WO2011017892A1 - 一种对通信流量实现负载分担的方法和装置 - Google Patents

一种对通信流量实现负载分担的方法和装置 Download PDF

Info

Publication number
WO2011017892A1
WO2011017892A1 PCT/CN2009/076041 CN2009076041W WO2011017892A1 WO 2011017892 A1 WO2011017892 A1 WO 2011017892A1 CN 2009076041 W CN2009076041 W CN 2009076041W WO 2011017892 A1 WO2011017892 A1 WO 2011017892A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
working
ipg
module
protection
Prior art date
Application number
PCT/CN2009/076041
Other languages
English (en)
French (fr)
Inventor
敖婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011017892A1 publication Critical patent/WO2011017892A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers

Definitions

  • the present invention relates to a protection switching technique in data transmission, and in particular, to a method and apparatus for performing load sharing on communication traffic. Background technique
  • Carrier backbone bridge technology which supports traffic engineering, is a new type of Ethernet bearer technology. It implements protection switching for traffic engineering service instance (TESI, Traffic Engineering Service Instance) protection.
  • TESI traffic engineering service instance
  • the inbound tunnel protects the user packet to be protected.
  • the tunnel carrying the packet to be protected is the tunnel to be protected.
  • the TESI consists of the MAC of the backbone network, the source MAC of the backbone network, and the backbone network.
  • the protection switching scheme is specifically: pre-protecting the TESI for the TESI of the tunnel to be protected, when detecting that a tunnel to be protected passes When the intermediate link or the node fails, the user packet on the tunnel to be protected is re-encapsulated and sent after the protection TESI is set up.
  • the above solution lacks protection for the intermediate link and the node. If a link or a node in the middle of the tunnel fails, the tunnel is switched off, but the number of nodes involved in the handover tunnel is too large, so that the packet switching time is longer. Long, especially when a faulty link or node has multiple tunnels passing through, it will cause multiple tunnels to switch. It takes longer to complete packet switching, and most network faults in Ethernet are present in some On a link or a node, that is, the elimination of most network faults takes a long time, which makes the Ethernet fail to meet the protection level switching requirements of the telecom level standard, and becomes an obstacle to the Ethernet reaching the telecom level standard. Therefore, PBB-TE proposes a segmentation protection scheme.
  • the principle of the scheme is shown in Figure 1. It is implemented by configuring an infrastructure protection group (IPG) for the link to be protected between the two network nodes.
  • IPG infrastructure protection group
  • the protection of the to-be-protected link is specifically: setting a protection segment for the to-be-protected segment, and treating the to-be-protected segment and the protection segment as an IPG to protect the traffic that needs to be protected through the working segment;
  • the link is called the working segment.
  • the working segment When the working segment is normal, the traffic to be protected between the network nodes is forwarded from the working segment.
  • the egress port corresponding to the forwarding table entry corresponding to the TSI protected by the IPG is modified to be the egress port corresponding to the protection segment, so that the traffic to be protected is switched to the protection segment for transmission, and the protection needs to be implemented.
  • the protection of the traffic is to ensure that the traffic to be protected is forwarded normally, and the reliability of the network is improved.
  • the segment protection scheme is adopted.
  • the protection segment is in the Idle state, that is, the program is based on the cost of idle network resources to improve the reliability of the network will result in a waste of resources.
  • the traffic congestion and service quality degradation in the working segment may be caused when the traffic is large, and some sensitive signaling such as CCM detection packets may be lost. , causing a false switch.
  • the main object of the present invention is to provide a method and apparatus for implementing load sharing on communication traffic, so as to achieve reasonable load sharing of communication traffic, improve network resource utilization, and network reliability.
  • a method for implementing load sharing on communication traffic comprising:
  • Multiplex member segments in one IPG are multiplexed into other IPGs to transmit the transmitted traffic Assigned to different IPGs for load sharing.
  • the IPG is pre-created.
  • the process of creating an IPG includes:
  • Two or more segments are established between two network nodes in the part to be protected, and two or more segments are taken as working segments from the established segments, and the remaining segments are used as inactive segments;
  • One working segment or the inactive link is taken as the protection segment of the working segment for each working segment, and the IPG of each working segment is obtained.
  • the process of load sharing includes:
  • the tunnels to be protected by the two SEBs of the IPG are grouped, and the tunnel group obtained by the grouping performs communication traffic transmission on the corresponding IPG.
  • the corresponding IPG is determined based on TESI that can implement load sharing, and the specific determining method is:
  • the TESI-related entry of the tunnel included in each tunnel group is configured in the forwarding table on the network node, so that the TESI corresponding entry of the tunnel included in one tunnel group is
  • the egress port is the same as the egress port of the working segment to which an IPG belongs.
  • the process of performing the communication traffic transmission includes:
  • the process of performing the communication traffic transmission includes:
  • the forwarding table on the network node In the forwarding table on the network node, query the entry corresponding to the TESI of the tunnel to be protected in the faulty working segment, and change the egress port of the queried entry to the IPG of the faulty working segment. The outbound port of the protection segment is forwarded; then, the user packet is forwarded according to the entry of the forwarding table on the network node.
  • Taking two or more segments from the established segment as the working segment is: using all the segments established as working segments;
  • Each of the working segments takes a working segment or a standby segment as the protection segment of the working segment as follows:
  • the working segments are respectively taken for each working segment as the protection segment of the working segment.
  • the protection segment of the one working segment is a segment other than the working segment in the working segment or the inactive segment; the same working segment or the same inactive segment is a protection segment of one or more working segments.
  • An apparatus for performing load sharing on a communication flow includes: a setting module, a resource allocation module, and a forwarding module; wherein
  • a setting module configured to multiplex a segment member in one IPG into another plurality of IPGs
  • a resource allocation module configured to allocate, to the IPG, a communication resource capable of implementing load sharing of communication traffic
  • a forwarding module configured to perform, according to the allocated communication Resources, distribute the transmitted traffic to different IPGs for load sharing.
  • the resource allocation module includes: a grouping module and a configuration module; wherein
  • a grouping module configured to group the tunnels to be protected by the two network nodes to obtain a tunnel group
  • a configuration module is used to determine the correspondence between the tunnel group and the IPG required for load balancing.
  • the forwarding module includes: a transmission module, a fault detection module, and a protection module, where the transmission module is configured to forward the user packet according to the entry of the forwarding table on the network node when the working segment is normal;
  • the fault detection module is configured to perform fault detection on the working segment, and trigger a protection module when detecting a working segment failure;
  • the protection module is configured to: in the forwarding table on the network node, query an entry corresponding to the TESI of the tunnel to be protected through the faulty working segment, and change the egress port of the queried entry to the fault working segment.
  • the outbound port of the protection segment in the IPG is configured to: in the forwarding table on the network node, query an entry corresponding to the TESI of the tunnel to be protected through the faulty working segment, and change the egress port of the queried entry to the fault working segment.
  • the outbound port of the protection segment in the IPG is configured to: in the forwarding table on the network node, query an entry corresponding to the TESI of the tunnel to be protected through the faulty working segment, and change the egress port of the queried entry to the fault working segment.
  • the method of the present invention can multiplex the segment members in one IPG into other IPGs, and distribute the transmitted communication traffic to different IPGs for load sharing. This can achieve reasonable load sharing of communication traffic and improve the network effectively.
  • Figure 1 is a schematic diagram of the principle of a segmentation protection scheme
  • FIG. 2 is a flowchart of implementing load sharing on communication traffic according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of implementing load balancing when two links are established between two network nodes according to the present invention
  • FIG. 4 is a schematic diagram of implementing load balancing when three links are established between two network nodes according to the present invention
  • FIG. 5 is a flow chart of load sharing of communication traffic according to the present invention. detailed description
  • the method for implementing load sharing on communication traffic includes: multiplexing segment members in one IPG into other multiple IPGs, and allocating the transmitted communication traffic to different IPGs for load Sharing.
  • the device for performing load sharing on the communication traffic includes: a setting module, a resource allocation module, and a forwarding module; wherein, the setting module is configured to multiplex the segment members in one IPG into other multiple IPGs; the resource allocation module And a communication resource for allocating traffic load sharing for the IPG; and a forwarding module, configured to allocate the transmitted communication traffic to different IPGs for load sharing according to the allocated communication resources.
  • FIG. 2 is a flowchart of performing load sharing on communication traffic according to an embodiment of the present invention, where the process includes the following steps:
  • Step 201 Establish two or more segments between two network nodes, take more than two segments from the established segment as working segments, and use the remaining segments as inactive segments; wherein, the number of segments created and the number of working segments , are determined according to the traffic of the network node and network resources; when two or more links are taken as working segments, they can be selected according to network planning.
  • all the established segments can be regarded as working segments, that is, there are no inactive segments.
  • Step 202 Take one of the working segments or the inactive segments for each working segment as the work
  • the protection segment of the segment is obtained, and the IPG to which each work segment belongs is obtained;
  • the working segments for each working segment are respectively taken as the working segment or the inactive segment is the protection segment of the working segment:
  • the work segment is taken as a protection segment of the working segment for each working segment.
  • the other link except the working segment can be taken as a protection segment of the working segment for one working segment, that is, the working segment to which the IPG belongs and the protection in the IPG.
  • the segment is not the same segment; the same segment or the same segment can be used as the protection segment of one or more working segments, that is, an IPG working segment can be used as a protection segment for other IPGs, and an IPG protection segment can be used as other segments.
  • the protection segment of the IPG avoids the situation that the protection segment is idle when the working segment is normal, or reduces the ratio of the working segment to the idle protection segment when the working segment is normal, so as to increase the utilization of network resources; wherein, the same working segment or The protection link of the same inactive link as one or more working segments is determined according to the traffic and network resources of the network node.
  • Step 203 Grouping the tunnels to be protected by the two network nodes to obtain a tunnel group, and assigning the obtained tunnel group to each IPG, IPG, and tunnel group-corresponding.
  • the egress port of the TESI-related entry of the tunnel included in each tunnel group is configured in the forwarding table on the network node, so that the TESI corresponding to the tunnel included in the tunnel group is corresponding.
  • the egress port of the entry is the same as the egress port of the working segment of the IPG, that is, the IPG and the tunnel group are corresponding to each other, and the tunnel included in the tunnel group corresponding to each IPG passes the working segment to which the IPG belongs.
  • the TESI is determined by the ⁇ B-DA, B-SA, B-VID>, and is used to indicate the source address, the destination address, and the incoming VLAN of the tunnel, and the TESI of the tunnel at the tunnel entrance when the user message is transmitted. Encapsulated in the header of the user packet;
  • Step 204 Each IPG transmits a user packet carried by the corresponding tunnel group and Protection.
  • the IPG and the tunnel group are correspondingly configured, and the IPGs respectively transmit and protect the user packets carried by the corresponding tunnel group, that is, from one of the two network nodes.
  • the transmission and protection of the user packets to be protected by the node to another network node are completed by the IPGs to avoid traffic congestion, service quality degradation, and even loss of certain sensitive messages when the traffic is large. This may affect problems such as network resource management, such as avoiding the loss of CCM detection messages and causing false handovers.
  • the IPGs respectively transmit and protect the user packets carried by the corresponding tunnel group, and the user packets are forwarded according to the entries of the forwarding table on the network node;
  • the IPGs respectively transmit and protect the user packets carried by the corresponding tunnel group, including:
  • the forwarding table on the network node In the forwarding table on the network node, query the entry corresponding to the TESI of the tunnel to be protected in the faulty working segment, and change the egress port of the queried entry to the IPG of the faulty working segment.
  • the outbound port of the protection segment that is, the tunnel to be protected through the faulty working segment is switched to the protection segment in the IPG of the working segment, and then the user is forwarded according to the entry of the forwarding table on the network node.
  • the IPG of each working segment can be obtained, and the tunnels to be protected can be grouped by the endpoints of the protection group, and the tunnels obtained by the grouping are transmitted on the corresponding IPG.
  • the corresponding IPG may be determined based on TESI that can implement load sharing, or may be determined based on other operational specifications that vary with the actual application environment.
  • the device for performing load sharing on the communication traffic of the present invention includes a setting module, a resource allocation module, and a forwarding module.
  • the setting module is configured to multiplex the segment members in one IPG into other IPGs;
  • the resource allocation module uses Allocating a communication resource capable of realizing communication traffic load sharing for the IPG;
  • a forwarding module configured to transmit the transmitted communication traffic according to the allocated communication resource Assigned to different IPGs for load sharing.
  • the resource allocation module includes: a grouping module and a configuration module; wherein, a grouping module is configured to group the tunnels to be protected by the two network nodes to obtain a tunnel group; and a configuration module, configured to determine when the load sharing is implemented Correspondence between the required tunnel group and the IPG.
  • the forwarding module includes: a transmission module, a fault detection module, and a protection module, where the transmission module is configured to forward the user packet according to the entry of the forwarding table on the network node when the working segment is normal; the fault detection module, The fault detection is performed on the working segment, and the protection module is triggered when a working segment fault is detected.
  • the protection module is configured to query the TESI of the tunnel to be protected through the fault working segment in the forwarding table on the network node. For the corresponding entry, change the egress port of the queried entry to the egress port of the protection segment in the IPG of the faulty working segment.
  • FIG. 3 is a schematic diagram of a principle for implementing load sharing when two links are established between two network nodes according to the present invention.
  • the load balancing process is as follows:
  • Step a1 taking segment 1-1 and segment 2-2 as the working segment, taking segment 2-2 as the protection segment of segment 1-1 in segment 1-1 and segment 2-2, and obtaining IPG1 of segment 1-1; And taking segment 1-1 as the protection segment of segment 2-2 in segment 1-1 and segment 2-2, obtaining IPG2 of segment 2-2;
  • Step bl the tunnel to be protected 1, the tunnel 2, the tunnel 3 and the tunnel 4 are grouped to obtain the tunnel 2 tunnel group 1 including the tunnel 1 and the tunnel 4 tunnel group 2 including the tunnel 3;
  • step c1 the tunnel group 1 is assigned to the IPG1, and the tunnel group 2 is assigned to the IPG2, that is, the TESI corresponding to the tunnel included in the tunnel group 1 in the forwarding table on the network node 1 and the network node 2
  • the egress port of the entry is modified to be the network egress of link 1-1, and the egress port of the entry corresponding to the TESI of the tunnel included in the tunnel group 2 in the forwarding table on the network node 1 and the network node 2 is modified.
  • Step dl IPG1 transmits and protects the traffic carried by tunnel 1 and tunnel 2; IPG2 transmits and protects the traffic carried by tunnel 3 and tunnel 4.
  • FIG. 4 is a schematic diagram of a principle for implementing load sharing when three links are established between two network nodes according to the present invention.
  • the load balancing process is as follows:
  • segment 1-1 and segment 2-2 Take segment 1-1 and segment 2-2 as the working segment, and segment 3-3 in segment 1-1, segment 2-2, and segment 3-3 as the protection segment of segment 1-1, and obtain segment 1-1.
  • IPG1; and in paragraph 1-1, paragraph 2-2 and paragraph 3-3 take segment 3-3 as the protection segment of segment 2-2, get IPG2 of segment 2-2;
  • the working segment of IPG1 is also used as the protection segment of IPG2, and the working segment of IPG2 is also used as the protection segment of IPG1. That is, segment 1-1 and segment 2-2 are mutually protected segments.
  • the network There is no idle protection segment between node 1 and network node 2, which implements load balancing based on protection switching without waste of network resources.
  • protection segment 3 shared by IPG1 and IPG2 -3 which reduces the ratio of the number of working segments in the working segment to the number of idle protection segments. This also achieves load sharing, which improves the utilization of network resources. Furthermore, reasonable load sharing can improve network reliability while improving network resource utilization.
  • FIG. 5 is a flowchart of load sharing for communication traffic, and the process includes the following steps: Step 510: Multipleteen segment members in one IPG are multiplexed into other multiple IPGs. Step 520: Allocate the transmitted communication traffic to different IPGs for load sharing.
  • the foregoing working segment refers to the segment through which the traffic passes when the segment does not detect the occurrence of the fault.
  • the foregoing protection segment refers to the segment that carries traffic when a work segment failure is detected or a management command that receives a handover is switched.
  • the segment is composed of a LAN and a bridge between a series of PNP (Provider Network Port) ports and PNP ports.
  • PNP Provide Network Port
  • the two endpoints of the IPG for the terminating segment may be referred to as an SEB, and the SEB may be a BEB (Backbone Edge Bridge device) or a BCB (Backbone Core Bridge) device in the PBB-TE network.
  • BEB Backbone Edge Bridge device
  • BCB Backbone Core Bridge
  • the foregoing traffic switching between the working segment and the protection segment for the IPG refers to redirecting a group of TESI traffic protected by the IPG from the working segment to the flowing protection segment, or redirecting through the protection segment. To flow through the working section.
  • the redirection here is generally implemented by modifying the egress port corresponding to the corresponding entry in the retransmission.
  • the method of the present invention can multiplex the segment members in one IPG into other IPGs, and distribute the transmitted communication traffic to different IPGs for load sharing. This can achieve reasonable load sharing of communication traffic, and can effectively improve network resource utilization and network reliability.

Description

一种对通信流量实现负载分担的方法和装置 技术领域
本发明涉及数据传输中的保护倒换技术, 尤其涉及一种对通信流量实 现负载分担的方法和装置。 背景技术
支持流量工程的运营商骨干网桥接技术(PBB-TE )是一种新型的以太 网承载技术, 其采用针对流量工程服务实例 (TESI , Traffic Engineering Service Instance )保护的方案实现保护倒换, 即针对端到端隧道对需保护用 户报文进行保护; 其中, 承载所述需保护用户报文的隧道为需保护的隧道; 所述 TESI由<骨干网目的 MAC, 骨干网源 MAC, 骨干网 ¥1^1^>三元组确 定, 即<8-0八3-8 :8-¥10>, 用于指示隧道的源地址、 目的地址及进入的 虚拟局域网 (VLAN ), 将用户报文封装在该隧道, 即在隧道入口处将该隧 道的 TESI封装在用户报文的报头中; 该保护倒换方案具体为: 预先为需保 护的隧道的 TESI设置保护 TESI, 当检测到某需保护的隧道通过的中间链 路或节点出现故障时, 将该需保护的隧道上的用户报文使用为该需保护的 隧道设置的保护 TESI重新封装后发送。
可见, 上述方案缺少了针对中间链路和节点的保护, 一旦隧道中间某 条链路或某个节点出现故障, 即将该隧道切换掉, 但切换隧道牽涉的节点 太多, 使得报文倒换时间较长, 尤其出现故障的链路或节点有多条隧道通 过时, 会引起多条隧道的切换, 完成报文倒换需耗费更长的时间, 而以太 网中大部分的网络故障都是出现在某条链路或某个节点上, 即, 大部分网 络故障的排除均需耗费较长时间, 这使得以太网不能满足电信级别标准对 保护倒换要求, 成为以太网达到电信级别标准的阻碍。 因此, PBB-TE提出了分段保护方案, 该方案的原理如图 1所示, 通过 为两个网络节点间的待保护链路配置一个基础设施保护组 (IPG , Infrastructure Protection Group )实现对该段待保护链路的保护, 具体为: 为 所述待保护段设置保护段,将待保护段和保护段组成看作一个 IPG,保护通 过工作段的需保护的流量; 其中, 所述待保护链路称为工作段; 在工作段 正常的情况下, 进入网络节点间的需保护的流量从工作段转发, 当段边缘 桥(SEB, Segment edge bridge )检测到该段工作段发生故障时, 将通过受 该 IPG保护的 TESI对应的转发表表项的出端口修改为其保护段所对应的出 端口, 从而将所述需保护的流量倒换到保护段上传输, 实现了对所述需保 护的流量的保护, 以保证需保护的流量正常转发, 提高网络的可靠性, 但 采用分段保护方案, 在工作段正常时, 保护段处于空闲状态, 即该方案是 以网络资源空闲为代价来提高可靠性的, 会造成网络资源的浪费。
另外, 由于保护段上一般有多个 TESI流量共同经过, 因此在流量较大 时很可能会导致工作段上流量拥塞、 服务质量下降等问题, 甚至导致 CCM 检测报文等某些敏感信令丟失, 从而引起误切换。
可见, 目前在针对通信流量进行处理时, 一方面有可能产生资源空闲 没有利用上的情况, 另一方面又有可能产生资源带宽不够、 不能很好解决 突发流量的问题。 发明内容
有鉴于此, 本发明的主要目的在于提供一种对通信流量实现负载分担 的方法和装置, 以实现对通信流量的合理负载分担, 提高网路资源利用率 以及网络可靠性。
为达到上述目的, 本发明的技术方案是这样实现的:
一种对通信流量实现负载分担的方法, 该方法包括:
将一个 IPG中的段成员复用到其他多个 IPG中, 将所传输的通信流量 分配到不同的 IPG中进行负载分担。
所述 IPG是预先创建的, 创建 IPG的过程包括:
在需要保护的部分的两个网络节点间建立两条以上段, 从建立的段中 取两条以上段作为工作段, 剩余段作为待用段;
分别为每条工作段取一条所述工作段或所述待用链路作为该工作段的 保护段, 得到各条工作段的 IPG。
进行负载分担的过程包括:
将通过所述 IPG的两个 SEB的需保护的隧道分组, 通过分组后所得的 隧道组在对应的 IPG上进行通信流量传输。
所述对应的 IPG是基于能实现负载分担的 TESI确定的,具体的确定方 法为:
根据各 IPG所属工作段的出端口, 在所述网络节点上的转发表中分别 配置各隧道组所包含隧道的 TESI对应的表项,使一个隧道组中所包含隧道 的 TESI对应的表项的出端口仅与一个 IPG所属工作段的出端口相同。
工作段正常时, 进行所述通信流量传输的过程包括:
按照所述网络节点上的转发表的表项转发用户报文。
工作段故障时, 进行所述通信流量传输的过程包括:
在所述网络节点上的转发表中, 查询通过该条故障工作段的需保护的 隧道的 TESI对应的表项,将所查询到的表项的出端口改为该条故障工作段 的 IPG中保护段的出端口; 之后, 按照所述网络节点上的转发表的表项转 发用户报文。
所述从建立的段中取两条以上段作为工作段为: 将建立的全部段均作 为工作段;
所述分别为每条工作段取一条工作段或待用段作为该工作段的保护段 为: 所述分别为每条工作段取一条所述工作段作为该工作段的保护段。 所述一条工作段的保护段是工作段或待用段中除该条工作段外的其它 段; 所述同一条工作段或同一条待用段为一条或多条工作段的保护段。
一种对通信流量实现负载分担的装置, 该装置包括: 设置模块、 资源 分配模块和转发模块; 其中,
设置模块, 用于将一个 IPG中的段成员复用到其他多个 IPG中; 资源分配模块,用于为 IPG分配可实现通信流量负载分担的通信资源; 转发模块, 用于根据所分配的通信资源, 将所传输的通信流量分配到 不同的 IPG中进行负载分担。
所述资源分配模块包括: 分组模块和配置模块; 其中,
分组模块, 用于将通过所述两个网络节点的需保护的隧道分组, 得到 隧道组;
配置模块, 用于确定实现负载分担时所需的隧道组与 IPG之间的对应 关系。
所述转发模块包括: 传输模块、 故障检测模块和保护模块; 其中, 传输模块, 用于在工作段正常时, 按照所述网络节点上的转发表的表 项转发用户报文;
故障检测模块, 用于对工作段进行故障检测, 并在检测到某工作段故 障时触发保护模块;
保护模块, 用于在所述网络节点上的转发表中, 查询通过故障工作段 的需保护隧道的 TESI所对应的表项,将所查询到的表项的出端口改为该故 障工作段的 IPG中保护段的出端口。
可见, 无论是方法还是装置, 本发明技术均可将一个 IPG中的段成员 复用到其他多个 IPG中, 将所传输的通信流量分配到不同的 IPG中进行负 载分担。 这样可以实现对通信流量的合理负载分担, 并能够有效提高网路 附图说明
图 1为分段保护方案的原理示意图;
图 2为本发明实施例的对通信流量实现负载分担的流程图;
图 3 为本发明在两个网络节点间建立两条链路时, 实现负载分担的原 理示意图;
图 4为本发明在两个网络节点间建立三条链路时, 实现负载分担的原 理示意图;
图 5为本发明对通信流量实现负载分担的流程筒图。 具体实施方式
从发明思路上讲, 本发明提供的对通信流量实现负载分担的方法包括: 将一个 IPG中的段成员复用到其他多个 IPG中, 将所传输的通信流量分配 到不同的 IPG中进行负载分担。
本发明提供的对通信流量实现负载分担的装置包括: 设置模块、 资源 分配模块和转发模块; 其中, 设置模块, 用于将一个 IPG中的段成员复用 到其他多个 IPG中; 资源分配模块, 用于为 IPG分配可实现通信流量负载 分担的通信资源; 转发模块, 用于根据所分配的通信资源, 将所传输的通 信流量分配到不同的 IPG中进行负载分担。
参见图 2, 图 2为本发明实施例的对通信流量实现负载分担的流程图, 该流程包括以下步骤:
步骤 201 : 在两个网络节点间建立两条以上段,从建立的段中取两条以 上的段作为工作段, 剩余段作为待用段; 其中, 所建立的段的数量和工作 段的数量, 均根据所述网络节点的流量及网络资源来定; 取两条以上链路 作为工作段时可以根据网络规划选取。
这里, 可以将建立的全部段均作为工作段, 即没有待用段。
步骤 202:分别为每条工作段取一条所述工作段或所述待用段作为该工 作段的保护段, 得到各条工作段所属的 IPG;
其中, 将建立的全部段均作为工作段时, 所述分别为每条工作段取一 条工作段或待用段作为该工作段的保护段为:
所述分别为每条工作段取一条所述工作段作为该工作段的保护段。 这里, 可以在工作段或待用段中为一条工作段取除该条工作段外的其 它链路作为该条工作段的保护段,即任一个所述 IPG所属的工作段和该 IPG 中保护段不是同一个段; 同一条工作段或同一条待用段可以作为一条或多 条工作段的保护段, 即一个 IPG的工作段可以作为其它 IPG的保护段, 一 个 IPG的保护段可以作为其它 IPG的保护段, 避免在工作段正常时, 保护 段空闲的情况, 或减少工作段正常时, 工作段与空闲的保护段的比例, 以 增加网络资源的利用率; 其中, 同一条工作段或同一条待用链路作为一条 或多条工作段的保护段根据所述网络节点的流量及网络资源来定。
步骤 203:将通过所述两个网络节点的需保护的隧道分组,得到隧道组, 将得到的隧道组分配至各 IPG , IPG和隧道组——对应。
其中, 所述将得到的隧道组分配至各 IPG, 使得 IPG和隧道组——对 应具体为:
根据各 IPG所属工作段的出端口, 在所述网络节点上的转发表中分别 配置各隧道组所包含隧道的 TESI对应的表项的出端口,使得一组隧道组中 所包含隧道的 TESI对应的表项的出端口与且仅与一个 IPG所属工作段的出 端口相同, 即使得使得 IPG和隧道组——对应, 且各 IPG对应的隧道组所 包含的隧道通过该 IPG 所属的工作段; 其中 , 所述 TESI 由 <B-DA,B-SA,B-VID>确定, 用于指示隧道的源地址、 目的地址及进入的 VLAN, 用户报文传输时在隧道入口处将该隧道的 TESI封装在用户报文的 报头中;
步骤 204:各 IPG分别对自身对应的隧道组所承载用户报文进行传输及 保护。
步骤 203、 204中, 使得 IPG和隧道组——对应, 并由所述各 IPG分别 对自身对应的隧道组所承载用户报文进行传输及保护, 即从所述两个网络 节点中的一个网络节点流向另一个网络节点的、 需保护的用户报文的传输 及保护, 由各 IPG分担完成, 以避免在流量较大时, 导致工作段上流量拥 塞、 服务质量下降, 甚至丟失某些敏感信令而影响网络资源管理等问题, 例如避免 CCM检测报文等丟失而引起误切换等。
其中, 当工作段正常时, 所述各 IPG分别对自身对应的隧道组所承载 用户报文进行传输及保护包括: 按照所述网络节点上的转发表的表项转发 用户报文;
当所述网络节点检测到某条工作段故障时, 所述各 IPG分别对自身对 应的隧道组所承载用户报文进行传输及保护包括:
在所述网络节点上的转发表中, 查询通过该条故障工作段的需保护的 隧道的 TESI对应的表项,将所查询到的表项的出端口改为该条故障工作段 的 IPG中保护段的出端口, 即, 将通过该条故障工作段的需保护的隧道倒 换至该条工作段 IPG中的保护段上, 之后, 按照所述网络节点上的转发表 的表项转发用户报文。
由图 2可知,可以得到各条工作段的 IPG,还可以将通过保护组的端点 对需保护的隧道分组, 通过分组后所得的隧道组在对应的 IPG上进行通信 流量传输。 具体而言, 对应的所述 IPG 可以基于能实现负载分担的 TESI 确定, 也可以基于其它随实际应用环境而变化的操作规定来确定。
本发明的对通信流量实现负载分担的装置包括设置模块、 资源分配模 块和转发模块; 其中, 设置模块, 用于将一个 IPG中的段成员复用到其他 多个 IPG中; 资源分配模块, 用于为 IPG分配可实现通信流量负载分担的 通信资源; 转发模块, 用于根据所分配的通信资源, 将所传输的通信流量 分配到不同的 IPG中进行负载分担。
所述资源分配模块包括: 分组模块和配置模块; 其中, 分组模块, 用 于将通过所述两个网络节点的需保护的隧道分组, 得到隧道组; 配置模块, 用于确定实现负载分担时所需的隧道组与 IPG之间的对应关系。
所述转发模块包括: 传输模块、 故障检测模块和保护模块; 其中, 传 输模块, 用于在工作段正常时, 按照所述网络节点上的转发表的表项转发 用户报文; 故障检测模块, 用于对工作段进行故障检测, 并在检测到某工 作段故障时触发保护模块; 保护模块, 用于在所述网络节点上的转发表中, 查询通过故障工作段的需保护隧道的 TESI所对应的表项,将所查询到的表 项的出端口改为该故障工作段的 IPG中保护段的出端口。
上述各功能实体的具体操作已经在前述的图 2 中详细描述, 在此不再 赘述。
以下分别以在两个网络节点之间建立两条链路和三条链路时, 实现负 载分担的两个流程为例, 具体说明本发明的方法及装置:
流程 1 :
如图 3所示, 图 3为本发明在两个网络节点间建立两条链路时, 实现 负载分担的原理示意图。 根据该示意图, 在网络节点 1和网络节点 2之间 建立段 1-1和段 2-2两条链路时, 实现负载分担的流程如下:
步骤 al、 将段 1-1和段 2-2作为工作段, 在段 1-1和段 2-2中取段 2-2 作为段 1-1的保护段, 得到段 1-1的 IPG1 ; 并在段 1-1和段 2-2中取段 1-1 作为段 2-2的保护段, 得到段 2-2的 IPG2;
步骤 bl、 将需保护的隧道 1、 隧道 2、 隧道 3和隧道 4分组, 得到包含 隧道 1的隧道 2隧道组 1 , 以及得到包含隧道 3的隧道 4隧道组 2;
步骤 cl、 将隧道组 1分配至 IPG1 , 将隧道组 2分配至 IPG2, 即: 将 网络节点 1和网络节点 2上的转发表中隧道组 1的所包含隧道的 TESI对应 的表项的出端口,修改为链路 1-1的网络出口,并将网络节点 1和网络节点 2上的转发表中隧道组 2的所包含隧道的 TESI对应的表项的出端口, 修改 为链路 2-2的网络出口;
步骤 dl、 IPG1对隧道 1和隧道 2所承载流量进行传输及保护; IPG2 对隧道 3和隧道 4所承载流量进行传输及保护。
流程 2:
如图 4所示, 图 4为本发明在两个网络节点间建立三条链路时, 实现 负载分担的原理示意图。 根据该示意图, 在网络节点 1和网络节点 2之间 建立段 1-1、 段 2-2和段 3-3三个段时, 实现负载分担的流程如下:
将段 1-1和段 2-2作为工作段, 在段 1-1、段 2-2和段 3-3中取段 3-3作 为段 1-1的保护段, 得到段 1-1的 IPG1 ; 并在段 1-1、 段 2-2和段 3-3中取 段 3-3作为段 2-2的保护段, 得到段 2-2的 IPG2;
以下为隧道 1、 隧道 2、 隧道 3和隧道 4分配网络资源、 以及对隧道 1、 隧道 2、隧道 3和隧道 4所承载用户报文的传输及保护与流程 1的相应步骤 相同。
流程 1中, IPG1的工作段还作为 IPG2的保护段, 而 IPG2的工作段也 还作为 IPG1的保护段, 即段 1-1和段 2-2互为保护段, 当工作段正常时, 网络节点 1和网络节点 2之间不存在空闲的保护段, 这样, 即实现了以保 护倒换为基础的负载分担, 又不会造成网络资源的浪费; 流程 2 中, IPG1 和 IPG2共有的保护段 3-3 , 减小了工作段正常时工作段数量与空闲的保护 段数量的比例, 这同样实现了负载分担, 进而提高了网络资源的利用率。 再有, 合理的负载分担在提高网路资源利用率的同时, 还能够有效提高网 络可靠性。
综上所述, 可以将本发明的总体思路以图 5表示。 参见图 5 , 图 5为对 通信流量实现负载分担的流程筒图, 该流程包括以下步骤: 步骤 510: 将一个 IPG中的段成员复用到其他多个 IPG中。 步骤 520: 将所传输的通信流量分配到不同的 IPG中进行负载分担。 需要说明的是, 前述的工作段是指当该段没检测到故障发生时流量经 过的那一段。 前述的保护段是指当检测到工作段故障或收到切换的管理命 令发生切换后承载流量的那一段。 总体来说, 所述的段是由一系列 PNP ( Provider Network Port )端口和 PNP端口之间的 LAN以及桥组成。 并且, 可以将用于终结段的 IPG两个端点称为 SEB, SEB可以是 PBB-TE网络中 的 BEB( Backbone Edge Bridge 殳备,也可以是 BCB( Backbone Core Bridge ) 设备。
另外, 前述的针对 IPG的工作段和保护段之间的流量切换是指将一组 受该 IPG保护的 TESI流量由流经工作段重定向为流经保护段,或者由流经 保护段重定向为流经工作段。这里的重定向一般是通过修改 TESI对应于转 发表中的相应表项的出端口来实现的。
可见, 无论是方法还是装置, 本发明技术均可将一个 IPG中的段成员 复用到其他多个 IPG中, 将所传输的通信流量分配到不同的 IPG中进行负 载分担。 这样可以实现对通信流量的合理负载分担, 并能够有效提高网路 资源利用率以及网络可靠性。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种对通信流量实现负载分担的方法, 其特征在于, 该方法包括: 将一个 IPG中的段成员复用到其他多个 IPG中, 将所传输的通信流量 分配到不同的 IPG中进行负载分担。
2、根据权利要求 1所述的方法,其特征在于,所述 IPG是预先创建的, 创建 IPG的过程包括:
在需要保护的部分的两个网络节点间建立两条以上段, 从建立的段中 取两条以上段作为工作段, 剩余段作为待用段;
分别为每条工作段取一条所述工作段或所述待用链路作为该工作段的 保护段, 得到各条工作段的 IPG。
3、 根据权利要求 2所述的方法, 其特征在于, 进行负载分担的过程包 括:
将通过所述 IPG的两个 SEB的需保护的隧道分组, 通过分组后所得的 隧道组在对应的 IPG上进行通信流量传输。
4、 根据权利要求 3所述的方法, 其特征在于, 所述对应的 IPG是基于 能实现负载分担的 TESI确定的, 具体的确定方法为:
根据各 IPG所属工作段的出端口, 在所述网络节点上的转发表中分别 配置各隧道组所包含隧道的 TESI对应的表项,使一个隧道组中所包含隧道 的 TESI对应的表项的出端口仅与一个 IPG所属工作段的出端口相同。
5、 根据权利要求 4所述的方法, 其特征在于, 工作段正常时, 进行所 述通信流量传输的过程包括:
按照所述网络节点上的转发表的表项转发流量。
6、 根据权利要求 4所述的方法, 其特征在于, 工作段故障时, 进行所 述通信流量传输的过程包括:
在所述网络节点上的转发表中, 查询通过该条故障工作段的需保护的 隧道的 TESI对应的表项,将所查询到的表项的出端口改为该条故障工作段 的 IPG中保护段的出端口; 之后, 按照所述网络节点上的转发表的表项转 发用户报文。
7、 根据权利要求 2至 6任一项所述的方法, 其特征在于, 所述从建立 的段中取两条以上段作为工作段为: 将建立的全部段均作为工作段;
所述分别为每条工作段取一条工作段或待用段作为该工作段的保护段 为: 所述分别为每条工作段取一条所述工作段作为该工作段的保护段。
8、 根据权利要求 7所述的方法, 其特征在于, 所述一条工作段的保护 段是工作段或待用段中除该条工作段外的其它段; 所述同一条工作段或同 一条待用段为一条或多条工作段的保护段。
9、 一种对通信流量实现负载分担的装置, 其特征在于, 该装置包括: 设置模块、 资源分配模块和转发模块; 其中,
设置模块, 用于将一个 IPG中的段成员复用到其他多个 IPG中; 资源分配模块,用于为 IPG分配可实现通信流量负载分担的通信资源; 转发模块, 用于根据所分配的通信资源, 将所传输的通信流量分配到 不同的 IPG中进行负载分担。
10、 根据权利要求 9所述的装置, 其特征在于, 所述资源分配模块包 括: 分组模块和配置模块; 其中,
分组模块, 用于将通过所述两个网络节点的需保护的隧道分组, 得到 隧道组;
配置模块, 用于确定实现负载分担时所需的隧道组与 IPG之间的对应 关系。
11、 根据权利要求 9或 10所述的装置, 其特征在于, 所述转发模块包 括: 传输模块、 故障检测模块和保护模块; 其中,
传输模块, 用于在工作段正常时, 按照所述网络节点上的转发表的表 项转发用户报文;
故障检测模块, 用于对工作段进行故障检测, 并在检测到某工作段故 障时触发保护模块;
保护模块, 用于在所述网络节点上的转发表中, 查询通过故障工作段 的需保护隧道的 TESI所对应的表项,将所查询到的表项的出端口改为该故 障工作段的 IPG中保护段的出端口。
PCT/CN2009/076041 2009-08-13 2009-12-25 一种对通信流量实现负载分担的方法和装置 WO2011017892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910090492.7 2009-08-13
CN200910090492.7A CN101997751B (zh) 2009-08-13 2009-08-13 一种以太网中保护倒换的实现方法及装置

Publications (1)

Publication Number Publication Date
WO2011017892A1 true WO2011017892A1 (zh) 2011-02-17

Family

ID=43585879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076041 WO2011017892A1 (zh) 2009-08-13 2009-12-25 一种对通信流量实现负载分担的方法和装置

Country Status (2)

Country Link
CN (1) CN101997751B (zh)
WO (1) WO2011017892A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154896B (zh) * 2016-03-02 2021-03-05 华为技术有限公司 一种数据传输方法以及转发设备
CN110383766B (zh) * 2017-06-27 2021-02-12 华为技术有限公司 保护倒换方法、设备及系统
CN109714186A (zh) * 2018-08-17 2019-05-03 深圳壹账通智能科技有限公司 金融机构间通信方法、装置、设备及计算机可读存储介质
CN112039766B (zh) * 2020-09-04 2022-08-02 苏州盛科通信股份有限公司 基于以太网的保护切换实现方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217752A (ja) * 2000-01-31 2001-08-10 Fujitsu Ltd 伝送装置及びプロテクショングループ管理方法
CN1588890A (zh) * 2004-10-08 2005-03-02 烽火通信科技股份有限公司 Ason网络中控制平面参与保护倒换的方法
CN1672434A (zh) * 2002-08-02 2005-09-21 马科尼通讯股份有限公司 电信网络及其更新方法
CN100426754C (zh) * 2006-11-13 2008-10-15 华为技术有限公司 一种实现流媒体保护倒换的方法及系统
CN100450018C (zh) * 2005-06-30 2009-01-07 华为技术有限公司 提高Diameter节点间通信可靠性的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436976B (zh) * 2007-11-13 2012-02-15 华为技术有限公司 一种转发数据帧的方法、系统和设备
CN101505246B (zh) * 2009-03-02 2011-08-24 中兴通讯股份有限公司 网络隧道分段保护方式的故障检测方法和修复方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217752A (ja) * 2000-01-31 2001-08-10 Fujitsu Ltd 伝送装置及びプロテクショングループ管理方法
CN1672434A (zh) * 2002-08-02 2005-09-21 马科尼通讯股份有限公司 电信网络及其更新方法
CN1588890A (zh) * 2004-10-08 2005-03-02 烽火通信科技股份有限公司 Ason网络中控制平面参与保护倒换的方法
CN100450018C (zh) * 2005-06-30 2009-01-07 华为技术有限公司 提高Diameter节点间通信可靠性的方法
CN100426754C (zh) * 2006-11-13 2008-10-15 华为技术有限公司 一种实现流媒体保护倒换的方法及系统

Also Published As

Publication number Publication date
CN101997751A (zh) 2011-03-30
CN101997751B (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
CN102571426B (zh) 一种双归保护方法和装置
EP2498454B1 (en) Method, device and system for processing service traffic based on pseudo wires
JP4899959B2 (ja) Vpn装置
EP2104994B1 (en) Hash-based multi-homing
EP1974485B1 (en) Vpls failure protection in ring networks
CA2744272A1 (en) In-band signalling for point-point packet protection switching
CN104956628A (zh) 对计算机网络使用以太网环保护交换
CN101374075A (zh) 保护组播源的方法、装置和系统
CN101931520A (zh) 一种切换方法及系统
WO2008119300A1 (fr) Procédé et dispositif de protection pour service d&#39;arborescence ethernet
CN102282805B (zh) 一种业务保护方法及接入设备
WO2018113294A1 (zh) 一种转发报文的方法、设备及系统
EP3522454B1 (en) Connectivity fault management in a communication network
US9893929B2 (en) Protection switching method and system for a multi-rooted point-to-multi-point service in a provider backbone bridge (PBB) network
CN105490937B (zh) 以太虚拟网络网关切换方法和服务商边缘节点设备
US9716639B2 (en) Protection switching method and system
CN102281165A (zh) 一种基于服务质量的故障检测方法、系统和装置
JP2016092548A (ja) 中継システムおよびスイッチ装置
WO2011017892A1 (zh) 一种对通信流量实现负载分担的方法和装置
CN104702498A (zh) 一种通过协调保护减少设备间光连接数量的方法及装置
US20120269056A1 (en) Method, device, and system for protecting semi-ring network
WO2016090815A1 (zh) 一种部署大容量业务时的切换控制方法及装置
WO2011011934A1 (zh) 一种以太网隧道分段保护方法和装置
CN102843282B (zh) 一种报文处理方法及系统
CN104753820A (zh) 聚合链路中业务流非对称转发的方法、设备以及交换机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848222

Country of ref document: EP

Kind code of ref document: A1