WO2011012072A1 - 转码方法、装置、设备以及系统 - Google Patents

转码方法、装置、设备以及系统 Download PDF

Info

Publication number
WO2011012072A1
WO2011012072A1 PCT/CN2010/075497 CN2010075497W WO2011012072A1 WO 2011012072 A1 WO2011012072 A1 WO 2011012072A1 CN 2010075497 W CN2010075497 W CN 2010075497W WO 2011012072 A1 WO2011012072 A1 WO 2011012072A1
Authority
WO
WIPO (PCT)
Prior art keywords
codec
delay
code stream
coded
stream
Prior art date
Application number
PCT/CN2010/075497
Other languages
English (en)
French (fr)
Inventor
胡晨
苗磊
刘泽新
陈龙吟
哈维·米希尔·塔迪
张清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2012521949A priority Critical patent/JP2013501246A/ja
Priority to KR1020127003447A priority patent/KR101348969B1/ko
Priority to EP10803905A priority patent/EP2461322A4/en
Publication of WO2011012072A1 publication Critical patent/WO2011012072A1/zh
Priority to US13/359,339 priority patent/US8326608B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/173Transcoding, i.e. converting between two coded representations avoiding cascaded coding-decoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding

Definitions

  • the embodiments of the present invention relate to a transcoding technology of a signal code stream, and in particular, to a transcoding method, device, device, and system.
  • the embedded voice audio codec is composed of a core layer and several extension layers.
  • the core layer is usually the existing traditional narrowband or wideband codec, and the extension layer can be wideband, ultra-wideband or even full-band extension. It can also be stereo, multi-channel expansion.
  • the embedded voice audio codec can be compatible with existing traditional codecs, and at the same time can provide more extended functions as needed.
  • transcoding To communicate between different embedded codecs, transcoding must be performed, that is, decoding and re-encoding.
  • the existing transcoding method usually decodes the coded stream passed by the first encoder, and then uses the second encoder to be transcoded for encoding. As shown in FIG. 1, when transcoding, the first encoding After the core layer code stream and all received extension layer code streams are decoded by the encoder, the second encoder to be transcoded is used for re-encoding.
  • the purpose of the embodiments of the present invention is to provide a method, device, device, and system for transcoding, so as to reduce the complexity of encoding and decoding during the transcoding process and improve signal quality.
  • an embodiment of the present invention provides an encoding method, including:
  • the first code stream includes at least one extended layer code stream in the input code stream obtained after the input signal is coded by the first codec
  • the first decoded signal obtained by using the first codec to decode the remaining coded streams in the input code stream is adjusted to obtain an adjustment signal, and the remaining coded streams include the input signal using the first decoded signal.
  • the remaining layer code streams including the core layer code stream except for the first coded code stream.
  • the first codec is used to decode the remaining coded streams in the input code stream to obtain a first decoded signal, and the remaining coded streams include the input code stream obtained after the input signal is coded by the first codec In addition to the first code stream, the remaining layer code streams including the core layer code stream;
  • Another embodiment of the present invention also provides a transcoding device, including:
  • the delayed integer frame module is used to delay the first code stream in the input code stream by integer frames, where the first code stream includes the input code stream obtained after the input signal is coded by the first codec middle At least one extended layer code stream;
  • the delay alignment module is configured to perform delay alignment adjustment on the first decoded signal obtained by using the first codec to decode the remaining coded streams in the input code stream to obtain an adjusted signal, and the remaining coded streams include In the input code stream obtained after the input signal is encoded by the first codec, the remaining layer code streams including the core layer code stream except for the first coded code stream.
  • a transcoding device including:
  • the receiving module is configured to receive the first coded code stream in the input code stream and decode the first coded code stream obtained by using the first codec to decode the coded code streams other than the first coded code stream in the input code stream.
  • a decoded signal where the first coded code stream includes at least one extended layer code stream in the input code stream obtained after the input signal is coded by the first codec;
  • a delay integer frame module configured to delay the first code stream by integer frames
  • the delay alignment module is configured to perform delay alignment adjustment on the first decoded signal to obtain an adjustment signal, and the remaining coded stream includes the input signal obtained after the first codec is coded by dividing the input code stream The remaining layer code streams including the core layer code stream outside the first coded code stream.
  • the output device is configured to output the adjustment signal and the first code stream delayed by the integer frame to the second codec.
  • a transcoding system including:
  • the first codec is configured to decode the remaining coded code streams to obtain a first decoded signal, where the remaining coded code streams include the input code stream obtained after the input signal is coded by the first codec divided by the first codec The code stream of the other layers including the core layer code stream;
  • a transcoding device configured to delay the first encoded code stream by an integer number of frames, and perform a delay alignment adjustment on the first decoded signal to obtain an adjusted signal
  • a second codec configured to encode the adjustment signal to obtain a second coded stream, and multiplex the second An encoded bitstream and the first encoded bitstream delayed by an integer frame.
  • Another embodiment of the present invention also provides a mobile station of the above transcoding device.
  • Another embodiment of the present invention also provides a network element of the above transcoding device. Therefore, by introducing the transcoding method, device, device, and system of the embodiment of the present invention, only part of the code stream needs to be re-encoded and decoded, which greatly reduces the transcoding complexity of the embedded codec. The stream is not re-encoded and decoded so that the signal quality in transcoding is effectively improved.
  • FIG. 1 is a schematic diagram of prior art transcoding
  • Figure 2 is a schematic diagram of an embodiment of a transcoding method of the present invention.
  • Fig. 3 is a schematic diagram of another embodiment of a transcoding method according to the present invention
  • Fig. 4 is a schematic diagram of another embodiment of a transcoding method according to the present invention
  • FIG. 5 is a schematic diagram of another embodiment of a transcoding method according to the present invention.
  • Fig. 6 is a schematic diagram of another embodiment of a transcoding method according to the present invention.
  • Fig. 7 is a schematic diagram of an embodiment of a transcoding device of the present invention.
  • Figure 8 is a schematic diagram of another embodiment of a transcoding device according to the present invention.
  • Figure 9 is a schematic diagram of an embodiment of a transcoding device of the present invention.
  • Figure 10 is a schematic diagram of an embodiment of a transcoding device of the present invention.
  • Figure 11 is a schematic diagram of an embodiment of a transcoding system of the present invention.
  • An embodiment of the present invention provides a method for transcoding between two embedded codecs. As shown in FIG. 2, the method includes the following steps:
  • the encoding method and bandwidth of the at least one extension layer by the first codec are consistent with the encoding method and bandwidth of the at least one extension layer by the second codec.
  • the remaining layer code streams including the core layer code stream except for the first coded code stream.
  • the relationship between the delay of the second coded stream obtained by encoding the adjustment signal by the second codec and the delay of the first coded stream by an integer frame corresponds to the second codec
  • the first codec and the second codec may be a whole codec that is physically synthesized together, or may be separate physical entities, that is, the first codec includes the first encoder and the The first decoder is respectively used for encoding and decoding of the code stream, and the same description is applicable to the following embodiments.
  • the transcoding method of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment of the code stream that is no longer decoded and re-encoded and perform the delay integer frame operation on the re-encoded and decoded part of the code stream.
  • the transcoding complexity of the embedded codec is greatly reduced, and the signal quality in the transcoding is effectively improved because part of the code stream is not re-encoded and decoded.
  • Another embodiment of the present invention provides a method for transcoding between two embedded codecs. As shown in FIG. 3, the method includes the following steps:
  • the information of the integer frames with a preset configuration delay may include the number of integer frames with a preset configuration delay or the length of the integer frames with a delay, and the delay integer frame information is set by means of module loading or system presets, where The data of the integer frame or the length of the delayed integer frame is determined according to the frame length of the signal frame, combined with the delay of the encoding and decoding of the first codec and the second codec, and can be embodied as the same as the aforementioned signal frame. Length, the first codec and the second codec encoding and decoding the delay-related function of the code stream.
  • S202 Delay the first encoded code stream by a preset integer frame according to the information of the delayed integer frame.
  • the first coded code stream is obtained by encoding at least one extension layer using a first codec, and the at least one extension layer uses the method and bandwidth of the first codec encoding and uses the first codec required for transcoding.
  • the two codecs have one less extended layer coding method and the same bandwidth. Since the encoding methods of the at least one extension layer before and after transcoding are the same, unnecessary operations will be caused by re-decoding and re-encoding, which will seriously increase the complexity of transcoding. This implementation is aimed at the at least one extension layer.
  • the first coded stream encoded by the first codec is delayed by the preset integer frame according to the information of the preset delayed integer frame. At this time, the bit information in the code stream is not processed. It takes the code stream as a whole to carry out the delay operation of the transmission frame length.
  • the preset adjustment delay information may include the preset adjustment delay time or the adjustment delay time length.
  • the adjustment delay information is set by means of module loading or system presets, wherein the preset adjustment delay time length is based on the signal
  • the frame length of the frame is determined in combination with the delay of the first codec and the second codec encoding and decoding the code stream and the integer frame delay of the first code stream.
  • this step can also be executed immediately after step S201.
  • S204 Perform time delay alignment adjustment on the first decoded signal to obtain an adjusted signal.
  • the first decoded signal is obtained by decoding the remaining coded code streams including the core layer coded code stream except the first coded code stream by the first codec, and the remaining coded code streams are obtained by comparing the at least one codec code stream to the at least one codec.
  • the remaining layers outside the extension layer are coded by the first codec.
  • the relationship between the delay of the second coded stream obtained by encoding the adjustment signal by the second codec and the delay of the first coded stream by an integer frame corresponds to the second codec
  • the adjustment of the first and second time points in S202 and this step can ensure Multiplexing and outputting the time delay relationship between the code streams used for the second decoding, and the code stream after only the at least one extension layer is encoded by the second codec and the other layers except the at least one extension layer pass through the first The time delay relationship between the code streams encoded by the two codecs corresponds.
  • the transcoding method of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment of the code stream that is no longer decoded and re-encoded and perform the delay integer frame operation on the re-encoded and decoded part of the code stream.
  • the transcoding complexity of the embedded codec is greatly reduced, and the signal quality in the transcoding is effectively improved because part of the code stream is not re-encoded and decoded.
  • the transcoding between most embedded codecs can also reduce the extra delay caused by transcoding, for example, it is possible to avoid any extra delay during transcoding.
  • Example three A more specific embodiment of the present invention provides a method for transcoding between two embedded codecs, as shown in Fig. 4:
  • the G.722 ultra-wideband extended codec is used as the first codec
  • the G.711.1 ultra-wideband codec is used as the second codec
  • at least one extended layer that does not need to be decoded and re-encoded is marked as Mlayer, which is the ultra-wideband coding layer shown in the figure, is directly multiplexed with the code stream encoded by the first encoder.
  • Mlayer is the ultra-wideband coding layer shown in the figure
  • Nlayer needs to pass through the first encoder. After encoding, it is decoded, and then encoded by the second encoder.
  • the embodiment of the present invention needs to align the time point of the re-encoded Nlayer with the time point of the directly multiplexed Mlayer. Therefore, the Mlayer needs to be delayed in the transcoding process. Alignment operation and delay integer frame adjustment for Nlayer.
  • the delay of the first encoder to Nlayer is ell, the delay to Mlayer is el2, the delay of the first decoder to Nlayer is dll, the delay to Mlayer is dl2, and the delay of the second encoder to Nlayer and Mlayer
  • the time is e21, e22, the delay of the second decoder to Mayer and Mlayer is d21, d22, and the frame length of the signal frame is T-frame.
  • L and D can be expressed as follows:
  • the delayed integer frame and the length of the delay alignment adjustment, the delay of the first encoder to Nlayer and Mlayer, the delay of the first decoder to Nlayer, the delay of the second encoder to Nlayer, and the second decoding The delay of the device to Nlayer and Mlayer is related.
  • the above delays can be zero, that is, there is no delay or other values.
  • the decoding signal of Nlayer is delayed by 3.125ms
  • the code stream of Mlayer is delayed by 2 integer frames.
  • the first codec is the G.711.1 ultra-wideband extension codec
  • the second codec is the G.722 ultra-wideband extension codec.
  • Another embodiment of the present invention provides a method for transcoding between two embedded codecs. As shown in FIG. 5, the method includes the following steps:
  • S301 Delay an integer frame for a first code stream in the input code stream, where the first code stream includes at least one extended layer code stream of the input code stream obtained after the input signal is coded by the first codec;
  • S303 Perform time delay alignment adjustment on the first decoded signal to obtain an adjusted signal.
  • the transcoding method of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment of the code stream that is no longer decoded and re-encoded and perform the delay integer frame operation on the re-encoded and decoded part of the code stream. It greatly reduces the transcoding complexity of the embedded codec and further improves the reliability. Number encoding and decoding effect, because part of the code stream has not been re-encoded and decoded, the signal quality during transcoding and the encoding and decoding process is effectively improved.
  • the transcoding between most embedded codecs can also reduce the extra delay caused by transcoding, for example, it is possible to avoid any extra delay during transcoding. Example five
  • Another embodiment of the present invention provides a method for transcoding between two embedded codecs, as shown in FIG. 6: Before the method is implemented, the method includes step S401.
  • the first codec encodes an input signal to obtain an encoded bitstream.
  • the first codec is an encoder used for the first encoding before transcoding
  • the first codec is an embedded codec
  • the encoded input signal includes an extension layer signal and a core layer signal
  • the first encoder encodes The formation of the input signal corresponds to the code stream.
  • the code stream formed by encoding at least one extension layer is called the first code stream.
  • the encoding method and bandwidth of the encoder before and after the at least one extension layer transcoding is the same, that is, The encoding method and bandwidth of the at least one extension layer by the first codec are the same as the encoding method and bandwidth of the at least one extension layer by using the second codec.
  • the code stream formed by encoding the remaining layers except at least one extension layer is called the remaining code stream, which includes the core layer code stream.
  • S402 Delay the first encoded code stream by integer frames.
  • the encoding methods of at least one extension layer before and after transcoding are the same. Re-decoding and re-encoding will cause unnecessary operations and severely increase the complexity of transcoding. However, if appropriate operations are not performed, it will The time delay caused by the multiplexing of the first code stream and the time delay relationship when the code stream formed by using the second encoder to encode at least one extension layer is multiplexed does not match, for the at least one extension layer.
  • the first coded code stream encoded by the first codec is delayed by the preset integer frame according to the preset delayed integer frame information. At this time, the bit information in the code stream is not processed. The processing is to take the code stream as a whole to carry out the delay operation of the transmission frame length.
  • the information of the integer frames with a preset configuration delay may include the number of integer frames with a preset configuration delay or the length of the integer frames with a delay.
  • the delay integer frame information is loaded by the module or preset by the system. Setting, wherein the data of the integer frame or the length of the delayed integer frame is determined according to the frame length of the signal frame, combined with the delay of the encoding and decoding of the first codec and the second codec, which can be embodied as the same as the above
  • the signal frame length, the first codec and the second codec encoding and decoding a function related to the delay of the code stream.
  • the first coded stream is obtained by encoding at least one extension layer using a first codec, and the at least one extension layer uses the method and bandwidth of the first codec encoding and uses the first codec required for transcoding.
  • the two codecs have one less extended layer coding method and the same bandwidth. Since the encoding methods of the at least one extension layer before and after transcoding are the same, unnecessary operations will be caused when re-decoding and re-encoding, which seriously increases the complexity of transcoding.
  • the first coded stream encoded by the first codec is delayed by the preset integer frame according to the preset delayed integer frame information. At this time, the bit information in the code stream is not processed. It takes the code stream as a whole to carry out the delay operation of the transmission frame length.
  • the method of presetting the information of the delayed integer frame is not limited to being executed after step S401. Due to the mutual correlation between the two steps, the method can be implemented at other times to ensure that the information of the delayed integer frame is matched to the first A code stream delays the execution of a preset integer frame step.
  • the first codec decodes the remaining code streams. For the remaining layers except at least one extension layer, because the encoding method and encoding bandwidth of the two encodings before and after the transcoding process are different, it needs to be encoded and then decoded.
  • the first codec decodes the remaining coded code streams to obtain a first decoded signal, and the first decoded signal is used in the transcoding method to be provided to the second codec for an encoding operation.
  • S404 Perform time delay alignment adjustment on the first decoded signal to obtain an adjusted signal.
  • the first decoded signal is decoded by the first codec except for the first coded stream
  • the remaining coded code streams including the core layer coded code stream are obtained, and the remaining coded code streams are obtained by encoding the remaining layers except for the at least one extension layer using the first codec.
  • the relationship between the time delay of the second coded stream and the time delay of the first coded stream after being delayed by an integer number of frames corresponds to the coding time delay of the at least one extended layer by the second codec and the codec
  • the remaining coded streams need to be
  • the first time point is aligned with the second time point of the at least one extension layer, or forms the correspondence between the delay relationships as described above.
  • the delay relationship between the multiplexed output code streams for the second decoding can be ensured, and after only at least one extension layer is encoded by the second codec
  • the code stream corresponds to the time delay relationship between code streams encoded by the second codec in the remaining layers except for the at least one extension layer.
  • the multiplexed code stream is provided to the second codec for decoding operation to recover the original signal.
  • the steps of adjusting the delay information required by the preset delay integer frame information and the delay alignment adjustment in the foregoing embodiments may also use other methods.
  • the information of the integer frames of the delay delay and the adjustment delay information required for the delay alignment adjustment are determined in a preset manner, that is, it may have been completed during the completion of the system construction or the process of modularization. It is preset that, in the implementation process of transcoding, only the preset information is read to delay the first code stream by integer frames And the adjustment signal may be obtained by adjusting the delay alignment of the first decoded signal.
  • the first codec and the first codec may be combined according to the frame length of the signal frame in the process of transcoding.
  • the delay of the second codec encoding and decoding the code stream is implemented in a real-time or in advance manner of determining the information of the delayed integer frame and the adjustment delay information required for the delay alignment adjustment.
  • the step of adjusting the delay information required by the preset delay integer frame information and the delay alignment adjustment in the foregoing embodiments may also be preset or in the process of transcoding According to the frame length of the signal frame, the information of one of them is determined according to the delay of encoding and decoding of the first codec and the second codec, and then the other is further configured according to the information of the determined one.
  • Information, the integer frame and the adjustment delay satisfy the following relationship: the adjustment delay is based on the frame length of the signal frame, combined with the delay of the first codec and the second codec to encode and decode the code stream Related to the integer frame.
  • a universal transcoding method is provided.
  • the delay is determined according to different codec parameters
  • the information of the integer frame and the adjustment delay information required for the delay alignment adjustment provide the operation implementation of the delay integer frame and the delay alignment adjustment.
  • the first codec and the second codec can be not only two simple and independent codecs, but also relatively complex structures, such as in Partial Mixing applications. middle.
  • Partial Mixing is an efficient mixing method in a conference system. It decodes and mixes the traditional narrowband or wideband code stream in the multi-channel coded signal, but only selects the extended layer code stream of a specific coded signal as the mixing method. The extended layer code stream after the audio. When the receiving end still needs to transcode, the traditional transcoding method will waste the advantages of Partial Mixing.
  • the transcoding method provided by the embodiment of the present invention, only the narrowband or wideband code stream after mixing is used as ( The NM) layer performs delay alignment adjustment, and the extended layer code stream acts as a Mlayer for delay integer frame adjustment.
  • This kind of transcoding method still does not need to decode the extension layer code stream, which greatly improves the efficiency of transcoding and coding and decoding.
  • the transcoding method of the embodiment of the present invention only needs to re-encode and decode part of the code stream,
  • the time delay alignment adjustment of the re-encoded code stream and the delayed integer frame operation of the re-encoded and decoded part of the code stream can greatly reduce the transcoding complexity of the embedded codec, because part of the code stream is not re-encoded.
  • Decoding effectively improves the signal quality in transcoding. It provides a universal transcoding method for transcoding between different codecs. For most embedded codecs, transcoding can also reduce the extra delay caused by transcoding. For example, no extra delay can be generated during transcoding. The delay.
  • transcoding between two embedded codecs includes:
  • the delayed integer frame module 501 is configured to delay the first code stream in the input code stream by integer frames, where the first code stream includes the input code stream obtained after the input signal is coded by the first codec At least one extended layer code stream;
  • the delay alignment module 502 is configured to perform delay alignment adjustment on the first decoded signal obtained by using the first codec to decode the remaining coded stream in the input code stream to obtain an adjustment signal, and the remaining coded stream includes the input In the input code stream obtained after the signal is coded by the first codec, the remaining layer code streams including the core layer code stream except for the first coded code stream.
  • the transcoding device of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment by using the delay alignment module for the code streams that are no longer decoded and re-encoded, and use the integer frame adjustment module to re-encode and decode the code stream. Delayed integer frame operations on part of the code stream can greatly reduce the transcoding complexity of the embedded codec. Because part of the code stream is not re-encoded and decoded, the signal quality in the transcoding is effectively improved. The transcoding between most embedded codecs can also reduce the extra delay caused by the transcoding, for example, no extra delay can be generated during the transcoding. Example Seven
  • transcoding between two embedded codecs includes:
  • the delay integer frame module 501 is configured to delay the first code stream by integer frames.
  • the first coded code stream is obtained by encoding at least one extension layer using a first codec, and the delayed integer frame module 501 delays the first coded code stream by a preset integer frame according to the information of the delayed integer frame Perform a delay integer frame operation on the first code stream.
  • the delay alignment module 502 is configured to perform delay alignment adjustment on the first decoded signal to obtain an adjustment signal.
  • the remaining coded code streams of the layer coded code stream are obtained by encoding the remaining layers except the at least one extension layer using the first codec, and the delay alignment module 502 aligns according to the delay
  • the adjustment delay information required by the adjustment performs a delay alignment adjustment on the first decoded signal.
  • the device also includes a first delay module 503, which is used to determine information about delayed integer frames.
  • the first delay module 503 determines the integer frame delaying the first coded stream according to the frame length of the signal frame in combination with the delays of the encoding and decoding of the first codec and the second codec.
  • the second delay module 504 is configured to determine an adjustment delay for performing a delay alignment adjustment on the decoded signal.
  • the frame length of the signal frame combined with the delay of the first codec and the second codec to encode and decode the code stream, and the integer frame delay of the first code stream to determine the decoded signal
  • the adjustment delay of the delay alignment adjustment is
  • the above-mentioned first delay module and the second delay module can be embedded in the system as a preset parameter module when the system is set up.
  • the signal is adjusted for delay alignment to obtain the adjusted signal and call directly.
  • the above-mentioned first delay module and second delay module may also be implemented when the delay integer frame module 501 implements the delay of the integer frame to the first code stream and the delay alignment module 502 performs the first decoding process during the operation of the transcoding device. Called when the signal is adjusted for delay alignment.
  • the above-mentioned first delay module and the second delay module may be physically separate entities or independent entities, that is, they may be physically independent from the delay integer frame module and the delay alignment module, as shown in the figure As shown in 8, the first delay module may also be set in the delay integer frame module and the second delay module may be set in the delay alignment module.
  • the encoding method and bandwidth of the at least one extension layer by the first codec are consistent with the encoding method and bandwidth of the at least one extension layer by the second codec, and the delay of the second codec stream is equal to
  • the relationship between the delays after the first coded stream is delayed by an integer number of frames corresponds to the relationship between the coding delays of encoding the at least one extension layer by the second codec and the coding delays of encoding the remaining layers.
  • the transcoding device of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment by using the delay alignment module for the code streams that are no longer decoded and re-encoded, and use the integer frame adjustment module to re-encode and decode the code stream. Delayed integer frame operations on part of the code stream can greatly reduce the transcoding complexity of the embedded codec. Because part of the code stream is not re-encoded and decoded, the signal quality in the transcoding is effectively improved. The transcoding between most embedded codecs can also reduce the extra delay caused by the transcoding, for example, no extra delay can be generated during the transcoding.
  • transcoding device As shown in FIG. 9, transcoding is performed between two embedded codecs.
  • the seventh embodiment includes:
  • the delayed integer frame module 501 is configured to delay the integer frame of the first coded stream and the delay alignment module 502 is configured to perform delay alignment adjustment on the first decoded signal to obtain an adjusted signal.
  • the device also includes a parameter configuration module 505, configured to configure the integer frames that delay the first coded stream and/or the adjusted delay according to the first codec and the second codec,
  • the integer frame and the adjustment delay satisfy the following relationship:
  • the adjustment delay is related to the integer frame according to the frame length of the signal frame, combined with the first codec and the second codec to encode and decode the code stream. That is, by configuring the integer frame delay for the first code stream (adjustment delay), the adjusted delay (the integer delay for the first code stream delay) is obtained through the above relationship frame).
  • the coding method and bandwidth of the at least one extension layer are consistent with the coding method and bandwidth of the at least one extension layer by the second codec, and the delay of the second code stream is the same as that of the first code stream.
  • the relationship between the delays after the time-integer frame corresponds to the relationship between the encoding delay of encoding the at least one extension layer by the second codec and the encoding delay of encoding the remaining layers.
  • the parameter configuration module may also be included in the transcoding device as well as the first delay module and the second delay module, and the parameter configuration module provides the first delay module and the second delay module.
  • the parameter information required by the delay module, or the parameter configuration module determines the information of the integer frame delayed by the first delay module, and provides this parameter to the second delay module, and vice versa, the parameter configuration module
  • the cooperative operation with the first delay module and the second delay module may be determined according to different implementation environments, and is not limited to this.
  • the transcoding device of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment by using the delay alignment module for the code streams that are no longer decoded and re-encoded, and use the integer frame adjustment module to re-encode and decode the code stream. Delayed integer frame operations on part of the code stream can greatly reduce the transcoding complexity of the embedded codec. Because part of the code stream is not re-encoded and decoded, the signal quality in the transcoding is effectively improved. Provides a universal transcoding method for transcoding between different codecs. For most embedded codecs, transcoding can also reduce the extra delay caused by transcoding. For example, no extra delay can be generated during transcoding. The delay. Example 9
  • An embodiment of the present invention provides a transcoding device. As shown in FIG. 10, the transcoding device implements a transcoding operation between two embedded codecs, and its module is used to receive the first codec. The output coded and decoded signals to be processed are transcoded on the received signal, and the processed signal is provided to the second codec for decoding operation.
  • the transcoding device includes
  • the receiving device 506 is configured to receive the first coded code stream in the input code stream and the first coded stream obtained by using the first codec to decode other coded code streams in the input code stream except for the first coded code stream.
  • one A decoded signal where the first coded code stream includes at least one extended layer code stream in the input code stream obtained after the input signal is coded by the first codec;
  • a delay integer frame module 501 configured to delay the first code stream by integer frames
  • the delay alignment module 502 is configured to perform delay alignment adjustment on the first decoded signal to obtain an adjustment signal, and the remaining coded stream includes the input code stream obtained after the input signal is encoded by the first codec divided by The remaining layer code streams including the core layer code stream outside the first coded code stream.
  • the output device 507 is configured to output the adjustment signal and the first coded stream delayed by an integer frame to the second codec.
  • the delayed integer frame module and the delay alignment module are the same as the delayed integer frame module and the delay alignment module in each embodiment of the transcoding device.
  • the encoding method and bandwidth of the at least one extension layer by the first codec is consistent with the encoding method and bandwidth of the at least one extension layer by the second codec, and the encoding method and bandwidth of the second codec are used.
  • the relationship between the time delay of the second coded stream obtained by adjusting the signal and the time delay after the first coded stream is delayed by an integer number of frames corresponds to the time when the second codec encodes the at least one extension layer
  • the relationship between the delay and the encoding delay of encoding the remaining layers is consistent with the encoding method and bandwidth of the at least one extension layer by the second codec, and the encoding method and bandwidth of the second codec are used.
  • the device further includes other modules as described in the foregoing transcoding device embodiment, as shown in FIG. 10.
  • the transcoding device of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment by using the delay alignment module for the code stream that is no longer decoded and re-encoded, and adjust the integer frame module to re-encode and decode the code stream. Delayed integer frame operations on part of the code stream can greatly reduce the transcoding complexity of the embedded codec. Because part of the code stream is not re-encoded and decoded, the signal quality in the transcoding is effectively improved. Provides a universal transcoding method for transcoding between different codecs. For most embedded codecs, transcoding can also reduce the extra delay caused by transcoding. For example, no extra delay can be generated during transcoding. The delay.
  • Example ten An embodiment of the present invention provides a transcoding system. As shown in FIG. 11, the transcoding system includes a first codec 508, a transcoding device 50, and a second codec 509.
  • the first codec implements the decoding function and is used to decode the remaining coded streams to obtain the first decoded signal.
  • the remaining coded streams include the input signal obtained after the input signal is encoded by the first codec.
  • the remaining layer code streams including the core layer code stream other than the first coded code stream; a transcoding device, configured to delay the first coded code stream by an integer number of frames, and perform time delay alignment on the first decoded signal.
  • the adjustment signal is obtained by adjustment; a second codec, which implements an encoding function, is used to encode the adjustment signal to obtain a second coded code stream, and multiplex the second coded code stream and the first code after the delayed integer frame Code stream.
  • the first codec may also encode the input signal to obtain a first coded code stream corresponding to at least one extension layer and the remaining coded code streams including the core layer coded stream.
  • the encoding method and bandwidth of the at least one extension layer are consistent with the encoding method and bandwidth of the at least one extension layer by the second codec.
  • the second codec may also decode the second coded stream and the multiplexed code stream of the first coded stream delayed by an integer frame.
  • the first codec encodes the input signal to obtain a first code stream corresponding to at least one extension layer and the remaining code streams including the core layer code stream.
  • the first codec decodes the remaining coded stream to obtain a first decoded signal, and the remaining coded stream is obtained by encoding the remaining layers except for the at least one extension layer using the first codec.
  • the transcoding device receives the first coded stream, obtains delayed integer frame information, and delays the first coded stream by integer frames according to the delayed integer frame information, and the transcoding device receives the The first decoded signal obtains the adjustment delay information required for the delay alignment adjustment, the delay alignment adjustment is performed on the first decoded signal according to the adjustment delay information to obtain an adjustment signal, and the transcoding device delays an integer
  • the first coded stream after the frame and the adjustment signal output as shown in each embodiment of the transcoding device or transcoding device, the delay of the second coded stream and the delay of the first coded stream
  • the relationship between the delays after the integer frame corresponds to the relationship between the encoding delay of encoding the at least one extension layer by the second codec and the encoding delay of encoding the remaining layers
  • the second codec encodes the adjustment Signal to obtain the second coded stream and decode the second coded stream and the The code stream after the multiplexing of the first code stream delayed by an integer frame.
  • the transcoding system of the embodiment of the present invention only needs to re-encode and decode part of the code stream, and adjust the delay alignment by using the transcoding device for the code stream that is no longer decoded and re-encoded, and delay the re-encoded and decoded part of the code stream.
  • Time-integer frame operation can greatly reduce the transcoding complexity of the embedded codec. Because part of the code stream is not re-encoded and decoded, the signal quality in the transcoding is effectively improved. It provides a universal transcoding method for transcoding between different codecs. For most embedded codecs, transcoding can also reduce the extra delay caused by transcoding. For example, no extra delay can be generated during transcoding. Delay.
  • a mobile station in another embodiment, includes the transcoding device of the foregoing embodiment, and a network element is provided, which also includes the transcoding device of the foregoing embodiment.
  • the transcoding device is in the mobile station and Network elements provide transcoding operations, and transcoding devices are not limited to the above-mentioned mobile stations and network elements. All communication equipment and systems that require transcoding operations can use the above transcoding devices and transcoding methods, and are not limited to this.
  • the above embodiments of the present invention are applicable to speech and audio signals and even other data signals with embedded codec processing signal characteristics.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented through computer programs. Relevant hardware is instructed to complete, the program can be stored in a computer readable storage medium, and when the program is executed, it can include the processes of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

转码方法、 装置、 设备以及系统 本申请要求于 2009年 7月 31日提交中国专利局、 申请号为 200910109510.1、 发明名称为 "转码方法、 装置、 设备以及系统" 的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及信号码流的转码技术, 尤其涉及转码方法、 装置、设备 和系统。
背景技术
随着网络带宽的日益增长, 网络传输速率越来越高, 人们对通信中语音 音频质量的要求也越来越高。 为了满足人们对语音音频质量的要求,越来越多 的嵌入式语音音频编解码器被开发出来。嵌入式语音音频编解码器由一个核心 层和若千个扩展层组成的编解码器,核心层通常是现有传统窄带或宽带编解码 器,扩展层则可以是宽带、超宽带甚至全带扩展也可以是立体声,多声道扩展。 嵌入式语音音频编解码器可以与现有传统编解码器兼容,同时又能才艮据需要提 供更多的扩展功能。
若要在不同的嵌入式编解码器之间进行通信, 就必须进行转码处理, 即解 码再编码。现有的转码方法通常都是将经第一编码器的编码码流进行解码,再 用待转码的第二编码器进行编码, 如图 1所示, 转码时, 将经第一编码器编码 后的核心层码流和所有接收到的扩展层码流全部解码后再用待转码的第二编 码器全部进行重新编码,转码前后部分甚至全部扩展层采用的编解码方法, 带 宽是一致的。
转码前后部分甚至全部扩展层编码方法和编码带宽一致的情况下釆用现 有技术的转码方法, 势必会增大编解码的复杂度并带来信号质量上的损失。 发明内容
本发明实施例的目的是提供转码的方法、 装置、设备和系统, 以降低转码 过程中编解码的复杂度并提升信号质量。
为实现上述目的, 本发明实施例提供了一种编码方法, 包括:
对输入码流中的第一编码码流延时整数帧,所述第一编码码流包括输入信 号釆用第一编解码器编码后得到的所述输入码流中的至少一个扩展层码流; 对采用所述第一编解码器解码所述输入码流中的其余编码码流得到的第 一解码信号进行时延对齐调整得到调整信号 ,所述其余编码码流包括输入信号 采用所述第一编解码器编码后得到的输入码流中除所述第一编码码流外包括 核心层码流在内的其余层码流。 本发明另一实施例还提供了一种转码方法, 包括:
对输入码流中的第一编码码流延时整数帧 ,所述第一编码码流包括输入信 号采用第一编解码器编码后得到的输入码流的至少一个扩展层码流;
采用第一编解码器解码所述输入码流中的其余编码码流得到第一解码信 号 ,所述其余编码码流包括输入信号采用所述第一编解码器编码后得到的所述 输入码流中除所述第一编码码流外包括核心层码流在内的其余层码流;
对所述第一解码信号进行时延对齐调整得到调整信号;
采用所述第二编解码器编码所述调整信号得到第二编码码流;
复用输出所述第二编码码流以及所述延时整数帧后的第一编码码流。 本发明另一实施例还提供了一种转码装置, 包括:
延时整数帧模块, 用于对输入码流中的第一编码码流延时整数帧, 所述第 一编码码流包括输入信号釆用第一编解码器编码后得到的所述输入码流中的 至少一个扩展层码流;
时延对齐模块,用于对采用所述第一编解码器解码所述输入码流中的其余 编码码流得到的第一解码信号进行时延对齐调整得到调整信号,所述其余编码 码流包括输入信号采用所述第一编解码器编码后得到的所述输入码流中除所 述第一编码码流外包括核心层码流在内的其余层码流。 本发明另一实施例还提供了一种转码设备, 包括:
接收模块,用于接收输入码流中的第一编码码流以及对采用所述第一编解 码器解码所述输入码流中除所述第一编码码流外的其余编码码流得到的第一 解码信号 ,所述第一编码码流包括输入信号采用第一编解码器编码后得到的所 述输入码流中的至少一个扩展层码流;
延时整数帧模块, 用于对所述第一编码码流延时整数帧;
时延对齐模块, 用于对所述第一解码信号进行时延对齐调整得到调整信 号 ,所述其余编码码流包括输入信号釆用所述第一编解码器编码后得到的输入 码流中除所述第一编码码流外包括核心层码流在内的其余层码流。
输出装置,用于向所述第二编解码器输出所述调整信号以及所述延时整数 帧后的第一编码码流。 本发明另一实施例还提供了一种转码系统, 包括:
第一编解码器, 用于解码其余编码码流得到第一解码信号, 所述其余编码 码流包括输入信号采用所述第一编解码器编码后得到的输入码流中除所述第 一编码码流外包括核心层码流在内的其余层码流;
转码装置, 用于对所述第一编码码流延时整数帧,对所述第一解码信号进 行时延对齐调整得到调整信号;
第二编解码器, 用于编码所述调整信号得到第二编码码流, 复用所述第二 编码码流以及所述延时整数帧后的第一编码码流。 本发明另一实施例还提供了上述转码装置的移动台。 本发明另一实施例还提供了上述转码装置的网元。 因此, 通过引入本发明实施例的转码方法、 装置、 设备和系统, 只需对部 分码流进行重新编解码,极大的降低了嵌入式编解码器的转码复杂度, 同样由 于部分码流未重新编解码使得转码中的信号质量得到有效提升。 附图说明
例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1为现有技术转码示意图;
图 2为本发明一转码方法实施例示意图;
图 3为本发明又一转码方法实施例示意图; 图 4为本发明又一转码方法实施例示意图;
图 5为本发明又一转码方法实施例示意图;
图 6为本发明又一转码方法实施例示意图;
图 7为本发明一转码装置实施例示意图;
图 8为本发明又一转码装置实施例示意图;
图 9为本发明一转码装置实施例示意图; 图 10为本发明一转码设备实施例示意图;
图 11为本发明一转码系统实施例示意图; 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
本发明一实施例提供在两个嵌入式编解码器间进行转码的方法, 如图 2 所示, 包括如下的步驟:
5101、对输入码流中的第一编码码流延时整数帧,所述第一编码码流包括 输入信号采用第一编解码器编码后得到的输入码流中的至少一个扩展层码流。
所述第一编解码器对所述至少一个扩展层的编码方法及带宽和第二编解 码器对所述至少一个扩展层的编码方法及带宽一致。
5102、对采用所述第一编解码器解码输入码流中的其余编码码流得到的第 一解码信号进行时延对齐调整得到调整信号,所述其余编码码流包括输入信号 釆用所述第一编解码器编码后得到的输入码流中除所述第一编码码流外包括 核心层码流在内的其余层码流。
采用所述第二编解码器编码所述调整信号得到的第二编码码流的时延和 所述第一编码码流延时整数帧后的时延间关系对应于所述第二编解码器编码 所述至少一个扩展层的编码时延和编码所述其余层的编码时延间关系。
所述第一编解码器和所述第二编解码器既可以为从物理上合成在一起的 编解码器整体,也可以为分离的物理实体, 即第一编解码器包括第一编码器和 第一解码器分别用于码流的编码和解码, 同样的说明适用于下述各实施例。 本发明实施例的转码方法只需对部分码流进行重新编解码,通过对不再解 码再编码的码流进行时延对齐调整以及对重新编解码的部分码流进行延时整 数帧操作可以极大的降低了嵌入式编解码器的转码复杂度,由于部分码流未重 新编解码使得转码中的信号质量得到有效提升。 实施例二
本发明又一实施例提供在两个嵌入式编解码器间进行转码的方法, 如图 3 所示, 包括如下的步驟:
5201、 预设延时的整数帧的信息。
预设配置延时的整数帧的信息,可以包括预设配置延时的整数帧的数目或 者延时整数帧的长度,所述延时整数帧信息通过模块装载或者系统预置的方式 设置,其中整数帧的数据或者延时整数帧的长度根据信号帧的帧长, 结合所述 第一编解码器和第二编解码器编码以及解码码流的延时确定,可以体现为和上 述信号帧帧长、第一编解码器和第二编解码器编码以及解码码流的延时相关的 函数。
5202、 按照延时的整数帧的信息对第一编码码流延时预设的整数帧。 所述第一编码码流通过对至少一个扩展层采用第一编解码器编码后得到 , 所述至少一个扩展层釆用第一编解码器编码的方法及带宽和釆用转码所需的 第二编解码器少一个扩展层编码的方法及带宽一致。由于所述至少一个扩展层 转码前后的编码器对其的编码方法相同,重新解码再编码的话会造成了不必要 的操作,严重增加了转码的复杂度,针对该至少一个扩展层本实施例中对其采 用第一编解码器编码后的第一编码码流按照预设的延时的整数帧的信息延时 预设的整数帧 ,此时不进行针对码流中比特信息的处理而是将码流作为整体进 行传输帧长的延时操作。
S203、 预设时延对齐调整所需的调整时延信息。 预设调整时延信息, 可以包括预设调整时延的时间或者调整时延的时长, 所述调整时延信息通过模块装载或者系统预置的方式设置,其中预设调整时延 的时长根据信号帧的帧长,结合所述第一编解码器和第二编解码器编码和解码 码流的延时以及所述对第一编码码流延时的整数帧确定。
需要说明的是, 该步驟也可以紧接着步驟 S201执行。
S204、 对第一解码信号进行时延对齐调整得到调整信号。
所述第一解码信号通过所述第一编解码器解码除所述第一编码码流外的 包括核心层编码码流的其余编码码流得到 ,所述其余编码码流通过对所述至少 一个扩展层外的其余层采用所述第一编解码器编码得到。采用所述第二编解码 器编码所述调整信号得到的第二编码码流的时延和所述第一编码码流延时整 数帧后的时延间关系对应于所述第二编解码器编码所述至少一个扩展层的编 码时延和编码所述其余层的编码时延间关系,因为所述至少一个扩展层不再重 新编码并解码, 而是直接复用第一编解码器编码形成的第一编码码流, 因此需 要将其余编码码流的第一时间点与所述至少一个扩展层的第二时间点对齐,通 过 S202和本步驟的对第一和第二时间点调整可以保证复用输出用于第二次解 码的码流间的时延关系 ,和仅将至少一个扩展层通过第二编解码器编码后的码 流与除去所述至少一个扩展层之外其余层通过第二编解码器编码后的码流间 的时延关系对应。
本发明实施例的转码方法只需对部分码流进行重新编解码,通过对不再解 码再编码的码流进行时延对齐调整以及对重新编解码的部分码流进行延时整 数帧操作可以极大的降低了嵌入式编解码器的转码复杂度,由于部分码流未重 新编解码使得转码中的信号质量得到有效提升。对多数嵌入式编解码器之间的 转码还可以降低转码产生的额外延时, 如可以在转码时不产生任何额外的延 时。 实施例三 本发明又更为具体的一实施例提供在两个嵌入式编解码器间进行转码的 方法, 见图 4所示:
本实施例以 G.722超宽带扩展编解码器为第一编解码器, 以 G.711.1超宽 带编解码器为第二编解码器,以至少一个不需要进行解码再编码的扩展层标记 为 Mlayer, 即图中所示超宽带编码层, Mlayer采用第一编码器编码后的码流 被直接复用, 除去 Mlayer外包括核心层在内的其余层标记为 Nlayer, Nlayer需 要经第一编码器编码后再解码,再经过第二编码器编码, 本发明实施例需要将 再编码的 Nlayer的时间点与直接复用的 Mlayer的时间点对齐 , 因此进行转码 过程中需要分别对 Mlayer进行时延对齐操作以及对 Nlayer进行延时整数帧调 整。
第一编码器对 Nlayer的延时为 ell , 对 Mlayer的延时为 el2, 第一解码器 对 Nlayer的延时为 dll ,对 Mlayer的延时为 dl2,第二编码器对 Nlayer和 Mlayer 的延时分别为 e21 , e22, 第二解码器对 Mayer和 Mlayer的延时分别为 d21 , d22 , 信号帧的帧长为 T— frame。 对 Nlayer的延时进行对齐调整, 调整长度为 D, 包括和帧长相关的所述整数帧, 与所述第一编解码器和第二编解码器编码 以及解码码流时延间的差和的计算关系 , 对 Mlayer的码流延时 L个整数帧 , 包括根据所述第一编解码器和第二编解码器编码以及解码码流时延间的差和, 与所述帧长的比值的函数确定的值。 一种实现中, L和 D可以如下表示:
L=ceil((e I l+dll+e21+d21-el 2-d22)/T— frame)
D=L*T_frame-(e ll+dll+e21 +d21 -e 12-d22)
如上, 延时的整数帧以及延时对齐调整的长度和第一编码器对 Nlayer和 Mlayer的延时、 第一解码器对 Nlayer的延时、 第二编码器对 Nlayer的延时与 第二解码器对 Nlayer和 Mlayer的延时相关。 上述各延时可以为零, 即没有延 时存在或者其他数值。
首先对接收到的 G.722SWB宽带核心层码流和 N1个宽带增强层的码流也 就是 Nlayer部分的码流进行解码, 得到 Nlayer的解码信号。 然后根据 L和 D 值, 对 Mayer的解码信号进行时延对齐, 对 G.722SWB超宽带码流即 Mlayer 的码流进行延时整数帧调整。 以本实施例为例:
ell+dll=el2+d22=6.375ms
e21+d21=6.875ms
T_frame=5ms
L=ceil((e I l+dll+e21+d21-el 2-d22)/T_frame)=2个整数帧
D=L*T_frame-(e Il+dll+e21+d21-el 2-d22)=3.125ms
即对 Nlayer的解码信号延时 3.125ms, 对 Mlayer的码流延时 2个整数帧。 本实施方式也可以适用于其他嵌入式编解码器, 如第一编解码器为 G.711.1超宽带扩展编解码器, 第二编解码器为 G.722超宽带扩展编解码器。 实施例四
本发明又一实施例提供在两个嵌入式编解码器间进行转码的方法, 如图 5 所示, 包括如下的步骤:
S301、对输入码流中的第一编码码流延时整数帧,所述第一编码码流包括 输入信号采用第一编解码器编码后得到的输入码流的至少一个扩展层码流;
S302、采用第一编解码器解码输入码流中的其余编码码流得到第一解码信 号 ,所述其余编码码流包括输入信号采用所述第一编解码器编码后得到的输入 码流中除所述第一编码码流外包括核心层码流在内的其余层码流;
S303、 对所述第一解码信号进行时延对齐调整得到调整信号;
5304、 采用所述第二编解码器编码所述调整信号得到第二编码码流;
5305、 复用输出所述第二编码码流以及所述延时整数帧后的第一编码码 流。
本发明实施例的转码方法只需对部分码流进行重新编解码,通过对不再解 码再编码的码流进行时延对齐调整以及对重新编解码的部分码流进行延时整 数帧操作可以极大的降低了嵌入式编解码器的转码复杂度也进一步提高了信 号编解码效果,由于部分码流未重新编解码使得转码中以及编解码过程的信号 质量都得到有效提升。对多数嵌入式编解码器之间的转码还可以降低转码产生 的额外延时, 如可以在转码时不产生任何额外的延时。 实施例五
本发明又一实施例提供在两个嵌入式编解码器间进行转码的方法, 如图 6 所示: 方法实施前包括步骤 S401、 第一编解码器对输入信号编码, 得到编码码流。
所述第一编解码器为转码前第一次编码采用的编码器,第一编解码器为嵌 入式编解码器, 编码的输入信号包括扩展层信号和核心层信号, 第一编码器编 码输入信号形成对应于编码码流中 ,将编码至少一个扩展层形成的码流称为第 一编码码流,所示至少一个扩展层转码前后的编码器对其的编码方法和带宽相 同,即第一编解码器对至少一个扩展层的编码方法和带宽与釆用第二编解码器 编码所述至少一个扩展层的编码方法和带宽相同。编码除去至少一个扩展层外 的其余层形成的码流的码流称为其余编码码流, 其中包括核心层编码码流。
S402、 对第一编码码流延时整数帧。
所示至少一个扩展层转码前后的编码器对其的编码方法相同,重新解码再 编码的话会造成了不必要的操作,严重增加了转码的复杂度,但如果不进行适 当的操作,会造成第一编码码流复用时的时延和釆用第二编码器编码至少一个 扩展层形成的码流进行复用时的时延关系不匹配,针对该至少一个扩展层。本 实施例中对其采用第一编解码器编码后的第一编码码流按照预设的延时的整 数帧的信息延时预设的整数帧,此时不进行针对码流中比特信息的处理而是将 码流作为整体进行传输帧长的延时操作。
预设配置延时的整数帧的信息,可以包括预设配置延时的整数帧的数目或 者延时整数帧的长度,所述延时整数帧信息通过模块装载或者系统预置的方式 设置,其中整数帧的数据或者延时整数帧的长度根据信号帧的帧长, 结合所述 第一编解码器和第二编解码器编码以及解码码流的延时确定,可以体现为和上 述信号帧帧长、第一编解码器和第二编解码器编码以及解码码流的延时相关的 函数。
按照延时的整数帧的信息对第一编码码流延时预设的整数帧。所述第一编 码码流通过对至少一个扩展层采用第一编解码器编码后得到,所述至少一个扩 展层釆用第一编解码器编码的方法及带宽和釆用转码所需的第二编解码器少 一个扩展层编码的方法及带宽一致。由于所述至少一个扩展层转码前后的编码 器对其的编码方法相同, 重新解码再编码的话会造成了不必要的操作,严重增 加了转码的复杂度,针对该至少一个扩展层本实施例中对其采用第一编解码器 编码后的第一编码码流按照预设的延时的整数帧的信息延时预设的整数帧,此 时不进行针对码流中比特信息的处理而是将码流作为整体进行传输帧长的延 时操作。
其中预设配置延时的整数帧的信息的方法不限定于在步驟 S401 之后执 行, 由于两个步驟间相互的关联, 该方法可以在其他时刻实施以保证按照延时 的整数帧的信息对第一编码码流延时预设的整数帧步驟的执行。
5403、 采用所述第一编解码器解码所述其余编码码流得到第一解码信号 , 所述其余编码码流通过对除所述至少一个扩展层外的其余层釆用所述第一编 解码器编码得到。
第一编解码器对其余编码码流进行解码,对除至少一个扩展层的其余层而 言, 因为其在转码过程中前后两次编码的编码方法和编码带宽不同, 需要进行 编码再解码, 第一编解码器对其余编码码流解码得到第一解码信号, 所述第一 解码信号在转码方法中用于提供给第二编解码器进行编码操作。
5404、 对第一解码信号进行时延对齐调整得到调整信号;
所述第一解码信号通过所述第一编解码器解码除所述第一编码码流外的 包括核心层编码码流的其余编码码流得到,所述其余编码码流通过对除所述至 少一个扩展层外的其余层采用所述第一编解码器编码得到。第二编码码流的时 延和所述第一编码码流延时整数帧后的时延间关系对应于所述第二编解码器 编码所述至少一个扩展层的编码时延和编码所述其余层的编码时延间关系,因 为所述至少一个扩展层不再重新编码并解码,而是直接复用第一编解码器编码 形成的第一编码码流,因此需要将其余编码码流的第一时间点与所述至少一个 扩展层的第二时间点对齐,或者形成如上所述的时延间关系的对应。通过 S402 和本步驟的对第一和第二时间点调整可以保证复用输出用于第二次解码的码 流间的时延关系 ,和仅将至少一个扩展层通过第二编解码器编码后的码流与除 去所述至少一个扩展层之外其余层通过第二编解码器编码后的码流间的时延 关系对应。
5405、 釆用所述第二编解码器编码所述调整信号得到第二编码码流; 如此一来,仅采用第二编解码器编码输入信号后至少一个扩展层的编码码 流和其余层的编码码流间存在第一时延关系,釆用本发明实施例的延时整数帧 后第一编码码流和第二编码码流存在的时延关系和上述第一时延关系对应,从 而不会对延时整数帧后的第一码流和第二码流的复用造成高的编码复杂度,不 会增加其余的处理操作, 进而可以沿用通用的码流复用操作。
5406、 复用输出所述第二编码码流以及所述延时整数帧后的第一编码码 流。
复用后的码流提供给第二编解码器进行解码操作, 恢复出原始信号。 本发明另一实施例中 ,上述各实施例中预设延时的整数帧的信息和时延对 齐调整所需的调整时延信息的步驟也可以釆用其他的方式。 前述各实施例中, 延时延时的整数帧的信息和时延对齐调整所需的调整时延信息通过预设的方 式确定, 也就是说, 可能在系统搭建完成或者模块化的过程中已经预先设置, 在转码的实施过程中 ,仅读取预设的信息进行对所述第一编码码流延时整数帧 以及对所述第一解码信号进行时延对齐调整得到调整信号即可, 本实施例中 , 可以采用在进行转码的过程中根据根据信号帧的帧长,结合所述第一编解码器 和第二编解码器编码以及解码码流的延时对上述延时的整数帧的信息和时延 对齐调整所需的调整时延信息进行实时或提前确定的方式来实现。
本发明另一实施例中 ,上述各实施例中预设延时的整数帧的信息和时延对 齐调整所需的调整时延信息的步骤还可以为,预设或在进行转码的过程中根据 根据信号帧的帧长,结合所述第一编解码器和第二编解码器编码以及解码码流 的延时确定其中之一的信息,然后根据确定的其中之一的信息进一步配置另一 信息, 所述整数帧和所述调整延时满足如下关系: 所述调整延时根据信号帧的 帧长,结合所述第一编解码器和第二编解码器编码和解码码流的延时与所述整 数帧相关。
本发明另一实施例中,提供一种通用的转码方法, 当第一编解码器和第二 编解码器在特定的场合下有变换的需求时,根据不同的编解码器参数确定延时 的整数帧的信息和时延对齐调整所需的调整时延信息提供延时整数帧和时延 对齐调整的操作实施。
另一方面, 本发明提供了更广泛的应用场景, 第一编解码器和第二编解码 器不仅可以是简单独立的两个编解码器, 还可以是相对复杂的结构, 如在 Partial Mixing应用中。 Partial Mixing是一种在会议系统中高效的混音方法,它 将多路编码信号中传统的窄带或者宽带码流进行解码混音,但只选取特定的某 路编码信号的扩展层码流作为混音后的扩展层码流。 当接收端仍然需要转码 时, 再用传统的转码方法就浪费了 Partial Mixing的优势, 而用本发明实施例 提供的转码方法,只需将混音后的窄带或宽带码流作为 (N-M)layer进行时延对 齐调整, 而扩展层码流作为 Mlayer进行延时整数帧调整。 这种的转码方法仍 然不需要对扩展层码流进行解码, 极大的提高了转码以及编解码效率。
本发明实施例的转码方法只需对部分码流进行重新编解码,通过对不再解 码再编码的码流进行时延对齐调整以及对重新编解码的部分码流进行延时整 数帧操作可以极大的降低了嵌入式编解码器的转码复杂度,由于部分码流未重 新编解码使得转码中的信号质量得到有效提升。为不同编解码器间的转码提供 了通用的转码手段,对多数嵌入式编解码器之间的转码还可以降低转码产生的 额外延时, 如可以在转码时不产生任何额外的延时。 实施例六
本发明一实施例提供一种转码装置, 如图 7所示,在两个嵌入式编解码器 间进行转码, 包括:
延时整数帧模块 501 , 用于对输入码流中的第一编码码流延时整数帧, 所 述第一编码码流包括输入信号釆用第一编解码器编码后得到的输入码流中的 至少一个扩展层码流;
时延对齐模块 502, 用于对采用所述第一编解码器解码输入码流中的其余 编码码流得到的第一解码信号进行时延对齐调整得到调整信号,所述其余编码 码流包括输入信号采用所述第一编解码器编码后得到的输入码流中除所述第 一编码码流外包括核心层码流在内的其余层码流。
本发明实施例的转码装置只需对部分码流进行重新编解码,通过对不再解 码再编码的码流采用时延对齐模块进行时延对齐调整以及采用调整整数帧模 块对重新编解码的部分码流进行延时整数帧操作可以极大的降低了嵌入式编 解码器的转码复杂度,由于部分码流未重新编解码使得转码中的信号质量得到 有效提升。 对多数嵌入式编解码器之间的转码还可以降低转码产生的额外延 时, 如可以在转码时不产生任何额外的延时。 实施例七
本发明又一实施例提供一种转码装置, 如图 8所示,在两个嵌入式编解码 器间进行转码, 包括: 延时整数帧模块 501 , 用于对第一编码码流延时整数帧。
所述第一编码码流通过对至少一个扩展层采用第一编解码器编码后得到 , 延时整数帧模块 501 按照延时的整数帧的信息对第一编码码流延时预设的整 数帧对第一编码码流进行延时整数帧操作。
时延对齐模块 502, 用于对第一解码信号进行时延对齐调整得到调整信 所述第一解码信号通过釆用所述第一编解码器解码除所述第一编码码流 外的包括核心层编码码流的其余编码码流得到 ,所述其余编码码流通过对除所 述至少一个扩展层外的其余层采用所述第一编解码器编码得到,时延对齐模块 502按照时延对齐调整所需的调整时延信息对第一解码信号进行时延对齐调 整。
该装置还包括第一时延模块 503 , 用于确定延时的整数帧的信息。
第一时延模块 503根据信号帧的帧长,结合所述第一编解码器和第二编解 码器编码以及解码码流的延时确定所述对第一编码码流延时的整数帧。
第二时延模块 504, 用于确定对所述解码信号进行时延对齐调整的调整时 延。
根据信号帧的帧长,结合所述第一编解码器和第二编解码器编码和解码码 流的延时以及所述对第一编码码流延时的整数帧确定对所述解码信号进行时 延对齐调整的调整时延。
上述第一时延模块和第二时延模块可以在系统搭建时嵌入系统作为预设 参数模块,通过上述模块确定的数据在对第一编码码流延时预设的整数帧以及 对第一解码信号进行时延对齐调整得到调整信号直接调用。
上述第一时延模块和第二时延模块也可以在转码装置运行过程中当延时 整数帧模块 501 实施对第一编码码流延时整数帧时以及当时延对齐模块 502 对第一解码信号进行时延对齐调整时进行调用。 上述第一时延模块和第二时延模块从物理上即可以是分离的实体也可以 为相互独立的实体,即可以从物理位置上独立于延时整数帧模块和时延对齐模 块, 如图 8所示,也可以将所述第一时延模块设置于所述延时整数帧模块中以 及将所述第二时延模块设置于所述时延对齐模块中。
所述第一编解码器对所述至少一个扩展层的编码方法及带宽和第二编解 码器对所述至少一个扩展层的编码方法及带宽一致,所述第二编码码流的时延 和所述第一编码码流延时整数帧后的时延间关系对应于所述第二编解码器编 码所述至少一个扩展层的编码时延和编码所述其余层的编码时延间关系。
本发明实施例的转码装置只需对部分码流进行重新编解码,通过对不再解 码再编码的码流采用时延对齐模块进行时延对齐调整以及采用调整整数帧模 块对重新编解码的部分码流进行延时整数帧操作可以极大的降低了嵌入式编 解码器的转码复杂度,由于部分码流未重新编解码使得转码中的信号质量得到 有效提升。 对多数嵌入式编解码器之间的转码还可以降低转码产生的额外延 时, 如可以在转码时不产生任何额外的延时。 实施例八
本发明又一实施例提供一种转码装置, 如图 9所示,在两个嵌入式编解码 器间进行转码 , 如实施例七包括:
延时整数帧模块 501 , 用于对第一编码码流延时整数帧以及时延对齐模块 502, 用于对第一解码信号进行时延对齐调整得到调整信号。
该装置还包括参数配置模块 505, 用于根据所述第一编解码器和第二编解 码器配置所述对第一编码码流延时的整数帧和 /或所述调整时延, 所述整数帧 和所述调整延时满足下述关系:
所述调整延时根据信号帧的帧长,结合所述第一编解码器和第二编解码器 编码和解码码流的延时与所述整数帧相关。即通过配置对第一编码码流延时的 整数帧(调整时延)通过上述关系获得调整时延(对第一编码码流延时的整数 帧)。
所述至少一个扩展层的编码方法及带宽和第二编解码器对所述至少一个 扩展层的编码方法及带宽一致 ,所述第二编码码流的时延和所述第一编码码流 延时整数帧后的时延间关系对应于所述第二编解码器编码所述至少一个扩展 层的编码时延和编码所述其余层的编码时延间关系。
本发明人另一实施例中,参数配置模块也可以和第一时延模块以及第二时 延模块同样包括在所述转码装置中,所述参数配置模块提供第一时延模块以及 第二时延模块所需参数信息,或者参数配置模块确定第一时延模块的延时的整 数帧的信息, 并将此参数提供给所述第二时延模块, 反之亦然, 所述参数配置 模块和第一时延模块以及第二时延模块间的协同操作可以根据不同的实施环 境确定, 不限定于此。
本发明实施例的转码装置只需对部分码流进行重新编解码,通过对不再解 码再编码的码流采用时延对齐模块进行时延对齐调整以及采用调整整数帧模 块对重新编解码的部分码流进行延时整数帧操作可以极大的降低了嵌入式编 解码器的转码复杂度,由于部分码流未重新编解码使得转码中的信号质量得到 有效提升。 为不同编解码器间的转码提供了通用的转码手段,对多数嵌入式编 解码器之间的转码还可以降低转码产生的额外延时,如可以在转码时不产生任 何额外的延时。 实施例九
本发明一实施例提供一种转码设备, 如图 10所示, 所述转码设备实施两 个嵌入式编解码器间的转码操作,其釆用的模块用于接收第一编解码器输出的 编码以及解码的待处理信号,对接收信号的转码处理, 以及将处理完成的信号 提供给第二编解码进行解码操作。 所述转码设备包括
接收装置 506, 用于接收输入码流中的第一编码码流以及对釆用所述第一 编解码器解码输入码流中除所述第一编码码流外的其余编码码流得到的第一 解码信号 ,所述第一编码码流包括输入信号釆用第一编解码器编码后得到的输 入码流中的至少一个扩展层码流;
延时整数帧模块 501 , 用于对所述第一编码码流延时整数帧;
时延对齐模块 502, 用于对所述第一解码信号进行时延对齐调整得到调整 信号,所述其余编码码流包括输入信号采用所述第一编解码器编码后得到的输 入码流中除所述第一编码码流外包括核心层码流在内的其余层码流。
输出装置 507, 用于向所述第二编解码器输出所述调整信号以及所述延时 整数帧后的第一编码码流。
其中延时整数帧模块和时延对齐模块与上述转码装置各实施例中的延时 整数帧模块和时延对齐模块相同。
所述第一编解码器对所述至少一个扩展层的编码方法及带宽和第二编解 码器对所述至少一个扩展层的编码方法及带宽一致,釆用所述第二编解码器编 码所述调整信号得到的第二编码码流的时延和所述第一编码码流延时整数帧 后的时延间关系对应于所述第二编解码器编码所述至少一个扩展层的编码时 延和编码所述其余层的编码时延间关系。
在本发明另一转码设备实施例中 ,该设备还包括如上述转码装置实施例所 述的其他模块, 见图 10。
本发明实施例的转码设备只需对部分码流进行重新编解码,通过对不再解 码再编码的码流采用时延对齐模块进行时延对齐调整以及采用调整整数帧模 块对重新编解码的部分码流进行延时整数帧操作可以极大的降低了嵌入式编 解码器的转码复杂度,由于部分码流未重新编解码使得转码中的信号质量得到 有效提升。 为不同编解码器间的转码提供了通用的转码手段,对多数嵌入式编 解码器之间的转码还可以降低转码产生的额外延时,如可以在转码时不产生任 何额外的延时。 实施例十 本发明一实施例提供一种转码系统, 如图 11所示, 该转码系统包括第一 编解码器 508、 转码装置 50以及第二编解码器 509。
第一编解码器,实施解码功能,用于解码其余编码码流得到第一解码信号, 所述其余编码码流包括输入信号采用所述第一编解码器编码后得到的输入码 流中除所述第一编码码流外包括核心层码流在内的其余层码流; 转码装置, 用 于对所述第一编码码流延时整数帧 ,对所述第一解码信号进行时延对齐调整得 到调整信号; 第二编解码器, 实施编码功能, 用于编码所述调整信号得到第二 编码码流, 复用所述第二编码码流以及所述延时整数帧后的第一编码码流。
第一编解码器还可以对输入信号编码,得到对应于至少一个扩展层的第一 编码码流和包括核心层编码码流在内的其余编码码流,所述第一编解码器对所 述至少一个扩展层的编码方法及带宽和第二编解码器对所述至少一个扩展层 的编码方法及带宽一致。第二编解码器还可以解码所述第二编码码流以及所述 延时整数帧后的第一编码码流复用后的码流。
第一编解码器对输入信号编码,得到对应于至少一个扩展层的第一编码码 流和包括核心层编码码流在内的其余编码码流。第一编解码器解码所述其余编 码码流得到第一解码信号 ,所述其余编码码流通过对除所述至少一个扩展层外 的其余层采用所述第一编解码器编码得到。 转码装置接收所述第一编码码流, 获得延时的整数帧的信息,按照延时的整数帧的信息对所述第一编码码流延时 整数帧, 所述转码装置接收所述第一解码信号, 获得时延对齐调整所需的调整 时延信息 ,按照所述调整时延信息对所述第一解码信号进行时延对齐调整得到 调整信号,所述转码装置将延时整数帧后的第一编码码流以及所述调整信号输 出,如上述转码装置或转码设备各实施例所示, 所述第二编码码流的时延和所 述第一编码码流延时整数帧后的时延间关系对应于所述第二编解码器编码所 述至少一个扩展层的编码时延和编码所述其余层的编码时延间关系 ,第二编解 码器编码所述调整信号得到第二编码码流以及解码所述第二编码码流以及所 述延时整数帧后的第一编码码流复用后的码流。
本发明实施例的转码系统只需对部分码流进行重新编解码,通过对不再解 码再编码的码流釆用转码装置进行时延对齐调整以及对重新编解码的部分码 流进行延时整数帧操作可以极大的降低了嵌入式编解码器的转码复杂度,由于 部分码流未重新编解码使得转码中的信号质量得到有效提升。为不同编解码器 间的转码提供了通用的转码手段,对多数嵌入式编解码器之间的转码还可以降 低转码产生的额外延时, 如可以在转码时不产生任何额外延时。
本发明另一实施例中,提供一移动台所述移动台包括上述实施例的转码装 置, 以及提供一网元, 同样包括前述实施例的转码装置, 所述转码装置在移动 台和网元中提供转码操作, 转码装置也不限定与上述移动台和网元, 凡需要进 行转码操作的通信设备和系统均可釆用上述的转码装置和转码方法,不限定于 此。
本发明以上各实施例适用于语音频信号甚至其他具备嵌入式编解码器处 理信号特性的数据信号,本领域普通技术人员可以理解实现上述实施例方法中 的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成, 所述的 程序可存储于一计算机可读取存储介质中, 该程序在执行时,可包括如上述各 方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆 体 ( Read-Only Memory, ROM )或随机存 4诸 i己忆体 ( Random Access Memory, RAM )等。
最后应说明的是,以上实施例仅用以说明本发明实施例的技术方案而非对 其进行限制 ,尽管参照较佳实施例对本发明实施例进行了详细的说明 ,本领域 的普通技术人员应当理解:其依然可以对本发明实施例的技术方案进行修改或 者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明 实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种转码方法, 在两个嵌入式编解码器间进行转码, 其特征在于: 对输入码流中的第一编码码流延时整数帧 ,所述第一编码码流包括输入信 号采用第一编解码器编码后得到的所述输入码流中的至少一个扩展层码流; 对采用所述第一编解码器解码所述输入码流中的其余编码码流得到的第 一解码信号进行时延对齐调整得到调整信号 ,所述其余编码码流包括所述输入 信号釆用所述第一编解码器编码后得到的所述输入码流中除所述第一编码码 流外包括核心层码流在内的其余层码流。
2、 根据权利要求 1所述的方法, 其特征在于:
所述第一编解码器对所述至少一个扩展层釆用的编码方法及带宽和第二 编解码器对所述至少一个扩展层采用的编码方法及带宽一致。
3、 根据权利要求 1所述的方法, 其特征在于:
采用所述第二编解码器编码所述调整信号得到的第二编码码流的时延和 所述第一编码码流延时整数帧后的时延间关系 ,对应于所述第二编解码器编码 所述至少一个扩展层的编码时延和编码所述其余层的编码时延间关系。
4、 根据权利要求 1、 2、 或 3所述的方法, 其特征在于, 所述对第一编码 码流延时的整数帧根据信号帧的帧长,结合所述第一编解码器和第二编解码器 编码以及解码码流的延时确定。
5、 根据权利要求 4所述的方法, 其特征在于, 所述对所述解码信号进行 时延对齐调整的调整时延根据信号帧的帧长,结合所述第一编解码器和第二编 解码器编码和解码码流的延时以及所述对第一编码码流延时的整数帧确定。
6、 根据权利要求 4所述的方法, 其特征在于, 所述对第一编码码流延时 的整数帧包括根据所述第一编解码器和第二编解码器编码以及解码码流时延 间的差和, 与所述帧长的比值的函数确定的值。
7、 根据权利要求 6所述的方法, 其特征在于, 所述调整时延包括和帧长 相关的所述整数帧,与所述第一编解码器和第二编解码器编码以及解码码流时 延间的差和的计算关系。
8、 根据权利要求 1、 2、 或 3所述的方法, 其特征在于, 根据所述第一编 解码器和第二编解码器预设所述对第一编码码流延时的整数帧和 /或所述调整 时延, 所述整数帧和所述调整延时满足下述关系:
所述调整延时根据信号帧的帧长,结合所述第一编解码器和第二编解码器 编码和解码码流的延时与所述整数帧相关。
9、 一种转码方法, 其特征在于:
对输入码流中的第一编码码流延时整数帧 ,所述第一编码码流包括输入信 号采用第一编解码器编码后得到的所述输入码流的至少一个扩展层码流; 釆用第一编解码器解码所述输入码流中的其余编码码流得到第一解码信 号,所述其余编码码流包括输入信号釆用所述第一编解码器编码后得到的所述 输入码流中除所述第一编码码流外包括核心层码流在内的其余层码流;
对所述第一解码信号进行时延对齐调整得到调整信号;
采用所述第二编解码器编码所述调整信号得到第二编码码流;
复用输出所述第二编码码流以及延时整数帧后的所述第一编码码流。
10、 根据权利要求 9所述的方法, 其特征在于:
所述至少一个扩展层釆用所述第一编解码器的编码方法及带宽和釆用第 二编解码器对所述至少一个扩展层的编码方法及带宽一致;
所述第二编码码流的时延和所述第一编码码流延时整数帧后的时延间关 系对应于所述第二编解码器编码所述至少一个扩展层的编码时延和编码所述 其余层的编码时延间关系。
11、 根据权利要 9或 10所述的方法, 其特征在于,
所述对第一编码码流延时的整数帧根据信号帧的帧长,结合所述第一编解 码器和第二编解码器编码以及解码码流的延时确定; 所述对所述解码信号进行时延对齐调整的调整时延根据信号帧的帧长,结 合所述第一编解码器和第二编解码器编码和解码码流的延时以及所述对第一 编码码流延时的整数帧确定。
12、 根据权利要 9或 10所述的方法, 其特征在于, 根据所述第一编解码 器和第二编解码器预设所述对第一编码码流延时的整数帧和 /或所述调整时 延, 所述整数帧和所述调整延时满足下述关系:
所述调整延时根据信号帧的帧长,结合所述第一编解码器和第二编解码器 编码和解码码流的延时与所述整数帧相关。
13、 一种转码装置, 在两个嵌入式编解码器间进行转码, 其特征在于, 所 述转码装置包括:
延时整数帧模块, 用于对输入码流中的第一编码码流延时整数帧, 所述第 一编码码流包括输入信号釆用第一编解码器编码后得到的所述输入码流中的 至少一个扩展层码流;
时延对齐模块,用于对釆用所述第一编解码器解码所述输入码流中的其余 编码码流得到的第一解码信号进行时延对齐调整得到调整信号,所述其余编码 码流包括输入信号采用所述第一编解码器编码后得到的所述输入码流中除所 述第一编码码流外包括核心层码流在内的其余层码流。
14、 根据权利要求 13所述的装置, 其特征在于, 还包括:
第一时延模块, 用于根据信号帧的帧长, 结合所述第一编解码器和第二编 解码器编码以及解码码流的延时确定所述对第一编码码流延时的整数帧; 第二时延模块, 用于根据信号帧的帧长, 结合所述第一编解码器和第二编 解码器编码和解码码流的延时以及所述对第一编码码流延时的整数帧确定对 所述解码信号进行时延对齐调整的调整时延。
15、 根据权利要求 13所述的装置, 其特征在于, 还包括:
参数配置模块,用于根据所述第一编解码器和第二编解码器配置所述对第 一编码码流延时的整数帧和 /或所述调整时延, 所述整数帧和所述调整延时满 足下述关系:
所述调整延时根据信号帧的帧长,结合所述第一编解码器和第二编解码器 编码和解码码流的延时与所述整数帧相关。
16、 根据权利要求 13、 14或 15所述的装置, 其特征在于:
所述第一编解码器对所述至少一个扩展层采用的编码方法及带宽和第二 编解码器对所述至少一个扩展层釆用的编码方法及带宽一致;
采用所述第二编解码器编码所述调整信号得到的第二编码码流的时延和 所述第一编码码流延时整数帧后的时延间关系对应于所述第二编解码器编码 所述至少一个扩展层的编码时延和编码所述其余层的编码时延间关系。
17、 一种转码设备, 其特征在于, 包括:
接收模块,用于接收输入码流中的第一编码码流以及对釆用所述第一编解 码器解码所述输入码流中除所述第一编码码流外的其余编码码流得到的第一 解码信号,所述第一编码码流包括输入信号釆用第一编解码器编码后得到的所 述输入码流中的至少一个扩展层码流;
延时整数帧模块, 用于对所述第一编码码流延时整数帧;
时延对齐模块, 用于对所述第一解码信号进行时延对齐调整得到调整信 号,所述其余编码码流包括输入信号釆用所述第一编解码器编码后得到的所述 输入码流中除所述第一编码码流外包括核心层码流在内的其余层码流。
输出装置,用于向所述第二编解码器输出所述调整信号以及所述延时整数 帧后的第一编码码流。
18、 根据权利要求 17所述的装置, 其特征在于:
所述第一编解码器对所述至少一个扩展层的编码方法及带宽和第二编解 码器对所述至少一个扩展层的编码方法及带宽一致;
釆用所述第二编解码器编码所述调整信号得到的第二编码码流的时延和 所述第一编码码流延时整数帧后的时延间关系对应于所述第二编解码器编码 所述至少一个扩展层的编码时延和编码所述其余层的编码时延间关系。
19、 一种转码系统, 其特征在于, 包括:
第一编解码器, 用于解码其余编码码流得到第一解码信号, 所述其余编码 码流包括输入信号采用所述第一编解码器编码后得到的输入码流中除所述第 一编码码流外包括核心层码流在内的其余层码流;
转码装置, 用于对所述第一编码码流延时整数帧,对所述第一解码信号进 行时延对齐调整得到调整信号;
第二编解码器, 用于编码所述调整信号得到第二编码码流, 复用所述第二 编码码流以及所述延时整数帧后的第一编码码流。
20、 根据权利要求 19所述的系统, 其特征在于:
所述至少一个扩展层釆用第一编解码器釆用的编码方法及带宽和第二编 解码器对所述至少一个扩展层采用的编码方法及带宽一致;
所述第二编码码流的时延和所述第一编码码流延时整数帧后的时延间关 系对应于所述第二编解码器编码所述至少一个扩展层的编码时延和编码所述 其余层的编码时延间关系。
21、 一种包括权利要求 13所述装置的移动台。
22、 一种包括权利要求 13所述装置的网元。
PCT/CN2010/075497 2009-07-31 2010-07-28 转码方法、装置、设备以及系统 WO2011012072A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012521949A JP2013501246A (ja) 2009-07-31 2010-07-28 トランスコーディングの方法、装置、機器、およびシステム
KR1020127003447A KR101348969B1 (ko) 2009-07-31 2010-07-28 트랜스코딩 방법, 디바이스, 장치 및 시스템
EP10803905A EP2461322A4 (en) 2009-07-31 2010-07-28 TRANSCODING PROCESS, DEVICE, DEVICE AND SYSTEM
US13/359,339 US8326608B2 (en) 2009-07-31 2012-01-26 Transcoding method, apparatus, device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101095101A CN101989429B (zh) 2009-07-31 2009-07-31 转码方法、装置、设备以及系统
CN200910109510.1 2009-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/359,339 Continuation US8326608B2 (en) 2009-07-31 2012-01-26 Transcoding method, apparatus, device and system

Publications (1)

Publication Number Publication Date
WO2011012072A1 true WO2011012072A1 (zh) 2011-02-03

Family

ID=43528775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075497 WO2011012072A1 (zh) 2009-07-31 2010-07-28 转码方法、装置、设备以及系统

Country Status (6)

Country Link
US (1) US8326608B2 (zh)
EP (1) EP2461322A4 (zh)
JP (1) JP2013501246A (zh)
KR (1) KR101348969B1 (zh)
CN (1) CN101989429B (zh)
WO (1) WO2011012072A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395504B1 (en) * 2009-02-13 2013-09-18 Huawei Technologies Co., Ltd. Stereo encoding method and apparatus
RU2665281C2 (ru) 2013-09-12 2018-08-28 Долби Интернэшнл Аб Временное согласование данных обработки на основе квадратурного зеркального фильтра
CN111614976B (zh) * 2014-09-12 2022-05-24 松下知识产权经营株式会社 发送装置、接收装置、发送方法以及接收方法
CN104244004B (zh) * 2014-09-30 2017-10-10 华为技术有限公司 低功耗编码方法及装置
EP3284087B1 (en) 2016-01-22 2019-03-06 Fraunhofer Gesellschaft zur Förderung der Angewand Apparatuses and methods for encoding or decoding an audio multi-channel signal using spectral-domain resampling
CN109217979B (zh) * 2017-06-30 2021-06-15 华为技术有限公司 一种通信方法、装置及存储介质
CN112188286B (zh) * 2020-10-09 2022-06-10 上海网达软件股份有限公司 一种用于直播流的时间戳标定方法及系统
CN114760226B (zh) * 2020-12-29 2023-07-18 海能达通信股份有限公司 一种提高往返时延估计精度的方法、装置和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341691A (ja) * 1999-05-31 2000-12-08 Toshiba Corp トランスコーダ装置
US20040153316A1 (en) * 2003-01-30 2004-08-05 Hardwick John C. Voice transcoder
US20050015243A1 (en) * 2003-07-15 2005-01-20 Lee Eung Don Apparatus and method for converting pitch delay using linear prediction in speech transcoding
CN1585970A (zh) * 2001-11-13 2005-02-23 日本电气株式会社 代码转换方法、设备、程序和记录介质
CN1784716A (zh) * 2003-04-08 2006-06-07 日本电气株式会社 代码转换方法和设备
CN1918634A (zh) * 2004-02-16 2007-02-21 皇家飞利浦电子股份有限公司 代码转换器以及用于其的代码转换方法
WO2008034723A1 (en) * 2006-09-20 2008-03-27 Thomson Licensing Method and device for transcoding audio signals
WO2009008947A1 (en) * 2007-07-06 2009-01-15 Mindspeed Technologies, Inc. Speech transcoding in gsm networks

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032242B2 (ja) 1990-05-25 2000-04-10 日産自動車株式会社 インストパッドとフロントピラーガーニッシュの合わせ構造
JPH10327074A (ja) * 1997-05-22 1998-12-08 Matsushita Electric Ind Co Ltd 信号処理装置
DE10102155C2 (de) * 2001-01-18 2003-01-09 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Erzeugen eines skalierbaren Datenstroms und Verfahren und Vorrichtung zum Decodieren eines skalierbaren Datenstroms
US20030028386A1 (en) 2001-04-02 2003-02-06 Zinser Richard L. Compressed domain universal transcoder
JP2003280694A (ja) * 2002-03-26 2003-10-02 Nec Corp 階層ロスレス符号化復号方法、階層ロスレス符号化方法、階層ロスレス復号方法及びその装置並びにプログラム
KR100933159B1 (ko) 2003-07-11 2009-12-21 삼성전자주식회사 이동통신시스템에서 음성 데이터 전송을 위한 동기화 방법 및 시스템
JP4958780B2 (ja) * 2005-05-11 2012-06-20 パナソニック株式会社 符号化装置、復号化装置及びこれらの方法
FR2888699A1 (fr) * 2005-07-13 2007-01-19 France Telecom Dispositif de codage/decodage hierachique
WO2007043642A1 (ja) * 2005-10-14 2007-04-19 Matsushita Electric Industrial Co., Ltd. スケーラブル符号化装置、スケーラブル復号装置、およびこれらの方法
JPWO2007116809A1 (ja) * 2006-03-31 2009-08-20 パナソニック株式会社 ステレオ音声符号化装置、ステレオ音声復号装置、およびこれらの方法
JP4708446B2 (ja) * 2007-03-02 2011-06-22 パナソニック株式会社 符号化装置、復号装置およびそれらの方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341691A (ja) * 1999-05-31 2000-12-08 Toshiba Corp トランスコーダ装置
CN1585970A (zh) * 2001-11-13 2005-02-23 日本电气株式会社 代码转换方法、设备、程序和记录介质
US20040153316A1 (en) * 2003-01-30 2004-08-05 Hardwick John C. Voice transcoder
CN1784716A (zh) * 2003-04-08 2006-06-07 日本电气株式会社 代码转换方法和设备
US20050015243A1 (en) * 2003-07-15 2005-01-20 Lee Eung Don Apparatus and method for converting pitch delay using linear prediction in speech transcoding
CN1918634A (zh) * 2004-02-16 2007-02-21 皇家飞利浦电子股份有限公司 代码转换器以及用于其的代码转换方法
WO2008034723A1 (en) * 2006-09-20 2008-03-27 Thomson Licensing Method and device for transcoding audio signals
WO2009008947A1 (en) * 2007-07-06 2009-01-15 Mindspeed Technologies, Inc. Speech transcoding in gsm networks

Also Published As

Publication number Publication date
US8326608B2 (en) 2012-12-04
JP2013501246A (ja) 2013-01-10
KR101348969B1 (ko) 2014-01-09
CN101989429B (zh) 2012-02-01
EP2461322A1 (en) 2012-06-06
US20120136669A1 (en) 2012-05-31
CN101989429A (zh) 2011-03-23
EP2461322A4 (en) 2013-01-09
KR20120061828A (ko) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2011012072A1 (zh) 转码方法、装置、设备以及系统
JP4160278B2 (ja) 媒体ストリームのスケーラブル符号化方法、スケーラブルエンコーダおよびマルチメディア端末
US10885921B2 (en) Multi-stream audio coding
CN111108556B (zh) 多流音频译码
JP5363488B2 (ja) マルチチャネル・オーディオのジョイント強化
US8069035B2 (en) Scalable encoding apparatus, scalable decoding apparatus, and methods of them
EP1590800B1 (en) Continuous backup audio
JP5418930B2 (ja) 音声復号化方法および音声復号化器
US20080004883A1 (en) Scalable audio coding
JP4969454B2 (ja) スケーラブル符号化装置およびスケーラブル符号化方法
CN101051465B (zh) 用于解码被编码的有用数据的方法和解码装置
JP2001202097A (ja) 符号化二進オーディオ処理方法
TW201306025A (zh) 用以產生可由實施不同解碼協定之解碼器所解碼的統一位元流之音頻編碼方法及系統
JPWO2005119950A1 (ja) 音声データ受信装置および音声データ受信方法
CN101366082B (zh) 可变帧偏移编解码方法、编解码器及无线电通信设备
CN102915736B (zh) 混音处理方法和混音处理系统
WO2011012029A1 (zh) 多描述音频编解码的方法、装置及系统
US10375131B2 (en) Selectively transforming audio streams based on audio energy estimate
KR101256316B1 (ko) 보코더들 간의 스위칭 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012521949

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010803905

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127003447

Country of ref document: KR

Kind code of ref document: A