frame by carrier frequency.
  • BSC used to Parsing the PCU frame in the network protocol frame, sorting the PCU payload parsed from the PCU frame, and selecting the sorted PCU payload, constructing a logical link control frame and sending it to the core network
  • BSC for forming
  • the PCU frame encapsulates the formed PCU frame into a network protocol frame and sends it to the BTS; the BTS is configured to parse the PCU frame from the network protocol frame, sort the PCU frame, and send the sequence to the Um in order.
  • the PCU frame of the interface performs rate adaptation, and the PCU payload obtained after the rate adaptation is sent to the mobile terminal.
  • the BTS includes: a rate adaptation unit and a first network driving unit; wherein a rate adaptation unit is configured to set up a PCU frame; and a first network driving unit is configured to load the assembled PCU frame by carrier frequency Encapsulating in a network protocol frame, and transmitting the network protocol frame to the BSC;
  • the BSC includes: a second network driving unit, a frame processing unit, and a radio link control unit; wherein, the second network driving unit is configured to receive Decoding the network protocol frame to obtain a PCU frame; and, for selecting a sorted PCU payload, constructing and transmitting a logical link control frame; and a frame processing unit for parsing the PCU frame to obtain a PCU payload;
  • a link control unit for sorting PCU loads wherein a rate adaptation unit is configured to set up a PCU frame; and a first network driving unit is configured to load the assembled PCU frame by carrier frequency Encapsulating in a network protocol frame, and transmitting the network protocol frame to the BSC;
  • the BSC includes: a radio link control unit, a frame processing unit, and a second network driving unit.
  • the radio link control unit is configured to parse the PCU load from the logical link control frame received by the upper layer. And parsing the parsed PCU load into the sending window in sequence;
  • the frame processing unit is configured to form a PCU frame;
  • the second network driving unit is configured to encapsulate the assembled PCU frame into a network protocol frame according to a carrier frequency, and Transmitting the network protocol frame to the BTS;
  • the BTS includes: a first network driving unit, a rate adaptation unit, where the first network driving unit is configured to receive the network protocol frame and parse the PCU frame;
  • the rate adaptation unit is configured to sort the PCU frames, and perform rate adaptation on the PCU frames to be sent to the Um interface in sequence to obtain a PCU payload, and send the PCU payload to the mobile terminal.
  • the rate adaptation unit further includes: a sorting subunit, configured to sort the PCU frame; and a determining subunit, configured to determine a PCU frame to be sent to the Um interface; parsing and encoding the modulator And a unit, configured to sequentially parse the PCU frame sent to the Um interface to obtain a PCU payload, and code and modulate the PCU payload; and send a subunit, configured to send the code modulated PCU payload to the mobile terminal.
  • a sorting subunit configured to sort the PCU frame
  • a determining subunit configured to determine a PCU frame to be sent to the Um interface
  • a unit configured to sequentially parse the PCU frame sent to the Um interface to obtain a PCU payload, and code and modulate the PCU payload
  • send a subunit configured to send the code modulated PCU payload to the mobile terminal.
  • the present invention provides a packet data transmission method, including: a BTS constructs a PCU frame and encapsulates the formed PCU frame into a network protocol frame according to a carrier frequency, and sends the packet to the BSC; the BSC parses the PCU frame from the network protocol frame, and then The PCU payload is parsed from the PCU frame and the parsed PCU payload is sorted, and the sorted PCU payload is selected, and a logical link control frame is constructed and transmitted.
  • the method further includes: the BSC determining whether the parsed PCU frame needs to perform frame number adjustment, and when the frame number adjustment is needed, the PCU frame according to the channel instance Perform frame number adjustment to synchronize the frame number.
  • the PCU payload is parsed from the PCU frame and the parsed PCU payload is sorted as follows:
  • the BSC parses the PCU payload from the PCU frame according to the control parameter of the frame header, and the PCU payload is according to its block serial number BSN.
  • the size of the received window is sorted by the receiving window; wherein the receiving bitmap of the receiving window starts with a serial number of the maximum value of the BSN of the received PCU payload plus one minus two times the number of channels.
  • the set PCU frame is encapsulated into a network protocol frame according to a carrier frequency: adding a user datagram protocol UDP header and an internet protocol IP header to a PCU frame of the same carrier frequency, and encapsulating the PCU frame into a network protocol according to a network protocol.
  • the network protocol frame includes: a UDP packet header, an IP packet header, and a UDP payload; wherein the UDP payload includes more than one PCU frame belonging to the same carrier frequency.
  • the selecting the sorted PCU payload and forming the logical link control frame includes: after receiving the PCU payload, determining whether the confirmed state variable VQ of the current receiving window is updated, and if the VQ is updated, selecting the previous VQ to update. After the continuous PCU load of the BSN between the VQs, an attempt is made to construct a logical link control frame; wherein, when the logical link control frame is formed, the BSN of the PCU payload is used for sorting.
  • the present invention further provides a packet data transmission method, including: BSC forming a PCU Frames and encapsulates the formed PCU frame into a network protocol frame according to a carrier frequency, and sends the network protocol frame to the BTS; the BTS parses the PCU frame from the network protocol frame, and sorts the PCU frame; the BTS is sent to the BTS in order.
  • the PCU frame of the Um interface performs rate adaptation, and the PCU payload obtained after the rate adaptation is sent to the mobile terminal.
  • the method further includes: the BTS compares the frame number of the parsed PCU frame with the locally recorded frame number, and if not, the frame number is out of step, and the frame number adjustment is calculated. And notifying the BSC to perform frame number adjustment, so that the frame number is synchronized; if the same, the frame number is synchronized, then the PCU frame is sent to be controlled and sorted; wherein, the PCU frame is controlled and sorted as: BTS setting buffer area, The received PCU frames are placed in the buffer area and sorted by frame number.
  • the BCU constructs the PCU frame as: splits the logical link control frame received from the upper layer into PCU payloads, puts them into the transmission window in order, and extracts the PCU payload from the transmission window according to the channel instance, and adds the PCU frame header.
  • the PCU frame is formed; the BSC adds a UDP header and an IP header to the PCU frame of the same carrier frequency, and is encapsulated into a network protocol frame according to a network protocol.
  • the rate adaptation of the PCU frame to be sent to the Um interface is specifically: parsing the PCU frame to be sent to the Um interface to obtain a PCU payload, and coding and modulating the PCU payload.
  • the Abis interface packet data transmission implementation method and device based on the User Datagram Protocol (UDP) protocol of the present invention can solve the problem of large system delay and network delay in the prior art. And other issues.
  • the present invention sets an IP Abis interface protocol stack structure, removes the RTP protocol, and encapsulates the IP Abis interface frame structure. Therefore, the RTP buffer processing delay is optimized, as well as the scheduling delay and processing delay of the RTP, thereby reducing the network delay. In this way, not only the delay of the system is greatly reduced, but also the frame structure transmitted by the Abis interface is saved, which saves bandwidth resources.
  • the packets may be out of order during the transmission. Therefore, the present invention modifies the RLC sliding window in the process of processing uplink packet data.
  • the mechanism performs fault-tolerant processing on the uplink and out-of-order packets, and thus avoids the false retransmission under the premise of ensuring the correct sequence of the messages.
  • the present invention also adds a caching mechanism to the downlink rate adaptation unit to perform PCU message ordering. In this way, the order of the received and transmitted messages is guaranteed, and reliability transmission is realized. Therefore, the present invention realizes reliability transmission under the premise of optimizing the delay.
  • Figure 1 is a schematic diagram of a BSS structure and interface
  • FIG. 2A is a schematic structural diagram of an embodiment of a packet data transmission system according to the present invention.
  • FIG. 2B is a schematic structural diagram of another embodiment of a packet data transmission system according to the present invention.
  • FIG. 3 is a schematic flowchart of an implementation process of an uplink packet data transmission method according to the present invention.
  • Figure 4 shows the structure of the Abis interface protocol stack
  • FIG. 5 is a schematic structural diagram of a network protocol frame according to the present invention.
  • FIG. 6 is a receiving window of a radio link control unit on a BSC side of the present invention.
  • FIG. 7 is a schematic flowchart of an implementation process of a downlink packet data transmission method according to the present invention. detailed description
  • the basic idea of the present invention is to: construct a PCU frame based on the UDP-based Abis interface protocol stack structure, and encapsulate one or more PCU frames in a UDP/IP protocol frame, and adjust the frame number jitter and out-of-order during transmission. Improve the anti-jitter performance of the system.
  • the structure of the PCU frame includes the following components: One component is that the frame number information and the user data are respectively stored in different frames, such as a PCU synchronization frame for frame number synchronization and a data block. PCU data frame; Another composition mode is that the frame number information and the user data are in the same PCU frame, for example, the PCU frame includes the PCU frame header and the PCU payload.
  • a packet data transmission system provided by this embodiment includes: a BTS 201 and a BSC 202. among them:
  • the BTS 201 is configured to assemble a PCU frame and package the formed PCU frame into a network protocol frame according to a carrier frequency, and send the packet to the BSC 202;
  • the BSC 202 is configured to parse the PCU frame from the network protocol frame, and sort the PCU payload parsed from the PCU frame; and select the sorted PCU payload, form a logical link control frame, and send the core link control frame to the core through the Gb interface. Net; or,
  • the BSC 202 is configured to form a PCU frame, and encapsulate the formed PCU frame into a network protocol frame, and send the packet to the BTS 201;
  • the BTS 201 is configured to parse the PCU frame from the network protocol frame, and sort the PCU frame; and perform PCC frame to be sequentially sent to the Um interface for rate adaptation, and the PCU obtained after the rate is adapted.
  • the payload is sent to the mobile terminal.
  • the BTS 201 includes: a rate adaptation unit and a first network driving unit. Among them, as shown in Figure 2A:
  • a rate adaptation unit configured to form a PCU frame
  • a first network driving unit configured to encapsulate the assembled PCU frame into a network protocol frame according to a carrier frequency, and send the network protocol frame to the BSC 202;
  • the BSC 202 includes: a second network driving unit, a frame processing unit, and a radio link control unit;
  • a second network driving unit configured to receive the network protocol frame and parse the PCU frame; and, configured to select the sorted PCU payload, and construct a logical link control frame and send the signal to the core network;
  • a frame processing unit configured to parse the PCU frame to obtain a PCU payload
  • a radio link control unit for sorting PCU loads.
  • the BSC 202 includes: a frame processing unit and a second network driving unit; wherein, as shown in FIG. 2B: a frame processing unit, configured to form a PCU frame;
  • a second network driving unit configured to encapsulate the assembled PCU frame by a carrier frequency in a network protocol frame, and send the network protocol frame to the BTS 201;
  • the BTS 201 includes: a first network driving unit, a rate adaptation unit, where the first network driving unit is configured to receive the network protocol frame and parse the network protocol frame
  • the rate adaptation unit is configured to sort the PCU frames, and perform rate adaptation on the PCU frames sent to the Um interface in sequence to obtain a PCU payload, and send the PCU payload to the mobile terminal.
  • the rate adaptation unit further includes:
  • Determining a subunit configured to determine a PCU frame to be sent to the Um interface
  • the parsing and coding modulation sub-unit is configured to sequentially process the PCU frame sent to the Um interface to obtain a PCU payload, and encode and modulate the PCU payload;
  • the method includes: uplink data transmission and downlink data transmission, as follows:
  • the uplink data processing process in the packet data transmission method of the present invention mainly includes the following steps:
  • Step 301 The BTS receives user data through the Um interface, decodes the received user data, extracts service data from the PCU payload, and constructs a PCU frame.
  • the PCU frame structure of this embodiment adopts a frame number information and a composition mode of user data in the same PCU frame, and the PTS frame is formed by the rate adaptation unit of the BTS: First, the PCU is formed. The frame header is filled by the frame number, the Um port code modulation mode of the PCU payload, and the frame number adjustment amount. Then, the padded frame header is added to the PCU payload front end to form a PCU frame. The current frame number and the frame number adjustment amount are mainly used for frame number synchronization. Moreover, the length of the PCU payload can be obtained by the Um code modulation mode of the PCU payload, and the corresponding PCU load is obtained according to the length of the PCU payload.
  • Step 302 The BTS encapsulates the formed PCU frame into a network protocol frame according to a carrier frequency.
  • the packet is encapsulated into a network protocol frame according to the carrier frequency.
  • the BTS adds a UDP header and an IP header to the PCU frame of the same carrier frequency according to a network protocol, such as UDP/IP, and encapsulates the network protocol frame. That is to say, each network protocol frame includes: IP header, UDP header, UDP payload.
  • the UDP payload includes more than one PCU frame belonging to the same carrier frequency, as shown in FIG.
  • the network protocol frame used in this embodiment is based on the existing Abis interface protocol stack structure, and the part of the RTP in the existing Abis interface protocol stack is removed, as shown in FIG. 5, and the RTP assumes the out-of-order adjustment.
  • the function is performed by the receiving end.
  • the jitter and out-of-order of the uplink data are adjusted and processed by the radio link control unit on the BSC side, and the jitter and out-of-order of the downlink data are processed by the rate adaptation unit on the BTS side.
  • the radio link control unit originally has a sorting mechanism, but the fault tolerance mechanism is poor, and the out-of-order will cause false retransmission of data.
  • the start sequence number (SSN) is reduced by modifying the window mechanism, and the enhanced Fault tolerance mechanism to prevent false retransmission.
  • the rate adaptation unit on the BTS side adds a cache sorting function to process the jitter and out of order of the downlink data.
  • Step 303 The BTS transmits the network protocol frame to the BSC through an IP network.
  • Step 304 The BSC receives the network protocol frame, and parses the PCU frame from the network protocol frame by using UDP/IP.
  • Step 305 The BSC performs frame number adjustment on the PCU frame according to the channel instance to ensure that the frame number is synchronized.
  • the frame number adjustment of the PCU frame according to the channel instance is mainly: parsing the PCU frame header, and determining whether adjustment is needed and adjusting the PCU frame that needs to adjust the frame number, that is, if the frame header includes the frame number adjustment amount.
  • the frame number needs to be adjusted, and the frame processing unit on the BSC side adjusts the current frame number according to the frame number adjustment amount; otherwise, if the frame number does not include the frame number adjustment amount, the frame number adjustment of the PCU frame is not required.
  • the downlink frame number after BSC adjustment is PN1, MN1, BN1, then:
  • PN1 ( a+PNa+A ) mod ( A );
  • MN1 ( b+MNa+B ) mod ( B );
  • Step 306 The BSC parses the PCU payload from the PCU frame, and puts the parsed PCU payload into the receiving window for sorting;
  • the second network driving unit on the BSC side obtains the length of the PCU payload according to the coding manner in the PCU frame, and parses the PCU payload by the length of the PCU payload. Moreover, the radio link control unit on the BSC side puts the parsed PCU payload into the receiving window, and the PCU payload is sorted by the control of the receiving window to determine the order in which the PCU payload enters the receiving window. For example: The radio link control unit puts the arriving PCU payload into the corresponding receiving window according to its block serial number (BSN, Block Sequence Number). The BSN is a serial number that is included in the PCU payload. The receiving window sorts the PCU payload according to the size of the BSN, and also uses the BSN of the PCU payload to sort when constructing the logical link control frame.
  • BSN Block Sequence Number
  • the receiving window of the existing BSC side radio link control unit has an adjustment mechanism for the PCU payload
  • the network delay and the channel jitter cause the out-of-order to cause the PSN with a large BSN to be received first and then the BSN is smaller.
  • PCU load if the previous PCU load is out of order, it will not answer the request for retransmission because the PCU load is not received, and there is enough time to wait for the out-of-order PCU
  • the arrival of the payload however, if the last block is received and the previous PCU payload is still in transit, the BSC will consider that the PCU payload has been received and will send a response requesting retransmission of the unreceived PCU payload.
  • the present embodiment delays responding to several PCU payloads received recently by changing the response mechanism of the receiving window and reducing the SSN of the uplink response bitmap. The time is waiting for the PCU load that has not arrived before to arrive. Therefore, this not only reduces the impact of out-of-order on the system, but also increases the system's ability to resist jitter and reduces unnecessary retransmissions.
  • the GPRS is taken as an example to illustrate the uplink acknowledgement bitmap constructed in this embodiment:
  • the reception window of the radio link control unit on the BSC side is shown.
  • the state variable VQ represents the minimum BSN of the PCU payload not received in the receiving window
  • the receiving state variable VR specifies a BSN which is one greater than the maximum value of the BSN of the received PCU payload.
  • Step 307 After receiving the PCU payload, the BSC selects the sorted PCU payload from the receiving window, constructs a logical link control frame, and sends the formed logical link control frame to the core network through the Gb interface.
  • the implementation process of constructing the logical link control frame by selecting the PCU load is: after each receiving the PCU load, determining the current receiving window, such as whether the VQ is updated, and if the VQ is updated, the previous step is taken out in order.
  • a continuous PCU load of the BSN between VQ and the updated VQ attempts to construct a logical link control frame.
  • the BSN of the PCU payload is sorted.
  • the main basis for determining whether the logical link control frame is completed is: whether the PCU payload has an identification bit, such as a length value indicating bit L and more bits M, thereby passing different labels Identify bits to delimit different logical link control frames. For example: The L and M values that have been set in the PCU payload determine whether the current logical link control frame has been set up. If the configuration is complete, it can be sent to the Gb interface and sent to the core network.
  • the Gb interface is an interface between the BSC and the core network, as shown in FIG. 1 . In this way, user data is sent to the logical link control layer of the core network for processing.
  • the BSC is used as the transmitting end and the BTS is taken as an example to describe the downlink data transmission and processing:
  • Step 701 The BSC parses the PCU payload from the received logical link control frame, and puts the P window load into the transmission window in sequence;
  • the BSC When the BSC splits the logical link control frame received from the upper layer into a PCU payload, it adds a BSN to each PCU payload, and then puts the PCU payload into the transmission window in order according to the size of the BSN.
  • Step 702 The BSC extracts the PCU payload from the sending window according to the channel instance, and adds a PCU frame header to form a PCU frame.
  • the PCU frame includes: a PCU frame header and a PCU payload.
  • the PCU frame header includes: control parameters such as a frame number, a frame number adjustment amount, and an encoding mode.
  • Step 703 The BSC adds a UDP header and an IP header to the PCU frame, and encapsulates the network protocol frame according to a carrier frequency.
  • the encapsulating the carrier frequency into a network protocol frame means: encapsulating the PCU frame of the same carrier into a network protocol frame according to a network protocol.
  • Step 704 The BSC transmits the network protocol frame to the BTS by using an IP network.
  • Step 705 The BTS parses the PCU frame from the received network protocol frame.
  • Step 706 the BTS determines whether the frame number of the PCU frame is out of step, if the frame number is out of step, step 707 is performed; otherwise, if the frame number is synchronized, step 708 is performed;
  • the main process of determining whether the frame number of the PCU frame is out of synchronization is as follows: The BTS compares the frame number of the parsed PCU frame with the frame number of the local record. If not, the frame number is out of step; if the same, the frame is Number synchronization.
  • Step 707 the BTS calculates the frame number adjustment amount, and notifies the BSC to perform frame number adjustment, so that the frame number is synchronized, and then proceeds to step 708;
  • the main process of calculating the frame number adjustment can be as follows:
  • the frame number adjustment of the downlink PCU calculated by the Bay 1 J BTS is:
  • PNa ( al-a+A ) mod ( A );
  • MNa ( bl-b+B ) mod ( B );
  • BNa ( cl-c+C ) mod ( C ).
  • the PCU payload is suspended between the BTS and the BSC.
  • Step 708 Sort the PCU frame and select a PCU frame that arrives normally; where the BTS adds a buffer area in the rate adaptation unit, and sorts the received PCU frames by frame number.
  • the PCU frame is sorted by the frame number, and then the smallest frame number is compared with the frame number of the current PCU frame on the rate adaptation unit side in the BTS, thereby determining whether there is a PCU frame arriving in advance in the buffer area. Or has expired, if the minimum frame number is greater than the frame number of the current PCU frame, it indicates that the PCU frame arrives early, and needs to continue to wait; if the minimum frame number is smaller than the frame number of the current PCU frame, it indicates that the PCU frame has expired, and Expired PCU frames are discarded.
  • the PCU frame belongs to the normal arrival, and thus, it can be determined whether the PCU frame satisfies the condition of being sent to the Um interface, that is, the normally reached PCU frame can be sent to The Um interface enables transmission control of the PCU frame.
  • Step 709 The BTS performs rate adaptation on the normally arrived PCU frame in sequence, and sends the PCU payload obtained by the rate adaptation to the mobile terminal through the Um interface.
  • the BTS After obtaining the PCU frame, the BTS performs rate adaptation on the PCU frame that needs to be sent to the Um interface, that is, obtains the coding type, the current frame number, and the like by decomposing the PCU frame, and then takes out different lengths according to different coding types.
  • the encoded PCU payload and a coded modulation operation on the extracted PCU payload so that the PCU payload can be transmitted in the Um interface.

Description

一种分组数据传输系统和方法 技术领域
本发明涉及无线通信领域的分组数据传输技术, 特别是涉及一种分组 数据传输系统和方法。 背景技术
全球移动通信系统 ( GSM , Global System for Mobile Communication ) 是移动通信中使用最广泛的一种通信系统, 通常称 GSM的无线接入网络设 备为基站子系统( BSS, Base Station System )。 BSS在 GSM中起到的作用主 要包括: 一方面, BSS通过无线网络同移动终端 (MS, Mobile Station )相 连, 进行无线信号的发送、 接收及无线资源的管理; 另一方面, BSS与移动 交换中心 (MSC, Mobile Switching Center )或移动交换中心服务器( MSC Sever, Mobile Switching Center Sever )相连, 实现 MS之间、 或 MS与固定网 络用户之间的通信连接、 传送系统信息和用户信息等功能。 其中, 典型的 BSS包括两个逻辑节点: 基站控制器 (BSC, Base Station Controller )和基 站收发信台 (BTS, Base Transceiver Station )„ BSC与 BTS之间的通信接口, 称为 Abis接口, 用于实现 BSC和 BTS之间的远端互连。 一般, Abis接口采用 标准的 2.048Mbps或 64Kbps的脉冲编码调制( PCM, Pulse Code Modulation ) 传输链路来实现数据传输。
目前, 通用分组无线业务( GPRS, General Packet Service )是基于 GSM 的移动分组数据业务, 使得用户能够在端到端分组传送模式下发送和接收 数据。 GPRS为 GSM用户提供了分组数据通信应用的接口, 在核心网侧引入 了 GPRS支持节点、服务 GPRS支持节点( SGSN, Serving GPRS Support Node ) 和 GPRS网关支持节点( GGSN, Gateway GPRS Support Node ),其中, SGSN 与 MSC在同一等级水平, 如图 1所示。 由于 GSM的 BSS在 GPRS网络结构中 进行了复用,为此在 BSS中增加了分组控制单元( PCU, Packet Control Unit )。 而且, 近年来, 随着软交换技术引入核心网, 基于网际协议(IP, Internet Protocol ) 的交换网架构逐渐形成。 其中, 基于 IP传输方式的 Abis接口筒称 为 IP Abis接口, 相对于传统的基于 PCM传输链路的 Abis接口, 所述 IP Abis 接口具有更高的传输效率和灵活性。
其中, IP Abis接口业务的编码转换及分组数据传输方法的主要过程如 下: 发送端利用业务净荷数据和控制参数组建业务帧, 并将多个业务帧封 装在一个实时传输协议( RTP, Real-Time Transport Protocol )帧中, 然后利 用网络传输协议将 RTP帧封装在网络协议帧中,并通过 IP网络发送封装的网 络协议帧; 接收端接收到所述网络协议帧后, 从其中解析出 RTP帧, 再从解 析出的 RTP帧中提取业务帧, 进而解析出业务净荷数据和控制参数。 上述方 法虽然可以实现数据业务在 IP Abis接口的传输, 但由于分组数据业务传输 时在 Abis接口采用的是 PCU帧结构, PCU载荷上层处理协议即无线路控制 ( RLC, Radio Link Control )协议采用的窗口机制具有一定的容错性, 可以 对 PCU帧中的 PCU载荷进行排序处理,所以相对于语音业务而言,分组业务 对乱序和抖动并不敏感,而且 RTP的緩冲处理机制会造成较大的系统时延和 网络资源浪费。 因此, 目前尚没有一种完全适用于 IP Abis接口的分组数据 业务的传输方法。 发明内容
有鉴于此, 本发明的主要目的在于提供一种分组数据传输系统和方法, 能优化系统时延, 实现可靠性传输。
为达到上述目的, 本发明公开了一种分组数据传输系统, 包括: 基站 控制器 BSC和基站收发台 BTS; 其中, BTS, 用于组建分组控制单元 PCU帧 并将组建的 PCU帧按载频封装为网络协议帧, 发送至 BSC; BSC, 用于从所 述网络协议帧中解析出 PCU帧, 并对从 PCU帧解析出的 PCU载荷进行排序, 以及选取排序后的 PCU载荷, 组建逻辑链路控制帧并发送至核心网; 或者, BSC,用于组建 PCU帧,将组建的 PCU帧封装为网络协议帧,并发送给 BTS; BTS, 用于从所述网络协议帧中解析出 PCU帧, 对 PCU帧进行排序; 以及用 于按序对待发送至 Um接口的 PCU帧进行速率适配, 并将速率适配后得到的 PCU载荷发送给移动终端。
上述系统中,所述 BTS包括:速率适配单元和第一网络驱动单元;其中, 速率适配单元, 用于组建 PCU帧; 第一网络驱动单元, 用于将所组建的 PCU 帧按载频封装在网络协议帧中, 并将所述网络协议帧发送至 BSC; 所述 BSC 包括: 第二网络驱动单元、 帧处理单元和无线链路控制单元; 其中, 第二 网络驱动单元, 用于接收所述网络协议帧并对其进行解析得到 PCU帧; 以 及, 用于选取排序后的 PCU载荷, 组建并发送逻辑链路控制帧; 帧处理单 元, 用于对 PCU帧进行解析得到 PCU载荷; 无线链路控制单元, 用于对 PCU 载荷进行排序。
上述系统中, 所述 BSC包括: 无线链路控制单元、 帧处理单元和第二网 络驱动单元; 其中, 无线链路控制单元, 用于从上层收到的逻辑链路控制 帧中解析出 PCU载荷,并将解析出的 PCU载荷按顺序放入发送窗口; 帧处理 单元, 用于组建 PCU帧; 第二网络驱动单元, 用于将所组建的 PCU帧按载频 封装在网络协议帧中, 并将所述网络协议帧发送 BTS; 所述 BTS包括: 第一 网络驱动单元、 速率适配单元; 其中, 第一网络驱动单元, 用于接收所述 网络协议帧并对其进行解析得到 PCU帧;速率适配单元,用于对 PCU帧进行 排序, 并按序对待发送至 Um接口的 PCU帧进行速率适配得到 PCU载荷, 以 及将该 PCU载荷发送给移动终端。
其中, 所述速率适配单元还包括: 排序子单元, 用于对 PCU帧进行排 序; 确定子单元, 用于确定待发送至 Um接口的 PCU帧; 解析及编码调制子 单元, 用于按序对待发送至 Um接口的 PCU帧进行解析得到 PCU载荷, 并对 PCU载荷进行编码调制;发送子单元,用于将编码调制后的所述 PCU载荷发 送至移动终端。
相应地, 本发明提供一种分组数据传输方法, 包括: BTS组建 PCU帧并 将组建的 PCU帧按载频封装为网络协议帧,发送至 BSC; BSC从网络协议帧 中解析出 PCU帧,再从 PCU帧解析出 PCU载荷并对解析出的 PCU载荷进行排 序, 以及选取排序后的 PCU载荷, 组建并发送逻辑链路控制帧。
上述方法中, 所述 BSC从网络协议帧中解析出 PCU帧之后, 还包括: BSC判断解析出的 PCU帧是否需要进行帧号调整, 并在需要进行帧号调整 时, 按信道实例对 PCU帧进行帧号调整, 使帧号同步。
其中, 所述从 PCU帧解析出 PCU载荷并对解析出的 PCU载荷进行排序 为: BSC根据帧头的控制参数, 从 PCU帧中解析出 PCU载荷, 并将该 PCU载 荷按其块序列号 BSN的大小放入接收窗口进行排序; 其中, 所述接收窗口 的应答位图开始序列号为已接收的 PCU载荷的 BSN的最大值加 1减去两倍信 道数。
上述方法中, 所述将组建的 PCU帧按载频封装为网络协议帧为: 为同 一载频的 PCU帧添加用户数据报协议 UDP包头和网际协议 IP包头,并按网络 协议将 PCU帧封装成网络协议帧;所述网络协议帧包括: UDP包头、 IP包头、 UDP净荷; 其中, 该 UDP净荷包括一个以上的、 属于同一载频的 PCU帧。
其中, 所述选取排序后的 PCU载荷, 组建逻辑链路控制帧包括: 收到 PCU载荷后,判断当前接收窗口的证实状态变量 VQ是否有更新,若 VQ更新, 则选取出之前一次 VQ到更新后的 VQ之间的 BSN连续的 PCU载荷,尝试组建 逻辑链路控制帧; 其中, 在组建逻辑连路控制帧时, 使用 PCU载荷的 BSN 进行排序。
相应地, 本发明还提供一种分组数据传输方法, 包括: BSC组建 PCU 帧并将组建的 PCU帧按载频封装为网络协议帧, 发送该网络协议帧给 BTS; BTS从所述网络协议帧中解析出 PCU帧, 并对 PCU帧进行排序; BTS按序对 待发送至 Um接口的 PCU帧进行速率适配, 并将速率适配后得到的 PCU载荷 发送给移动终端。
上述方法中,所述对 PCU帧进行排序之前,还包括: BTS将解析出的 PCU 帧的帧号与本地记录的帧号进行比较, 如果不相同, 则帧号失步, 计算帧 号调整量并通知 BSC进行帧号调整, 使帧号同步; 如果相同, 则帧号同步, 则对 PCU帧进行发送控制和排序; 其中,所述对 PCU帧进行发送控制和排序 为: BTS设置緩存区, 将收到的 PCU帧放入緩存区, 并按帧号进行排序。
其中,所述 BSC组建 PCU帧为: 将从上层收到的逻辑链路控制帧拆分为 PCU载荷,按顺序放入发送窗口,并按信道实例从发送窗口中取出 PCU载荷, 添加 PCU帧头, 组建 PCU帧; BSC为同一载频的 PCU帧添加 UDP包头和 IP包 头, 按网络协议封装成网络协议帧。
上述方法中, 所述对待发送至 Um接口的 PCU帧进行速率适配具体为: 对待发送至 Um接口的 PCU帧进行解析得到 PCU载荷, 并对 PCU载荷进行编 码调制。
由以上技术方案可以看出, 本发明的基于用户数据报协议(UDP, User Datagram Protocol )协议的 Abis接口分组数据传输实现方法和装置, 能够解 决现有技术中系统时延大, 网络时延浪费等问题。 这主要是因为, 本发明 设置一种 IP Abis接口协议栈结构, 去掉了 RTP协议, 筒化了 IP Abis接口帧结 构。 因此, 优化了 RTP緩冲处理时延, 以及 RTP的调度时延、 处理时延, 进 而减小了网络时延。 如此, 不仅大大降低了系统的时延, 同时还筒化了 Abis 接口传输的帧结构, 节省了带宽资源。
对于去掉了 RTP的 IP Abis接口协议栈结构,在进行传输过程中可能会造 成报文乱序。 所以本发明在上行分组数据处理的过程中通过修改 RLC滑窗 机制对上行乱序报文进行容错处理, 于是在保证报文顺序正确的前提下, 避免了的假重传。 而且, 本发明还在下行速率适配单元增加緩存机制, 来 进行 PCU报文的排序。 这样, 便保证接收和发送的报文顺序, 进而实现可 靠性传输。 因此, 本发明在优化时延的前提下, 实现可靠性传输。 附图说明
图 1为 BSS结构与接口的示意图;
图 2 A为本发明分组数据传输系统实施例的组成示意图;
图 2B为本发明分组数据传输系统另一实施例的组成示意图;
图 3为本发明上行分组数据传输方法的实现流程示意图;
图 4为 Abis接口协议栈结构;
图 5为本发明网络协议帧的结构程示意图;
图 6为本发明 BSC侧的无线链路控制单元的接收窗口;
图 7为本发明下行分组数据传输方法的实现流程示意图。 具体实施方式
本发明的基本思想在于: 组建基于 UDP的 Abis接口协议栈结构的 PCU 帧, 并将一个以上的 PCU帧封装在一个 UDP/IP协议帧中, 在传输过程中对 帧号抖动和乱序进行调整, 提高系统的抗抖动性能。
需要说明的是, 所述 PCU帧的结构包括以下组成方式: 一种组成方式 为帧号信息和用户数据分别存放于不同的帧中, 如用于帧号同步的 PCU同 步帧和携带数据块的 PCU数据帧; 另一种组成方式为帧号信息和用户数据 在同一个 PCU帧中, 如 PCU帧包括 PCU帧头和 PCU载荷。
为使本发明上述目的、 特征和优点能够更加明显易懂, 下面结合附图 和具体实施例对本发明作进一步详细的说明。
本实施例提供的一种分组数据传输系统, 包括: BTS 201和 BSC 202。 其中:
BTS 201 , 用于组建 PCU帧并将组建的 PCU帧按载频封装为网络协议 帧, 发送至 BSC 202;
BSC 202, 用于从网络协议帧中解析出 PCU帧, 并对从 PCU帧解析出的 PCU载荷进行排序; 以及选取出排序后的 PCU载荷,组建逻辑链路控制帧并 通过 Gb接口发送至核心网; 或者,
BSC 202, 用于组建 PCU帧, 将组建的 PCU帧封装为网络协议帧, 并发 送给 BTS 201 ;
BTS 201 ,用于从所述网络协议帧中解析出 PCU帧,对 PCU帧进行排序; 以及用于按序对待发送至 Um接口的 PCU帧进行速率适配, 并将速率适配后 得到的 PCU载荷发送给移动终端。
上述系统中, 所述 BTS 201包括: 速率适配单元和第一网络驱动单元。 其中, 如图 2A所示:
速率适配单元, 用于组建 PCU帧;
第一网络驱动单元, 用于将所组建的 PCU帧按载频封装在网络协议帧 中, 并将所述网络协议帧发送至 BSC 202;
所述 BSC 202包括: 第二网络驱动单元、 帧处理单元和无线链路控制单 元; 其中,
第二网络驱动单元, 用于接收所述网络协议帧并对其进行解析得到 PCU帧; 以及, 用于选取排序后的 PCU载荷, 组建逻辑链路控制帧并发送至 核心网;
帧处理单元, 用于对 PCU帧进行解析得到 PCU载荷;
无线链路控制单元, 用于对 PCU载荷进行排序。
上述系统中, 所述 BSC 202包括: 帧处理单元和第二网络驱动单元; 其 中, 如图 2B所示: 帧处理单元, 用于组建 PCU帧;
第二网络驱动单元, 用于将所组建的 PCU帧按载频封装在网络协议帧 中, 并将所述网络协议帧发送 BTS 201;
所述 BTS 201包括: 第一网络驱动单元、 速率适配单元; 其中, 第一网络驱动单元, 用于接收所述网络协议帧并对其进行解析得到
PCU帧;
速率适配单元, 用于对 PCU帧进行排序, 并按序对待发送至 Um接口的 PCU帧进行速率适配得到 PCU载荷, 以及将该 PCU载荷发送给移动终端。
其中, 所述速率适配单元还包括:
排序子单元, 用于对 PCU帧进行排序;
确定子单元, 用于确定待发送至 Um接口的 PCU帧;
解析及编码调制子单元, 用于按序对待发送至 Um接口的 PCU帧进行解 析得到 PCU载荷, 并对 PCU载荷进行编码调制;
发送子单元, 用于将编码调制后的所述 PCU载荷发送至移动终端。 以上所描述的是基于 IP Abis接口的分组数据传输系统, 相应地, 下面 来说明一下分组数据的传输方法, 该方法包括: 上行数据传输和下行数据 传输, 分别如下所述:
I、 以发送端为 BTS , 接收端为 BSC为例, 来说明上行数据的传输及处 理过程:
如图 3所示, 为本发明分组数据传输方法中的上行数据处理过程, 主要 包括如下步骤:
步骤 301 , BTS通过 Um接口接收用户数据,对接收到的用户数据进行解 码, 从中提取业务数据作为 PCU载荷, 组建 PCU帧;
这里, 本实施例的 PCU帧结构采用帧号信息和用户数据在同一个 PCU 帧中的组成方式, 由 BTS的速率适配单元来完成 PCU帧的组建: 先组建 PCU 帧头, 帧头由帧号、 PCU载荷的 Um口编码调制方式、 帧号调整量等进行填 充; 然后, 将填充好的帧头添加在 PCU载荷前端, 组建得到 PCU帧。 其中, 当前帧号、 帧号调整量主要用于帧号同步; 并且, 通过 PCU载荷的 Um编码 调制方式能够得到 PCU载荷的长度,进而根据 PCU载荷的长度解析得到对应 的 PCU载荷。
步骤 302, BTS将组建的 PCU帧按载频封装为网络协议帧;
其中, 按载频封装成网络协议帧是指: BTS按照网络协议如采用 UDP/IP , 为同一载频的 PCU帧添加 UDP包头和 IP包头, 并封装成网络协议 帧。也就是说,每个网络协议帧包括: IP包头、 UDP包头、 UDP净荷。 这里, 为了节约网络资源, 将来自同一小区的、属于同一载频的、一个以上的 PCU 帧封装在同一个网络协议帧中。 因此, 该 UDP净荷包括一个以上的、 属于 同一载频的 PCU帧, 如图 4所示。
需要说明的是,本实施例所使用的网络协议帧是基于现有 Abis接口协议 栈结构, 采用去掉现有 Abis接口协议栈中 RTP的部分, 如图 5所示, 而 RTP 承担的乱序调整功能由接收端来完成,例如: 上行数据的抖动和乱序由 BSC 侧的无线链路控制单元进行调整和处理, 而下行数据的抖动和乱序由 BTS 侧的速率适配单元进行处理。 其中, 所述无线链路控制单元原来有排序机 制, 但容错机制较差, 乱序会造成数据的假重传, 本实施例则通过修改窗 口机制, 减小开始序列号 (SSN ), 增强了容错机制, 防止假重传。 并且, 本实施例为 BTS侧的速率适配单元新增緩存排序功能, 以对下行数据的抖 动、 乱序进行处理。
步骤 303 , BTS通过 IP网络向 BSC传输所述网络协议帧;
步骤 304 , BSC接收网络协议帧, 并利用 UDP/IP从所述网络协议帧中解 析出 PCU帧;
步骤 305 , BSC按信道实例对 PCU帧进行帧号调整, 保证帧号同步; 其中,按信道实例对 PCU帧进行帧号调整主要是:对 PCU帧头进行解析, 并判断是否需要调整并对需要调整帧号的 PCU帧进行调整, 即: 如果帧头 中包含帧号调整量则需要对帧号进行调整, BSC侧的帧处理单元根据帧号调 整量调整当前帧号; 否则, 如果帧头中不包含帧号调整量则不需对 PCU帧 进行帧号调整。 例如: BSC收到的帧号调整量为 PNa、 MNa、 BNa, BSC侧 的当前下行帧号为 PN=a、 MN=b、 BN=c; 下行帧号的最大值 PN_MAX=A、 MN_MAX=B、 BN_MAX=C; BSC调整以后的下行帧号为 PN1、 MN1、 BN1 , 则有:
PN1= ( a+PNa+A ) mod ( A );
MN1= ( b+MNa+B ) mod ( B );
BN1= ( c+BNa+C ) mod ( C )»
步骤 306, BSC从 PCU帧中解析出 PCU载荷, 并将解析出的 PCU载荷放 入接收窗口进行排序;
其中, BSC侧的第二网络驱动单元根据 PCU帧中的编码方式得到 PCU 载荷的长度, 通过 PCU载荷的长度解析出 PCU载荷。 并且, BSC侧的无线链 路控制单元将解析出的 PCU载荷放入接收窗口, 通过该接收窗口的控制对 PCU载荷进行排序, 以确定 PCU载荷进入接收窗口的顺序。 例如: 无线链路 控制单元将到达的 PCU载荷按其块序列号 (BSN, Block Sequence Number ) 的大小放入对应的接收窗口中。其中, BSN是 PCU载荷中自带的一个序列号, 所述接收窗口按照 BSN的大小对 PCU载荷进行排序,而且在组建逻辑连路控 制帧时也会使用 PCU载荷的 BSN进行排序。
虽然现有的 BSC侧的无线链路控制单元的接收窗口对 PCU载荷有调整 机制, 然而, 网络时延和信道抖动造成乱序会导致先收到 BSN较大的 PCU 载荷再收到 BSN较小的 PCU载荷,如果前面几个 PCU载荷发生乱序, 则会因 为 PCU载荷没有收完而不会应答要求重传, 而有足够的时间等待乱序 PCU 载荷的到来, 但是, 若先收到了最后一块而在其之前的 PCU载荷还在传输 中, 则 BSC会认为 PCU载荷已经收完, 就会发送应答来要求重传未收到的 PCU载荷。 这样, 则导致了重传一些并不是真正丟失的 PCU载荷,造成移动 终端侧的 PCU载荷假重传。 于是, 为了防止过多的帧号调整和数据重传, 本实施例通过改变接收窗口的应答机制以及减小上行应答位图的 SSN,延迟 应答最近收到的几个 PCU载荷,这样就有足够的时间等待之前未到达的 PCU 载荷到达。 因此, 这样不仅减小乱序对系统的影响, 而且增加了系统抗抖 动的能力, 减少了不必要的重传。 那么, 接下来, 以 GPRS为例来说明本实 施例构造的上行应答位图:
参照图 6, 示出了 BSC侧的无线链路控制单元的接收窗口。 其中, 证实 状态变量 VQ表示在接收窗口内未收到的 PCU载荷的最小 BSN, 接收状态变 量 VR指定了一个比已接收的 PCU载荷的 BSN的最大值大 1的 BSN。在构造上 行应答位图时, 本实施例通过设置最后收到的 PCU载荷的 SSN=VR-信道数 x 2, 减小了应答位图的 SSN, 而现有的应答位图的开始序列号 SSN=VR, 当移动终端收到应答位图后, 重传应答位图中标识为未收到的 PCU载荷。
步骤 307, BSC收到 PCU载荷后, 从接收窗口中选取出排序后的 PCU载 荷, 组建逻辑链路控制帧, 并将组建完成的逻辑链路控制帧通过 Gb接口发 送至核心网。
其中, 将选取出的 PCU载荷组建逻辑链路控制帧的实现过程为: 在每 次收到 PCU载荷后, 判断当前接收窗口的情况, 如 VQ是否有更新, 若 VQ 更新, 则按顺序取出此前一次 VQ到更新后的 VQ之间的 BSN连续的 PCU载 荷, 尝试组建逻辑链路控制帧。 而且, 在组建逻辑连路控制帧时, 通过 PCU 载荷的 BSN进行排序。
其中, 判断逻辑链路控制帧是否组建完成的主要根据是: PCU载荷中 是否具有标识比特, 如长度值指示比特 L和更多比特 M, 从而通过不同的标 识比特来定界不同的逻辑链路控制帧。 例如: 通过 PCU载荷中已置位的 L和 M值,判断当前的逻辑链路控制帧是否已经组建完成,如果组建完成就可以 发到 Gb接口并发往核心网。 其中, 该 Gb接口是 BSC和核心网的接口, 如图 1 所示。 这样, 便将用户数据发送到核心网的逻辑链路控制层进行处理。
II、 以发送端为 BSC, 接收端为 BTS为例, 来说明下行数据传输及处理 过程:
上面描述了上行数据传输及处理过程, 接下来对下行数据传输及处理 的过程进行说明, 如图 7所示, 主要处理步骤如下:
步骤 701 , BSC从所收到的逻辑链路控制帧解析出 PCU载荷, 并按顺序 放入发送窗口;
其中, BSC将从上层收到的逻辑链路控制帧拆分为 PCU载荷时,会给每 个 PCU载荷加上 BSN,然后根据 BSN的大小将 PCU载荷按照顺序放入发送窗 口。
步骤 702 , BSC按信道实例从发送窗口中取出 PCU载荷, 并添加 PCU帧 头, 组建 PCU帧;
这里, 所述 PCU帧包括: PCU帧头和 PCU载荷。 其中, 所述 PCU帧头包 括: 帧号、 帧号调整量和编码方式等控制参数。
步骤 703 , BSC为 PCU帧添加 UDP包头和 IP包头, 并按载频封装成网络 协议帧;
这里, 所述按载频封装成网络协议帧是指: 按照网络协议, 将同一载 频的 PCU帧封装成网络协议帧。
步骤 704 , BSC通过 IP网络向 BTS传输所述网络协议帧;
步骤 705 , BTS从所收到的网络协议帧中解析出 PCU帧;
步骤 706, BTS判断 PCU帧的帧号是否失步, 如果帧号失步, 则执行步 骤 707; 否则, 如果帧号同步, 则执行步骤 708; 其中, 判断 PCU帧的帧号是否失步的主要过程为: BTS将解析出的 PCU 帧的帧号与本地记录的帧号进行比较, 如果不相同, 则帧号失步; 如果相 同, 则帧号同步。
步骤 707 , BTS计算帧号调整量, 并通知 BSC进行帧号调整, 使帧号同 步, 然后执行步骤 708;
在 BTS侧, 计算帧号调整量的主要过程可参照如下所示: BTS收到的下 行帧号为 PN=a、 MN=b、 BN=c; BTS本地保存的下行帧号为 PN=al、 MN=bl、 BN=cl ; 下行帧号的最大值 PN_MAX=A、 MN_MAX=B、 BN_MAX=C; 贝1 J BTS计算得到的下行 PCU的帧号调整量为:
PNa= ( al-a+A ) mod ( A );
MNa= ( bl-b+B ) mod ( B );
BNa= ( cl-c+C ) mod ( C )。
另外, 在帧号调整过程中, BTS与 BSC之间会暂停传输 PCU载荷。
步骤 708, 对 PCU帧进行排序处理, 并选取出正常到达的 PCU帧; 这里, BTS在速率适配单元内增加一个緩存区,将收到的 PCU帧按帧号 进行排序。 其中, 通过对接收的 PCU帧按帧号进行排序, 然后将最小的帧 号与 BTS中的速率适配单元侧的当前 PCU帧的帧号进行比较,进而判断緩存 区内是否有 PCU帧提前到达或者已经过期,如果最小帧号大于当前 PCU帧的 帧号, 则说明该 PCU帧提前到达, 需要继续等待; 如果最小帧号小于当前 PCU帧的帧号, 则说明该 PCU帧已过期, 并将过期的 PCU帧丟弃。 其中, 当 PCU帧的帧号与 BTS本地保存的帧号相等时, PCU帧属于正常到达, 如此, 便能够确定该 PCU帧是否满足发送至 Um接口的条件, 即正常达到的 PCU帧 可发送至 Um接口, 从而实现了对 PCU帧的发送控制。
步骤 709, BTS按序对正常到达的 PCU帧进行速率适配, 并将速率适配 后得到的 PCU载荷通过 Um接口发送至移动终端。 其中, BTS获取 PCU帧之后, 对需要发送至 Um接口的 PCU帧进行速率 适配, 即: 通过分解 PCU帧来获取编码类型、 当前帧号等信息, 然后根据 不同的编码类型取出不同长度的待编码的 PCU载荷,并对所取出的 PCU载荷 进行编码调制操作, 以便所述 PCU载荷能够在 Um接口中进行传输。
对于上述的各实施例, 为了筒单描述, 故将其都表述为一系列的动作 组合, 但是本领域技术人员应该知悉, 本发明并不受所描述的动作顺序的 限制, 因为依据本发明, 某些步骤可以采用其他顺序或者同时进行。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没 有详述的部分, 可以参见其他实施例的相关描述即可。 以上所述, 仅为本 发明的较佳实施例而已, 只是用来说明和解释本发明, 并非用于限定本发 明的保护范围。 在本发明的精神和权利要求保护范围之内, 对本发明所作 的任何修改、 等同替换, 都落入本发明的保护范围。

Claims

权利要求书
1、一种分组数据传输系统,其特征在于,该系统包括:基站控制器 BSC 和基站收发台 BTS; 其中,
BTS , 用于组建分组控制单元 PCU帧, 并将组建的 PCU帧按载频封装为 网络协议帧, 发送至 BSC;
BSC, 用于从所述网络协议帧中解析出 PCU帧, 并对从 PCU帧解析出的 PCU载荷进行排序,选取排序后的 PCU载荷,组建逻辑链路控制帧并发送至 核心网; 或者,
BSC, 用于组建 PCU帧, 将组建的 PCU帧封装为网络协议帧, 并发送给 BTS;
BTS, 用于从所述网络协议帧中解析出 PCU帧, 对 PCU帧进行排序, 并 按序对待发送至 Um接口的 PCU帧进行速率适配, 再将速率适配后得到的 PCU载荷发送给移动终端。
2、 根据权利要求 1所述的分组数据传输系统, 其特征在于,
所述 BTS包括: 速率适配单元和第一网络驱动单元; 其中,
速率适配单元, 用于组建 PCU帧;
第一网络驱动单元, 用于将所组建的 PCU帧按载频封装在网络协议帧 中, 并将所述网络协议帧发送至 BSC;
所述 BSC包括: 第二网络驱动单元、 帧处理单元和无线链路控制单元; 其中,
第二网络驱动单元, 用于接收所述网络协议帧并对其进行解析得到 PCU帧; 以及, 用于选取排序后的 PCU载荷, 组建并发送逻辑链路控制帧; 帧处理单元, 用于对 PCU帧进行解析, 得到 PCU载荷;
无线链路控制单元, 用于对 PCU载荷进行排序。
3、 根据权利要求 1所述的分组数据传输系统, 其特征在于, 所述 BSC包括: 无线链路控制单元、 帧处理单元和第二网络驱动单元; 其中,
无线链路控制单元, 用于从上层收到的逻辑链路控制帧中解析出 PCU 载荷, 并将解析出的 PCU载荷按顺序放入发送窗口;
帧处理单元, 用于从该发送窗口中取出 PCU载荷, 组建 PCU帧; 第二网络驱动单元, 用于将所组建的 PCU帧按载频封装在网络协议帧 中, 并将所述网络协议帧发送 BTS;
所述 BTS包括: 第一网络驱动单元、 速率适配单元; 其中,
第一网络驱动单元, 用于接收所述网络协议帧并对其进行解析得到
PCU帧;
速率适配单元, 用于对 PCU帧进行排序, 并按序对待发送至 Um接口的 PCU帧进行速率适配得到 PCU载荷, 将该 PCU载荷发送给移动终端。
4、 根据权利要求 1所述的分组数据传输系统, 其特征在于, 所述速率 适配单元还包括:
排序子单元, 用于对 PCU帧进行排序;
确定子单元, 用于确定待发送至 Um接口的 PCU帧;
解析及编码调制子单元, 用于按序对待发送至 Um接口的 PCU帧进行解 析得到 PCU载荷, 并对 PCU载荷进行编码调制;
发送子单元, 用于将编码调制后的所述 PCU载荷发送至移动终端。
5、 一种分组数据传输方法, 其特征在于, 该方法包括:
BTS组建 PCU帧, 并将组建的 PCU帧按载频封装为网络协议帧,发送至 BSC;
BSC从网络协议帧中解析出 PCU帧,再从 PCU帧解析出 PCU载荷并对解 析出的 PCU载荷进行排序,选取排序后的 PCU载荷,组建并发送逻辑链路控 制帧。
6、 根据权利要求 5所述的分组数据传输方法, 其特征在于, 所述 BSC 从网络协议帧中解析出 PCU帧之后, 该方法还包括:
BSC判断解析出的 PCU帧是否需要进行帧号调整,并在需要进行帧号调 整时, 按信道实例对 PCU帧进行帧号调整, 使帧号同步。
7、 根据权利要求 5或 6所述的分组数据传输方法, 其特征在于, 所述从 PCU帧解析出 PCU载荷并对解析出的 PCU载荷进行排序为:
BSC根据帧头的控制参数,从 PCU帧中解析出 PCU载荷, 并将该 PCU载 荷按其块序列号 BSN的大小放入接收窗口进行排序;
其中,所述接收窗口的应答位图开始序列号为已接收的 PCU载荷的 BSN 的最大值加 1减去两倍信道数。
8、 根据权利要求 5或 6所述的分组数据传输方法, 其特征在于, 所述将 组建的 PCU帧按载频封装为网络协议帧为:
为同一载频的 PCU帧添加用户数据报协议 UDP包头和网际协议 IP包头, 并按网络协议将 PCU帧封装成网络协议帧;
所述网络协议帧包括: UDP包头、 IP包头、 UDP净荷; 其中, 该 UDP 净荷包括一个以上的、 属于同一载频的 PCU帧。
9、 根据权利要求 5或 6所述的分组数据传输方法, 其特征在于, 所述选 取排序后的 PCU载荷, 组建逻辑链路控制帧包括:
收到 PCU载荷后, 判断当前接收窗口的证实状态变量 VQ是否有更新, 若 VQ更新, 则选取出之前一次 VQ到更新后的 VQ之间的 BSN连续的 PCU载 荷, 尝试组建逻辑链路控制帧;
其中, 在组建逻辑连路控制帧时, 使用 PCU载荷的 BSN进行排序。
10、 一种分组数据传输方法, 其特征在于, 包括:
BSC组建 PCU帧, 并将组建的 PCU帧按载频封装为网络协议帧,发送该 网络协议帧给 BTS; BTS从所述网络协议帧中解析出 PCU帧, 并对 PCU帧进行排序;
BTS按序对待发送至 Um接口的 PCU帧进行速率适配, 并将速率适配后 得到的 PCU载荷发送给移动终端。
11、 根据权利要求 10所述的分组数据传输方法, 其特征在于, 所述对 PCU帧进行排序之前, 该方法还包括:
BTS将解析出的 PCU帧的帧号与本地记录的帧号进行比较, 如果不相 同, 则帧号失步, 计算帧号调整量并通知 BSC进行帧号调整, 使帧号同步; 如果相同, 则帧号同步, 则对 PCU帧进行发送控制和排序;
其中, 所述对 PCU帧进行发送控制和排序为: BTS设置緩存区, 将收到 的 PCU帧放入緩存区, 并按帧号进行排序。
12、 根据权利要求 10或 11所述的分组数据传输方法, 其特征在于, 所 述 BSC组建 PCU帧为:
将从上层收到的逻辑链路控制帧拆分为 PCU载荷, 按顺序放入发送窗 口, 并按信道实例从发送窗口中取出 PCU载荷, 添加 PCU帧头, 组建 PCU 帧;
BSC为同一载频的 PCU帧添加 UDP包头和 IP包头,并根据网络协议封装 成网络协议帧。
13、 根据权利要求 10所述的分组数据传输方法, 其特征在于, 所述对 待发送至 Um接口的 PCU帧进行速率适配是指:
对待发送至 Um接口的 PCU帧进行解析得到 PCU载荷, 并对 PCU载荷进 行编码调制。
PCT/CN2010/071945 2009-08-06 2010-04-20 一种分组数据传输系统和方法 WO2011015058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910090790.6 2009-08-06
CN200910090790.6A CN101990241B (zh) 2009-08-06 2009-08-06 一种分组数据传输系统和方法

Publications (1)

Publication Number Publication Date
WO2011015058A1 true WO2011015058A1 (zh) 2011-02-10

Family

ID=43543895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071945 WO2011015058A1 (zh) 2009-08-06 2010-04-20 一种分组数据传输系统和方法

Country Status (3)

Country Link
CN (1) CN101990241B (zh)
HK (1) HK1155888A1 (zh)
WO (1) WO2011015058A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157174A2 (zh) * 2011-06-03 2011-12-22 华为技术有限公司 一种数据处理方法、装置和系统
CN110167073B (zh) * 2018-02-13 2020-12-22 华为技术有限公司 传输数据的方法、设备和无线网络系统
CN108566387B (zh) * 2018-03-27 2021-08-20 中国工商银行股份有限公司 基于udp协议进行数据分发的方法、设备以及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980182A (zh) * 2005-11-30 2007-06-13 中兴通讯股份有限公司 带有上下文信息的帧的生成方法以及帧的发送处理方法
CN101039256A (zh) * 2006-03-17 2007-09-19 中兴通讯股份有限公司 分组控制单元帧分段传输方法
CN101360264A (zh) * 2007-07-31 2009-02-04 中兴通讯股份有限公司 基于IP Abis接口的数据传输方法及装置
CN101365186A (zh) * 2007-08-08 2009-02-11 中兴通讯股份有限公司 基于ip承载的a接口的上行不连续语音传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980182A (zh) * 2005-11-30 2007-06-13 中兴通讯股份有限公司 带有上下文信息的帧的生成方法以及帧的发送处理方法
CN101039256A (zh) * 2006-03-17 2007-09-19 中兴通讯股份有限公司 分组控制单元帧分段传输方法
CN101360264A (zh) * 2007-07-31 2009-02-04 中兴通讯股份有限公司 基于IP Abis接口的数据传输方法及装置
CN101365186A (zh) * 2007-08-08 2009-02-11 中兴通讯股份有限公司 基于ip承载的a接口的上行不连续语音传输方法及装置

Also Published As

Publication number Publication date
CN101990241A (zh) 2011-03-23
HK1155888A1 (en) 2012-05-25
CN101990241B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
US8488523B2 (en) Method of transmitting and processing data block of specific protocol layer in wireless communication system
JP6005710B2 (ja) 無線通信システムの状態情報送信方法及び受信装置
RU2461147C2 (ru) Способ обработки радиопротокола в системе подвижной связи и передатчик подвижной связи
AU2006229508B2 (en) Method of generating lower layer data block in wireless mobile communication system
US7542482B2 (en) Method and apparatus for message segmentation in a wireless communication system
CN102685913B (zh) 无线通讯系统中改善上行链路传输的方法
US9565699B2 (en) Method of performing polling procedure in a wireless communication system
EP2094049B1 (en) Method and apparatus for sending RLC PDU in a mobile communications system
US20070211682A1 (en) On Packet Aggregation and Header Compression Mechanisms for Improving VoIP Quality in Mesh Networks
JP2000224261A (ja) ネットワ―ク層プロトコルを直接サポ―トするデ―タリンク制御プロトコルおよび方法
JP2002271366A (ja) パケット伝送方法及びシステム、並びにパケット送信装置、受信装置、及び送受信装置
WO2006104773A1 (en) Method of performing a layer operation in a communications network
TWI358922B (en) Method and apparatus of default timer configuratio
WO2012130094A1 (zh) 一种用于帧确认的方法和装置
JP5037633B2 (ja) 移動通信システムにおけるrlcpdu送信方法、無線リソース割当方法、及び移動通信システムのrlcエンティティ
US20110019568A1 (en) Method and apparatus for transmitting and receiving data in mobile communication system
WO2011015058A1 (zh) 一种分组数据传输系统和方法
KR20080015693A (ko) 이동통신시스템에서 단말의 버퍼 상태 보고 방법 및 장치
US20090257377A1 (en) Reducing buffer size for repeat transmission protocols
WO2023184552A1 (zh) 一种数据传输方法及装置、通信设备
WO2023184545A1 (zh) 一种数据传输方法及装置、通信设备
US20230262809A1 (en) Methods and Apparatus for Logical Channel Aggregation
US20220360652A1 (en) Downlink protocol alignment and decoding
WO2009102166A2 (ko) 이동 통신 시스템에서 우선 순위화 비트 레이트를 이용하여 데이터를 전송하는 방법 및 장치
JP2009044601A (ja) 無線送信装置、無線通信システム、無線端末、通信装置、送信方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10186/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805962

Country of ref document: EP

Kind code of ref document: A1