WO2011014048A2 - Intercambiador de calor para tanque recolector de energía solar - Google Patents

Intercambiador de calor para tanque recolector de energía solar Download PDF

Info

Publication number
WO2011014048A2
WO2011014048A2 PCT/MX2010/000073 MX2010000073W WO2011014048A2 WO 2011014048 A2 WO2011014048 A2 WO 2011014048A2 MX 2010000073 W MX2010000073 W MX 2010000073W WO 2011014048 A2 WO2011014048 A2 WO 2011014048A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
exchanger according
section
contact heat
protective body
Prior art date
Application number
PCT/MX2010/000073
Other languages
English (en)
French (fr)
Other versions
WO2011014048A3 (es
Inventor
Luis Diego GARCÍA ESPINOSA
Noel LEÓN ROVIRA
Original Assignee
Instituto Tecnológico y de Estudios Superiores de Monterrey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Tecnológico y de Estudios Superiores de Monterrey filed Critical Instituto Tecnológico y de Estudios Superiores de Monterrey
Publication of WO2011014048A2 publication Critical patent/WO2011014048A2/es
Publication of WO2011014048A3 publication Critical patent/WO2011014048A3/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention consists of a contact heat exchanger, which aims to carry out heat transfer from a solar energy collection system to a Stirling engine, a Brayton closed cycle turbine or some other element capable of converting the external thermal energy in mechanical or electrical energy, minimizing heat losses.
  • a Stirling engine performs through a difference in temperature, movement, which is subsequently converted into mechanical or electrical energy.
  • the Stirling engine cycle is the heating and cooling of a gas; When the gas is heated in a sealed chamber, the gas increases its pressure and acts on a piston by pushing it, when the gas cools, the piston returns to its original position.
  • Stirling engines require an external source of heat to generate the expansion-compression cycle.
  • Heat sources may be the result of combustion, solar energy or another source that supplies the necessary amount of heat to achieve the cycle.
  • the proposed invention is safe and efficient for heat transfer, because in a considerable time, the entire system is at a uniform temperature and it can be delivered efficiently to the Stirling engine.
  • FIG. 1 Isometric view of the contact heat exchanger which is the subject of this invention.
  • Figure 3 Anterior view of the heat energy receiver.
  • Figure 4. Rear view of the heat energy receiver.
  • Figure 5. Isometric view of the mobile valve.
  • Figure 6. Isometric view of the fixed valve.
  • Figure 7 Isometric view of insulating filler material.
  • Figure 8 Isometric view of the first section of the protective body.
  • Figure 9 Front view of the first section of the protective body.
  • Figure 10 Side view of the first section of the protective body.
  • Figure 11 Isometric view of the second section of the protective body.
  • Figure 12 Front view of the transfer piece.
  • Figure 13 Rear view of the transfer piece.
  • Figure 15 Comparative graph of the thermal conductivity of different materials for the energy receiver.
  • the present invention consists of a contact heat exchanger, shown in figure 1, said exchanger (1) performs heat transfer from a solar energy collection system and is delivered to a Stirling engine , a Brayton closed cycle turbine or some other element capable of converting external thermal energy into mechanical or electrical energy.
  • the arrangement of the elements that make up the heat exchanger is illustrated in Figure 2, and comprises: A heat energy receiver (2), whose function is to capture and send heat from the solar energy collection tank, to which it is coupled .
  • this heat energy receiver (2) be of a material that has at least a thermal conductivity of 150KW, such as silver or copper; which is also malleable and ductile because it must be able to adopt a circular geometry, whose diameter gradually decreases from one end to another, as shown in a previous view of this receiver in Figure 3, in which it is observed that the surface of This end has a smaller diameter and a flat circular central area (3), surrounded by a groove (4), preferably perpendicular to its axis, designed with the dual purpose of allowing firstly the fixation to a solar energy collection system, optionally a tank of heat energy and avoid heat losses by convection; and in figure 4, a rear view of the heat energy receiver (2) is presented, where it can be seen that in the central part of the smooth surface of the larger diameter end, it has a threaded hole (5), whose depth It is less than the thickness of the heat energy receiver (2), to allow only the entry of a guide bolt (6) that, through and keeps together all the parts of the exchanger to
  • Figure 5 shows an isometric view of the mobile valve, in which it can be seen that in the center it has a hole (8) to allow the entry and exit of the guide bolt (6) that passes through it.
  • the orifice (8) is surrounded by a polygon of 4 sides, of equal proportions, of which 2 are located on opposite sides, are of the same material as the mobile valve (7), and heat energy receiver (1); and the remaining 2 sides are empty and completely occupied by sections of insulating filler material (9);
  • the filler insulator must be thermal insulator capable of withstanding a temperature of 600-1000 ° C, preferably silica alumina, with the particularity that each section of filler insulating material (9) has The shape of the empty space of the mobile valve and fixed valve, to occupy it completely
  • an flange (10) protrudes, which has an insulating coating (preferably alumina silica) that prevents heat loss to the outside and is perpendicular to the central axis of the mobile valve (7), with a width less than a quarter of the diameter of the mobile valve (7), and whose purpose is to provide a manipulation point to allow the movement of the mobile valve (7), in direction and counter-direction of the clock hands, to regulate the heat transport of the heat energy receiver (2) and thereby interrupt the heat transfer of the solar energy collection system to a fixed valve (11), see figures 2 and 6 , similar to the mobile valve (7), but without flange, which allows to complete the heat conduction.
  • an insulating coating preferably alumina silica
  • the mobile valve (7) and the fixed valve (11) are surrounded by an insulating ring (12) see figure 2, preferably silica alumina;
  • This insulating ring (12) has a cut (13) where the flange (10) of the mobile valve (7) protrudes.
  • the length of the cut (13) of the insulating ring coincides with a quarter of the diameter of the mobile valve (11), to allow its displacement, by means of the flange (10).
  • the mobile valve (7), the fixed valve (11) and the insulating ring (12) are surrounded by the first section (14) of a protective body, which, as seen in its isometric view presented in Figure 8, shows a first (16) and second external diameter (17), which form an edge (18), the first external diameter (16) having a smaller diameter.
  • a groove (15) is presented at a point on the contome of the first external diameter (16)
  • the width of the second external diameter (17) coincides with the width of the fixed valve (11), and due to its external contour it has 2 equidistant points: a first (19) and second coupling device (20) (see figure 9) to allow adjustment with a second section of the protective body (21).
  • a first (19) and second hitch device (20) can be a lock (22) and bolt (23), which allow repeated assembly and disassembly of the first (14) and second section (21) of the protective body.
  • the second section (21) of the protective body shown in Figures 2 and 11, has a first (31) and second external diameter (32), forming an edge (30), and a margin is located on the perimeter of the rear side ( 29) towards the interior that forms an angle of 90 ° with its walls, and supports the heat transfer piece (24) and allows its exposure.
  • the first diameter of the second section (21) of the protective body is assembled under pressure with the second diameter (17) of the first section (14) of the protective body. It is important to note that the height of the second external diameter (17) of the first section of the protective body, and the height of the first external diameter (31) of the second section of the protective body coincide with the width of the fixed valve.
  • the protective body (formed by the first (14) and second (21) section) houses a heat transfer piece (24), surrounded by a second insulating ring (25) to avoid heat losses.
  • the heat transfer part (24), represented in the Figure 12, is a material with high thermal conductivity, such as silver or copper;
  • This heat transfer piece (24) is circular, with a circular perforation to the center (26) and in its external contour, at two opposite points, it has a machined notch (27), and the end surface that coincides with the Fixed valve, is smooth and the opposite end (see figure 13), has a slit (28) to engage the Stirling engine.
  • the assembly of the heat transfer part (24), mobile valve (7), fixed valve (11) and heat energy receiver (2) is given by the guide bolt (6) that passes through them, and is screwed on by its ends allowing assembly and disassembly.
  • Figure 14 is presented which is a cross-sectional view thereof. It is important to note that the heat energy receiver (2) is the one that is coupled to the solar energy storage system, and the heat transfer part (24) to the Stirling engine or the Brayton closed cycle turbine system.
  • the motive device of this invention particularly provides energy to Stirling engines, however it has versatility to adapt to other systems that require heat exchange, while maintaining ease of installation, thus allowing speed and safety to perform the exchange of tanks and a high level of efficiency for heat exchange.
  • the Contact heat exchanger For the Contact heat exchanger to fulfill its function, it is located between a solar energy collection tank, which captures solar thermal energy and transmits it by contact conduction to the contact heat exchanger that its Once it transmits the heat of the system to a Stirling engine, which is capable of converting heat energy into mechanical energy by compressing and expanding its pistons, generating mechanical energy, and by connecting to a coil, it generates electrical energy.
  • the efficiency of the Contact Heat Exchanger depends on the amount of incoming and outgoing heat energy, and this depends directly on the material chosen for the heat energy receiver (2), as well as the area available, and the insulation of the heat exchanger by contact to avoid heat losses during convection of heat energy;
  • Figure 15 shows a graph where the thermal conductivity of different materials is determined, at an incoming working temperature of ⁇ 800 ° C so that associating this information with the cost, being able to choose the most suitable material to manufacture the receiver of energy, which is particularly preferred copper, steel and bronze.
  • the conditions of the Contact Heat Exchanger are established, such as:
  • the heat loss depends on the thickness of the insulator, as can be seen in Figure 17, where there is a tendency of the heat flux vs. the width of the insulator vs heat loss.

Abstract

La presente invención, consiste en un Intercambiador de calor por contacto, que tiene por objeto realizar la transferencia de calor a partir de un sistema recolector de energía solar a un motor Stirling, una turbina de ciclo cerrado Brayton o algún otro elemento capaz de convertir la energía térmica exterior en energía mecánica o eléctrica, minimizando las perdidas de calor. El Intercambiador de calor comprende un receptor de energía calorífica, que coincide con una válvula móvil de la que sobresale una pestaña perpendicular a su eje central, para permitir el desplazamiento de la válvula móvil; después de la válvula móvil, se localiza una válvula fija, y circundando a ambas válvulas, se localiza un anillo aislante, y a su vez estos son rodeados por la primera sección de un cuerpo protector, que se engancha a una segunda sección del cuerpo protector que alberga una pieza de transferencia de calor rodeada de un segundo anillo aislante, que presenta por su extremo libre una hendidura, para permitir su acople a un motor Stirling. Cabe señalar que el sostenimiento de las piezas del dispositivo es mediante una perforación circular al centro por la cual se acopla al perno guía.

Description

INTERCAMBIADOR DE CALOR PARA TANQUE RECOLECTOR DE ENERGÍA
SOLAR
OBJETO DE LA INVENCIÓN
La presente invención, consiste en un Intercambiador de calor por contacto, que tiene por objeto realizar la transferencia de calor a partir de un sistema recolector de energía solar a un motor Stirling, una turbina de ciclo cerrado Brayton o algún otro elemento capaz de convertir la energía térmica exterior en energía mecánica o eléctrica, minimizando las perdidas de calor. ANTECEDENTES
Un motor Stirling realiza a través de una diferencia de temperatura, movimiento, que es posteriormente convertido en energía mecánica o eléctrica. El ciclo del motor Stirling es el calentamiento y enfriamiento de un gas; cuando el gas se calienta en una recamara sellada, el gas aumenta su presión y actúa sobre un pistón empujándolo, al enfriarse el gas, el pistón regresa a su posición original.
Sin embargo los motores Stirling requieren de una fuente exterior de calor para generar el ciclo de expansión-compresión. Las fuentes de calor pueden ser el resultado de la combustión, energía solar u otra fuente que suministre la cantidad necesaria de calor para lograr el ciclo.
En la patentes US 5,590,526, 5,918,463, 6,877,315 B2 y 2009/0113889, donde la fuente calor es suministrada utilizando una mezcla de aire-combustible, la transferencia de calor se realiza a través de convección y radiación, utilizando el principio de combustión; esta forma de trasferencia de calor está determinada por la velocidad de flujo del combustible y los materiales que sean puestos en contacto con este aire caliente; por el contrario con nuestra invención se propone que la transferencia de calor sea directa y que solo se encuentre determinada por los materiales a utilizar para el intercambio de calor, además de que no se necesita quemar ningún combustible, la fuente de energía es solar, la cual está almacenada como calor en un tanque recolector de energía solar.
Todas la patentes antes mencionadas tienen el problema de que necesitan quemar algún combustible para generar calor y ese calor pueda ser utilizado por el motor Stirling, además que al tener un flujo de aire caliente, una entrada y una salida, el calor no puede ser distribuido uniformemente, lo cual disminuye la eficiencia del motor; además de que se tiene que regular el flujo de aire para no ahogar la combustión, lo cual requiere instrumentos de mayor precisión.
La invención que se propone es segura y eficiente para la transferencia de calor, debido a que en un tiempo considerable, todo el sistema se encuentra a una temperatura uniforme y ésta puede ser entregada con eficiencia al motor Stirling.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Vista isométrica del intercambiador de calor por contacto motivo de esta invención.
Figura 2. Vista explosionada del intercambiador de calor por contacto motivo de esta invención.
Figura 3. Vista anterior del receptor de energía calorífica.
Figura 4. Vista posterior del receptor de energía calorífica.
Figura 5. Vista isométrica de la válvula móvil. Figura 6. Vista isométrica de la válvula fija.
Figura 7. Vista isométrica de material aislante de relleno.
Figura 8. Vista isométrica de la primera sección del cuerpo protector.
Figura 9. Vista frontal de la primera sección del cuerpo protector.
Figura 10. Vista lateral de la primera sección del cuerpo protector.
Figura 11. Vista isométrica de la segunda sección del cuerpo protector.
Figura 12. Vista anterior de la pieza de transferencia.
Figura 13. Vista posterior de la pieza de transferencia.
Figura 14. Corte transversal del intercambiador de calor por contacto motivo de esta invención.
Figura 15. Gráfica comparativa de la conductividad térmica de diferentes materiales para el receptor de energía.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Como se ha mencionado anteriormente, la presente invención consiste en un Intercambiador de calor por contacto, representado en la figura 1, dicho intercambiador (1) realiza la transferencia de calor a partir de un sistema recolector de energía solar y es entregada a un motor Stirling, una turbina de ciclo cerrado Brayton o algún otro elemento capaz de convertir la energía térmica exterior en energía mecánica o eléctrica. La disposición de los elementos que conforman el intercambiador de calor se ilustra en la figura 2, y comprende: Un receptor de energía calorífica (2), cuya función es captar y enviar el calor proveniente del tanque recolector de energía solar, al cual se acopla. Se prefiere que este receptor de energía calorífica (2) sea de un material que presente al menos una conductividad térmica de 150KW, como por ejemplo la plata o cobre; que además sea maleable y dúctil pues debe ser capaz de adoptar una geometría circular, cuyo diámetro disminuye gradualmente de un extremo a otro, como se muestra en una vista anterior de este receptor en la figura 3, en la cual se observa que la superficie de este extremo presenta menor diámetro y un área central circular lisa (3), circundada por un estriado (4), preferentemente perpendicular a su eje, diseñado con el doble propósito de permitir primeramente la fijación a un sistema recolector de energía solar, opcionalmente un tanque de energía calorífica y evitar las perdidas de calor por convección; y en la figura 4, se presenta una vista posterior del receptor de energía calorífica (2), donde se puede apreciar que en la parte central de la superficie lisa del extremo de mayor diámetro, presenta un orificio con rosca (5), cuya profundidad es menor al grosor del receptor de energía calorífica (2), para permitir únicamente la entrada de un perno guía (6) que, atraviesa y mantiene unidas todas las partes del intercambiador para asegurar el acoplamiento entre ellas, la superficie lisa de mayor diámetro del receptor de energía calorífica (2) coincide con: Una válvula móvil (7), (ver figura 1) que presenta un diámetro coincidente con el diámetro de superficie lisa del receptor de energía calorífica (2). La figura 5 muestra una vista isométrica de la válvula móvil, en la que se puede apreciar que en el centro presenta un orificio (8) para permitir la entrada y salida del perno guía (6) que la atraviesa. El orificio (8), esta circundado por un polígono de 4 lados, de iguales proporciones, de los cuales 2 están localizados en lados opuestos, son del mismo material que la válvula móvil (7), y receptor de energía calorífica (1); y los 2 lados restantes, están vacíos y son ocupados completamente por secciones de material aislante de relleno (9); el aislante de relleno debe ser aislante térmico capaz de soportar una temperatura de 600-1000°C, preferentemente alumina silica, con la particularidad de que cada sección de material aislante de relleno (9) tiene la forma del espacio vacío de la válvula móvil y válvula fija, para ocuparlo totalmente
(ver figura 7).
En un punto del contorno externo de la válvula móvil (7) ver figura 2 y 5, sobresale una pestaña (10), la cual tiene un recubrimiento aislante (preferentemente alumina silica) que evita la pérdida de calor hacia el exterior y es perpendicular al eje central de la válvula móvil (7), con un ancho menor a la cuarta parte del diámetro de Ia válvula móvil (7), y cuya finalidad es proporcionar un punto de manipulación para permitir el desplazamiento de la válvula móvil (7), en sentido y contrasentido de las manecillas del reloj, para regular el transporte de calor del receptor de energía calorífica (2) y con esto interrumpir la transferencia de calor del sistema recolector de energía solar hacia una válvula fija (11), ver figura 2 y 6, semejante a la válvula móvil (7), pero sin pestaña, que permite completar la conducción del calor.
Para evitar pérdidas de calor, la válvula móvil (7) y la válvula fija (11), están circundadas por un anillo aislante (12) ver figura 2, preferentemente de alumina silica; este anillo aislante (12) presenta un corte (13) por donde sobresale la pestaña (10) de la válvula móvil (7). La longitud del corte (13) del anillo aislante, coincide con una cuarta parte del diámetro de la válvula móvil (11), para permitir el desplazamiento de esta, mediante la pestaña (10).
La válvula móvil (7), la válvula fija (11) y el anillo aislante (12) son circundados por la primer sección (14) de un cuerpo protector, que como se observa en su vista isométrica presentada en la figura 8, muestra un primer (16) y segundo diámetro externo (17), los cuales forman un borde (18), teniendo que el primer diámetro externo (16) es de menor diámetro. En un punto del contomo del primer diámetro externo (16) se presenta una ranura (15)
(ver figura 10), análoga al corte (13) del anillo aislante (12), a través del cual sobresale la pestaña (10). Es importante señalar que el ancho de este primer diámetro externo (16) coincide con el ancho de la válvula móvil (7).
El ancho del segundo diámetro externo (17) coincide con el ancho de la válvula fija (11), y por su contorno exterior presenta en 2 puntos equidistantes: un primer (19) y segundo dispositivo de enganche (20) (ver figura 9) para permitir el ajuste con una segunda sección del cuerpo protector (21). Como ejemplo del primer (19) y segundo dispositivo de enganche (20), pueden ser un seguro (22) y perno (23), que permitan el ensamble y desensamble en repetidas ocasiones de la primer (14) y segunda sección (21) del cuerpo protector.
La segunda sección (21) del cuerpo protector representado en la figura 2 y 11, presenta un primer (31) y segundo diámetro externo (32), formando un borde (30), y en el perímetro del lado posterior se localiza un margen (29) hacia el interior que forma un ángulo de 90° con sus paredes, y sostiene la pieza de transferencia de calor (24) y permite la exposición de ésta. El primer diámetro de la segunda sección (21) del cuerpo protector, se ensambla a presión con el segundo diámetro (17) de la primer sección (14) del cuerpo protector. Es importante señalar que la altura del segundo diámetro externo (17) de la primera sección del cuerpo protector, y la altura del primer diámetro externo (31) de la segunda sección del cuerpo protector coinciden con el ancho de la válvula fija.
El cuerpo protector (conformado por la primer (14) y segunda (21) sección) alberga una pieza de transferencia de calor (24), rodeada de un segundo anillo aislante (25) para evitar pérdidas de calor. La pieza de transferencia de calor (24), representada en la figura 12, es de un material con alta conductividad térmica, como la plata o cobre; esta pieza de transferencia de calor (24), es circular, con un perforación circular al centro (26) y en su contorno externo, en dos puntos opuestos, presenta una muesca (27) maquinada, y la superficie del extremo que coincide con la válvula fija, es lisa y el extremo opuesto (ver figura 13), presenta un hendidura (28) para engancharse al motor Stirling.
El ensamble de la pieza de transferencia de calor (24), válvula móvil (7), válvula fija (11) y receptor de energía calorífica (2) esta dado por el perno guía (6) que los atraviesa, y se enrosca por sus extremos permitiendo su ensamble y desensamble.
Con la finalidad de proporcionar un ejemplo representativo de la conformación del intercambiador de calor por contacto motivo de esta invención, se presenta la figura 14 que es un corte transversal del mismo. Es importante señalar que el receptor de energía calorífica (2) es la que se acopla al sistema de almacenamiento de energía solar, y la pieza de transferencia de calor (24) al motor Stirling o al sistema de turbina de ciclo cerrado Brayton.
En general, el dispositivo motivo de esta invención particularmente provee de energía a motores Stirling, sin embargo tiene versatilidad para adaptarse a otros sistemas que requieran intercambio de calor, conservando la facilidad de instalación, permitiendo así rapidez y seguridad para realizar el intercambio de tanques y un alto nivel de eficiencia para el intercambio de calor.
Para que el Intercambiador de calor por contacto cumpla su función, se localiza entre un tanque recolector de energía solar, el cual capta la energía solar térmica y la transmite mediante conducción por contacto a el intercambiador de calor por contacto que a su vez transmite el calor del sistema a un motor Stirling, el cual es capaz de convertir la energía calorífica en energía mecánica mediante la compresión y expansión de sus pistones, generando energía mecánica, y al conectarse a una bobina, genera energía eléctrica.
Cabe señalar que la eficiencia del Intercambiador de calor por contacto, depende de la cantidad de energía calorífica entrante y saliente, y esto depende directamente del material que se escoja para el receptor de energía calorífica (2), así como el área que disponga, y lo aislado del Intercambiador de calor por contacto para evitar pérdidas de calor durante la convección la energía calorífica; en la figura 15 se presenta una gráfica donde se determina la conductividad térmica de diferentes materiales, a una temperatura de trabajo entrante de≤ 800° C para que asociando esta información con el costo, poder elegir el material que mas convenga para fabricar el receptor de energía, que en particular se prefiere el cobre, acero y bronce. Sin embargo, existen otros materiales con mayor conductividad térmica que los presentados, y es posible usarlos, prefiriendo aquellos metales que puedan transferir el calor a una temperatura no menor de 800 a 10000C.
En un ejemplo de realización preferida, donde se requiere que el Intercambiador de calor por contacto sea capaz de transferir 150 kw, se establecen las condiciones del Intercambiador de calor por contacto, como:
Longitud total del Intercambiador de calor por contacto, radio del receptor de energía calorífica así como área de contacto entre el receptor de energía calorífica y el sistema recolector de energía solar, teniendo que todas las variables presentadas en la tabla 1 cumplen el requisito de transferir al menor 150KW. En este caso en especifico se pidió que fueran 150KW útiles pero pueden ser otras configuraciones de longitud y radio de la pieza de transferencia de calor, por ejemplo para obtener 180KW de energía calorífica lo podemos lograr con un longitud del sistema de lOcm y un radio de 13.93cm.
Se parte de la premisa que la temperatura de trabajo entrante proveniente de un sistema recolector de energía solar es en promedio de 800°C, tenemos que el tiempo en que tarda el Intercambiador de calor por contacto en alcanzar esta temperatura es de 641 segundos (Ver figura 16), y después de este tiempo en condiciones constantes el intercambiador transfiere 150KW energía eléctrica.
Debe considerarse también que la pérdida calorífica, depende del grosor del aislante, como puede observarse en la figura 17, donde se presenta una tendencia del flujo calorífica vs el ancho del aislante vs pérdida calorífica.
Tabla 1. Parámetros calculados para asignar a las variables a controlar en el intercambiador de calor por contacto.
Figure imgf000012_0001
0.Q1 186.24 37.25 18.62 12.42 9.31 7.45 6.21 4.37
O.OÍ 341.44 68.29 34.14 22.76 17.07 13.66 11.38 5.92
0.02 496.64 99.33 49.66 33.11 24.83 19.87 16.55 7.14
0.02 651.84 130.37 65.18 43.46 32.59 26.07 21.73 8.18
0.03 807.04 161.41 80.70 53.80 40.35 32.28 26.90 I 9.10
0.03 962.24 1*92.45 96.22 64.15 48.11 38.49 32.07 9.93
0.04 1117.44 223.49 111.74 74.50 55.87 44.70 37.25 10.70
0.04 1272.64 254.53 127.26 84.84 63.63 50.91 42.42 11.42
0.05 1427.84 285.57 142.78 95.19 71.39 57.11 47.59 12.10
0.05 " "' 1583.04 316.61 , 158.30 105.54 79.15 63.32 52.77 12,74
0.06 1738.24 347.65 173.82 115.88 86.91 69.53 57.94 13.35
0.06 1893.44 378.69 189.34 126.23 94.67 75.74 63 11 13.93
0.07 2048.64 409.73 204.86 136.58 102.43 81.95 68.29 14.49
0.07 2203.84 440.77 220.38 146.92 110.19 88.15 73.46 15.03
0.08 ' ™~ 2359.04 471.81 235.90 "157.27 117.95 94.36 78.63 f 15.55 "'
0.08 2514.24 502.85 251.42 167.62 125.71 100.57 83.81 ' 16.06
0.09 2669.44 533.89 266.94 177.96 133.47 106.78 88.98 16.55
0.09 2824.64 564.93 282.46 188.31 141.23 112.99 94.15 17.02
0.10 2979.84 595.97 297.98 198.66 148.99 119.19 99.33 17.48
0.19 3135.04 627.01 313.50 209.00 156.76 125.40 104.50 Í7.93
0.11 3290.24 658.05 329.02 219.35 164.51 131.61 109.67 18.37
0.11 3445.44 689.09 344.54 229.70 172.27 137.82 114.85 18.80
0.12 3600.64 720.13 360.06 240.04 180.03 144.03 120.02 19.22
042 ; 3755.84 751.17 375.58 250.39 187.79 150.23 5 125.19 19,63 "
0.13 3911.04 782.21 391.10 260.74 195.55 156.44 130.37 ' 20.03
0.13 4066.24 813.25 406.62 271.08 203.31 162.65 135.54 20.42
0.14 4221.44 844.29 422.14 281.43 211.07 168.86 140.71 20.81
0.14 4376.64 875.33 437.66 291.78 218.83 175.07 145.89 21.19
0.15 1 4531.84 906.37 453.18 302.12 226.59 181.27 151.06 21.56
0.15 4687.04 937.41 468.70 312.47 234.35 187.48 156.23 21.92*
0.16 4842.24 968.45 484.22 322.82 242.11 193.69 161.41 22.28

Claims

REIVINDICACIONES Habiendo descrito suficiente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:
1. Un intercambiador de calor por contacto, para conducir la energía calorífica almacenada por un sistema recolector de energía solar, a un motor Stirling, una turbina de ciclo cerrado Brayton o algún otro elemento capaz de convertir la energía térmica en energía mecánica o eléctrica caracterizado porque la interacción entre los elementos que lo conforman comprende un receptor de energía calorífica (2), que presenta un primer diámetro que aumenta gradualmente de tal manera que presenta un segundo diámetro, y este tiene una superficie lisa, y en su centro presenta un orificio con rosca, al cual se conecta un perno guía, que atraviesa y mantiene unidas todas las partes del intercambiador para asegurar el acoplamiento entre ellas, la superficie lisa de mayor diámetro del receptor de energía calorífica (2) coincide con una válvula móvil, que presenta un diámetro coincidente con el diámetro de superficie lisa del receptor de energía calorífica (2), y un orificio circundado por un polígono de 4 lados, de iguales proporciones, de los cuales 2 están localizados en lados opuestos, y son del mismo material que la válvula móvil (7), y el receptor de energía calorífica (2); los 2 lados restantes, están vacíos y son ocupados completamente por secciones de material aislante de relleno (9); en un punto del contorno externo de la válvula móvil (7) sobresale una pestaña (10), perpendicular al eje central de la válvula móvil (7), de tal manera que el desplazamiento de la válvula móvil (7) sea posible; la pestaña tiene un recubrimiento aislante para evitar pérdida de calor hacia el exterior; después de la válvula móvil (7) se localiza una válvula fija (11), semejante a la válvula móvil (7), pero sin pestaña; circundando a ambas válvulas, se localiza un anillo aislante (12), preferentemente de alumina silica, que presenta un corte que permite que sobresalga la pestaña de la válvula móvil (7); la válvula fija (11) y el anillo aislante son circundados por la primera (14) sección de un cuerpo protector, que se engancha a una segunda (15) sección del cuerpo protector y que alberga una pieza de transferencia de calor (24) rodeada de un segundo anillo aislante (25), con una perforación circular al centro (26) por la cual se acopla al perno guía; la pieza de transferencia de calor (24) es circular, y en su contorno externo, en dos puntos opuestos, presenta una muesca (27) maquinada, y la superficie del extremo que coincide con la válvula fija, es lisa y el extremo opuesto presenta una hendidura (28) para engancharse al motor Stirling.
2. El intercambiador de calor por contacto de conformidad con la reivindicación 1, caracterizado porque el receptor de energía calorífica presenta un estriado, que lo fija al tanque recolector de energía solar y reduce la perdida de calor por convección.
3. El intercambiador de calor por contacto de conformidad con la reivindicación 2, caracterizado porque el estriado es preferentemente perpendicular a su eje.
4. El intercambiador de calor por contacto de conformidad con la reivindicación 1 caracterizado porque el receptor de energía calorífica es de un material con una conductividad térmica al menos de 150 KW, maleable y dúctil.
5. El intercambiador de calor por contacto de conformidad con la reivindicación 4, caracterizado porque el receptor de energía calorífica opcionalmente es de cobre o plata.
6. El intercambiador de calor por contacto de conformidad con la reivindicación 1, caracterizado porque la válvula móvil, y válvula fija son de un material con una conductividad térmica de al menos 150 KW, maleable y dúctil.
7. El intercambiador de calor por contacto de conformidad con la reivindicación 6, caracterizado porque la válvula móvil y la válvula fija opcionalmente son de cobre o plata.
8. El intercambiador de calor por contacto de conformidad con la reivindicación 1 caracterizado porque el material aislante de relleno, es capaz de soportar una temperatura de 600-1000 0C.
9. El intercambiador de calor por contacto de conformidad con la reivindicación 8 caracterizado porque el material aislante de relleno, el anillo aislante y la cubierta aislante de la pestaña, preferentemente son de alumina silica.
10. El intercambiador de calor por contacto de conformidad con la reivindicación 1 caracterizado porque la longitud del corte del material aislante coincide con una cuarta parte del diámetro de la válvula móvil que circunda.
11. El intercambiador de calor por contacto de acuerdo con la reivindicación 1 caracterizado porque la primera sección del cuerpo protector, presenta un primer y segundo diámetro externo que forman un borde.
12. El intercambiador de calor por contacto de acuerdo con la reivindicación 11 caracterizado porque sobre el primer diámetro externo de la primera sección del cuerpo protector se localiza una ranura análoga al corte del anillo aislante.
13. El intercambiador de calor por contacto de acuerdo con la reivindicación 11 caracterizado porque el segundo diámetro externo de la segunda sección del cuerpo protector presenta en 2 puntos equidistantes, un primer (19) y segundo dispositivo de enganche (20) para permitir el ajuste con la segunda sección del cuerpo protector.
14. El intercambiador de calor por contacto de acuerdo con la reivindicación 13 caracterizado porque el primer y segundo dispositivo de enganche se conforma preferentemente de un seguro y un perno.
15. El intercambiador de calor por contacto de acuerdo con la reivindicación 1 caracterizado porque la segunda sección del cuerpo protector presenta un primer y segundo diámetro externo, formando un borde y en el perímetro del lado posterior se localiza un margen hacia el interior que forma un ángulo de 90° con sus paredes, sostiene la pieza de transferencia de calor y permite la exposición de esta.
16. El intercambiador de calor por contacto de acuerdo con la reivindicación 11 y 15 caracterizado porque el primer diámetro externo (31) de la segunda sección del cuerpo protector esta a presión en el interior del segundo diámetro externo (17) de la primer sección del cuerpo protector.
17. El intercambiador de calor por contacto de acuerdo con la reivindicación 16 caracterizado porque la altura del segundo diámetro externo (17) de la primera sección del cuerpo protector, y la altura del primer diámetro externo (31) de la segunda sección del cuerpo protector coinciden con la altura de la válvula fija.
18. El intercambiador de calor por contacto de acuerdo con la reivindicación 1 caracterizado porque la pieza de transferencia de calor es de un material con alta conductividad térmica opcionalmente de plata o cobre.
PCT/MX2010/000073 2009-07-31 2010-07-30 Intercambiador de calor para tanque recolector de energía solar WO2011014048A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2009/008186 2009-07-31
MX2009008186A MX2009008186A (es) 2009-07-31 2009-07-31 Intercambiador de calor para tanque recolector de energia solar.

Publications (2)

Publication Number Publication Date
WO2011014048A2 true WO2011014048A2 (es) 2011-02-03
WO2011014048A3 WO2011014048A3 (es) 2011-07-14

Family

ID=43529902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2010/000073 WO2011014048A2 (es) 2009-07-31 2010-07-30 Intercambiador de calor para tanque recolector de energía solar

Country Status (2)

Country Link
MX (1) MX2009008186A (es)
WO (1) WO2011014048A2 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335578A (en) * 1980-05-30 1982-06-22 Ford Aerospace & Communications Corporation Solar power converter with pool boiling receiver and integral heat exchanger
US4707990A (en) * 1987-02-27 1987-11-24 Stirling Thermal Motors, Inc. Solar powered Stirling engine
US5113659A (en) * 1991-03-27 1992-05-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar thermal energy receiver
JPH0734967A (ja) * 1993-07-20 1995-02-03 Aisin New Hard Kk スターリング機関用加熱器及びスターリング機関
US5809784A (en) * 1995-03-03 1998-09-22 Meta Motoren- und Energie-Technik GmbH Method and apparatus for converting radiation power into mechanical power
US20080060636A1 (en) * 2004-07-06 2008-03-13 Shec Labs - Solar Hydrogen Energy Corporation Solar Energy Control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335578A (en) * 1980-05-30 1982-06-22 Ford Aerospace & Communications Corporation Solar power converter with pool boiling receiver and integral heat exchanger
US4707990A (en) * 1987-02-27 1987-11-24 Stirling Thermal Motors, Inc. Solar powered Stirling engine
US5113659A (en) * 1991-03-27 1992-05-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar thermal energy receiver
JPH0734967A (ja) * 1993-07-20 1995-02-03 Aisin New Hard Kk スターリング機関用加熱器及びスターリング機関
US5809784A (en) * 1995-03-03 1998-09-22 Meta Motoren- und Energie-Technik GmbH Method and apparatus for converting radiation power into mechanical power
US20080060636A1 (en) * 2004-07-06 2008-03-13 Shec Labs - Solar Hydrogen Energy Corporation Solar Energy Control

Also Published As

Publication number Publication date
MX2009008186A (es) 2011-01-31
WO2011014048A3 (es) 2011-07-14

Similar Documents

Publication Publication Date Title
EP2318776B1 (en) Solar power device
ES2403334B2 (es) Sistemas y métodos de arranque para calderas solares
ES2428616T3 (es) Captador solar, e instalación de generación de energía eléctrica que comprende dichos captadores solares
ITRM20120135A1 (it) Dispositivo, impianto e metodo ad alto livello di efficienza energetica per l'accumulo e l'impiego di energia termica di origine solare.
ES2605386T3 (es) Intercambiador térmico para sistema de almacenamiento térmico
KR101393315B1 (ko) 냉각라인이 형성되는 잠열 열교환기 커버
WO2013068607A1 (es) Captador solar con turbina solar o con turbocompresor
AU2020203012A1 (en) Solar power collection systems and methods thereof
JP5479644B1 (ja) 太陽熱集熱装置
WO2011014048A2 (es) Intercambiador de calor para tanque recolector de energía solar
US8701653B2 (en) High energy density thermal storage device and method
ES2350668A1 (es) Receptor solar de vapor sobrecalentado.
ES2370730B1 (es) Receptor solar de serpentín para disco stirling y el método de fabricación.
ES2370731B1 (es) Receptor cóncavo para disco stirling y método de fabricación.
EP2697510B1 (en) Method for dimensioning a solar generation system, and the solar generation system obtained
ES2256454T3 (es) Planta de energia solar.
CN111023599A (zh) 一种以超临界二氧化碳为循环工质的光热发电系统
TWM564082U (zh) 蒸氣發電系統
ES2713274B2 (es) Cubierta para una junta rotativa de una conduccion termica
WO2013079744A1 (es) Configuración de los receptores en plantas de concentración solar de torre
JP2011007150A (ja) 受熱器
ES2382707A1 (es) Configuración de receptor de torre para altas potencias.
KR20170020702A (ko) 히트 펌프를 포함하는 엔진 시스템
MX2009014106A (es) Tanque termico de sales fundidas con vacio anidado.
RU165840U1 (ru) Сэндвич-дымоход-термоэлектрогенератор

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804761

Country of ref document: EP

Kind code of ref document: A2