WO2011013499A1 - Method for producing foam molded body - Google Patents

Method for producing foam molded body Download PDF

Info

Publication number
WO2011013499A1
WO2011013499A1 PCT/JP2010/061655 JP2010061655W WO2011013499A1 WO 2011013499 A1 WO2011013499 A1 WO 2011013499A1 JP 2010061655 W JP2010061655 W JP 2010061655W WO 2011013499 A1 WO2011013499 A1 WO 2011013499A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resin
cylinder
weight
component
Prior art date
Application number
PCT/JP2010/061655
Other languages
French (fr)
Japanese (ja)
Inventor
徳村 幸子
勝志 三木
北野 健一
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2010543245A priority Critical patent/JPWO2011013499A1/en
Publication of WO2011013499A1 publication Critical patent/WO2011013499A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0076Microcapsules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/046Condition, form or state of moulded material or of the material to be shaped cellular or porous with closed cells

Definitions

  • the present invention relates to a method for producing a foam molded article. More specifically, the present invention relates to a method for producing a lightweight foamed molded article having closed cells by extrusion molding.
  • a chemical foaming agent is mixed with a matrix resin (resin component), the chemical foaming agent is decomposed by heat at the time of melting the resin, and foamed by the gas generated at that time
  • a gas physical foaming agent
  • a gas such as water vapor, nitrogen gas or carbon dioxide gas
  • thermoplastic resin used as an outer shell and an expander is enclosed therein as a foaming agent
  • a foam molded body having uniform and fine closed cells is obtained.
  • a method has been proposed (see Patent Documents 1 to 3).
  • the die temperature is not higher than the cylinder temperature as described above.
  • the thermally expandable microspheres are expanded at the temperature of the compression zone, the thermally expandable microspheres are expanded inside the cylinder, and then the temperature of the resin is lowered to increase the viscosity, thereby expanding the balloon into the resin. Therefore, fine closed cells are formed in the molded body.
  • An object of the present invention is to provide a method for producing a lightweight foamed molded article having closed cells.
  • the method for producing a foamed molded article according to the present invention includes a mixing step in which a resin mixture containing a foaming component and a resin component is kneaded in a cylinder to form a molten mixture, and molding in which the molten mixture is extruded through a die.
  • the foaming component essentially comprises thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and an expansion agent encapsulated therein and vaporized by heating,
  • the maximum temperature of the cylinder is lower than the temperature of the die, and the temperature difference is in the range of 10 to 150 ° C.
  • the minimum temperature of the cylinder is equal to or higher than the melting temperature of the resin component, and the vapor pressure of the expansion agent is in the range of 0.1 to 5.0 MPa at the maximum temperature of the cylinder.
  • TA ⁇ TB When an arbitrary point A in the cylinder and an arbitrary point B in the extrusion direction from the point A are selected and the temperatures are TA and TB, respectively, it is preferable that TA ⁇ TB.
  • the inside of the cylinder is divided into three sections of a feed zone, a compression zone, and a metering zone in order from the raw material supply port in the extrusion direction, and the temperatures of the respective sections are C1, C2, and C3, C1 ⁇ C2 ⁇ C3 Is preferable.
  • the weight ratio of the foaming component in the resin mixture is preferably in the range of 0.1 to 35% by weight with respect to 100% by weight of the resin component.
  • the weight ratio of the thermally expandable microspheres in the foaming component is preferably in the range of 40 to 100% by weight of the total foaming component.
  • the foamed molded product of the present invention is obtained by the above production method.
  • the foamed molded article preferably has at least one physical property of the following (1) to (3).
  • (1) The average cell diameter is 2 to 500 ⁇ m.
  • (2) The closed cell ratio is 50% or more.
  • (3) The b * value is 20 or less.
  • a lightweight foamed molded product having closed cells can be produced. Moreover, since the foaming molding of this invention is obtained by this manufacturing method, it has a closed cell and is lightweight.
  • the method for producing a foamed molded product of the present invention is a production method including a mixing step and a molding step.
  • a mixing process is a process performed in a cylinder and knead
  • the foaming component is a component that essentially includes thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and an expansion agent that is contained in the shell and vaporizes when heated.
  • Thermally expandable microspheres can be expanded at various temperatures depending on the combination of the thermoplastic resin constituting the outer shell and the encapsulated expansion agent, and can be appropriately selected depending on the melting temperature and molding temperature of the resin component.
  • the thermoplastic resin constituting the outer shell of the thermally expandable microsphere is not particularly limited.
  • an unsaturated carboxylic acid copolymer such as a vinylidene chloride copolymer or a (meth) acrylic acid copolymer.
  • Unsaturated carboxylic ester copolymers such as (meth) acrylic ester copolymers, nitrile copolymers such as (meth) acrylonitrile copolymers, (meth) acrylic acid- (meth) acrylonitriles And unsaturated carboxylic acid-nitrile copolymers such as copolymers.
  • polymerizable monomer used as a raw material for the thermoplastic resin examples include vinylidene chloride; vinyl chloride; vinyl acetate; nitrile monomers such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, itaconic acid , Fumaric acid, maleic acid and unsaturated carboxylic acid (salt) monomers such as metal salts thereof; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meta ) (Meth) acrylate monomers such as acrylate, glycidyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate; acrylamide, methacrylamide, substituted acrylic Amide monomers such as luamid
  • thermoplastic resin constituting the outer shell is a nitrile copolymer (obtained by polymerizing a polymerizable monomer containing a nitrile monomer, for example), flexibility and heat resistance And the effects of the present invention are easily obtained.
  • the weight ratio of the nitrile monomer is preferably 70% by weight or more of the polymerizable monomer, more preferably 80% by weight or more, the gas barrier property of the outer shell is high, and a foamed molded article having a high foaming ratio is easily obtained. .
  • the thermoplastic resin constituting the outer shell is unsaturated (obtained by polymerizing a polymerizable monomer including an unsaturated carboxylic acid (salt) monomer and a nitrile monomer, for example).
  • a carboxylic acid-nitrile copolymer is preferred.
  • the total weight ratio of the nitrile monomer and the unsaturated carboxylic acid (salt) monomer is preferably 60% by weight or more of the polymerizable monomer, more preferably 70% by weight or more, and particularly preferably 80% by weight or more, the heat resistance is improved. It is high and can be suitably used in molding at 200 ° C. or higher.
  • the mixing ratio of the unsaturated carboxylic acid (salt) monomer in the total of the nitrile monomer and the unsaturated carboxylic acid (salt) monomer is preferably 5 to 70% by weight, more preferably 10 to 60% by weight. It is.
  • the expansion agent is not particularly limited as long as it is encapsulated in the outer shell and is vaporized by heating.
  • These swelling agents may be used alone or in combination of two or more.
  • Thermally expandable microspheres can be produced by a known method. For example, a method in which an oil phase containing the polymerizable monomer, an initiator, and the swelling agent is subjected to suspension polymerization in an aqueous phase suspension containing a dispersant and the like.
  • the dispersion stabilizer in the aqueous phase is not particularly limited.
  • colloidal silica, colloidal calcium carbonate, magnesium hydroxide, calcium phosphate, aluminum hydroxide, ferric hydroxide, calcium sulfate, sodium sulfate, calcium oxalate, carbonate examples include calcium, barium carbonate, magnesium carbonate, and alumina sol.
  • dispersion stabilizers condensation products of diethanolamine and fatty acid dicarboxylic acids, gelatin, polyvinylpyrrolidone, methylcellulose, polyethylene oxide, polypeptides, polyvinyl alcohol, and other polymer type dispersion stabilizers; alkyltrimethylammonium chloride, chloride And cationic surfactants such as dialkyldimethylammonium; anionic surfactants such as sodium alkyl sulfate; amphoteric surfactants such as alkyldimethylaminoacetic acid betaine and alkyldihydroxyethylaminoacetic acid betaine.
  • a water-soluble compound such as a scale inhibitor may be added to the aqueous phase suspension in combination with the dispersion stabilizer.
  • the polymerization temperature is set appropriately depending on the type of polymerization initiator.
  • the polymerization may be carried out under pressure.
  • the initial polymerization pressure is preferably in the range of 0 to 5.0 MPa.
  • Thermally expandable microspheres are also commercially available. As typical commercially available products of thermally expandable microspheres, Matsumoto Microsphere's Matsumoto Microsphere's product numbers of thermally expandable microspheres are listed. Can be mentioned.
  • the average particle diameter of the thermally expandable microspheres is preferably 1 to 60 ⁇ m. If it is smaller than 1 ⁇ m, uniform dispersion is difficult and the expansion ratio is low. Moreover, since the intensity
  • the weight ratio of the expanding agent to the thermally expandable microspheres is 2 to 85% by weight because closed cells are easily formed. More preferably, it is 5 to 60% by weight, particularly preferably 7 to 55% by weight.
  • the weight ratio of the expansion agent to the heat-expandable microspheres is less than 2% by weight, the expansion ratio of the heat-expandable microspheres is small and it is difficult to obtain a lightweight foamed molded product.
  • the amount is more than 85% by weight, the thermally expandable microspheres are easily broken in the mixing step, and communication bubbles are easily formed.
  • the thermally expandable microsphere has a maximum expansion ratio of preferably 5 times or more, more preferably 10 times or more, and particularly preferably 20 times or more in volume.
  • the upper limit of the expansion ratio is not particularly limited, but is usually 400 times or less.
  • the volume expansion ratio can be calculated from the specific gravity before and after heating the thermally expandable microspheres with an oven or the like.
  • the expansion start temperature is defined as the temperature at which the thermally expandable microsphere expands when heated above that temperature
  • the maximum expansion temperature is defined as the temperature at which the expansion of the thermally expandable microsphere is maximized. .
  • the expansion start temperature (Ts) is a temperature at which the thermally expandable microspheres are heated under a constant pressure, and expansion starts when the temperature is increased. It is.
  • the maximum expansion temperature (Tmax) is a temperature at which the temperature is increased after the start and a displacement amount (maximum displacement amount; Dmax) at which the expansion is maximized is indicated.
  • the expansion start temperature (Ts) of the thermally expandable microsphere is preferably 100 ° C. or higher, more preferably 120 ° C. or higher.
  • the maximum expansion temperature of the thermally expandable microsphere is preferably 150 ° C. or higher, more preferably 160 ° C. or higher.
  • ⁇ T Tmax ⁇ Ts
  • 10 ⁇ ⁇ T ⁇ 100 is preferable
  • 15 ⁇ ⁇ T ⁇ 90 is further preferable
  • 20 ⁇ ⁇ T ⁇ 80 is particularly preferable.
  • the maximum expansion temperature of the heat-expandable microspheres is higher than the melting temperature of the resin component so that the heat-expandable microspheres are not excessively expanded.
  • the temperature difference is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher.
  • the upper limit of the temperature difference is 200 ° C.
  • the foaming component may further contain a chemical foaming agent, a physical foaming agent and the like. In the present invention, the temperature of the resin component is lowered due to the thermal expansion of the thermally expandable microspheres, and the viscosity thereof is increased. It is possible to obtain.
  • Examples of chemical blowing agents include inorganic blowing agents such as sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, ammonium nitrite, azide compounds, sodium borohydride; azodicarbonamide, azobisisobutyronitrile, barium azodi Carboxylate, dinitrosopentamethylenetetramine, 4,4'-oxybis (benzenesulfonylhydrazide), diazoaminobenzene, N, N'-dimethyl-N, N'-dinitrosotephthalamide, N, N'-dinitroso Pentamethylenetetramine, nitrourea, acetone-p-toluenesulfonylhydrazone, p-toluenesulfonylamide, 2,4-toluenedisulfonylhydrazide, trinitrosotrimethylenetriamine, p-methylurethanebenzenesulfonylhydrazide,
  • the foaming assistant is an additive that acts to lower the decomposition temperature of the foaming agent, accelerate the decomposition, and make the bubbles uniform, and examples thereof include zinc stearate, salicylic acid, and phthalic acid.
  • Examples of the physical foaming agent include butane, pentane, dichloromethane, water, nitrogen gas, carbon dioxide gas, and air.
  • the weight proportion of the thermally expandable microspheres in the foaming component is preferably 40 to 100% by weight, more preferably 50 to 100% by weight, particularly preferably 60 to 100% by weight of the whole foaming component. It is.
  • the weight ratio of the thermally expandable microspheres is less than 40% by weight, the expansion pressure of the gas generated from the chemical foaming agent is superior to the increase in the viscosity of the resin component due to the thermal expansion of the thermally expandable microspheres. Bubbles are easily formed, which is not preferable.
  • the foaming component may be mixed with the resin component described later as it is to form a resin mixture, but as a wet product obtained by premixing the foaming component with a liquid such as oil, or a granulated product obtained by solidifying the foaming component with wax or the like Therefore, it may be mixed with a resin component to form a resin mixture. Also, a master batch containing a foaming component and a resin component is prepared in advance, and it may be mixed with the resin component to form a resin mixture. In these cases, the dispersibility of the foaming component in the molten mixture obtained by kneading the resin mixture in a cylinder is preferable.
  • the liquid material used for the moistened material is not particularly limited as long as the compatibility with the resin component is good, and examples thereof include mineral oil, fluid paraffin, silicone oil, and plasticizer.
  • the weight ratio of the liquid is preferably from 0.1 to 60% by weight, more preferably from 0.2 to 50% by weight, particularly preferably from 0.5 to 40% by weight, based on the entire wetted product.
  • the weight ratio of the liquid material is less than 0.1% by weight, the humidification is not sufficient and the effect of enhancing the dispersibility of the foaming component is small.
  • the weight ratio of the liquid is more than 60% by weight, the stickiness is high and the workability is poor.
  • the wax used in the granulated product include fatty acids and paraffin waxes.
  • the weight ratio of the wax is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, and particularly preferably 15 to 50% by weight of the whole granulated product. If the weight ratio of the wax is less than 5% by weight, a granulated product cannot be formed. Moreover, when there are more weight ratios of a wax than 70 weight%, there exists a concern about the influence on the physical property of a resin component.
  • the resin component used in the masterbatch is not particularly limited as long as it is a resin component specifically exemplified below, but a melting temperature lower than the expansion start temperature of the thermally expandable microsphere and the decomposition temperature of the chemical foaming agent. It is preferable that the thermoplastic material has a masterbatch because the foaming performance is not impaired.
  • the weight ratio of the resin component is preferably 25 to 95% by weight of the entire master batch, more preferably 30 to 90% by weight, and particularly preferably 35 to 80% by weight.
  • thermally expandable microspheres are used as the foaming component. For this reason, it is possible to foam a resin having a low melt tension, a filler-containing resin, or the like, and the resin component that can be used is not particularly limited.
  • the resin component examples include generally used thermoplastic resins and thermoplastic elastomers.
  • polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, TPO, TPV, and olefin-based thermoplastic elastomers
  • Olefin resin copolymers such as vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene- (meth) acrylic acid (ester) copolymer, ionomer resin
  • Polyvinyl resins such as polyvinyl alcohol; polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polyarylate, polycarbonate, TP Polyester resins such as E; acrylic resins such as poly (meth) methyl acrylate, poly (meth)
  • resin components may be used alone or in combination of two or more.
  • the resin mixture can be variously used as necessary, such as lubricants, plasticizers, antioxidants, colorants, fillers, antistatic agents, flame retardants, wood flour, glass fibers, carbon fibers, etc.
  • An additive may be contained.
  • various additives may be mixed as the third component with respect to the foaming component and the resin component, and a molten mixture may be prepared using a resin component containing various additives in advance.
  • the weight ratio of the foaming component and the resin component is not particularly limited as long as it is a blending ratio capable of extruding a molten mixture obtained by kneading the resin mixture in a cylinder, but the foaming component in the resin mixture is not limited.
  • the weight ratio is preferably 0.1 to 35% by weight, more preferably 0.3 to 25% by weight, and particularly preferably 0.5 to 15% by weight with respect to 100% by weight of the resin component.
  • the weight ratio of the foaming component is less than 0.1% by weight, the lightening effect is small.
  • the weight ratio of the foaming component is more than 35% by weight, the obtained foamed molded product becomes brittle.
  • the extruder used in the present invention is not particularly limited as long as it is generally used, and examples thereof include a single-axis or biaxial extruder and a co-extrusion machine.
  • an extruder having a heater 2 and a thermocouple 3 in a cylinder 1 is shown in FIG.
  • the number of heaters is not particularly limited in the present invention, but is three in FIG.
  • the cylinder 1 is equipped with a raw material supply port 5 for supplying a foaming component and a resin component (resin mixture 4) to the cylinder 1.
  • a screw 6 for moving the resin mixture 4 from the raw material supply port 5 in the extrusion direction while kneading is installed inside the cylinder 1.
  • the inside of the cylinder 1 is divided into three sections of a feed zone 7, a compression zone 8, and a metering zone 9 corresponding to each position of the heater 2 in order from the raw material supply port 5 in the extrusion direction.
  • the temperatures of the respective sections are sequentially referred to as C1, C2, and C3.
  • the resin mixture 4 supplied to the cylinder 1 becomes a molten mixture 10 by the heating of the heater 2 and the rotation of the screw 6, and is extruded through a die 11 to obtain a foamed molded body 12.
  • the screw shape design In extrusion molding, the kneading state of resin components and additives is adjusted by the screw shape design. Therefore, in the conventional method, it was necessary to perform strong kneading mainly in the compression zone 8 and to further optimize the L / D (ratio between the length L and the diameter D) of the screw.
  • the screw shape and L / D are not particularly limited, and known ones can be used.
  • a screw shape with weak kneading can be used.
  • the expansion of the thermally expandable microspheres in the cylinder can be suppressed, and the effect of the present invention can be easily obtained, which is preferable.
  • the minimum temperature of the cylinder is equal to or higher than the melting temperature of the resin component because the shearing force applied to the thermally expandable microspheres is reduced.
  • the temperature difference between the two is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and particularly preferably 15 ° C. or higher.
  • the upper limit of the temperature difference is 200 ° C.
  • the extruder When the extruder is provided with a vent, it is desirable to perform molding with the vent closed. When the vent is opened, the molten mixture is extruded from the vent, and it may be difficult to obtain a lightweight foamed molded product. Further, in extrusion molding, generally, a vacuum pump or the like is connected to a vent provided immediately before a die and exhausted to remove voids generated during kneading. However, in the present invention, when the molten mixture comes out of the die, the resin component is highly fluidized and the foaming due to the expansion of the thermally expandable microspheres is promoted. Therefore, even if there is no operation of removing a void with a vent, a lightweight foamed molded article without a void can be easily obtained.
  • Thermally expandable microspheres are greatly affected by pressure and shear once expanded.
  • molding is conventionally performed in a state where C2 is higher than C1 and C3 is not higher than C2 (C1 ⁇ C2 and C2 ⁇ C3). Yes.
  • the pressure in the system increases and the shearing force increases as the resin temperature decreases and the viscosity increases, so that the thermally expandable microspheres that have once expanded in the compression zone are contracted or broken. For this reason, there is a problem that a highly foamed molded article cannot be obtained.
  • TA ⁇ TB where TA is the temperature at point A and TB is the temperature at point B.
  • TA ⁇ TB it is more preferable that TA ⁇ TB.
  • the thermally expandable microspheres are gradually expanded, and the maximum expansion is induced in the die portion. It is possible to obtain a foamed molded article.
  • the temperature of C1, C2, and C3 is not particularly limited and is appropriately selected depending on the melting temperature of the resin component, but is preferably 80 to 300 ° C, more preferably 100 to 280 ° C, and 120 to 270 ° C. And particularly preferred.
  • ⁇ C 12 C2-C1
  • 0 ⁇ ⁇ C 12 ⁇ 40 is preferable
  • 0 ⁇ ⁇ C 12 ⁇ 30 is more preferable
  • 0 ⁇ ⁇ C 12 ⁇ 20 is particularly preferable.
  • ⁇ C 23 C3-C2
  • 0 ⁇ ⁇ C 23 ⁇ 50 is preferable
  • 0 ⁇ ⁇ C 23 ⁇ 40 is more preferable
  • 0 ⁇ ⁇ C 23 ⁇ 30 is particularly preferable.
  • the vapor pressure of the expansion agent contained in the thermally expandable microspheres at the maximum cylinder temperature is preferably 0.1 to 5.0 MPa, more preferably 0.5 to 4.5 MPa, and particularly preferably 1.0 to 4.0 MPa. If the vapor pressure is less than 0.1 MPa, the expansion rate of the thermally expandable microspheres is slow, and the die temperature does not sufficiently expand only with the die temperature. On the other hand, if the vapor pressure exceeds 5.0 MPa, the thermally expandable microspheres expand in the cylinder and the pressure in the system rises, so that the expansion is not sufficient.
  • the molding step is a step of extruding and molding the molten mixture obtained in the mixing step through a die.
  • the die used in the present invention any molding die can be used according to the shape of the obtained foamed molded article. Examples of the die include a straight die, a cross head die, a flat die (T die), and a circular die.
  • the thermoplastic resin in the outer shell is softened by heating in the cylinder in the mixing step.
  • the resin is extruded while expanding toward the die outlet (pressure release port). Therefore, it is considered that by making the maximum temperature of the cylinder lower than the temperature of the die, the fluidity of the resin component is increased at the die portion and the molten mixture is easily foamed.
  • the foaming component is only a chemical foaming agent or a physical foaming agent, the flowability of the resin component is increased and gas escape is likely to occur at the same time. It does not become a body.
  • the foaming component contains thermally expandable microspheres, there is no problem of outgassing, and by expanding the thermally expandable microspheres more, many bubbles can be introduced into the resin component, which is lightweight. Can be obtained.
  • the maximum cylinder temperature is lower than the die temperature.
  • the temperature difference is usually in the range of 10 to 150 ° C., preferably 15 to 140 ° C., more preferably 20 to 130 ° C., particularly preferably 25 to 120 ° C., and most preferably 30 to 110 ° C. Due to this temperature difference, the expansion of the thermally expandable microspheres is promoted, and a highly foamed and lightweight foamed molded product can be obtained. However, if the temperature difference is less than 10 ° C., the heating in the die becomes insufficient, and the influence on the expandability due to the high die temperature may not be seen so much.
  • the time from when the resin mixture is introduced into the raw material supply port until it is extruded from the die can be adjusted by the number of rotations of the screw.
  • the number of rotations of the screw may be set as appropriate depending on equipment and resin components, but the time (residence time) from when the resin mixture is introduced into the raw material supply port until it is extruded from the die is 0.2 to 30 minutes. It is preferable that it is 0.3, more preferably 0.3 to 20 minutes, and particularly preferably 0.5 to 15 minutes.
  • the foamed molded body extruded from the die is usually cooled by a cooling facility such as air cooling, water cooling, or a roll to obtain a desired molded body.
  • a cooling facility such as air cooling, water cooling, or a roll to obtain a desired molded body.
  • equipment generally used as cooling equipment, take-up equipment, or the like can be used.
  • the foamed molded product of the present invention is manufactured by, for example, the above manufacturing method.
  • This foam-molded product is a foam-molded product having closed cells, has little yellowing, has excellent whiteness, and has good surface properties.
  • the average cell diameter of the foamed molded article of the present invention is not particularly limited, but is preferably 2 to 500 ⁇ m, more preferably 3 to 400 ⁇ m, and particularly preferably 5 to 300 ⁇ m. If the average cell diameter is smaller than 2 ⁇ m, it may be difficult to obtain a lightweight foamed molded product. On the other hand, when the average cell diameter is larger than 500 ⁇ m, the strength of the obtained foamed molded product may be weak, which is not preferable.
  • the closed cell ratio of the foamed molded article of the present invention is not particularly limited, but is preferably 50% or more, more preferably 60% or more, particularly preferably 65% or more, and most preferably 80% or more.
  • the upper limit of the closed cell ratio is 100%. If the closed cell ratio is less than 50%, the strength of the resulting foamed molded product is weak, and there is also a problem of water absorption due to open cells, which is not preferable.
  • a foamed molded product having a high closed cell ratio is preferred because it is a foamed molded product having excellent strength and heat insulation.
  • the bubble diameter of the foam molded article can be easily adjusted by the particle diameter of the thermally expandable microsphere.
  • the thickness of the foamed molded product is thin or if the rigidity of the foamed molded product is required, select thermally expandable microspheres with a small particle diameter and increase the weight ratio of thermally expandable microspheres in the foam component. It is preferable. Further, when the flexibility of the foamed molded product is required, it is preferable to select thermally expandable microspheres having a large particle diameter or to reduce the weight ratio of thermally expandable microspheres in the foam component.
  • the foamed molded article of the present invention is excellent in dimensional stability.
  • a difference in foaming is likely to occur in the extrusion direction and the direction perpendicular thereto.
  • the degree of foaming between the central portion and the end portion.
  • the fluidity of the resin component is increased at the die portion, it is easy to foam uniformly and hardly cause a difference in foaming.
  • the resin mixture contains a third component, the third component is easily oriented uniformly and randomly, so that the difference in physical properties such as the degree of foaming in the extrusion direction and the vertical direction is small.
  • the b * value of the foamed molded product is not particularly limited, but is preferably 20 or less, more preferably 15 or less, and particularly preferably 10 or less.
  • the lower limit of the b * value is zero.
  • the b * value indicates the degree of yellow coloring, and the larger the value, the darker the color.
  • the b * value of a foamed molded product is generally greatly influenced by the type of foaming component.
  • the foaming component contains thermally expandable microspheres
  • the b * value varies depending on the type of thermally expandable microsphere.
  • the maximum temperature of the cylinder is lower than the temperature of the die, it is interesting that even if the same type of foaming component is used, foam molding with a smaller b * value than the conventional method. The body is obtained. Since the foamed molded product according to the present invention has little yellowing and is excellent in whiteness, the color can be easily adjusted, and a light-colored molded product can be produced.
  • the foamed molded product thus obtained is lightweight and has heat insulation and cushioning properties, and is used for building materials, automobile materials, industrial materials, and the like. Further, according to the present invention, it is possible to obtain a highly foamed molded article without giving a cross-linked structure to the resin component, so that there is an advantage that the resin component is excellent in recyclability.
  • thermally expansible microsphere used below and the foaming molding manufactured by the Example and the comparative example, the physical property was evaluated in the following way. Thermally expandable microspheres are sometimes referred to simply as microspheres, and foamed molded articles are sometimes referred to simply as molded bodies.
  • Ts and Tmax The expansion start temperature (Ts) and the maximum expansion temperature (Tmax) of the thermally expandable microspheres are measured using DMA (DMA Q800, manufactured by TA instruments).
  • the heat-expandable microspheres are placed in an aluminum cup and heated from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min.
  • the displacement amount (D) in the vertical direction was measured, the displacement start temperature in the positive direction was defined as the expansion start temperature (Ts), and the temperature when the maximum displacement amount (Dmax) was indicated was defined as the maximum expansion temperature (Tmax). Further, the temperature (TD 50 ) when the displacement amount (D 50 ) is 50% of the maximum displacement amount (Dmax) is obtained, and (Tmax ⁇ TD 50 ) / (Tmax ⁇ Ts) is calculated.
  • the specific gravity of the obtained molded product was measured by a method based on JIS K-7112 A method (submerged replacement method).
  • ⁇ Surface condition The surface of the obtained molded body was confirmed by visual observation and judged based on the following evaluation criteria. ⁇ : Good (no surface roughness due to outgassing) ⁇ : Slightly defective (state where irregularities due to outgassing are partly seen) X: Defect (a state in which there are many irregularities due to outgassing as a whole, and the skin is crumpled)
  • Prototype 1 in Table 2 was produced according to Production Example 1.
  • a heat-expandable microsphere having a thermoplastic resin obtained by copolymerizing acrylonitrile, methacrylonitrile and methacrylic acid as an outer shell and encapsulating isobutane and isopentane as an expanding agent is prepared by a known method. (Prototype 1; see Table 2).
  • thermally expandable microspheres 1 50 parts by weight of thermally expandable microspheres 1 (see Table 2), 2 parts by weight of fluid paraffin oil (PW-200) and 48 parts by weight of ethylene vinyl acetate resin were blended with a ribbon mixer, and Laboplast mill (Toyo) Extruded into a strand having a diameter of 2 mm using Seiki ME-25; cylinder temperature and die temperature are all 100 ° C .; screw rotation speed is 30 rpm. After the obtained strand was air-cooled, it was converted into a 4 mm long rod-shaped pellet by a pelletizer, and a master batch 1 containing 50% by weight of thermally expandable microspheres 1 was obtained. In the same manner as described above, master batches 2 to 4 were obtained using thermally expandable microspheres 2 to 4, respectively.
  • Example 1 Resin 1 shown in Table 1 and master batch 1 obtained in Production Example 2 were mixed at a weight ratio of 96: 4 to obtain a resin mixture. At this time, the mixing ratio of the resin component and the foamed component (thermally expandable microsphere 1) was 98: 2.
  • a lab plast mill (ME-25 manufactured by Toyo Seiki Co., Ltd.), which is an extrusion molding machine shown in FIG. 1, was prepared, and the resin mixture was supplied from the raw material supply port.
  • the screw mixture is extruded at 40 rpm
  • the molten mixture is extruded
  • a plate-like foamed molded article is formed at a die temperature of 200 ° C. using a T die (width 150 mm, lip thickness 1.7 mm). (Width 140 mm ⁇ thickness 1.5 mm) was obtained.
  • Example 1 and Comparative Example 1 were compared, the resin component and the foaming component used were the same, but in Example 1, the foamed molded article was lighter than Comparative Example 1.
  • Example 2 and Comparative Example 2 and Example 3 and Comparative Example 3 are compared, the resin component and the foaming component used are the same, but in the example, the foamed molded article is lighter than the comparative example. It was.
  • the foamed molded products obtained in Examples 1 to 4 had fine closed cells, and the surface condition was good.
  • Example 5 The resin 3 shown in Table 1 and the oil wet product 5 obtained in Production Example 3 were mixed to obtain a resin mixture. Each mixing ratio was such that the resin 3 as a resin component was 100% by weight, and the microspheres 5 contained in the oil moistened product 5 were 1% by weight.
  • Example 6 A foamed sheet was obtained in the same manner as in Example 5 except that the microspheres 5 were mixed at a ratio of 2% by weight.
  • Table 4 shows the molding conditions and the physical property evaluation results of the obtained foamed molded articles for Examples 5 and 6 and Comparative Examples 4 and 5, respectively.
  • Example 7 Resin 4 shown in Table 1 and master batch 4 obtained in Production Example 2 were mixed at a weight ratio of 110: 2 to obtain a resin mixture. At this time, the weight ratio of the foamed component (thermally expandable microsphere 4) was 1% by weight with respect to 100% by weight of the resin component.
  • Example 8 The resin 4 shown in Table 1 and the master batch 4 obtained in Production Example 2 and ADCA master batch (50% azodicarbonamide-containing polyethylene master batch; commercial product) were mixed at a weight ratio of 110: 2: 0.6, A plate-like foamed molded article was obtained in the same manner as in Example 7 except that the resin mixture was used. At this time, the weight ratio of the foaming component was 1.3% by weight with respect to 100% by weight of the resin component.
  • acrylonitrile 150 g of acrylonitrile, 90 g of methacrylonitrile, 10 g of methyl methacrylate, 1 g of ethylene glycol dimethacrylate, 1 g of azobis (2,4-dimethylvaleronitrile) and 65 g of isopentane were mixed to prepare an oily mixture.
  • the aqueous dispersion medium and the oily mixture were mixed, and the obtained mixed liquid was dispersed with a homomixer (TK machine manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a suspension.
  • the suspension was transferred to a pressure reactor having a capacity of 1.5 liters, and purged with nitrogen.
  • the initial reaction pressure was 0.5 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 20 hours while stirring at 80 rpm.
  • the polymer solution obtained after the polymerization was filtered and dried to obtain thermally expandable microspheres 6.
  • Table 6 shows the physical properties of the thermally expandable microspheres 6 obtained.
  • Example 9 In Example 1, except that the master batch 1 was changed to the master batch 6 containing the thermally expandable microspheres 6 and changed to the molding conditions shown in Table 7, a plate-like foamed molded article was obtained in the same manner as in Example 1. Obtained. The physical properties were evaluated and the results are shown in Table 7. [Examples 10 to 14, Comparative Examples 8 to 13] In Example 9, the master batch 6 was changed to a master batch containing microspheres shown in Table 7 and the molding conditions were changed to the molding conditions shown in Table 7, respectively. Got. The physical properties were evaluated, and the results are shown in Table 7.
  • the method for producing a foamed molded article of the present invention can produce a lightweight foamed molded article having closed cells. Therefore, the obtained foamed molded product is a foamed molded product that is lightweight, excellent in heat insulation and compression properties, and has a good appearance, and is a machine part and interior / exterior material for automobiles, rollers and cable parts for household appliances, and construction. Widely used as a material.

Abstract

Disclosed is a method for producing a lightweight foam molded body which has closed cells. Specifically disclosed is a method for producing a foam molded body, which comprises a mixing step in which a resin mixture that contains a foaming component and a resin component is kneaded within a cylinder so as to obtain a molten mixture, and a molding step in which the molten mixture is extrusion molded through a die. The foaming component essentially contains thermally expandable microspheres each of which is configured of a shell that is composed of a thermoplastic resin and an expansive agent that is contained within the shell and is evaporated when heated. The highest temperature of the cylinder is lower than the temperature of the die, and the temperature difference between the cylinder and the die is within the range of 10-150˚C.

Description

発泡成形体の製造方法Method for producing foam molded article
 本発明は、発泡成形体の製造方法に関する。さらに詳しくは、独立気泡を有し、軽量な発泡成形体を押出成形で製造する方法に関する。 The present invention relates to a method for producing a foam molded article. More specifically, the present invention relates to a method for producing a lightweight foamed molded article having closed cells by extrusion molding.
 熱可塑性樹脂や熱可塑性エラストマーに発泡剤を添加し、発泡成形体を得る方法は種々検討されている。一般的に用いられている発泡成形方法として、化学発泡剤をマトリックス樹脂(樹脂成分)に混合し、樹脂溶融時の熱により化学発泡剤が分解、その際に発生したガスにより発泡させる方法や、溶融させたマトリックス樹脂中に水蒸気や窒素ガス、炭酸ガスなどのガス(物理発泡剤)を導入し発泡させる物理発泡法などが挙げられる。
 しかし、これらの方法では、ガスが樹脂外部に逃げ易いため連通気泡が形成され易く、得られる成形体の外観が悪い。また、気泡が不均一となることから均一で微細な気泡を有する発泡成形体を得ることが難しいという問題がある。また、これらの方法による発泡のメカニズムでは、樹脂の溶融張力や圧力の制御が必要である。このため、発泡成形体を得ることが可能な樹脂の種類、成形条件が限られている。
Various methods for adding a foaming agent to a thermoplastic resin or thermoplastic elastomer to obtain a foamed molded product have been studied. As a generally used foam molding method, a chemical foaming agent is mixed with a matrix resin (resin component), the chemical foaming agent is decomposed by heat at the time of melting the resin, and foamed by the gas generated at that time, Examples thereof include a physical foaming method in which a gas (physical foaming agent) such as water vapor, nitrogen gas or carbon dioxide gas is introduced into a melted matrix resin and foamed.
However, in these methods, since gas easily escapes to the outside of the resin, communication bubbles are easily formed, and the resulting molded article has a poor appearance. Moreover, since bubbles are not uniform, there is a problem that it is difficult to obtain a foamed molded article having uniform and fine bubbles. Further, in the foaming mechanism by these methods, it is necessary to control the melt tension and pressure of the resin. For this reason, the kind of resin from which a foaming molding can be obtained, and the molding conditions are limited.
 そこで、近年、熱可塑性樹脂を外殻とし、その内部に膨張剤が封入された構造を有する熱膨張性微小球を発泡剤として用いることで、均一で微細な独立気泡を有する発泡成形体を得る方法が提案されている(特許文献1~3参照)。
 発泡成形体を製造するための成形方法については、種々の方法がある。たとえば、発泡剤として化学発泡剤や物理発泡剤を用いた押出成形による場合、シリンダー中ほどのコンプレッションゾーンにおいて十分な混練および加熱を行って、マトリックス樹脂の溶融および発泡剤の分解等の促進を行った後、ダイ温度を低温にし、ダイ通過時の急激な圧力低下によるガスの膨張を抑制することで、発泡成形体を得る方法が一般的である。
Therefore, in recent years, by using thermally expandable microspheres having a structure in which a thermoplastic resin is used as an outer shell and an expander is enclosed therein as a foaming agent, a foam molded body having uniform and fine closed cells is obtained. A method has been proposed (see Patent Documents 1 to 3).
There are various methods for forming a foamed molded product. For example, in the case of extrusion molding using a chemical foaming agent or a physical foaming agent as the foaming agent, sufficient mixing and heating are performed in the compression zone in the middle of the cylinder to promote the melting of the matrix resin and the decomposition of the foaming agent. After that, a method of obtaining a foamed molded article by lowering the die temperature and suppressing gas expansion due to a rapid pressure drop when passing through the die is common.
 上記化学発泡剤や物理発泡剤に代えて、熱膨張性微小球を発泡剤としてマトリックス樹脂に添加して発泡成形体を得る方法においても、上記と同様にシリンダー温度よりもダイ温度を高くない温度に設定する方法が用いられている(たとえば、特許文献3参照)。この方法では、熱膨張性微小球がコンプレッションゾーンの温度で膨張するようにし、熱膨張性微小球をシリンダー内部で膨張させ、その後樹脂の温度を低下し粘度を高めることで、樹脂中に膨張バルーンを封入するため、成形体中に微細な独立気泡が形成される。しかしながら、軽量、すなわち、高発泡倍率の発泡成形体を得ることは困難であった。 In the method of obtaining a foamed molded article by adding thermally expandable microspheres as a foaming agent to the matrix resin instead of the chemical foaming agent or the physical foaming agent, the die temperature is not higher than the cylinder temperature as described above. (For example, see Patent Document 3). In this method, the thermally expandable microspheres are expanded at the temperature of the compression zone, the thermally expandable microspheres are expanded inside the cylinder, and then the temperature of the resin is lowered to increase the viscosity, thereby expanding the balloon into the resin. Therefore, fine closed cells are formed in the molded body. However, it has been difficult to obtain a foamed molded article that is lightweight, that is, has a high expansion ratio.
日本国特開2000-17140号公報Japanese Unexamined Patent Publication No. 2000-17140 日本国特開平11-043551号公報Japanese Laid-Open Patent Publication No. 11-043551 日本国特開2001-97594号公報Japanese Unexamined Patent Publication No. 2001-97594
 本発明の課題は、独立気泡を有し、軽量な発泡成形体を製造する方法を提供することである。 An object of the present invention is to provide a method for producing a lightweight foamed molded article having closed cells.
 熱膨張性微小球を発泡剤として用いた場合、熱膨張性微小球が膨張する際に膨張剤の気化により周囲の熱を奪い樹脂成分の温度が低下する。発泡成形体を製造する従来法ではシリンダー温度よりもダイ温度が低いため、ダイ通過時に樹脂成分が過度に冷却され、熱膨張性微小球の膨張が阻害される。
 本発明者らは、この冷却を緩和または防止するために、シリンダー温度よりもダイ温度を高めて押出成形を行い、その温度差をさらに最適化することによって、上記課題を解決し、本発明に到達した。
When heat-expandable microspheres are used as a foaming agent, when the heat-expandable microspheres expand, the expansion of the expander causes the surrounding heat to be lost and the temperature of the resin component to decrease. Since the die temperature is lower than the cylinder temperature in the conventional method for producing a foam molded article, the resin component is excessively cooled when passing through the die, and the expansion of the thermally expandable microspheres is hindered.
In order to alleviate or prevent this cooling, the inventors of the present invention solved the above-mentioned problem by performing extrusion molding by increasing the die temperature higher than the cylinder temperature, and further optimizing the temperature difference. Reached.
 すなわち、本発明にかかる発泡成形体の製造方法は、発泡成分と樹脂成分とを含む樹脂混合物をシリンダー内で混練して溶融混合物とする混合工程と、前記溶融混合物をダイを経て押出し成形する成形工程とを含む製造方法であって、前記発泡成分は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する膨張剤とから構成される熱膨張性微小球を必須とし、前記シリンダーの最高温度が前記ダイの温度よりも低く、その温度差が10~150℃の範囲にある製造方法である。
 前記シリンダーの最低温度が前記樹脂成分の溶融温度以上であり、前記膨張剤の蒸気圧が前記シリンダー最高温度において0.1~5.0MPaの範囲であると好ましい。
That is, the method for producing a foamed molded article according to the present invention includes a mixing step in which a resin mixture containing a foaming component and a resin component is kneaded in a cylinder to form a molten mixture, and molding in which the molten mixture is extruded through a die. The foaming component essentially comprises thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and an expansion agent encapsulated therein and vaporized by heating, In this manufacturing method, the maximum temperature of the cylinder is lower than the temperature of the die, and the temperature difference is in the range of 10 to 150 ° C.
Preferably, the minimum temperature of the cylinder is equal to or higher than the melting temperature of the resin component, and the vapor pressure of the expansion agent is in the range of 0.1 to 5.0 MPa at the maximum temperature of the cylinder.
 前記シリンダー内の任意の点Aと、前記点Aよりも押出し方向にある任意の点Bとを選び、その温度をそれぞれTAおよびTBとしたとき、TA≦TBであると好ましい。
 前記シリンダー内を原料供給口から押出し方向に順に、フィードゾーン、コンプレッションゾーンおよびメータリングゾーンの3つの区画に分割し、それぞれの区画の温度をC1、C2およびC3とした場合、C1≦C2≦C3であると好ましい。
When an arbitrary point A in the cylinder and an arbitrary point B in the extrusion direction from the point A are selected and the temperatures are TA and TB, respectively, it is preferable that TA ≦ TB.
When the inside of the cylinder is divided into three sections of a feed zone, a compression zone, and a metering zone in order from the raw material supply port in the extrusion direction, and the temperatures of the respective sections are C1, C2, and C3, C1 ≦ C2 ≦ C3 Is preferable.
 前記樹脂混合物中の発泡成分の重量割合が、樹脂成分100重量%に対して0.1~35重量%の範囲であると好ましい。
 前記発泡成分に占める熱膨張性微小球の重量割合が、発泡成分全体の40~100重量%の範囲であると好ましい。
The weight ratio of the foaming component in the resin mixture is preferably in the range of 0.1 to 35% by weight with respect to 100% by weight of the resin component.
The weight ratio of the thermally expandable microspheres in the foaming component is preferably in the range of 40 to 100% by weight of the total foaming component.
 本発明の発泡成形体は、上記製造方法により得られる。
 発泡成形体は以下の(1)~(3)の少なくとも1つの物性を有すると好ましい。
 (1)平均気泡径が2~500μmである。
 (2)独立気泡率が50%以上である。
 (3)b値が20以下である。
The foamed molded product of the present invention is obtained by the above production method.
The foamed molded article preferably has at least one physical property of the following (1) to (3).
(1) The average cell diameter is 2 to 500 μm.
(2) The closed cell ratio is 50% or more.
(3) The b * value is 20 or less.
 本発明の発泡成形体の製造方法では、独立気泡を有し、軽量な発泡成形体を製造することができる。
 また、本発明の発泡成形体は、この製造方法によって得られるので、独立気泡を有し、軽量である。
In the method for producing a foamed molded product of the present invention, a lightweight foamed molded product having closed cells can be produced.
Moreover, since the foaming molding of this invention is obtained by this manufacturing method, it has a closed cell and is lightweight.
本発明の製造方法で用いる押出成形機の一例を示す概略図である。It is the schematic which shows an example of the extrusion molding machine used with the manufacturing method of this invention.
 本発明の発泡成形体の製造方法は、混合工程と成形工程とを含む製造方法である。 The method for producing a foamed molded product of the present invention is a production method including a mixing step and a molding step.
〔混合工程〕
 混合工程は、シリンダー内で行われ、発泡成分と樹脂成分とを含む樹脂混合物を混練して溶融混合物とする工程である。
 発泡成分は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する膨張剤とから構成される熱膨張性微小球を必須とする成分である。
[Mixing process]
A mixing process is a process performed in a cylinder and knead | mixing the resin mixture containing a foaming component and a resin component to make a molten mixture.
The foaming component is a component that essentially includes thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and an expansion agent that is contained in the shell and vaporizes when heated.
 熱膨張性微小球は、外殻を構成する熱可塑性樹脂および内包される膨張剤の組み合わせにより、様々な温度で膨張させることができ、樹脂成分の溶融温度、成形温度により適宜選択することができる。
 熱膨張性微小球の外殻を構成する熱可塑性樹脂については、特に限定はないが、たとえば、塩化ビニリデン共重合体、(メタ)アクリル酸系共重合体等の不飽和カルボン酸系共重合体、(メタ)アクリル酸エステル系共重合体等の不飽和カルボン酸エステル系共重合体、(メタ)アクリロニトリル系共重合体等のニトリル系共重合体、(メタ)アクリル酸-(メタ)アクリロニトリル系共重合体等の不飽和カルボン酸-ニトリル系共重合体等が挙げられる。
Thermally expandable microspheres can be expanded at various temperatures depending on the combination of the thermoplastic resin constituting the outer shell and the encapsulated expansion agent, and can be appropriately selected depending on the melting temperature and molding temperature of the resin component. .
The thermoplastic resin constituting the outer shell of the thermally expandable microsphere is not particularly limited. For example, an unsaturated carboxylic acid copolymer such as a vinylidene chloride copolymer or a (meth) acrylic acid copolymer. , Unsaturated carboxylic ester copolymers such as (meth) acrylic ester copolymers, nitrile copolymers such as (meth) acrylonitrile copolymers, (meth) acrylic acid- (meth) acrylonitriles And unsaturated carboxylic acid-nitrile copolymers such as copolymers.
 熱可塑性樹脂の原料となる重合性モノマーとしては、たとえば、塩化ビニリデン;塩化ビニル;酢酸ビニル;アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、フマロニトリル等のニトリル系モノマー;アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸およびこれらの金属塩等の不飽和カルボン酸(塩)系モノマー;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリル酸エステル系モノマー;アクリルアミド、メタアクリルアミド、置換アクリルアミド、置換メタクリルアミド等のアミド系モノマー;N-フェニルマレイミド、N-(2-クロロフェニル)マレイミド、N-シクロヘキシルマレイミド等のイミド系モノマー;スチレン、α-メチルスチレン、クロロスチレン等のビニル芳香族系モノマー;イソプレン;ブタジエン等が挙げられる。これらの重合性モノマーは、1種または2種以上を併用してもよい。また、上記重合性モノマーとともに、必要に応じて重合性二重結合を2個以上有するモノマー(架橋剤)を併用してもよい。
 熱膨張性微小球において、その外殻を構成する熱可塑性樹脂が、(たとえば、ニトリル系モノマーを含む重合性モノマーを重合して得られる)ニトリル系共重合体であると、柔軟性や耐熱性に優れ、本発明による効果が得られやすい。ニトリル系モノマーの重量割合が、好ましくは重合性モノマーの70重量%以上、さらに好ましくは80重量%以上であると、外殻のガスバリアー性が高く、高発泡倍率の発泡成形体が得られやすい。
Examples of the polymerizable monomer used as a raw material for the thermoplastic resin include vinylidene chloride; vinyl chloride; vinyl acetate; nitrile monomers such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, itaconic acid , Fumaric acid, maleic acid and unsaturated carboxylic acid (salt) monomers such as metal salts thereof; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meta ) (Meth) acrylate monomers such as acrylate, glycidyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate; acrylamide, methacrylamide, substituted acrylic Amide monomers such as luamide and substituted methacrylamide; Imide monomers such as N-phenylmaleimide, N- (2-chlorophenyl) maleimide and N-cyclohexylmaleimide; Vinyl aromatics such as styrene, α-methylstyrene and chlorostyrene Monomer, isoprene, butadiene and the like. These polymerizable monomers may be used alone or in combination of two or more. Moreover, you may use together the monomer (crosslinking agent) which has 2 or more of polymerizable double bonds with the said polymerizable monomer as needed.
In the thermally expandable microsphere, if the thermoplastic resin constituting the outer shell is a nitrile copolymer (obtained by polymerizing a polymerizable monomer containing a nitrile monomer, for example), flexibility and heat resistance And the effects of the present invention are easily obtained. When the weight ratio of the nitrile monomer is preferably 70% by weight or more of the polymerizable monomer, more preferably 80% by weight or more, the gas barrier property of the outer shell is high, and a foamed molded article having a high foaming ratio is easily obtained. .
 また、熱膨張性微小球において、その外殻を構成する熱可塑性樹脂が、(たとえば、不飽和カルボン酸(塩)系モノマーおよびニトリル系モノマーを含む重合性モノマーを重合して得られる)不飽和カルボン酸-ニトリル系共重合体であると好ましい。ニトリル系モノマーおよび不飽和カルボン酸(塩)モノマーの合計重量割合が、好ましくは重合性モノマーの60重量%以上、さらに好ましく70重量%以上、特に好ましくは80重量%以上であると、耐熱性が高く、200℃以上の成形において好適に用いることができる。このとき、ニトリル系モノマーおよび不飽和カルボン酸(塩)系モノマーの合計に占める不飽和カルボン酸(塩)系モノマーの混合比率は、好ましくは5~70重量%、さらに好ましくは10~60重量%である。
 膨張剤は、外殻に内包され、加熱することによって気化するものであれば特に限定はなく、たとえば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、シクロペンタン、イソペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、ノルマルデカン、イソドデカン、石油エーテル等の炭化水素、クロロフルオロカーボン、塩素や臭素原子を含まない含フッ素化合物、加熱により熱分解してガスを発生する化合物等を挙げることができる。これらの膨張剤は、1種または2種以上を併用してもよい。
In the thermally expandable microsphere, the thermoplastic resin constituting the outer shell is unsaturated (obtained by polymerizing a polymerizable monomer including an unsaturated carboxylic acid (salt) monomer and a nitrile monomer, for example). A carboxylic acid-nitrile copolymer is preferred. When the total weight ratio of the nitrile monomer and the unsaturated carboxylic acid (salt) monomer is preferably 60% by weight or more of the polymerizable monomer, more preferably 70% by weight or more, and particularly preferably 80% by weight or more, the heat resistance is improved. It is high and can be suitably used in molding at 200 ° C. or higher. At this time, the mixing ratio of the unsaturated carboxylic acid (salt) monomer in the total of the nitrile monomer and the unsaturated carboxylic acid (salt) monomer is preferably 5 to 70% by weight, more preferably 10 to 60% by weight. It is.
The expansion agent is not particularly limited as long as it is encapsulated in the outer shell and is vaporized by heating. For example, propane, normal butane, isobutane, normal pentane, cyclopentane, isopentane, neopentane, normal hexane, isohexane, heptane , Hydrocarbons such as octane, isooctane, nonane, normal decane, isododecane, petroleum ether, chlorofluorocarbons, fluorine-containing compounds that do not contain chlorine or bromine atoms, and compounds that generate gas by thermal decomposition upon heating. . These swelling agents may be used alone or in combination of two or more.
 熱膨張性微小球は公知の方法により製造することができる。たとえば、上記重合性モノマーと開始剤および上記膨張剤を含む油相を、分散剤等を含む水相懸濁液中で懸濁重合する方法等が挙げられる。
 水相における分散安定剤については、特に限定はないが、たとえば、コロイダルシリカ、コロイダル炭酸カルシウム、水酸化マグネシウム、リン酸カルシウム、水酸化アルミニウム、水酸化第二鉄、硫酸カルシウム、硫酸ナトリウム、蓚酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、アルミナゾル等が挙げられる。その他に、分散安定補助剤としてジエタノールアミンと脂肪酸ジカルボン酸の縮合生成物、ゼラチン、ポリビニルピロリドン、メチルセルロース、ポリエチレンオキサイド、ポリペプチド、ポリビニルアルコール等の高分子タイプの分散安定補助剤;塩化アルキルトリメチルアンモニウム、塩化ジアルキルジメチルアンモニウム等の陽イオン界面活性剤;アルキル硫酸ナトリウム等の陰イオン界面活性剤;アルキルジメチルアミノ酢酸ベタイン、アルキルジヒドロキシエチルアミノ酢酸ベタイン等の両イオン性界面活性剤等が挙げられる。また、水相懸濁液中には分散安定剤と併用して、スケール防止剤等の水溶性化合物を添加してもよい。
Thermally expandable microspheres can be produced by a known method. For example, a method in which an oil phase containing the polymerizable monomer, an initiator, and the swelling agent is subjected to suspension polymerization in an aqueous phase suspension containing a dispersant and the like.
The dispersion stabilizer in the aqueous phase is not particularly limited. For example, colloidal silica, colloidal calcium carbonate, magnesium hydroxide, calcium phosphate, aluminum hydroxide, ferric hydroxide, calcium sulfate, sodium sulfate, calcium oxalate, carbonate Examples include calcium, barium carbonate, magnesium carbonate, and alumina sol. In addition, as dispersion stabilizers, condensation products of diethanolamine and fatty acid dicarboxylic acids, gelatin, polyvinylpyrrolidone, methylcellulose, polyethylene oxide, polypeptides, polyvinyl alcohol, and other polymer type dispersion stabilizers; alkyltrimethylammonium chloride, chloride And cationic surfactants such as dialkyldimethylammonium; anionic surfactants such as sodium alkyl sulfate; amphoteric surfactants such as alkyldimethylaminoacetic acid betaine and alkyldihydroxyethylaminoacetic acid betaine. In addition, a water-soluble compound such as a scale inhibitor may be added to the aqueous phase suspension in combination with the dispersion stabilizer.
 重合温度は、重合開始剤の種類により適時設定される。また、重合は加圧下で行われてもよく、たとえば重合初期圧は好ましくは0~5.0MPaの範囲である。
 また、熱膨張性微小球は商業的にも入手可能であり、熱膨張性微小球の代表的な市販品として、松本油脂製薬株式会社製のマツモトマイクロスフェアーの各品番の熱膨張性微小球を挙げることができる。
The polymerization temperature is set appropriately depending on the type of polymerization initiator. The polymerization may be carried out under pressure. For example, the initial polymerization pressure is preferably in the range of 0 to 5.0 MPa.
Thermally expandable microspheres are also commercially available. As typical commercially available products of thermally expandable microspheres, Matsumoto Microsphere's Matsumoto Microsphere's product numbers of thermally expandable microspheres are listed. Can be mentioned.
 熱膨張性微小球の平均粒子径としては、1~60μmのものが好適に用いられる。1μmより小さいと、均一分散が難しく、発泡倍率が低いものとなる。また60μmより大きいと、得られる発泡成形体の強度が弱くなるため望ましくない。
 本発明に用いられる熱膨張性微小球は、熱膨張性微小球に占める膨張剤の重量割合が2~85重量%であると、独立気泡が形成されやすく好ましい。さらに好ましくは5~60重量%、特に好ましくは7~55重量%である。熱膨張性微小球に占める膨張剤の重量割合が2重量%より少ないと、熱膨張性微小球の膨張倍率が小さく、軽量な発泡成形体を得ることが困難となる。また、85重量%より多いと、熱膨張性微小球が混合工程において破壊し易く、連通気泡が形成されやすくなり好ましくない。
The average particle diameter of the thermally expandable microspheres is preferably 1 to 60 μm. If it is smaller than 1 μm, uniform dispersion is difficult and the expansion ratio is low. Moreover, since the intensity | strength of the foaming molding obtained will become weak when larger than 60 micrometers, it is not desirable.
In the thermally expandable microspheres used in the present invention, it is preferable that the weight ratio of the expanding agent to the thermally expandable microspheres is 2 to 85% by weight because closed cells are easily formed. More preferably, it is 5 to 60% by weight, particularly preferably 7 to 55% by weight. If the weight ratio of the expansion agent to the heat-expandable microspheres is less than 2% by weight, the expansion ratio of the heat-expandable microspheres is small and it is difficult to obtain a lightweight foamed molded product. On the other hand, when the amount is more than 85% by weight, the thermally expandable microspheres are easily broken in the mixing step, and communication bubbles are easily formed.
 また、熱膨張性微小球は、最大膨張倍率が、好ましくは体積で5倍以上、さらに好ましくは10倍以上、特に好ましくは20倍以上である。なお、膨張倍率の上限値は特に限定されないが、通常は400倍以下である。体積膨張倍率は熱膨張性微小球をオーブン等で加熱し、加熱前後の比重から計算することができる。
 熱膨張性微小球の熱膨張特性を示す指標として、膨張開始温度(Ts)および最大膨張温度(Tmax)がある。膨張開始温度とは、その温度以上に加熱することで熱膨張性微小球が膨張する温度であり、最大膨張温度とは、熱膨張性微小球の膨張が最大となる温度であると定義される。膨張開始温度および最大膨張温度の詳しい測定方法は、以下で説明するが、膨張開始温度(Ts)は、熱膨張性微小球を一定の加圧下で昇温し、昇温によって膨張が開始する温度である。また、最大膨張温度(Tmax)は、開始後に昇温を続け、膨張が最大となった変位量(最大変位量;Dmax)を示したときの温度である。
The thermally expandable microsphere has a maximum expansion ratio of preferably 5 times or more, more preferably 10 times or more, and particularly preferably 20 times or more in volume. The upper limit of the expansion ratio is not particularly limited, but is usually 400 times or less. The volume expansion ratio can be calculated from the specific gravity before and after heating the thermally expandable microspheres with an oven or the like.
There are an expansion start temperature (Ts) and a maximum expansion temperature (Tmax) as indices indicating the thermal expansion characteristics of the thermally expandable microspheres. The expansion start temperature is defined as the temperature at which the thermally expandable microsphere expands when heated above that temperature, and the maximum expansion temperature is defined as the temperature at which the expansion of the thermally expandable microsphere is maximized. . The detailed measurement method of the expansion start temperature and the maximum expansion temperature will be described below. The expansion start temperature (Ts) is a temperature at which the thermally expandable microspheres are heated under a constant pressure, and expansion starts when the temperature is increased. It is. The maximum expansion temperature (Tmax) is a temperature at which the temperature is increased after the start and a displacement amount (maximum displacement amount; Dmax) at which the expansion is maximized is indicated.
 熱膨張性微小球の膨張開始温度(Ts)は、好ましくは100℃以上、さらに好ましくは120℃以上である。また、熱膨張性微小球の最大膨張温度は、好ましくは150℃以上、さらに好ましくは160℃以上である。ここで、ΔT=Tmax-Tsとしたとき、10≦ΔT≦100であると好ましく、15≦ΔT≦90であるとさらに好ましく、20≦ΔT≦80であると特に好ましい。
 また、最大変位量(Dmax)の50%の変位量(D50)となる温度(TD50)を求め、R=(Tmax-TD50)/(Tmax-Ts)としたとき、0.2≦R≦0.9であると好ましく、0.3≦R≦0.8であるとさらに好ましく、0.35≦R≦0.75であると特に好ましい。
The expansion start temperature (Ts) of the thermally expandable microsphere is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. The maximum expansion temperature of the thermally expandable microsphere is preferably 150 ° C. or higher, more preferably 160 ° C. or higher. Here, when ΔT = Tmax−Ts, 10 ≦ ΔT ≦ 100 is preferable, 15 ≦ ΔT ≦ 90 is further preferable, and 20 ≦ ΔT ≦ 80 is particularly preferable.
Further, when a temperature (TD 50 ) at which the displacement amount (D 50 ) is 50% of the maximum displacement amount (Dmax) is obtained and R = (Tmax−TD 50 ) / (Tmax−Ts), 0.2 ≦ R ≦ 0.9 is preferable, 0.3 ≦ R ≦ 0.8 is more preferable, and 0.35 ≦ R ≦ 0.75 is particularly preferable.
 混合工程において、熱膨張性微小球が過膨張とならないために、熱膨張性微小球の最大膨張温度は、樹脂成分の溶融温度より高いことが好ましい。その温度差は、好ましくは10℃以上、さらに好ましくは20℃以上、特に好ましくは30℃以上である。なお、温度差の上限値は200℃である。
 発泡成分は、化学発泡剤や、物理発泡剤等をさらに含んでいてもよい。本発明では、熱膨張性微小球の熱膨張により樹脂成分の温度が低下し、その粘度が高くなるので、化学発泡剤等を併用した場合でも、ガス抜けの発生が少なく、軽量な成形体を得ることが可能である。
In the mixing step, it is preferable that the maximum expansion temperature of the heat-expandable microspheres is higher than the melting temperature of the resin component so that the heat-expandable microspheres are not excessively expanded. The temperature difference is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher. The upper limit of the temperature difference is 200 ° C.
The foaming component may further contain a chemical foaming agent, a physical foaming agent and the like. In the present invention, the temperature of the resin component is lowered due to the thermal expansion of the thermally expandable microspheres, and the viscosity thereof is increased. It is possible to obtain.
 化学発泡剤としては、たとえば、重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、亜硝酸アンモニウム、アジド化合物、ホウ水素化ナトリウム等の無機系発泡剤;アゾジカルボンアミド、アゾビスイソブチロニトリル、バリウムアゾジカルボキシレート、ジニトロソペンタメチレンテトラミン、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、ジアゾアミノペンゼン、N,N’-ジメチル-N,N’-ジニトロソテレフタルアミド、N,N’-ジニトロソペンタメチレンテトラミン、ニトロウレア、アセトン-p-トルエンスルホニルヒドラゾン、p-トルエンスルホニルアミド、2,4-トルエンジスルホニルヒドラジド、トリニトロソトリメチレントリアミン、p-メチルウレタンベンゼンスルホニルヒドラジド、p-トルエンスルホニルセミカルバジド、オキザリルギドラジド、ニトログアニジン、ヒドロアゾジカルボンアミド、トリヒドラジノトリアジン、5-フェニールテトラゾール、ビステトラゾール等の有機発泡剤等を挙げることができる。また、上記化学発泡剤とともに、必要に応じて発泡助剤を併用してもよい。発泡助剤とは、発泡剤の分解温度の低下、分解促進、気泡の均一化等の働きをする添加剤であり、たとえば、ステアリン酸亜鉛、サリチル酸、フタル酸等を挙げることができる。
 物理発泡剤としては、たとえば、ブタン、ペンタン、ジクロロメタン、水、窒素ガス、炭酸ガス、空気等を挙げることができる。
Examples of chemical blowing agents include inorganic blowing agents such as sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, ammonium nitrite, azide compounds, sodium borohydride; azodicarbonamide, azobisisobutyronitrile, barium azodi Carboxylate, dinitrosopentamethylenetetramine, 4,4'-oxybis (benzenesulfonylhydrazide), diazoaminobenzene, N, N'-dimethyl-N, N'-dinitrosotephthalamide, N, N'-dinitroso Pentamethylenetetramine, nitrourea, acetone-p-toluenesulfonylhydrazone, p-toluenesulfonylamide, 2,4-toluenedisulfonylhydrazide, trinitrosotrimethylenetriamine, p-methylurethanebenzenesulfonylhydrazide, p- Examples thereof include organic blowing agents such as toluenesulfonyl semicarbazide, oxalyl hydrazide, nitroguanidine, hydroazodicarbonamide, trihydrazinotriazine, 5-phenyltetrazole, and bistetrazole. Moreover, you may use a foaming adjuvant together with the said chemical foaming agent as needed. The foaming assistant is an additive that acts to lower the decomposition temperature of the foaming agent, accelerate the decomposition, and make the bubbles uniform, and examples thereof include zinc stearate, salicylic acid, and phthalic acid.
Examples of the physical foaming agent include butane, pentane, dichloromethane, water, nitrogen gas, carbon dioxide gas, and air.
 化学発泡剤、物理発泡剤等の種類、後述の樹脂成分の種類により、発泡成分に占める熱膨張性微小球の重量割合を適時調整することで、独立気泡を有し、軽量な成形体を得ることが可能であるが、発泡成分に占める熱膨張性微小球の重量割合は、好ましくは発泡成分全体の40~100重量%、さらに好ましくは50~100重量%、特に好ましくは60~100重量%である。熱膨張性微小球の重量割合が40重量%より少ないと、熱膨張性微小球の熱膨張による樹脂成分の粘度上昇よりも、化学発泡剤等より発生するガスの膨張圧の方が勝り、連通気泡が形成されやすくなり好ましくない。
 発泡成分はそのまま後述の樹脂成分と混合して樹脂混合物としてもよいが、発泡成分をオイル等の液状物で予め混合して得られる湿化物や、発泡成分をワックス等で固めた造粒物としてから、樹脂成分と混合して樹脂混合物としても良い。また、発泡成分と樹脂成分とを含むマスターバッチを予め準備し、それと樹脂成分と混合して樹脂混合物としても良い。これらの場合は、樹脂混合物をシリンダー内で混練してなる溶融混合物中での発泡成分の分散性が高くなるため好ましい。
By adjusting the weight ratio of thermally expandable microspheres in the foaming component according to the type of chemical foaming agent, physical foaming agent, etc. and the type of resin component described later, a lightweight molded body having closed cells is obtained. However, the weight proportion of the thermally expandable microspheres in the foaming component is preferably 40 to 100% by weight, more preferably 50 to 100% by weight, particularly preferably 60 to 100% by weight of the whole foaming component. It is. When the weight ratio of the thermally expandable microspheres is less than 40% by weight, the expansion pressure of the gas generated from the chemical foaming agent is superior to the increase in the viscosity of the resin component due to the thermal expansion of the thermally expandable microspheres. Bubbles are easily formed, which is not preferable.
The foaming component may be mixed with the resin component described later as it is to form a resin mixture, but as a wet product obtained by premixing the foaming component with a liquid such as oil, or a granulated product obtained by solidifying the foaming component with wax or the like Therefore, it may be mixed with a resin component to form a resin mixture. Also, a master batch containing a foaming component and a resin component is prepared in advance, and it may be mixed with the resin component to form a resin mixture. In these cases, the dispersibility of the foaming component in the molten mixture obtained by kneading the resin mixture in a cylinder is preferable.
 湿化物に用いる液状物としては、樹脂成分との相溶性が良好であれば特に限定はなく、たとえば、鉱物油、流動性パラフィン、シリコーンオイル、可塑剤等を挙げることができる。液状物の重量割合は、好ましくは湿化物全体の0.1~60重量%、さらに好ましくは0.2~50重量%、特に好ましくは0.5~40重量%である。液状物の重量割合が0.1重量%より少ないと、湿化が十分ではなく、発泡成分の分散性を高める効果が少ない。また、液状物の重量割合が60重量%より多いとべたつきが多く、作業性が悪い。
 造粒物に用いるワックスとしては、たとえば、脂肪酸、パラフィン系ワックス等を挙げることができる。ワックスの重量割合は、好ましくは造粒物全体の5~70重量%、さらに好ましくは10~60重量%、特に好ましくは15~50重量%である。ワックスの重量割合が5重量%よりも少ないと、造粒物を形成できない。また、ワックスの重量割合が70重量%よりも多いと、樹脂成分の物性への影響が懸念される。
The liquid material used for the moistened material is not particularly limited as long as the compatibility with the resin component is good, and examples thereof include mineral oil, fluid paraffin, silicone oil, and plasticizer. The weight ratio of the liquid is preferably from 0.1 to 60% by weight, more preferably from 0.2 to 50% by weight, particularly preferably from 0.5 to 40% by weight, based on the entire wetted product. When the weight ratio of the liquid material is less than 0.1% by weight, the humidification is not sufficient and the effect of enhancing the dispersibility of the foaming component is small. On the other hand, when the weight ratio of the liquid is more than 60% by weight, the stickiness is high and the workability is poor.
Examples of the wax used in the granulated product include fatty acids and paraffin waxes. The weight ratio of the wax is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, and particularly preferably 15 to 50% by weight of the whole granulated product. If the weight ratio of the wax is less than 5% by weight, a granulated product cannot be formed. Moreover, when there are more weight ratios of a wax than 70 weight%, there exists a concern about the influence on the physical property of a resin component.
 マスターバッチに用いる樹脂成分としては、以下に具体的に例示する樹脂成分であれば、特に限定はないが、熱膨張性微小球の膨張開始温度および化学発泡剤の分解温度よりも低い溶融温度を持つ熱可塑性の材料であると、発泡性能を損なうことなくマスターバッチ化することができるため、好ましい。樹脂成分の重量割合は、好ましくはマスターバッチ全体の25~95重量%、さらに好ましくは30~90重量%、特に好ましくは35~80重量%である。
 本発明においては、熱膨張性微小球を発泡成分として用いている。このために、溶融張力の低い樹脂やフィラー含有樹脂等を発泡させることも可能であり、使用できる樹脂成分については特に限定されない。
The resin component used in the masterbatch is not particularly limited as long as it is a resin component specifically exemplified below, but a melting temperature lower than the expansion start temperature of the thermally expandable microsphere and the decomposition temperature of the chemical foaming agent. It is preferable that the thermoplastic material has a masterbatch because the foaming performance is not impaired. The weight ratio of the resin component is preferably 25 to 95% by weight of the entire master batch, more preferably 30 to 90% by weight, and particularly preferably 35 to 80% by weight.
In the present invention, thermally expandable microspheres are used as the foaming component. For this reason, it is possible to foam a resin having a low melt tension, a filler-containing resin, or the like, and the resin component that can be used is not particularly limited.
 樹脂成分としては、一般に用いられている熱可塑性樹脂や、熱可塑性エラストマーがあるが、たとえば、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、TPO、TPV、オレフィン系熱可塑性エラストマー等のポリオレフィン樹脂;エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-(メタ)アクリル酸(エステル)共重合体、アイオノマー樹脂等のオレフィン系樹脂共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール等のポリビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリアリレート、ポリカーボネート、TPEE等のポリエステル系樹脂;ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリロニトリル等のアクリル系樹脂;ポリスチレン、AS樹脂、ASA樹脂、ABS樹脂等のスチレン系樹脂;6-ナイロン、6,6-ナイロン、TPEA等のポリアミド系樹脂;ポリ乳酸等の生分解性樹脂;フッ素系樹脂;ポリウレタン系熱可塑性エラストマー;液晶ポリマー等が挙げられる。これらの樹脂成分は、1種または2種以上を併用してもよい。
 樹脂混合物は発泡成分および樹脂成分以外にも、必要に応じて、滑剤、可塑剤、酸化防止剤、着色剤、充填剤、帯電防止剤、難燃剤、木粉、ガラス繊維、炭素繊維等の各種添加剤を含有していてもよい。その場合、発泡成分および樹脂成分に対して、第三成分として各種添加剤を混合しても良く、各種添加剤を予め含む樹脂成分を混合に用いて溶融混合物を調製しても良い。
Examples of the resin component include generally used thermoplastic resins and thermoplastic elastomers. For example, polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, TPO, TPV, and olefin-based thermoplastic elastomers; Olefin resin copolymers such as vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene- (meth) acrylic acid (ester) copolymer, ionomer resin; polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate Polyvinyl resins such as polyvinyl alcohol; polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polyarylate, polycarbonate, TP Polyester resins such as E; acrylic resins such as poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate butyl, poly (meth) acrylonitrile; polystyrene, AS resin, ASA resin, Styrenic resins such as ABS resin; polyamide resins such as 6-nylon, 6,6-nylon and TPEA; biodegradable resins such as polylactic acid; fluororesins; polyurethane thermoplastic elastomers; liquid crystal polymers . These resin components may be used alone or in combination of two or more.
In addition to the foam component and resin component, the resin mixture can be variously used as necessary, such as lubricants, plasticizers, antioxidants, colorants, fillers, antistatic agents, flame retardants, wood flour, glass fibers, carbon fibers, etc. An additive may be contained. In that case, various additives may be mixed as the third component with respect to the foaming component and the resin component, and a molten mixture may be prepared using a resin component containing various additives in advance.
 樹脂混合物において、発泡成分および樹脂成分の重量割合については、樹脂混合物をシリンダー内で混練してなる溶融混合物を押出成形できる配合割合であれば、特に限定はないが、樹脂混合物中の発泡成分の重量割合は、好ましくは樹脂成分100重量%に対して0.1~35重量%、さらに好ましくは0.3~25重量%、特に好ましくは0.5~15重量%である。発泡成分の重量割合が0.1重量%より少ないと、軽量化効果が少ない。一方、発泡成分の重量割合が35重量%より多いと得られる発泡成形体は脆いものとなる。
 本発明に用いられる押出成形機としては、一般に用いられているものであれば、特に限定はないが、単軸または2軸の押出成形機や共押出成形機等を挙げることができる。
In the resin mixture, the weight ratio of the foaming component and the resin component is not particularly limited as long as it is a blending ratio capable of extruding a molten mixture obtained by kneading the resin mixture in a cylinder, but the foaming component in the resin mixture is not limited. The weight ratio is preferably 0.1 to 35% by weight, more preferably 0.3 to 25% by weight, and particularly preferably 0.5 to 15% by weight with respect to 100% by weight of the resin component. When the weight ratio of the foaming component is less than 0.1% by weight, the lightening effect is small. On the other hand, when the weight ratio of the foaming component is more than 35% by weight, the obtained foamed molded product becomes brittle.
The extruder used in the present invention is not particularly limited as long as it is generally used, and examples thereof include a single-axis or biaxial extruder and a co-extrusion machine.
 本発明に用いられる押出成形機の一例として、シリンダー1にヒーター2および熱電対3を備える押出成形機を図1に示す。ヒーターの数については、本発明において特に限定しないが、図1では3つである。
 シリンダー1には、発泡成分および樹脂成分(樹脂混合物4)をシリンダー1に供給するための原料供給口5を装備している。シリンダー1の内部には、樹脂混合物4を混練しながら原料供給口5から押出し方向に移動させるためのスクリュー6が設置されている。
As an example of an extruder used in the present invention, an extruder having a heater 2 and a thermocouple 3 in a cylinder 1 is shown in FIG. The number of heaters is not particularly limited in the present invention, but is three in FIG.
The cylinder 1 is equipped with a raw material supply port 5 for supplying a foaming component and a resin component (resin mixture 4) to the cylinder 1. Inside the cylinder 1, a screw 6 for moving the resin mixture 4 from the raw material supply port 5 in the extrusion direction while kneading is installed.
 図1において、シリンダー1内は、原料供給口5から押出し方向に順に、ヒーター2のそれぞれの位置に対応したフィードゾーン7、コンプレッションゾーン8およびメータリングゾーン9の3つの区画に分割されている。それぞれの区画の温度を、ここでは順にC1、C2およびC3とする。
 図1では、シリンダー1に供給された樹脂混合物4はヒーター2の加熱およびスクリュー6の回転によって、溶融混合物10となり、ダイ11を経て、押出し成形され、発泡成形体12が得られる。
In FIG. 1, the inside of the cylinder 1 is divided into three sections of a feed zone 7, a compression zone 8, and a metering zone 9 corresponding to each position of the heater 2 in order from the raw material supply port 5 in the extrusion direction. Here, the temperatures of the respective sections are sequentially referred to as C1, C2, and C3.
In FIG. 1, the resin mixture 4 supplied to the cylinder 1 becomes a molten mixture 10 by the heating of the heater 2 and the rotation of the screw 6, and is extruded through a die 11 to obtain a foamed molded body 12.
 押出成形においては、スクリュー形状の設計により樹脂成分や添加剤の混練状態を調整している。したがって、従来法においては、主にコンプレッションゾーン8において強い混練を行い、さらに、スクリューのL/D(長さLと直径Dとの比)も最適化する必要があった。しかし、本発明においては、スクリュー形状およびL/Dは特に限定はなく、公知のものを使用できる。さらに、本発明の方法では、強い混練を必要とせず軽量な発泡成形体を得ることができるため、混練の弱いスクリュー形状を用いることができる。この場合、シリンダー内での熱膨張性微小球の膨張を抑制でき、本発明による効果が得られやすく、好ましい。
 また、シリンダーの最低温度が樹脂成分の溶融温度以上であると、熱膨張性微小球に付与されるせん断力が小さくなるため好ましい。両者の温度差は、好ましくは5℃以上、さらに好ましくは10℃以上、特に好ましくは15℃以上である。温度差の上限値は200℃である。
In extrusion molding, the kneading state of resin components and additives is adjusted by the screw shape design. Therefore, in the conventional method, it was necessary to perform strong kneading mainly in the compression zone 8 and to further optimize the L / D (ratio between the length L and the diameter D) of the screw. However, in the present invention, the screw shape and L / D are not particularly limited, and known ones can be used. Furthermore, in the method of the present invention, since a lightweight foamed molded product can be obtained without requiring strong kneading, a screw shape with weak kneading can be used. In this case, the expansion of the thermally expandable microspheres in the cylinder can be suppressed, and the effect of the present invention can be easily obtained, which is preferable.
Moreover, it is preferable that the minimum temperature of the cylinder is equal to or higher than the melting temperature of the resin component because the shearing force applied to the thermally expandable microspheres is reduced. The temperature difference between the two is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and particularly preferably 15 ° C. or higher. The upper limit of the temperature difference is 200 ° C.
 押出成形機にベントが設けられている場合、ベントを閉じた状態で成形を行うことが望ましい。ベントを開放した状態では、ベントより溶融混合物が押出され、軽量な発泡成形体が得られにくいことがある。
 また、押出成形においては、通常、ダイ直前に設けられたベントに真空ポンプ等を接続し、排気して、混練時に発生したボイドを抜くことが一般的に行われる。しかし、本発明では、溶融混合物がダイより出た際に樹脂成分の高流動化、熱膨張性微小球の膨張による発泡が促進される。したがって、ベントでボイドを抜く作業がなくても、ボイドのない軽量な発泡成形体を容易に得ることができる。
When the extruder is provided with a vent, it is desirable to perform molding with the vent closed. When the vent is opened, the molten mixture is extruded from the vent, and it may be difficult to obtain a lightweight foamed molded product.
Further, in extrusion molding, generally, a vacuum pump or the like is connected to a vent provided immediately before a die and exhausted to remove voids generated during kneading. However, in the present invention, when the molten mixture comes out of the die, the resin component is highly fluidized and the foaming due to the expansion of the thermally expandable microspheres is promoted. Therefore, even if there is no operation of removing a void with a vent, a lightweight foamed molded article without a void can be easily obtained.
 熱膨張性微小球は、一度膨張した後は圧力およびせん断の影響を大きく受ける。上記で説明したシリンダー内が3つの区画に分割されている場合では、従来、C1よりもC2が高く、C2よりもC3が高くない状態(C1<C2且つC2≧C3)で成形が実施されている。この場合、メータリングゾーン9で樹脂温度の低下および粘度上昇に伴い系内の圧力が上昇およびせん断力が増加するため、一度コンプレッションゾーンで膨張した熱膨張性微小球の収縮や破壊が発生する。そのため、高発泡な成形体を得ることができないという問題があった。
 この問題をも解決するためには、押出成形機のシリンダー1内において、任意の点Aと、前記点Aよりも押出し方向にある任意の点Bとを選び(図1に図示せず)、点Aにおける温度をTAとし、点Bにおける温度をTBとしたとき、TA≦TBであることが好ましい。ここで、点Aおよび点Bを選択するいずれの場合であっても、TA≦TBであるとさらに好ましい。上記で説明したとおり、シリンダー内が3つの区画に分割されている場合では、C1≦C2≦C3であることが特に好ましい。このように、本発明においては、シリンダー内を押出し方向に向かって温度が低下しないようにすることで、熱膨張性微小球を徐々に膨張させ、最大膨張をダイ部分に誘導することで、高発泡な発泡成形体を得ることが可能となる。
Thermally expandable microspheres are greatly affected by pressure and shear once expanded. In the case where the inside of the cylinder described above is divided into three sections, molding is conventionally performed in a state where C2 is higher than C1 and C3 is not higher than C2 (C1 <C2 and C2 ≧ C3). Yes. In this case, in the metering zone 9, the pressure in the system increases and the shearing force increases as the resin temperature decreases and the viscosity increases, so that the thermally expandable microspheres that have once expanded in the compression zone are contracted or broken. For this reason, there is a problem that a highly foamed molded article cannot be obtained.
In order to solve this problem as well, in the cylinder 1 of the extruder, an arbitrary point A and an arbitrary point B in the extrusion direction from the point A are selected (not shown in FIG. 1), It is preferable that TA ≦ TB, where TA is the temperature at point A and TB is the temperature at point B. Here, in any case where the point A and the point B are selected, it is more preferable that TA ≦ TB. As described above, when the inside of the cylinder is divided into three sections, it is particularly preferable that C1 ≦ C2 ≦ C3. Thus, in the present invention, by preventing the temperature from decreasing in the direction of extrusion in the cylinder, the thermally expandable microspheres are gradually expanded, and the maximum expansion is induced in the die portion. It is possible to obtain a foamed molded article.
 C1、C2、C3の温度は特に限定はなく、樹脂成分の溶融温度により適宜選択されるが、80~300℃であると好ましく、100~280℃であるとさらに好ましく、120~270℃であると特に好ましい。
 ΔC12=C2-C1としたとき、0≦ΔC12≦40であると好ましく、0≦ΔC12≦30であるとさらに好ましく、0≦ΔC12≦20であると特に好ましい。
 ΔC23=C3-C2としたとき、0≦ΔC23≦50であると好ましく、0≦ΔC23≦40であるとさらに好ましく、0≦ΔC23≦30であると特に好ましい。
 シリンダー最高温度において、熱膨張性微小球に内包されている膨張剤の蒸気圧は、好ましくは0.1~5.0MPa、さらに好ましくは0.5~4.5MPa、特に好ましくは1.0~4.0MPaである。上記蒸気圧が0.1MPa未満であると、熱膨張性微小球の膨張速度が遅く、ダイ温度だけでは十分に膨張しなくなる。一方、上記蒸気圧が5.0MPa超であると、シリンダー内で熱膨張性微小球が膨張し、系内の圧力が上昇するため、十分な膨張とならない。
The temperature of C1, C2, and C3 is not particularly limited and is appropriately selected depending on the melting temperature of the resin component, but is preferably 80 to 300 ° C, more preferably 100 to 280 ° C, and 120 to 270 ° C. And particularly preferred.
When ΔC 12 = C2-C1, 0 ≦ ΔC 12 ≦ 40 is preferable, 0 ≦ ΔC 12 ≦ 30 is more preferable, and 0 ≦ ΔC 12 ≦ 20 is particularly preferable.
When ΔC 23 = C3-C2, 0 ≦ ΔC 23 ≦ 50 is preferable, 0 ≦ ΔC 23 ≦ 40 is more preferable, and 0 ≦ ΔC 23 ≦ 30 is particularly preferable.
The vapor pressure of the expansion agent contained in the thermally expandable microspheres at the maximum cylinder temperature is preferably 0.1 to 5.0 MPa, more preferably 0.5 to 4.5 MPa, and particularly preferably 1.0 to 4.0 MPa. If the vapor pressure is less than 0.1 MPa, the expansion rate of the thermally expandable microspheres is slow, and the die temperature does not sufficiently expand only with the die temperature. On the other hand, if the vapor pressure exceeds 5.0 MPa, the thermally expandable microspheres expand in the cylinder and the pressure in the system rises, so that the expansion is not sufficient.
〔成形工程〕
 成形工程は、上記混合工程で得られた溶融混合物をダイを経て押出して成形する工程である。
 本発明で用いられるダイは、得られる発泡成形体の形状に合わせて任意の成形用ダイを用いることができる。ダイとしては、たとえば、ストレートダイ、クロスヘッドダイ、フラットダイ(Tダイ)、サーキュラーダイ等が挙げられる。
[Molding process]
The molding step is a step of extruding and molding the molten mixture obtained in the mixing step through a die.
As the die used in the present invention, any molding die can be used according to the shape of the obtained foamed molded article. Examples of the die include a straight die, a cross head die, a flat die (T die), and a circular die.
 溶融混合物に含まれる熱膨張性微小球は、混合工程において、シリンダー内での加熱により外殻の熱可塑性樹脂が軟化する。次いで、成形工程において、ダイ出口(圧力開放口)へ向かって膨張しながら押出される。したがって、シリンダーの最高温度をダイの温度よりも低くすることで、ダイ部分で樹脂成分の流動性が上がり、溶融混合物が発泡しやすくなると考えられる。
 これに対して、発泡成分が化学発泡剤や物理発泡剤のみの場合では、樹脂成分の流動性が上がると同時にガス抜けが発生しやすく、そのために発泡性は低下し、満足できる軽量な発泡成形体とはならない。しかし、発泡成分が熱膨張性微小球を含む場合は、ガス抜けの問題はなく、熱膨張性微小球をより大きく膨張させることで、樹脂成分中に多くの気泡を導入することができ、軽量な発泡成形体を得ることができる。
In the heat-expandable microspheres contained in the molten mixture, the thermoplastic resin in the outer shell is softened by heating in the cylinder in the mixing step. Next, in the molding process, the resin is extruded while expanding toward the die outlet (pressure release port). Therefore, it is considered that by making the maximum temperature of the cylinder lower than the temperature of the die, the fluidity of the resin component is increased at the die portion and the molten mixture is easily foamed.
On the other hand, when the foaming component is only a chemical foaming agent or a physical foaming agent, the flowability of the resin component is increased and gas escape is likely to occur at the same time. It does not become a body. However, when the foaming component contains thermally expandable microspheres, there is no problem of outgassing, and by expanding the thermally expandable microspheres more, many bubbles can be introduced into the resin component, which is lightweight. Can be obtained.
 本発明では、シリンダー最高温度がダイ温度よりも低い。そして、その温度差が、通常、10~150℃、好ましくは15~140℃、さらに好ましくは20~130℃、特に好ましくは25~120℃、最も好ましくは30~110℃の範囲にある。この温度差によって、熱膨張性微小球の膨張が促進され、高発泡で軽量な発泡成形体を得ることができる。しかし、温度差が10℃未満では、ダイにおける加熱が不十分となり、ダイ温度が高くなることによる膨張性への影響があまり見られないことがある。一方、温度差が150℃超では、シリンダー中での熱膨張性微小球の膨張が不十分で、軽量な発泡成形体が得られない。
 樹脂混合物を原料供給口に投入してからダイより押出されるまでの時間は、スクリューの回転数により調整することができる。スクリューの回転数は、設備および樹脂成分等により適時設定すればよいが、樹脂混合物を原料供給口に投入してから、ダイより押出されるまでの時間(滞留時間)が0.2~30分であると好ましく、さらに好ましくは0.3~20分、特に好ましくは0.5~15分である。滞留時間が0.2分より短いと加熱が不十分となり軽量な発泡成形体が得られないことがある。一方、滞留時間が30分より長いと、作業効率が悪くなり生産性に問題が生じることがある。
 ダイより押出された発泡成形体は、通常、空冷、水冷、ロール等の冷却設備にて冷却され、所望の成形体となる。本発明においては、冷却設備、引取設備等として一般に用いられている設備を使用できる。
In the present invention, the maximum cylinder temperature is lower than the die temperature. The temperature difference is usually in the range of 10 to 150 ° C., preferably 15 to 140 ° C., more preferably 20 to 130 ° C., particularly preferably 25 to 120 ° C., and most preferably 30 to 110 ° C. Due to this temperature difference, the expansion of the thermally expandable microspheres is promoted, and a highly foamed and lightweight foamed molded product can be obtained. However, if the temperature difference is less than 10 ° C., the heating in the die becomes insufficient, and the influence on the expandability due to the high die temperature may not be seen so much. On the other hand, when the temperature difference exceeds 150 ° C., the expansion of the thermally expandable microspheres in the cylinder is insufficient, and a lightweight foamed molded product cannot be obtained.
The time from when the resin mixture is introduced into the raw material supply port until it is extruded from the die can be adjusted by the number of rotations of the screw. The number of rotations of the screw may be set as appropriate depending on equipment and resin components, but the time (residence time) from when the resin mixture is introduced into the raw material supply port until it is extruded from the die is 0.2 to 30 minutes. It is preferable that it is 0.3, more preferably 0.3 to 20 minutes, and particularly preferably 0.5 to 15 minutes. If the residence time is shorter than 0.2 minutes, heating may be insufficient and a lightweight foamed molded product may not be obtained. On the other hand, if the residence time is longer than 30 minutes, the work efficiency may deteriorate and productivity may be problematic.
The foamed molded body extruded from the die is usually cooled by a cooling facility such as air cooling, water cooling, or a roll to obtain a desired molded body. In the present invention, equipment generally used as cooling equipment, take-up equipment, or the like can be used.
〔発泡成形体〕
 本発明の発泡成形体は、たとえば、上記製造方法で製造される。この発泡成形体は、独立気泡を有する発泡成形体であり、黄変が少なく白度に優れ、表面性も良好である。
 本発明の発泡成形体の平均気泡径については、特に限定はないが、好ましくは2~500μm、さらに好ましくは3~400μm、特に好ましくは5~300μmである。平均気泡径が2μmより小さいと、軽量な発泡成形体を得ることが難しいことがある。一方、平均気泡径が500μmより大きいと、得られる発泡成形体の強度が弱くなることがあり、好ましくない。
[Foamed molded product]
The foamed molded product of the present invention is manufactured by, for example, the above manufacturing method. This foam-molded product is a foam-molded product having closed cells, has little yellowing, has excellent whiteness, and has good surface properties.
The average cell diameter of the foamed molded article of the present invention is not particularly limited, but is preferably 2 to 500 μm, more preferably 3 to 400 μm, and particularly preferably 5 to 300 μm. If the average cell diameter is smaller than 2 μm, it may be difficult to obtain a lightweight foamed molded product. On the other hand, when the average cell diameter is larger than 500 μm, the strength of the obtained foamed molded product may be weak, which is not preferable.
 本発明の発泡成形体の独立気泡率については、特に限定はないが、好ましくは50%以上、さらに好ましくは60%以上、特に好ましくは65%以上、最も好ましくは80%以上である。独立気泡率の上限値は100%である。独立気泡率が50%より小さいと、得られる発泡成形体の強度が弱く、また連通気泡による吸水性の問題もあり、好ましくない。一方で独立気泡率が高い発泡成形体は、強度に優れ、また断熱性に優れた発泡成形体となり、好ましい。
 発泡成形体の気泡径は熱膨張性微小球の粒子径によって容易に調整することができる。発泡成形体の厚みの薄い場合や、発泡成形体の剛性が必要である場合は、粒子径の小さな熱膨張性微小球を選択し、発泡成分に占める熱膨張性微小球の重量割合を多くすることが好ましい。また、発泡成形体の柔軟性が必要である場合は、粒子径の大きな熱膨張性微小球を選択したり、発泡成分に占める熱膨張性微小球の重量割合を少なくしたりすることが好ましい。
The closed cell ratio of the foamed molded article of the present invention is not particularly limited, but is preferably 50% or more, more preferably 60% or more, particularly preferably 65% or more, and most preferably 80% or more. The upper limit of the closed cell ratio is 100%. If the closed cell ratio is less than 50%, the strength of the resulting foamed molded product is weak, and there is also a problem of water absorption due to open cells, which is not preferable. On the other hand, a foamed molded product having a high closed cell ratio is preferred because it is a foamed molded product having excellent strength and heat insulation.
The bubble diameter of the foam molded article can be easily adjusted by the particle diameter of the thermally expandable microsphere. If the thickness of the foamed molded product is thin or if the rigidity of the foamed molded product is required, select thermally expandable microspheres with a small particle diameter and increase the weight ratio of thermally expandable microspheres in the foam component. It is preferable. Further, when the flexibility of the foamed molded product is required, it is preferable to select thermally expandable microspheres having a large particle diameter or to reduce the weight ratio of thermally expandable microspheres in the foam component.
 本発明の発泡成形体は寸法安定性に優れる。従来の成形方法においては、押出方向とその垂直方向において発泡差が生じやすく、たとえば、幅広いシート等を作成する際に、中央部と端部において発泡度合に差があった。しかし、本発明においては、ダイ部分で樹脂成分の流動性を上げているため均一に発泡しやすく、発泡差が生じにくい。また、樹脂混合物が第三成分を含む場合には、第三成分が均一、ランダムに配向しやすくなるため、押出方向や垂直方向における発泡度合等の物性の差が小さい。
 発泡成形体のb値については、特に限定はないが、好ましくは20以下、さらに好ましくは15以下、特に好ましくは10以下である。b値の下限は0である。b値は黄色の着色度合いを示し、値が大きいほど濃い黄色であることを意味する。
The foamed molded article of the present invention is excellent in dimensional stability. In the conventional molding method, a difference in foaming is likely to occur in the extrusion direction and the direction perpendicular thereto. For example, when a wide sheet or the like is produced, there is a difference in the degree of foaming between the central portion and the end portion. However, in the present invention, since the fluidity of the resin component is increased at the die portion, it is easy to foam uniformly and hardly cause a difference in foaming. In addition, when the resin mixture contains a third component, the third component is easily oriented uniformly and randomly, so that the difference in physical properties such as the degree of foaming in the extrusion direction and the vertical direction is small.
The b * value of the foamed molded product is not particularly limited, but is preferably 20 or less, more preferably 15 or less, and particularly preferably 10 or less. The lower limit of the b * value is zero. The b * value indicates the degree of yellow coloring, and the larger the value, the darker the color.
 発泡成形体のb値は一般的に発泡成分の種類による影響が大きい。発泡成分が熱膨張性微小球を含む場合、熱膨張性微小球の種類によりb値が異なる。しかし、本発明において、シリンダーの最高温度をダイの温度よりも低くすると、興味深いことに使用する発泡成分の種類が同じであっても、従来法と比較してb値の数値の小さい発泡成形体が得られる。
 本発明による発泡成形体は黄変が少なく、白度に優れることから、着色の調整が容易であり、また、淡色の成形体を作成することも可能となる。
The b * value of a foamed molded product is generally greatly influenced by the type of foaming component. When the foaming component contains thermally expandable microspheres, the b * value varies depending on the type of thermally expandable microsphere. However, in the present invention, if the maximum temperature of the cylinder is lower than the temperature of the die, it is interesting that even if the same type of foaming component is used, foam molding with a smaller b * value than the conventional method. The body is obtained.
Since the foamed molded product according to the present invention has little yellowing and is excellent in whiteness, the color can be easily adjusted, and a light-colored molded product can be produced.
 このようにして得られた発泡成形体は、軽量で断熱性およびクッション性を有しており、建材や自動車材料、工業用材料等に用いられる。また、本発明によれば、樹脂成分に架橋構造を施さずとも、高発泡な成形体を得ることが可能であるため、樹脂成分のリサイクル性に優れるという利点も有する。 The foamed molded product thus obtained is lightweight and has heat insulation and cushioning properties, and is used for building materials, automobile materials, industrial materials, and the like. Further, according to the present invention, it is possible to obtain a highly foamed molded article without giving a cross-linked structure to the resin component, so that there is an advantage that the resin component is excellent in recyclability.
 以下に、本発明の実施例について、具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 以下で用いる熱膨張性微小球、実施例および比較例で製造した発泡成形体について、次に示す要領で物性の評価を行った。熱膨張性微小球を単に微小球ということがあり、発泡成形体を単に成形体ということがある。
Examples of the present invention will be specifically described below. The present invention is not limited to these examples.
About the thermally expansible microsphere used below and the foaming molding manufactured by the Example and the comparative example, the physical property was evaluated in the following way. Thermally expandable microspheres are sometimes referred to simply as microspheres, and foamed molded articles are sometimes referred to simply as molded bodies.
〔TsおよびTmax〕
 熱膨張性微小球の膨張開始温度(Ts)および最大膨張温度(Tmax)は、DMA(DMA Q800型、TA instruments社製)を用いて測定される。熱膨張性微小球をアルミカップに入れ、その試料に上から加圧子により0.01Nの力を加えた状態で20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量(D)を測定し、正方向への変位開始温度を膨張開始温度(Ts)とし、最大変位量(Dmax)を示したときの温度を最大膨張温度(Tmax)とした。
 また、最大変位量(Dmax)の50%の変位量(D50)となったときの温度(TD50)を求め、(Tmax-TD50)/(Tmax-Ts)を計算し、この値をRとした。
[Ts and Tmax]
The expansion start temperature (Ts) and the maximum expansion temperature (Tmax) of the thermally expandable microspheres are measured using DMA (DMA Q800, manufactured by TA instruments). The heat-expandable microspheres are placed in an aluminum cup and heated from 20 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min. The displacement amount (D) in the vertical direction was measured, the displacement start temperature in the positive direction was defined as the expansion start temperature (Ts), and the temperature when the maximum displacement amount (Dmax) was indicated was defined as the maximum expansion temperature (Tmax).
Further, the temperature (TD 50 ) when the displacement amount (D 50 ) is 50% of the maximum displacement amount (Dmax) is obtained, and (Tmax−TD 50 ) / (Tmax−Ts) is calculated. R.
〔成形性〕
 成形体の保形性、製造の容易さについて、以下の評価基準に基づいて判定。
 ○:良好(1時間押出実施し、吐出量および形状に変化なく成形体を回収可能)
 △:やや不良(1時間押出実施し、吐出量および形状が時折変化し、調整必要)
 ×:不良(吐出量および形状が安定せず、成形体の回収が不可能)
[Formability]
Judgment on shape retention and ease of manufacture of molded product based on the following evaluation criteria.
○: Good (Extruded for 1 hour, and the molded product can be recovered without changing the discharge amount and shape)
Δ: Slightly defective (Extrusion for 1 hour, discharge amount and shape change occasionally, adjustment is required)
×: Defect (The discharge amount and shape are not stable, and the molded product cannot be recovered)
〔比重〕
 得られた成形体の比重をJIS K-7112 A法(水中置換法)に準拠した方法により測定。
〔specific gravity〕
The specific gravity of the obtained molded product was measured by a method based on JIS K-7112 A method (submerged replacement method).
〔気泡状態〕
 電子顕微鏡(SEM)装置を用いて、得られた成形体断面の気泡状態の確認を行った。
30倍で撮影したSEM写真から、単位面積あたりに占める独立気泡の割合を算出し、以下の評価基準に基づいて判定。
 ◎:均一独立(独立気泡率80%以上)
 ○:ほぼ均一独立(独立気泡率50%以上80%未満)
 ×:不均一(独立気泡率50%未満)
(Bubble state)
Using an electron microscope (SEM) apparatus, the bubble state of the obtained molded body cross section was confirmed.
From the SEM photograph taken at a magnification of 30 times, the ratio of closed cells per unit area is calculated and determined based on the following evaluation criteria.
A: Uniform independent (closed cell ratio 80% or more)
○: Almost uniform independent (closed cell ratio of 50% or more and less than 80%)
X: non-uniform (closed cell ratio less than 50%)
〔平均気泡径〕
 得られた成形体の断面を100倍で撮影したSEM写真より、ASTM・D3576-77に準じた方法で算出。
[Average bubble diameter]
Calculated by a method according to ASTM D3576-77 from SEM photographs of a cross section of the resulting molded article taken at 100x magnification.
〔表面状態〕
 得られた成形体表面を目視により確認し、以下の評価基準に基づいて判定。
 ○:良好(ガス抜けによる表面荒れのない状態)
 △:やや不良(一部ガス抜けによる凹凸が見られる状態)
 ×:不良(全体的にガス抜けによる凹凸が多くみられ、鮫肌となっている状態)
〔Surface condition〕
The surface of the obtained molded body was confirmed by visual observation and judged based on the following evaluation criteria.
○: Good (no surface roughness due to outgassing)
Δ: Slightly defective (state where irregularities due to outgassing are partly seen)
X: Defect (a state in which there are many irregularities due to outgassing as a whole, and the skin is crumpled)
〔b値〕
 得られた発泡成形体の色目を分光測色計(SPECTROPHOTOMETER CM-3600d,KONICA MINOLTA製)にて測定し、b値を算出。
[B * value]
The color of the obtained foamed molded product is measured with a spectrocolorimeter (SPECTROTOPOMETER CM-3600d, manufactured by KONICA MINOLTA), and the b * value is calculated.
 以下の実施例および比較例で使用した樹脂成分および熱膨張性微小球を表1および表2に示す。表2の試作品1については、製造例1に従って製造した。
〔製造例1〕
 アクリロニトリル、メタクリロニトリルおよびメタクリル酸を共重合してなる熱可塑性樹脂を外殻とし、膨張剤としてイソブタンおよびイソペンタンを内包した熱膨張性微小球を公知の方法により作成し、熱膨張性微小球3(試作品1;表2参照)を得た。
The resin components and thermally expandable microspheres used in the following examples and comparative examples are shown in Tables 1 and 2. Prototype 1 in Table 2 was produced according to Production Example 1.
[Production Example 1]
A heat-expandable microsphere having a thermoplastic resin obtained by copolymerizing acrylonitrile, methacrylonitrile and methacrylic acid as an outer shell and encapsulating isobutane and isopentane as an expanding agent is prepared by a known method. (Prototype 1; see Table 2).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔製造例2〕
 50重量部の熱膨張性微小球1(表2参照)、2重量部の流動性パラフィンオイル(PW-200)および48重量部のエチレン酢ビ樹脂をリボンミキサーでブレンドし、ラボプラストミル(東洋精機社製ME-25;シリンダー温度およびダイ温度は全て100℃;スクリュー回転数30rpm)を用いて直径2mmのストランド状に押出した。得られたストランドを空冷した後、ペレタイザーにて長さ4mmの俵状のペレットとし、熱膨張性微小球1を50重量%含有したマスターバッチ1を得た。
 上記と同様にして、熱膨張性微小球2~4を用いてマスターバッチ2~4をそれぞれ得た。
[Production Example 2]
50 parts by weight of thermally expandable microspheres 1 (see Table 2), 2 parts by weight of fluid paraffin oil (PW-200) and 48 parts by weight of ethylene vinyl acetate resin were blended with a ribbon mixer, and Laboplast mill (Toyo) Extruded into a strand having a diameter of 2 mm using Seiki ME-25; cylinder temperature and die temperature are all 100 ° C .; screw rotation speed is 30 rpm. After the obtained strand was air-cooled, it was converted into a 4 mm long rod-shaped pellet by a pelletizer, and a master batch 1 containing 50% by weight of thermally expandable microspheres 1 was obtained.
In the same manner as described above, master batches 2 to 4 were obtained using thermally expandable microspheres 2 to 4, respectively.
〔製造例3〕
 80重量部の熱膨張性微小球5(表2参照)と20重量部の流動性パラフィンオイル(PW-200)をリボンミキサーでブレンドし、熱膨張性微小球5のオイル湿化物5を得た。
[Production Example 3]
80 parts by weight of thermally expandable microspheres 5 (see Table 2) and 20 parts by weight of fluid paraffin oil (PW-200) were blended with a ribbon mixer to obtain an oil moistened product 5 of thermally expandable microspheres 5. .
〔実施例1〕
 表1に示す樹脂1と製造例2で得られたマスターバッチ1とを、重量比96:4で混合し、樹脂混合物とした。このとき、樹脂成分と発泡成分(熱膨張性微小球1)との混合割合は重量比98:2であった。
 図1に示す押出成形機であるラボプラストミル(東洋精機社製ME-25)を準備し、その原料供給口から、上記樹脂混合物を供給した。シリンダーの温度はC1=C2=C3=160℃で、スクリュー回転数40rpmで、溶融混合物を押出し、Tダイ(幅150mm、リップ厚み1.7mm)を用いてダイ温度200℃で板状発泡成形体(幅140mm×厚み1.5mm)を得た。
[Example 1]
Resin 1 shown in Table 1 and master batch 1 obtained in Production Example 2 were mixed at a weight ratio of 96: 4 to obtain a resin mixture. At this time, the mixing ratio of the resin component and the foamed component (thermally expandable microsphere 1) was 98: 2.
A lab plast mill (ME-25 manufactured by Toyo Seiki Co., Ltd.), which is an extrusion molding machine shown in FIG. 1, was prepared, and the resin mixture was supplied from the raw material supply port. The temperature of the cylinder is C1 = C2 = C3 = 160 ° C., the screw mixture is extruded at 40 rpm, the molten mixture is extruded, and a plate-like foamed molded article is formed at a die temperature of 200 ° C. using a T die (width 150 mm, lip thickness 1.7 mm). (Width 140 mm × thickness 1.5 mm) was obtained.
〔実施例2〕
 表1に示す樹脂2と製造例2で得られたマスターバッチ2を用いて、シリンダー温度をC1=C2=C3=190℃、ダイ温度を220℃とした以外は、実施例1と同様にして板状発泡成形体を得た。
〔実施例3〕
 表1に示す樹脂2と製造例2で得られたマスターバッチ3を用いて、シリンダー温度をC1=C2=C3=180℃、ダイ温度を220℃とした以外は、実施例1と同様にして板状発泡成形体を得た。
[Example 2]
Using the resin 2 shown in Table 1 and the master batch 2 obtained in Production Example 2, the cylinder temperature was C1 = C2 = C3 = 190 ° C. and the die temperature was 220 ° C. A plate-like foamed molded product was obtained.
Example 3
Using the resin 2 shown in Table 1 and the master batch 3 obtained in Production Example 2, the cylinder temperature was C1 = C2 = C3 = 180 ° C. and the die temperature was 220 ° C. A plate-like foamed molded product was obtained.
〔実施例4〕
 表1に示す樹脂2と製造例2で得られたマスターバッチ4を用いて、シリンダー温度をC1=C2=C3=180℃、ダイ温度を290℃とした以外は、実施例1と同様にして板状発泡成形体を得た。
〔比較例1〕
 シリンダー温度をC1=C2=C3=170℃、ダイ温度を170℃とした以外は、実施例1と同様にして板状発泡成形体を得た。
Example 4
Using the resin 2 shown in Table 1 and the master batch 4 obtained in Production Example 2, the cylinder temperature was C1 = C2 = C3 = 180 ° C. and the die temperature was 290 ° C. A plate-like foamed molded product was obtained.
[Comparative Example 1]
A plate-like foamed molded article was obtained in the same manner as in Example 1 except that the cylinder temperature was C1 = C2 = C3 = 170 ° C. and the die temperature was 170 ° C.
〔比較例2〕
 シリンダー温度をC1=C2=C3=200℃、ダイ温度を200℃とした以外は、実施例2と同様にして板状発泡成形体を得た。
〔比較例3〕
 シリンダー温度をC1=C2=C3=200℃、ダイ温度を200℃とした以外は、実施例3と同様にして板状発泡成形体を得た。
 上記実施例1~4および比較例1~3について、成形条件および得られた発泡成形体の物性評価結果をそれぞれ表3に示す。
[Comparative Example 2]
A plate-like foamed molded article was obtained in the same manner as in Example 2 except that the cylinder temperature was C1 = C2 = C3 = 200 ° C. and the die temperature was 200 ° C.
[Comparative Example 3]
A plate-like foamed molded article was obtained in the same manner as in Example 3 except that the cylinder temperature was C1 = C2 = C3 = 200 ° C. and the die temperature was 200 ° C.
Table 3 shows the molding conditions and the physical property evaluation results of the obtained foamed molded products for Examples 1 to 4 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1と比較例1とを比較すると、用いた樹脂成分および発泡成分は同じであるが、実施例1では比較例1よりも軽量な発泡成形体であった。同様に、実施例2と比較例2および実施例3と比較例3とを比較すると、用いた樹脂成分および発泡成分は同じであるが、実施例では比較例よりも軽量な発泡成形体であった。
 また、実施例1~4で得られた発泡成形体は微細な独立気泡を有しており、表面状態も良好であった。
When Example 1 and Comparative Example 1 were compared, the resin component and the foaming component used were the same, but in Example 1, the foamed molded article was lighter than Comparative Example 1. Similarly, when Example 2 and Comparative Example 2 and Example 3 and Comparative Example 3 are compared, the resin component and the foaming component used are the same, but in the example, the foamed molded article is lighter than the comparative example. It was.
In addition, the foamed molded products obtained in Examples 1 to 4 had fine closed cells, and the surface condition was good.
〔実施例5〕
 表1に示す樹脂3と、製造例3で得られたオイル湿化物5とを混合し、樹脂混合物とした。それぞれの混合割合は、樹脂成分である樹脂3を100重量%として、オイル湿化物5に含まれる微小球5が1重量%となる割合で混合した。
 実施例1と同様にして、ラボプラストミルに樹脂混合物を供給した。シリンダーの温度はC1=160℃、C2=C3=170℃で、スクリュー回転数30rpmで、溶融混合物を押出し、Tダイ(幅150mm、リップ厚み0.5mm)を用いてダイ温度240℃で発泡シート(幅140mm×厚み0.3mm)を得た。
Example 5
The resin 3 shown in Table 1 and the oil wet product 5 obtained in Production Example 3 were mixed to obtain a resin mixture. Each mixing ratio was such that the resin 3 as a resin component was 100% by weight, and the microspheres 5 contained in the oil moistened product 5 were 1% by weight.
In the same manner as in Example 1, the resin mixture was supplied to the lab plast mill. Cylinder temperature is C1 = 160 ° C, C2 = C3 = 170 ° C, screw rotation is 30rpm, the molten mixture is extruded, and foam sheet with die temperature of 240 ° C using T die (width 150mm, lip thickness 0.5mm) (Width 140 mm × thickness 0.3 mm) was obtained.
〔実施例6〕
 微小球5が2重量%となる割合で混合した以外は、実施例5と同様にして発泡シートを得た。
〔比較例4〕
 シリンダーの温度をC1=160℃、C2=C3=220℃、ダイ温度を220℃に変更した以外は、実施例5と同様にして、発泡シートを得た。
Example 6
A foamed sheet was obtained in the same manner as in Example 5 except that the microspheres 5 were mixed at a ratio of 2% by weight.
[Comparative Example 4]
A foamed sheet was obtained in the same manner as in Example 5 except that the cylinder temperature was changed to C1 = 160 ° C., C2 = C3 = 220 ° C., and the die temperature was changed to 220 ° C.
〔比較例5〕
 シリンダーの温度をC1=160℃、C2=C3=220℃、ダイ温度を220℃に変更した以外は、実施例6と同様にして、発泡シートを得た。
 上記実施例5および6と比較例4および5について、成形条件および得られた発泡成形体の物性評価結果をそれぞれ表4に示す。
[Comparative Example 5]
A foam sheet was obtained in the same manner as in Example 6 except that the cylinder temperature was changed to C1 = 160 ° C., C2 = C3 = 220 ° C., and the die temperature was changed to 220 ° C.
Table 4 shows the molding conditions and the physical property evaluation results of the obtained foamed molded articles for Examples 5 and 6 and Comparative Examples 4 and 5, respectively.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例5および6では、比較例4および5と比較して、軽量で、黄変が少なく白度に優れた発泡成形体を得ることができた。 In Examples 5 and 6, as compared with Comparative Examples 4 and 5, it was possible to obtain a foamed molded article that was lighter in weight and less yellowing and excellent in whiteness.
〔実施例7〕
 表1に示す樹脂4と製造例2で得られたマスターバッチ4とを、重量比110:2で混合し、樹脂混合物とした。このとき、樹脂成分100重量%に対して、発泡成分(熱膨張性微小球4)の重量割合は1重量%であった。
 実施例1と同様にして、ラボプラストミルに樹脂混合物を供給した。シリンダーの温度はC1=200℃、C2=C3=210℃で、スクリュー回転数40rpmで、溶融混合物を押出し、Tダイ(幅150mm、リップ厚み1.7mm)を用いてダイ温度240℃で板状発泡成形体(幅140mm×厚み1.5mm)を得た。
Example 7
Resin 4 shown in Table 1 and master batch 4 obtained in Production Example 2 were mixed at a weight ratio of 110: 2 to obtain a resin mixture. At this time, the weight ratio of the foamed component (thermally expandable microsphere 4) was 1% by weight with respect to 100% by weight of the resin component.
In the same manner as in Example 1, the resin mixture was supplied to the lab plast mill. The temperature of the cylinder is C1 = 200 ° C., C2 = C3 = 210 ° C., the screw mixture is extruded at 40 rpm, the molten mixture is extruded, and a plate shape is formed at a die temperature of 240 ° C. using a T die (width 150 mm, lip thickness 1.7 mm). A foamed molded product (width 140 mm × thickness 1.5 mm) was obtained.
〔実施例8〕
 表1に示す樹脂4と製造例2で得られたマスターバッチ4とADCAマスターバッチ(アゾジカルボンアミド50%含有ポリエチレンマスターバッチ;市販品)とを重量比110:2:0.6で混合し、樹脂混合物とした以外は、実施例7と同様にして板状発泡成形体を得た。このとき、樹脂成分100重量%に対して、発泡成分の重量割合は1.3重量%であった。
Example 8
The resin 4 shown in Table 1 and the master batch 4 obtained in Production Example 2 and ADCA master batch (50% azodicarbonamide-containing polyethylene master batch; commercial product) were mixed at a weight ratio of 110: 2: 0.6, A plate-like foamed molded article was obtained in the same manner as in Example 7 except that the resin mixture was used. At this time, the weight ratio of the foaming component was 1.3% by weight with respect to 100% by weight of the resin component.
〔比較例6〕
 表1に示す樹脂4とADCAマスターバッチ(アゾジカルボンアミド50%含有ポリエチレンマスターバッチ;市販品)とを、重量比110:3で混合し、樹脂混合物とした。このとき、樹脂成分100重量%に対して、発泡成分の重量割合は1.5重量%であった。この樹脂混合物を用いて、ダイ温度200℃にする以外は実施例7と同様にして、板状発泡成形体を得た。
[Comparative Example 6]
Resin 4 and ADCA masterbatch (polyethylene masterbatch containing 50% azodicarbonamide; commercial product) shown in Table 1 were mixed at a weight ratio of 110: 3 to obtain a resin mixture. At this time, the weight ratio of the foaming component was 1.5% by weight with respect to 100% by weight of the resin component. Using this resin mixture, a plate-like foamed molded article was obtained in the same manner as in Example 7 except that the die temperature was 200 ° C.
〔比較例7〕
 表1に示す樹脂4とADCAマスターバッチ(アゾジカルボンアミド50%含有ポリエチレンマスターバッチ;市販品)とを、重量比110:3で混合混合し、樹脂混合物とした以外は、実施例7と同様にして板状発泡成形体を得た。このとき、樹脂成分100重量%に対して、発泡成分の重量割合は1.5重量%であった。
 上記実施例7および8と比較例6および7について、成形条件および得られた発泡成形体の物性評価結果をそれぞれ表5に示す。
[Comparative Example 7]
Resin 4 shown in Table 1 and ADCA masterbatch (polyethylene masterbatch containing 50% azodicarbonamide; commercially available product) were mixed and mixed at a weight ratio of 110: 3 in the same manner as in Example 7 except that a resin mixture was obtained. Thus, a plate-like foamed molded product was obtained. At this time, the weight ratio of the foaming component was 1.5% by weight with respect to 100% by weight of the resin component.
Table 5 shows the molding conditions and the physical property evaluation results of the obtained foamed molded products for Examples 7 and 8 and Comparative Examples 6 and 7, respectively.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例7および8では、独立気泡を有する軽量な発泡成形体を得ることができた。一方、比較例6では少し軽量化できたが、気泡は連通気泡であり、表面状態はよくなかった。また、比較例7ではほとんど軽量化できなかった。 In Examples 7 and 8, a lightweight foamed molded article having closed cells could be obtained. On the other hand, although it was possible to reduce the weight a little in Comparative Example 6, the bubbles were continuous bubbles and the surface condition was not good. In Comparative Example 7, the weight could hardly be reduced.
〔製造例4〕
 イオン交換水600gに、塩化ナトリウム160g、シリカ有効成分20重量%であるコロイダルシリカ60g、ジエタノールアミン-アジピン酸縮合物1gおよびエチレンジアミン四酢酸・4Na塩の0.1gを加え、pHを2.8~3.2に調整し、水性分散媒を調製した。
 これとは別に、アクリロニトリル150g、メタクリロニトリル90g、メタクリル酸メチル10g、エチレングリコールジメタクリレート1g、アゾビス(2,4-ジメチルバレロニトリル)1g、イソペンタン65gを混合して油性混合物を調製した。
 水性分散媒と油性混合物を混合し、得られた混合液をホモミキサー(特殊機化工業社製、TKホモミキサー)により分散して、縣濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.5MPaにし、80rpmで攪拌しつつ重合温度60℃で20時間重合した。重合後に得られた重合液を濾過、乾燥して、熱膨張性微小球6を得た。得られた熱膨張性微小球6の物性を表6に示す。
[Production Example 4]
To 600 g of ion-exchanged water, 160 g of sodium chloride, 60 g of colloidal silica which is 20% by weight of silica active ingredient, 1 g of diethanolamine-adipic acid condensate and 0.1 g of ethylenediaminetetraacetic acid / 4Na salt are added, and the pH is adjusted to 2.8-3. To 2 to prepare an aqueous dispersion medium.
Separately, 150 g of acrylonitrile, 90 g of methacrylonitrile, 10 g of methyl methacrylate, 1 g of ethylene glycol dimethacrylate, 1 g of azobis (2,4-dimethylvaleronitrile) and 65 g of isopentane were mixed to prepare an oily mixture.
The aqueous dispersion medium and the oily mixture were mixed, and the obtained mixed liquid was dispersed with a homomixer (TK machine manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a suspension. The suspension was transferred to a pressure reactor having a capacity of 1.5 liters, and purged with nitrogen. Then, the initial reaction pressure was 0.5 MPa, and polymerization was performed at a polymerization temperature of 60 ° C. for 20 hours while stirring at 80 rpm. The polymer solution obtained after the polymerization was filtered and dried to obtain thermally expandable microspheres 6. Table 6 shows the physical properties of the thermally expandable microspheres 6 obtained.
〔製造例5~9〕
 製造例4で用いた各種成分および量を、表6に示すものに変更する以外は製造例4と同様にして熱膨張性微小球7~11をそれぞれ得た。得られた熱膨張性微小球7~11のそれぞれの物性を表6に示す。
[Production Examples 5 to 9]
Thermally expandable microspheres 7 to 11 were obtained in the same manner as in Production Example 4 except that the various components and amounts used in Production Example 4 were changed to those shown in Table 6. Table 6 shows the physical properties of the obtained heat-expandable microspheres 7 to 11.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔製造例10〕
 製造例2と同様にして、熱膨張性微小球6~11を用いて、マスターバッチ6~11をそれぞれ得た。
[Production Example 10]
In the same manner as in Production Example 2, master batches 6 to 11 were obtained using thermally expandable microspheres 6 to 11, respectively.
〔実施例9〕
 実施例1で、マスターバッチ1を、熱膨張性微小球6を含むマスターバッチ6に変更し、表7に示す成形条件に変更した以外は、実施例1と同様にして板状発泡成形体を得た。その物性を評価し、結果を表7に示す。
〔実施例10~14、比較例8~13〕
 実施例9で、マスターバッチ6を表7に示す微小球を含むマスターバッチにそれぞれ変更するとともに、表7に示す成形条件にそれぞれ変更した以外は、実施例9と同様にして板状発泡成形体を得た。その物性を評価し、結果をそれぞれ表7に示す。
Example 9
In Example 1, except that the master batch 1 was changed to the master batch 6 containing the thermally expandable microspheres 6 and changed to the molding conditions shown in Table 7, a plate-like foamed molded article was obtained in the same manner as in Example 1. Obtained. The physical properties were evaluated and the results are shown in Table 7.
[Examples 10 to 14, Comparative Examples 8 to 13]
In Example 9, the master batch 6 was changed to a master batch containing microspheres shown in Table 7 and the molding conditions were changed to the molding conditions shown in Table 7, respectively. Got. The physical properties were evaluated, and the results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例9~14および比較例8~13において、用いた樹脂成分および発泡成分は同じで成形方法が異なる実施例および比較例同士を比較すると、実施例では比較例よりも軽量な発泡成形体であり、表面状態も全般に良好であった。 In Examples 9 to 14 and Comparative Examples 8 to 13, the resin component and the foaming component used were the same, but the examples and comparative examples having different molding methods were compared. The surface condition was generally good.
 本発明の発泡成形体の製造方法は、独立気泡を有し、軽量な発泡成形体を製造することができる。したがって、得られる発泡成形体は、軽量で、断熱性および圧縮特性に優れ、外観良好な発泡成形体であり、自動車用の機械部品や内外装材、家庭用電化製品のローラーやケーブル部品、建築材料として、広く利用される。 The method for producing a foamed molded article of the present invention can produce a lightweight foamed molded article having closed cells. Therefore, the obtained foamed molded product is a foamed molded product that is lightweight, excellent in heat insulation and compression properties, and has a good appearance, and is a machine part and interior / exterior material for automobiles, rollers and cable parts for household appliances, and construction. Widely used as a material.
 1  シリンダー
 2  ヒーター
 3  熱電対
 4  樹脂混合物
 5  原料供給口
 6  スクリュー
 7  フィードゾーン
 8  コンプレッションゾーン
 9  メータリングゾーン
 10 溶融混合物
 11 ダイ
 12 発泡成形体
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Heater 3 Thermocouple 4 Resin mixture 5 Raw material supply port 6 Screw 7 Feed zone 8 Compression zone 9 Metering zone 10 Molten mixture 11 Die 12 Foam molding

Claims (10)

  1.  発泡成分と樹脂成分とを含む樹脂混合物をシリンダー内で混練して溶融混合物とする混合工程と、前記溶融混合物をダイを経て押出し成形する成形工程とを含む製造方法であって、
     前記発泡成分は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する膨張剤とから構成される熱膨張性微小球を必須とし、
     前記シリンダーの最高温度が前記ダイの温度よりも低く、その温度差が10~150℃の範囲にある、
    発泡成形体の製造方法。
    A production method comprising a mixing step of kneading a resin mixture containing a foaming component and a resin component in a cylinder to form a molten mixture, and a molding step of extruding the molten mixture through a die,
    The foaming component is essentially a thermally expandable microsphere composed of an outer shell made of a thermoplastic resin and an expansion agent encapsulated therein and vaporized by heating,
    The maximum temperature of the cylinder is lower than the temperature of the die, and the temperature difference is in the range of 10 to 150 ° C .;
    A method for producing a foam molded article.
  2.  前記シリンダーの最低温度が前記樹脂成分の溶融温度以上であり、前記膨張剤の蒸気圧が前記シリンダー最高温度において0.1~5.0MPaの範囲である、請求項1に記載の発泡成形体の製造方法。 The foam molded article according to claim 1, wherein the minimum temperature of the cylinder is equal to or higher than the melting temperature of the resin component, and the vapor pressure of the expansion agent is in the range of 0.1 to 5.0 MPa at the maximum temperature of the cylinder. Production method.
  3.  前記シリンダー内の任意の点Aと、前記点Aよりも押出し方向にある任意の点Bとを選び、その温度をそれぞれTAおよびTBとしたとき、TA≦TBである、請求項1または2に記載の発泡成形体の製造方法。 3. An arbitrary point A in the cylinder and an arbitrary point B in the extrusion direction from the point A are selected, and TA ≦ TB when the temperatures are TA and TB, respectively. The manufacturing method of the foaming molding of description.
  4.  前記シリンダー内を原料供給口から押出し方向に順に、フィードゾーン、コンプレッションゾーンおよびメータリングゾーンの3つの区画に分割し、それぞれの区画の温度をC1、C2およびC3とした場合、C1≦C2≦C3である、請求項1~3のいずれかに記載の発泡成形体の製造方法。 When the inside of the cylinder is divided into three sections of a feed zone, a compression zone, and a metering zone in order from the raw material supply port in the extrusion direction, and the temperatures of the respective sections are C1, C2, and C3, C1 ≦ C2 ≦ C3 The method for producing a foam molded article according to any one of claims 1 to 3, wherein
  5.  前記樹脂混合物中の発泡成分の重量割合が、樹脂成分100重量%に対して0.1~35重量%の範囲である、請求項1~4のいずれかに記載の発泡成形体の製造方法。 The method for producing a foamed molded article according to any one of claims 1 to 4, wherein a weight ratio of the foaming component in the resin mixture is in a range of 0.1 to 35% by weight with respect to 100% by weight of the resin component.
  6.  前記発泡成分に占める熱膨張性微小球の重量割合が、発泡成分全体の40~100重量%の範囲である、請求項1~5のいずれかに記載の発泡成形体の製造方法。 The method for producing a foamed molded product according to any one of claims 1 to 5, wherein a weight ratio of the thermally expandable microspheres to the foaming component is in a range of 40 to 100% by weight of the whole foaming component.
  7.  請求項1~6のいずれかの製造方法により得られる、発泡成形体。 A foam molded article obtained by the production method according to any one of claims 1 to 6.
  8.  平均気泡径が2~500μmである、請求項7に記載の発泡成形体。 The foam molded article according to claim 7, wherein the average cell diameter is 2 to 500 µm.
  9.  独立気泡率が50%以上である、請求項7または8に記載の発泡成形体。 The foamed molded product according to claim 7 or 8, wherein the closed cell ratio is 50% or more.
  10.  b値が20以下である、請求項7~9のいずれかに記載の発泡成形体。 The foam molded article according to any one of claims 7 to 9, wherein the b * value is 20 or less.
PCT/JP2010/061655 2009-07-28 2010-07-09 Method for producing foam molded body WO2011013499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010543245A JPWO2011013499A1 (en) 2009-07-28 2010-07-09 Method for producing foam molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-175542 2009-07-28
JP2009175542 2009-07-28

Publications (1)

Publication Number Publication Date
WO2011013499A1 true WO2011013499A1 (en) 2011-02-03

Family

ID=43529160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061655 WO2011013499A1 (en) 2009-07-28 2010-07-09 Method for producing foam molded body

Country Status (2)

Country Link
JP (1) JPWO2011013499A1 (en)
WO (1) WO2011013499A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019750A (en) * 2012-07-13 2014-02-03 Matsumoto Yushi Seiyaku Co Ltd Polyester resin composition and use thereof
WO2014067467A1 (en) * 2012-11-03 2014-05-08 Chen Jiubin Foam material generator
US9902829B2 (en) 2012-05-30 2018-02-27 Akzo Nobel Chemicals International B.V. Microspheres

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983550B (en) * 2019-12-09 2021-06-08 福清市洪裕塑胶有限公司 Method for manufacturing woven bag by recycling plastic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817255A (en) * 1994-07-04 1996-01-19 Hitachi Cable Ltd Foamed insulated wire and manufacture thereof
JPH1143551A (en) * 1997-05-27 1999-02-16 Toyo Tire & Rubber Co Ltd Thermoplastic elastomer foam
JP2006027084A (en) * 2004-07-16 2006-02-02 Eidai Kako Kk Extruded/foamed molding and its production method
JP2006187931A (en) * 2005-01-06 2006-07-20 Tokai Kogyo Co Ltd Manufacturing method of long molded product made of thermoplastic resin having large number of uneven parts on its surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413785B2 (en) * 2003-08-07 2008-08-19 Tyco Electronics Corporation Heat-recoverable foam tubing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817255A (en) * 1994-07-04 1996-01-19 Hitachi Cable Ltd Foamed insulated wire and manufacture thereof
JPH1143551A (en) * 1997-05-27 1999-02-16 Toyo Tire & Rubber Co Ltd Thermoplastic elastomer foam
JP2006027084A (en) * 2004-07-16 2006-02-02 Eidai Kako Kk Extruded/foamed molding and its production method
JP2006187931A (en) * 2005-01-06 2006-07-20 Tokai Kogyo Co Ltd Manufacturing method of long molded product made of thermoplastic resin having large number of uneven parts on its surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902829B2 (en) 2012-05-30 2018-02-27 Akzo Nobel Chemicals International B.V. Microspheres
JP2014019750A (en) * 2012-07-13 2014-02-03 Matsumoto Yushi Seiyaku Co Ltd Polyester resin composition and use thereof
WO2014067467A1 (en) * 2012-11-03 2014-05-08 Chen Jiubin Foam material generator

Also Published As

Publication number Publication date
JPWO2011013499A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
EP2336226B1 (en) Masterbatch for foam molding and molded foam
JP5150042B2 (en) Resin composition for closed cell molded body and closed cell molded body
US20110263746A1 (en) Thermally expandable microcapsule and foam-molded article
WO2007074773A1 (en) Molded foam article and method of producing molded foam article
JP7050730B2 (en) Masterbatch for foam molding and foam molded products
JP5576029B2 (en) Master batch for foam molding and foam molded article
JP7417389B2 (en) Masterbatches for foam molding and foam molded products
WO2011013499A1 (en) Method for producing foam molded body
JP2013213077A (en) Thermally expandable microcapsule, master batch, and foamed molded product
JP2009161698A (en) Heat-expandable microcapsule and foamed molding
JP5339669B2 (en) Method for producing foam molded body and foam molded body
JP6777978B2 (en) Manufacturing method of foam molded product
JP2022010375A (en) Masterbatch for foam molding and foam molded body
TW202313812A (en) Thermally expandable microcapsules, expandable master batch and foam molded body
JP2005343967A (en) Resin composition for closed-cell molding and closed-cell molding
JP2001150521A (en) Method for blow-molding fine foamable material and blow molding machine for manufacturing fine foamable material
JP7121210B1 (en) Foam molding masterbatch and foam molding
JP2004292489A (en) Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP2008062393A (en) Foam for interior trimming of vehicle and its manufacturing method
JP2012077150A (en) Polylactic acid-based resin foam, and polylactic acid-based foam molded body

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2010543245

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804245

Country of ref document: EP

Kind code of ref document: A1