WO2011013343A1 - 無線通信装置及び信号検出方法 - Google Patents

無線通信装置及び信号検出方法 Download PDF

Info

Publication number
WO2011013343A1
WO2011013343A1 PCT/JP2010/004745 JP2010004745W WO2011013343A1 WO 2011013343 A1 WO2011013343 A1 WO 2011013343A1 JP 2010004745 W JP2010004745 W JP 2010004745W WO 2011013343 A1 WO2011013343 A1 WO 2011013343A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
channel estimation
cell
interference
received
Prior art date
Application number
PCT/JP2010/004745
Other languages
English (en)
French (fr)
Inventor
齊藤英樹
Original Assignee
アドコアテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドコアテック株式会社 filed Critical アドコアテック株式会社
Priority to US13/387,074 priority Critical patent/US20120122415A1/en
Priority to JP2011524654A priority patent/JPWO2011013343A1/ja
Priority to CN201080032298.4A priority patent/CN102474360A/zh
Publication of WO2011013343A1 publication Critical patent/WO2011013343A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present invention relates to a radio communication apparatus and a signal detection method, and more particularly to a radio communication apparatus and a signal detection method provided with an interference canceller that removes interference components of an interference cell from a received signal.
  • CDMA high-speed communication systems such as HSDPA (High Speed Downlink Packet Access) are known.
  • HSDPA High Speed Downlink Packet Access
  • the CDMA receiver communicates in the vicinity of the base station, the communication quality is good and communication at a high rate is possible.
  • the CDMA receiver communicates at a cell edge far from the base station, interference from adjacent cells is large, and the communicable rate can be kept low.
  • an interference canceller that removes a signal of another cell serving as an interference cell is used to improve reception performance (for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 and Patent Document 2 In order to remove the signal of the interference cell using the interference canceller, it is necessary to perform channel estimation of the interference cell and accurately obtain the reception power and thermal noise power of the interference cell.
  • Patent Document 3 there is known a method for estimating the received power of another cell serving as an interference cell by estimating all spreading codes used in the other cell (for example, Patent Document 3).
  • Patent Document 1 and Patent Document 2 the thermal noise power including both the received power and the thermal noise power of the interference cell is estimated, and the thermal noise power cannot be calculated correctly, thereby reducing the performance of the interference canceller. There is a problem. Further, in Patent Document 3, since the received power of the interference cell can be estimated, the received power of the interference cell determined by the method of Patent Document 3 is removed from the thermal noise power determined by the methods of Patent Document 1 and Patent Document 2. Thus, the thermal noise power can be obtained with high accuracy. However, since Patent Document 3 requires a large number of despreaders, there is a problem that the circuit scale increases and the power consumption increases.
  • An object of the present invention is to provide a radio communication apparatus and a signal detection method capable of improving the characteristics of an interference canceller and improving the reception performance without increasing the circuit scale and without increasing the power consumption. Is to provide.
  • the radio communication apparatus of the present invention includes channel estimation means for obtaining a channel estimation value of each path and a variance value of the channel estimation value for each cell from a received signal subjected to multipath fading, and power of the channel estimation value of each path.
  • Power sum calculating means for calculating the power sum for each cell, received power calculating means for calculating the received power of the received signal, based on the channel estimation value, the variance value, the power sum, and the received power.
  • Exponential calculation means for calculating a received power index of an interference cell based on the channel estimation value, the variance value, and the received power, and calculating the thermal noise power index, and receiving the thermal noise power index and the interference cell By filtering the received signal with the filter coefficient obtained from the power index, the interference component of the interference cell contained in the received signal is removed. It adopts a configuration comprising a canceling means.
  • the signal detection method of the present invention is a signal detection method in a wireless communication apparatus that detects a signal of a desired cell by removing interference components of an interference cell from a received signal, and is a signal detection method for each path from a received signal subjected to multipath fading.
  • Irutaringu Obtaining a channel estimation value and a variance value of the channel estimation value for each cell; calculating a power sum for each cell of the power of the channel estimation value of each path; and calculating a reception power of the received signal And calculating a thermal noise power index based on the channel estimation value, the variance value, the power sum, and the received power, and based on the channel estimate value, the variance value, and the received power, the interference cell Calculating the received power index of the received signal with a filter coefficient obtained from the thermal noise power index and the received power index of the interfering cell.
  • Irutaringu was as comprising the steps of: detecting the removed signal interference components of the interfering cells are included in the reception signal.
  • the characteristics of the interference canceller can be improved and the reception performance can be improved without increasing the circuit scale and increasing the power consumption.
  • 1 is a block diagram showing a configuration of a wireless communication apparatus according to Embodiment 1 of the present invention.
  • the block diagram which shows the structure of the demodulation part which concerns on Embodiment 1 of this invention.
  • Spectrum conceptual diagram after CDMA despreading processing according to Embodiment 1 of the present invention The block diagram which shows the structure of the demodulation part which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a diagram showing a configuration of a communication system according to Embodiment 1 of the present invention.
  • the communication system includes a plurality of interfering stations 20-1 to 20-j (j is an arbitrary natural number indicating the number of interfering stations), a desired station 30, and a radio such as a mobile phone.
  • the communication apparatus 100 is mainly configured.
  • interfering stations 20-1 to 20-j constitute adjacent cells of the desired station 30.
  • the wireless communication device 100 communicates with the desired station 30 within the cell of the desired station 30.
  • radio communication apparatus 100 receives a signal from desired station 30 and also receives signals from interfering stations 20-1 to 20-j.
  • the radio communication apparatus 100 can accurately detect the signal of the desired station 30 by accurately removing the interference components from the interference stations 20-1 to 20-j included in the received signal from the received signal. .
  • FIG. 2 is a block diagram illustrating a configuration of the wireless communication apparatus 100.
  • the wireless communication device 100 is, for example, a CDMA receiver.
  • the wireless communication apparatus 100 mainly includes an antenna 101, a wireless unit 102, an analog / digital (hereinafter referred to as “A / D”) conversion unit 103, a demodulation unit 104, and a decoding unit 105. Each configuration will be described in detail below.
  • a / D analog / digital
  • the antenna 101 receives the CDMA signal transmitted from the desired station and the interference station and outputs it to the radio unit 102.
  • the radio unit 102 performs a filtering process using a low-pass filter or a band-pass filter on the CDMA signal input from the antenna 101. Radio section 102 then outputs the filtered CDMA signal to A / D conversion section 103.
  • the A / D conversion unit 103 converts the CDMA signal that is an analog signal input from the wireless unit 102 into a digital signal and outputs the digital signal to the demodulation unit 104.
  • the demodulator 104 demodulates the digital signal input from the A / D converter 103 and outputs the demodulated signal to the decoder 105. At this time, the demodulator 104 performs processing to remove the interference component of the interference cell from the received signal. Details of the configuration of the demodulator 104 will be described later.
  • the decoding unit 105 decodes the demodulated signal input from the demodulation unit 104 and outputs the decoding result as data.
  • FIG. 3 is a block diagram illustrating a configuration of the demodulation unit 104.
  • Demodulation section 104 is mainly composed of channel estimation section 301, maximum power channel estimation selection section 302, channel power calculation section 303, received signal power calculation section 304, exponent calculation section 305, and interference cancellation section 306. Is done. Each configuration will be described in detail below.
  • the channel estimation unit 301 uses the digital signal input from the A / D conversion unit 103 to calculate the channel estimation value and the channel estimation value of a desired cell (desired station) and an interference cell (interference station) for each path constituting multipath fading. The variance value of is calculated. Then, the channel estimation unit 301 outputs the calculated channel estimation value of each path to the maximum power channel estimation selection unit 302, the channel power calculation unit 303, and the interference cancellation unit 306, and distributes the calculated channel estimation value of each path. The value is output to maximum power channel estimation selection section 302.
  • the maximum power channel estimation selection unit 302 calculates the channel estimation value of the path having the maximum power and the variance value of the channel estimation value from the channel estimation value of each path and the variance value of the channel estimation value input from the channel estimation unit 301. Select for each cell. Maximum power channel estimation selection section 302 then outputs the channel estimation value of each selected path and the variance value of the channel estimation value to exponent calculation section 305.
  • the channel power calculation unit 303 obtains the power value of each path from the channel estimation value of each path input from the channel estimation unit 301, and adds the obtained power value of each path for each cell to thereby estimate the channel of each cell. Calculate the power sum of the values. Channel power calculation section 303 then outputs the calculated value of the total power to exponent calculation section 305.
  • the reception signal power calculation unit 304 calculates the reception power of the digital signal input from the A / D conversion unit 103. Received signal power calculation section 304 then outputs the calculated received power value to exponent calculation section 305.
  • Exponent calculation section 305 includes a channel estimation value and a variance value of the path having the maximum power input from maximum power channel estimation selection section 302, a calculated value of the total power input from channel power calculation section 303, and a received signal power calculation section.
  • a thermal noise power index is calculated based on the received power calculation value input from 304.
  • exponent calculation section 305 is based on the channel estimation value and variance value of the path having the maximum power input from maximum power channel estimation selection section 302 and the received power calculation value input from reception signal power calculation section 304.
  • the reception power index of the interference cell is calculated. That is, the index calculation unit 305 calculates the thermal noise power index and the received power index of the interference cell individually. Then, exponent calculation section 305 outputs the calculated thermal noise power index and the received power index of the interference cell to interference cancellation section 306. A method for obtaining the thermal noise figure and the received power figure of the interference cell will be described later.
  • the interference cancellation unit 306 is an A / D conversion unit 103. A filtering process is performed on the digital signal input from the above to restore orthogonality by multipath and to remove the interference component of the interference cell. Then, the interference cancellation unit 306 outputs the digital signal from which the interference component is removed to the decoding unit 105 as a demodulated signal.
  • FIG. 4 is a flowchart showing the operation of the demodulation unit 104.
  • channel estimation section 301 performs despreading processing for each individual path that constitutes multipath fading and can be separated from each other, from the digital signal input from A / D conversion section 103 (step ST401). At this time, the channel estimation unit 301 may despread only a specific channel such as a pilot channel for both the desired cell and the interference cell.
  • channel estimation section 301 calculates a channel estimation value for each path and a variance value of the channel estimation value from the despread signal (step ST402). Further, the processing of step ST401 and step ST402 is performed for each path constituting the multipath.
  • the maximum power channel estimation selection unit 302 calculates the power value of the channel estimation value for each path, and selects the channel estimation value of the maximum power path and the variance value of the channel estimation value among the calculated power values. (Step ST403).
  • channel power calculation section 303 calculates the channel power by squaring the channel estimation value for each path and calculating the sum of the squared channel estimation values (step ST404). Further, the processing of step ST403 and step ST404 is performed for each cell.
  • Received signal power calculation section 304 calculates the received power of the received signal by squaring the digital signal input from A / D conversion section 103 and averaging the product of the constant section product sum (step ST405). ).
  • the exponent calculation unit 305 uses the channel estimated value of the maximum power path for each cell and the variance value of the channel estimated value, the total power for each cell, and the received power of the received signal to calculate the thermal noise power index.
  • is calculated.
  • the index calculation unit 305 calculates the thermal noise power index ⁇ using the following equation (1) (step ST406). It will be described later that the thermal noise power index ⁇ can be calculated by the equation (1).
  • exponent calculation section 305 calculates reception power index ⁇ j of the interference cell using the channel estimation value of the maximum power path for each cell, the variance value of the channel estimation value, and the reception power of the received signal. . Specifically, exponent calculation section 305 calculates the received power index ⁇ j of the interference cell using the following equation (2) (step ST407). It will be described later that the reception power index ⁇ j of the interference cell can be calculated by the equation (2).
  • the interference cancellation unit 306 uses the channel estimation value for each cell, the thermal noise figure, and the received power figure of the interfering cell to restore orthogonality due to multipath and to remove interference from the interfering cell.
  • a correct FIR filter coefficient is calculated (step ST408).
  • the interference cancellation unit 306 constructs a matrix as shown in the following equation (3).
  • the interference cancellation unit 306 calculates the filter coefficient W by the following equation (4).
  • the interference cancellation unit 306 performs FIR filtering on the digital signal input from the A / D conversion unit 103 using the calculated filter coefficient (step ST409).
  • interference cancellation section 306 performs despreading processing on the FIR filtered signal (step ST410). At this time, the interference cancellation unit 306 does not perform the despreading process on the interference cell.
  • the interference cancellation unit 306 outputs the signal after the despreading process to the decoding unit 105 as a demodulated signal. This is the end of the description of the operation of the demodulation unit 104.
  • FIG. 5 is a conceptual diagram of the spectrum after the CDMA despreading process.
  • equation (5) which is a model equation of the received signal r (n) at time n considering the interference cell, is set.
  • equation (6) which is a model equation for the received power of the received signal, is obtained.
  • a dispersion model formula of a channel estimation value considering an interference cell is set.
  • the dispersion of channel estimation values includes interference # 501 from other paths of the desired cell.
  • Interference # 502 from the interference cell and thermal noise component # 503 are included.
  • the dispersion model expression of this channel estimation value is as shown in the following expression (7).
  • the dispersion model formula of the channel estimation value when the despreading process and the channel estimation are performed is set for the number of interfering cells (J).
  • Equation (6) and (J + 1) Equations (7) the unknown is (J + 2) of the received power from the desired cell, the received power from the interference cell, and the thermal noise power.
  • the thermal noise power and the received power of the interference cell can be calculated.
  • the thermal noise power index ⁇ can be calculated by the equation (1)
  • the received power index ⁇ j of the interference cell can be calculated by the equation (2).
  • reception is performed by one antenna.
  • the present embodiment is not limited to this, and reception may be performed by a plurality of antennas.
  • the thermal noise power index and the received power index of the interference cell can be calculated for each antenna. Further, by averaging the thermal noise power index calculated for each antenna and the received power index of the interference cell between the antennas, the thermal noise power index and the received power index of the interference cell can be calculated with higher accuracy.
  • FIG. 6 is a block diagram showing a configuration of demodulation section 600 according to Embodiment 2 of the present invention.
  • FIG. 6 adds an interference target cell number determination unit 601 to the demodulation unit 104 according to Embodiment 1 shown in FIG. 3 and has an exponent calculation unit 602 instead of the exponent calculation unit 305.
  • an interference canceling unit 603 is provided instead of the interference canceling unit 306. 6 parts having the same configuration as in FIG. 3 are denoted by the same reference numerals and description thereof is omitted.
  • the configuration of the communication system is the same as FIG 1, configuration of a radio communication apparatus, since except having a demodulator 600 instead of the demodulator 104 is the same as FIG. 2, the Description is omitted.
  • the channel estimation unit 301 uses the digital signal input from the A / D conversion unit 103 to calculate the channel estimation value and the channel estimation value of a desired cell (desired station) and an interference cell (interference station) for each path constituting multipath fading. The variance value of is calculated. Then, the channel estimation unit 301 outputs the calculated channel estimation value of each path to the maximum power channel estimation selection unit 302, the channel power calculation unit 303, and the interference cancellation unit 603, and distributes the calculated channel estimation value of each path. The value is output to maximum power channel estimation selection section 302.
  • the maximum power channel estimation selection unit 302 calculates the channel estimation value of the path having the maximum power and the variance value of the channel estimation value from the channel estimation value of each path and the variance value of the channel estimation value input from the channel estimation unit 301. Select for each cell. Maximum power channel estimation selection section 302 then outputs the channel estimation value of each selected path and the variance value of the channel estimation value to exponent calculation section 602.
  • the reception signal power calculation unit 304 calculates the reception power of the reception signal input from the A / D conversion unit 103. Received signal power calculation section 304 then outputs the calculated received power value to exponent calculation section 602.
  • the channel power calculation unit 303 obtains the power value of each path from the channel estimation value of each path input from the channel estimation unit 301, and adds the obtained power value of each path for each cell to thereby estimate the channel of each cell. Calculate the power sum of the values. Channel power calculation section 303 then outputs the calculated value of the total power to interference target cell number determination section 601.
  • the interference target cell number determination unit 601 outputs the input power sum to the exponent calculation unit 602 when the calculated value of the power sum input from the channel power calculation unit 303 is larger than the threshold value. Also, the interference target cell number determination unit 601 does not output the input power sum to the exponent calculation unit 602 when the calculated value of the power sum input from the channel power calculation unit 303 is equal to or less than the threshold value. Further, the interference target cell number determination unit 601 counts cells having a calculated power sum larger than the threshold as interference target cells. Then, the interference target cell number determination unit 601 outputs the count value as the interference target cell number to the exponent calculation unit 602 and the interference cancellation unit 603.
  • Exponent calculation section 602 receives the channel estimation value and dispersion value of the path having the maximum power input from maximum power channel estimation selection section 302, the calculated power sum input from interference target cell number determination section 601, and the received signal power Based on the calculated received power value input from the calculation unit 304, the thermal noise power index and the received power index of the interference cell are calculated. At this time, the index calculation unit 602 calculates the thermal noise power index and the received power index of the interference cell based on the number of cells to be interfered input from the interference target cell number determination unit 601 by calculation excluding cells other than the interference target cell. Is calculated. Then, exponent calculation section 602 outputs the calculated thermal noise power index and the received power index of the interference cell to interference cancellation section 603.
  • the interference cancellation unit 603 Based on the channel estimation value of each cell input from the channel estimation unit 301, the thermal noise power index input from the index calculation unit 602, and the received power index of the interference cell, the interference cancellation unit 603 A filtering process is performed on the digital signal input from the above to restore orthogonality by multipath and to remove the interference component of the interference cell. At this time, the interference cancellation unit 603 does not remove the interference of cells other than the interference target cell based on the number of interference target cells input from the interference target cell number determination unit 601. Then, the interference cancellation unit 603 outputs the digital signal from which the interference component is removed to the decoding unit 105 as a demodulated signal.
  • signals may be received by a plurality of antennas.
  • the power consumption can be further reduced.
  • the radio communication apparatus and signal detection method according to the present invention are particularly suitable for removing the interference component of the interference cell from the received signal by the interference canceller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 回路規模を大きくすることなく、また消費電力を増加させることなく、干渉キャンセラの特性を向上させることができるとともに、受信性能を向上させることができる無線通信装置。この装置では、チャネル推定部(301)は、マルチパスフェージングを受けた受信信号より各パスのチャネル推定値及びチャネル推定値の分散値をセル毎に求める。チャネル電力算出部(303)は、各パスのチャネル推定値の電力のセル毎の電力総和を算出する。受信信号電力算出部(304)は、受信信号の受信電力を算出する。指数算出部(305)は、チャネル推定値と分散値と電力総和と受信電力とに基づいて熱雑音電力指数を算出するとともに、チャネル推定値と分散値と受信電力とに基づいて干渉セルの受信電力指数を算出する。

Description

無線通信装置及び信号検出方法
 本発明は、無線通信装置及び信号検出方法に関し、特に受信信号から干渉セルの干渉成分を除去する干渉キャンセラを備えた無線通信装置及び信号検出方法に関する。
 従来、HSDPA(High Speed Downlink Packet Access)等の、CDMAの高速化通信システムが知られている。このようなCDMAの高速化通信システムにおいて、CDMA受信機は、基地局の近傍において通信する場合には、通信品質が良く、高レートでの通信が可能である。一方、CDMA受信機は、基地局から遠いセルエッジにおいて通信する場合には、隣接セルからの干渉が大きく、通信可能なレートを低く抑えられてしまう。
 また、従来、CDMA受信機において、セルエッジにおけるレートの低下を防ぐために、干渉セルとなる他セルの信号を除去する干渉キャンセラを用いて、受信性能の向上を図るものが知られている(例えば、特許文献1及び特許文献2)。干渉キャンセラを用いて干渉セルの信号を除去するためには、干渉セルのチャネル推定を実施するとともに、干渉セルの受信電力及び熱雑音電力を正確に求める必要がある。
 また、従来、他セルで使用されている拡散コードを全て推定することにより、干渉セルとなる他セルの受信電力を推定する方法が知られている(例えば、特許文献3)。
特開2005-328311号公報 特開2006-54900号公報 米国特許第6956893号明細書
 しかしながら、特許文献1及び特許文献2においては、干渉セルの受信電力と熱雑音電力との両方を含む熱雑音電力が推定され、正しく熱雑音電力を算出できないことにより、干渉キャンセラの性能が低下するという問題がある。また、特許文献3においては、干渉セルの受信電力を推定できるので、特許文献1及び特許文献2の方法により求めた熱雑音電力から、特許文献3の方法により求めた干渉セルの受信電力を取り除くことにより、精度良く熱雑音電力を求めることができる。しかし、特許文献3においては、逆拡散器を多数必要とするので、回路規模が大きくなるとともに消費電力が増加するという問題がある。
 本発明の目的は、回路規模を大きくすることなく、また消費電力を増加させることなく、干渉キャンセラの特性を向上させることができるとともに、受信性能を向上させることができる無線通信装置及び信号検出方法を提供することである。
 本発明の無線通信装置は、マルチパスフェージングを受けた受信信号より各パスのチャネル推定値及び前記チャネル推定値の分散値をセル毎に求めるチャネル推定手段と、各パスの前記チャネル推定値の電力のセル毎の電力総和を算出する電力総和算出手段と、前記受信信号の受信電力を算出する受信電力算出手段と、前記チャネル推定値と前記分散値と前記電力総和と前記受信電力とに基づいて熱雑音電力指数を算出するとともに、前記チャネル推定値と前記分散値と前記受信電力とに基づいて干渉セルの受信電力指数を算出する指数算出手段と、前記熱雑音電力指数及び前記干渉セルの受信電力指数により求めたフィルタ係数で前記受信信号をフィルタリングすることにより、前記受信信号に含まれる干渉セルの干渉成分を除去する干渉キャンセル手段と、を具備する構成を採る。
 本発明の信号検出方法は、受信信号より干渉セルの干渉成分を除去して所望セルの信号を検出する無線通信装置における信号検出方法であって、マルチパスフェージングを受けた受信信号より各パスのチャネル推定値及び前記チャネル推定値の分散値をセル毎に求めるステップと、各パスの前記チャネル推定値の電力のセル毎の電力総和を算出するステップと、前記受信信号の受信電力を算出するステップと、前記チャネル推定値と前記分散値と前記電力総和と前記受信電力とに基づいて熱雑音電力指数を算出するとともに、前記チャネル推定値と前記分散値と前記受信電力とに基づいて前記干渉セルの受信電力指数を算出するステップと、前記熱雑音電力指数及び前記干渉セルの受信電力指数により求めたフィルタ係数で前記受信信号をフィルタリングすることにより、前記受信信号に含まれる干渉セルの干渉成分を除去した信号を検出するステップと、を具備するようにした。
 本発明によれば、回路規模を大きくすることなく、また消費電力を増加させることなく、干渉キャンセラの特性を向上させることができるとともに、受信性能を向上させることができる。
本発明の実施の形態1に係る通信システムを示す図 本発明の実施の形態1に係る無線通信装置の構成を示すブロック図 本発明の実施の形態1に係る復調部の構成を示すブロック図 本発明の実施の形態1に係る復調部の動作を示すフロー図 本発明の実施の形態1に係るCDMA逆拡散処理後のスペクトル概念図 本発明の実施の形態2に係る復調部の構成を示すブロック図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る通信システムの構成を示す図である。
 図1より、本実施の形態における通信システムは、複数の干渉局20-1~20-j(jは、干渉局の数を示す任意の自然数)と、所望局30と、携帯電話等の無線通信装置100とから主に構成される。
 図1において、干渉局20-1~20-jは、所望局30の隣接セルを構成する。無線通信装置100は、所望局30のセル内で所望局30と通信を行っている。この際、無線通信装置100は、所望局30からの信号を受信するとともに、干渉局20-1~20-jからの信号も受信する。
 従って、無線通信装置100は、受信信号に含まれる干渉局20-1~20-jによる干渉成分を、受信信号から精度良く除去することにより、所望局30の信号を精度良く検出することができる。
 次に、無線通信装置100の構成について、図2を用いて説明する。図2は、無線通信装置100の構成を示すブロック図である。無線通信装置100は、例えばCDMA受信機である。
 無線通信装置100は、アンテナ101と、無線部102と、アナログ/ディジタル(以下「A/D」と記載する)変換部103と、復調部104と、復号部105とから主に構成される。以下に、各構成について、詳細に説明する。
 アンテナ101は、所望局及び干渉局より送信されたCDMA信号を受信して無線部102へ出力する。
 無線部102は、アンテナ101から入力したCDMA信号に対して、ローパスフィルタまたはバンドパスフィルタを用いたフィルタ処理を行う。そして、無線部102は、フィルタ処理したCDMA信号をA/D変換部103へ出力する。
 A/D変換部103は、無線部102から入力したアナログ信号であるCDMA信号をディジタル信号に変換して復調部104へ出力する。
 復調部104は、A/D変換部103から入力したディジタル信号を復調して復号部105へ出力する。この際、復調部104は、受信信号から干渉セルの干渉成分を除去する処理を行う。なお、復調部104の構成の詳細については後述する。
 復号部105は、復調部104から入力した復調後の信号を復号し、復号結果をデータとして出力する。
 次に、復調部104の構成の詳細について、図3を用いて説明する。図3は、復調部104の構成を示すブロック図である。
 復調部104は、チャネル推定部301と、最大電力チャネル推定選択部302と、チャネル電力算出部303と、受信信号電力算出部304と、指数算出部305と、干渉キャンセル部306とから主に構成される。以下に、各構成について、詳細に説明する。
 チャネル推定部301は、A/D変換部103から入力したディジタル信号より、マルチパスフェージングを構成するパス毎に、所望セル(所望局)及び干渉セル(干渉局)のチャネル推定値及びチャネル推定値の分散値を算出する。そして、チャネル推定部301は、算出した各パスのチャネル推定値を最大電力チャネル推定選択部302とチャネル電力算出部303と干渉キャンセル部306へ出力するとともに、算出した各パスのチャネル推定値の分散値を最大電力チャネル推定選択部302へ出力する。
 最大電力チャネル推定選択部302は、チャネル推定部301から入力した各パスのチャネル推定値及びチャネル推定値の分散値の中から、最大電力を有するパスのチャネル推定値及びチャネル推定値の分散値をセル毎に選択する。そして、最大電力チャネル推定選択部302は、選択した各パスのチャネル推定値及びチャネル推定値の分散値を指数算出部305へ出力する。
 チャネル電力算出部303は、チャネル推定部301から入力した各パスのチャネル推定値から各パスの電力値を求め、求めた各パスの電力値をセル毎に加算することにより、各セルのチャネル推定値の電力総和を算出する。そして、チャネル電力算出部303は、電力総和の算出値を指数算出部305へ出力する。
 受信信号電力算出部304は、A/D変換部103から入力したディジタル信号の受信電力を算出する。そして、受信信号電力算出部304は、受信電力の算出値を指数算出部305へ出力する。
 指数算出部305は、最大電力チャネル推定選択部302から入力した最大電力を有するパスのチャネル推定値及び分散値と、チャネル電力算出部303から入力した電力総和の算出値と、受信信号電力算出部304から入力した受信電力の算出値とに基づいて、熱雑音電力指数を算出する。また、指数算出部305は、最大電力チャネル推定選択部302から入力した最大電力を有するパスのチャネル推定値及び分散値と、受信信号電力算出部304から入力した受信電力の算出値とに基づいて、干渉セルの受信電力指数を算出する。即ち、指数算出部305は、熱雑音電力指数と干渉セルの受信電力指数とを個別に算出する。そして、指数算出部305は、算出した熱雑音電力指数及び干渉セルの受信電力指数を干渉キャンセル部306へ出力する。なお、熱雑音指数及び干渉セルの受信電力指数を求める方法については後述する。
 干渉キャンセル部306は、チャネル推定部301から入力した各セルのチャネル推定値と、指数算出部305から入力した熱雑音電力指数及び干渉セルの受信電力指数とに基づいて、A/D変換部103から入力したディジタル信号に対して、マルチパスによる直交性を復元し、かつ干渉セルの干渉成分を除去するフィルタリング処理を行う。そして、干渉キャンセル部306は、干渉成分を除去したディジタル信号を復調後の信号として復号部105へ出力する。
 以上で、復調部104の構成の説明を終える。
 次に、復調部104の動作について、図4を用いて説明する。図4は、復調部104の動作を示すフロー図である。
 最初に、チャネル推定部301は、A/D変換部103から入力したディジタル信号より、マルチパスフェージングを構成する、互いに分離可能な個々のパス毎に逆拡散処理する(ステップST401)。この際、チャネル推定部301は、所望セルと干渉セルの双方について、パイロットチャネル等の特定のチャネルのみを逆拡散すればよい。
 また、チャネル推定部301は、逆拡散した信号より、パス毎のチャネル推定値及びチャネル推定値の分散値を算出する(ステップST402)。また、ステップST401及びステップST402の処理は、マルチパスを構成する各パスについて行う。
 次に、最大電力チャネル推定選択部302は、パス毎のチャネル推定値の電力値を算出し、算出した電力値のなかの最大電力のパスのチャネル推定値及びチャネル推定値の分散値を選択する(ステップST403)。
 また、チャネル電力算出部303は、パス毎のチャネル推定値を2乗し、2乗した各チャネル推定値の総和を求めることによりチャネル電力を算出する(ステップST404)。また、ステップST403及びステップST404の処理は各セルについて行う。
 また、受信信号電力算出部304は、A/D変換部103から入力したディジタル信号を2乗して、一定区間積和した値を平均化することによって受信信号の受信電力を算出する(ステップST405)。
 次に、指数算出部305は、セル毎の最大電力のパスのチャネル推定値及びチャネル推定値の分散値と、セル毎の電力総和と、受信信号の受信電力とを用いて、熱雑音電力指数βを算出する。具体的には、指数算出部305は、以下の(1)式を用いて熱雑音電力指数βを算出する(ステップST406)。なお、熱雑音電力指数βが(1)式によって算出できることについては後述する。
Figure JPOXMLDOC01-appb-M000001
 次に、指数算出部305は、セル毎の最大電力のパスのチャネル推定値及びチャネル推定値の分散値と、受信信号の受信電力とを用いて、干渉セルの受信電力指数γを算出する。具体的には、指数算出部305は、以下の(2)式を用いて干渉セルの受信電力指数γを算出する(ステップST407)。なお、干渉セルの受信電力指数γが(2)式によって算出できることについては後述する。
Figure JPOXMLDOC01-appb-M000002
 次に、干渉キャンセル部306は、セル毎のチャネル推定値と熱雑音指数と干渉セルの受信電力指数とを用いて、マルチパスによる直交性を復元し、かつ干渉セルからの干渉を除去するようなFIRフィルタ係数を算出する(ステップST408)。具体的には、干渉キャンセル部306は、以下の(3)式のようなマトリックスを構築する。
Figure JPOXMLDOC01-appb-M000003
 また、干渉キャンセル部306は、以下の(4)式によりフィルタ係数Wを算出する。
Figure JPOXMLDOC01-appb-M000004
 また、干渉キャンセル部306は、算出したフィルタ係数を用いて、A/D変換部103から入力したディジタル信号をFIRフィルタリングする(ステップST409)。
 次に、干渉キャンセル部306は、FIRフィルタリングした信号を逆拡散処理する(ステップST410)。この際、干渉キャンセル部306は、干渉セルについては逆拡散処理を実施しない。
 そして、干渉キャンセル部306は、逆拡散処理後の信号を復調後の信号として復号部105へ出力する。以上で、復調部104の動作の説明を終える。
 次に、(1)式により熱雑音電力指数βが算出できるとともに、(2)式により干渉セルの受信電力指数γが算出できる理由について、図5を用いて説明する。図5は、CDMA逆拡散処理後のスペクトル概念図である。
 まず、干渉セルを考慮した時刻nの受信信号r(n)のモデル式である(5)式を設定する。
Figure JPOXMLDOC01-appb-M000005
 (5)式の両辺を2乗すると、受信信号の受信電力のモデル式である(6)式が得られる。
Figure JPOXMLDOC01-appb-M000006
 次に、干渉セルを考慮したチャネル推定値の分散モデル式を設定する。図5に示すように、例えば、所望セルのマルチパスの各パスについて、逆拡散処理及びチャネル推定を実施した場合、チャネル推定値の分散には、所望セルの他のパスからの干渉#501と、干渉セルからの干渉#502と、熱雑音成分#503とが含まれる。このチャネル推定値の分散モデル式は、以下の(7)式のようになる。
Figure JPOXMLDOC01-appb-M000007
 同様に、干渉セルのマルチパスの各パスについて、逆拡散処理及びチャネル推定を実施した場合のチャネル推定値の分散モデル式を、干渉セル数分(J個)設定する。
 (6)式及び(J+1)個の(7)式において、未知数は、所望セルからの受信電力と、干渉セルからの受信電力と、熱雑音電力との(J+2)個となるので、(J+2)元1次方程式を解くことによって、熱雑音電力及び干渉セルの受信電力を算出できる。これらを用いて、(1)式により熱雑音電力指数βを算出することができるとともに、(2)式により干渉セルの受信電力指数γを算出することができる。
 本実施の形態において、1つのアンテナにより受信することにしたが、本実施の形態はこれに限らず、複数のアンテナにより受信するようにしても良い。この場合、アンテナ毎に熱雑音電力指数及び干渉セルの受信電力指数を算出することができる。また、アンテナ毎に算出した熱雑音電力指数及び干渉セルの受信電力指数をアンテナ間で平均化することにより、さらに高精度に熱雑音電力指数及び干渉セルの受信電力指数を算出することができる。
 このように、本実施の形態によれば、干渉セルの受信電力指数と熱雑音電力指数とを分離して推定することにより、熱雑音電力の推定精度を向上させることができ、干渉キャンセラの特性を向上させることができるとともに、受信性能を向上させることができる。また、本実施の形態によれば、干渉セルについては、パイロットチャネル等の特定のチャネルのみを逆拡散処理すればよいので、回路規模を抑制することができるとともに、消費電力を低減することができる。
 (実施の形態2)
 図6は、本発明の実施の形態2に係る復調部600の構成を示すブロック図である。
 図6に示す復調部600は、図3に示す実施の形態1に係る復調部104に対して、干渉対象セル数判定部601を追加し、指数算出部305の代わりに指数算出部602を有し、干渉キャンセル部306の代わりに干渉キャンセル部603を有する。なお、図6において、図3と同一構成である部分には同一の符号を付してその説明を省略する。また、本実施の形態において、通信システムの構成は図1と同一であるとともに、無線通信装置の構成は、復調部104の代わりに復調部600を有する以外は図2と同一であるので、その説明を省略する。
 チャネル推定部301は、A/D変換部103から入力したディジタル信号より、マルチパスフェージングを構成するパス毎に、所望セル(所望局)及び干渉セル(干渉局)のチャネル推定値及びチャネル推定値の分散値を算出する。そして、チャネル推定部301は、算出した各パスのチャネル推定値を最大電力チャネル推定選択部302とチャネル電力算出部303と干渉キャンセル部603へ出力するとともに、算出した各パスのチャネル推定値の分散値を最大電力チャネル推定選択部302へ出力する。
 最大電力チャネル推定選択部302は、チャネル推定部301から入力した各パスのチャネル推定値及びチャネル推定値の分散値の中から、最大電力を有するパスのチャネル推定値及びチャネル推定値の分散値をセル毎に選択する。そして、最大電力チャネル推定選択部302は、選択した各パスのチャネル推定値及びチャネル推定値の分散値を指数算出部602へ出力する。
 受信信号電力算出部304は、A/D変換部103から入力した受信信号の受信電力を算出する。そして、受信信号電力算出部304は、受信電力の算出値を指数算出部602へ出力する。
 チャネル電力算出部303は、チャネル推定部301から入力した各パスのチャネル推定値から各パスの電力値を求め、求めた各パスの電力値をセル毎に加算することにより、各セルのチャネル推定値の電力総和を算出する。そして、チャネル電力算出部303は、電力総和の算出値を干渉対象セル数判定部601へ出力する。
 干渉対象セル数判定部601は、チャネル電力算出部303から入力した電力総和の算出値が閾値より大きい場合には入力した電力総和を指数算出部602へ出力する。また、干渉対象セル数判定部601は、チャネル電力算出部303から入力した電力総和の算出値が閾値以下の場合には入力した電力総和を指数算出部602へ出力しない。また、干渉対象セル数判定部601は、閾値より大きい電力総和の算出値のセルを干渉対象セルとしてカウントする。そして、干渉対象セル数判定部601は、カウント値を干渉対象セル数として指数算出部602及び干渉キャンセル部603へ出力する。
 指数算出部602は、最大電力チャネル推定選択部302から入力した最大電力を有するパスのチャネル推定値及び分散値と、干渉対象セル数判定部601から入力した電力総和の算出値と、受信信号電力算出部304から入力した受信電力の算出値とに基づいて、熱雑音電力指数及び干渉セルの受信電力指数を算出する。この際、指数算出部602は、干渉対象セル数判定部601から入力した干渉対象セル数に基づいて、干渉対象セル以外のセルを除いた演算により、熱雑音電力指数及び干渉セルの受信電力指数を算出する。そして、指数算出部602は、算出した熱雑音電力指数及び干渉セルの受信電力指数を干渉キャンセル部603へ出力する。
 干渉キャンセル部603は、チャネル推定部301から入力した各セルのチャネル推定値と、指数算出部602から入力した熱雑音電力指数及び干渉セルの受信電力指数とに基づいて、A/D変換部103から入力したディジタル信号に対して、マルチパスによる直交性を復元し、かつ干渉セルの干渉成分を除去するフィルタリング処理を行う。この際、干渉キャンセル部603は、干渉対象セル数判定部601から入力した干渉対象セル数に基づいて、干渉対象セル以外のセルの干渉は除去しない。そして、干渉キャンセル部603は、干渉成分を除去したディジタル信号を復調後の信号として復号部105へ出力する。
 なお、復調部600の動作は、干渉対象セル以外のセルを除いて演算及び処理を行う以外は図4と同一であるので、その説明を省略する。また、本実施の形態において、上記の実施の形態1と同様に、複数のアンテナにより信号を受信するようにしても良い。
 このように、本実施の形態によれば、上記の実施の形態1の効果に加えて、電力総和の算出値が閾値以下の干渉対象ではないセルの受信電力指数の算出及び干渉対象ではないセルの信号検出を行わないので、消費電力をさらに低減することができる。
 2009年7月29日出願の特願2009-176759の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明にかかる無線通信装置及び信号検出方法は、特に干渉キャンセラにより受信信号から干渉セルの干渉成分を除去するのに好適である。

Claims (7)

  1.  マルチパスフェージングを受けた受信信号より各パスのチャネル推定値及び前記チャネル推定値の分散値をセル毎に求めるチャネル推定手段と、
     各パスの前記チャネル推定値の電力のセル毎の電力総和を算出する電力総和算出手段と、
     前記受信信号の受信電力を算出する受信電力算出手段と、
     前記チャネル推定値と前記分散値と前記電力総和と前記受信電力とに基づいて熱雑音電力指数を算出するとともに、前記チャネル推定値と前記分散値と前記受信電力とに基づいて干渉セルの受信電力指数を算出する指数算出手段と、
     前記熱雑音電力指数及び前記干渉セルの受信電力指数により求めたフィルタ係数で前記受信信号をフィルタリングすることにより、前記受信信号に含まれる干渉セルの干渉成分を除去する干渉キャンセル手段と、
     を具備する無線通信装置。
  2.  前記指数算出手段は、前記電力総和が閾値以上のセルの前記干渉セルの受信電力指数を算出する請求項1記載の無線通信装置。
  3.  前記指数算出手段は、(1)式により前記熱雑音電力指数を算出する請求項1記載の無線通信装置。
    Figure JPOXMLDOC01-appb-M000008
  4.  前記指数算出手段は、(2)式により前記干渉セルの受信電力指数を算出する請求項1記載の無線通信装置。
    Figure JPOXMLDOC01-appb-M000009
  5.  複数のアンテナにより前記受信信号を受信する受信手段をさらに具備し、
     前記指数算出手段は、前記アンテナ毎に前記熱雑音電力指数を算出する請求項1記載の無線通信装置。
  6.  複数のアンテナにより前記受信信号を受信する受信手段をさらに具備し、
     前記指数算出手段は、前記アンテナ毎に前記干渉セルの受信電力指数を算出する請求項1記載の無線通信装置。
  7.  受信信号より干渉セルの干渉成分を除去して所望セルの信号を検出する無線通信装置における信号検出方法であって、
     マルチパスフェージングを受けた受信信号より各パスのチャネル推定値及び前記チャネル推定値の分散値をセル毎に求めるステップと、
     各パスの前記チャネル推定値の電力のセル毎の電力総和を算出するステップと、
     前記受信信号の受信電力を算出するステップと、
     前記チャネル推定値と前記分散値と前記電力総和と前記受信電力とに基づいて熱雑音電力指数を算出するとともに、前記チャネル推定値と前記分散値と前記受信電力とに基づいて前記干渉セルの受信電力指数を算出するステップと、
     前記熱雑音電力指数及び前記干渉セルの受信電力指数により求めたフィルタ係数で前記受信信号をフィルタリングすることにより、前記受信信号に含まれる干渉セルの干渉成分を除去した信号を検出するステップと、
     を具備する信号検出方法。
PCT/JP2010/004745 2009-07-29 2010-07-26 無線通信装置及び信号検出方法 WO2011013343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/387,074 US20120122415A1 (en) 2009-07-29 2010-07-26 Wireless communication device and signal detecting method
JP2011524654A JPWO2011013343A1 (ja) 2009-07-29 2010-07-26 無線通信装置及び信号検出方法
CN201080032298.4A CN102474360A (zh) 2009-07-29 2010-07-26 无线通信装置和信号检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009176759 2009-07-29
JP2009-176759 2009-07-29

Publications (1)

Publication Number Publication Date
WO2011013343A1 true WO2011013343A1 (ja) 2011-02-03

Family

ID=43529015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004745 WO2011013343A1 (ja) 2009-07-29 2010-07-26 無線通信装置及び信号検出方法

Country Status (4)

Country Link
US (1) US20120122415A1 (ja)
JP (1) JPWO2011013343A1 (ja)
CN (1) CN102474360A (ja)
WO (1) WO2011013343A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511638A (ja) * 2011-03-01 2014-05-15 クゥアルコム・インコーポレイテッド 基準信号干渉除去のためのチャネル推定
JP2016508304A (ja) * 2012-12-11 2016-03-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムで信号を送受信する方法及びこのための装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643952B1 (ko) * 2009-12-23 2016-08-01 삼성전자주식회사 이동 통신 시스템에서 채널 추정 장치 및 방법
US10880132B1 (en) * 2019-10-28 2020-12-29 Cisco Technology, Inc. Distortion cancellation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054900A (ja) * 2004-07-20 2006-02-23 Nec Corp スペクトラム拡散受信機のチップ等化器、該チップ等化器で用いられる雑音指数演算方法及びフィルタ係数決定方法
JP2007534192A (ja) * 2003-08-05 2007-11-22 大唐移動通信設備有限公司 直交コードcdma信号検出方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470047B1 (en) * 2001-02-20 2002-10-22 Comsys Communications Signal Processing Ltd. Apparatus for and method of reducing interference in a communications receiver
US7496164B1 (en) * 2003-05-02 2009-02-24 At&T Mobility Ii Llc Systems and methods for interference cancellation in a radio receiver system
KR100584407B1 (ko) * 2003-06-30 2006-05-26 삼성전자주식회사 이동통신 시스템의 수신 전력 측정 장치 및 방법
JP4216694B2 (ja) * 2003-11-07 2009-01-28 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局及び送信電力設定方法
US7349504B2 (en) * 2005-03-18 2008-03-25 Navini Networks, Inc. Method and system for mitigating interference in communication system
US7991088B2 (en) * 2005-11-15 2011-08-02 Tommy Guess Iterative interference cancellation using mixed feedback weights and stabilizing step sizes
JP2007214750A (ja) * 2006-02-08 2007-08-23 Nec Corp 無線受信機および雑音推定値補正方法
US7830952B2 (en) * 2006-02-13 2010-11-09 Telefonaktiebolaget L M Ericsson (Publ) Reduced complexity interference suppression for wireless communications
US7822385B2 (en) * 2006-04-27 2010-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Adjacent channel interference supression
EP1892908A1 (en) * 2006-08-24 2008-02-27 TTPCOM Limited Interference cancellation receiver and method
JP4769893B2 (ja) * 2007-03-30 2011-09-07 富士通株式会社 イコライザの制御装置及び制御方法並びに前記制御装置をそなえた無線端末
US20090280747A1 (en) * 2008-05-07 2009-11-12 Motorola, Inc. Method and Apparatus for Interference Cancellation in a Wireless Communication System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534192A (ja) * 2003-08-05 2007-11-22 大唐移動通信設備有限公司 直交コードcdma信号検出方法
JP2006054900A (ja) * 2004-07-20 2006-02-23 Nec Corp スペクトラム拡散受信機のチップ等化器、該チップ等化器で用いられる雑音指数演算方法及びフィルタ係数決定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511638A (ja) * 2011-03-01 2014-05-15 クゥアルコム・インコーポレイテッド 基準信号干渉除去のためのチャネル推定
JP2016508304A (ja) * 2012-12-11 2016-03-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムで信号を送受信する方法及びこのための装置

Also Published As

Publication number Publication date
JPWO2011013343A1 (ja) 2013-01-07
US20120122415A1 (en) 2012-05-17
CN102474360A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
US8000655B2 (en) Uplink multi-cell signal processing for interference suppression
JP4375337B2 (ja) 移動通信システム及びそれに用いる無線装置
KR101433294B1 (ko) 단일 사용자 검출과 다중 사용자 검출 간에 스위칭하기 위한 방법 및 장치
EP2359490A1 (en) Mimo receiver having improved sir estimation and corresponding method
WO2002027957A1 (fr) Appareil de terminal de communication et procede de demodulation
WO2012035453A1 (en) Interferer parameter estimation method and apparatus
WO2012144620A1 (ja) 受信機、データ受信方法、ならびにチャネル推定装置およびその方法
JP4801775B2 (ja) イコライザの制御装置及び制御方法並びに前記制御装置をそなえた無線端末
WO2011013343A1 (ja) 無線通信装置及び信号検出方法
JP5431498B2 (ja) 移動体通信のための受信機及び方法
CN105763223A (zh) 用于在无线通信系统中检测同步的接收器和方法
EP1679818A1 (en) Removing bias in a pilot symbol error rate for receivers
US20130051448A1 (en) Radio receiver in a wireless communication system
CN103379057B (zh) 接收器电路以及由接收器电路所执行的方法
US8781424B2 (en) Radio receiver apparatus of a cellular radio network
US9184785B2 (en) Cellular communications system
KR101643952B1 (ko) 이동 통신 시스템에서 채널 추정 장치 및 방법
KR101513562B1 (ko) 무선통신 시스템에서 레이크 수신기와 등화기를 이용하여 신호를 수신하기 위한 장치 및 방법
US9344303B1 (en) Adaptive signal covariance estimation for MMSE equalization
EP2654257B1 (en) Method and apparatus for blind detection of secondary pilot signal in a wireless communication system
CN104509051B (zh) 信道估计方法及接收机
KR100860213B1 (ko) 탭 위치 가변 적응 등화기를 구비한 수신기 및 그를 이용한적응 등화 방법
JP4418289B2 (ja) ジオメトリ測定方法、無線受信装置及び移動局装置
KR100844111B1 (ko) 무선통신시스템에서의 간섭제거를 위한 시공간 적응등화방법
CN102907007B (zh) 用于通过路径选择来改善干扰消除的方法和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032298.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524654

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13387074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804096

Country of ref document: EP

Kind code of ref document: A1