WO2011012733A1 - Sistema para la compensación de energía reactiva en sistema de energía eléctrica - Google Patents

Sistema para la compensación de energía reactiva en sistema de energía eléctrica Download PDF

Info

Publication number
WO2011012733A1
WO2011012733A1 PCT/ES2009/070316 ES2009070316W WO2011012733A1 WO 2011012733 A1 WO2011012733 A1 WO 2011012733A1 ES 2009070316 W ES2009070316 W ES 2009070316W WO 2011012733 A1 WO2011012733 A1 WO 2011012733A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
unit
reactive energy
static
energy
Prior art date
Application number
PCT/ES2009/070316
Other languages
English (en)
French (fr)
Inventor
Andres Agudo Araque
Original Assignee
Gamesa Innovation & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation & Technology, S.L. filed Critical Gamesa Innovation & Technology, S.L.
Priority to US13/384,644 priority Critical patent/US8847562B2/en
Priority to CN200980163069.3A priority patent/CN102714412B/zh
Priority to PCT/ES2009/070316 priority patent/WO2011012733A1/es
Priority to BR112012001936-8A priority patent/BR112012001936B1/pt
Priority to EP09847748.2A priority patent/EP2461452A4/en
Publication of WO2011012733A1 publication Critical patent/WO2011012733A1/es
Priority to IN914DEN2012 priority patent/IN2012DN00914A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/20Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates, in general, to the field of electrical energy systems and specifically, to a reactive energy compensation system in an electrical energy system. More specifically, the present invention is related to a reactive energy compensation system in an electrical energy system that includes a wind power generation unit.
  • Wind power has emerged as a promising source of renewable energy.
  • the use of wind farms to generate energy is increasingly common in both developed and developing economies. Thanks to improvements in materials, design and production technologies, the volume of commercial energy production has steadily increased. As a consequence, wind energy has become a viable and economical renewable energy source.
  • the integration into energy transmission networks is still a challenge, due to the uncertainty generated by the power produced by the power generation units.
  • energy based on wind energy is the variation in the energy supply due to the intermittent nature of the wind.
  • the non-uniformity of the energy production causes stability problems in the frequency and voltage in the energy systems. It is therefore an important challenge to implement solutions that facilitate the integration between units of electric power generation based on wind energy and energy transmission networks and at the same time maintain the quality of the energy and the stability of the energy system.
  • An important factor to improve the quality of energy in an electrical energy system is the compensation of reactive energy.
  • Energy Electric includes real energy and reactive energy.
  • Reactive energy is also known as desvatiated energy (without watts) since it does not transfer net energy to the load.
  • the proportion between real and reactive energy is defined as the power factor of an electrical energy system. Therefore, controlling the reactive energy and maintaining the power factor as close as possible to the unit is an important challenge in the transmission of electrical energy.
  • the effective regulation of the power factor guarantees that a practically constant voltage is available in a wide range of load conditions. The energy is lost in long-distance power transmission lines because the impedances of the power transmission lines increase the need for reactive energy compensation. In general, the effective compensation of reactive energy increases the energy transfer capacity of the electric power system.
  • One of the conventional technologies for reactive energy compensation is static compensation (SVC - Static VAR Compensation). However, this technology suffers from the inconvenience of fluctuating current in low voltage situations.
  • FACTS Flexible Alternating Current Transmission System
  • STATCOM Static Compensator
  • FACTS field-activated Compensator
  • STATCOM can act as a source or collector of a reactive AC power in an electric power system. Therefore, STATCOM is used to regulate the power factor in electrical energy systems.
  • Numerous control proposals have been proposed in the past. However, these control proposals fail in the attempt to successfully implement an effective solution for energy compensation and harmonic elimination.
  • the Known STATCOM implementations suffer from problems due to their monolithic design.
  • harmonic currents generated in the electrical energy system Another important aspect of reactive energy compensation is the control of harmonic currents generated in the electrical energy system.
  • the power generating unit should experience a sinusoidal load with the minimum harmonic distortion.
  • a considerable magnitude of the low-order harmonic currents in the electric power system is generated and therefore, the power generation unit experiences a non-sinusoidal load that affects the stability of the power system electric
  • Important factors that induce the generation of harmonic currents include non-linear loads (such as electric arc furnaces and static energy converters), operating conditions and grid impedances in the electric power system.
  • the presence of harmonic currents affects the quality of the energy and the stability of the energy system.
  • LC filters passive filters
  • Passive filters are designed to cancel specific harmonics generated at the end of the load.
  • passive filters are not able to effectively attenuate harmonic currents.
  • some harmonic current elimination systems based on FACTS systems have been proposed.
  • sensitive devices based on power electronics that are used in wind farms are negatively affected by FACTS systems operating near wind farms. This can cause large current distortions, which causes disconnections in wind turbines and production losses. Therefore, the use of harmonic current elimination systems based on FACTS near wind farms is a challenging task.
  • One of the objectives of the present invention is to achieve a compensation of reactive energy in an electrical energy system.
  • Another objective of the present invention is to effectively eliminate harmonic currents in the electrical energy system.
  • a further objective of the present invention is to implement an improved control strategy of the reactive energy compensation system to eliminate harmonic current in the electrical energy system.
  • Another objective of the present invention is to achieve fault tolerance and redundancy in the reactive energy compensation system.
  • a reactive energy compensation system includes the static-synchronous compensation unit (STATCOM), the harmonic current elimination unit and a compensation control unit.
  • STATCOM static-synchronous compensation unit
  • the static-synchronous compensation unit includes several synchronous-static compensation modules to compensate for the reactive energy in the electric power system.
  • the harmonic current elimination unit includes several active filter modules to eliminate the harmonic current generated in the electric power system.
  • the compensation control unit implements a sequential control mechanism to regulate the operation of the static-synchronous compensation unit and the harmonic current elimination unit.
  • the various designs of the present invention offer several advantages.
  • the present invention implements a modular design of the reactive energy compensation system.
  • the reactive energy compensation system operates according to the sequential control mechanism.
  • the present invention not only effectively manages the requirements for reactive energy compensation in the electric power system, It also effectively eliminates the harmonic current until harmonics of the order 19 under variable load conditions.
  • the present invention provides improved fault tolerance and redundancy in the reactive energy compensation system.
  • Figure 1 is a schematic diagram describing an electric power system 100, in which several embodiments of the present invention can be implemented;
  • FIG. 2 is a block diagram describing a reactive energy compensation system 108, in accordance with an embodiment of the present invention.
  • Figure 3 is a block diagram describing a synchronous static compensation unit 202, in accordance with an embodiment of the present invention
  • Figure 4 is a block diagram describing a static-synchronous compensation module 302, in accordance with an embodiment of the present invention
  • FIG. 5 is a block diagram describing a harmonic current elimination unit 204, in accordance with an embodiment of the present invention.
  • FIG. 6 is a block diagram describing an active filter module 502, in accordance with an embodiment of the present invention.
  • Figure 7 is a graph describing the total harmonic distortion relative to the total currents in the electric power system 100, in accordance with an embodiment of the present invention.
  • Figure 8 is a graph describing the current hysteresis control of a reactive energy compensation system 108, in accordance with an embodiment of the present invention. It should be borne in mind that the elements of the figures have been made simply and clearly and that they have not necessarily been drawn to scale. For example, the dimensions of some elements have been exaggerated in the figures, in relation to the other elements, to improve the compression of the embodiments of the present invention. DESCRIPTION OF A PREFERENTIAL EMBODIMENT
  • the present invention resides mainly in the combination of system elements related to the compensation of reactive energy in an electrical energy system. Therefore, the components of the apparatus have been represented, where appropriate, with conventional symbols in the figures, showing only the specific details that are relevant to the understanding of the present invention, in order not to be confusing with obvious details for the specialists in the field and therefore for the benefit of the following description.
  • a reactive energy compensation system is provided to manage the reactive energy compensation requirements in an electrical energy system.
  • the reactive energy compensation system includes the static-synchronous compensation unit (STATCOM),
  • the harmonic current elimination unit and the compensation control unit includes several synchronous-static compensation modules to compensate for the reactive energy in the electric power system.
  • the harmonic current elimination unit includes several active filter modules to eliminate the harmonic current generated in the electric power system.
  • the compensation control unit implements a sequential control mechanism to regulate the operation of the static-synchronous compensation unit and the harmonic current elimination unit.
  • Figure 1 is a schematic diagram describing an electric power system 100 in which several embodiments of the present invention can be implemented.
  • the electric power system 100 comprises a power generation unit 102, a power transmission line 104, electric charge 106, one or more reactive energy compensation systems 108a and 108b (from now on we will refer to them as a system of reactive energy compensation 108 and collectively as reactive energy compensation systems 108), and several coupling transformers 1 10a and 1 10b (hereafter referred to individually as coupling transformer 1 10 and collectively as coupling transformers 1 10) .
  • the power generation unit 102 may be any commonly known power generation facility, for example a hydraulic or thermal power plant. In one of the designs of the present invention, the power generation unit 102 may be based on a renewable energy source, more specifically, the power generation unit 102 may be an energy generating wind farm based on wind energy.
  • the electrical energy of the power generation unit 102 is transmitted to the electric charge 106 through the power transmission line 104.
  • Examples of electric charge 106 include domestic, industrial consumption, etc.
  • the power transmission line 104 has inherent inductive impedance, which causes losses of reactive energy during the transmission of energy.
  • most examples of electric charge 106 are also inductive, and therefore require reactive energy for operation.
  • the reactive energy compensation systems 108 provide locally the reactive energy required by the power transmission line 104 and the electric load 106. Therefore, the reactive energy is not obtained from the power generation unit 102 and therefore, losses in the electric power system 100 are reduced.
  • the reactive energy compensation system or systems 108 may be connected along the power transmission lines. As shown in Figure 1, the reactive energy compensation system or systems 108 are connected to the power transmission line 104 through coupling transformers 1 10. The reactive energy compensation systems 108 can be connected and disconnected of the power transmission line 104 by controlling the operation of the coupling transformers 1 10. The operation of the coupling transformers 1 10 is controlled by a monitoring and data acquisition control system (SCADA - Supervisory Control and Data Acquisition) that is not shown in Figure 1. In the case of long-distance power transmission lines, a number of reactive power compensation systems 108 can be connected to the power transmission line 104 at predefined intervals. Due to the effective reactive energy compensation, the reactive energy compensation system 108 facilitates the regulation of the voltage along the power transmission line 104.
  • SCADA monitoring and data acquisition control system
  • FIG 2 is a block diagram describing a reactive energy compensation system 108, in accordance with an embodiment of the present invention
  • the reactive energy compensation system 108 includes a static-synchronous compensation unit (STATCOM) 202, a harmonic current elimination unit 204, and a control unit of the compensation 206.
  • the static-synchronous compensation unit 202 includes a plurality of static-synchronous compensation modules to compensate for the reactive energy in the electrical energy system (explained together with figures 3 and 4).
  • the harmonic current elimination unit 204 includes a plurality of active filter modules to eliminate the harmonic currents generated in the electric power system (explained in Figures 5 and 6).
  • the compensation control unit 206 implements a sequential control mechanism to regulate the operation of the static-synchronous compensation unit 202 and the harmonic elimination unit 204
  • the compensation control unit 206 is based on the bipolar isolated gate transistor technology (IGBT - Integrated Gate Bipolar Transistor) and employs a microcontroller panel with I / O ports to control the operation of several static-synchronous compensation units 202 and harmonic current elimination units 204 included in the reactive energy compensation unit 108.
  • the compensation control unit 206 works in conjunction with a data recording and supervisory control system (SCADA - Supervisory Control and Data
  • FIG. 3 is a block diagram describing a synchronous static compensation unit 202, in accordance with an embodiment of the present invention.
  • the static-synchronous compensation unit 202 includes a plurality of static-synchronous compensation modules 302a, 302b ..., and 302n (hereafter referred to individually as static-synchronous compensation module 302 and collectively as static compensation modules- synchronous 302).
  • Each static-synchronous compensation module 302 is connected to the power transmission line
  • the static-synchronous compensation unit 202 has a modular design.
  • One or more static-synchronous compensation modules 302 may be activated based on the current requirements of the electric power system 100.
  • the operation of each synchronous static compensation module 302 is controlled by the compensation control unit 206.
  • the compensation control unit 206 receives information related to the power factors from the SCADA system and current loading conditions along the power transmission line 104.
  • the compensation control unit 206 activates one or more static-synchronous compensation modules 302 based on the information received from the SCADA system.
  • the compensation control unit 206 activates the static-synchronous compensation modules 302 in a predefined sequence based on the variable load conditions.
  • the modular design of the static-synchronous compensation unit 202 provides fault tolerance and redundancy in the reactive energy compensation system 108. Therefore, the reactive energy compensation system 108 shows an improved behavior to withstand failures since guarantees at least a partial compensation of the reactive energy in case of failure of one or more static-synchronous compensation modules 302.
  • FIG. 4 is a block diagram describing a static-synchronous compensation module 302, in accordance with an embodiment of the present invention.
  • the static-synchronous compensation module 302 includes a capacitor bank 402, a control unit of the capacitor bank 404, a controlled switch 406, an inverter 408, a current inverter control unit 410, a transformer unit 412 , and one or more passive filters 414.
  • the compensation control unit 206 can activate the static-synchronous compensation module 302 by actuating the control unit of the capacitor bank 404.
  • the control unit of the capacitor bank 404 on the other hand, closes the controlled switch 406.
  • the capacitor bank 402 generates reactive energy to be transmitted to the power transmission line 104.
  • the inverter 408 converts the DC voltage of the capacitor bank 402 at a voltage of the desired level according to the control signal received from the compensation control unit 206. Therefore, the inverter 408 acts as a voltage source of adjustable magnitude and phase.
  • the control unit of the current inverter 410 dynamically adjusts the phase angle between the voltage of the inverter and the voltage of the power transmission line such that the static-synchronous compensation module 302 generates (or absorbs) the desired level of reactive energy at the point of connection to the power transmission line 104.
  • the transformer unit 412 is a reducing transformer that reduces the voltage according to the operational voltage of the reactive energy compensation system 108.
  • the output voltage of the inverter 408 is V 1 .
  • the voltage of the electric power system 100 at the connection point of the static-synchronous compensation module 302 is V 8 .
  • the output current of the static-synchronous compensation module 302 is I, which varies in relation to V 1 .
  • FIG. 5 is a block diagram describing a harmonic current elimination unit 204, in accordance with a design of the present invention.
  • the harmonic current elimination unit 204 includes several active filter modules 502a, 502b ..., and 502n (hereafter referred to individually as active filter module 502 and collectively as active filter modules 502). Each filter module Active 502 is connected to the power transmission line 104 through the coupling transformer 1 10.
  • the harmonic current elimination unit 204 has a modular design.
  • One or more active filter modules 502 can be activated based on the requirements of the electric power system 100.
  • the operation of each active filter module 502 is directed by the compensation control unit 206.
  • the compensation control unit 206 receives the information related to harmonic currents along the power transmission line 104 through the SCADA system.
  • the compensation control unit 206 receives the information related to harmonic currents along the power transmission line 104 through the SCADA system.
  • the compensation control unit 206 activates one or more active filter modules 502 based on the information received from the SCADA system.
  • the compensation control unit 206 activates the active filter modules 502 in a predefined sequence based on the variable load conditions. As a consequence, the level of current distortion remains approximately constant for variable load conditions in a predefined range of operating conditions.
  • FIG. 6 is a block diagram describing an active filter module 502, in accordance with an embodiment of the present invention.
  • the active filter module 502 includes one or more passive filters 602, an inverter 604, a current inverter control unit 606, and a transformer unit 608.
  • the compensation control unit 502 is capable of generating harmonic currents opposite to the harmonic currents generated in the electric power system 100.
  • the operation of the inverter 604, the control unit of the inverter of current 606, and the transformer unit 608 is similar to the operation of the inverter 408, the current inverter control unit 410, and the transformer unit 412 respectively.
  • the active filter module 502, described here is capable of eliminating harmonic currents up to order 19 5 of the electric power system 100.
  • Figure 7 is a graph describing the total harmonic distortion in relation to the total currents in the electric power system 100.
  • the graph 0 shows a total harmonic distortion curve 702 according to the current state of the technique and a distortion curve. total harmonic 704 according to the present invention.
  • the percentage of harmonic currents in the electric power system 100 is reduced to low levels for a wide range of charging conditions.5
  • the level of current distortion is approximately constant for variable charging conditions for a predefined operational operating range.
  • the level of current distortion obtained in the nth nominal power supply factor is the same as the level of distortion obtained with the nominal energy, "n" represents the number of modules of active filter 502 activated in the elimination unit of harmonic current
  • the level of current distortion for load conditions that vary between the nominal energy and three quarters of the nominal energy is reduced to less than 7.5%.
  • the distortion level is reduced to less than 7.5%.
  • the distortion level is less than 10%.
  • FIG. 8 is a graph describing the current hysteresis control of a reactive energy compensation system 108, in accordance with an embodiment of the present invention.
  • the graph shows an IGBT 802 control signal, a resulting current 806, an upper hysteresis band limit 804a and a lower hysteresis band limit 804b.
  • the reactive energy compensation unit 108 implements a hysteresis band delimited by the upper limit of the hysteresis band 804a and the lower limit of the hysteresis band 804b.
  • the control of the hysteresis band guarantees that the resulting current 806 is almost sinusoidal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

Se proporciona un sistema de compensación de energía 108 para compensar los requerimientos de energía reactiva en un sistema de energía eléctrica 100. El sistema de compensación de energía reactiva 108 incluye una unidad de compensación estático-síncrona 202, una unidad de eliminación de corriente armónica 204 y una unidad de control de compensación 206. La unidad de compensación estático-síncrona 202 comprende una pluralidad de módulos de compensación estático-síncrona 302 para compensar la energía reactiva en el sistema de energía eléctrica 100. La unidad de eliminación de corriente armónica 204 incluye una pluralidad de módulos de filtro activo 502 para eliminar la corriente armónica generada en el sistema de energía eléctrica 100. La unidad de control de compensación 206 implementa un mecanismo de control secuencial para regular el funcionamiento de los módulos compensación estático-síncrona 302 y los módulos de filtro activo 502.

Description

SISTEMA PARA LA COMPENSACIÓN DE ENERGÍA REACTIVA EN SISTEMA DE ENERGÍA ELÉCTRICA
CAMPO DE LA INVENCIÓN La presente invención está relacionada, en general, al campo de sistemas de energía eléctrica y específicamente, a un sistema de compensación de energía reactiva en un sistema de energía eléctrica. Más específicamente, Ia presente invención está relacionada con un sistema de compensación de energía reactiva en un sistema de energía eléctrica que incluye una unidad de generación de energía eólica.
ANTECEDENTES DE LA PRESENTE INVENCIÓN
Debido a Ia crisis energética que afecta al mundo, los métodos alternativos de generación de energía son cada vez más importantes. La energía eólica ha surgido como una prometedora fuente de energía renovable. El uso de parques eólicos para generar energía es cada vez más común tanto en las economías desarrolladas como en las economías en desarrollo. Gracias a las mejoras en materiales, diseño y tecnologías de producción, el volumen de producción de energía comercial ha aumentando constantemente. Como consecuencia, Ia energía eólica se ha convertido en una fuente de energía renovable viable y económica Sin embargo, Ia integración en las redes de transmisión de energía es todavía un desafío, debido a Ia incertidumbre que genera Ia potencia producida por las unidades de generación de energía basadas en Ia energía eólica. Uno de los principales problemas asociados a parques eólicos es Ia variación en el suministro de energía que se debe a Ia naturaleza intermitente del viento. La no uniformidad de Ia producción de energía provoca problemas de estabilidad en Ia frecuencia y el voltaje en los sistemas de energía. Es por ello un reto importante implementar soluciones que faciliten Ia integración entre unidades de generación de energía eléctrica basadas en Ia energía eólica y las redes de transmisión de energía y al mismo tiempo mantener Ia calidad de Ia energía y Ia estabilidad del sistema de energía.
Un factor importante para mejorar Ia calidad de Ia energía en un sistema de energía eléctrica es Ia compensación de Ia energía reactiva. La energía eléctrica incluye Ia energía real y Ia energía reactiva. La energía reactiva también es conocida como energía desvatiada (sin vatios) ya que no transfiere energía neta a Ia carga. La proporción entre Ia energía real y Ia reactiva se define como el factor de potencia de un sistema de energía eléctrica. Por Io tanto, controlar Ia energía reactiva y mantener el factor de potencia Io más cercano posible a Ia unidad es un desafío importante en Ia transmisión de energía eléctrica. La regulación efectiva del factor de potencia garantiza que un voltaje prácticamente constante está disponible en un amplio rango de condiciones de carga. La energía se pierde en líneas de transmisión de energía de larga distancia debido a que las impedancias de las líneas de transmisión de energía aumentan Ia necesidad de compensación de energía reactiva. En general, Ia compensación efectiva de energía reactiva aumenta Ia capacidad de transferencia de energía del sistema de energía eléctrica. Una de las tecnologías convencionales para a compensación de energía reactiva es Ia compensación estática (SVC - Static VAR Compensation). Sin embargo, esta tecnología sufre el inconveniente de corriente fluctuante en situaciones de bajo voltaje.
En los últimos años, el sistema de transmisión flexible de corriente alterna (FACTS - Flexible Alternating Current Transmission System) ha surgido como una nueva clase de soluciones para regular los parámetros de transmisión de energía en sistemas de energía eléctrica. FACTS es un sistema basado en componentes de electrónica de energía y otros equipos estáticos que facilitan el control de uno o más parámetros en un sistema de energía eléctrica de CA.
El compensador estático (STATCOM - Static Compensator), es parte de Ia familia de sistemas FACTS y se utiliza para Ia compensación de energía reactiva en redes de transmisión de CA. STATCOM puede actuar como fuente o colector de una energía CA reactiva en un sistema de energía eléctrica. Por ello, STATCOM se utiliza para regular el factor de potencia en sistemas de energía eléctrica. Se han propuesto en el pasado numerosas propuestas de control. Sin embargo, estas propuestas de control, fallan en el intento de implementar satisfactoriamente una solución efectiva de compensación de energía y eliminación de armónicos. Además, las implennentaciones STATCOM conocidas sufren inconvenientes debidos a su diseño monolítico.
Otro aspecto importante de Ia compensación de energía reactiva es el control de corrientes armónicas generadas en el sistema de energía eléctrica. Idealmente, Ia unidad generadora de energía debería experimentar una carga sinusoidal con el mínimo de distorsión armónica. Sin embargo, en determinadas condiciones, se genera una magnitud considerable de las corrientes armónicas de bajo orden en el sistema de energía eléctrica y por Io tanto, Ia unidad de generación de energía experimenta una carga no sinusoidal que afecta a Ia estabilidad del sistema de energía eléctrica. En el sistema de energía eléctrica hay varios parámetros que pueden indicir Ia generación de corrientes armónicas. Los factores importantes que inducen a Ia generación de corrientes armónicas incluyen cargas no lineales (tales como los hornos de arco eléctrico y los convertidores de energía estáticos), las condiciones de funcionamiento y las impedancias de red en el sistema de energía eléctrica. La presencia de corrientes armónicas afecta a Ia calidad de Ia energía y a Ia estabilidad del sistema de energía. Convencionalmente, se utilizan filtros pasivos (filtros LC) para eliminar las corrientes armónicas generadas en el sistema de energía eléctrica. Los filtros pasivos están diseñados para cancelar armónicos específicos generados en el extremo de Ia carga. Sin embargo, si el espectro de corrientes armónicas cambia, los filtros pasivos no son capaces de atenuar efectivamente las corrientes armónicas. En el estado actual de Ia técnica, se han propuesto algunos sistemas de eliminación de corriente armónica basados en sistemas FACTS. Sin embargo, los dispositivos sensibles basados en electrónica de potencia que se utilizan en los parques eólicos se ven negativamente afectados por los sistemas FACTS que operan cerca de los parques eólicos. Esto puede provocar grandes distorsiones de corriente, Io cual provoca desconexiones en los aerogeneradores y pérdidas de producción. Por Io tanto, es una tarea desafiante Ia utilización de sistemas de eliminación de corriente armónica basados en FACTS cerca de los parques eólicos.
En vista de los problemas anteriores relacionados a Ia compensación de energía reactiva en sistemas de energía eléctrica, existe Ia necesidad de un sistema que pueda gestionar de forma efectiva Ia compensación de energía reactiva y eliminar las corrientes armónicas generadas en el sistema de energía eléctrica.
DESCRIPCIÓN DE LA INVENCIÓN
Uno de los objetivos de Ia presente invención es conseguir una compensación de energía reactiva en un sistema de energía eléctrica.
Otro de los objetivos de Ia presente invención es eliminar efectivamente las corrientes armónicas en el sistema de energía eléctrica.
Un objetivo más de Ia presente invención es implementar una estrategia de control mejorada del sistema de compensación de energía reactiva para eliminar corriente armónica en el sistema de energía eléctrica.
Otro objetivo de Ia presente invención es conseguir tolerancia de fallos y redundancia en el sistema de compensación de energía reactiva.
De acuerdo con uno de los diseños de Ia presente invención, se proporciona un sistema de compensación de energía reactiva. El sistema de compensación de energía reactiva incluye Ia unidad de compensación estático-síncrona (STATCOM), Ia unidad de eliminación de corrientes armónicas y una unidad de control de compensación. La unidad de compensación estático-síncrona incluye varios módulos de compensación estático-síncrona para compensar Ia energía reactiva en el sistema de energía eléctrica. La unidad de eliminación de corriente armónica incluye varios módulos de filtro activo para eliminar Ia corriente armónica generada en el sistema de energía eléctrica. La unidad de control de Ia compensación implementa un mecanismo de control secuencial para regular el funcionamiento de Ia unidad de compensación estático-síncrona y Ia unidad de eliminación de corriente armónica.
Los varios diseños de Ia presente invención ofrecen diversas ventajas. La presente invención implementa un diseño modular del sistema de compensación de energía reactiva. El sistema de compensación de energía reactiva funciona de acuerdo con el mecanismo de control secuencial. La presente invención no solamente gestiona efectivamente los requisitos de compensación de energía reactiva en el sistema de energía eléctrica, también elimina efectivamente Ia corriente armónica hasta armónicos del orden 19 en condiciones variables de carga. Además, como consecuencia del diseño modular, Ia presente invención proporciona tolerancia de fallos y redundancia mejoradas en el sistema de compensación de energía reactiva. BREVE DESCRIPCIÓN DE LAS FIGURAS
Las figuras adjuntas, en las que las referencias numéricas indican elementos idénticos o funcionalmente similares a Io largo de las diferentes vistas, y las cuales, junto con Ia descripción siguiente están incorporadas y son parte de Ia especificación, sirven para describir las diferentes realizaciones y explican varios principios y ventajas, todo de acuerdo con Ia presente invención.
La figura 1 es un diagrama esquemático que describe un sistema de energía eléctrica 100, en el cual se pueden implementar varias realizaciones de Ia presente invención;
La figura 2 es un diagrama de bloques que describe un sistema de compensación de energía reactiva 108, de acuerdo con una realización de Ia presente invención;
La figura 3 es un diagrama de bloques que describe una unidad de compensación estático-síncrona 202, de acuerdo con una realización de Ia presente invención; La figura 4 es un diagrama de bloques que describe un módulo de compensación estático-síncrona 302, de acuerdo con una realización de Ia presente invención;
La figura 5 es un diagrama de bloques que describe una unidad de eliminación de corriente armónica 204, de acuerdo con una realización de Ia presente invención;
La figura 6 es un diagrama de bloques que describe un módulo de filtro activo 502, de acuerdo con una realización de Ia presente invención;
La figura 7 es un gráfico que describe el total de distorsión armónica relativa al total de corrientes en el sistema de energía eléctrica 100, de acuerdo con una realización de Ia presente invención; y
La figura 8 es un gráfico que describe el control de histéresis de corriente de un sistema de compensación de energía reactiva 108, de acuerdo con una realización de Ia presente invención. Debe tenerse en cuenta que los elementos de las figuras se han realizado con sencillez y claridad y que no se han dibujado necesariamente a escala. Por ejemplo, las dimensiones de algunos elementos se han exagerado en las figuras, en relación a los demás elementos, para mejorar Ia compresión de las realizaciones de Ia presente invención. DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENCIAL
Antes de iniciar las descripción detallada del sistema de compensación de energía reactiva en sistema de energía eléctrica, de acuerdo con varias realizaciones de Ia presente invención, debe tenerse en cuenta que Ia presente invención reside principalmente en Ia combinación de elementos de sistema relacionados con Ia compensación de energía reactiva en un sistema de energía eléctrica. Por Io tanto, los componentes del aparato se han representado, donde corresponda, con símbolos convencionales en las figuras, mostrando únicamente los detalles específicos que son pertinentes para Ia comprensión de Ia presente invención, con el fin de no resultar confuso con detalles obvios para los especialistas en Ia materia y por Io tanto en beneficio de Ia descripción siguiente.
En este documento, los términos "comprende," "comprendiendo" o cualquier otra variante de los mismos están concebidos para definir una inclusión no exclusiva, los procesos, métodos, artículos o aparatos que incluyen una lista de elementos no necesariamente contienen solamente esos elementos sino que también puede contener otros elementos que no están expresamente citados o que son inherentes en dicho proceso, método, artículo o aparato. Un elemento precedido por "comprende un ... ", sin más restricciones, no excluye Ia existencia de elementos adicionales idénticos en el proceso, método, artículo o aparato. En término "otro" indica en el presente documento como mínimo una segunda unidad o más. Los términos "contiene" y/o "tiene" usados en Ia presente, son definidos como comprender.
Se proporciona un sistema de compensación de energía reactiva para gestionar los requerimientos de compensación de energía reactiva en un sistema de energía eléctrica. El sistema de compensación de energía reactiva incluye Ia unidad de compensación estático-síncrona (STATCOM),
Ia unidad de eliminación de corrientes armónicas y Ia unidad de control de compensación. La unidad de compensación estático-síncrona incluye varios módulos de compensación estático-síncrona para compensar Ia energía reactiva en el sistema de energía eléctrica. La unidad de eliminación de corriente armónica incluye varios módulos de filtro activo para eliminar Ia corriente armónica generada en el sistema de energía eléctrica. La unidad de control de Ia compensación implementa un mecanismo de control secuencial para regular el funcionamiento de Ia unidad de compensación estático-síncrona y Ia unidad de eliminación de corriente armónica. La figura 1 es un diagrama esquemático que describe un sistema de energía eléctrica 100 en el cual se pueden implementar varias realizaciones de Ia presente invención. El sistema de energía eléctrica 100 comprende una unidad de generación de energía 102, una línea de transmisión de energía 104, carga eléctrica 106, uno o más sistemas de compensación de energía reactiva 108a y 108b (a partir de ahora nos referiremos a ellos como sistema de compensación de energía reactiva 108 y colectivamente como sistemas de compensación de energía reactiva 108), y varios transformadores de acoplamiento 1 10a y 1 10b (a partir de ahora referidos individualmente como transformador de acoplamiento 1 10 y colectivamente como transformadores de acoplamiento 1 10).
La unidad de generación de energía 102 puede ser cualquier instalación comúnmente conocida de generación de energía, por ejemplo una planta de energía hidráulica o térmica. En uno de los diseños de Ia presente invención, Ia unidad de generación de energía 102 puede estar basada en una fuente de energía renovable, más concretamente, Ia unidad de generación de energía 102 puede ser un parque eólico generador de energía basada en energía eólica.
La energía eléctrica de Ia unidad de generación de energía 102 se transmite a Ia carga eléctrica 106 a través de Ia línea de transmisión de energía 104. Los ejemplos de carga eléctrica 106 incluyen consumo doméstico, industrial, etc.
La línea de transmisión de energía 104 tiene impedancia inductiva inherente, Io cual provoca pérdidas de energía reactiva durante Ia transmisión de energía. Además, Ia mayoría de ejemplos de carga eléctrica 106 son también inductivos, y por Io tanto requieren energía reactiva para su funcionamiento. Los sistemas de compensación de energía reactiva 108 proporcionan localmente Ia energía reactiva requerida por Ia línea de transmisión de energía 104 y Ia carga eléctrica 106. Por Io tanto, Ia energía reactiva no se obtiene de Ia unidad de generación de energía 102 y por consiguiente, se reducen las pérdidas en el sistema de energía eléctrica 100.
El sistema o sistemas de compensación de energía reactiva 108 pueden estar conectados a Io largo de las líneas de transmisión de energía. Tal y como se muestra en Ia figura 1 el sistema o sistemas de compensación de energía reactiva 108 están conectados a Ia línea de transmisión de energía 104 a través de transformadores de acoplamiento 1 10. Los sistemas de compensación de energía reactiva 108 pueden conectarse y desconectarse de Ia línea de transmisión de energía 104 mediante el control del funcionamiento de los transformadores de acoplamiento 1 10. El funcionamiento de los transformadores de acoplamiento 1 10 está controlado por un sistema de control de supervisión y adquisición de datos (SCADA - Supervisory Control and Data Adcquisition) que no se muestra en Ia figura 1 . En el caso de las líneas de transmisión de energía de larga distancia, se podrá conectar un número de sistemas de compensación de energía reactiva 108 a Ia línea de transmisión de energía 104 en intervalos predefinidos. Debido a Ia efectiva compensación de energía reactiva, el sistema de compensación de energía reactiva 108 facilita Ia regulación del voltaje a Io largo de Ia línea de transmisión de energía 104.
La figura 2 es un diagrama de bloques que describe un sistema de compensación de energía reactiva 108, de acuerdo con una realización de Ia presente invención; El sistema de compensación de energía reactiva 108 incluye una unidad de compensación estático-síncrona (STATCOM) 202, una unidad de eliminación de corriente armónica 204, y una unidad de control de Ia compensación 206. La unidad de compensación estático- síncrona 202 incluye una pluralidad de módulos de compensación estático- síncrona para compensar Ia energía reactiva en el sistema de energía eléctrica (explicada junto con las figuras 3 y 4). La unidad de eliminación de corriente armónica 204 incluye una pluralidad de módulos de filtro activo para eliminar las corrientes armónicas generadas en el sistema de energía eléctrica (explicado en las figuras 5 y 6). La unidad de control de Ia compensación 206 implementa un mecanismo de control secuencial para regular el funcionamiento de Ia unidad de compensación estático-síncrona 202 y Ia unidad de eliminación de armónicos 204
La unidad de control de compensación 206 se basa en Ia tecnología de transistor bipolar de puerta aislada (IGBT - Integrated Gate Bipolar Transistor) y emplea un panel microcontrolador con puertos de E/S para controlar el funcionamiento de varias unidades de compensación estático- síncrona 202 y unidades de eliminación de corriente armónica 204 incluidas en Ia unidad de compensación de energía reactiva 108. La unidad de control de compensación 206 funciona conjuntamente con un sistema de registro de datos y control de supervisión (SCADA - Supervisory Control and Data
Acquisition) (no mostrado en Ia figura 2), que controla varios parámetros operacionales en el sistema de energía eléctrica 100.
La figura 3 es un diagrama de bloques que describe una unidad de compensación estático-síncrona 202, de acuerdo con una realización de Ia presente invención; La unidad de compensación estático-síncrona 202 incluye una pluralidad de módulos de compensación estático-síncrona 302a, 302b... , y 302n (a partir de ahora referidos individualmente como módulo de compensación estático-síncrona 302 y colectivamente como módulos de compensación estático-síncrona 302). Cada módulo de compensación estático-síncrona 302 está conectado a Ia línea de transmisión de energía
104 mediante el transformador de acoplamiento 1 10.
Tal y como se muestra en Ia figura 3, Ia unidad de compensación estático- síncrona 202 tiene un diseño modular. Uno o más módulos de compensación estático-síncrona 302 pueden estar activados en base a los requerinnientos actuales del sistema de energía eléctrica 100. El funcionamiento de cada módulo de compensación estático-síncrona 302 está controlado por Ia unidad de control de compensación 206. La unidad de control de compensación 206 recibe del sistema SCADA información relacionada a los factores de potencia y condiciones de carga actuales a Io largo de Ia línea de transmisión de energía 104. La unidad de control de compensación 206 activa uno o más módulos de compensación estático- síncrona 302 en base a Ia información recibida del sistema SCADA. La unidad de control de compensación 206 activa los módulos de compensación estático-síncrona 302 en una secuencia predefinida en base a las condiciones de carga variables.
El diseño modular de Ia unidad de compensación estático-síncrona 202 proporciona tolerancia de fallos y redundancia en el sistema de compensación de energía reactiva 108. Por Io tanto, el sistema de compensación de energía reactiva 108 muestra un comportamiento mejorado para soportar los fallos ya que garantiza como mínimo una compensación parcial de Ia energía reactiva en caso de fallar uno o más módulos de compensación estático-síncrona 302.
La figura 4 es un diagrama de bloques que describe un módulo de compensación estático-síncrona 302, de acuerdo con una realización de Ia presente invención; El módulo de compensación estático-síncrona 302 incluye una batería de condensadores 402, una unidad de control de Ia batería de condensadores 404, un interruptor controlado 406, un inversor 408, una unidad de control del inversor de corriente 410, una unidad de transformador 412, y uno o más filtros pasivos 414.
Por ejemplo, Ia unidad de control de compensación 206 puede activar el módulo de compensación estático-síncrona 302 mediante el accionamiento de Ia unidad de control de Ia batería de condensadores 404. La unidad de control de Ia batería de condensadores 404 por otro lado, cierra el interruptor controlado 406. Cuando se conecta a Ia línea de transmisión de energía
104, Ia batería de condensadores 402 genera energía reactiva para ser transmitida a Ia línea de transmisión de energía 104.
El inversor 408 convierte el voltaje CC de Ia batería de condensadores 402 en un voltaje del nivel deseado de acuerdo con Ia señal de control recibida de Ia unidad de control de compensación 206. Por Io tanto, el inversor 408 actúa como una fuente de voltaje de magnitud y fase ajustables. La unidad de control del inversor de corriente 410 ajusta dinámicamente el ángulo de fase entre el voltaje del inversor y el voltaje de Ia línea de transmisión de energía de tal forma que el módulo de compensación estático-síncrona 302 genera (o absorbe) el nivel deseado de energía reactiva en el punto de conexión a Ia línea de transmisión de energía 104. La unidad transformadora 412 es un transformador reductor que reduce el voltaje de acuerdo con el voltaje operacional del sistema de compensación de energía reactiva 108.
De acuerdo con una de las realizaciones de Ia presente invención, el voltaje de salida del inversor 408 es V1. El voltaje del sistema de energía eléctrica 100 en el punto de conexión del módulo de compensación estático-síncrona 302 es V8. La corriente de salida del módulo de compensación estático- síncrona 302 es I, Ia cual varía en relación a V1. El módulo de compensación estático-síncrona 302 puede funcionar en tres modos. Si V1 = V8, Ia transferencia de energía reactiva es cero y por Io tanto el módulo de compensación estático-síncrona 302 no genera ni absorbe energía reactiva. Si V1 es inferior que V8, el módulo de compensación estático-síncrona 302 actúa como una reactancia inductiva conectada a Ia línea de transmisión de energía 104. En este modo, Ia corriente I fluye de Ia línea de transmisión de energía 104 al módulo de compensación estático-síncrona 302, por Io cual absorbe Ia energía reactiva. En el tercer modo, si V8 es superior a V1, el módulo de compensación estático-síncrona 302 actúa como una reactancia capacitiva conectada a Ia línea de transmisión de energía 104. En este modo, Ia corriente I fluye desde el módulo compensación estático-síncrona 302 a Ia línea de transmisión de energía 104, por Io que genera energía reactiva. Los filtros pasivos 414 reducen Ia corriente armónica en Ia salida del módulo de compensación estático-síncrona 302. La figura 5 es un diagrama de bloques que describe una unidad de eliminación de corriente armónica 204, de acuerdo con un diseño de Ia presente invención; La unidad de eliminación de corriente armónica 204 incluye varios módulos de filtro activo 502a, 502b..., y 502n (a partir de ahora referidos individualmente como módulo de filtro activo 502 y colectivamente como módulos de filtro activo 502). Cada módulo de filtro activo 502 está conectado a Ia línea de transmisión de energía 104 a través del transformador de acoplamiento 1 10.
Al igual que Ia unidad de compensación estático-síncrona 202, Ia unidad de eliminación de corriente armónica 204 tiene un diseño modular. Se pueden activar uno o más módulos de filtro activo 502 en base a los requerimientos del sistema de energía eléctrica 100. El funcionamiento de cada módulo de filtro activo 502 esta dirigido por Ia unidad de control de compensación 206. La unidad de control de compensación 206 recibe Ia información relacionada a las corrientes armónicas a Io largo de Ia línea de transmisión de energía 104 a través del sistema SCADA. La unidad de control de compensación
206 activa uno o más módulos de filtro activo 502 en base a Ia información recibida del sistema SCADA. La unidad de control de compensación 206 activa los módulos de filtro activo 502 en una secuencia predefinida en base a las condiciones de carga variables. Como consecuencia, el nivel de distorsión de corriente se mantiene aproximadamente constante para condiciones de carga variables en un rango predefinido de condiciones de funcionamiento.
El diseño modular de Ia unidad de eliminación de corriente armónica 204 proporciona tolerancia a los fallos y redundancia en el sistema de compensación de energía reactiva 108. Por Io tanto, el sistema de compensación de energía reactiva 108 muestra un comportamiento mejorado para soportar los fallos ya que garantiza como mínimo una eliminación parcial de corrientes armónicas en caso de fallar uno o más módulos de filtro activo 502. La figura 6 es un diagrama de bloques que describe un módulo de filtro activo 502, de acuerdo con una realización de Ia presente invención; El módulo de filtro activo 502 incluye uno o más filtros pasivos 602, un inversor 604, una unidad de control del inversor de corriente 606, y una unidad transformadora 608. El filtro pasivo 602, junto con otros componentes del módulo de filtro activo
502, es capaz de generar corrientes armónicas opuestas a las corrientes armónicas generadas en el sistema de energía eléctrica 100. El funcionamiento del inversor 604, Ia unidad de control del inversor de corriente 606, y Ia unidad transformadora 608 es similar al funcionamiento del inversor 408, Ia unidad de control de inversor de corriente 410, y de Ia unidad transformadora 412 respectivamente. El módulo de filtro activo 502, descrito aquí es capaz de eliminar corrientes armónicas de hasta el orden 19 5 del sistema de energía eléctrica 100. La unidad de control de compensación
206 controla los transformadores de acoplamiento 1 10 para conectar el módulo de filtro activo a Ia línea de transmisión de energía 104.
La figura 7 es un gráfico que describe Ia distorsión armónica total en relación al total de corrientes en el sistema de energía eléctrica 100. El gráfico0 muestra una curva de distorsión armónica total 702 de acuerdo con el estado actual de Ia técnica y una curva de distorsión armónica total 704 de acuerdo con Ia presente invención.
El porcentaje de corrientes armónicas en el sistema de energía eléctrica 100 es reducido a niveles bajos para un amplio rango de condiciones de carga.5 El nivel de distorsión de corriente es aproximadamente constante para condiciones de carga variables para un rango operacional de funcionamiento predefinido. El nivel de distorsión de corriente obtenido en el enésimo factor de suministro nominal de energía es el mismo que el nivel de distorsión obtenido con Ia energía nominal, "n" representa el número de módulos de o filtro activo 502 activados en Ia unidad de eliminación de corriente armónica
204.
Tal y como se muestra en Ia figura 7, el nivel de distorsión de corriente para condiciones de carga que varían entre Ia energía nominal y tres cuartos de Ia energía nominal, está reducido a menos de 7,5%. De forma similar, para 5 las condiciones de carga que varían entre Ia energía nominal y Ia mitad de Ia energía nominal, el nivel de distorsión es reducido a menos de un 7,5%. Además, para las condiciones de carga que varían entre Ia energía nominal y un cuarto de Ia energía nominal el nivel de distorsión es inferior a un 10%.
La figura 8 es un gráfico que describe el control de histéresis de corriente de 0 un sistema de compensación de energía reactiva 108, de acuerdo con una realización de Ia presente invención. El gráfico muestra una señal de control IGBT 802, una corriente resultante 806, un límite superior de banda de histéresis 804a y límite inferior de banda de histéresis 804b. La unidad de compensación de energía reactiva 108 implementa una banda de histéresis delimitada por el límite superior de Ia banda de histéresis 804a y el límite inferior de Ia banda de histéresis 804b. El control de Ia banda de histéresis garantiza que Ia corriente resultante 806 sea casi sinusoidal. Se han ilustrado y descrito varias realizaciones de Ia presente invención, sin embargo es notorio que Ia presente invención no está limitada sólo a estas realizaciones. Para los especialistas serán evidentes las posibles modificaciones, cambios, variaciones, sustituciones y equivalentes sin abandonar el espíritu y alcance de Ia presente invención, tal y como se describe en las reivindicaciones.

Claims

REIVINDICACIONES
1 . Un sistema de compensación de energía reactiva 108 para Ia compensación de energía reactiva en una red de transmisión de energía 100, Ia red de transmisión de energía 10O comprendiendo una unidad de unidad de generación de energía eólica 102, el sistema de compensación de energía reactiva 108 comprende:
- una unidad de compensación estático-síncrona 202, Ia unidad de compensación estático-síncrona 202 incluye varios módulos de compensación estático-síncrona 302 para compensar Ia energía reactiva de Ia red de transmisión de energía 100;
- una unidad de eliminación de armónicos 204, Ia unidad de eliminación de armónicos 204 comprende varios módulos de filtro activo 502 para Ia eliminación de corrientes armónicas generadas en Ia red de transmisión de energía 100 y
- una unidad de control de energía reactiva 206 para controlar el funcionamiento de Ia unidad de compensación estático-síncrona 202 y Ia unidad de eliminación de armónicos 204.
2. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual cada módulo de compensación estático-síncrona 302 comprende una batería de condensador 402, una unidad de control de batería de condensador 404, y un interruptor controlado 406.
3. El sistema de compensación de energía reactiva de Ia reivindicación 2, en el cual cada módulo de compensación estático-síncrona 302 incluye adicionalmente un inversor 408, una unidad de control de inversor de corriente 410 y una unidad transformadora 412.
4. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual cada módulo de filtro activo 502 incluye una pluralidad de filtros pasivos 602, un inversor 604, una unidad de control del inversor de corriente 606 y una unidad transformadora 608.
5. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual Ia unidad de control de energía reactiva 206 está configurada para facilitar un control secuencial de Ia pluralidad de módulos de compensación estático-síncrona 302 y de Ia pluralidad de módulos de filtro activo 502 en base a una condición de carga en red de transmisión de energía 100.
6. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual Ia unidad de control de energía reactiva 206 incluye un microcontrolador.
7. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual Ia unidad de control de energía reactiva 206 está configurada para funciona conjuntamente con un sistema SCADA para obtener información relacionada con Ia magnitud de Ia compensación de energía reactiva para Ia red de transmisión de energía 100.
8. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual Ia unidad compensación estático-síncrona 202 implementa un control de banda de histéresis para generar una corriente sinusoidal en Ia red de transmisión de energía 100.
9. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual el nivel de distorsión de energía en puntos de carga inferiores a Ia carga completa alcanza el mismo nivel de distorsión alcanzado a carga completa.
10. El sistema de compensación de energía reactiva de Ia reivindicación 1 , en el cual el nivel de distorsión de corriente en el enésimo factor del suministro de energía nominal es el mismo que el nivel de distorsión de corriente a energía nominal, donde n es el número de módulos de compensación estático-síncrona 302 en Ia unidad de compensación estático-síncrona 202.
1 1 . El sistema de compensación de energía reactiva 1 , en el cual Ia unidad de eliminación de armónicos 204 elimina corrientes armónicas hasta del orden 19.
PCT/ES2009/070316 2009-07-27 2009-07-27 Sistema para la compensación de energía reactiva en sistema de energía eléctrica WO2011012733A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/384,644 US8847562B2 (en) 2009-07-27 2009-07-27 Reactive power compensation in electrical power system
CN200980163069.3A CN102714412B (zh) 2009-07-27 2009-07-27 电力系统中的无功功率补偿系统
PCT/ES2009/070316 WO2011012733A1 (es) 2009-07-27 2009-07-27 Sistema para la compensación de energía reactiva en sistema de energía eléctrica
BR112012001936-8A BR112012001936B1 (pt) 2009-07-27 Sistema de compensação de energia reativa em sistema de energia elétrica
EP09847748.2A EP2461452A4 (en) 2009-07-27 2009-07-27 System for reactive power compensation in electricity system
IN914DEN2012 IN2012DN00914A (es) 2009-07-27 2012-02-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/070316 WO2011012733A1 (es) 2009-07-27 2009-07-27 Sistema para la compensación de energía reactiva en sistema de energía eléctrica

Publications (1)

Publication Number Publication Date
WO2011012733A1 true WO2011012733A1 (es) 2011-02-03

Family

ID=43528805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070316 WO2011012733A1 (es) 2009-07-27 2009-07-27 Sistema para la compensación de energía reactiva en sistema de energía eléctrica

Country Status (5)

Country Link
US (1) US8847562B2 (es)
EP (1) EP2461452A4 (es)
CN (1) CN102714412B (es)
IN (1) IN2012DN00914A (es)
WO (1) WO2011012733A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510068A (zh) * 2011-11-06 2012-06-20 中国科学院电工研究所 分散式电能质量调节器及其控制方法
CN102566463A (zh) * 2012-02-10 2012-07-11 常州莱宝电力滤波有限公司 低压静止无功发生装置测控单元
CN103036241A (zh) * 2012-12-15 2013-04-10 安徽工程大学 一种无功补偿控制器及其控制方法
CN104917195A (zh) * 2015-07-01 2015-09-16 国网智能电网研究院 一种静止同步串联补偿装置及其控制方法
CN118214166A (zh) * 2024-05-20 2024-06-18 青岛儒海船舶工程有限公司 一种基于粒子分布的船舶电能参数检测及优化系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684209B (zh) * 2012-06-18 2014-09-10 中国电力科学研究院 利用风机附加控制器提高火电机组sso阻尼的方法
CN104104221B (zh) 2013-04-11 2017-05-17 通用电气公司 具有有功无功功率解耦补偿机制的能量转换系统和方法
CN112103967B (zh) * 2013-07-09 2024-07-09 香港大学 自适应ac和/或dc电源
CN105830303B (zh) * 2013-11-28 2019-02-26 维斯塔斯风力系统集团公司 风力发电站的无功功率回路的重新配置
CN106164681A (zh) * 2014-02-14 2016-11-23 智能动力股份有限公司 具有定位在客户现场处的无功伏安控制器的计量器/电压调节器
CN104037788B (zh) * 2014-06-16 2016-02-10 东南大学 风火打捆系统控制装置及其方法
CN104734158B (zh) * 2015-02-13 2018-07-20 泰州学院 一种模块化有源电力滤波器故障冗余无线控制方法
CN105449691B (zh) * 2015-12-25 2018-05-22 上海电力学院 一种双馈风电系统无功补偿方法
CN105703362A (zh) * 2016-03-18 2016-06-22 广东工业大学 一种分散式电能质量调节系统
DE102016108394A1 (de) * 2016-05-06 2017-11-09 Wobben Properties Gmbh Verfahren zur Kompensation von einzuspeisenden Strömen eines Windparks
CN105846432B (zh) * 2016-06-08 2018-07-17 珠海万力达电气自动化有限公司 一种apf并联运行的控制系统
US10096999B2 (en) * 2016-06-30 2018-10-09 General Electric Company Gas tube-switched flexible alternating current transmission system
DE102016125947A1 (de) * 2016-12-30 2018-07-05 Wobben Properties Gmbh Verfahren zum Steuern eines elektrischen Verteilnetzes
CN106849118A (zh) * 2017-01-16 2017-06-13 许继集团有限公司 一种基于电力电子换流技术的半波长输电混合调谐系统
JP6465242B2 (ja) * 2017-07-18 2019-02-06 ダイキン工業株式会社 アクティブフィルタシステム、空気調和装置
CN109119997B (zh) * 2018-10-15 2024-05-24 杭州电力设备制造有限公司 一种电能质量补偿设备
CN109510204A (zh) * 2018-12-26 2019-03-22 贵州电网有限责任公司 一种基于多代理技术的主动配电网多级电压质量治理方法
US11521771B2 (en) 2019-04-03 2022-12-06 General Electric Company System for quench protection of superconducting machines, such as a superconducting wind turbine generator
US10978943B2 (en) 2019-04-03 2021-04-13 General Electric Company System and method for auto-ramping and energy dump for a superconducting wind turbine generator
US10742149B1 (en) 2019-04-22 2020-08-11 General Electric Company System and method for reactive power control of a wind turbine by varying switching frequency of rotor side converter
US10581247B1 (en) 2019-05-06 2020-03-03 General Electric Company System and method for reactive power control of wind turbines in a wind farm supported with auxiliary reactive power compensation
US10790668B1 (en) 2019-05-06 2020-09-29 General Electric Company Method for reactive power oscillation damping for a wind turbine system with integrated reactive power compensation device
US10731628B1 (en) 2019-05-06 2020-08-04 General Electric Company System and method for coordinated control of reactive power from a generator and a reactive power compensation device in a wind turbine system
US11056884B2 (en) 2019-05-06 2021-07-06 General Electric Company Wind turbine system with integrated reactive power compensation device
CN110112739A (zh) * 2019-06-10 2019-08-09 安徽新粒科技有限公司 智慧节能调节控制系统
CN117318058B (zh) * 2023-09-27 2024-05-03 南方电网数字电网研究院股份有限公司 一种配电网的无功补偿方法和无功补偿系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812669A (en) * 1986-06-26 1989-03-14 Mitsubishi Denki Kabushiki Kaisha Harmonic suppressing device
US20070250217A1 (en) * 2006-04-25 2007-10-25 Korea Electric Power Corporation System and method for automatically operating upfc (unified power flow controller) connected to scada (supervisory control and data acquisition)
US20080252143A1 (en) * 2005-02-23 2008-10-16 Jose Ignacio Llorente Gonzalez Method and Device For Injecting Reactive Current During a Mains Supply Voltage Dip
CN201163721Y (zh) * 2007-12-19 2008-12-10 湖南大学 基于静止无功补偿器和混合注入式有源滤波器的联合运行控制装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548203A (en) * 1994-06-29 1996-08-20 Electric Power Research Institute, Inc. Capacitor polarity-based var correction controller for resonant line conditions and large amplitude line harmonics
US5631545A (en) * 1994-06-29 1997-05-20 Electric Power Research Institute, Inc. Apparatus and method for regulating a power line using frequency domain self-synchronization control
US5751138A (en) * 1995-06-22 1998-05-12 University Of Washington Active power conditioner for reactive and harmonic compensation having PWM and stepped-wave inverters
US5757099A (en) * 1996-03-01 1998-05-26 Wisconsin Alumni Research Foundation Hybrid parallel active/passive filter system with dynamically variable inductance
ITCZ20000008A1 (it) * 2000-11-17 2002-05-17 Edp Srl Sistema per correggere in modo attivo e ad alta dinamica, il fattore di potenza e le armoniche presenti su un elettrodotto
US6862199B2 (en) * 2001-02-01 2005-03-01 Northeastern University Adaptive controller for d-statcom in the stationary reference frame to compensate for reactive and harmonic distortion under unbalanced conditions
JP4017113B2 (ja) * 2003-05-07 2007-12-05 中国電力株式会社 配電系統用アクティブフィルタ
US7099165B1 (en) * 2005-04-12 2006-08-29 Hamilton Sundstrand Corporation Network harmonic scrubber
US7944184B2 (en) * 2008-04-07 2011-05-17 Korea Electric Power Corporation Static compensator apparatus for HVDC system
CN201256293Y (zh) * 2008-09-05 2009-06-10 湖南大学 配电网综合节能系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812669A (en) * 1986-06-26 1989-03-14 Mitsubishi Denki Kabushiki Kaisha Harmonic suppressing device
US20080252143A1 (en) * 2005-02-23 2008-10-16 Jose Ignacio Llorente Gonzalez Method and Device For Injecting Reactive Current During a Mains Supply Voltage Dip
US20070250217A1 (en) * 2006-04-25 2007-10-25 Korea Electric Power Corporation System and method for automatically operating upfc (unified power flow controller) connected to scada (supervisory control and data acquisition)
CN201163721Y (zh) * 2007-12-19 2008-12-10 湖南大学 基于静止无功补偿器和混合注入式有源滤波器的联合运行控制装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510068A (zh) * 2011-11-06 2012-06-20 中国科学院电工研究所 分散式电能质量调节器及其控制方法
CN102510068B (zh) * 2011-11-06 2014-06-25 中国科学院电工研究所 分散式电能质量调节器及其控制方法
CN102566463A (zh) * 2012-02-10 2012-07-11 常州莱宝电力滤波有限公司 低压静止无功发生装置测控单元
CN103036241A (zh) * 2012-12-15 2013-04-10 安徽工程大学 一种无功补偿控制器及其控制方法
CN103036241B (zh) * 2012-12-15 2015-03-04 安徽工程大学 一种无功补偿控制器及其控制方法
CN104917195A (zh) * 2015-07-01 2015-09-16 国网智能电网研究院 一种静止同步串联补偿装置及其控制方法
CN104917195B (zh) * 2015-07-01 2018-10-26 全球能源互联网研究院 一种静止同步串联补偿装置及其控制方法
CN118214166A (zh) * 2024-05-20 2024-06-18 青岛儒海船舶工程有限公司 一种基于粒子分布的船舶电能参数检测及优化系统

Also Published As

Publication number Publication date
CN102714412A (zh) 2012-10-03
EP2461452A4 (en) 2017-01-04
EP2461452A1 (en) 2012-06-06
US20120112714A1 (en) 2012-05-10
US8847562B2 (en) 2014-09-30
IN2012DN00914A (es) 2015-04-03
CN102714412B (zh) 2015-11-25
BR112012001936A2 (pt) 2016-03-15

Similar Documents

Publication Publication Date Title
WO2011012733A1 (es) Sistema para la compensación de energía reactiva en sistema de energía eléctrica
CN106849172B (zh) 光储交直流微网中的并离网无缝切换策略
Sridhar et al. A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PV-STATCOM
US11539303B2 (en) Uninterruptible power supply and method of operation
EP2987218B1 (en) Power factor adjustment in multi-phase power system
CN101950974A (zh) 基于超级电容器储能的电能质量调节系统
CN201742107U (zh) 基于超级电容器储能的电能质量调节装置
WO2010040388A1 (en) Multilevel converter and method for compensating active and reactive power in a high voltage network
WO2011035326A1 (en) Solar power distribution system
CN202488205U (zh) 新型串并联变换型ups
Masand et al. Control strategies for distribution static compensator for power quality improvement
CA2784963A1 (en) Ac diversion mode controller
MX2011010629A (es) Arreglo para ntercambiar energia.
Wang et al. Series and shunt DC electric springs
Sadigh et al. Unified power flow controller based on two shunt converters and a series capacitor
CN106602999B (zh) 一种基于超级电容储能的混合级联型光伏逆变装置及控制方法
Liu Control design of a single-phase dc/ac inverter for PV applications
CN111224401B (zh) 一种基于背靠背模块化多电平换流器的电能质量调节系统
Kaymanesh et al. Modified seven-level pack U-Cell inverter for electric-spring-based smart load applications
Kanase et al. Distribution static compensator for power quality improvement using PV array
JP7201689B2 (ja) 3つのブリッジ分岐を有する少なくとも1つのコンバーターモジュールを備えるコンバーター、動作方法、及びそのようなコンバーターの使用
Molina et al. Power flow control of microgrid with wind generation using a DSTATCOM-UCES
Dhekekar et al. H-Bridge Cascade Multilevel VSC Control for Effective VAR Compensation of Transmission Line
Zanjani Dynamic model of static synchronous compensator in Single-Machine Infinite-Bus power system
Sharan et al. Different Methods of Improving Power Quality in Microgrid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980163069.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384644

Country of ref document: US

Ref document number: 2009847748

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 914/DELNP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012001936

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012001936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120127