WO2011012078A1 - 双涡室掺气型漩流竖井 - Google Patents

双涡室掺气型漩流竖井 Download PDF

Info

Publication number
WO2011012078A1
WO2011012078A1 PCT/CN2010/075520 CN2010075520W WO2011012078A1 WO 2011012078 A1 WO2011012078 A1 WO 2011012078A1 CN 2010075520 W CN2010075520 W CN 2010075520W WO 2011012078 A1 WO2011012078 A1 WO 2011012078A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
vortex chamber
aerated
shaft
double
Prior art date
Application number
PCT/CN2010/075520
Other languages
English (en)
French (fr)
Inventor
张建民
许唯临
刘善均
王韦
曲景学
邓军
田忠
陈剑刚
雷刚
任雨
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to US13/643,775 priority Critical patent/US9068671B2/en
Publication of WO2011012078A1 publication Critical patent/WO2011012078A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/06Pressure galleries or pressure conduits; Galleries specially adapted to house pressure conduits; Means specially adapted for use therewith, e.g. housings, valves, gates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/002Injecting air or other fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • F03B13/105Bulb groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]

Definitions

  • the present invention relates to an energy dissipating facility used in a water conservancy and hydropower project, a swirling shaft, and particularly to an aerated swirling shaft suitable for high head and large flow.
  • BACKGROUND OF THE INVENTION Engineering practice shows that under high flow and high head conditions, the vortex shaft energy dissipator has the following problems: 1) the flow velocity in the shaft is too high, and the risk of cavitation cavitation on the wall increases; 2) due to the centrifugal force of the water flow The effect of aeration using a conventional annular aeration tank becomes difficult and does not play a role in aeration and erosion reduction.
  • the patent application with the publication number CN 101294377A provides a swirling shaft provided with an aerated hood which is disposed in the lower wall of the shaft and gradually contracts from the middle of the shaft which is connected to the upper section of the spillway to The middle and lower walls are formed by sudden expansion.
  • the swirling shaft of this structure can improve the aeration of the water flow, make the downstream near-wall water layer become an aerated water flow, and reduce the airflow in the middle and lower parts of the shaft.
  • the eclipse is destroyed, but the volume of the cavity for accommodating air formed by the sudden expansion makes the water flow small in air, and can only be applied to a small flow rate.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a double vortex chamber aeration type swirling shaft to solve the problem that the cavity of the swirling shaft is closed by the large flow and high head conditions, resulting in insufficient wall aeration.
  • the problem is to make the water flow steadily drain and eliminate the cavitation cavitation damage on the wall of the shaft.
  • the invention provides a double vortex chamber aerated swirling shaft, comprising an upper vortex chamber and a first contraction section located below the upper vortex chamber, an air passageway located outside the upper vortex chamber, and a shaft section below the first contraction section
  • the method further includes: an aerated lower vortex chamber and a second constricted portion that are in communication between the first constricted section and the shaft section, wherein an upper end of the aerated lower vortex chamber is in contact with the first constricted section, and second The lower end of the constricted section is in contact with the shaft section; the upper end of the air passage is open to the atmosphere, and the lower end is communicated with the aerated lower vortex chamber.
  • the double vortex chamber aeration type swirling shaft of the present invention preferably has the following structural parameters: 1.
  • the diameter of the upper vortex chamber is determined according to the flow rate of the water flowing into the shaft.
  • the ratio of ⁇ is 1: 2 to 1: 1
  • the slope of the first constricted section (3) is 1: 15 to 1: 10, which is the diameter of the upper vortex chamber.
  • the length of the vortex chamber aerated L 3 0.4 D 2 ⁇ 1.0 D 2
  • L 4 and the length of the vortex chamber at a second aerated constriction ratio of the length L 3 is 2: 1 ⁇ 4: 1
  • the slope 2 of the second constricted section is 1: 15-1: 10
  • D 2 is the diameter of the aerated lower vortex chamber.
  • the air enters the aerated lower vortex chamber through the air passage, because the aerated lower vortex chamber can The air is accommodated to be mixed with the water jetted from the first constricted section, which effectively increases the air content of the water flowing into the shaft section, and avoids the problem that the swirling shaft has a cavity closed and the wall surface is insufficiently aerated.
  • the aeration effect is more obvious under the conditions of large flow and high head, the water and gas can be fully mixed, the gas content of the water flow is greatly increased, and the flow state of the water flow is stable, further reaching Eliminate cavitation cavitation damage on the wall of the shaft to ensure the safe operation of the shaft and flood discharge tunnel.
  • FIG. 1 is a schematic view showing the structure of a double-vortex aerated swirling shaft of the present invention (cross-sectional view taken along line VI-VI of FIG. 2);
  • FIG. 2 is a plan view of FIG. 1 showing the double of the present invention.
  • FIG. 3 is a cross-sectional view taken along line I - I of FIG. 1 , which is a cross section of the upper vortex chamber;
  • FIG. 4 is a cross section of the first vortex chamber;
  • FIG. 1 is a schematic view showing the structure of a double-vortex aerated swirling shaft of the present invention (cross-sectional view taken along line VI-VI of FIG. 2);
  • FIG. 2 is a plan view of FIG. 1 showing the double of the present invention.
  • FIG. 3 is a cross-sectional view taken along line I - I of FIG. 1 , which is a cross section of the upper vortex chamber;
  • FIG. 4 is a cross section of the first vortex chamber;
  • the structure of a double vortex chamber aeration type swirling shaft of the present invention will be further described below with reference to the accompanying drawings.
  • Example 1 In this embodiment, the structure of the double-vortex aeration type swirling shaft is shown in Figure 1, Figure 2, including the upper vortex.
  • the first constricted section 3 below the upper vortex chamber is aerated
  • the lower vortex chamber 5, the second constricted section 6 below the aerated lower vortex chamber is connected to the vertical shaft section 7, and the air passages 4 are two, symmetrically installed on the upper vortex chamber and the outer wall of the first constricted section below, and their upper ends It is connected to the atmosphere, and the lower end is connected to the top of the aerated lower vortex chamber.
  • the upper volute chamber 2 is connected to the sump 1 and is connected to the culvert from the upper volute to the shaft; the shaft section 7 The lower part is connected to the flood discharge hole 10 through the reverse arc section 8, the pressure slope section 9.
  • the upper vortex chamber 2 and the aerated lower vortex chamber 5 The grounding is cylindrical in order to facilitate the manufacture.
  • the axial projection of the lower end surface of the air passage 4 is located in the aerated lower vortex chamber, so that the volume for accommodating the air can be expanded as much as possible, and the water flows through the upper volute chamber 2
  • the first constricted section 3 forms a jet, and the jet occupies a small volume in the cylindrical augmented aerated lower vortex chamber 5, which is equivalent to increasing the aeration type lower vortex chamber 5 for accommodating the air entering from the air passage.
  • the air passage 4 extends in a straight line, which is easier to manufacture.
  • the air passages 4 are exemplified by two, and the two air passages 4 are evenly disposed around the upper volute chamber 2. In actual use, the number of the air passages 4 is not limited to two.
  • the second constricted section 6 is used to transitionally connect the cylindrical aerated lower vortex chamber 5 and the shaft section 7.
  • the flow rate of the water entering the shaft is 400 m 3 /s
  • the relevant structural parameters of the double-vortex aerated swirling shaft are as follows:
  • the cross section of the upper volute 2 is as shown in FIG. 3, and the diameter is 10 m.
  • the length Li is 30m
  • the length L 2 of the first constricted section 3 in the lower part of the upper vortex chamber is 15m
  • the slope is 1:10
  • the cross section of the aerated lower vortex chamber 5 is as shown in FIG.
  • the diameter D 2 is 10m, a length L 3 is 5m; converging section length of the second vortex chamber at the lower portion 6 of the aerated L 4 is 20m, gradient 2 to 1:15; cross section of shaft section 7 shown in Figure 5, the diameter D 3 It is 7m, its length L 5 is 92m, the height of the vertical floor to the downstream connection section is 6 m; the radius R of the reverse arc section is 15 m; the cross section of the compression section 9 is shown in Figure 6, and its length L 7 is 35 m, the slope ⁇ is 1:15; the cross section of the flood discharge tunnel 10 is shown in Fig. 7, its width B is 5 m, and its height H is 7 m.
  • the double-vortex aerated swirling shaft according to the above embodiment of the present invention has a significant effect of aeration in a large flow rate and a high head condition, and can effectively increase the air content in the water flow by more than 4%.
  • Embodiment 2 the structure of the double vortex chamber aeration type swirling shaft is as shown in Figs. 1 and 2, and the connection orientation of the members and the members is the same as that of the first embodiment, and the difference from the first embodiment is that The flow rate of the water entering the shaft is 600 m 3 /s, thus changing the structural parameters.
  • the relevant structural parameters of the double-vortex chamber aeration type swirling shaft in the present embodiment are as follows:
  • the cross section of the upper vortex chamber 2 is as shown in FIG. Its diameter is 12m, its length Li is 24m; the length L 2 of the first constricted section 3 in the lower part of the upper vortex chamber is 24m, the slope is 1:12;
  • the cross section of the aerated lower vortex chamber 5 is as shown in Fig. 4
  • the diameter D 2 is 14 m and the length L 3 is 12 m; the length L 4 of the second constricted section 6 of the aerated lower vortex chamber is 30 m, and the slope 2 is 1:10;
  • the cross section of the shaft section 7 is as shown in FIG. 5 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

双涡室糁气型漩流竖井 技术领域 本发明属于水利水电工程中使用的消能设施——漩流竖井, 特别涉及一 种适用于高水头大流量的掺气型漩流竖井。 背景技术 工程实践表明, 在大流量和高水头工况下, 漩流竖井消能工存在以下问 题: 1 ) 竖井中流速过高, 壁面发生空化空蚀的风险增加; 2 ) 由于水流离心 力的作用, 釆用传统的环形掺气坎掺气变得很困难, 无法起到掺气减蚀的作 用。 公开号为 CN 101294377A 的专利申请提供了一种设置有掺气坎的漩流 竖井, 所述掺气坎设置在竖井中下段壁面, 由与泄洪洞上平段相接后的竖井 中部逐渐收缩至中下部壁面突扩形成。 此种结构的漩流竖井与设置传统环形 掺气坎的漩流竖井相比, 虽然能改善水流的掺气状况, 使下游近壁水层成为 掺气水流, 减轻竖井中下部过流面的空蚀破坏, 但是因突扩形成的用于容纳 空气的腔体容积小, 使水流可掺空气量小, 只能适用于小流量的情况, 在大 流量、 高水头工况下, 仍然难以使竖井内水流充分掺气, 不能保证水流平稳 下泄, 也不能有效提高大流量、 高水头工况下水流内掺混的空气浓度。 发明内容 本发明的目的在于克服现有技术的不足, 提供一种双涡室掺气型漩流竖 井, 以解决大流量、 高水头工况下漩流竖井出现空腔封闭致使壁面掺气不足 的问题, 从而使水流平稳下泄, 消除竖井壁面的空化空蚀破坏。 本发明提供了一种双涡室掺气型漩流竖井, 包括上涡室及位于上涡室下 方的第一收缩段、位于上涡室外侧的通气道、位于第一收缩段下方的竖井段, 还包括: 位于第一收缩段与竖井段之间的相连通的掺气型下涡室和第二收缩 段, 其中, 掺气型下涡室的上端与第一收缩段相接, 第二收缩段的下端与竖 井段相接; 通气道的上端与大气相通, 下端与掺气型下涡室相通。 通过实验, 本发明所述双涡室掺气型漩流竖井优选以下结构参数: 1、上涡室直径 根据进入竖井的水流流量确定,掺气型下涡室直径 D2≥ 上涡室直径 Dl a
2、 上涡室的长度 1^=2.00 3.00^ 第一收缩段的长度 L2与上涡室的长 度!^之比为 1 : 2〜1: 1 , 第一收缩段(3 )的坡度 为 1: 15〜1: 10, 为上 涡室的直径。
3、 掺气型下涡室的长度 L3=0.4 D2 ~ 1.0 D2, 第二收缩段的长度 L4与掺 气型下涡室的长度 L3 之比为 2 : 1〜4 : 1 , 第二收缩段的坡度 2 为 1: 15-1: 10 , D2为掺气型下涡室的直径。 本发明具有以下有益效果: 1、 由于在上涡室下部的第一收缩段下方设置了掺气型下涡室, 空气通 过通气道进入掺气型下涡室, 因掺气型下涡室能够容纳较多的空气以和从第 一收缩段喷射出的水流掺合, 有效地提高了进入竖井段水流的空气含量, 避 免漩流竖井出现空腔封闭导致壁面掺气不足的问题。 根据本发明的双涡室掺 气型漩流竖井在大流量、 高水头的工况下掺气效果更加明显, 能够使水气混 合充分, 水流的含气量大幅增加, 水流流态稳定, 进一步达到消除竖井壁面 的空化空蚀破坏, 保证竖井、 泄洪洞的安全运行的效果。
2、 结构参数的优化, 保证了本发明所述双涡室掺气型漩流竖井的掺气 减蚀效果的稳定性。 附图说明 图 1是本发明所述双涡室掺气型漩流竖井的结构示意图 (从图 2的 VI-VI 处剖视 ); 图 2是图 1的俯视图, 表明了本发明所述双涡室掺气型漩流竖井与引渠 及压坡段、 泄洪洞的连接关系; 图 3是图 1的 I - I剖面图, 该剖面为上涡室的剖面; 图 4是图 1的 II -II剖面图, 该剖面为掺气型下涡室的剖面; 图 5是图 1的 ΠΙ-ΠΙ剖面图, 该剖面为竖井段的剖面; 图 6是图 1的 IV-IV剖面图, 该剖面为压坡段的剖面; 图 7是图 1的 V-V剖面图, 该剖面为泄洪洞的剖面。 图中, 1 引渠, 2—上涡室, 3 第一收缩段、 4一通气道、 5 掺气型 下涡室、 6 第二收缩段、 7—竖井段、 8—反弧段、 9一压坡段、 10—泄洪洞、 上涡室直径、 D2—掺气型下涡室直径、 D3—竖井段直径、 一上涡室的 长度、 L2—第一收缩段的长度、 —第一收缩段的坡度、 L3—收缩型下涡室 的长度、 L4一第二收缩段的长度、 第二收缩段的坡度、 L5—竖井段长度、 L6—竖井底板至下游连接段高度、 L7—压坡段长度、 ^ 压坡段坡度、 R—反 弧段半径、 B—泄洪洞宽度、 H 泄洪洞高度。 具体实施方式 下面结合附图对本发明所述双涡室掺气型漩流竖井的结构作进一步说 明。 下述各实施例中的的双涡室掺气型漩流竖井才艮据某水电站 4区纽工程的泄 洪洞设计, 所述泄洪洞釆用竖井旋流内消能型式, 竖井泄洪洞底板高程 2690m, 顶部高程 2852m, 引渠的水流流速 V=12 ~ 20m/s„ 实施例 1 本实施例中, 双涡室掺气型漩流竖井的结构如图 1、 图 2所示, 包括上 涡室 2及其下方的第一收缩段 3、 掺气型下涡室 5及其下方的第二收缩段 6、 竖井段 7和通气道 4。 上涡室下方的第一收缩段 3接掺气型下涡室 5 , 掺气 型下涡室下方的第二收缩段 6接竖井段 7 , 通气道 4为两根, 对称安装在上 涡室及其下方的第一收缩段外壁, 它们的上端与大气相通, 它们的下端接掺 气型下涡室顶部。 上涡室 2与引渠 1相接, 其相接位置是使引渠中的水流从 上涡室切向进入竖井; 竖井段 7下部通过反弧段 8、 压坡段 9与泄洪洞 10接 通。 由图中还可以看出, 上涡室 2和掺气型下涡室 5优选地均呈圓柱状, 以 便于制造。 通气道 4下端面的轴向投影位于掺气型下涡室内, 这样可以尽可 能大地扩大用于容纳空气的体积, 而且水流从上涡室 2流经第一收缩段 3时 形成射流, 射流在圓柱形突扩的掺气型下涡室 5占用体积小, 相当于增大了 掺气型下涡室 5用来容纳从通气道进入的空气的可用容积, 然后射流水股在 行进过程中, 扩散掺气形成掺气层, 同时在下行过程中卷入空气, 使得下游 近壁水层成为掺气水流, 以使水流中的掺水浓度不小于防蚀有效的最低浓度 值, 从而达到提高高水头、 大流量的工况下的防蚀性能。 从图中还可以看出, 通气道 4呈直线型延伸, 这样较容易制作。 在本实施例中, 通气道 4以两个 为例, 两个通气道 4绕上涡室 2均匀设置, 在实际使用中, 通气道 4的个数 并不限于两个。 第二收缩段 6用于过渡连接圓柱形的掺气型下涡室 5和竖井 段 7。 本实施例中, 进入竖井的水流流量为 400m3/s , 所述双涡室掺气型漩流 竖井的有关结构参数如下: 上涡室 2的横截面如图 3所示, 其直径 为 10m, 其长度 Li为 30m; 上涡室下部第一收缩段 3的长度 L2为 15m, 坡度 为 1: 10; 掺气型下涡室 5的横截面如图 4所示, 其直径 D2为 10m, 长度 L3为 5m; 掺气型下涡室下 部第二收缩段 6的长度 L4为 20m, 坡度 2为 1: 15 ; 竖井段 7的横截面如图 5 所示, 其直径 D3为 7m, 其长度 L5为 92m, 竖井底板至下游连接段高度 L6为 10 m; 反弧段 8的半径 R为 15 m; 压坡段 9的横截面如图 6所示, 其长度 L7为 35 m, 坡度 ^为 1: 15 ; 泄洪洞 10的横截面如图 7所示, 其宽 度 B为 5 m, 其高度 H为 7 m。 经实验证明,根据本发明上述实施例的双涡室掺气型旋流竖井在大流量、 高水头工况下掺气效果明显, 能够有效提高水流中的空气含量达 4%以上。 实施例 2 本实施例中, 双涡室掺气型漩流竖井的结构如图 1、 图 2所示, 其构件 和各构件的连接方位与实施例 1相同, 与实施例 1不同之处是进入竖井的水 流流量为 600m3/s , 因而改变了结构参数, 本实施例所述双涡室掺气型漩流 竖井的有关结构参数如下: 上涡室 2的横截面如图 3所示, 其直径 为 12m, 其长度 Li为 24m; 上涡室下部第一收缩段 3的长度 L2为 24m, 坡度 为 1: 12; 掺气型下涡室 5的横截面如图 4所示, 其直径 D2为 14m, 长度 L3为 12m; 掺气型下涡室 下部第二收缩段 6的长度 L4为 30m, 坡度 2为 1: 10; 竖井段 7的横截面如 图 5所示, 其直径 D3为 8m, 其长度 L5为 72m, 竖井底板至下游连接段高度 为 10 m; 反弧段 8的半径 R为 20 m; 压坡段 9的横截面如图 6所示, 其 长度 L7为 30 m, 坡度 为 1: 10; 泄洪洞 10的横截面如图 7所示, 其宽度 B为 5 m, 其高度 H为 7 m。 经实验证明,根据本发明上述实施例的双涡室掺气型旋流竖井在大流量、 高水头工况下掺气效果明显, 能够有效提高水流中的空气含量达 4%以上。 以上仅为本实用新型的优选实施例而已, 并不用于限制本实用新型, 对 于本领域的技术人员来说, 本实用新型可以有各种更改和变化。 凡在本实用 新型的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本实用新型的保护范围之内。

Claims

权 利 要 求 书
1. 一种双涡室掺气型漩流竖井, 包括上涡室 (2)及位于所述上涡室 (2) 下方的第一收缩段(3)、 位于所述上涡室 (2)外侧的通气道(4)、 位 于所述第一收缩段下方的竖井段 (7), 其特征在于还包括: 位于所述 第一收缩段( 3 )与所述竖井段( 7 )之间的相连通的掺气型下涡室( 5 ) 和第二收缩段(6), 其中, 所述掺气型下涡室 (5) 的上端与所述第一 收缩段(3)相接, 所述第二收缩段(6) 的下端与所述竖井段(7)相 接; 所述通气道(4)的上端与大气相通, 下端与所述掺气型下涡室(5) 相通。
2. 根据权利要求 1所述的双涡室掺气型漩流竖井, 其特征在于, 所述通 气道 (4) 下端面的轴向投影位于所述掺气型下涡室 (5) 内。
3. 根据权利要求 2所述的双涡室掺气型漩流竖井, 其特征在于, 所述通 气道 (4) 呈直线型延伸。
4. 根据权利要求 3所述的双涡室掺气型漩流竖井, 其特征在于, 所述上 涡室和所述掺气型下涡室 (5) 均呈圓柱状。
5. 根据权利要求 4所述的双涡室掺气型漩流竖井, 其特征在于, 所述通 气道 (4) 至少为两个, 并绕所述上涡室 (2) 均匀设置。
6. 根据权利要求 1所述的双涡室掺气型漩流竖井, 其特征在于, 所述掺 气型下涡室 (5) 的直径 D2≥所述上涡室 (2) 的直径 Dla
7. 根据权利要求 1或 6所述的双涡室掺气型漩流竖井, 其特征在于, 所 述上涡室 (2) 的长度 L尸 2.00^3.00^ 所述第一收缩段 (3) 的长度 L2与所述上涡室 (2) 的长度 之比为 1 :2〜1 : 1 , 所述第一收缩段
( 3 ) 的坡度 为 1: 15-1: 10, 其中, 为所述上涡室 ( 2 ) 的直径。
8. 根据权利要求 7所述的双涡室掺气型漩流竖井, 其特征在于, 所述掺 气型下涡室 (5) 的长度 L3=0.4 D2~ 1.0 D2, 所述第二收缩段 (6) 的 长度 L4与所述掺气型下涡室 ( 5 ) 的长度 L3之比为 2: 1〜4: 1 , 所述 第二收缩段 (6) 的坡度 2为 1: 15〜1: 10, 其中, D2为所述掺气型下 涡室的直径。
PCT/CN2010/075520 2009-07-28 2010-07-28 双涡室掺气型漩流竖井 WO2011012078A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/643,775 US9068671B2 (en) 2009-07-28 2010-07-28 Aerated swirling vertical shaft with double volute chambers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100601252A CN101624819B (zh) 2009-07-28 2009-07-28 双涡室掺气型漩流竖井
CN200910060125.2 2009-07-28

Publications (1)

Publication Number Publication Date
WO2011012078A1 true WO2011012078A1 (zh) 2011-02-03

Family

ID=41520800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075520 WO2011012078A1 (zh) 2009-07-28 2010-07-28 双涡室掺气型漩流竖井

Country Status (3)

Country Link
US (1) US9068671B2 (zh)
CN (1) CN101624819B (zh)
WO (1) WO2011012078A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435414A (zh) * 2011-07-28 2012-05-02 水利部交通运输部国家能源局南京水利科学研究院 掺气减蚀模型减压试验方法
CN103758093A (zh) * 2013-12-31 2014-04-30 四川大学 一种适用于高水头的多级水垫旋流竖井泄洪洞
CN104762934A (zh) * 2015-04-08 2015-07-08 中国水利水电科学研究院 导流洞改建水平旋流洞的起旋室与旋流洞过渡连接装置
CN107044112A (zh) * 2017-05-22 2017-08-15 福建省水利水电勘测设计研究院 掺气消能与防气爆泄洪装置及其泄洪方法
CN113265991A (zh) * 2021-06-22 2021-08-17 中国电建集团贵阳勘测设计研究院有限公司 一种将多条导流洞改建为旋流竖井泄洪系统的方法
WO2024012181A1 (zh) * 2022-08-17 2024-01-18 中材建设有限公司 一种新型水泥熟料煅烧分解炉

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624819B (zh) 2009-07-28 2010-12-29 四川大学 双涡室掺气型漩流竖井
CN101812832B (zh) * 2010-03-26 2011-05-11 四川大学 淹没型漩流竖井泄洪洞
CN101851909B (zh) * 2010-05-11 2011-11-30 四川大学 h形竖井泄洪洞
CN101886377B (zh) * 2010-07-19 2012-04-25 四川大学 阶梯漩流竖井
CN101892654B (zh) * 2010-07-19 2012-05-30 四川大学 锥形漩流竖井
CN102409642B (zh) * 2011-09-10 2014-04-16 四川大学 渐缩突扩式内流消能工
CN102900053B (zh) * 2011-12-31 2016-06-22 石河子大学 改进型深筒式消能井
CN102605752B (zh) * 2012-03-22 2014-11-26 四川大学 一种旋流跌水竖井
KR20150063366A (ko) * 2012-07-24 2015-06-09 각꼬우호우진 후쿠오카다이가쿠 유체반송장치 및 유체반송방법
CN102767164A (zh) * 2012-08-16 2012-11-07 华北水利水电学院 一种坝内双向进流旋流式竖井泄流消能设施
CN102787588A (zh) * 2012-08-16 2012-11-21 华北水利水电学院 一种具有洞塞垂向旋流消能工的竖井
CN103031825B (zh) * 2013-01-15 2015-07-29 中国电建集团西北勘测设计研究院有限公司 多级竖井旋流联合消能结构
CN103352451B (zh) * 2013-07-03 2015-06-17 中水东北勘测设计研究有限责任公司 用于生态流量泄放的竖井旋流式内消能工
CN103374903B (zh) * 2013-08-14 2015-08-12 四川大学 一种全程掺气的旋流竖井
CN104452701B (zh) * 2014-11-12 2017-03-08 中国电建集团成都勘测设计研究院有限公司 一种旋流竖井排水隧洞
CN106087902B (zh) * 2016-07-28 2018-06-15 中国电建集团成都勘测设计研究院有限公司 用于沟水处理的排水洞漩流竖井消能结构及排水方法
CN110294227B (zh) * 2018-03-22 2021-01-15 中国石油化工股份有限公司 一种设有多级消能装置的污水罐及该污水罐的使用方法
CN108894192A (zh) * 2018-08-23 2018-11-27 中国电建集团成都勘测设计研究院有限公司 高外水竖井减压排水结构
CN110485387A (zh) * 2019-09-20 2019-11-22 中国电建集团成都勘测设计研究院有限公司 竖井掺气排水结构
CN111851435B (zh) * 2020-08-10 2021-11-30 洛阳水利勘测设计有限责任公司 潜水起旋墩竖井旋流消能泄洪洞
CN113089601A (zh) * 2021-03-09 2021-07-09 中国电建集团西北勘测设计研究院有限公司 一种改善旋流泄洪洞底部流态的洞室结构
CN113174909B (zh) * 2021-05-07 2021-12-31 中国电建集团西北勘测设计研究院有限公司 一种双旋消能泄洪洞结构型式

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1659576A1 (ru) * 1989-02-17 1991-06-30 Бакинское Отделение Всесоюзного Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука Вихревой шахтный водосброс
KR20060096703A (ko) * 2005-03-02 2006-09-13 인정웅 사이펀여수로의 와류방지장치
RU2313633C2 (ru) * 2006-02-22 2007-12-27 Общество с ограниченной ответственностью "Осанна" (ООО "Осанна") Вихревой водозаборный рыбозащитный фильтр
CN101215830A (zh) * 2007-12-29 2008-07-09 四川大学 竖井旋流泄洪洞与放空洞或导流洞垂交布置的水工形式
CN101280557A (zh) * 2008-05-23 2008-10-08 水利部交通部电力工业部南京水利科学研究院 导流洞改建为射流内消能竖井泄洪洞的方法
CN101294377A (zh) * 2008-06-20 2008-10-29 四川大学 一种设置有掺气坎的旋流竖井
CN101624819A (zh) * 2009-07-28 2010-01-13 四川大学 双涡室掺气型漩流竖井
CN101812832A (zh) * 2010-03-26 2010-08-25 四川大学 淹没型漩流竖井泄洪洞

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1840205A (en) * 1928-08-11 1932-01-05 Universal Hydraulic Corp Fluid handling and controlling apparatus
US2529141A (en) * 1946-07-05 1950-11-07 Neyret Beylier & Piccard Picte Spillway installation for dams
NL154819B (nl) * 1967-05-10 1977-10-17 Shell Int Research Inrichting voor het aanbrengen van een laag vloeistof met lage viscositeit tussen een stroom vloeistof met hoge viscositeit en de wand van een pijpleiding.
US3701260A (en) * 1970-05-12 1972-10-31 Hosea J Soileau Water level control device
US3993097A (en) * 1971-04-29 1976-11-23 Shell Oil Company Oil/water pipeline inlet with oil supply via a large chamber
US3960653A (en) * 1972-07-18 1976-06-01 Dominion Engineering Works, Limited Downflow control system for web making machines
US4190070A (en) * 1977-12-05 1980-02-26 Bauer William J Method and apparatus for controlling flow of liquid in gravity flow conduits
US4352593A (en) * 1980-12-23 1982-10-05 Iskra Anton L Dam spillway
CA1244067A (en) * 1983-09-03 1988-11-01 Minoru Mita Apparatus and method for the generation and utilization of a spiral gas stream in a pipeline
JPS60176300U (ja) * 1984-04-23 1985-11-21 海洋工業株式会社 揚水筒
DE3532716A1 (de) * 1985-07-30 1987-02-12 Escher Wyss Gmbh Vorrichtung zum abbremsen schiessender stroemungen von siebwasser
JPH0446765Y2 (zh) * 1985-10-09 1992-11-04
US5360290A (en) * 1991-12-13 1994-11-01 Hitachi, Ltd. Underground drainage facility, vertical-shaft multi-stage adjustable vane pump, and method of running drainage pump
US5487621A (en) * 1992-06-18 1996-01-30 Hitachi, Ltd. Large-depth underground drainage facility and method of running same
US6106729A (en) * 1999-01-20 2000-08-22 Prince; Jack E. Aeration assembly for dam sites
US7441599B2 (en) * 2005-11-18 2008-10-28 Chevron U.S.A. Inc. Controlling the pressure within an annular volume of a wellbore
US7887258B2 (en) * 2006-03-28 2011-02-15 Mark Rubbert Intake apparatus for dams
CN101215380A (zh) 2007-12-26 2008-07-09 东莞捷讯橡胶有限公司 一种液体硅胶二次成型或双射成型工艺
CA2828130C (en) * 2011-03-01 2018-05-22 Short Brothers Plc A draining device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1659576A1 (ru) * 1989-02-17 1991-06-30 Бакинское Отделение Всесоюзного Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука Вихревой шахтный водосброс
KR20060096703A (ko) * 2005-03-02 2006-09-13 인정웅 사이펀여수로의 와류방지장치
RU2313633C2 (ru) * 2006-02-22 2007-12-27 Общество с ограниченной ответственностью "Осанна" (ООО "Осанна") Вихревой водозаборный рыбозащитный фильтр
CN101215830A (zh) * 2007-12-29 2008-07-09 四川大学 竖井旋流泄洪洞与放空洞或导流洞垂交布置的水工形式
CN101280557A (zh) * 2008-05-23 2008-10-08 水利部交通部电力工业部南京水利科学研究院 导流洞改建为射流内消能竖井泄洪洞的方法
CN101294377A (zh) * 2008-06-20 2008-10-29 四川大学 一种设置有掺气坎的旋流竖井
CN101624819A (zh) * 2009-07-28 2010-01-13 四川大学 双涡室掺气型漩流竖井
CN101812832A (zh) * 2010-03-26 2010-08-25 四川大学 淹没型漩流竖井泄洪洞

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG XINGLIN ET AL.: "Study on Transferring Diversion Tunnels into Vortex Type of Vertical Shaft Spillways.", WATER POWER, vol. 3, 31 March 1995 (1995-03-31), pages 32 - 37 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435414A (zh) * 2011-07-28 2012-05-02 水利部交通运输部国家能源局南京水利科学研究院 掺气减蚀模型减压试验方法
CN103758093A (zh) * 2013-12-31 2014-04-30 四川大学 一种适用于高水头的多级水垫旋流竖井泄洪洞
CN103758093B (zh) * 2013-12-31 2016-04-13 四川大学 一种适用于高水头的多级水垫旋流竖井泄洪洞
CN104762934A (zh) * 2015-04-08 2015-07-08 中国水利水电科学研究院 导流洞改建水平旋流洞的起旋室与旋流洞过渡连接装置
CN107044112A (zh) * 2017-05-22 2017-08-15 福建省水利水电勘测设计研究院 掺气消能与防气爆泄洪装置及其泄洪方法
CN113265991A (zh) * 2021-06-22 2021-08-17 中国电建集团贵阳勘测设计研究院有限公司 一种将多条导流洞改建为旋流竖井泄洪系统的方法
CN113265991B (zh) * 2021-06-22 2022-04-19 中国电建集团贵阳勘测设计研究院有限公司 一种将多条导流洞改建为旋流竖井泄洪系统的方法
WO2024012181A1 (zh) * 2022-08-17 2024-01-18 中材建设有限公司 一种新型水泥熟料煅烧分解炉

Also Published As

Publication number Publication date
CN101624819A (zh) 2010-01-13
US9068671B2 (en) 2015-06-30
CN101624819B (zh) 2010-12-29
US20130068332A1 (en) 2013-03-21
US20130276926A9 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
WO2011012078A1 (zh) 双涡室掺气型漩流竖井
CN101294377B (zh) 一种设置有掺气坎的旋流竖井
CN109555088B (zh) 一种整流防涡装置
CN107401147A (zh) 一种环形多级自由跌落式消能竖井
CN112281770B (zh) 采用底孔与表孔联合泄洪消能的泄洪结构
CN109577292B (zh) 一种降低流速的消能流道结构
CN109098152B (zh) 一种阶梯溢流坝的防空化设施
CN103374903B (zh) 一种全程掺气的旋流竖井
CN108149651B (zh) 一种旋流阻塞与扩散复合消能工的设计方法
CN109914359B (zh) 一种拱坝表孔出口消能的组合结构
CN111119139A (zh) 一种旋流竖井式消能结构
CN102277861A (zh) 洞内自补气消能方法和装置
CN111101491A (zh) 非对称转向收缩差动式挑坎体型
CN206385741U (zh) 一种用于大型建筑物的虹吸排水系统
WO2008065888A1 (fr) Procédé de fabrication de réservoir d'accumulation d'eau et de régulateur de débit
CN207331645U (zh) 一种挑坎和新型过渡台阶结合的溢流坝
CN110593220A (zh) 一种用于泄流消能洞的补气坎结构
CN202090327U (zh) 洞内自补气消能装置
CN206625199U (zh) 一种退水隧洞进口
CN109083107B (zh) 一种利用水流向心力惯性挑流形成掺气空腔的掺气设施
CN110080182B (zh) 导流隧洞洞塞消能结构及其布置方法
CN211340748U (zh) 一种水利施工用注浆装置
CN203174568U (zh) 一种混凝土坝的生态流量管布置型式
CN206800344U (zh) 掺气消能与防气爆泄洪装置
CN111851435B (zh) 潜水起旋墩竖井旋流消能泄洪洞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10803911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13643775

Country of ref document: US