WO2011011941A1 - 以太网隧道局部保护方法及保护域工作段的共享节点 - Google Patents
以太网隧道局部保护方法及保护域工作段的共享节点 Download PDFInfo
- Publication number
- WO2011011941A1 WO2011011941A1 PCT/CN2009/075271 CN2009075271W WO2011011941A1 WO 2011011941 A1 WO2011011941 A1 WO 2011011941A1 CN 2009075271 W CN2009075271 W CN 2009075271W WO 2011011941 A1 WO2011011941 A1 WO 2011011941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- local protection
- entry
- esp
- working
- forwarding
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/22—Alternate routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/68—Pseudowire emulation, e.g. IETF WG PWE3
Definitions
- the present invention relates to the field of network communication technologies, and in particular, to an Ethernet tunnel local protection method and a shared node of a protection domain working segment. Background technique
- PBB Provider Backbone Bridge
- the IEEE refers to the PBT technology as the Provider Backbone Bridge Traffic Engineering (PBB-TE), PBB- TE technology is based on PBB technology. Its core is to improve the PBB technology. It uses the outer media access control (MAC) address and combines the outer virtual local area network (VLAN) identifier, such as the backbone destination MAC address (Backbone). Destination MAC address (B-DA) + Backbone VLAN ID (B-VID) for service forwarding. The forwarding path is pre-configured.
- MAC media access control
- VLAN virtual local area network
- B-DA backbone destination MAC address
- B-VID Backbone VLAN ID
- the PBB-TE technology is compatible with the traditional Ethernet bridge architecture. It can forward data frames based on B-DA+B-VID without updating the network intermediate nodes. The data frames do not need to be modified, and the forwarding efficiency is high.
- the PBB-TE technology uses the Connectivity Fault Management (CFM) mechanism in the IEEE 802. lag standard to continuously monitor tunnel conditions in the network. When the primary tunnel fails, the service is automatically transferred to the pre-established backup tunnel, adding the necessary resiliency.
- the attributes of the tunnel are represented by the triples ⁇ ESP-DA, ESP-SA, ESP-VID>.
- the parameter ESP-DA refers to the destination MAC address of the Ethernet switching path
- the parameter ESP-S A Indicates the source MAC address of the Ethernet switching path.
- the parameter ESP-VID refers to the value of the B-VLAN.
- a point-to-point traffic engineering service instance (TESI) consists of a pair of bidirectional point-to-point Ethernet switching paths (ESPs).
- ESPs point-to-point Ethernet switching paths
- FIG. 1 is a schematic diagram of the principle of full path protection of the existing PBB-TE tunnel, taking the direction from left to right in FIG. 1 as an example, ESP ⁇ B-MAC2, B-MAC1, B-VLAN1> of the end-to-end working tunnel YBCDX, B-MAC2 is the MAC address of node X, which is the destination MAC address; B-MAC1 is the MAC address of Y, which is the source MAC address; B-VLAN1 is the virtual local area network identifier (B-VLAN) of the end-to-end working tunnel YBCDX Value.
- B-VLAN virtual local area network identifier
- Y-B-C-D-X the full path protection of the tunnel is implemented.
- Y and X are the endpoints of the tunnel instance;
- Y-F-G-H-X is the backup tunnel of Y-B-C-D-X.
- YBCDX detects a fault, it can switch to YFGHX, and can distinguish whether it is forwarded on the working tunnel or the backup tunnel when forwarding the packet.
- pre-configuring specify the working tunnel and the backup tunnel separately.
- the B-VLAN carried by the tunnel for example, specifies B-VLAN1 for the working tunnel and B-VLAN2 for the standby tunnel.
- the connectivity of the tunnel is detected by sending a Continuity Check Message (CCM) in the tunnel, which is defined in the IEEE 802. lag standard.
- CCM Continuity Check Message
- CCM packets are sent to each other along the working tunnel and the backup tunnel.
- the CCM headers of the working tunnel and the backup tunnel encapsulate B-VLAN 1 and B-VLAN 2 respectively (see IEEE802.1Qay standard).
- FIG. 2 is a schematic diagram of the existing PBB-TE local link protection principle.
- BCD is an end-to-end working tunnel TESI-1 and TESI- 2 is a local bearer link
- BCD is a local working link
- BFGHD is a local backup link.
- the local link is referred to as a segment, that is, the BCD is a working segment, and the BFGHD is a backup segment of the BCD.
- the working segment fails, all protected TESIs on the physical link are switched to the backup segment.
- FIG. 3 is a schematic diagram of two local protection domains with shared links. As shown in FIG. 3, there are two local protection domains, namely a local protection domain 1 and a local protection domain 2.
- the working segment of the local protection domain 1 is the link between the BCs
- the BFGC is the backup segment of the BC
- the working segment of the protection domain 2 is the link between the CDs
- the CGHD is the backup segment of the CD.
- CG is a shared link between two local protection domains, where C is a shared node of two local protection domain working segments and a backup segment (referred to as PIB), and G is a shared node of two local protection domains only on the backup segment (referred to as AIB).
- the TESI bidirectional ESPs are ESP-1 and ESP-2.
- the node stores a forwarding address table (FDB).
- the FDB includes multiple forwarding entries.
- the general form of the forwarding entry is: ⁇ destination endpoint (DA), ESP-VID> ⁇ out port (Out), under normal circumstances, TESI Y ⁇ X direction ESP-1 along the BCD in the protection domain, assuming that the ESP-VID of ESP-1 is 1, then the FDB forwarding entry on the protection domain node is set as shown in the forwarding table above the node in the figure " ⁇ , 1> ⁇ Out port "entry; for the same reason, assuming that the ESP-VID of the E-switch in the X- ⁇ direction is 2, the FDB forwarding entry on the protection domain node is set to the " ⁇ 2> ⁇ out port" of the forwarding table above the node in the figure. entry.
- FIG. 4 is a schematic diagram of a working link failover switching of one of the two local protection domains with a shared link shown in FIG. 3.
- the working forwarding entry of the Node B For " ⁇ , 1> ⁇ 2", the backup forwarding entry is " ⁇ , 1> ⁇ 3"; at X ⁇ Y to ESP-2, the work forwarding entry of node C is " ⁇ , 2> ⁇ , and the backup forwarding entry is " ⁇ , 2> ⁇ 3".
- the node ⁇ and node C default to work forwarding entries. Packet forwarding. When the link between BCs fails, node ⁇ and node C switch to their respective backup forwarding entries for packet forwarding.
- FIG. 5 is a schematic diagram of a failover protection of a shared node on a local protection domain with a shared link shown in FIG. 3, as shown in FIG. 5, when a shared node of two local protection domains with a shared link fails;
- the two local protection domains switch ESP-1 and ESP-2 from BCD to BFGHD.
- the setting of the FDB forwarding entry for the bidirectional ESP on node C ( ⁇ ) remains unchanged, that is, which FDB forwarding entry is used for reporting.
- the settings for text forwarding remain unchanged.
- FIG. 6 is a schematic diagram of the failover protection switching of the backup domain 1 in the non-reversed mode, as shown in FIG. 6. At this time, if the link between the FGs fails, the fault belongs to the local protection domain 1.
- Node B will switch the EDB-1 FDB forwarding entry to the work entry " ⁇ X, 1> ⁇ P2", and the node G (AIB) will switch the ESP-2 FDB forwarding entry to " ⁇ Y,2> ⁇ 3".
- node C PIB
- the EDB-1 FDB forwarding entry remains on the work entry " ⁇ X, 1> ⁇ P2”
- the EDB-2 FDB forwarding entry remains in the work entry " ⁇ , 2> ⁇ ⁇ , ⁇ , Therefore, ESP-1 will follow ABCDE
- ESP-2 will follow ABCGHDE.
- ESP-1 and ESP-2 are not co-routed, that is, a two-way data stream of a data communication instance.
- IEEE802.1Qay requires that a point-to-point TESI bidirectional ESP should be co-routed, so existing Ethernet tunnel local protection methods, when at least one of the two local protection domains with shared links are running in non-inverted In the mode, the working segments of the two partial protection domains fail at the same time or The shared node on the working segment fails, and when the fault disappears, after the protection switching, the two-way ESP is not co-routed and does not meet the requirements of IEEE802.lQay. Summary of the invention
- the main purpose of the present invention is to provide a local protection method for an Ethernet tunnel and a shared node of a working domain of a protection domain.
- the working segments of two local protection domains fail simultaneously or the failure of the shared node on the working segment fails, the failure of the shared node fails.
- IEEE802.1Qay a point-to-point TESI bidirectional ESP should be a co-routed requirement to improve system stability.
- An Ethernet tunnel local protection method where the operator backbone bridges traffic engineering PBB-TE network has two local protection domains sharing a link, and at least one local protection domain in the two local protection domains runs in a non-reverse In the transition mode, the protection object of the local protection domain is a protected traffic engineering service instance TESI carried on the working part of the local protection domain.
- the method includes: when the working segments of the two local protection domains fail simultaneously or the failure of the shared node failure on the working segment disappears, the shared node of the two local protection domain working segments will be protected by the TESI bidirectional Ethernet switching path
- the ESP forwarding address table FDB forwarding entry is switched from a work entry to a backup entry.
- the method further includes the steps before the fault disappears:
- the protected TESI forwards the message along the working segment
- the two local protection domains are switched to the backup segment, and the protected TESI forwards the packets along the backup segment.
- a shared node of a protection domain working segment including: a fault detection unit, a forwarding entry switching unit, where
- the fault detecting unit is configured to notify the forwarding entry switching unit after detecting that the working segments of the two local protection domains fail simultaneously or the failure of the shared node failure on the working segment disappears; the forwarding entry switching unit is configured to After receiving the notification from the fault detection unit, it will forward All FDB forwarding entries of the protected TESI bidirectional ESP in the entry storage unit are switched from work items to backup entries;
- the forwarding entry storage unit is configured to store an FDB forwarding entry.
- the shared node also includes:
- the message forwarding unit is configured to perform packet forwarding according to the FDB forwarding entry stored in the forwarding entry storage unit.
- the packet forwarding unit is further configured to: forward the packet along the working segment before the fault occurs; and forward the packet along the backup segment when the fault occurs.
- the Ethernet tunnel local protection method and the shared node of the protection domain working segment disclosed in the present invention have a segment protection domain with a shared link in one PBB-TE network, and at least one of the two local protection domains of the shared link operates.
- the non-reverse mode when the working segments of two local protection domains fail at the same time or the failure of the shared node on the working segment disappears, the shared node of the working segment will forward the FDB of all TESI bidirectional ESP protected by the protection domain.
- the entry is switched to the backup entry, that is, the outgoing port of the FDB forwarding entry of the ESP after the switch is the port connecting the shared segment.
- Figure 1 is a schematic diagram of the principle of full path protection of the existing PBB-TE tunnel
- FIG. 2 is a schematic diagram of an existing PBB-TE local link protection principle
- Figure 3 is a schematic diagram of two local protection domains with shared links
- FIG. 4 is a schematic diagram of a failover protection switching of one of the two local protection domains with shared links shown in FIG. 3;
- FIG. 5 is the shared node failure protection on the two local protection domains with shared links shown in Figure 3.
- FIG. 6 is a schematic diagram of the failover protection switching of the protection domain 1 backup segment shown in FIG. 3 in the non-inversion mode
- FIG. 7 is a schematic flowchart of the local protection method of the Ethernet tunnel according to the present invention
- FIG. 8 is a schematic diagram of setting FDB forwarding entries on the node C after the fault disappears;
- FIG. 9 is a schematic diagram of the failover protection of the backup domain 1 in the non-reversal mode of the present invention;
- FIG. Schematic diagram of the shared node. detailed description
- the basic idea of the present invention is: at least one of the two partial protection domains of the shared link operates in a non-inversion mode, and the working segments of the two partial protection domains fail simultaneously or the failure of the shared node on the working segment fails.
- the shared node of the working segment switches the FDB forwarding entry of the two-way ESP of the point-to-point TESI protected by the protection domain to the backup entry, that is, the outgoing port of the switched FDB forwarding entry is the port connecting the shared segment.
- the Ethernet tunnel includes at least two local protection domains with shared links, and at least one of the two local protection domains operates in a non-inversion mode.
- the local protection method for an Ethernet tunnel of the present invention generally includes the following steps:
- Step 71 The protected TESI forwards the message along the working segment.
- the FDB forwarding entries of the bidirectional ESP on the Node B are the work items ⁇ X, 1> ⁇ P2 and ⁇ , respectively. 2> ⁇ P1 ;
- the FDB forwarding entries of the bidirectional ESP on node C are work items ⁇ X, 1> ⁇ P2 ⁇ Y, 2> ⁇ 1;
- the FDB forwarding entries of the bidirectional ESP on node D are work items ⁇ X, 1 respectively. > ⁇ P2 ⁇ Y, 2> ⁇ 1.
- Step 72 The working segments of the two local protection domains fail at the same time, or the shared nodes on the working segment are invalid.
- Step 73 The two local protection domains are switched to the backup link, and the packet forwarding is continued.
- the working segments of the two local protection domains fail at the same time, or the shared nodes on the working segment are invalid, so that the two local protection domains are simultaneously switched to the backup link, taking the local protection domain shown in Figure 3 as an example.
- the forwarding path is shown in Figure 5, which is ABFGHDE.
- the FDB forwarding entry of node G is ⁇ , 1> ⁇ ⁇ 2 ⁇ ⁇ ⁇ , 2 > ⁇ ⁇ 1
- the FDB forwarding entry of node C is unchanged, and is still the work item ⁇ X, 1> ⁇ P2 ⁇ ⁇ Y, 2> ⁇ ⁇ 1 .
- Step 74 After the fault disappears, the shared node of the two local protection domain working segments will be switched to the backup entry of the TASE forwarding entry of the TESI bidirectional ESP.
- the node C immediately protects the FDB of the two-way ESP of the TESI that is protected on the node.
- the forwarding entry is switched from the work item ⁇ , 1> ⁇ 2 and ⁇ , 2> ⁇ 1 to the backup bar ⁇ ⁇ , 1> ⁇ 3 ⁇ , 2> ⁇ 3, as shown in Figure 8, ie node C
- the outgoing ports of the two-way ESP on the protected TESI are all ports P3 on the shared link.
- FIG. 9 is a schematic diagram of a failover protection of a backup domain of a local protection domain 1 in a non-reversed mode according to the present invention.
- the bidirectional ESP of the TESI is ESP-1 and ESP-2.
- the local protection domain 1 switches the two-way ESP of the protected TESI back to the BC, and the specific handover is implemented as: the node B corresponds to The EDB-1 FDB forwarding entry is switched back from the backup entry ⁇ X, 1> ⁇ P3 to the work bar ⁇ ⁇ , 1> ⁇ 2; the node C correspondingly forwards the FDB forwarding entry corresponding to the ESP-2 from the backup entry ⁇ ⁇ , 2> ⁇ ⁇ 3 Switches to the work item ⁇ Y, 2> ⁇ PI.
- the FDB forwarding entry corresponding to ESP-1 on node C is set to " ⁇ X, 1>" in step 74. ⁇ P3", so the traffic of ESP-1 and ESP-2 is carried on the ABCGHDE link, so the two-way ESP is co-routed and meets the requirements of IEEE802.lQay.
- the present invention can also ensure that the bidirectional forwarding path is co-routed.
- the shared node of the working segment of the protected domain of the present invention includes: a fault detecting unit 101, a forwarding entry switching unit 102, and a forwarding entry storage unit 103. among them,
- the fault detecting unit 101 is configured to notify the forwarding entry switching unit 102 after detecting that the working segments of the two local protection domains fail simultaneously, or the failure of the shared node failure on the working segment disappears; the forwarding entry switching unit 102 uses After receiving the notification of the fault detecting unit 101, switching the FDB forwarding entry of the bidirectional Ethernet switching path ESP in the forwarding entry storage unit 103 to a backup entry;
- the forwarding entry storage unit 103 is configured to store the FDB forwarding entry.
- the shared node also includes:
- the message forwarding unit 104 is configured to perform packet forwarding according to the FDB forwarding entry stored in the forwarding entry storage unit 103.
- the message forwarding unit 104 is further configured to: forward the packet along the working segment before the fault occurs; and forward the packet along the backup segment when the fault occurs.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Description
以太网隧道局部保护方法及保护域工作段的共享节点 技术领域
本发明涉及网络通信技术领域, 尤其涉及一种以太网隧道局部保护方 法及保护域工作段的共享节点。 背景技术
随着电信级以太网 (Carrier Ethernet, CE )概念的提出, 满足电信网络 需求、 面向连接的以太网技术——运营商骨干传送 ( Provider Backbone Transport, PBT )也在 2005年 10月浮出水面。 此后, 国内外均有运营商釆 用 PBT技术组网, 为 PBT技术在城域网内的发展提供了很好的开端。
PBT技术的基础是 IEEE 802.1 ah标准定义的运营商骨干桥接 ( Provider Backbone Bridge, PBB )技术, IEEE把 PBT技术称为运营商骨干桥接流量 工程 ( Provider Backbone Bridge Traffic Engineering , PBB-TE ), PBB-TE技 术基于 PBB技术, 其核心是对 PBB技术进行改进, 它釆用外层的媒体接入 控制 (MAC )地址, 并同时结合外层的虚拟局域网 (VLAN )标识, 比如 骨干目的 MAC地址(Backbone Destination MAC address, B-DA ) +骨干 VLAN标识(Backbone VLAN ID, B-VID )进行业务转发, 转发路径是预 先配置的。 通过网络管理和控制, 使 CE中的业务事实上具有连接性, 以便 实现保护倒换、 服务质量(QoS )、 流量工程等电信网络的功能。 PBB-TE 技术兼容传统以太网桥的架构, 不需要对网络中间节点进行更新即可基于 B-DA+B-VID对数据帧进行转发, 数据帧也不需要修改, 转发效率高。
PBB-TE技术釆用 IEEE 802. lag标准中的连接性故障管理( Connectivity Fault Management, CFM )机制来持续地监视网络中的隧道状态。 当主用隧 道失效时会把业务自动转移到预先建立的备份隧道上, 增加了必要的弹性。
隧道的属性是通过 <ESP-DA, ESP-SA, ESP- VID>这种三元组来表示的, 三元组中, 参数 ESP-DA指以太网交换路径目的 MAC地址, 参数 ESP-S A 指以太网交换路径的源 MAC地址, 参数 ESP- VID指 B- VLAN的值。 一个 点到点的流量工程服务实例 (TESI )是由一对双向的点到点的以太网交换 路径(ESP )组成。 有关三元组和 TESI的具体描述可参见 IEEE 802.1Qay 标准。
图 1为现有 PBB-TE隧道全路径保护原理示意图, 以图 1从左往右的 方向为例, 端到端工作隧道 Y-B-C-D-X 的 ESP ^<B-MAC2, B-MACl , B-VLAN1>, 其中, B-MAC2为节点 X的 MAC地址, 是目的 MAC地址; B-MAC1为 Y的 MAC地址, 是源 MAC地址; B-VLAN1是端到端工作隧 道 Y-B-C-D-X的虚拟局域网标识 ( B-VLAN ) 的值。
图 1 中实现了隧道的全路径保护, 在流量工程服务实例的端到端工作 隧道 Y-B-C-D-X中, Y和 X为该隧道实例的端点; Y-F-G-H-X为 Y-B-C-D-X 的备份隧道。 当 Y-B-C-D-X检测到故障时, 可以切换到 Y-F-G-H-X上, 并 且为了在报文转发时能区分出是在上述工作隧道还是上述备份隧道上转 发, 在预先配置时, 为该工作隧道和该备份隧道分别指定隧道承载的 B-VLAN, 例如, 为工作隧道指定 B-VLAN1 , 为备用隧道指定 B-VLAN2。
隧道的连通性通过在隧道中发送连通性检查消息 ( CCM, Continuity Check Message )来检测, CCM是在 IEEE 802. lag标准中定义的。 隧道端 点之间分别沿工作隧道和备份隧道互相发送 CCM, 工作隧道和备份隧道的 CCM报文头分别封装 B-VLAN1和 B-VLAN2 (参见 IEEE802.1Qay标准)。
PBB-TE的端到端的保护技术虽然能够对隧道进行有效的保护,但是这 种端到端的保护方案不但保护倒换时间较长, 而且牵涉的节点较多。 所以, 当路径中某一段特别脆弱或者某一段特别重要时, 可以只对端到端隧道的 局部链路进行保护, 局部保护域的保护对象为承载在局部保护域工作段上
的被保护的一个或多个流量工程服务实例( TESI ), 图 2为现有 PBB-TE局 部链路保护原理示意图, 如图 2所示, B-C-D为端到端工作隧道 TESI-1和 TESI-2的局部承载链路, B-C-D为局部工作链路, B-F-G-H-D为局部备份 链路。 为了区别于端到端隧道的全路径保护, 以下将局部链路称为段, 即 B-C-D为工作段, B-F-G-H-D为 B-C-D的备份段。 当工作段故障后, 切换 该物理链路上的所有被保护的 TESI到备份段。
图 3为两个具有共享链路的局部保护域示意图, 如图 3所示, 图中有 两个局部保护域, 为局部保护域 1和局部保护域 2。局部保护域 1的工作段 为 B-C之间的链路, B-F-G-C为 B-C的备份段; 保护域 2 的工作段为 C-D 之间的链路, C-G-H-D为 C-D的备份段。 C-G为两个局部保护域的共享链 路, 其中 C为两个局部保护域工作段及备份段的共享节点 (简称 PIB ), G 为两个局部保护域仅在备份段上的共享节点 (简称 AIB )。 假设某 TESI承 载在局部保护域 1和局部保护域 2的工作段上, 且被这两个保护域所保护, 该 TESI的双向 ESP为 ESP-1和 ESP-2。 节点中存储有转发地址表( FDB ), FDB 中包括多条转发条目, 转发条目的一般形式为: <目的端点 (DA ), ESP-VID>→出端口 ( Out ), 正常情况下, TESI的 Y→X方向 ESP-1在保护 域内沿着 B-C-D, 假设 ESP-1的 ESP-VID是 1 , 则保护域节点上的 FDB转 发条目设置见图中节点上方转发表中的 "<Χ, 1>→出端口"条目; 同理, 假 设 X— Υ方向 ESP-2的 ESP-VID是 2 , 保护域节点上的 FDB转发条目设置 见图中节点上方的转发表的 "< 2>→出端口" 条目。
正常情况下, 局部保护域 1在段端点 Β和 C上只需为受保护域保护的 TESI预置工作转发条目和备份转发条目, 当故障发生时在这两个转发条目 之间进行切换。 图 4为图 3所示两个具有共享链路的局部保护域之一工作 链路失效保护倒换示意图, 参照图 3和图 4 , 在 Y— X向 ESP-1上, 节点 B 的工作转发条目为 "<χ, 1>→Ρ2" , 备份转发条目为 "<Χ, 1>→Ρ3" ; 在 X
→Y向 ESP-2上, 节点 C的工作转发条目为 "<Υ, 2>→ΡΓ,, 备份转发条目 为 "<Υ, 2>→Ρ3" , 节点 Β和节点 C默认根据工作转发条目进行报文转发, 当 B-C之间链路失效时, 节点 Β和节点 C切换到各自的备份转发条目进行 报文转发即可。
图 5为图 3所示两个具有共享链路的局部保护域上共享节点失效保护 倒换示意图, 如图 5 所示, 当具有共享链路的两个局部保护域的共享节点 ΡΙΒ 发生故障时, 两个局部保护域将 ESP-1 和 ESP-2 从 B-C-D 切换到 B-F-G-H-D, 此时节点 C ( ΡΙΒ )上关于双向 ESP的 FDB转发条目的设置保 持不变, 即釆用哪条 FDB转发条目进行报文转发的设置保持不变。
如果两个局部保护域都釆用非反转模式, 则当节点 C ( ΡΙΒ ) 的故障消 失后, 流量仍然会承载在 A-B-F-G-H-D-E链路上。 此时, 节点 C ( PIB )上 关于双向 ESP的 FDB 转发条目的设置保持不变。 图 6为非反转模式下, 图 3所示保护域 1备份段失效保护倒换示意图, 如图 6所示, 此时, 如果 F-G之间的链路发生故障, 这个故障属局部保护域 1内非共享链路的故障, 则节点 B会将 ESP-1的 FDB转发条目切换到工作条目 "<X, 1>→ P2" , 节 点 G ( AIB )会将 ESP-2的 FDB转发条目切换到 "<Y, 2>→Ρ3"。 在节点 C ( PIB )上, ESP-1的 FDB转发条目仍然保持在工作条目 "<X, 1>→P2"上, ESP-2的 FDB转发条目仍然保持在工作条目 "<Υ, 2>→ΡΓ,上, 因此, ESP-1 会沿着 A-B-C-D-E,而 ESP-2会沿着 A-B-C-G-H-D-E。由图可见,此时 ESP-1 和 ESP-2不是 co-routed, 即一个数据通信实例的双向数据流不是从相同的 路径上传输的, 同理, 具有共享链路的局部保护域中, 有一个局部保护域 工作在非反转模式的情况下, 也会产生双向 ESP不是 co-routed的情况, 而 IEEE802.1Qay要求一个点到点的 TESI的双向 ESP应该是 co-routed,所以, 现有以太网隧道局部保护方法, 当具有共享链路的两个局部保护域中至少 有一个运行在非反转模式下, 经过两个局部保护域的工作段同时失效或者
工作段上的共享节点失效, 再到故障消失时, 经过保护倒换之后, 双向 ESP 不是 co-routed, 不满足 IEEE802. lQay的要求。 发明内容
有鉴于此, 本发明的主要目的在于提供一种以太网隧道局部保护方法 及保护域工作段的共享节点, 两个局部保护域的工作段同时失效或者工作 段上的共享节点失效的故障消失时, 能满足 IEEE802.1Qay中, 一个点到点 的 TESI的双向 ESP应该是 co-routed的要求, 从而提高系统稳定性。
为达到上述目的, 本发明的技术方案是这样实现的:
一种以太网隧道局部保护方法, 运营商骨干桥接流量工程 PBB-TE 网 络内具有共享链路的两个局部保护域, 且所述两个局部保护域中至少有一 个局部保护域运行在非反转模式, 局部保护域的保护对象为承载在局部保 护域工作段上的被保护的流量工程服务实例 TESI ,
该方法包括: 两个局部保护域的工作段同时失效或者工作段上的共享 节点失效的故障消失时, 所述两个局部保护域工作段的共享节点将被保护 的 TESI的双向以太网交换路径 ESP的转发地址表 FDB转发条目从工作条 目切换为备份条目。
故障消失前, 该方法还包括步骤:
被保护的 TESI沿工作段进行报文转发;
出现所述故障后, 所述两个局部保护域切换到备份段, 被保护的 TESI 沿备份段进行报文转发。
一种保护域工作段的共享节点, 包括: 故障检测单元、 转发条目切换 单元, 其中,
所述故障检测单元, 用于在检测到两个局部保护域的工作段同时失效 或者工作段上的共享节点失效的故障消失后, 通知转发条目切换单元; 所述转发条目切换单元, 用于在收到故障检测单元的通知后, 将转发
条目存储单元中所有被保护 TESI的双向 ESP的 FDB转发条目从工作条目 切换为备份条目;
所述转发条目存储单元, 用于存储 FDB转发条目。
该共享节点还包括:
报文转发单元, 用于根据转发条目存储单元中存储的 FDB转发条目进 行报文转发。
报文转发单元, 还用于在出现所述故障前, 沿工作段进行报文转发; 以 及在出现所述故障时, 沿备份段进行报文转发。
本发明公开的以太网隧道局部保护方法及保护域工作段的共享节点, 在一个 PBB-TE 网络中存在具有共享链路的段保护域, 且共享链路的两个 局部保护域中至少一个运行在非反转模式下, 且两个局部保护域的工作段 同时失效或者工作段上的共享节点失效的故障消失时, 工作段的共享节点 将保护域所保护的所有 TESI的双向 ESP的 FDB转发条目切换为备份条目, 即切换后 ESP的 FDB转发条目的出端口为连接共享段的端口。由于在故障 消失后,工作段的共享节点将其双向 ESP的 FDB转发条目切换为备份条目, 所以, 能够保证故障消失后, 被保护的 TESI的双向 ESP是 co-routed, 从 而满足 IEEE802.1Qay中一个点到点的 TESI的双向 ESP应该是 co-routed的 要求, 提高系统稳定性。 附图说明
图 1为现有 PBB-TE隧道全路径保护原理示意图;
图 2为现有 PBB-TE局部链路保护原理示意图;
图 3为两个具有共享链路的局部保护域示意图;
图 4为图 3所示两个具有共享链路的局部保护域之一工作链路失效保 护倒换示意图;
图 5为图 3所示两个具有共享链路的局部保护域上共享节点失效保护
倒换示意图;
图 6为非反转模式下, 图 3所示保护域 1备份段失效保护倒换示意图; 图 7为本发明以太网隧道局部保护方法流程示意图;
图 8为本发明故障消失后, 节点 C上的 FDB转发条目设置示意图; 图 9为本发明非反转模式下局部保护域 1备份段失效保护倒换示意图; 图 10为本发明保护域工作段的共享节点的结构示意图。 具体实施方式
本发明的基本思想是: 在共享链路的两个局部保护域中至少一个运行 在非反转模式下, 且两个局部保护域的工作段同时失效或者工作段上的共 享节点失效的故障消失时, 工作段的共享节点将保护域所保护的所有点到 点 TESI的双向 ESP的 FDB转发条目切换为备份条目,即切换后的 FDB转 发条目的出端口为连接共享段的端口。
下面结合附图对技术方案的实施作进一步的详细描述。
本发明中, 以太网隧道包含至少两个具有共享链路的局部保护域, 且 所述两个局部保护域中至少有一个局部保护域运行在非反转模式。
图 7为本发明以太网隧道局部保护方法流程示意图, 如图 7所示, 本 发明以太网隧道局部保护方法一般包括以下步骤:
步骤 71 : 被保护的 TESI沿工作段上进行报文转发。
工作链路正常的情况下, 被保护的 TESI沿工作段进行报文转发, 以图 3为例, 节点 B上双向 ESP的 FDB转发条目分别为工作条目 <X, 1>→P2 和<丫, 2>→P1 ; 节点 C上双向 ESP的 FDB转发条目分别为工作条目 <X, 1>→P2 <Y, 2>→Ρ1 ; 节点 D上双向 ESP的 FDB转发条目分别为工作条 目 <X, 1>→P2 ^<Y, 2>→Ρ1。
步骤 72: 两个局部保护域的工作段同时失效, 或者工作段上的共享节 点失效。
步骤 73: 所述两个局部保护域切换到备份链路, 继续进行报文转发。 这里, 两个局部保护域的工作段同时失效, 或者工作段上的共享节点 失效, 会使两个局部保护域同时切换到备份链路, 以图 3 所示局部保护域 为例, 切换后的转发路径如图 5所示, 为 A-B-F-G-H-D-E, 具体切换实现 为:节点 B检测到 B-C之间的工作段失效或节点 C失效后,将 ESP-1的 FDB 转发条目由工作条目 <X, 1>→P2 切换为备份条 Θ <Χ, 1>→Ρ3 , 以及节点 D检测到 C-D之间的工作段失效或节点 C失效后,将 ESP-2的 FDB转发条 目由工作条目 <Υ, 2>→Ρ1切换为备份条目 <Υ, 2>→Ρ3。 节点 G的 FDB转 发条目为< , 1>→Ρ2 ^<Υ, 2>→Ρ1 , 节点 C的 FDB转发条目不变, 仍为 工作条目 <X, 1>→P2 ^<Y, 2>→Ρ1。
步骤 74: 故障消失后, 所述两个局部保护域工作段的共享节点将被保 护 TESI的双向 ESP的 FDB转发条目切换为备份条目。
以图 3 所示局部保护域为例, 当两个局部保护域的工作段同时失效或 者工作段上的共享节点失效的故障消失后, 节点 C立即将该节点上被保护 TESI的双向 ESP的 FDB转发条目由工作条目 <Χ, 1>→Ρ2和<丫, 2>→Ρ1 切换为备份条 Θ <Χ, 1>→Ρ3 ^<Υ, 2>→Ρ3 , 如图 8所示, 即节点 C上被 保护 TESI的双向 ESP的出端口均为共享链路上的端口 P3。
图 9为本发明非反转模式下局部保护域 1备份段失效保护倒换示意图, 如图 9所示, 以保护域中被保护的某个 TESI为例, 该 TESI的双向 ESP为 ESP-1和 ESP-2。 当局部保护域 1的备份链路失效后, 按照正常的保护倒换 流程, 局部保护域 1会将被保护的 TESI的的双向 ESP切换回 B-C上, 具 体切换实现为:节点 B将其上对应于 ESP-1的 FDB转发条目从备份条目 <X, 1>→P3切换回工作条 Θ <Χ, 1>→Ρ2; 节点 C相应地将其上对应于 ESP-2 的 FDB转发条目从备份条目 <Υ, 2>→ Ρ3切换到工作条目 <Y, 2>→ PI。此时, 因为节点 C上对应于 ESP-1的 FDB转发条目在步骤 74中被置为 "<X, 1>
→P3" , 因此 ESP- 1和 ESP-2的流量均承载在 A-B-C-G-H-D-E链路上, 所 以双向 ESP是 co-routed的, 满足 IEEE802. lQay的要求。
同理, 当局部保护域 1运行在非反转模式, 局部保护域 2运行在反转 模式下时, 本发明也能保证双向转发路径是 co-routed的。
图 10为本发明保护域工作段的共享节点的结构示意图, 如图 10所示, 本发明保护域工作段的共享节点包括: 故障检测单元 101、转发条目切换单 元 102、 转发条目存储单元 103 , 其中,
故障检测单元 101 , 用于在检测到两个局部保护域的工作段同时失效, 或者工作段上的共享节点失效的故障消失后, 通知转发条目切换单元 102; 所述转发条目切换单元 102, 用于在收到故障检测单元 101的通知后, 将转发条目存储单元 103中双向以太网交换路径 ESP的 FDB转发条目切换 为备份条目;
转发条目存储单元 103 , 用于存储 FDB转发条目。
该共享节点还包括:
报文转发单元 104, 用于根据转发条目存储单元 103中存储的 FDB转 发条目进行报文转发。
报文转发单元 104, 还用于在出现所述故障前, 沿工作段进行报文转发; 以及在出现所述故障时, 沿备份段进行报文转发。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。
Claims
1、 一种以太网隧道局部保护方法, 其特征在于, 运营商骨干桥接流量 工程 PBB-TE 网络内具有共享链路的两个局部保护域, 且所述两个局部保 护域中至少有一个局部保护域运行在非反转模式, 局部保护域的保护对象 为承载在局部保护域工作段上的被保护的流量工程服务实例 TESI;
该方法还包括: 两个局部保护域的工作段同时失效或者工作段上的共 享节点失效的故障消失时, 所述两个局部保护域工作段的共享节点将被保 护的 TESI的双向以太网交换路径 ESP的转发地址表 FDB转发条目从工作 条目切换为备份条目。
2、 根据权利要求 1所述的以太网隧道局部保护方法, 其特征在于, 出 现所述故障前, 该方法还包括: 被保护的 TESI沿工作段进行报文转发; 出现所述故障时, 所述两个局部保护域切换到备份段, 被保护的 TESI 沿备份段进行报文转发。
3、 一种保护域工作段的共享节点, 其特征在于, 该共享节点包括: 故 障检测单元、 转发条目切换单元; 其中,
所述故障检测单元, 用于在检测到两个局部保护域的工作段同时失效 或者工作段上的共享节点失效的故障消失后, 通知转发条目切换单元; 所述转发条目切换单元, 用于在收到故障检测单元的通知后, 将转发 条目存储单元中所有被保护 TESI的双向 ESP的 FDB转发条目从工作条目 切换为备份条目;
所述转发条目存储单元, 用于存储 FDB转发条目。
4、 根据权利要求 3所述的共享节点, 其特征在于, 该共享节点还包括: 报 文转发单元,
5、 根据权利要求 4所述的共享节点, 其特征在于,
所述报文转发单元, 还用于在出现所述故障前, 沿工作段进行报文转发; 以及在出现所述故障时, 沿备份段进行报文转发。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09847727.6A EP2448190B1 (en) | 2009-07-31 | 2009-12-02 | Local protection method of ethernet tunnel and sharing node of work sections of protection domain |
US13/386,413 US8738960B2 (en) | 2009-07-31 | 2009-12-02 | Local protection method of ethernet tunnel and sharing node of work sections of protection domain |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910090221.1 | 2009-07-31 | ||
CN200910090221.1A CN101989944B (zh) | 2009-07-31 | 2009-07-31 | 以太网隧道局部保护方法及保护域工作段的共享节点 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011011941A1 true WO2011011941A1 (zh) | 2011-02-03 |
Family
ID=43528705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/075271 WO2011011941A1 (zh) | 2009-07-31 | 2009-12-02 | 以太网隧道局部保护方法及保护域工作段的共享节点 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8738960B2 (zh) |
EP (1) | EP2448190B1 (zh) |
CN (1) | CN101989944B (zh) |
WO (1) | WO2011011941A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101787861B1 (ko) * | 2013-02-27 | 2017-10-18 | 닛본 덴끼 가부시끼가이샤 | 제어 장치, 통신 시스템, 스위치 제어 방법 및 프로그램을 기록한 기록 매체 |
CN103701701B (zh) * | 2013-12-31 | 2017-04-12 | 杭州华三通信技术有限公司 | 一种等价树ect迁移管理方法及装置 |
CN105991188B (zh) | 2015-02-16 | 2019-09-10 | 阿里巴巴集团控股有限公司 | 一种检测共享风险链路组的方法及装置 |
CN106385373B (zh) * | 2015-07-27 | 2020-04-14 | 中兴通讯股份有限公司 | 流量传输方法及装置 |
CN111565145B (zh) * | 2020-04-09 | 2022-07-01 | 烽火通信科技股份有限公司 | 一种跨域路径保护方法及系统 |
CN112350941B (zh) * | 2020-09-14 | 2021-08-24 | 网络通信与安全紫金山实验室 | 用于ESP在overlay层实现源路由的报文封装方法及发送方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101137974A (zh) * | 2003-10-07 | 2008-03-05 | 思科技术公司 | 用于mpls快速重路由的增强切换 |
CN101227399A (zh) * | 2008-01-31 | 2008-07-23 | 华为技术有限公司 | 报文传输方法、系统及转发节点 |
US20080205263A1 (en) * | 2007-02-28 | 2008-08-28 | Embarq Holdings Company, Llc | System and method for advanced fail-over for packet label swapping |
GB2448711A (en) * | 2007-04-25 | 2008-10-29 | Ericsson Telefon Ab L M | Recovering from a failure in a communications network |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6917759B2 (en) * | 2002-01-31 | 2005-07-12 | Nortel Networks Limited | Shared mesh signaling algorithm and apparatus |
JP4598647B2 (ja) * | 2005-10-18 | 2010-12-15 | 富士通株式会社 | パスプロテクション方法及びレイヤ2スイッチ |
US9479341B2 (en) * | 2006-08-22 | 2016-10-25 | Centurylink Intellectual Property Llc | System and method for initiating diagnostics on a packet network node |
WO2008120931A1 (en) * | 2007-03-30 | 2008-10-09 | Electronics And Telecommunications Research Institute | Method for protection switching in ethernet ring network |
CN101436976B (zh) * | 2007-11-13 | 2012-02-15 | 华为技术有限公司 | 一种转发数据帧的方法、系统和设备 |
CN101997713A (zh) * | 2009-08-31 | 2011-03-30 | 中兴通讯股份有限公司 | 一种以太网路径保护的切换方法及系统 |
-
2009
- 2009-07-31 CN CN200910090221.1A patent/CN101989944B/zh not_active Expired - Fee Related
- 2009-12-02 US US13/386,413 patent/US8738960B2/en not_active Expired - Fee Related
- 2009-12-02 EP EP09847727.6A patent/EP2448190B1/en not_active Not-in-force
- 2009-12-02 WO PCT/CN2009/075271 patent/WO2011011941A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101137974A (zh) * | 2003-10-07 | 2008-03-05 | 思科技术公司 | 用于mpls快速重路由的增强切换 |
US20080205263A1 (en) * | 2007-02-28 | 2008-08-28 | Embarq Holdings Company, Llc | System and method for advanced fail-over for packet label swapping |
GB2448711A (en) * | 2007-04-25 | 2008-10-29 | Ericsson Telefon Ab L M | Recovering from a failure in a communications network |
CN101227399A (zh) * | 2008-01-31 | 2008-07-23 | 华为技术有限公司 | 报文传输方法、系统及转发节点 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2448190A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN101989944B (zh) | 2014-11-05 |
EP2448190A4 (en) | 2014-07-09 |
EP2448190B1 (en) | 2018-02-21 |
US8738960B2 (en) | 2014-05-27 |
EP2448190A1 (en) | 2012-05-02 |
US20120297239A1 (en) | 2012-11-22 |
CN101989944A (zh) | 2011-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8018841B2 (en) | Interworking an ethernet ring network and an ethernet network with traffic engineered trunks | |
CN101931520B (zh) | 一种切换方法及系统 | |
US9338052B2 (en) | Method and apparatus for managing the interconnection between network domains | |
JP4899959B2 (ja) | Vpn装置 | |
US9509591B2 (en) | Technique for dual homing interconnection between communication networks | |
JP5484590B2 (ja) | 擬似ワイヤに基づいてサービストラヒックを処理するための方法、デバイスおよびシステム | |
WO2011022910A1 (zh) | 一种以太网路径保护的切换方法及系统 | |
US20120127855A1 (en) | Method and device for conveying traffic | |
US8705346B2 (en) | Method and system for joint detection of Ethernet part segment protection | |
WO2011011941A1 (zh) | 以太网隧道局部保护方法及保护域工作段的共享节点 | |
WO2012171378A1 (zh) | 解决vpls接入l3故障切换导致断流的方法及路由器 | |
WO2011144088A2 (zh) | 一种业务保护方法及接入设备 | |
WO2012146097A1 (zh) | Vpls网络和以太环网的倒换方法及装置 | |
WO2011011934A1 (zh) | 一种以太网隧道分段保护方法和装置 | |
WO2011017892A1 (zh) | 一种对通信流量实现负载分担的方法和装置 | |
WO2011029249A1 (zh) | 以太网隧道的保护方法与装置 | |
WO2011020339A1 (zh) | 一种分段保护中的切换方法及系统 | |
WO2011088713A1 (zh) | 保护组嵌套的实现方法、以太网保护切换的方法及系统 | |
JP2012502583A (ja) | プロバイダのブリッジ基幹ネットワークにおけるプロテクション方法及びエンドポイント間で通信を行う装置 | |
JP4895310B2 (ja) | 階層型リングネットワークを構成する通信ノード装置、ネットワークシステム、プログラム及び方法 | |
WO2010111957A1 (zh) | 基于媒体接入控制地址和终结条件实现检测的方法及系统 | |
CN101883040B (zh) | 一种网络保护方法及网络保护系统 | |
JP2009212741A (ja) | メッシュネットワークにリングトポロジを構成する通信ノード装置、プログラム及び方法 | |
Shimizu | A ring network with VLAN tag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09847727 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13386413 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009847727 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |