WO2011010695A1 - 主食作物生産増収方法 - Google Patents

主食作物生産増収方法 Download PDF

Info

Publication number
WO2011010695A1
WO2011010695A1 PCT/JP2010/062351 JP2010062351W WO2011010695A1 WO 2011010695 A1 WO2011010695 A1 WO 2011010695A1 JP 2010062351 W JP2010062351 W JP 2010062351W WO 2011010695 A1 WO2011010695 A1 WO 2011010695A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
yield
group
cultivation
staple food
Prior art date
Application number
PCT/JP2010/062351
Other languages
English (en)
French (fr)
Inventor
洋和 河岸
明雄 森田
宰熏 崔
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2011523685A priority Critical patent/JP5660540B2/ja
Priority to CN2010800331979A priority patent/CN102469789B/zh
Priority to US13/386,607 priority patent/US8518859B2/en
Publication of WO2011010695A1 publication Critical patent/WO2011010695A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to a method for increasing the yield of staple food crops.
  • a plant hormone As a chemical substance that regulates plant growth, so-called plant hormones are known.
  • a plant hormone is a chemical substance derived from the plant itself, and is a substance that regulates the growth, differentiation, etc. of the plant in a small amount.
  • Various chemical substances that regulate plant growth are known, although they are not chemical substances derived from the plant itself.
  • 2-azahypoxanthine is a 2-aza-substituted product of hypoxanthine having a purine skeleton, and is known as a degradation product of dacarbazine (DTIC), an anticancer agent, in addition to bentgrass seeds and rice seeds. It is known that it contributes to the improvement of germination rate, shoot elongation, or root elongation and mass increase for lettuce (see, for example, JP 2009-1558 A).
  • Yields are also increased by improving the variety, increasing seed mass, increasing number of stuffed seeds, increasing seed number, increasing seed size, increasing harvest index, increasing thousand grain weight, Also known are transgenic rice introduced with a cyclin A gene or the like for the purpose of modifying the seed composition (see, for example, Japanese Patent Publication No. 2007-515167 and Japanese Patent No. 4462566).
  • an object of the present invention is to provide a method for increasing the yield of staple foods by using a naturally derived compound that can easily increase the yield of staple food crops.
  • the present invention is as follows. [1] A method for increasing the yield of staple food crops, comprising bringing a compound represented by the following general formula (I) into contact with a plant for cultivating staple food crops (excluding seeds).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent substituent, or an azo group in which R 1 and R 2 are connected to each other, and R 3 represents a hydrogen atom. Or a monovalent substituent
  • the method for increasing the yield of staple food crops according to the present invention is a method for increasing the yield of staple food crops, comprising bringing a compound represented by the following general formula (I) into contact with a plant for cultivating staple food crops (excluding seeds).
  • a compound represented by the following general formula (I) since the compound represented by the following general formula (I) is brought into contact with the plant for cultivating staple food crops, the mass per staple food crop increases. As a result, the yield of the staple food crop increases as compared with the case where the compound represented by the following general formula (I) is not used.
  • the increase in yield per staple food crop in the present invention is considered to occur independently of the improvement in seed germination rate, crop root elongation, and overall crop volume increase. This means an increase in the portion of food that is eaten, not the whole plant.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent substituent, or an azo group in which R 1 and R 2 are linked to each other, and R 3 represents a hydrogen atom or 1 Represents a valent substituent. That is, the compound represented by the general formula (I) is a 2-azahypoxanthine derivative represented by the following chemical formula (Ia) or an imidazole-4-carboxamide derivative represented by the following chemical formula (Ib).
  • R 3a represents a hydrogen atom or a monovalent substituent.
  • R 1b , R 2b and R 3b each independently represent a hydrogen atom or a monovalent substituent.
  • R 3a represents a hydrogen atom or a monovalent substituent.
  • the monovalent substituent include a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, hydroxy group, alkoxy group, aryloxy group, alkylthio group, arylthio group, amino group, alkylamino group, and aryl. Examples thereof include an amino group, an acyl group, an acylamino group, an alkoxycarbonylamino group, and a ureido group. Further, these monovalent substituents may further have a substituent if possible, and examples of the substituent include the same as the monovalent substituent.
  • R 3a is preferably a hydrogen atom, a halogen atom, or an alkyl group, more preferably a hydrogen atom or an alkyl group, and even more preferably a hydrogen atom, from the viewpoint of increasing production of staple food crops.
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms having a substituent. Examples of the substituent on the alkyl group include an amino group, an alkoxycarbonylamino group, a hydroxy group, and an acyloxy group.
  • substitution position of R 3a in the general formula (Ia) is not particularly limited as long as substitution is possible, and may be on a nitrogen atom or a carbon atom.
  • Specific examples of the 2-azahypoxanthine derivative represented by the general formula (Ia) include the following compounds, but the present invention is not limited thereto.
  • 2-azahypoxanthine (hereinafter sometimes referred to as “AHX”) in which R 3a is a hydrogen atom is represented by the following chemical formula: It is a compound containing a tautomer.
  • AHX is a naturally-occurring compound that is known to be produced by, for example, causative bacteria of the fairy ring phenomenon, a part of which grows more circularly than the surroundings in the growth of shiba.
  • AHX may be used after being isolated and purified from a cell culture solution of a causative bacterium of the fairy ring phenomenon by a commonly used method such as extraction or chromatography.
  • a causative bacterium there can be mentioned Komura Saxi-Shimeji.
  • 5-aminoimidazole-4-carboxamide is diazotized and then chemically synthesized by ring closure. You may use what you did.
  • a 2-azahypoxanthine derivative in which R 3a is other than a hydrogen atom can be synthesized, for example, by a method usually used starting from the AHX.
  • a compound in which R 3a is an alkyl group can be synthesized by allowing an alkyl halide to act on AHX.
  • R 1b , R 2b and R 3b each independently represent a hydrogen atom or a monovalent substituent.
  • the monovalent substituent include a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, hydroxy group, alkoxy group, aryloxy group, alkylthio group, arylthio group, amino group, alkylamino group, and aryl. Examples thereof include an amino group, an acyl group, an acylamino group, an alkoxycarbonylamino group, and a ureido group.
  • these monovalent substituents may further have a substituent if possible, and examples of the substituent include the same as the monovalent substituent.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • Specific examples include methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, t-butyl, hexyl, cyclohexyl and the like.
  • the alkyl group may further have a substituent, and specific examples include chloromethyl, chloroethyl, fluoromethyl, trifluoromethyl, hydroxymethyl, benzyl, phenylethyl and the like.
  • the alkenyl group is preferably an alkenyl group having 2 to 6 carbon atoms, and specific examples thereof include vinyl, allyl, butenyl and the like.
  • the alkynyl group is preferably an alkynyl group having 2 to 6 carbon atoms, and specific examples thereof include ethynyl and propynyl.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms, and specific examples thereof include phenyl and naphthyl.
  • alkyl moiety in the alkoxy group, the alkylthio group, the alkylamino group, the acyl group, the acylamino group, and the alkoxycarbonylamino group examples include the same alkyl groups as those described above.
  • the aryl part in an aryloxy group, an arylthio group, and an arylamino group can mention the same thing as the said aryl group.
  • the ureido group may be an unsubstituted ureido group or a ureido group substituted with the alkyl group or aryl group.
  • R 1b , R 2b and R 3b are each independently a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, an alkoxy group, an amino group, an acylamino group, an alkoxycarbonyl, from the viewpoint of increasing staple crop production. It is preferably a group selected from an amino group and a ureido group, more preferably a group selected from a hydrogen atom, a halogen atom, an alkyl group, an amino group, an acylamino group, an alkoxycarbonylamino group, and a ureido group.
  • R 1b and R 3b are hydrogen atoms and R 2b is a hydrogen atom or an amino group.
  • R 1b, that R 2b and R 3b are all hydrogen atoms Preferred.
  • R 3b is the same as the preferred embodiment of R 3a in the general formula (Ia).
  • Specific examples of the imidazole-4-carboxamide derivative represented by the general formula (Ib) include the following compounds, but the present invention is not limited thereto.
  • imidazole-4-carboxamide represented by the general formula (Ib)
  • compounds in which R 1b , R 2b and R 3b are all hydrogen atoms that is, imidazole-4-carboxamide (hereinafter referred to as “ICA”)
  • ICA imidazole-4-carboxamide
  • AHX a causative bacterium of the fairy ring phenomenon in the growth of buckwheat. It is a derived compound.
  • ICA may be isolated and purified from a cell culture solution of a causative bacterium of the fairy ring phenomenon by a commonly used method such as extraction or chromatography. Also, amidation of ethylimidazole-4-carboxylate can be obtained according to the method described in Synth. Commun., 17, 1409-1412 (1987). Furthermore, ICA can also be obtained by denitrogenating the 2-azahypoxanthine (AHX). Such denitrogenation is considered to be possible even in plants, for example.
  • imidazole-4-carboxamide derivative represented by the general formula (Ib) can be synthesized by, for example, a commonly used method using ICA and its derivatives as starting materials.
  • the staple food crop in the present invention means a crop that is a main energy source for humans and that provides seeds and root vegetables rich in carbohydrates, particularly starch.
  • the staple food crop in the method for increasing the yield of staple food according to the present invention includes cereals, moss, beans, and the like. Among them, cereals and moss used as staple foods in many areas are the viewpoints of the effect of increasing the staple food crops. And preferable from the viewpoint of demand.
  • the grain is preferably a gramineous plant from the viewpoint of increasing the yield.
  • gramineous plants include rice (genus of rice), sorghum, maize (genus of corn), wheat (genus of wheat), barley (genus of barley), peanuts, rye and oats, among others. From the viewpoint of demand, rice, corn and wheat are more preferable.
  • moss examples include plants belonging to the eggplant family, convolvulaceae, chrysanthemum family, taro family, yam family, and euphorbiaceae.
  • potatoes Solanum eggplants
  • sweet potatoes Convolvulaceae sweet potatoes
  • cucumbers Asteraceae sunflowers
  • taros Araceae taros
  • konjac potatoes Araceae konjacs
  • Chinese yams Yamamidae) (Yamano-genus), Yamano-imo (Yamanoimo-no-Yamaimo), cassava (Eurasianaceae), and the like.
  • Potato varieties are not particularly limited, and examples include danshak and make-in.
  • the staple food crop comes into contact with the compound represented by the general formula (I) in the form of a plant for cultivation.
  • the selection of the plant body for cultivation differs depending on the type of the main staple crop, and may be selected based on the normal cultivation form.
  • the plant for cultivation in the present specification means a normal form when growing in a cultivation place by germination or planting, and does not include seeds before germination.
  • moss when moss is selected, it may be contacted with the compound represented by the above general formula (I) using a root or an underground stem as a plant for cultivation.
  • Tuberous roots correspond to sweet potatoes and cassava, tubers correspond to potatoes, and corms correspond to taros. These are sometimes sometimes referred to as seeds.
  • These roots or rhizomes may be cultivated by applying the method used when cultivated as a staple food as it is, for example, and may be cut into an appropriate size and planted in the soil.
  • contact with the compound represented by the general formula (I) may be performed in the form of a plant after planting.
  • the plant body after planting means, for example, in the case of rice, a plant body after planting seedlings in a paddy field, for example, in the case of corn, a plant body germinated after sowing or a plant body after that, or after planting seedlings Means the plant body.
  • the contact concentration of the compound represented by the general formula (I) to be brought into contact with a plant can be appropriately selected according to the kind of plant and its growth stage.
  • the contact method can also be arbitrarily selected.
  • the concentration of the compound represented by the general formula (I) may generally be 1 ⁇ M or more, and is preferably 1 ⁇ M or more and 2 mM or less, preferably 2 ⁇ M or more and 1 mM or less from the viewpoint of production increase effect and efficiency. More preferably.
  • the cultivation method may be either hydroponics or soil cultivation, and a cultivation method that is usually used according to the type of staple food crop may be applied as it is. Cultivation is generally started by planting seed pods in the soil.
  • the compound represented by the general formula (I) is not particularly limited as long as it is appropriately added to the cultivated soil as long as the concentration range described above can be maintained.
  • the cultivation of cereals may be either hydroponics or soil cultivation. What is necessary is just to add the compound represented with the said general formula (I) suitably to a cultivation liquid or cultivation soil, respectively, in the range which can maintain the density
  • the cultivation period can be divided into a stage before the harvest from the rooting period, the germination period, the germination period, and the flowering period.
  • the contact with the compound represented by the general formula (I) may be at any time, but from the viewpoint of a reliable yield increase effect, contact from the rooting period corresponding to the initial stage of cultivation Is preferred.
  • the cultivation period is generally defined as the vegetative growth period until the ears form from the seedlings, and the reproductive growth period composed of the heading period, the flowering period and the ripening period until the ears are formed.
  • the contact with the compound represented by the general formula (I) may be at any time, but from the viewpoint of a reliable yield increase effect, the period from germination to seedling and / or the vegetative growth period It is preferable that they are in contact with each other.
  • the compound represented by the general formula (I) is added in the early stage of cultivation, from the viewpoint of adapting the germinated or planted plant body to the cultivation place, it is represented by the general formula (I) after the start of cultivation. A period of non-contact with the compound to be formed may be provided.
  • the general formula (I) is used after 1 week after planting, preferably after 2 weeks. In the case of potatoes and other moss, the compound can be added after 5 days, preferably after 1 week.
  • the addition period is not particularly limited and may be the entire period until harvest.
  • the compound represented by the general formula (I) when used, it may be used together with a known formulation additive, or may be used in any dosage form.
  • Known additives for pharmaceutical preparations include excipients, emulsifiers, wetting agents and the like.
  • the form of the compound represented by the general formula (I) may be any form that can be used in the art, such as an emulsion, a liquid, an oil, an aqueous solution, a wettable powder, a flowable, It can be in the form of powder, fine granules, granules, aerosol or paste.
  • the increase in the yield of the staple food crop in the present invention may increase the yield per strain, and means an increase in either the grain size or the number of grains as an edible portion in the staple food crop.
  • an increase in the weight or number of rice grains is mentioned, and in the case of moss, it means an increase in either the size and number of roots and / or rhizomes as edible organs.
  • the grain weight is increased by contact with the compound represented by the general formula (I) in hydroponics, while it is represented by the general formula (I) in soil cultivation. Contact with the compound increases the number of grains.
  • the yield can be increased regardless of the type of cultivation method.
  • Example 1 Yield increase effect of rice by hydroponics Rice (variety: “Nihonbare”) was used for the test. Rice seedlings seeded in a seedling box and cultured for 20 days were transplanted one by one into a pot (1 / 5000a) and cultured in tap water for one week. Rice cultivation after culturing with tap water was carried out in an outdoor environment from July to 97 days using a cultivation medium supplemented with AHX (50 ⁇ M) synthesized above.
  • AHX 50 ⁇ M
  • the culture medium used for the addition was the culture medium for each of the AHX-treated group and the control group. However, in the case of hydroponics, the culture medium was changed once a week. Grains after cultivation are dried for 2 weeks, brown rice mass, brown rice water content and carbon, nitrogen content, brown rice size and number (per share), leaf length, culm length, ear length, ear number, branch The number, the mass of the above-ground part or the underground part was measured.
  • the results are shown in Table 1. In Table 1, * indicates that there is a significant difference at the 5% level by the t-test method.
  • Example 2 Yield increase 1 in soil cultivation of rice Rice (Japanese fine) seedlings one by one in soil (using 1/5000 a pot) containing fertilizers of N (1440 mg), P 2 O 5 (12 mg), K 2 O (760 mg), CaO (806 mg) Soil cultivation was carried out for 97 days from July in the same manner as in Example 1 except that the transplanted one was used. Water and nutrients were replenished once daily.
  • the respective culture media were used for the AHX (50 ⁇ M) -treated group and the control group. Unlike hydroponics, the culture medium was not changed.
  • Example 3 Yield increase 2 in rice soil cultivation Soil (1/5000 a) containing fertilizers of N (1440 mg), P 2 O 5 (12 mg), K 2 O (760 mg), and CaO (806 mg) one by one rice (Japanese fine) seedlings cultured for 30 days Soil cultivation was carried out from June 10 to September 29, 2009 in the same manner as in Example 1 except that the transplanted pot was used. Water and nutrients were replenished once daily.
  • the medium used for the addition was the culture medium for each of the AHX (5 ⁇ M) treatment group, the ICA (2 ⁇ M) treatment group and the control group. Unlike hydroponics, the culture medium was not changed.
  • Example 4 Yield increase 3 in rice soil cultivation Rice (variety: “Nihonbare”) was used for the test. Rice seedlings seeded in a seedling box and cultured for 16 days were transplanted into a pot (1/5000 a), and the culture medium supplemented with AHX (1 mM) synthesized above was used for 2 weeks before planting. Cultivation was carried out.
  • Example 6 Yield increase effect on wheat 6kg paddy rice seedling soil was put in a 1 / 2000a pot with bottom stones, and 4g of 5-7-6 (Chisso-Rin-Kali) was added as a basic fertilizer. After watering sufficiently, 3 days after that, 10 wheat per pot was sown. 300 ml of water was given once a week for cultivation, and thinning was carried out 2 weeks after germination, leaving 5 seedlings with good growth. For the subsequent two weeks, once every week, once every week, AHX (5 ⁇ M) treatment, AHX (50 ⁇ M) treatment, AHX (1 mM) treatment, ICA (2 ⁇ M) treatment, and control (water only) treatment were performed on each of 6 pots. .
  • the method for increasing the yield of staple food crops of the present invention can increase the yield of staple food crops by bringing the compound represented by the general formula (I) into contact with a plant for cultivation (excluding seeds). High availability on.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

 下記一般式(I)で表される化合物と、主食作物の栽培用植物体(種子を除く)とを接触させることを含む主食作物生産増収方法であり、主食作物としては、好ましくは穀物類又は芋類などが挙げられる。 下記一般式(I)中、R及びRはそれぞれ独立して水素原子もしくは1価の置換基、又はRとRが互いに連結したアゾ基を表し、Rは水素原子又は1価の置換基を表す。

Description

主食作物生産増収方法
 本発明は、主食作物生産増収方法に関する。
 植物の生長を調節する化学物質としては、いわゆる植物ホルモンが知られている。一般に植物ホルモンは植物自体に由来する化学物質であり、微量で植物の生長、分化等を調節する物質である。また、植物自体に由来する化学物質ではないが、植物の生長を調節する化学物質も種々知られている。
 例えば、2-アザヒポキサンチンはプリン骨格を有するヒポキサンチンの2-アザ置換体であり、抗癌剤であるダカルバジン(DTIC)の分解産物として知られていることに加えて、ベントグラスの種子やイネの種子に対して発芽率の向上やシュートの伸長、又はレタスに対して根の伸長や質量増加等に寄与することが知られている(例えば、特開2009-1558号公報参照)。
 一方、イネ又はトウモロコシの穀物や芋類といった主食作物の生育を促進して単位面積あたりの収穫量を増やすことは、農業政策上、重要である。主食作物の収穫量を増やすために栄養価の高い肥料の改良が行われてきたが、多量の肥料を使用することによる弊害も問題視されるようになってきた。
 このような観点からも、種々の植物生長調節剤が使用されてきており、例えばジャガイモの増収剤として、ステアリルアルコール等の炭素数12~24の1価アルコール(例えば、特開2006-45144号公報参照)や、トリアゾール系化合物(例えば、特開平9-71号公報参照)などが知られている。
 また、品種改良によって収量増加を図ることも行われており、種子質量の増加、詰まった種子の数の増加、種子数の増加、種子の大きさの増加、収穫指数の増加、千粒重の増加及び種子組成の改変を目的としたサイクリンA遺伝子等を導入した遺伝子導入イネなども知られている(例えば、特表2007-515167号公報および特許第4462566号公報参照)。
 しかしながら、遺伝子を導入した所謂、組換え植物は、農作物分野では未だに広く一般に受け入れやすいとは言い難く、形質の安定性の観点からも充分とは言えない。また、合成品による植物生長調節剤では、天然物由来でないという点で土壌に対する影響が懸念される。
 従って、本発明は、簡便に主食作物の生産増収が可能な天然由来の化合物による主食作物生産増収方法を提供することを目的とする。
 本発明は以下のとおりである。
 [1] 下記一般式(I)で表される化合物と、主食作物の栽培用植物体(種子を除く)とを接触させることを含む主食作物生産増収方法。
Figure JPOXMLDOC01-appb-C000002
(一般式(I)中、R及びRは、それぞれ独立して水素原子もしくは1価の置換基、又は、RとRとが互いに連結したアゾ基を表し、Rは水素原子又は1価の置換基を表す)
 [2] 前記主食作物が、穀物類又は芋類である[1]に記載の主食作物生産増収方法。
 [3] 前記一般式(I)で表される化合物と、イネ科植物の栽培用植物体とを接触させて土耕栽培を行うことを含む[1]又は[2]記載の主食作物生産増収方法。
 [4] 前記一般式(I)で表される化合物と、イネ科植物の栽培用植物体とを接触させて水耕栽培を行うことを含む[1]又は[2]記載の主食作物生産増収方法。
 [5] 前記一般式(I)で表される化合物と、ナス科、ヒルガオ科、キク科、サトイモ科、ヤマノイモ科又はトウダイグサ科植物に属する芋類の栽培用植物体とを接触させて土耕栽培を行うことを含む[1]又は[2]記載の主食作物生産増収方法。
 本発明によれば、簡便に主食作物の生産増収が可能な天然由来の化合物による主食作物生産増収方法を提供することができる。
 本発明の主食作物生産増収方法は、下記一般式(I)で表される化合物と、主食作物の栽培用植物体(種子を除く)とを接触させることを含む主食作物生産増収方法である。
 本発明では、下記一般式(I)で表される化合物を主食作物の栽培用植物体と接触させるので、主食作物の1株あたりの質量が増加する。この結果、下記一般式(I)で表される化合物を使用しない場合と比較して主食作物の収量が増加する。
 本発明における主食作物1株あたりの収量の増加は、種子の発芽率の向上、作物の根の伸長や作物全体の体積の増加とは独立して生じると考えられ、主食作物としての収量、即ち、植物体全体ではなく、食される部分の増加を意味する。
Figure JPOXMLDOC01-appb-C000003
 一般式(I)中、R及びRは、それぞれ独立して水素原子もしくは1価の置換基、又は、R及びRが互いに連結したアゾ基を表し、Rは水素原子または1価の置換基を表す。
 すなわち前記一般式(I)で表される化合物は、下記化学式(Ia)で表される2-アザヒポキサンチン誘導体、又は下記化学式(Ib)で表されるイミダゾール-4-カルボキサミド誘導体である。
Figure JPOXMLDOC01-appb-C000004
 一般式(Ia)中、R3aは水素原子又は1価の置換基を表す。また一般式(Ib)中、R1b、R2b及びR3bは、それぞれ独立して水素原子又は1価の置換基を表す。
 一般式(Ia)で表される2-アザヒポキサンチン誘導体において、R3aは水素原子又は1価の置換基を表す。前記1価の置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アミノ基、アルキルアミノ基、アリールアミノ基、アシル基、アシルアミノ基、アルコキシカルボニルアミノ基、ウレイド基等を挙げることができる。またこれらの1価の置換基は、可能であればさらに置換基を有していてもよく、該置換基としては前記1価の置換基と同様のものを例示できる。
 R3aとしては、主食作物生産増収の観点から、水素原子、ハロゲン原子、または、アルキル基であることが好ましく、水素原子、またはアルキル基であることがより好ましく、水素原子であることがさらに好ましい。
 また前記アルキル基としては、炭素数1~10のアルキル基であることが好ましく、置換基を有している炭素数1~8のアルキル基であることがより好ましい。前記アルキル基上の置換基としては、アミノ基、アルコキシカルボニルアミノ基、ヒドロキシ基、アシルオキシ基等を挙げることができる。
 また一般式(Ia)におけるR3aの置換位置は、置換可能である限り特に限定されず、窒素原子上であっても炭素原子上であってもよい。
 一般式(Ia)で表される2-アザヒポキサンチン誘導体の具体例としては、以下のような化合物を挙げることができるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(Ia)で表される2-アザヒポキサンチン誘導体のうち、R3aが水素原子である2-アザヒポキサンチン(以下、「AHX」ということがある)は、下記化学式で表される互変異性体を含む化合物である。AHXは、例えば、シバの生育において、その一部分が円状に、周囲よりも繁茂する現象であるフェアリーリング現象の原因菌により生成するものであることが知られている天然由来の化合物である。
Figure JPOXMLDOC01-appb-C000006
 AHXは、フェアリーリング現象の原因菌の菌体培養液から、例えば、抽出、クロマトグラフィー等の通常用いられる方法で単離精製したものを使用してもよい。前記原因菌としては、コムラサキシメジを挙げることができる。
 また、例えば、Magn. Reson. Chem., 40, 300-302 (2002) 等に記載の方法に基づいて、5-アミノイミダゾール-4-カルボキサミドをジアゾ化した後、閉環することで化学的に合成したものを使用してもよい。
 また一般式(Ia)において、R3aが水素原子以外である2-アザヒポキサンチン誘導体は、例えば、前記AHXを出発物質として通常用いられる方法により合成することができる。具体的には例えば、R3aがアルキル基である化合物は、AHXに対してハロゲン化アルキルを作用させることで合成することができる。
 上記一般式(Ib)で表されるイミダゾール-4-カルボキサミド誘導体において、R1b、R2b及びR3bは、それぞれ独立して水素原子又は1価の置換基を表す。前記1価の置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アミノ基、アルキルアミノ基、アリールアミノ基、アシル基、アシルアミノ基、アルコキシカルボニルアミノ基、ウレイド基等を挙げることができる。またこれらの1価の置換基は、可能であればさらに置換基を有していてもよく、該置換基としては前記1価の置換基と同様のものを例示できる。
 アルキル基としては炭素数1~10のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましい。具体的には、メチル、エチル、プロピル、イソプロピル、シクロプロピル、ブチル、イソブチル、t-ブチル、ヘキシル、シクロヘキシル等を挙げることができる。またアルキル基は、さらに置換基を有してもよく、具体的には、クロロメチル、クロロエチル、フルオロメチル、トリフルオロメチル、ヒドロキシメチル、ベンジル、フェニルエチル等を挙げることができる。
 アルケニル基としては炭素数2~6のアルケニル基が好ましく、具体的には、ビニル、アリル、ブテニル等を挙げることができる。
 アルキニル基としては炭素数2~6のアルキニル基が好ましく、具体的には、エチニル、プロピニル等を挙げることができる。
 アリール基としては、炭素数6~10のアリール基が好ましく、具体的には、フェニル、ナフチル等を挙げることができる。
 アルコキシ基、アルキルチオ基、アルキルアミノ基、アシル基、アシルアミノ基、アルコキシカルボニルアミノ基におけるアルキル部分は、前記アルキル基と同様のものを挙げることができる。また、アリールオキシ基、アリールチオ基、アリールアミノ基におけるアリール部分は、前記アリール基と同様のものを挙げることができる。
 さらにウレイド基は、無置換のウレイド基であっても、前記アルキル基またはアリール基で置換されたウレイド基であってもよい。
 本発明においては主食作物生産増収の観点から、前記R1b、R2b及びR3bはそれぞれ独立して、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、アルコキシ基、アミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、ウレイド基から選ばれる基であることが好ましく、水素原子、ハロゲン原子、アルキル基、アミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、ウレイド基から選ばれる基であることがより好ましく、水素原子、アミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、ウレイド基から選ばれる基であることがより好ましく、R1b及びR3bが水素原子であってR2bが水素原子又はアミノ基であることがさらに好ましく、R1b、R2b及びR3bがすべて水素原子であることが特に好ましい。
 また前記一般式(Ib)で表されるイミダゾール-4-カルボキサミド誘導体においては、R3bが一般式(Ia)におけるR3aの好ましい態様と同様であることもまた好ましい。
 一般式(Ib)で表されるイミダゾール-4-カルボキサミド誘導体の具体例としては、以下のような化合物をあげることができるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000007
 一般式(Ib)で表されるイミダゾール-4-カルボキサミド誘導体のうち、R1b、R2b及びR3bが、すべて水素原子である化合物、すなわち、イミダゾール-4-カルボキサミド(以下、「ICA」ということがある)は、下記化学式で示される互変異性体を含む化合物であり、前記AHX同様に、例えば、シバの生育におけるフェアリーリング現象の原因菌により生成するものであることが知られている天然由来の化合物である。
Figure JPOXMLDOC01-appb-C000008
 ICAは、前記AHXと同様に、フェアリーリング現象の原因菌の菌体培養液から、例えば、抽出、クロマトグラフィー等の通常用いられる方法で単離精製したものを使用してもよい。
 また、Synth. Commun., 17, 1409-1412 (1987)に記載の方法に準じて、エチルイミダゾール-4-カルボキシレートをアミド化することも得ることができる。
 さらにまたICAは、前記2-アザヒポキサンチン(AHX)を脱窒素分解することで得ることもできる。このような脱窒素分解は、例えば、植物体中でも起こりうると考えられる。
 さらに一般式(Ib)で表される、イミダゾール-4-カルボキサミド誘導体は、例えば、ICA及びその誘導体を出発物質として、通常用いられる方法によって合成することができる。
 本発明における主食作物とは、人の主要なエネルギー供給源となる作物であって、炭水化物、特にデンプンを多く含む種子、根菜を提供する作物を意味する。
 本発明の主食作物生産増収方法における主食作物としては、穀物、芋類、豆類などが挙げられ、中でも多くの地域において主食として用いられている穀物及び芋類であることが主食作物増収効果の観点及び需要の観点から好ましい。
 穀物としては、増収効果の観点からイネ科植物であることが好ましい。イネ科植物としては、イネ(イネ属)、モロコシ、トウモロコシ(トウモロコシ属)、コムギ(コムギ属)、オオムギ(オオムギ属)、ハダカムギ、ライムギ及びエンバク等を挙げることができ、中でも主食作物増収効果及び需要の観点から、イネ、トウモロコシ及びコムギであることがより好ましい。
 芋類としては、ナス科、ヒルガオ科、キク科、サトイモ科、ヤマノイモ科及びトウダイグサ科などに属する植物が挙げられる。具体的には、ジャガイモ(ナス科ナス属)、サツマイモ(ヒルガオ科サツマイモ属)、キクイモ(キク科ヒマワリ属)、サトイモ(サトイモ科サトイモ属)、コンニャクイモ(サトイモ科コンニャク属)、ナガイモ(ヤマノイモ科ヤマノイモ属)、ヤマノイモ(ヤマノイモ科ヤマノイモ属)及びキャッサバ(トウダイグサ科イモノキ属)等が挙げられる。中でも、主食作物増収効果の観点からジャガイモ、であることがより好ましい。ジャガイモの品種としては特に制限されず、ダンシャク、メークイン等を挙げることができる。
 上記主食作物は、栽培用植物体の形態で前記一般式(I)で表される化合物と接触する。栽培用植物体の選択は、対象となる主食作物の種類によって異なり、通常の栽培の形態に基づいて選択すればよい。本明細書における栽培用植物体とは、発芽又は定植などにより栽培場所で生育するときの通常の形態を意味し、発芽前の種子は含まれない。
 例えば、芋類を選択した場合、根又は地下茎を栽培用植物体として前記一般式(I)で表される化合物と接触を行えばよい。サツマイモやキャッサバなどでは塊根が該当し、ジャガイモなどでは塊茎、サトイモなどでは球茎が該当する。これらは一般に種芋と称される場合がある。これらの根又は地下茎は、通常、主食作物として栽培する場合に用いられる方法をそのまま適用して栽培を行えばよく、例えば、適当な大きさに切り分けて、土中に植えてもよい。
 また穀物の場合には、定植後の植物体の形態で、前記一般式(I)で表される化合物と接触を行えばよい。定植後の植物体とは、例えばイネの場合、水田に苗を定植した以降の植物体を意味し、例えばトウモロコシの場合、播種後に発芽した植物体若しくはそれ以降の植物体、又は定植した苗以降の植物体を意味する。
 本発明の主食作物生産増収方法において、植物と接触させる前記一般式(I)で表される化合物の接触濃度は、植物の種類やその生育段階に応じて適宜選択できる。また接触方法もまた任意に選択可能である。前記一般式(I)で表される化合物の濃度としては、一般に、1μM以上であればよく、生産増収効果及び効率性の観点から、1μM以上2mM以下であることが好ましく、2μM以上1mM以下であることがより好ましい。
 栽培方法としては、水耕栽培又は土耕栽培のいずれであってもよく、主食作物の種類に応じて通常用いられる栽培方法をそのまま適用すればよい。
 芋類の栽培は、一般に種芋を土中に植えることで開始する。前記一般式(I)で表される化合物は、上述した濃度範囲が維持できる範囲で栽培土に適宜添加していればよく、特に制限はない。
 穀物類の栽培は、水耕と土耕とのいずれであってもよい。前記一般式(I)で表される化合物は、上述した濃度範囲が維持できる範囲で、それぞれ栽培液又は栽培土に適宜添加すればよい。
 添加時期については、苗又は栽培用植物体として栽培を開始した後の一定時期に所定濃度の前記一般式(I)で表される化合物と接触する時期があればよい。確実な増収効果の観点から、栽培の初期に接触していることが好ましい。
 芋類、例えばジャガイモの場合には、栽培期間を、根付期、萌芽期、発芽期、開花期後から収穫前のステージに分けることができる。このうち前記一般式(I)で表される化合物との接触は、いずれの時期であってもよいが、確実な増収効果の観点から、栽培の初期に相当する根付期から接触していることが好ましい。
 穀物、例えばイネの場合には、栽培期間を一般に、苗から穂ができるまでの栄養生長期と、穂が形成されるまでの出穂期、開花期及び登熟期で構成される生殖生長期とに分けることができる。このうち前記一般式(I)で表される化合物との接触は、いずれの時期であってもよいが、確実な増収効果の観点から、発芽から苗までの期間、及び/又は、栄養生長期から接触していることが好ましい。
 前記一般式(I)で表される化合物の添加を栽培初期に行う場合には、発芽又は定植した植物体の栽培場所への適応の観点から、栽培を開始後に前記一般式(I)で表される化合物と非接触の期間を設けてもよい。主食作物の種類、天候及び品種などによって異なるが、確実な主食作物増収効果の観点から、一般に、穀物の場合には定植してから1週間以降、好ましくは2週間以降に前記一般式(I)で表される化合物を添加すればよく、ジャガイモなどの芋類の場合には根付けしてから5日以降、好ましくは1週間以降に添加することができる。
 添加期間としては、特に制限はなく、収穫までの全期間であってもよい。なお、本発明の効果が得られる限り、収穫までの期間において前記一般式(I)で表される化合物と非接触の期間があってもよい。
 本発明において前記一般式(I)で表される化合物を用いる場合に、公知の製剤用添加剤と共に使用してもよく、また任意の剤型で使用してもよい。公知の製剤用添加剤としては、賦形剤、乳化剤、湿潤剤等を挙げることができる。前記一般式(I)で表される化合物の形態としては、当業界で利用可能な形態であればいかなる形態であってもよく、例えば、乳剤、液剤、油剤、水溶液、水和剤、フロアブル、粉剤、微粒剤、粒剤、エアゾール又はペースト剤等の形態とすることができる。
 本発明における主食作物の増収とは、1株あたりの収量が増加すればよく、主食作物における可食部分としての粒大及び粒数のいずれか一方の増加を意味する。具体的には、イネの場合、米粒の重さ又は数の増加が挙げられ、芋類の場合には食用器官としての根及び/又は地下茎の大きさ及び数のいずれか一方の増加を意味する。
 特に、イネ科植物の場合、水耕栽培で前記一般式(I)で表される化合物と接触させることによって粒重が増加し、一方、土耕栽培で前記一般式(I)で表される化合物と接触させることによって粒数が増加する。この結果、イネ科植物の場合には、栽培方法の種類に拘わらず収量を増やすことができる。
 日本出願2009-173724号および日本出願2009-267916号の開示はその全体を本明細書に援用する。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[合成例1]
AHXの合成
 AHXは、Magn. Reson. Chem., 40, 300-302 (2002)に記載された方法に従って、5-アミノイミダゾール-4-カルボキサミドをジアゾ化した後、閉環することにより、合成した。
[合成例2]
 上記で得られたAHXと6-(Boc-アミノ)ヘキシルブロマイドとを、無水ジメチルスルホキシド中、50℃で反応させることで、下記例示化合物(1)及び(2)を得た。
 さらに、得られた例示化合物(1)及び(2)をトリフルオロ酢酸(TFA)で処理することにより下記例示化合物(3)及び(4)をそれぞれ得た。
Figure JPOXMLDOC01-appb-C000009
[合成例3]
 ICAは、Synth. Commun., 17, 1409-1412 (1987)に記載された方法に従って、エチールイミダゾール-4-カルボキシレートを、アンモニア水溶液中で100℃、4日間処理することにより合成した。
[実施例1]
イネの水耕栽培による増収効果
 イネ(品種:「日本晴れ」)を試験に用いた。育苗箱に播種して、20日間培養したイネの苗を一本ずつポット(1/5000 a)に移植し、1週間、水道水で培養した。
 水道水による培養後のイネの栽培を、上記で合成したAHX(50μM)を添加した栽培用培地を用いて、7月から97日間にわたって屋外環境下で行った。
 栽培用培地としては、0.365mMの(NHSO、0.091mMのKSO、0.547mMのMgSO・7HO、0.183mMのKNO、0.365mMのCa(NO・4HO、0.182mMのKHPO、0.02mMのFe-EDTA、0.002mMのNaSiO、pH5.3を使用した。
 イネを移植した8日目から32日目まで、また73日目から97日目までは、培地原液の半分の濃度で栽培を行い、33日目から72日目までは培地原液を使用した。コントロールは栽培用培地のみを使用した。
 水分及び栄養分の補給は、3日に1度、行った。添加に用いた培地はAHX処理区、コントロール区に各々の栽培用培地を使用した。ただし水耕栽培の場合は、週に1度栽培用培地の交換を行った。
 栽培後の穀物を2週間乾燥し、玄米質量、玄米の水分含量及び炭素、窒素含量、玄米サイズ及び数(1株あたり)と、葉の長さ、桿長、穂長、穂数、分ゲツ数、地上部また地下部の質量を測った。なお、玄米サイズは、玄米質量(g/100玄米)から得た一粒の質量であり、玄米数は、玄米重(g/株)を玄米重(g/100玄米)で割ったものである。(株の個体数n=6)
 結果を表1に示す。表1中、*は、t-検定法により5%水準で有意差があることを示す。
Figure JPOXMLDOC01-appb-T000010
 表1に示されるように、水耕栽培の場合は、1株当たり玄米重が約6%増加した。また、玄米サイズが増大し、総玄米重が増加しており、玄米数がほぼ同一と考えられる。一方、地下部の質量には有意な差が認められなかった。この結果から、AHXが植物全体の生長ではなく、主食作物の収量として重要な玄米のサイズ及び質量の増加に寄与していることが示唆される。
 従って、イネ科植物の水耕栽培では、一般式(I)で表される化合物によって、粒の大きさの増大に基づく収量の増加が期待できる。
[実施例2]
イネの土耕栽培における増収効果1
 イネ(日本晴れ)の苗を一本ずつN(1440mg)、P(12mg)、KO(760mg)、CaO(806mg)の肥料が含有された土(1/5000 aポット使用)に移植したものを使用した以外は、実施例1と同様にして、土耕栽培を7月から97日間行った。
 水分及び栄養分の補給は、毎日1度行った。添加に用いた培地はAHX(50μM)処理区、コントロール区に各々の栽培用培地を使用した。なお、水耕栽培とは異なり、栽培用培地の交換は行わなかった。
 土耕栽培した穀物を2週間乾燥し、実施例1と同様に、玄米質量、玄米の水分含量及び炭素、窒素含量、玄米サイズ及び数(1株あたり)と、葉の長さ、桿長、穂長、穂数、分ゲツ数、地上部の質量を測った。(n=7)
 結果を表2に示す。表2中、*は、t-検定法により5%水準で有意差があることを示す。
Figure JPOXMLDOC01-appb-T000011
 表2に示されるように、土耕栽培の場合は株当たり玄米重が約10%増加した。一つの玄米サイズがほぼ同一であることから、総玄米重の増加は玄米数の増加によるものと考えられる。一方、イネ全体としては葉の長さや穂数には有意な差は認められなかった。この結果から、AHXが植物体全体の生長ではなく、主食作物の収量として重要な玄米の数の増加に寄与していることが示唆される。
 従って、イネ科植物の土耕栽培では、一般式(I)で表される化合物によって、粒数の増加に基づく収量の増加が期待できる。
[実施例3]
イネの土耕栽培における増収効果2
 30日間培養したイネ(日本晴れ)の苗を一本ずつN(1440mg)、P(12mg)、KO(760mg)、CaO(806mg)の肥料が含有された土(1/5000 aポット使用)に移植したものを使用した以外は、実施例1と同様にして、土耕栽培を2009年6月10日から9月29日まで行った。
 水分及び栄養分の補給は、毎日1度行った。添加に用いた培地はAHX(5μM)処理区、ICA(2μM)処理区、コントロール区に各々の栽培用培地を使用した。なお、水耕栽培とは異なり、栽培用培地の交換は行わなかった。
 土耕栽培した穀物を2週間乾燥し、玄米質量、玄米の水分含量、玄米サイズ及び数(1株あたり)と、穂長、桿長、穂数、及び地上部の質量を測った。(n=6)
 結果を表3に示す。表3中、*は、t-検定法により5%水準で有意差があることを示す。
Figure JPOXMLDOC01-appb-T000012
 表3に示されるように、AHXが5μMの場合、株当たり玄米重が約25%増加した。またICAが2μMの場合もAHXと同様に、株当たり玄米重が約26%増加した。
 AHX及びICAいずれの場合であっても一つの玄米サイズがほぼ同一であることから、総玄米重の増加は玄米数の増加によるものと考えられる。一方、イネ全体としては葉の長さや穂数には有意な差は認められなかった。この結果から、AHX及びICAが植物体全体の生長ではなく、主食作物の収量として重要な玄米の数の増加に寄与していることが示唆される。
 従って、イネ科植物の土耕栽培では、一般式(I)で表される化合物によって、粒数の増加に基づく収量の増加が期待できる。
[実施例4]
イネの土耕栽培における増収効果3
 イネ(品種:「日本晴れ」)を試験に用いた。育苗箱に播種して、16日間培養したイネの苗をポット(1/5000 a)に移植し、上記で合成したAHX(1mM)を添加した栽培用培地を用いて、定植前の2週間水耕栽培を行った。
 水耕栽培用培地としては、0.365mMの(NHSO、0.091mMのKSO、0.547mMのMgSO・7HO、0.183mMのKNO、0.365mMのCa(NO・4HO、0.182mMのKHPO、0.02mMのFe-EDTA、0.002mMのNaSiO、pH5.3を使用した。
 上記水耕栽培後の苗を、N(1440mg)、P(12mg)、KO(760mg)、CaO(806mg)の肥料が含有された土(1/5000 aポット使用)に定植し、実施例1と同様にして土耕栽培を2009年6月10日から9月29日まで行った。土耕栽培の間、AHXは処理せず、通常の水分及び栄養分の補給を、毎日1度行った。尚、栽培用培地の交換は行わなかった。
 土耕栽培した穀物を2週間乾燥し、玄米質量、玄米の水分含量、玄米サイズ及び数(1株あたり)と、穂長、桿長、穂数、及び地上部の質量を測った。(n=6)
 結果を表4に示す。表4中、*は、t-検定法により5%水準で有意差があることを示す。
Figure JPOXMLDOC01-appb-T000013
 表4に示されるように、AHXを定植前に処理することで、株当たり玄米重が約18%増加した。また一つの玄米サイズがほぼ同一であることから、総玄米重の増加は玄米数の増加によるものと考えられる。一方、葉の長さや穂数には有意な差は認められなかった。
 この結果からも、一般式(I)で表される化合物が、主食作物の収量として重要な玄米の数の増加に寄与していることが示唆される。
 以上から、イネ科植物の土耕栽培では、一般式(I)で表される化合物によって、粒数の増加に基づく収量の増加が期待できる。
[実施例5]
ジャガイモに対する増収効果
 ジャガイモ(品種:「ダンシャク」)の種イモを30g~35gになるように切って、N(960mg)、P(480mg)、KO(640mg)、MgO(320mg)の肥料が含有した土(1/2000 aポット使用)にそれぞれ根付けした。2週間、水道水で栽培した後(地上部が現れた後)に、AHXを、毎週2.74mg(20μmol)、水道水に溶解させてポットに添加した。ダンシャクイモの栽培を、1月から12週間にわたり、屋外環境下で行った。コントロール区は水道水のみを処理した。
 12週間後に収穫を行い、イモの質量(全体及び20g以上のみを抽出した群)と、地上部の長さ及び質量、葉の長さを測った。(n=5)
 結果を表5に示す。表5中、*は、t-検定法により5%水準で有意差があることを示す。
Figure JPOXMLDOC01-appb-T000014
 表5に示されるように、12週間AHX処理し、収穫したイモでは、総質量が約19%増加した。特に、20g以上のイモのみを抽出してコントロール区と比較すると、約40%増加した。一方、地上部には、長さや質量に関して有意な差が認められなかった。この結果から、AHXが植物体全体の生長ではなく、主食作物の収量として重要なイモの質量の増加に寄与していることが示唆される。
 従って、イモ類の栽培では、一般式(I)で表される化合物によって、質量の増加に基づく収量の増加が期待できる。
[実施例6]
コムギに対する増収効果
 底石を敷いた1/2000aポットに、6kgの水稲苗培土を入れ、元肥として5-7-6(チッソ-リン-カリ)を4g加えた。十分に水を撒いた後、その3日後にポット当たりコムギ(いわいのだいち)10粒を播種した。
 水を1週間に1度300ml与えて栽培し、発芽後2週間で成長の良い苗5本を残して間引きを行なった。
 その後の2週間について、週に1度、AHX(5μM)処理、AHX(50μM)処理、AHX(1mM)処理、ICA(2μM)処理、コントロール(水のみ)処理をそれぞれ6個のポットについて行った。次いで、水のみを週に1度300ml与えて9週間栽培した後、水の量を週に1度500mlに変更してさらに12週間栽培した。尚、与える水の量を変更してから2週間後に穂肥として硫酸アンモニウムをポット当たり0.75g与えた。さらにAHX(1mM)処理ポットについては、穂肥を与えてから2週間AHX(1mM)を追加処理した。
 栽培は2009年10月26日から2010年5月12日までの期間に実施した。栽培終了後、2週間乾燥を行い、コムギの総収量(g/5株)を測定した。結果を表6に示す。尚、表6中、*はt-検定法により5%水準で有意差があることを示す。
Figure JPOXMLDOC01-appb-T000015
 表6から、コムギの栽培においても、一般式(I)で表される化合物によって、質量の増加に基づく収量の増加が期待できる。
 本発明の主食用作物生産増収方法は、一般式(I)で表される化合物を栽培用植物体(種子を除く)に接触させることで、主食作物の収量を増加させることができることから、産業上の利用可能性が高い。
 

Claims (5)

  1.  下記一般式(I)で表される化合物と、主食作物の栽培用植物体(種子を除く)とを接触させることを含む主食作物生産増収方法。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(I)中、R及びRは、それぞれ独立して水素原子もしくは1価の置換基、又は、RとRが互いに連結したアゾ基を表し、Rは水素原子又は1価の置換基を表す)
  2.  前記主食作物が、穀物類又は芋類である請求項1記載の主食作物生産増収方法。
  3.  前記一般式(I)で表される化合物と、イネ科植物の栽培用植物体とを接触させて土耕栽培を行うことを含む請求項1又は請求項2記載の主食作物生産増収方法。
  4.  前記一般式(I)で表される化合物と、イネ科植物の栽培用植物体とを接触させて水耕栽培を行うことを含む請求項1又は請求項2記載の主食作物生産増収方法。
  5.  前記一般式(I)で表される化合物と、ナス科、ヒルガオ科、キク科、サトイモ科、ヤマノイモ科又はトウダイグサ科植物に属する芋類の栽培用地下茎又は根とを接触させて栽培を行うことを含む請求項1又は請求項2記載の主食作物生産増収方法。
PCT/JP2010/062351 2009-07-24 2010-07-22 主食作物生産増収方法 WO2011010695A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011523685A JP5660540B2 (ja) 2009-07-24 2010-07-22 主食作物生産増収方法
CN2010800331979A CN102469789B (zh) 2009-07-24 2010-07-22 主食作物生产增收方法
US13/386,607 US8518859B2 (en) 2009-07-24 2010-07-22 Method for increasing yield of staple food crop

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009173724 2009-07-24
JP2009-173724 2009-07-24
JP2009267916 2009-11-25
JP2009-267916 2009-11-25

Publications (1)

Publication Number Publication Date
WO2011010695A1 true WO2011010695A1 (ja) 2011-01-27

Family

ID=43499167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062351 WO2011010695A1 (ja) 2009-07-24 2010-07-22 主食作物生産増収方法

Country Status (4)

Country Link
US (1) US8518859B2 (ja)
JP (1) JP5660540B2 (ja)
CN (1) CN102469789B (ja)
WO (1) WO2011010695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147750A1 (ja) * 2011-04-27 2012-11-01 国立大学法人静岡大学 イミダゾール誘導体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692801A (en) * 1979-12-19 1981-07-27 Bayer Ag Plant growth regulant and its manufacture
JPS6368570A (ja) * 1986-08-27 1988-03-28 ヘキスト・アクチエンゲゼルシヤフト 2、3、6−置換フエニルイミダゾ−ル誘導体、それらの製造方法および植物生長調整剤としてのそれらの用途
JPS63104965A (ja) * 1986-10-17 1988-05-10 メイ・アンド・ベイカー・リミテツド イミダゾール
JPH04210680A (ja) * 1990-12-01 1992-07-31 Nissan Chem Ind Ltd イミダゾール誘導体および植物生長調節剤
JP2000038304A (ja) * 1998-07-23 2000-02-08 Shiseido Co Ltd 発根抑制剤
JP2009001558A (ja) * 2007-05-22 2009-01-08 National Univ Corp Shizuoka Univ 植物生長調節剤及び植物生長調節方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577787B2 (ja) 1995-06-23 2004-10-13 住友化学工業株式会社 ジャガイモの増収方法
JP4448031B2 (ja) 2002-11-13 2010-04-07 本田技研工業株式会社 穀物の収量を増加させる遺伝子、並びにその利用
ES2345987T3 (es) 2003-12-22 2010-10-07 Cropdesign N.V. Plantas que tienen un mejor rendimiento y metodo para su elaboracion.
JP2006045144A (ja) 2004-08-06 2006-02-16 Kao Corp イモ類の増収栽培方法
JP4210680B2 (ja) * 2005-10-03 2009-01-21 ジヤトコ株式会社 自動変速機の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692801A (en) * 1979-12-19 1981-07-27 Bayer Ag Plant growth regulant and its manufacture
JPS6368570A (ja) * 1986-08-27 1988-03-28 ヘキスト・アクチエンゲゼルシヤフト 2、3、6−置換フエニルイミダゾ−ル誘導体、それらの製造方法および植物生長調整剤としてのそれらの用途
JPS63104965A (ja) * 1986-10-17 1988-05-10 メイ・アンド・ベイカー・リミテツド イミダゾール
JPH04210680A (ja) * 1990-12-01 1992-07-31 Nissan Chem Ind Ltd イミダゾール誘導体および植物生長調節剤
JP2000038304A (ja) * 1998-07-23 2000-02-08 Shiseido Co Ltd 発根抑制剤
JP2009001558A (ja) * 2007-05-22 2009-01-08 National Univ Corp Shizuoka Univ 植物生長調節剤及び植物生長調節方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. P. NITSCH ET AL.: "Auxin- dependent growth of excised Helianthus tuberosus tissues II. Organic nitrogenous compounds", AMERICAN JOURNAL OF BOTANY, vol. 44, 1957, pages 555 - 564 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147750A1 (ja) * 2011-04-27 2012-11-01 国立大学法人静岡大学 イミダゾール誘導体
CN103649092A (zh) * 2011-04-27 2014-03-19 巴斯夫欧洲公司 咪唑衍生物
US8809328B2 (en) 2011-04-27 2014-08-19 National University Corporation Shizuoka University Imidazole derivative
JP5915982B2 (ja) * 2011-04-27 2016-05-11 国立大学法人静岡大学 イミダゾール誘導体

Also Published As

Publication number Publication date
CN102469789B (zh) 2013-12-04
CN102469789A (zh) 2012-05-23
JPWO2011010695A1 (ja) 2013-01-07
US20120122690A1 (en) 2012-05-17
US8518859B2 (en) 2013-08-27
JP5660540B2 (ja) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5452022B2 (ja) 植物生長調整剤及びその利用
JP5389677B2 (ja) 植物成長調整剤組成物
US4212664A (en) Nicotinamide-ammonium hydroxide plant growth regulator compositions
CN104380956A (zh) 大棚鲜食蚕豆/四季鲜食玉米的高效种植方法
JP2022097560A (ja) 植物の灌水量の低減剤、及び植物の灌水量を低減する方法
CN114503993A (zh) 一种谷子抗逆抗倒伏调节剂的制备及其应用
JP2014503498A (ja) 植物成長増強混合物及び該混合物の適用方法
Culver et al. Effect of Moringa oleifera leaf aqueous extract on growth and yield of rape and cabbage
KR20160088671A (ko) 고구마의 재배방법
Subedi¹ Maize and finger millet relay intercropping system in the hills of Nepal: Issues for sustainability
US6143695A (en) Plant-root growth promoting agent
JP5660540B2 (ja) 主食作物生産増収方法
WO2020130145A1 (ja) 植物の耐熱性あるいは耐塩性向上剤
Torres et al. The application of biobras-6 and its effect on potato (Solanum tuberosum L.) yields
Siddikov et al. The Effect Of The Norm Of Feeding With Mineral Fertilizers On Grain Yield Of Soybeans Varieties.
WO2018008717A1 (ja) 植物成長調整剤
Pelech Influence of cultivation methods on the formation of individual productivity of amaranth
Sengupta Mung Bean (Green gram)
WO1984002059A1 (en) Method and composition for the promotion of leguminous plant productivity and seed yields
WO2023171749A1 (ja) 植物種子被覆用組成物
RU2782795C2 (ru) Синергетический сельскохозяйственный препарат, включающий диформилмочевину и по меньшей мере один регулятор роста растений
RU2606921C2 (ru) Способ производства семян сои в условиях орошения, преимущественно для среднеспелых сортов, и способ первичного семеноводства сои в условиях орошения
Satodiya et al. Effect of decapitations and PGR's on seed yield and its attributes in Cluster bean cv. PUSANAVBAHAR.
CA3233353A1 (en) Organosulfur compounds as plant biostimulants
Bezgodov et al. Competitive ability of grain-forage varieties of spring vetch when grown in a mixture with rapeseed

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033197.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802315

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011523685

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000260

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 13386607

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1566/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10802315

Country of ref document: EP

Kind code of ref document: A1