WO2011012518A1 - Verfahren zum betreiben eines magnetventils, insbesondere einspritzventils einer kraftstoffeinspritzanlage - Google Patents

Verfahren zum betreiben eines magnetventils, insbesondere einspritzventils einer kraftstoffeinspritzanlage Download PDF

Info

Publication number
WO2011012518A1
WO2011012518A1 PCT/EP2010/060574 EP2010060574W WO2011012518A1 WO 2011012518 A1 WO2011012518 A1 WO 2011012518A1 EP 2010060574 W EP2010060574 W EP 2010060574W WO 2011012518 A1 WO2011012518 A1 WO 2011012518A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
movement
valve
time
valve element
Prior art date
Application number
PCT/EP2010/060574
Other languages
English (en)
French (fr)
Inventor
Klaus Joos
Ruben Schlueter
Jens Neuberg
Helerson Kemmer
Holger Rapp
Haris Hamedovic
Joerg Koenig
Anh-Tuan Hoang
Bernd Wichert
Achim Hirchenhein
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201080033567.9A priority Critical patent/CN102472188B/zh
Priority to EP10737539.6A priority patent/EP2459860B1/de
Publication of WO2011012518A1 publication Critical patent/WO2011012518A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time

Definitions

  • the invention relates to a method according to the preamble of claim 1, and a computer program, an electrical storage medium and a control and / or regulating device according to the sibling
  • solenoid valves injectors
  • Opening time that is, a period between a lifting of a valve needle from its seat and a falling back of the valve needle when
  • DE 10 2004 016 554 B4 describes a method for controlling a solenoid valve in one
  • a pull-in voltage (U_an) and a holding voltage (U_halt) are determined as a function of operating variables of a high-pressure pump. Disclosure of the invention
  • the problem underlying the invention is by a method according to claim 1 and by a control and / or regulating device, a
  • An advantage of the invention is that the lift-off time of the armature of the solenoid valve and the lift-off delay related to the start of actuation can be easily determined or estimated.
  • the method can be used during normal operation of the internal combustion engine without interfering with the proper operation of the solenoid valve. In this way, the operation of the solenoid valve is improved by increasing its metering accuracy.
  • the inventive method relates to a solenoid valve, which a
  • Valve element having a valve needle and a means of a
  • Electromagnet movable armature The solenoid valve is closed, for example, in the de-energized state.
  • Electromagnet begins - after the Abhebeverzögerung - the
  • the stroke stop is used to stop the movement of the valve element
  • the lift-off delay can be determined according to the invention.
  • the invention is based on the finding that the duration of the opening movement in the full stroke of the valve element is subject to only small variations, not only between individual actuations, but also from one solenoid valve to the other.
  • Abhebeverzögerung a period of time between the beginning of the energization of an armature winding (An concedebeginn) and the
  • the lift-off delay is, inter alia, a function of a control duration of the solenoid valve. With increasing actuation periods, the lift-off delay initially decreases, but after a certain actuation period (even before the start of the full lift of the valve element), it is largely constant.
  • the inventive method is especially for this area in which the Abhebeverzögerung is largely constant and does not depend on the tax period, applicable. However, it is possible to transfer the thus determined Abhebeverzögerung also to a range of shorter drive times. This happens, for example, by the detection of a functional relationship between the lift-off delay and the drive time.
  • the invention is not limited to an application for direct fuel injection, but can also be used in other types of switchable solenoid valves.
  • the invention can be used in solenoid valves with and without a so-called anchor free travel.
  • Lifting time of the valve element from an event subsequent to the lifting off This can be a regulation of the time that the
  • Solenoid valve is actually opened, so be the time between the lifting of the valve element from the valve seat to the falling back of the valve element in the valve seat, more precisely, whereby the Mengenzumessgenautechnik of
  • Solenoid valve is improved. By equalizing the opening times can also Exemplarstreusch in mechanical so also in the electrical
  • Valve needle at the end of an armature movement swing because of their mechanical inertia a small piece on the stroke stop of the armature addition. By the restoring force of a spring, it is then pressed back onto the armature, where it remains for the remainder of the opening time of the solenoid valve. When rebounding the valve needle to the anchor this is briefly lifted from the stop, which in turn by evaluating the current and / or
  • Voltage signal can be detected.
  • the method according to the invention is particularly easy to apply if a constant variable is used as the movement time of the valve element.
  • An alternative embodiment of the method provides that is used as the movement time of the valve element dependent on at least one current operating variable of the fuel injection system size. This makes the process more versatile. For example, the current operating size of the fuel injection system, a drive duration of the solenoid valve, a
  • Temperature, a fuel pressure, etc. By taking into account the size dependent thereon, it is possible to use the method, for example, even with reduced drive times.
  • the determination of the size can be made about a functional relationship.
  • the method is improved if the movement time of the valve element is determined at a certain operating state of the fuel system, in particular using a closing delay time at a full lift of the valve element.
  • a relationship between the opening movement and the closing movement of the solenoid valve is given by the respective same distances of the armature movement, the same masses involved and the fixed properties of an armature resetting spring. Therefore, the movement time characterizing the opening of the solenoid valve can be accurately and easily determined by considering the closing delay time. In this case, the closing delay time is in a to Abhebeverzögerung
  • An important embodiment of the method provides that, in step c), by first subtracting the movement time from the end of movement, a lift-off time and then by subtracting the lift-off time from the start of the drive, the lift-off delay is determined. This can be the
  • Describe method also as follows: First, a control start of the solenoid valve and a movement end of the armature, or the valve needle is detected. Thereafter, from the moment of the end of the movement, the movement time of the armature is subtracted. This results in the lifting time of the anchor. Subsequently, the lift-off delay of the solenoid valve can be determined by a simple difference between the thus determined lift-off and the start of control of the solenoid valve.
  • Solenoid valve apply. For this purpose, for example, the time is detected at which the valve element rebounds back into its seat. From this point on, a known or estimated anchor decay time is subtracted. As a result, a timing is obtained which characterizes the beginning of a closing operation of the solenoid valve.
  • the detection of the movement of the armature and / or the valve needle determining variables is particularly simple if information about a movement of the armature, in particular about the end of movement
  • An armature winding can be detected flowing current, or it can be a current in the
  • Marked armature winding and the voltage applied to the armature winding voltage can be detected. This makes it possible in particular to determine the impact of the armature on the stroke stop or the rebound of the valve needle onto the armature.
  • the method according to the invention is simplified if steps (a) to (c) are carried out only if the activation duration is greater than a limit value.
  • This limit value is defined, for example, by that length of the activation duration, from which the movement time of the armature remains substantially constant. In this way, the reliability of the method is improved.
  • FIG. 1 shows a schematic section through a solenoid valve in closed position
  • Figure 2 shows the solenoid valve of Figure 1 in an open position
  • Figure 3 shows two diagrams, wherein in the upper one anchor current and in the lower one
  • Figure 4 is a diagram in which the stroke of a valve needle of the solenoid valve is plotted over time.
  • Figure 1 shows schematically some elements of a solenoid valve 10, as it is used as an injection valve in an injector 1 1 for direct fuel injection
  • FIG. 1 the solenoid valve 10 is shown closed, opened in Figure 2. Shown is an electromagnet 13 with an armature winding 12 and an armature 14, which is pulled into the armature winding 12 when energized. The movement of the armature 14 is limited by a rest seat 16 and a stroke stop 18. When closed
  • Solenoid valve 10 is the armature 14 on the retirement seat 16. Through an axial bore in the armature 14, a valve needle 20 is guided, which at its in the
  • Computer program 29 and an electrical storage medium 31 are examples.
  • Figure 2 shows the solenoid valve 10 of Figure 1 in an open position.
  • the armature winding 12 is energized and holds the armature 14 on the stroke stop 18 firmly.
  • the plate 22 and the valve needle 20 are carried by the armature 14 and release the outlet opening 28. In this case, a fuel amount 30 is discontinued.
  • FIG. 3 shows two time diagrams lying one above the other.
  • a current 34 of the armature winding 12 (“armature current") is shown by way of example.
  • armature stroke the associated curve of the stroke 36 of the armature 14 of the solenoid valve 10 is shown. Both diagrams are not scaled on their time axis "t", but have a same time scale. Starting from a control start 38 in the upper diagram, the current increases
  • the armature 14 initially remains at rest immediately after the activation start 38. Only at the time 50 does one recognize an armature stroke 36 in the direction of the stroke stop 18
  • the stroke stop 18 is characterized in FIG. 3 by a dashed line. Upon reaching the stroke stop 18 at the same time a movement end 52 of the armature 14 is reached. At about the time 48, the armature 14 falls back from the stroke stop 18 and assumes its initial position at time 54. It can be seen how, in spite of the energization of the armature winding 12 beginning at the start of the activation 38, the armature 14 lifts off in a delayed manner. The time difference between the lift-off time 50 and the start of drive 38 is called
  • Lift-off delay 32 of the armature 14 denotes.
  • the difference between the end of movement 52 and the lift-off time 50 is referred to as the movement time 56 or also as the "time of flight" of the armature 14.
  • the lift-off delay 32 can be determined by first subtracting the movement time 56 from the point in time 52 of the movement end, which results in the lift-off time point 50.
  • the movement time 56 is, for example, by
  • Lifting delay 32 This can be used subsequently for a particularly precise control and / or regulation of the solenoid valve 10, so that, for example, fuel can be injected with high accuracy.
  • the determination of the Abhebeverzögerung can be performed over and over again during operation of the solenoid valve, so that, for example, operating time-related
  • Evaluation of the voltage applied to the armature winding 12 and the current flowing in the armature winding 12 determined current.
  • the fall of the armature 14 is delayed. This is characterized by a closing delay time 58.
  • the movement time 56 can not only - as in the present case - be set as constant, but also by a current operating size of
  • Fuel injection system to be determined in whole or in part. For example, a voltage applied to the armature winding 12 driving voltage can be used to determine a driving time of the armature winding 12 therefrom. From this, an alternative movement time 56 can be derived, for example via a functional relationship. If the determined activation duration is smaller is a predeterminable limit value, optionally a determination of
  • FIG. 3 Not shown in FIG. 3 is a temporary declining armature stroke 36 shortly after the end of movement 52 as a result of a rebound of the valve needle 20 on the armature 14 after a possible overshoot of the valve needle 20 beyond the stroke stop 18. This case only occurs when armature 14 and valve needle 20 are not rigidly connected. It is explained below in FIG. 4.
  • FIG. 4 shows a time diagram of a deflection 60 of the valve needle 20 of the solenoid valve 10 during the opening phase. Apart from an overshoot described below, the deflection 60 of the valve needle 20 corresponds to an armature stroke 36 (not shown in FIG. 4).
  • the abscissa indicates the time axis 62, the ordinate indicates the
  • Mass inertia on the stroke stop 18 continues, then reverses due to the force of the acting coil spring 24 and at a time 68 on the armature 14 rebounds (arrow 70).
  • the kinetic energy of the rebounding valve needle 20 impulsively transfers to the armature 14, so that subsequently fall back by a small amount of stroke stop 18 back to the armature 14 and the valve needle 20 in the further course 72 by magnetic force again against the stroke stop 18th be pressed. This is the
  • Opening movement of the valve needle 20 ended.
  • a time 74 ends an opening phase of the solenoid valve 10, wherein the energization of the armature winding 12 is changed or turned off, so that there is a closing of the solenoid valve 10.
  • the armature 14 bounces at time 65
  • Stroke stop 18 resulting in a strong negative acceleration of the armature 14, which has a change in the voltages and / or currents of the armature winding 12 result.
  • the armature 14 - driven by the rebounding valve needle 20 - at time 68 again negative
  • a difference measure 76 describes a "time of flight" or "overtime" of
  • Valve needle 20 while she lifts off the armature 14 and over the
  • Stroke stop 18 speeds out.
  • Stroke stop 18 bounces be defined as a movement end 52 (impact information), or alternatively the time 68, at which a rebound of the valve needle 20 takes place on the armature 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein Verfahren beschrieben zum Betreiben eines Magnetventils (10), insbesondere Einspritzventils einer Kraftstoffeinspritzanlage, wobei das Magnetventil (10) ein Ventilelement aufweist, welches eine Ventilnadel (20) und einen mittels eines Elektromagneten (13) bewegbaren Anker (14) umfasst, wobei eine Öffnungsbewegung des Ankers (14) durch einen Hubanschlag (18) begrenzt ist, welches folgende Schritte umfasst: (a) Ermitteln eines Ansteuerbeginns des Elektromagneten (13); (b) Ermitteln eines Bewegungsendes (52) (Aufprallinformation) des Ventilelements am Ende der Öffnungsbewegung; (c) Ermitteln einer Abhebeverzögerung (32) unter Verwendung des ermittelten Ansteuerbeginns (38), des ermittelten Bewegungsendes (52) und einer vorab bestimmten Bewegungszeit (56) des Ventilelements.

Description

Beschreibung
Titel
Verfahren zum Betreiben eines Magnetventils, insbesondere Einspritzventils einer Kraftstoffeinspritzanlage
Stand der Technik
Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 , sowie ein Computerprogramm, ein elektrisches Speichermedium und eine Steuer- und/oder Regeleinrichtung nach den nebengeordneten
Patentansprüchen.
Bei Systemen zur Kraftstoffdirekteinspritzung in Kraftfahrzeugen wird die elektrische Ansteuerdauer von Magnetventilen (Injektoren) benutzt, um ein Maß für eine eingespritzte Kraftstoff menge zu erhalten. Dabei ist es wichtig, die
Öffnungszeit, das heißt, eine Zeitspanne zwischen einem Abheben einer Ventilnadel aus ihrem Sitz und einem Zurückfallen der Ventilnadel beim
Schließen des Magnetventils, möglichst genau zu bestimmen, um die
Zumessgenauigkeit der Kraftstoff menge zu erhöhen. Die DE 10 2004 016 554 B4 beschreibt ein Verfahren zur Ansteuerung eines Magnetventils in einem
Kraftstoffversorgungssystem einer Brennkraftmaschine. Dabei werden eine Anzugsspannung (U_an) und eine Haltespannung (U_halt) in Abhängigkeit von Betriebsgrößen einer Hochdruckpumpe bestimmt. Offenbarung der Erfindung
Das der Erfindung zu Grunde liegende Problem wird durch ein Verfahren nach Anspruch 1 sowie durch eine Steuer- und/oder Regeleinrichtung, ein
Computerprogramm und ein elektrisches Speichermedium nach den
nebengeordneten Ansprüchen gelöst. Vorteilhafte Weiterbildungen sind in
Unteransprüchen angegeben. Für die Erfindung wichtige Merkmale finden sich ferner in der nachfolgenden Beschreibung und in den Zeichnungen, wobei die Merkmale sowohl in Alleinstellung als auch in unterschiedlichen Kombinationen für die Erfindung wichtig sein können, ohne dass hierauf nochmals explizit hingewiesen wird.
Ein Vorteil der Erfindung ist es, dass der Abhebezeitpunkt des Ankers des Magnetventils und die auf den Ansteuerbeginn bezogene Abhebeverzögerung einfach bestimmt bzw. abgeschätzt werden können. Das Verfahren kann im normalen Betrieb der Brennkraftmaschine angewendet werden, ohne in den ordnungsgemäßen Betrieb des Magnetventils einzugreifen. Auf diese Weise wird der Betrieb des Magnetventils verbessert, indem seine Zumessgenauigkeit erhöht wird.
Das erfindungsgemäße Verfahren betrifft ein Magnetventil, welches ein
Ventilelement aufweist mit einer Ventilnadel und einem mittels eines
Elektromagneten bewegbaren Anker. Das Magnetventil ist beispielsweise im stromlosen Zustand geschlossen. Nach dem Ansteuerbeginn des
Elektromagneten beginnt - nach der Abhebeverzögerung - die
Öffnungsbewegung des Ventilelements, welche durch den Hubanschlag begrenzt ist. Der Hubanschlag wird dazu benutzt, um das Bewegungsende des
Ventilelements zu ermitteln. Aus dem Ansteuerbeginn, dem Bewegungsende und der vorab bestimmten Bewegungszeit ("Flugzeit") des Ventilelements kann erfindungsgemäß die Abhebeverzögerung ermittelt werden. Der Erfindung liegt dabei die Erkenntnis zu Grunde, dass die Dauer der Öffnungsbewegung im Vollhub des Ventilelements nur geringen Streuungen unterliegt, und zwar nicht nur zwischen einzelnen Betätigungen, sondern auch von einem Magnetventil zum anderen.
Allgemein bezeichnet man als Abhebeverzögerung eine Zeitspanne zwischen dem Beginn der Bestromung einer Ankerwicklung (Ansteuerbeginn) und dem
Abheben der Ventilnadel aus ihrem Sitz. Die Abhebeverzögerung ist unter anderem eine Funktion einer Ansteuerdauer des Magnetventils. Bei steigenden Ansteuerdauern verringert sich die Abhebeverzögerung zunächst, ab einer gewissen Ansteuerdauer (noch vor Beginn des Vollhubs des Ventilelements) ist sie weitgehend konstant. Das erfindungsgemäße Verfahren ist vor allem für diesen Bereich, in dem die Abhebeverzögerung weitgehend konstant ist und nicht von der Ansteuerdauer abhängt, anwendbar. Es ist jedoch möglich, die so ermittelte Abhebeverzögerung auch auf einen Bereich kürzerer Ansteuerdauern zu übertragen. Dies geschieht beispielsweise durch die Erfassung eines funktionalen Zusammenhangs zwischen der Abhebeverzögerung und der Ansteuerdauer.
Für das erfindungsgemäße Verfahren ist es nicht erforderlich, die
Ansteuerbedingungen des Magnetventils für einen Messbetrieb zu verändern und beispielsweise mit einer reduzierten ersten Ansteuerspannung (so genannte Boost-Spannung) zu arbeiten. Daher wird der Betrieb der Brennkraftmaschine nicht beeinträchtigt. Insbesondere kommt es auch nicht zu ungewollten
Einspritzungen von Kraftstoff in die Zylinder der Brennkraftmaschine. Ebenfalls ist die Erfindung nicht auf eine Anwendung zur Kraftstoffdirekteinspritzung beschränkt, sondern auch bei anderen Arten schaltbarer Magnetventile einsetzbar. Außerdem kann die Erfindung bei Magnetventilen mit und ohne einen so genannten Ankerfreiweg verwendet werden.
Alles in allem schlägt die Erfindung eine indirekte Bestimmung des
Abhebezeitpunkts des Ventilelements aus einem dem Abheben zeitlich nachfolgenden Ereignis vor. Damit kann eine Regelung jener Zeit, die das
Magnetventil tatsächlich geöffnet ist, also der Zeit zwischen dem Abheben des Ventilelements vom Ventilsitz bis zum Zurückfallen des Ventilelements in den Ventilsitz, genauer sein, wodurch die Mengenzumessgenauigkeit des
Magnetventils verbessert wird. Durch Gleichstellen der Öffnungsdauern können außerdem Exemplarstreuungen im mechanischen also auch im elektrischen
Kreis sowie in der elektromagnetischen Betätigungseinrichtung kompensiert werden.
In einer ersten Weiterbildung wird vorgeschlagen, dass als Bewegungsende ein Anschlagen des Ankers am Hubanschlag verwendet wird. Damit wird ein eindeutiges Kriterium benutzt, das zudem messtechnisch über den Spannungs- und/oder Stromverlauf besonders gut zu erfassen ist.
Ergänzend wird vorgeschlagen, dass als Bewegungsende ein Rückprallen der Ventilnadel auf den Anker verwendet wird. Dadurch wird eine alternative oder zusätzliche Möglichkeit geschaffen, das Bewegungsende des Ankers zu definieren und zu erfassen. Dem liegt folgende Überlegung zu Grunde: Bei Magnetventilen, die mit einem Ankerfreiweg ausgestattet sind, kann die
Ventilnadel am Ende einer Ankerbewegung wegen ihrer mechanischen Trägheit ein geringes Stück über den Hubanschlag des Ankers hinaus schwingen. Durch die Rückstellkraft einer Feder wird sie anschließend zurück auf den Anker gedrückt, wo sie für den Rest der Öffnungszeit des Magnetventils verbleibt. Beim Rückprallen der Ventilnadel auf den Anker wird dieser kurz vom Anschlag abgehoben, was wiederum durch Auswerten des Strom- und/oder
Spannungssignals erfasst werden kann.
Das erfindungsgemäße Verfahren ist besonders einfach anzuwenden, wenn als Bewegungszeit des Ventilelements eine konstante Größe verwendet wird. Damit wird eine Ermittlung des Abhebezeitpunktes beziehungsweise der
Abhebeverzögerung weniger rechenintensiv.
Eine alternative Ausgestaltung des Verfahrens sieht vor, dass als Bewegungszeit des Ventilelements eine von mindestens einer aktuellen Betriebsgröße der Kraftstoffeinspritzanlage abhängige Größe verwendet wird. Damit wird das Verfahren vielseitiger einsetzbar. Beispielsweise kann die aktuelle Betriebsgröße der Kraftstoffeinspritzanlage eine Ansteuerdauer des Magnetventils, eine
Temperatur, ein Kraftstoffdruck, etc. sein. Durch die Berücksichtigung der davon abhängigen Größe ist es möglich, das Verfahren beispielsweise auch bei verminderten Ansteuerdauern zu verwenden. Die Bestimmung der Größe kann etwa über einen funktionalen Zusammenhang erfolgen.
Das Verfahren wird verbessert, wenn die Bewegungszeit des Ventilelements bei einem bestimmten Betriebszustand des Kraftstoffsystems ermittelt wird, insbesondere unter Verwendung einer Schließverzugszeit bei einem Vollhub des Ventilelements. Ein Zusammenhang zwischen der Öffnungsbewegung und der Schließbewegung des Magnetventils ist durch die jeweils gleichen Wegstrecken der Ankerbewegung, die gleichen beteiligten Massen und die feststehenden Eigenschaften einer den Anker rückstellenden Feder gegeben. Daher kann die die Öffnung des Magnetventils charakterisierende Bewegungszeit durch eine Berücksichtigung der Schließverzugszeit genau und einfach ermittelt werden. Dabei wird die Schließverzugszeit in einer zur Abhebeverzögerung
vergleichbaren Weise definiert. Eine wichtige Ausgestaltung des Verfahrens sieht vor, dass im Schritt c) zunächst durch Subtrahieren der Bewegungszeit vom Bewegungsende ein Abhebezeitpunkt und dann durch Differenzbildung zwischen Abhebezeitpunkt und Ansteuerbeginn die Abhebeverzögerung ermittelt wird. Damit lässt sich das
Verfahren auch wie folgt beschreiben: Zunächst wird ein Ansteuerbeginn des Magnetventils und ein Bewegungsende des Ankers, beziehungsweise der Ventilnadel erfasst. Danach wird von dem Zeitpunkt des Bewegungsendes die Bewegungszeit des Ankers subtrahiert. Daraus ergibt sich der Abhebezeitpunkt des Ankers. Anschließend kann durch eine einfache Differenzbildung zwischen dem so ermittelten Abhebezeitpunkt und dem Ansteuerbeginn des Magnetventils die Abhebeverzögerung des Magnetventils bestimmt werden. Diese
Vorgehensweise benötigt wenig Rechenkapazität. Denkbar ist es ferner, eine ähnliche Prozedur auch auf den Schließvorgang des
Magnetventils anzuwenden. Dazu wird beispielsweise der Zeitpunkt erfasst, zu dem das Ventilelement in seinen Sitz zurück prallt. Von diesem Zeitpunkt wird eine bekannte oder geschätzte Ankerabfallzeit subtrahiert. Als Ergebnis erhält man einen Zeitpunkt, der den Beginn eines Schließvorgangs des Magnetventils charakterisiert.
Die Erfassung der die Bewegung des Ankers und/oder der Ventilnadel bestimmenden Größen wird besonders einfach, wenn eine Information über eine Bewegung des Ankers, insbesondere über das Bewegungsende
(Aufprallinformation) des Ankers an dem Hubanschlag oder über das Rückprallen der Ventilnadel auf den Anker durch eine Auswertung der Ströme und/oder Spannungen einer Ankerwicklung gewonnen wird. Ein wichtiger Vorteil hierbei ist, dass zusätzliche Sensoren nicht erforderlich sind. Beispielsweise kann an die Ankerwicklung des Magnetventils eine Spannung gelegt und der in die
Ankerwicklung fließende Strom erfasst werden, oder es kann ein Strom in die
Ankerwicklung geprägt und die an der Ankerwicklung anliegende Spannung erfasst werden. Damit lassen sich insbesondere der Aufprall des Ankers auf den Hubanschlag, beziehungsweise der Rückprall der Ventilnadel auf den Anker, sicher bestimmen. Das erfindungsgemäße Verfahren wird vereinfacht, wenn die Schritte (a) bis (c) nur durchgeführt werden, wenn die Ansteuerdauer größer ist als ein Grenzwert. Dieser Grenzwert ist beispielsweise durch jene Länge der Ansteuerdauer definiert, ab der die Bewegungszeit des Ankers im wesentlichen konstant bleibt. Auf diese Weise wird die Zuverlässigkeit des Verfahrens verbessert.
Nachfolgend werden beispielhafte Ausführungsformen der Erfindung unter Bezugnahme auf die Zeichnung erläutert. In der Zeichnung zeigen: Figur 1 ein schematischer Schnitt durch ein Magnetventil in geschlossener
Stellung;
Figur 2 das Magnetventil nach Figur 1 in einer geöffneten Stellung; Figur 3 zwei Diagramme, wobei im oberen ein Ankerstrom und im unteren ein
Ankerhub des Magnetventils sehr schematisch über der Zeit aufgetragen sind; und
Figur 4 ein Diagramm, in dem der Hub einer Ventilnadel des Magnetventils über der Zeit aufgetragen ist.
Figur 1 zeigt schematisch einige Elemente eines Magnetventils 10, wie es als Einspritzventil in einem Injektor 1 1 zur Kraftstoff-Direkteinspritzung einer
Brennkraftmaschine verwendet werden kann. In Figur 1 ist das Magnetventil 10 geschlossen gezeigt, in Figur 2 geöffnet. Dargestellt ist ein Elektromagnet 13 mit einer Ankerwicklung 12 und einem Anker 14, der bei einer Bestromung in die Ankerwicklung 12 gezogen wird. Die Bewegung des Ankers 14 ist durch einen Ruhesitz 16 sowie einen Hubanschlag 18 begrenzt. Bei geschlossenem
Magnetventil 10 liegt der Anker 14 auf dem Ruhesitz 16 auf. Durch eine axiale Bohrung im Anker 14 ist eine Ventilnadel 20 geführt, welche an ihrem in der
Zeichnung oberen Ende fest mit einem scheibenförmigen Teller 22 verbunden ist. Auf diesen wirkt eine Schraubenfeder 24 ein und beaufschlagt die Ventilnadel 20 somit in Schließrichtung. Am in der Zeichnung unteren Ende des Injektors 1 1 ist ein Ventilsitz 26 angeordnet. Eine Auslassöffnung 28 ist bei am Ventilsitz 26 aufliegender Ventilnadel 20 verschlossen (Figur 1 ) und bei abgehobener Ventilnadel 20 geöffnet (Figur 2). Sonstige Elemente des Magnetventils 10, wie zum Beispiel Kraftstoffkanäle, sind nicht mit dargestellt. Alle Bewegungen geschehen in einer auf die Figur 1 bezogenen vertikalen Richtung. Symbolisch dargestellt ist weiterhin eine Steuer- und/oder Regeleinrichtung 27 mit einem
Computerprogramm 29 und einem elektrischen Speichermedium 31.
Figur 2 zeigt das Magnetventil 10 von Figur 1 in einer geöffneten Stellung. Die Ankerwicklung 12 ist bestromt und hält den Anker 14 am Hubanschlag 18 fest. Der Teller 22 und die Ventilnadel 20 werden vom Anker 14 mitgeführt und geben die Auslassöffnung 28 frei. Dabei wird eine Kraftstoffmenge 30 abgesetzt.
Figur 3 zeigt zwei übereinander liegende Zeitdiagramme. In einem oberen Diagramm ist beispielhaft ein Strom 34 der Ankerwicklung 12 ("Ankerstrom") dargestellt. In einem unteren Diagramm ist die zugehörige Kurve des Hubs 36 des Ankers 14 ("Ankerhub") des Magnetventils 10 dargestellt. Beide Diagramme sind auf ihrer Zeitachse "t" nicht skaliert, weisen jedoch einen gleichen zeitlichen Maßstab auf. Ausgehend von einem Ansteuerbeginn 38 im oberen Diagramm steigt der Strom
34 während einer ersten Ansteuerphase (Boost-Phase) steil und in etwa rampenförmig an. Nach Erreichen eines Höchstwertes 40 bleibt der Strom in etwa auf diesem Niveau. Zum Zeitpunkt 42 fällt der Strom ab bis auf ein
Stromniveau , welches einen Haltestrom 44 charakterisiert. Zum Zeitpunkt 46 wird der Strom 34 vermindert und erreicht zu einem Zeitpunkt 48 den Wert Null.
Wie aus dem unteren Diagramm ersichtlich ist, bleibt der Anker 14 unmittelbar nach dem Ansteuerbeginn 38 zunächst in Ruhe. Erst zum Zeitpunkt 50 erkennt man einen Ankerhub 36 in Richtung auf den Hubanschlag 18
("Öffnungsbewegung"). Der Hubanschlag 18 wird in der Figur 3 durch eine gestrichelte Linie charakterisiert. Bei Erreichen des Hubanschlags 18 ist zugleich ein Bewegungsende 52 des Ankers 14 erreicht. Etwa zum Zeitpunkt 48 fällt der Anker 14 von dem Hubanschlag 18 zurück und nimmt zum Zeitpunkt 54 seine Ausgangslage ein. Man erkennt, wie trotz der zum Ansteuerbeginn 38 einsetzenden Bestromung der Ankerwicklung 12 der Anker 14 verzögert abhebt. Die zeitliche Differenz zwischen dem Abhebezeitpunkt 50 und dem Ansteuerbeginn 38 wird als
Abhebeverzögerung 32 des Ankers 14 bezeichnet. Die Differenz zwischen dem Bewegungsende 52 und dem Abhebezeitpunkt 50 wird als Bewegungszeit 56 oder auch als "Flugzeit" des Ankers 14 bezeichnet.
Die Abhebeverzögerung 32 lässt sich ermitteln, indem zunächst vom Zeitpunkt 52 des Bewegungsendes die Bewegungszeit 56 subtrahiert wird, was den Abhebezeitpunkt 50 ergibt. Die Bewegungszeit 56 wird beispielsweise durch
Vorversuche bestimmt und ist im vorliegenden Fall eines so genannten Vollhubs des Ankers 14 genügend konstant. Anschließend führt eine Differenzbildung des nunmehr bekannten Abhebezeitpunkts 50 zum Ansteuerbeginn 38 zur
Abhebeverzögerung 32. Dies kann in der Folge für eine besonders genaue Steuerung und/oder Regelung des Magnetventils 10 verwendet werden, so dass beispielsweise Kraftstoff mit hoher Genauigkeit eingespritzt werden kann. Die Ermittlung der Abhebeverzögerung kann im Betrieb des Magnetventils immer wieder durchgeführt werden, so dass beispielsweise betriebszeitbedingte
Veränderungen erkannt und ausgeregelt werden können. Auch eine Diagnose der korrekten Funktion des Magnetventils 10 ist in Kenntnis der
Abhebeverzögerung möglich.
Der Ansteuerbeginn 38 und das Bewegungsende 52 werden durch eine
Auswertung der an der Ankerwicklung 12 anliegenden Spannung und des in die Ankerwicklung 12 fließenden Stromes bestimmt. In einer ähnlichen Weise ist - wie im rechten Teil beider Diagramme ersichtlich - auch das Abfallen des Ankers 14 verzögert. Dies wird durch eine Schließverzugszeit 58 charakterisiert.
Die Bewegungszeit 56 kann nicht nur - wie vorliegend - als konstant angesetzt sein, sondern auch durch eine aktuelle Betriebsgröße der
Kraftstoffeinspritzanlage ganz oder teilweise bestimmt sein. Beispielsweise kann eine an der Ankerwicklung 12 anliegende Ansteuerspannung benutzt werden, um daraus eine Ansteuerdauer der Ankerwicklung 12 zu ermitteln. Aus dieser kann eine alternative Bewegungszeit 56, beispielsweise über einen funktionalen Zusammenhang, abgeleitet werden. Sofern die ermittelte Ansteuerdauer kleiner ist als ein vorgebbarer Grenzwert, kann optional eine Bestimmung der
Bewegungszeit 56 und damit der Abhebeverzögerung 32 unterbleiben.
Nicht dargestellt ist in der Figur 3 ein vorüber gehender rückläufiger Ankerhub 36 kurz nach dem Bewegungsende 52 als Folge eines Rückpralls der Ventilnadel 20 auf den Anker 14 nach einem möglichen Überschwingen der Ventilnadel 20 über den Hubanschlag 18 hinaus. Dieser Fall tritt nur dann auf, wenn Anker 14 und Ventilnadel 20 nicht starr miteinander verbunden sind. Er ist nachfolgend in der Figur 4 erläutert.
Figur 4 zeigt ein Zeitdiagramm einer Auslenkung 60 der Ventilnadel 20 des Magnetventils 10 während der Öffnungsphase. Von einem nachfolgend beschriebenen Überschwingen abgesehen, entspricht die Auslenkung 60 der Ventilnadel 20 einem in der Figur 4 nicht dargestellten Ankerhub 36. Die Abszisse kennzeichnet die Zeitachse 62, die Ordinate kennzeichnet die
Auslenkung bzw. den Hub 60. Links unten im Diagramm, in der Nähe des Koordinatenursprungs, ist der Ansteuerbeginn 38 des Magnetventils 10 eingetragen. Davon ausgehend zeigt ein in etwa geradliniger und steil ansteigender Verlauf der die Auslenkung 60 beschreibenden Kurve eine erste Bewegungsphase des Magnetventils 10. Eine gestrichelte waagerechte Gerade
64 im oberen Teil des Diagramms kennzeichnet den Hubanschlag 18 des Ankerhubs 36. Das erstmalige Erreichen (Pfeil 65) des Hubanschlags 18 erfolgt zu einem Zeitpunkt 66. Man erkennt, dass die Bewegung der Ventilnadel 20 sich aufgrund der
Massenträgheit über den Hubanschlag 18 fortsetzt, danach aufgrund der Kraft der einwirkenden Schraubenfeder 24 umkehrt und zu einem Zeitpunkt 68 auf den Anker 14 zurück prallt (Pfeil 70). Dabei überträgt sich die Bewegungsenergie der zurück prallenden Ventilnadel 20 impulsartig auf den Anker 14, so dass nachfolgend beide um ein geringes Maß vom Hubanschlag 18 zurück fallen, bis der Anker 14 und die Ventilnadel 20 im weiteren Verlauf 72 durch magnetische Kraft erneut gegen den Hubanschlag 18 gedrückt werden. Damit ist die
Öffnungsbewegung der Ventilnadel 20 beendet. Etwa zu einem Zeitpunkt 74 endet eine Öffnungsphase des Magnetventils 10, wobei die Bestromung der Ankerwicklung 12 verändert oder abgeschaltet wird, so dass sich ein Schließen des Magnetventils 10 ergibt. Wie oben dargelegt wurde, prallt der Anker 14 zum Zeitpunkt 65 auf den
Hubanschlag 18 auf, woraus sich eine starke negative Beschleunigung des Ankers 14 ergibt, was eine Veränderung der Spannungen und/oder Ströme der Ankerwicklung 12 zur Folge hat. Ebenso wird der Anker 14 - getrieben durch die zurück prallende Ventilnadel 20 - zum Zeitpunkt 68 wiederum negativ
beschleunigt, woraus sich ebenfalls eine Veränderung der Spannungen und/oder Ströme der Ankerwicklung 12 einstellt. Wie aus der Figur 4 ersichtlich, ist dieser zweite Beschleunigungsvorgang des Ankers 14 etwas schwächer ausgeprägt. Ein Differenzmaß 76 beschreibt eine "Flugzeit" oder "Überhubzeit" der
Ventilnadel 20, während der sie vom Anker 14 abhebt und über den
Hubanschlag 18 hinaus schnellt.
Dabei kann entweder der Zeitpunkt 66, an dem der Anker 14 auf den
Hubanschlag 18 prallt, als ein Bewegungsende 52 (Aufprallinformation) definiert sein, oder alternativ der Zeitpunkt 68, an dem ein Rückprall der Ventilnadel 20 auf den Anker 14 stattfindet.

Claims

Ansprüche
1 . Verfahren zum Betreiben eines Magnetventils (10), insbesondere
Einspritzventils einer Kraftstoffeinspritzanlage, wobei das Magnetventil (10) ein Ventilelement aufweist, welches eine Ventilnadel (20) und einen mittels eines Elektromagneten (13) bewegbaren Anker (14) umfasst, wobei eine
Öffnungsbewegung des Ankers (14) durch einen Hubanschlag (18) begrenzt ist, dadurch gekennzeichnet, dass es folgende Schritte umfasst:
(a) Ermitteln eines Ansteuerbeginns (38) des Elektromagneten (13);
(b) Ermitteln eines Bewegungsendes (52) (Aufprallinformation) des
Ventilelements am Ende der Öffnungsbewegung;
(c) Ermitteln einer Abhebeverzögerung (32) unter Verwendung des
ermittelten Ansteuerbeginns (38), des ermittelten Bewegungsendes (52) und einer vorab bestimmten Bewegungszeit (56) des Ventilelements.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als
Bewegungsende (52) ein Anschlagen des Ankers (14) am Hubanschlag (18) verwendet wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass als Bewegungsende (52) ein Rückprallen der
Ventilnadel (20) auf den Anker (14) verwendet wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass als Bewegungszeit (56) des Ventilelements eine konstante Größe verwendet wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Bewegungszeit (56) des Ventilelements eine von mindestens einer aktuellen Betriebsgröße der Kraftstoffeinspritzanlage abhängige Größe verwendet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Bewegungszeit (56) des Ventilelements bei einem bestimmten Betriebszustand des Kraftstoffsystems ermittelt wird, insbesondere unter Verwendung einer Schließverzugszeit (58) bei einem Vollhub des Ventilelements.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass im Schritt c) zunächst durch Subtrahieren der Bewegungszeit (56) vom Bewegungsende (52) ein Abhebezeitpunkt (50) und dann durch Differenzbildung zwischen Abhebezeitpunkt (50) und Ansteuerbeginn (38) die Abhebeverzögerung (32) ermittelt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass eine Information über eine Bewegung des Ankers (14), insbesondere über das Bewegungsende (52) (Aufprallinformation) des Ankers (14) an dem Hubanschlag (18) oder über das Rückprallen der Ventilnadel (20) auf den Anker (14) durch eine Auswertung der Ströme und/oder Spannungen einer Ankerwicklung (12) gewonnen wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Schritte (a) bis (c) nur durchgeführt werden, wenn die Ansteuerdauer größer ist als ein Grenzwert.
10. Computerprogramm (29), dadurch gekennzeichnet, dass es zur Anwendung in einem Verfahren nach einem der vorhergehenden Ansprüche
programmiert ist.
1 1 . Elektrisches Speichermedium (31 ) für eine Steuer- und/oder
Regeleinrichtung (27) einer Brennkraftmaschine, dadurch gekennzeichnet, dass auf ihm ein Computerprogramm (29) zur Anwendung in einem
Verfahren der Ansprüche 1 bis 8 abgespeichert ist.
12. Steuer- und/oder Regeleinrichtung (), für eine Brennkraftmaschine, dadurch gekennzeichnet, dass sie zur Anwendung in einem Verfahren nach einem der Ansprüche 1 bis 8 programmiert ist.
PCT/EP2010/060574 2009-07-28 2010-07-21 Verfahren zum betreiben eines magnetventils, insbesondere einspritzventils einer kraftstoffeinspritzanlage WO2011012518A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080033567.9A CN102472188B (zh) 2009-07-28 2010-07-21 用于运行磁阀、尤其燃料喷射装置的喷射阀的方法
EP10737539.6A EP2459860B1 (de) 2009-07-28 2010-07-21 Verfahren zum betreiben eines magnetventils, insbesondere einspritzventils einer kraftstoffeinspritzanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009028048A DE102009028048A1 (de) 2009-07-28 2009-07-28 Verfahren zum Betreiben eines Magnetventils, insbesondere Einspritzventils einer Kraftstoffeinspritzanlage
DE102009028048.0 2009-07-28

Publications (1)

Publication Number Publication Date
WO2011012518A1 true WO2011012518A1 (de) 2011-02-03

Family

ID=42989604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060574 WO2011012518A1 (de) 2009-07-28 2010-07-21 Verfahren zum betreiben eines magnetventils, insbesondere einspritzventils einer kraftstoffeinspritzanlage

Country Status (4)

Country Link
EP (1) EP2459860B1 (de)
CN (1) CN102472188B (de)
DE (1) DE102009028048A1 (de)
WO (1) WO2011012518A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016120925A1 (de) 2016-11-03 2018-05-03 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Bestimmung des Öffnungszeitpunktes eines Ventils
US10890167B2 (en) * 2015-01-28 2021-01-12 Robert Bosch Gmbh Method for operating a piston pump, control device of a piston pump, and piston pump
WO2022090395A1 (de) 2020-10-30 2022-05-05 Volkswagen Aktiengesellschaft Verfahren zum ermitteln eines öffnungszeitpunkts eines injektors mit einem magnetventil, computerprogramm, steuergerät, verbrennungskraftmaschine und kraftfahrzeug

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727395B2 (ja) 2012-01-16 2015-06-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102012212242A1 (de) 2012-07-12 2014-01-16 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines Aktuators
DE102013201974A1 (de) * 2013-02-07 2014-08-07 Robert Bosch Gmbh Verfahren zum Betrieb eines Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102015201466A1 (de) * 2015-01-28 2016-07-28 Robert Bosch Gmbh Verfahren zum Betreiben und Ansteuereinrichtung für eine Kolbenpumpe
DE102016219891B3 (de) * 2016-10-12 2018-02-08 Continental Automotive Gmbh Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264706A1 (de) * 1986-10-13 1988-04-27 Audi Ag Verfahren zum Betrieb einer Brennkraftmaschine
DE3942836A1 (de) * 1989-12-23 1991-06-27 Daimler Benz Ag Verfahren zur bewegungs- und lagezustandserkennung eines durch magnetische wechselwirkung zwischen zwei endpositionen beweglichen bauteiles eines induktiven elektrischen verbrauchers
WO2001020140A1 (de) * 1999-09-16 2001-03-22 Siemens Aktiengesellschaft Verfahren zum steuern eines elektromechanischen stellantriebes
WO2007039813A1 (en) * 2005-10-05 2007-04-12 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of electromagnetic drive valve operating mechanism
DE102005059176A1 (de) * 2005-12-12 2007-06-14 Robert Bosch Gmbh Verfahren zum Erkennen eines Ankerprellens in einem Magnetventil
DE102004016554B4 (de) 2004-04-03 2008-09-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Magnetventils

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264706A1 (de) * 1986-10-13 1988-04-27 Audi Ag Verfahren zum Betrieb einer Brennkraftmaschine
DE3942836A1 (de) * 1989-12-23 1991-06-27 Daimler Benz Ag Verfahren zur bewegungs- und lagezustandserkennung eines durch magnetische wechselwirkung zwischen zwei endpositionen beweglichen bauteiles eines induktiven elektrischen verbrauchers
WO2001020140A1 (de) * 1999-09-16 2001-03-22 Siemens Aktiengesellschaft Verfahren zum steuern eines elektromechanischen stellantriebes
DE102004016554B4 (de) 2004-04-03 2008-09-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Magnetventils
WO2007039813A1 (en) * 2005-10-05 2007-04-12 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of electromagnetic drive valve operating mechanism
DE102005059176A1 (de) * 2005-12-12 2007-06-14 Robert Bosch Gmbh Verfahren zum Erkennen eines Ankerprellens in einem Magnetventil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890167B2 (en) * 2015-01-28 2021-01-12 Robert Bosch Gmbh Method for operating a piston pump, control device of a piston pump, and piston pump
DE102016120925A1 (de) 2016-11-03 2018-05-03 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Bestimmung des Öffnungszeitpunktes eines Ventils
DE102016120925B4 (de) * 2016-11-03 2021-05-20 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Bestimmung des Öffnungszeitpunktes eines Ventils
WO2022090395A1 (de) 2020-10-30 2022-05-05 Volkswagen Aktiengesellschaft Verfahren zum ermitteln eines öffnungszeitpunkts eines injektors mit einem magnetventil, computerprogramm, steuergerät, verbrennungskraftmaschine und kraftfahrzeug
DE102020213705A1 (de) 2020-10-30 2022-05-05 Volkswagen Aktiengesellschaft Verfahren zum Ermitteln eines Öffnungszeitpunkts eines Injektors mit einem Magnetventil, Computerprogramm, Steuergerät, Verbrennungskraftmaschine und Kraftfahrzeug

Also Published As

Publication number Publication date
DE102009028048A1 (de) 2011-02-03
CN102472188B (zh) 2015-11-25
EP2459860B1 (de) 2016-09-07
CN102472188A (zh) 2012-05-23
EP2459860A1 (de) 2012-06-06

Similar Documents

Publication Publication Date Title
EP2459860B1 (de) Verfahren zum betreiben eines magnetventils, insbesondere einspritzventils einer kraftstoffeinspritzanlage
DE102010041320B4 (de) Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE102011076363B4 (de) Verfahren und Vorrichtung zur Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors für eine Brennkraftmaschine
DE102010063009B4 (de) Verfahren und Vorrichtung zur Charakterisierung einer Bewegung eines Kraftstoffinjektors mittels Erfassung und Auswertung einer magnetischen Hysteresekurve
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
EP2386021A1 (de) Verfahren zum betreiben eines kraftstoffeinspritzsystems
DE102009047453A1 (de) Verfahren zum Betreiben eines Magnetventils, insbesondere Einspritzventils einer Kraftstoffeinspritzanlage
DE102015206729A1 (de) Steuern eines Kraftstoffeinspritz-Magnetventils
DE102016203136B3 (de) Bestimmung einer elektrischen Ansteuerzeit für einen Kraftstoffinjektor mit Magnetspulenantrieb
DE102011007579B4 (de) Verfahren zum Betreiben eines Einspritzventils
WO2018068998A1 (de) Betreiben eines kraftstoffinjektors mit hydraulischem anschlag
DE102008040222A1 (de) Verfahren zum Betreiben eines Injektors und Steuergerät hierfür
DE102011086151A1 (de) Verfahren zum Betreiben mindestens eines Magnetventils
DE102012212195A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2016188726A1 (de) Verfahren zur ansteuerung eines kraftstoffinjektors
DE102015219383B3 (de) Bestimmung eines Zeitpunktes, zu welchem sich ein Kraftstoffinjektor in einem vorbestimmten Zustand befindet
WO2018069058A1 (de) Betreiben eines kraftstoffinjektors mit hydraulischem anschlag
DE102005059176A1 (de) Verfahren zum Erkennen eines Ankerprellens in einem Magnetventil
WO2011082902A1 (de) Verfahren und steuergerät zum betreiben eines ventils
DE102013220407B4 (de) Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102017204849B3 (de) Verfahren zum Erkennen einer Veränderung eines zumindest einen Teil eines Gesamtluftspaltes bildenden Arbeitsweges eines Magnetankers eines Kraftstoffeinspritzventils
EP4237675A1 (de) Verfahren zum ermitteln eines öffnungszeitpunkts eines injektors mit einem magnetventil, computerprogramm, steuergerät, verbrennungskraftmaschine und kraftfahrzeug
WO2018065471A1 (de) Betreiben eines kraftstoffinjektors mit hydraulischem anschlag bei reduziertem kraftstoffdruck
WO2011082901A1 (de) Verfahren und steuergerät zum betreiben eines ventils
WO2024061501A1 (de) Verfahren zum betreiben eines gasinjektors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033567.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10737539

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010737539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010737539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9801/DELNP/2011

Country of ref document: IN