WO2011012090A1 - 一种协作通信的方法和系统、基站及移动终端装置 - Google Patents

一种协作通信的方法和系统、基站及移动终端装置 Download PDF

Info

Publication number
WO2011012090A1
WO2011012090A1 PCT/CN2010/075597 CN2010075597W WO2011012090A1 WO 2011012090 A1 WO2011012090 A1 WO 2011012090A1 CN 2010075597 W CN2010075597 W CN 2010075597W WO 2011012090 A1 WO2011012090 A1 WO 2011012090A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
state information
channel state
channel
loop
Prior art date
Application number
PCT/CN2010/075597
Other languages
English (en)
French (fr)
Inventor
张弓
龙毅
丰大洋
程勇
刘坚能
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10803923.1A priority Critical patent/EP2418782B1/en
Priority to BRPI1011580-3A priority patent/BRPI1011580B1/pt
Publication of WO2011012090A1 publication Critical patent/WO2011012090A1/zh
Priority to US13/296,073 priority patent/US20120057555A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and system for cooperative communication, a base station, and a mobile terminal device. Background technique
  • Mobile communication systems support users in different mobile modes, including stationary, low-speed and high-speed users.
  • the channel state information (CSI) changes slowly. Therefore, the base station side can provide high-quality services for closed-loop users by pre-coding the CSI through the terminal.
  • the CSI changes rapidly due to Doppler frequency shift, and it is difficult for the base station to obtain real-time CSI. Therefore, the base station side cannot obtain the high-quality service for the open-loop users through the terminal feedback CSI.
  • the number of antennas of the cooperative base station is far more than the number of open-loop user antennas of the service, and the base station only serves at a certain moment.
  • a single open-loop user leads to inefficient system; 2. It is difficult for the base station to obtain the instantaneous CST of the open-loop user, resulting in low spectrum utilization; 3. Space-Division-Multiple-Access (SDMA) due to open-loop
  • SDMA Space-Division-Multiple-Access
  • Embodiments of the present invention provide a method and system for cooperative communication, a base station, and a mobile terminal device, which are capable of multiplexing open-close users and improving spectrum utilization of the system.
  • a method for cooperative communication provided by an embodiment of the present invention includes: receiving channel state information sent by a user, where the channel state information is a channel shape excluding a multipath signal. Channel state information of the direct vision signal of the user obtained by the state information;
  • Communication data is transmitted to the user using the results of the precoding calculation.
  • channel state information of the user Obtaining channel state information of the user, removing channel state information of the multipath signal in the channel state information, obtaining channel state information of the direct vision signal of the user, and transmitting channel state information of the direct vision signal of the user to the base station, where
  • the channel state information of the direct path signal of the user is used by the base station to determine a cooperative communication scheme; and the communication data sent by the base station is received.
  • a channel information receiving unit configured to receive channel state information sent by the user, where the channel state information is channel state information of the direct view signal of the user obtained by removing channel state information of the multipath signal;
  • a closed loop channel information acquiring unit configured to acquire channel state information of a closed loop user orthogonal to the household channel
  • a precoding unit configured to perform precoding calculation by using channel state information sent by the user and channel state information of the closed loop user
  • the mobile terminal device provided by the embodiment of the present invention includes:
  • a channel information acquiring unit configured to acquire channel state information of the user
  • a filtering unit which removes channel state information of the multipath signal in the channel state information to obtain the user's Channel state information of the direct path signal
  • a sending unit configured to send channel state information of the direct path signal of the user to the base station, where channel state information of the direct view signal of the user is used by the base station to determine a cooperative communication plan
  • a receiving unit configured to receive communication data sent by the base station.
  • the cooperative communication system includes a base station and a mobile terminal device, where the mobile terminal device is configured to acquire channel state information of a direct vision signal of the user, and send a channel of the direct vision signal of the user to the base station.
  • the status information is used by the base station to determine a cooperative communication scheme, and receive communication data sent by the base station;
  • the base station is configured to receive channel state information of a direct view signal of the user sent by the mobile terminal, acquire channel state information of a closed loop user orthogonal to a channel of the user, and use the direct view of the user
  • the channel state information of the path signal and the channel state information of the closed-loop user are precoded, and the communication data is transmitted to the user by using the result of the precoding calculation.
  • the closed loop user by acquiring the channel state information of the direct view portion of the user and the channel state information of the closed loop user orthogonal to the user channel, the closed loop user can be scheduled together in the downlink transmission. Effectively improving multi-user diversity, increasing the total capacity of the system; and pre-coding the users and the closed-loop users separately, so that the inter-user interference can be pre-processed, so that the cooperative base station can adapt to changes of the receiving antennas of different users. Improve the spectrum utilization of the system.
  • FIG. 1 is a flowchart of a method for cooperative communication according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an algorithm for determining a working mode of a hybrid SDMA system by using a Rice's Rice factor according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of FIG. 2 for selecting a working mode for a user in three cooperative base stations
  • FIG. 4 is an application scenario of two open-loop users and two closed-loop users in a hybrid base station according to an embodiment of the present invention
  • Figure 5 shows the total system capacity simulation results when only one closed-loop user is available for selection in the application scenario of Figure 4.
  • FIG. 6 is a system total capacity simulation result when the application scenario has multiple closed-loop users available for selection;
  • FIG. 7 is a flowchart of another cooperative communication method according to an embodiment of the present invention;
  • FIG. 8 is a flowchart of an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a downlink transmission hybrid SDMA architecture according to an embodiment of the present invention;
  • FIG. 10 is a functional structural diagram of a base station according to an embodiment of the present invention;
  • FIG. 11 is a schematic structural diagram of a mobile terminal device according to an embodiment of the present invention. detailed description
  • a method for cooperative communication includes: Step 11: Receive channel state information sent by a user, where the channel state information is obtained by removing channel state information of a multipath signal. Channel state information of the user's direct vision signal.
  • the user of this embodiment can be considered as a special open-loop user, and can feedback certain channel state information under certain circumstances.
  • the power ratio between the direct path portion and the Rayleigh portion, ⁇ is the path loss, which is a function of the distance between the base station and the mobile terminal.
  • the aggregate channel matrix for the mth open-loop user is expressed as:
  • this embodiment provides a channel state information based on the sliding window to estimate the open-loop user:
  • GZ ⁇ W) fading, Indicates the tth channel coefficient within this T channel. That is to say, the non-direct view portion of the open loop user channel state information is filtered out based on the sliding window algorithm, and the average channel state information of the direct view portion where the channel state information changes slowly is obtained.
  • T is the size of the sliding window, and the selection of T should refer to the channel fading rate.
  • Step 12 Obtain channel state information of a closed loop user orthogonal to the user channel.
  • the principle of selecting a closed-loop user here is to reduce the interference to the user as much as possible.
  • Closed loop user The users whose channels are orthogonal are least affected by the closed-loop user. Of course, the interference is also small when the orthogonality is close, and the close-closed closed-loop users can also be selected within the acceptable range of the interference.
  • the channel direction vector of the open-loop user is calculated with the candidate closed-loop user channel direction vector, and the closed-loop user is scheduled according to the chord distance.
  • the downlink channel matrix of the nth base station and the kth closed-loop user is supported as a Rayleigh channel.
  • H eC the expression can be expressed as:
  • the aggregated channel matrix for the kth closed-loop user is expressed as:
  • a codebook based on mutual knowledge between the mobile terminal and the base station ( ⁇ "[( ⁇ ,( ⁇ ,...,( ⁇ ) feedback precoding index:
  • J k arg min d c Q,, , (Q, , V 1 ) Q, Q Bu
  • the codebook index which is the most accurate quantized user channel coefficient, fQ V )) represents the chord distance of both.
  • the base station side finds the codebook of the corresponding index from the codebook according to the codebook index fed back by the mobile terminal.
  • the closed-loop user is selected based on the channel orthogonal to the open-loop user.
  • the specific algorithm is as follows:
  • the average of the aggregated channel coefficient SVD is decomposed: G G
  • the chord distance vector of the open-loop user's channel direction vector and the candidate closed-loop user channel direction vector is calculated, and the closed-loop user that makes the chord distance maximum or close to the maximum is selected for scheduling.
  • the algorithm is as follows:
  • the number of selected closed-loop users satisfies: (number of open-loop users + number of closed-loop users selected) number of X receiving antennas
  • the number of base station transmit antennas, and the number of cooperative base stations is a positive integer. That is to say, the total number of open-loop users (the number of open-loop users multiplied by the number of antennas per open-loop user) plus the total number of closed-loop users (the number of closed-loop users multiplied by the number of closed-loop users) It is smaller than the total number of antennas of the cooperative base station.
  • Step 13 Perform precoding calculation by using channel state information of the direct path signal of the user and channel state information of the closed loop user.
  • the open-loop user can be pre-coded separately by Block Diagonal (BD) linear precoding algorithm.
  • BD Block Diagonal
  • the precoding algorithm for open loop users is as follows:
  • the precoding scheme of the BD algorithm is capable of preprocessing inter-user interference.
  • Step 14 Send communication data to the user by using the result of the precoding calculation.
  • the method for cooperative communication provided by the embodiment of the present invention can acquire the closed-loop user in the downlink transmission by acquiring the channel state information of the direct-view portion of the user and the channel state information of the closed-loop user orthogonal to the user channel. Effectively improve multi-user diversity and increase the total capacity of the system;
  • the pre-coding of the user and the closed-loop user respectively can pre-process the inter-user interference, so that the cooperative base station can adapt to the change of the receiving antenna of different users, and improve the spectrum utilization rate of the system.
  • the method further includes:
  • each of the to-be-served base stations in the cooperative base station separately calculates the Rice factor of the user; and traverses the to-be-served base station to compare the calculated Rice. a factor and a predetermined threshold size; as long as there is one of the calculated Rice factor greater than a preset threshold, the operating mode is switched to a mixed SDMA system operating mode, and the calculated Rice The base station to be served whose factor is greater than a preset threshold is determined to be the base station providing the service.
  • the system operation mode of the existing open-loop SDMA is selected only if the calculated Rice factor is less than a preset threshold.
  • Figure 3 is an example of selecting an operating mode for a user under three cooperating base stations.
  • FIG. 5 shows that the transmission power is 43 dB, and only one closed-loop user can
  • FIG. 6 shows the simulation results of the total system capacity when the transmission power is 43 dB and there are 10 closed-loop users available for selection. From the simulation results of Fig. 5 and Fig. 6, even if there is only one Closed-loop users are available for selection.
  • the total system capacity of the open-closed users (the number of available bits per channel) is much higher than that for only one open-loop user. Moreover, the more closed-loop users are available, the total system capacity is increased. The more.
  • the method further includes:
  • the optimal power allocation scheme proposed by the embodiment of the present invention is as follows:
  • ⁇ , ⁇ , ⁇ ,, ⁇ ,,.,., ⁇ are the precoding and allocated power for these G users, respectively.
  • the power allocation algorithm is as follows:
  • G 3 ⁇ 4xl , eC3 ⁇ 4xl represent the received messages of the mth open-loop user and the k-th closed-loop user, respectively, w G c n T xL p G c n T xL
  • d m GC 3 ⁇ 4xl , d k e C 3 ⁇ 4xl denote open-closed-loop user signals for the m- th open-loop user and the k-th closed-loop user, respectively, and z e C3 ⁇ 4Xl denotes Gaussian white noise.
  • the algorithm for power allocation based on the user's weights provided in this embodiment can balance user service quality and fairness, and ensure the performance and system capacity of users with different path loss and Rice factor.
  • another method for cooperative communication provided by an embodiment of the present invention includes:
  • Step 71 Obtain channel state information of the user.
  • the user of this embodiment can be considered as a special open-loop user, and can feedback certain channel state information under certain circumstances.
  • the downlink channel matrix of the nth base station and the mth open-loop user is a Leys channel, and its expression can be expressed as:
  • the power ratio between the direct path portion and the Rayleigh portion is the path loss, which is a function of the distance between the base station and the mobile terminal.
  • the aggregate channel matrix for the mth open-loop user is expressed as:
  • this embodiment provides a channel state information based on the sliding window to estimate the open-loop user:
  • GLT ⁇ where G - represents the tth channel coefficient within the ⁇ channel.
  • the open loop user filters out the non-straight path portion where the channel state information changes rapidly based on the sliding window algorithm, and obtains the average channel state information of the direct view portion where the channel state information changes slowly.
  • T is the size of the sliding window, and the choice of T should refer to the channel fading rate.
  • Step 73 Send channel state information of the direct vision signal of the user to the base station, where the channel state information of the direct vision signal of the user is used by the base station to determine a cooperative communication scheme.
  • the base station determines the cooperative communication scheme based on the channel state information of the direct-view path of the open-loop user. For details, refer to the relevant part in the first embodiment.
  • Step 74 Receive communication data sent by the base station.
  • the method for cooperative communication provided by the embodiment of the present invention can obtain the channel state information of the direct view path of the user and send the channel state information of the direct view path of the user to the base station, and the cooperative communication plan can be determined by the base station.
  • the closed-loop users in the downlink transmission are scheduled together to effectively improve multi-user diversity and improve the spectrum utilization of the system.
  • the embodiment of the present invention provides a cooperative communication system.
  • the system includes a mobile terminal device 81 and a base station 82.
  • the mobile terminal device 81 is configured to acquire channel state information of a direct vision signal of the user, and send channel state information of the direct vision signal of the user to the base station, where the base station determines the cooperative communication scheme, and receives the communication data sent by the base station. ;
  • the base station 82 is configured to receive channel state information of a direct-view path of the user that is sent by the mobile terminal, acquire channel state information of a closed-loop user that is orthogonal to the channel of the user, and use a direct view path of the user.
  • the channel state information of the signal and the channel state information of the closed loop user are precoded, and the communication data is transmitted to the user using the result of the precoding calculation.
  • the user of this embodiment can be considered as a special open-loop user, and can feedback certain channel state information under certain circumstances.
  • a downlink transmission hybrid SDMA architecture can be seen in FIG. 9, including: N base station cooperative services M open-loop users (also called high-speed users) and closed-loop users (also called low-speed users), each base station has ⁇ ⁇
  • the antenna has 3 ⁇ 4 antennas per terminal, and the channel of the open-loop user is the Rician channel.
  • This architecture can be applied to cellular networks.
  • the architecture includes six functional modules: open-loop user channel mean estimation module based on sliding window; instantaneous CSI feedback module for closed-loop users; mode switching module based on Rice factor; closed-loop user-selected scheduling module based on orthogonal; open-loop user Precoding module; power distribution module.
  • the system for cooperative communication provided by the embodiment of the present invention transmits the acquired channel state information of the direct view portion of the user to the base station 82 through the mobile terminal device 81, and the base station 82 utilizes the channel state information of the direct view signal of the user.
  • the precoding calculation is performed on the channel state information of the closed loop user orthogonal to the channel of the user, and the closed loop user can be scheduled together in the downlink transmission, thereby effectively improving multi-user diversity and improving the spectrum utilization rate of the system.
  • an embodiment of the present invention further provides a base station, including:
  • the channel information receiving unit 101 is configured to receive channel state information sent by the user, where the channel state information is channel state information of the direct vision path of the user obtained by removing channel state information of the multipath signal;
  • the closed loop channel information acquiring unit 102 is configured to acquire channel state information of a closed loop user orthogonal to the user channel;
  • the precoding unit 103 is configured to perform precoding calculation by using channel state information sent by the user and channel state information of the closed loop user;
  • the sending unit 104 is configured to send the communication data to the user by using the result of the precoding calculation.
  • the user of this embodiment can be considered as a special open-loop user, and can feedback certain channel state information under certain circumstances.
  • the closed loop channel information acquiring unit 102 includes:
  • a closed-loop user selection module is configured to calculate a chord distance between the channel direction vector of the user and a channel direction vector of the closed-loop user to be selected, and select a closed-loop user to perform scheduling according to the chord distance.
  • the base station Before the closed-loop channel information acquiring unit 102 acquires the channel state information of the closed-loop user that is orthogonal to the user channel, the base station further includes:
  • the mode determining unit 105 is configured to determine a system working mode of the hybrid spatial division multiple access according to the Rice factor of the user. For the specific method of mode determination, please refer to the above method embodiment.
  • the base station further includes: Power distribution unit 106,
  • the base station receives the channel state information of the direct view portion of the user through the channel state information receiving unit 101, and the closed loop channel information acquiring unit 102 acquires the channel state information of the closed loop user orthogonal to the user channel,
  • the closed-loop user is scheduled together, the multi-user diversity is effectively improved, and the total system capacity is improved; and the user and the closed-loop user are separately pre-coded by the pre-encoding unit 104, and the inter-user interference can be preprocessed.
  • the base station can adapt to changes in the receiving antennas of different users, and improves the spectrum utilization rate of the system.
  • the mode determining unit 105 determines the system working mode of the hybrid spatial division multiple access according to the Rice factor of the user, and can ensure the performance of the hybrid SDMA system; the power allocation unit 106, quality and fairness, guarantee different paths Loss and Rice factor user performance and system capacity.
  • an embodiment of the present invention further provides a mobile terminal device, including:
  • the channel information acquiring unit 111 is configured to acquire channel state information of the user.
  • the filtering unit 112 is configured to remove channel state information of the multipath signal in the channel state information to obtain channel state information of the direct path signal of the user;
  • the sending unit 113 is configured to send channel state information of the direct path signal of the user to the base station, where channel state information of the direct view signal of the user is used by the base station to determine a cooperative communication plan;
  • the receiving unit 114 is configured to receive communication data sent by the base station.
  • the filtering unit filters out the multipath signal based on the sliding window algorithm to obtain average channel state information of the direct path portion of the channel state information of the user, where the size of the sliding window is determined by the channel fading rate.
  • the mobile terminal apparatus Since the CSI of the LOS part of the open-loop user is changed slowly, the mobile terminal apparatus provided in this embodiment filters the non-direct-view path portion whose channel state information changes rapidly by the filtering unit 112, and obtains channel state information.
  • the channel state information of the direct-view path portion of the slow-changing portion is transmitted, and the channel state information of the direct-view path signal of the open-loop user is sent by the sending unit 113 to the base station, where the base station determines the cooperative communication scheme, so that the base station side can transmit in the downlink.
  • the multiplexed open-loop user increases the total system capacity.
  • the method steps described in connection with the embodiments disclosed herein may be implemented in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other form of In the storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种协作通信的方法和系统、 基站及移动终端装置
技术领域
本发明涉及无线通信技术领域,具体而言是涉及一种协作通信的方法和系 统、 基站及移动终端装置。 背景技术
移动通信系统支持不同移动方式的用户, 包括静止, 低速和高速用户。 对 于低速用户 (对应闭环用户), 信道状态信息(Channel State Information, CSI ) 变化较慢,因此基站侧通过终端反馈 CSI做预编码即能使闭环用户获得高质量 服务。 但对于高速用户 (对应开环用户), 由于多普勒频移, CSI 变化很快, 基站很难获得实时的 CSI, 因此基站侧无法通过终端反馈 CSI使开环用户获得 高质量服务。
对于开环用户,在实现本发明的过程中,发明人研究发现当前协作通信中 至少存在如下问题: 1、协作基站的天线数目远多于服务的开环用户天线个数, 某时刻基站只服务单个开环用户导致系统效率不高; 2、 基站很难获得开环用 户 瞬时的 CST , 导致频谱利用率低; 3、 由于开环的空分多址 ( Space-Division-Multiple-Access , SDMA )技术不能预处理用户间的千扰, 只 能设计某种传输结构使得在接收端处理用户间的千扰,这样必然依赖于系统天 线的配置, 而不能适应接收天线的变化。 发明内容
本发明实施例提供一种协作通信的方法和系统、基站及移动终端装置, 能 够复用开闭环用户, 提高系统的频谱利用率。 为实现上述目的, 本发明实施例提供的一种协作通信的方法, 包括: 接收用户发送的信道状态信息,该信道状态信息为除去多径信号的信道状 态信息获得的所述用户的直视径信号的信道状态信息;
获取与所述用户信道正交的闭环用户的信道状态信息;
利用所述用户的直视径信号的信道状态信息和所述闭环用户的信道状态 信息进行预编码计算;
利用所述预编码计算的结果向所述用户发送通信数据。
本发明实施例提供的另一种协作通信的方法, 包括:
获取用户的信道状态信息,除去信道状态信息中多径信号的信道状态信息 获得所述用户的直视径信号的信道状态信息;向基站发送所述用户的直视径信 号的信道状态信息,该用户的直视径信号的信道状态信息用于基站确定协作通 信方案; 接收基站发送的通信数据。
本发明实施例提供的基站, 包括:
信道信息接收单元, 用于接收用户发送的信道状态信息, 该信道状态信息 为除去多径信号的信道状态信息获得的所述用户的直视径信号的信道状态信 息;
闭环信道信息获取单元,用于获取与所述户信道正交的闭环用户的信道状 态信息;
预编码单元 ,用于利用所述用户发送的信道状态信息和所述闭环用户的信 道状态信息进行预编码计算;
发送单元, 用于利用所述预编码计算的结果向所述用户发送通信数据。 本发明实施例提供的移动终端装置, 包括:
信道信息获取单元, 用于获取用户的信道状态信息;
过滤单元,除去信道状态信息中多径信号的信道状态信息获得所述用户的 直视径信号的信道状态信息;
发送单元, 用于向基站发送所述用户的直视径信号的信道状态信息,该用 户的直视径信号的信道状态信息用于基站确定协作通信方案;
接收单元, 用于接收基站发送的通信数据。
本发明实施例提供的协作通信系统, 包括基站和移动终端装置, 所述移动终端装置, 用于获取用户的直视径信号的信道状态信息, 向基站 发送所述用户的直视径信号的信道状态信息用于基站确定协作通信方案,接收 基站发送的通信数据;
所述基站,用于接收所述移动终端发送的所述用户的直视径信号的信道状 态信息, 获取与所述用户的信道正交的闭环用户的信道状态信息, 利用所述用 户的直视径信号的信道状态信息和所述闭环用户的信道状态信息进行预编码 计算, 并利用所述预编码计算的结果向所述用户发送通信数据。
由上述本发明实施例提供的技术方案可知,通过获取用户的直视径部分的 信道状态信息和与所述用户信道正交的闭环用户的信道状态信息,能够在下行 传输中开闭环用户一起调度, 有效地提高多用户分集, 提高系统的总容量; 并 且通过对所述用户及所述闭环用户分别进行预编码, 能够预处理用户间千扰, 使得协作基站能够适应不同用户接收天线的变化, 提高了系统的频谱利用率。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面对实施例中所需要使用 的附图作简单地介绍。
图 1为本发明实施例提供的一种协作通信的方法流程图;
图 2为本发明实施例提供的一种利用用户的莱斯因子确定混合 SDMA系 统工作模式的算法流程图; 图 3为图 2在三个协作基站下为用户选择工作模式的样例; 图 4为本发明实施例提供的 2个协作基站混合调度 1个开环用户和 2个闭 环用户的应用场景;
图 5为图 4应用场景只有 1 个闭环用户可供选择时的系统总容量仿真结 果;
图 6为图 4应用场景有多个闭环用户可供选择时的系统总容量仿真结果; 图 7为本发明实施例提供的另一种协作通信的方法流程图; 图 8为本发明实施例提供的一种协作通信的系统的组成图; 图 9为本发明实施例提供的一种下行传输混合 SDMA架构图; 图 10为本发明实施例提供的一种基站的功能结构图;
图 11为本发明实施例提供的一种移动终端装置的功能结构图。 具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行清 楚、 完整地描述。
实施例一 参见图 1 , 本发明实施例提供的一种协作通信的方法, 包括: 步驟 11 , 接收用户发送的信道状态信息, 该信道状态信息为除去多径信 号的信道状态信息获得的所述用户的直视径信号的信道状态信息。
可以理解的是, 本实施例的用户可以认为是一个特别的开环用户,在特定 的情况下可以反馈一定的信道状态信息。在本实施例中我们可以理解为对传统 一般意义的开环用户的操作, 可以让其反馈一些信道状态信息。
对于开环用户, 假设第 n个基站和第 m个开环用户的下行信道矩阵为莱 斯信道, 用0 来表示, 其表达式可表示为
K
η G + Ώ G,„„, V w = 1,2,· · ·,Μ; « = 1,2, 、N,
其中 是莱斯信道的直视径( Line of Sight, LOS ) 、
Figure imgf000007_0001
是莱斯信道的瑞利信道部分, ,"是莱斯因子, 那分,
即直视径部分与瑞利部分的功率比, ^,"是路损, 是基站与移动终端之间距离 的函数。
对第 m个开环用户的聚合信道矩阵表示为:
Gm = [G^ Gm,2 · · · Gm,w ] , V = 1, 2, · · · , M。 由于开环用户的 LOS部分的信道状态信息 CSI变化较慢, 本实施例提供 了一种基于滑动窗口来估计开环用户的信道状态信息:
初始条件: 对于 n = 1, 2, N, G ;] = G{: = , 对第 m个开环用户, m =1, 2, ..., M,在每 T个信道时刻 , 收集了 T个信道 系数后, 第 m个开环用户计算的更新后的信道估计值为:
GZ{ W) = 衰 其中,
Figure imgf000007_0002
表示这 T信道内的第 t个信道系数。 也即是说,基于滑动窗口算法过滤掉开环用户信道状态信息变化快的非直 视径部分,得到信道状态信息变化慢的直视径部分的平均的信道状态信息。其 中, T为滑动窗口大小, T的选择应参考信道衰落率。
步驟 12, 获取与所述用户信道正交的闭环用户的信道状态信息。
此处选择闭环用户的原则为尽可能的减少对所述用户的千扰。与闭环用户 信道正交的用户受该闭环用户的影响最小, 当然接近正交的情况千扰也较小, 在千扰可接受的范围内同样可以选择接近正交的闭环用户。将开环用户的信道 方向矢量与侯选的闭环用户信道方向矢量做弦距离计算,根据弦距离对闭环用 户进行调度。
对于闭环用户, 支设第 n个基站和第 k个闭环用户的下行信道矩阵为瑞利 信道, 用 H eC"" , 其表达式可表示为:
Η^=%,Α,„,ν 1,2,.. = 1,2,...,N, 其中 是路损 , 是基站与移动终端之间距离的函数。
对第 k个闭环用户的聚合信道矩阵表示为:
Η,. =「H,., !!,.,… Η"Λν : = 1,2,···, 由于闭环用户的信道状态信息 CSI变化较慢, 对聚合信道系数奇异值分解
( Singular Value Decompostion, SVD )得
(i) , 其中, [ ] '表示共轭转置
Figure imgf000008_0001
基于移动终端与基站互知的码本( ^^"[(^,(^,…,(^^ )反馈预编码索引:
Jk = arg min dc Q,, , (Q, , V1) Q,Q卜
Figure imgf000008_0002
其中, 为最准确量化用户 k信道系数 的码本索引, fQ V ))表示两 者的弦距离。在基站侧根据移动终端反馈回来的码本索引,从码本中找出 对 应索引的码本。
基于与开环用户的信道正交来选择闭环用户, 其具体算法如下:
,·.·, M m个开环用户的聚合信道系数均值为:
Figure imgf000008_0003
M Vm = l,2 0
对聚合信道系数均值 SVD分解得: G G 将该开环用户的信道方向矢量与侯选的闭环用户信道方向矢量做弦距离 计算, 选择使得所述弦距离最大或接近最大的闭环用户进行调度。 该算法具体如下:
初始化: j' = 0; 选择用户索引为 ={1,2,. · ., 输出用户索引,设置; τ。= Φ, While (j < = Kcl), do:
j = j+l;
Figure imgf000009_0001
(3) Set κο = κο \ Κ · 同时所述选择的闭环用户的个数满足: (开环用户的个数 +选择的闭环用户 的个数) X接收天线的个数^倍的单个基站发射天线的个数,协作基站的个数 为正整数。 也即是说, 开环用户总天线数(开环用户个数乘以每个开环用户的 天线个数)加上闭环用户总天线数(闭环用户个数乘以闭环用户的天线个数) 要小于协作基站总天线个数。 步驟 13, 利用所述用户的直视径信号的信道状态信息和所述闭环用户的 信道状态信息进行预编码计算。 可以釆用基于块对角化(Block Diagonal, BD )线性预编码算法对开闭环 用户分别进行预编码。 开环用户的预编码算法如下:
①对开环用户信道做 SVD分解:
Gm = Um [∑m 0] γ(') γ(°: , V = 1,2,· · ·,Μ , 其中 Vi)是信道系数的非零空间■
②假设系统同时支持 /个闭环用户, 量化的信道系数为 Qi,Q2, ',Q ③开环用户 m的千扰信道为
G V, (吖 ίν1)) [νί'Μ ν m.('+)1、
Figure imgf000010_0001
④对所述千扰信道做 SVD分解: =1了 「y v(1) v(0) Vw = l,2,...,
G~{e) ― ,7
⑤对该开环用户进行 BD运算后等价的信道为:
⑥对等价信道做 0 V '1) V e,0)
SVD分解: ∑(e) Vm = l,2,...,
W„, = V(0' ί Viej) ) , V w = l, 2 , · · · , M
⑦得到该开环用户的预编码为
同理, 获得闭环用户的预编码的计算过程如下
Q;. Q;… Qi—】 —Q:
Figure imgf000010_0002
H ,=U_ JS_, 0 \/k = \,2,...,K cl
Figure imgf000010_0003
V, 这样, 利用该开环用户和所述闭环用户的混合信道状态信息, 使用基于
BD算法的预编码方案, 能够预处理用户间千扰。 步骤 14, 利用所述预编码计算的结果向所述用户发送通信数据。 本发明实施例提供的协作通信的方法,通过获取用户的直视径部分的信道 状态信息和与所述用户信道正交的闭环用户的信道状态信息,能够在下行传输 中开闭环用户一起调度, 有效地提高多用户分集, 提高系统的总容量; 并且通 过对所述用户及所述闭环用户分别进行预编码, 能够预处理用户间千扰,使得 协作基站能够适应不同用户接收天线的变化, 提高了系统的频谱利用率。
为了保证混合 SDMA系统的性能, 在获取与所述用户信道正交的闭环用 户的信道状态信息之前, 所述方法还包括:
根据所述用户的莱斯因子, 确定混合空分多址的系统工作模式。
该过程可参见附图 2所示,在某用户调度时,协作基站中的每个待服务基 站分别计算出所述用户的莱斯因子;遍历所述待服务基站比较所述计算出的莱 斯因子与预先设定阈值的大小;只要存在一个所述计算出的莱斯因子大于预先 设定的阀值, 则将工作模式切换为混合 SDMA的系统工作模式, 同时将所述 计算出的莱斯因子大于预先设定阈值的待服务基站确定为提供服务的基站。只 有所述计算出的莱斯因子都小于预先设定的阀值, 才选择现有的开环 SDMA 的系统工作模式。 附图 3是在三个协作基站下为用户选择工作模式的样例。
例如, 参见图 4, 在 2个协作基站(基站 1和基站 2 )混合调度 1个开环 用户和 N个闭环用户的应用场景下, 图 5为在发送功率为 43dB, 只有 1个闭 环用户可供选择时的系统总容量的仿真结果, 图 6为在发送功率为 43dB, 有 10闭环用户可供选择时的系统总容量的仿真结果, 由图 5和图 6的仿真结果 可知, 即使只有一个闭环用户可供选择, 复用开闭环用户的系统总容量(单位 信道的可用比特数)比只服务一个开环用户提高了许多, 而且, 可供选择的闭 环用户数目越多, 系统总容量提高的越多。
进一步地,在利用所述用户的直视径信号的信道状态信息和所述闭环用户 的信道状态信息进行预编码计算之后 , 所述方法还包括:
根据所述用户及所述闭环用户的权值进行功率分配。 当每根天线功率受限时(比基站总功率受限更常见) , 为了保证权值后的 系统容量最大化, 同时保证用户的性能, 本发明实施例提出的优化功率分配方 案如下: 殳有 M个开环用户和 个闭环用户, 共 G个用户 G = M + ^ , 令
{^^一,^}、 {Ρ,,Ρ,,.,.,Ρ^ 分别为这 G个用户的预编码和分配的功率。 当协作 基站给每个移动终端传输 L个相互独立的数据流, 功率分配算法如下:
,2,...,NnT (*)
Figure imgf000012_0001
Psl≥0,\/q,l 其中" g为分配给 G用户的权值, 为 的第(g,Z)的元素,
Figure imgf000012_0002
天线的限制功率。 (*)表示功率分配用凸优化来解决。
这样, M个开环和 K个闭环用户的下行基带信号分别为: y =G ∑WvPvdv+FDA + z, V w = 1, 2. FD d + z, k = l,2,---,K,
Figure imgf000012_0003
G ¾xl , eC¾xl 分别表示第 m个开环用户和第 k个闭环用户的接收信 w G cnTxL p G cnTxL
分别表示第 m个开环用户和第 k个闭环用户的预编
LxL
分别表示第 m个开环用户和第 k个闭环用户的功率 i 配矩阵;
dm G C¾xl , dk e C¾xl分别表示对第 m个开环用户和第 k个闭环用户带来 千扰信号的开闭环用户信号, z e C¾Xl表示高斯白噪声。
采用本实施例提供的基于用户的权值进行功率分配的算法,能够均衡用户 服务质量和公平性, 保证有不同路损和莱斯因子的用户的性能和系统容量。
实施例二
参见图 7 , 本发明实施例提供的另一种协作通信的方法, 包括:
步驟 71 , 获取用户的信道状态信息。
可以理解的是, 本实施例的用户可以认为是一个特别的开环用户,在特定 的情况下可以反馈一定的信道状态信息。
对于开环用户, 支设第 n个基站和第 m个开环用户的下行信道矩阵为莱 斯信道, 用 来表示, 其表达式可表示为:
K
η G + η G , V w = l,2,- - -, ; « = 1,2, N.
— +1
是莱斯信道的直视径( Line of Sight, LOS ) R T
是莱斯信道的瑞利信道部分, 是莱斯因子,
Figure imgf000013_0001
即直视径部分与瑞利部分的功率比, ,"是路损, 是基站与移动终端之间距离 的函数。
对第 m个开环用户的聚合信道矩阵表示为:
Gm,i Gm,2 ... Gm,N | , V w = l,2,..., 步驟 72 , 除去信道状态信息中多径信号的信道状态信息获得所述用户的 直视径信号的信道状态信息。 由于开环用户的 LOS部分的信道状态信息 CSI变化较慢, 本实施例提供 了一种基于滑动窗口来估计开环用户的信道状态信息:
初始条件: 对于 n = 1, 2,…, N, = =
Figure imgf000014_0001
, 对第 m个开环用户, m =1, 2, ..., M,在每 T个信道时刻 , 收集了 Τ个信道 系数后, 第 m个开环用户计算的更新后的信道估计值为:
GLT} = 其中, G- 表示这 τ信道内的第 t个信道系数。
Figure imgf000014_0002
也即是说,开环用户基于滑动窗口算法过滤掉信道状态信息变化快的非直 视径部分,得到信道状态信息变化慢的直视径部分的平均的信道状态信息。其 中, T为滑动窗口大小, T的选择应参考信道衰落率。
步骤 73, 向基站发送所述用户的直视径信号的信道状态信息, 该用户的 直视径信号的信道状态信息用于基站确定协作通信方案。
基站如何基于开环用户的直视径信号的信道状态信息确定协作通信方案, 具体地可参见实施例一中的相关部分。
步骤 74, 接收基站发送的通信数据。
本发明实施例提供的协作通信的方法,通过获取用户的直视径部分的信道 状态信息, 并向基站发送所述用户的直视径信号的信道状态信息, 能够由基站 确定协作通信方案,在下行传输中开闭环用户一起调度,有效地提高多用户分 集, 提高系统的频谱利用率。
实施例三
应用上述方法实施例,本发明实施例提供了一种协作通信系统,参见图 8, 所述系统包括移动终端装置 81和基站 82, 所述移动终端装置 81 , 用于获取用户的直视径信号的信道状态信息, 向 基站发送所述用户的直视径信号的信道状态信息用于基站确定协作通信方案, 接收基站发送的通信数据;
所述基站 82, 用于接收所述移动终端发送的用户的直视径信号的信道状 态信息, 获取与所述用户的信道正交的闭环用户的信道状态信息, 利用所述用 户的直视径信号的信道状态信息和所述闭环用户的信道状态信息进行预编码 计算, 并利用所述预编码计算的结果向所述用户发送通信数据。
可以理解的是, 本实施例的用户可以认为是一个特别的开环用户,在特定 的情况下可以反馈一定的信道状态信息。
一种下行传输混合 SDMA架构可参见图 9所示, 包括: N个基站协作服 务 M个开环用户 (也称高速用户)和 个闭环用户 (也称低速用户), 每个基 站有 ητ个天线, 每个终端有 ¾个天线, 其中开环用户的信道是莱斯(Rician ) 信道。 该架构可应用于蜂窝网络中。
本架构包括六个功能模块: 基于滑动窗口的开环用户信道均值估计模块; 闭环用户的瞬时 CSI反馈模块; 基于莱斯因子的模式切换模块;基于正交的闭 环用户选择调度模块; 开闭环用户预编码模块; 功率分配模块。
本发明实施例提供的协作通信的系统, 通过移动终端装置 81将获取的用 户的直视径部分的信道状态信息发送给基站 82, 由基站 82利用所述用户的直 视径信号的信道状态信息和与所述用户的信道正交的闭环用户的信道状态信 息进行预编码计算, 能够在下行传输中开闭环用户一起调度,有效地提高多用 户分集, 提高系统的频谱利用率。
实施例四 参见图 10, 本发明实施例还提供了一种基站, 包括:
信道信息接收单元 101 , 用于接收用户发送的信道状态信息, 该信道状态 信息为除去多径信号的信道状态信息获得的所述用户的直视径信号的信道状 态信息;
闭环信道信息获取单元 102, 用于获取与所述用户信道正交的闭环用户的 信道状态信息;
预编码单元 103, 用于利用所述用户发送的信道状态信息和所述闭环用户 的信道状态信息进行预编码计算;
发送单元 104, 用于利用所述预编码计算的结果向所述用户发送通信数 据。
可以理解的是, 本实施例的用户可以认为是一个特别的开环用户,在特定 的情况下可以反馈一定的信道状态信息。
其中, 所述闭环信道信息获取单元 102包括:
闭环用户选择模块,用于将所述用户的信道方向矢量与待选择的闭环用户 的信道方向矢量做弦距离计算, 根据所述弦距离选择闭环用户进行调度。
为了保证混合 SDMA系统的性能,
在闭环信道信息获取单元 102 获取与所述用户信道正交的闭环用户的信 道状态信息之前, 所述基站还包括:
模式确定单元 105, 用于根据所述用户的莱斯因子, 确定混合空分多址的 系统工作模式。 模式确定的具体方法请参见上述的方法实施例。
在预编码单元 103 利用所述用户发送的信道状态信息和所述闭环用户的 信道状态信息进行预编码计算之后, 所述基站还包括: 功率分配单元 106,
配。 功率分配的具体计算也请参见上述的方法实施例。
本发明实施例提供的基站,通过信道状态信息接收单元 101接收用户的直 视径部分的信道状态信息,闭环信道信息获取单元 102获取与所述用户信道正 交的闭环用户的信道状态信息, 能够在下行传输中开闭环用户一起调度,有效 地提高多用户分集,提高系统总容量; 并且通过预编码单元 104对所述用户及 所述闭环用户分别进行预编码, 能够预处理用户间千扰,使得基站能够适应不 同用户接收天线的变化, 提高了系统的频谱利用率。
更进一步地,模式确定单元 105根据所述用户的莱斯因子, 确定混合空分 多址的系统工作模式, 能够保证混合 SDMA系统的性能; 功率分配单元 106, 质量和公平性, 保证有不同路损和莱斯因子的用户的性能和系统容量。
实施例五
参见图 11 , 本发明实施例还提供了一种移动终端装置, 包括:
信道信息获取单元 111 , 用于获取用户的信道状态信息;
过滤单元 112, 除去信道状态信息中多径信号的信道状态信息获得所述用 户的直视径信号的信道状态信息;
发送单元 113, 用于向基站发送所述用户的直视径信号的信道状态信息, 该用户的直视径信号的信道状态信息用于基站确定协作通信方案;
接收单元 114, 用于接收基站发送的通信数据。
可以理解的是, 本实施例的用户仍可以认为是一个特别的开环用户,在特 定的情况下可以反馈一定的信道状态信息。 其中, 所述过滤单元基于滑动窗口算法过滤掉多径信号,得到用户的信道 状态信息中直视径部分的平均的信道状态信息 ,其中所述滑动窗口的大小通过 信道衰落率确定。
由于开环用户的 LOS部分的信道状态信息 CSI变化较慢, 本实施例提供 的移动终端装置通过过滤单元 112基于滑动窗口算法过滤掉信道状态信息变 化快的非直视径部分, 得到信道状态信息变化慢的直视径部分的信道状态信 息, 并由发送单元 113 向基站发送所述开环用户的直视径信号的信道状态信 息, 用于基站确定协作通信方案,使得基站侧能够在下行传输中复用开闭环用 户, 提高了系统总容量。
本领域普通技术人员还可以意识到,结合本文中所公开的实施例描述的各 示例的单元及实现步驟,能够以电子硬件、计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地 描述了各示例的组成及步驟。这些功能究竟以硬件还是软件方式来执行,取决 于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定 的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发 明的范围。
结合本文中所公开的实施例描述的方法步驟, 可以用硬件、处理器执行的 软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器(RAM )、 内存、 只读存储器(ROM )、 电可编程 ROM、 电可擦除可编程 ROM、 寄存器、 硬盘、 可移动磁盘、 CD-ROM, 或任意其它形式的存储介质中。

Claims

权 利 要 求
1、 一种协作通信的方法, 其特征在于, 所述方法包括:
接收用户发送的信道状态信息中除去多径信号的信道状态信息而获得的 直视径信号的信道状态信息;
获取与所述用户信道正交的闭环用户的信道状态信息;
利用所述用户的直视径信号的信道状态信息和所述闭环用户的信道状态 信息进行预编码计算;
向所述用户发送经过所述预编码计算的通信数据。
2、 如权利要求 1所述的方法, 其特征在于, 所述获取与所述用户信道正 交的闭环用户的信道状态信息包括:
将所述用户的信道方向矢量与待选择的闭环用户的信道方向矢量做弦距 离计算, 选择使得所述弦距离最大的闭环用户。
3、 如权利要求 2所述的方法, 其特征在于, 在获取与所述用户信道正交 的闭环用户的信道状态信息之前, 所述方法还包括:
根据所述用户的莱斯因子,确定混合空分多址的系统工作模式以判断是否 获取与所述用户信道正交的闭环用户的信道状态信息。
4、 如权利要求 3所述的方法, 其特征在于, 向所述用户发送经过所述预 编码计算的通信数据之前, 所述方法还包括:
根据所述用户及所述闭环用户的权值进行功率分配,根据所述功率分配的 结果发送所述数据。
5、 一种协作通信的方法, 其特征在于, 所述方法包括:
获取通过除去信道状态信息中多径信号的信道状态信息获得的用户的直 视径信号的信道状态信息;
向基站发送所述用户的直视径信号的信道状态信息,该用户的直视径信号 的信道状态信息用于基站确定协作通信方案;
接收基站发送的通信数据。
6、 如权利要求 5所述的方法, 其特征在于, 所述除去用户的信道状态信 息中多径信号的信道状态信息获取用户的直视径信号的信道状态信息包括: 基于滑动窗口算法过滤掉多径信号,得到用户的信道状态信息中直视径部 分的平均的信道状态信息。
7、 如权利要求 6所述的方法, 其特征在于, 通过信道衰落率确定所述滑 动窗口大小。
8、 一种基站, 其特征在于, 包括:
信道信息接收单元,用于接收用户发送的信道状态信息中除去多径信号的 信道状态信息获得的直视径信号的信道状态信息;
闭环信道信息获取单元,用于获取与所述用户信道正交的闭环用户的信道 状态信息;
预编码单元,用于利用所述用户发送的信道状态信息和所述闭环用户的信 道状态信息进行预编码计算;
发送单元, 用于向所述用户发送经过所述预编码计算的通信数据。
9、 根据权利要求 8所述的基站, 其特征在于, 所述闭环信道信息获取单 元包括:
闭环用户选择模块,用于将所述用户的信道方向矢量与待选择的闭环用户 的信道方向矢量做弦距离计算, 选择使得所述弦距离最大的闭环用户进行调 度。
10、 根据权利要求 9所述的基站, 其特征在于, 所述基站还包括: 模式确定单元, 用于根据所述用户的莱斯因子, 确定混合空分多址的系统 工作模式以判断是否获取与所述用户信道正交的闭环用户的信道状态信息。
11、 根据权利要求 9所述的基站, 其特征在于, 所述基站还包括: 所述功率分配的结果用于发送单元根据所述功率分配进行所述数据的发送。
12、 一种移动终端装置, 其特征在于, 包括:
信道信息获取单元, 用于获取用户的信道状态信息;
过滤单元,通过除去信道状态信息中多径信号的信道状态信息而获得的所 述用户的直视径信号的信道状态信息;
发送单元, 用于向基站发送所述用户的直视径信号的信道状态信息,该用 户的直视径信号的信道状态信息用于基站确定协作通信方案;
接收单元, 用于接收基站发送的通信数据。
13、 如权利要求 12所述的移动终端装置, 其特征在于, 所述过滤单元基 于滑动窗口算法过滤掉多径信号,得到用户的信道状态信息中直视径部分的平 均的信道状态信息 , 其中所述滑动窗口的大小通过信道衰落率确定。
14、一种协作通信系统,其特征在于,所述系统包括基站和移动终端装置, 所述移动终端装置, 用于获取用户的直视径信号的信道状态信息, 向基站 发送所述用户的直视径信号的信道状态信息用于基站确定协作通信方案,接收 基站发送的通信数据;
所述基站,用于接收所述移动终端发送的用户的直视径信号的信道状态信 息, 获取与所述用户的信道正交的闭环用户的信道状态信息, 利用所述用户的 直视径信号的信道状态信息和所述闭环用户的信道状态信息进行预编码计算, 并利用所述预编码计算的结果向所述用户发送通信数据。
PCT/CN2010/075597 2009-07-30 2010-07-30 一种协作通信的方法和系统、基站及移动终端装置 WO2011012090A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10803923.1A EP2418782B1 (en) 2009-07-30 2010-07-30 Method, base station and mobile terminal device for communication
BRPI1011580-3A BRPI1011580B1 (pt) 2009-07-30 2010-07-30 método para comunicação, estação base e dispositivo de terminal móvel de ciclo aberto
US13/296,073 US20120057555A1 (en) 2009-07-30 2011-11-14 Method, system, base station and mobile terminal device for collaborative communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910157477.X 2009-07-30
CN200910157477.XA CN101989867B (zh) 2009-07-30 2009-07-30 一种协作通信的方法和系统、基站及移动终端装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/296,073 Continuation US20120057555A1 (en) 2009-07-30 2011-11-14 Method, system, base station and mobile terminal device for collaborative communication

Publications (1)

Publication Number Publication Date
WO2011012090A1 true WO2011012090A1 (zh) 2011-02-03

Family

ID=43528790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075597 WO2011012090A1 (zh) 2009-07-30 2010-07-30 一种协作通信的方法和系统、基站及移动终端装置

Country Status (5)

Country Link
US (1) US20120057555A1 (zh)
EP (1) EP2418782B1 (zh)
CN (1) CN101989867B (zh)
BR (1) BRPI1011580B1 (zh)
WO (1) WO2011012090A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271246B2 (en) * 2011-04-13 2016-02-23 Telefonaktiebolaget L M Ericsson Method and base station for power allocation in wireless system
CN103369647B (zh) * 2012-04-06 2017-12-12 中兴通讯股份有限公司 多天线的功率分配方法及装置
CN111034095B (zh) 2017-08-11 2021-09-21 华为技术有限公司 基于差异化信道条件的适应性csi资源分配和调整
CN112073893A (zh) * 2019-05-24 2020-12-11 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330357A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 信道状态信息的反馈方法及网元设备
CN101340219A (zh) * 2007-07-04 2009-01-07 华为技术有限公司 信道状态信息反馈方法及无线收发装置
WO2009048204A1 (en) * 2007-10-08 2009-04-16 Korea Advanced Institute Of Science And Technology Relay communication method of next generation cellular communication system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973638A (en) * 1998-01-30 1999-10-26 Micronetics Wireless, Inc. Smart antenna channel simulator and test system
JP2004350088A (ja) * 2003-05-23 2004-12-09 Nec Corp 無線局の位置推定システム
US7352819B2 (en) * 2003-12-24 2008-04-01 Intel Corporation Multiantenna communications apparatus, methods, and system
US8009578B2 (en) * 2005-04-11 2011-08-30 Panasonic Corporation Wireless base station device, terminal, and wireless communication method
US7826416B2 (en) * 2005-09-21 2010-11-02 Broadcom Corporation Method and system for a simplified user group selection scheme with finite-rate channel state information feedback for FDD multiuser MIMO downlink transmission
US7706827B2 (en) * 2006-02-15 2010-04-27 Broadcom Corporation Method and apparatus for processing transmit power control (TPC) commands in a wideband CDMA (WCDMA) network based on a sign metric
KR101387532B1 (ko) * 2007-12-26 2014-04-21 엘지전자 주식회사 협력적 mimo 수행을 위한 피드백 정보 전송방법
US8649455B2 (en) * 2008-10-20 2014-02-11 Samsung Electronics Co., Ltd. Multiple input multiple output communication system and communication method of adaptably transforming codebook

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330357A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 信道状态信息的反馈方法及网元设备
CN101340219A (zh) * 2007-07-04 2009-01-07 华为技术有限公司 信道状态信息反馈方法及无线收发装置
WO2009048204A1 (en) * 2007-10-08 2009-04-16 Korea Advanced Institute Of Science And Technology Relay communication method of next generation cellular communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418782A4 *

Also Published As

Publication number Publication date
EP2418782A4 (en) 2012-02-15
BRPI1011580B1 (pt) 2020-12-29
EP2418782A1 (en) 2012-02-15
CN101989867A (zh) 2011-03-23
EP2418782B1 (en) 2013-05-08
CN101989867B (zh) 2014-05-07
BRPI1011580A2 (pt) 2016-03-15
US20120057555A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
US10305636B1 (en) Cooperative MIMO
US10840978B2 (en) Cooperative wireless networks
US9136931B2 (en) Cooperative wireless networks
US8472409B2 (en) Distributed antenna system and its data transmission method and central controller
CN1937849B (zh) 在通信系统中处理信号的方法及系统
US9049670B2 (en) Interference-improved uplink data rates for a group of mobile stations transmitting to a base station
EP1759470A1 (en) Apparatus and method for beamforming in a multi-antenna system
JP2009512388A (ja) 多重ユーザ多重アンテナ通信システムの送・受信機及び送・受信方法
EP1695456A1 (en) Method and apparatus in a mimo based communication system
KR20100110965A (ko) 다중 셀 다중 안테나 시스템에서 간섭을 고려한 빔포밍 방법 및 장치
WO2009122138A1 (en) Selecting either open or closed loop mimo according to which has the greatest estimated channel capacity
WO2011012090A1 (zh) 一种协作通信的方法和系统、基站及移动终端装置
JP2009004886A (ja) 通信装置、及び送信レート設定方法
CN114520681B (zh) 信息传输方法、装置、通信设备及存储介质
US11552737B1 (en) Cooperative MIMO
KR101003560B1 (ko) 안테나 서브셋 정보 생성 장치와 그 방법, 및 상기 장치를 구비하는 다중입력 다중출력 통신 시스템
US12095529B2 (en) Spread-OFDM receiver
CN102082634A (zh) 通信信息误差修正方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4565/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010803923

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011580

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011580

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111229