WO2011010341A1 - Current switching device and method used in the device - Google Patents

Current switching device and method used in the device Download PDF

Info

Publication number
WO2011010341A1
WO2011010341A1 PCT/JP2009/003410 JP2009003410W WO2011010341A1 WO 2011010341 A1 WO2011010341 A1 WO 2011010341A1 JP 2009003410 W JP2009003410 W JP 2009003410W WO 2011010341 A1 WO2011010341 A1 WO 2011010341A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
induction motor
unit
detection
Prior art date
Application number
PCT/JP2009/003410
Other languages
French (fr)
Japanese (ja)
Inventor
浜田英嗣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/003410 priority Critical patent/WO2011010341A1/en
Publication of WO2011010341A1 publication Critical patent/WO2011010341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/30Direct torque control [DTC] or field acceleration method [FAM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Definitions

  • the present invention relates to a current switching device, and more particularly to a current switching device mounted on a moving body such as an automobile.
  • a value of a current flowing through a stepping motor is fed back to a CPU (Central Processing Unit) as a current value, and the CPU is based on the fed back current value.
  • a CPU Central Processing Unit
  • the allowable range of the current that can be passed through the stepping motor is relatively wide, if the current value to be fed back is measured by one current detection sensor, the resolution at the time of measurement must be lowered. It is difficult to measure with a resolution corresponding to. Therefore, conventionally, in order to measure the current value flowing through the stepping motor having a large allowable range described above with a resolution corresponding to the measurement range, measurement is performed while switching a plurality of current detection sensors having different resolutions.
  • an object of the present invention is to provide a current switching device in which the output does not change sharply even when an induction motor is controlled using a plurality of current detection sensors.
  • a first current detection unit that detects a current flowing in each phase of an induction motor as a first current, and a second current having a higher resolution than the first current detection unit.
  • a second current detection unit that detects the current; a control unit that controls the torque of the induction motor to be a target value based on at least one of the first current and the second current; and And switching means for switching while gradually changing the current from one current to the other when the current for controlling the electric motor is switched between the first current and the second current.
  • the switching unit switches the current when the control unit controls the induction motor by gradually changing the current between the first current and the second current
  • the first current and the second current are gradually changed by weighted averaging.
  • a third aspect further includes a rotation speed detection means for detecting the rotation speed of the rotor of the induction motor in the first aspect, and the control means has a predetermined rotation speed detected by the rotation speed detection means.
  • the induction motor is controlled based on the second current when the target value is less than the second threshold value that is less than the first threshold value.
  • control unit further includes a rotation speed detection unit that detects a rotation speed of the rotor of the induction motor, and the control unit has a predetermined rotation speed detected by the rotation speed detection unit.
  • the induction motor is controlled based on the first current.
  • the induction motor generates a driving force that causes the vehicle to travel.
  • the induction motor is mounted on a passenger car, and the control means controls the torque of the induction motor having an allowable maximum current of 200 amperes to 1000 amperes.
  • the induction motor is mounted on a passenger car, and the control means controls the torque of the induction motor having a maximum power consumption of 20 kilowatts to 200 kilowatts.
  • the eighth aspect includes a first current detection step for detecting a current flowing in each phase of the induction motor as a first current, and a second resolution with higher resolution than when the current is detected in the first current detection step.
  • the current switching is performed so that the output torque does not change sharply.
  • Equipment can be provided.
  • the torque of the induction motor can be prevented from changing sharply.
  • the torque of the induction motor when the rotation speed of the induction motor is low and the target torque value is the low torque target value, the torque of the induction motor can be controlled smoothly.
  • the torque of the induction motor is controlled based on an incorrect current value. You can prevent it.
  • the vehicle is caused by a steep change in the torque of the induction motor that occurs when switching from one of the current detected with low resolution and the current detected with high resolution to the other. This prevents vibrations from being transmitted to the passenger.
  • a markedly high reduction effect can be achieved when reducing vibrations that occur when controlling an induction motor mounted on a passenger car.
  • a markedly high reduction effect can be achieved when reducing vibrations that occur when controlling an induction motor mounted on a passenger car.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the current switching device according to the first embodiment.
  • FIG. 2 is a diagram showing a more detailed configuration of the phase current detection unit.
  • FIG. 3A is a diagram comparing an example of values generated by the low resolution detection unit and the high resolution detection unit, respectively.
  • FIG. 3B is a diagram comparing an example of values generated by the low resolution detection unit and the high resolution detection unit, respectively.
  • FIG. 3C is a diagram comparing an example of a low resolution detection value and a high resolution detection value.
  • FIG. 3D is a diagram comparing an example of a low resolution detection value and a high resolution detection value.
  • FIG. 4 is a diagram illustrating an example of a current value calculated so as to gradually change based on the low resolution detection value and the high resolution detection value.
  • FIG. 5 is a flowchart showing processing of the control unit according to the first embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a current switching device 1 according to a first embodiment of the present invention.
  • the current switching device 1 according to the present embodiment includes an induction motor 101, a first phase current detection unit 102, a second phase current detection unit 103, a third phase current detection unit 104, and a rotation speed detection unit. 105, a control unit 106, and a drive unit 107.
  • the induction motor 101 is a so-called motor that rotates a rotor with electric power supplied from the drive unit 107.
  • the case where the induction motor 101 is a three-phase AC induction motor will be described as an example.
  • the first phase current detection unit 102 detects the value of the current flowing from the drive unit 107 to the first phase (in this embodiment, the U phase) of the induction motor 101.
  • the first phase current detection unit 102 has a first resolution with a relatively high resolution (hereinafter referred to as “high resolution”) and a relatively low resolution (hereinafter referred to as “low resolution”). Detect the value of the current flowing through the phase.
  • the first phase current detection unit 102 generates a detection signal H1 indicating the value of the current detected with high resolution. Further, the first phase current detection unit 102 generates a detection signal L1 indicating the value of the current detected with low resolution.
  • the second phase current detection unit 103 is configured to reduce the value of the current flowing from the drive unit 107 to the second phase (V phase in the present embodiment) of the induction motor 101 as in the first phase current detection unit 102. And with high resolution.
  • the second phase current detection unit 103 generates a detection signal H2 indicating the value of the current detected with high resolution. Further, the second phase current detection unit 103 generates a detection signal L2 indicating the value of the current detected with low resolution.
  • the third phase current detection unit 104 is configured to reduce the value of the current flowing from the drive unit 107 to the third phase (W phase in this embodiment) of the induction motor 101 in the same manner as the first phase current detection unit 102. And with high resolution.
  • the third phase current detection unit 104 generates a detection signal H3 indicating the value of the current detected with high resolution. Further, the third phase current detection unit 104 generates a detection signal L3 indicating the value of the current detected with low resolution.
  • Rotational speed detector 105 detects the rotational speed of the rotor of induction motor 101.
  • the rotation speed detection unit 105 acquires a speed signal Vs having a voltage corresponding to the rotation speed of the rotor of the induction motor 101.
  • the speed signal Vs is a signal generated by, for example, a resolver or a rotary encoder attached so as to be able to generate a voltage corresponding to the rotation speed of the rotor of the induction motor 101.
  • the rotation speed detection unit 105 converts the voltage of the speed signal Vs into a digital value indicating the rotation speed corresponding to the magnitude of the voltage, and generates a digital signal indicating the converted digital value as the rotation speed signal V. To do.
  • control unit 106 determines when the rotor of induction motor 101 rotates. Control is performed by giving an instruction to the drive unit 107 described later so that the torque becomes a torque target value having a magnitude indicated by the torque target signal To. It is assumed that the torque target signal To is generated by a generator not shown. A more detailed description of the control unit 106 will be described later.
  • the drive unit 107 controls the voltage and current of power supplied from a power source (not shown) according to an instruction given from the control unit 106, and supplies it to the induction motor 101.
  • the drive unit 107 is typically an inverter circuit including one or more switching elements (in the case where the induction motor 101 is a three-phase induction motor, for example, six switching elements are included).
  • the control unit 106 sets the switching elements included in the drive unit 107, respectively. An instruction to open and close is given, and the timing or duty ratio for opening and closing each is changed.
  • the control unit 106 sets the switching elements included in the drive unit 107, respectively.
  • the timing for opening and closing or the duty ratio By changing the timing for opening and closing or the duty ratio, the magnitude of the torque when the rotor of the induction motor 101 rotates becomes the magnitude indicated by the torque target signal To in each phase of the induction motor 101.
  • PWM Pulse Width Modulation
  • FIG. 2 is a block diagram showing a more detailed configuration of the first phase current detection unit 102 to the third phase current detection unit 104 according to the present embodiment.
  • Each of the first phase current detection unit 102 to the third phase current detection unit 104 according to the present embodiment includes a low resolution detection unit 201 that detects a current value at the low resolution described above, and a current at the high resolution described above. And a high-resolution detection unit 202 that detects the value of.
  • the low resolution detection unit 201 includes an amplification unit 301, an AD converter 302, and a correction unit 303.
  • the amplifying unit 301 amplifies a voltage proportional to the current flowing in the phase detected by each of the first phase current detecting unit 102 to the third phase current detecting unit 104 including the amplifying unit 301.
  • the voltage proportional to the current flowing through the phase will be described.
  • Each path of current flowing from the drive unit 107 to each phase of the induction motor 101 is wired so as to pass through a gap at the center of a ring-shaped magnetic body (not shown) around which a conducting wire is wound.
  • a ring-shaped magnetic body around which a conductive wire is wound is a so-called current transformer, which generates an electromotive force when a current flows through a path passing through a central gap, and is a conductive wire wound with a voltage (potential difference) corresponding to the flowing current.
  • a current transformer is provided for each path of the current flowing in each phase so that a voltage corresponding to the current flowing in each of the first to third phases can be generated. It shall be. That is, the voltage proportional to the current flowing in the phase is a voltage detected by a current transformer provided in the path of the current flowing in each phase.
  • the current transformer provided in the path of the current flowing in the first phase generates a current signal A1 having a voltage proportional to the current flowing in the first phase.
  • the current transformer provided in the path of the current flowing through the second phase generates a current signal A2 having a voltage proportional to the current flowing through the second phase.
  • the current transformer provided in the path of the current flowing in the third phase generates a current signal A3 having a voltage proportional to the current flowing in the third phase.
  • the amplification unit 301 included in the first phase current detection unit 102 acquires the current signal A1 generated by the current transformer provided in the path of the current flowing in the first phase, and the acquired current signal A1 The voltage is amplified with a predetermined amplification factor.
  • the amplification unit 301 included in the second phase current detection unit 103 acquires the current signal A2 generated by the current transformer provided in the path of the current flowing in the second phase, and acquires the acquired current signal A2. Is amplified at a predetermined amplification factor.
  • the amplification unit 301 included in the third phase current detection unit 104 acquires the current signal A3 generated by the current transformer provided in the path of the current flowing in the third phase, and the acquired current signal A3 The voltage is amplified with a predetermined amplification factor.
  • the AD converter 302 converts the magnitude of the voltage amplified by the amplifying unit 301 into a digital value, and generates digital signals D1 to D3 indicating the converted digital values, respectively.
  • the AD converter 302 included in the first phase current detection unit 102 uses the voltage of the current signal A1 amplified by the amplification unit 301 included in the first phase current detection unit 102 as the voltage.
  • a digital signal D1 indicating the converted digital value is generated by converting into a digital value indicating the magnitude of the current according to the magnitude.
  • the AD converter 302 included in the second phase current detection unit 103 converts the voltage of the current signal A2 amplified by the amplification unit 301 included in the second phase current detection unit 103 to the magnitude of the voltage.
  • the digital value indicating the magnitude of the corresponding current is converted into a digital signal D2 indicating the converted digital value.
  • the AD converter 302 included in the third phase current detection unit 104 determines the voltage of the current signal A3 amplified by the amplification unit 301 included in the third phase current detection unit 104 according to the magnitude of the voltage.
  • the digital value indicating the magnitude of the current is converted to a digital signal D3 indicating the converted digital value.
  • the correction unit 303 corrects the digital value indicated by the digital signal converted by the AD converter 302, and generates the detection signal L1 to the detection signal L3 described above indicating the corrected digital value. More specifically, the correction unit 303 included in the first phase current detection unit 102 corrects the digital value indicated by the digital signal converted by the AD converter 302 included in the first phase current detection unit 102. The detection signal L1 indicating the corrected digital value is generated. Similarly, the correction unit 303 included in the second phase current detection unit 103 corrects and corrects the digital value indicated by the digital signal converted by the AD converter 302 included in the second phase current detection unit 103. A detection signal L2 indicating a digital value is generated.
  • the correction unit 303 included in the third phase current detection unit 104 corrects the digital value indicated by the digital signal converted by the AD converter 302 included in the third phase current detection unit 104, and corrects the digital value.
  • a detection signal L3 indicating a value is generated.
  • the low resolution detection unit 201 obtains and amplifies the current signal generated by the current transformer described above by the amplification unit 301, converts the magnitude of the voltage of the amplified signal into a digital value by the AD converter 302, and corrects the current signal. Correction is made at 303. Thereby, the low resolution detector 201 included in each of the first phase current detector 102 to the third phase current detector 104 detects the value of the current flowing in each of the first phase to the third phase, Digital signals indicating the detected current values as digital values can be generated as detection signals L1 to L3, respectively.
  • the high resolution detection unit 202 includes an amplification unit 401 and an AD converter 402. Similarly to the amplification unit 301 included in the low resolution detection unit 201, the amplification unit 401 amplifies a voltage proportional to the current flowing in the phase to be detected with a predetermined amplification factor. However, the amplification factor of the amplification unit 401 included in the high resolution detection unit 202 is determined in advance so as to be higher than the amplification factor predetermined in the amplification unit 301 included in the low resolution detection unit 201.
  • the amplification unit 401 included in the first phase current detection unit 102 acquires and acquires the current signal A1 generated by the current transformer provided in the path of the current flowing in the first phase.
  • the voltage of the current signal A1 is amplified with a predetermined amplification factor.
  • the amplification unit 401 included in the second phase current detection unit 103 acquires the current signal A2 generated by the current transformer provided in the path of the current flowing in the second phase, and acquires the acquired current signal A2. Is amplified at a predetermined amplification factor.
  • the amplification unit 401 included in the third phase current detection unit 104 acquires the current signal A3 generated by the current transformer provided in the path of the current flowing in the third phase, and the acquired current signal A3 The voltage is amplified with a predetermined amplification factor.
  • the AD converter 402 converts the magnitude of the voltage amplified by the amplification unit 401 into a digital value. More specifically, the AD converter 402 included in the first phase current detection unit 102 digitally calculates the magnitude of the voltage of the current signal A1 amplified by the amplification unit 401 included in the first phase current detection unit 102. The detection signal H1 indicating the converted digital value is generated. Similarly, the AD converter 402 included in the second phase current detection unit 103 converts the magnitude of the voltage of the current signal A2 amplified by the amplification unit 401 included in the second phase current detection unit 103 into a digital value. Thus, a detection signal H2 indicating the converted digital value is generated.
  • the amplification unit 401 included in the third phase current detection unit 104 converts the voltage magnitude of the current signal A3 amplified by the amplification unit 401 included in the third phase current detection unit 104 into a digital value.
  • a detection signal H3 indicating the converted digital value is generated.
  • the high resolution detection unit 202 converts the magnitude of the voltage of the current signal amplified by the amplification unit 401 having a higher amplification factor than the amplification unit 301 included in the low resolution detection unit 201 into a digital value by the AD converter 402. As a result, the current value can be detected with a higher resolution than that of the low resolution detector 201.
  • the amplification factor of the amplification unit 401 is set in advance by 10 times higher than the amplification factor of the amplification unit 301 will be described as an example.
  • the digital value converted by the AD converter 402 included in the high resolution detection unit 202 is included in the low resolution detection unit 201.
  • the digital value converted by the AD converter 302 is 10 times larger. Therefore, the digital value converted by the AD converter 402 reflects a change in value that is smaller by one tenth than the digital value converted by the AD converter 302.
  • the current value detected by the high resolution detection unit 202 is a digital value converted by the AD converter 302, that is, a value that is smaller by one tenth than the current value detected by the low resolution detection unit 201. Is reflected, and the high resolution detection unit 202 can detect the current value with a relatively high resolution higher than that of the low resolution detection unit 201.
  • the reason why the correction unit 303 corrects the digital value converted by the AD converter 302 is that the amplification factors of the amplification unit 301 and the amplification unit 401 are different from each other. More specifically, for example, when the amplification factor of the amplification unit 402 is 10 times larger than the amplification factor of the amplification unit 302 as in the above-described example, the digital value converted by the AD converter 302 is It becomes a value smaller by 1/10 than the digital value converted in 402. For this reason, the correction unit 303 converts the digital value converted by the AD converter 302 so that the digital value converted by the AD converter 302 matches the digital value converted by the AD converter 402 included in the same phase current detection unit. A correction that amplifies the signal by 10 times is performed.
  • the digital value corrected by the correction unit 303 becomes a digital value indicating the magnitude of the current in the same manner as the digital value converted by the AD converter 402.
  • the magnification when the correction unit 303 amplifies and corrects the digital value converted by the AD converter 302 is such that the digital value converted by the AD converter 302 matches the digital value converted by the AD converter 402.
  • the amplification unit 301 and the amplification unit 401 are determined in advance based on the respective amplification factors. For example, as described above, if the amplification factor of the amplification unit 401 is determined to be 10 times the amplification factor of the amplification unit 301, the magnification set in advance in the correction unit 303 is 10 times. It becomes.
  • the above is a more detailed description of the first phase current detection unit 102 to the third phase current detection unit 104.
  • the control unit 106 according to the present embodiment will be described in more detail.
  • the control unit 106 according to the present embodiment performs processing in parallel with the above-described conventionally known PWM control together with the processing shown in the flowchart of FIG. Then, the control unit 106 according to the present embodiment performs control while judging and switching the value of the current used when performing PWM control. Therefore, before describing the processing shown in the flowchart of FIG. 5, first, processing in which the control unit 106 determines a current value used for PWM control will be described.
  • the control unit 106 detects the current value used for PWM control by the low resolution detection unit 201 included in each of the first phase current detection unit 102 to the third phase current detection unit 104.
  • Each current value (digital value indicated by each of the detection signals L1 to L3; hereinafter referred to as a low resolution detection value L) and each current value detected by the high resolution detection unit 202 included therein (detection)
  • the digital value indicated by each of the signals H1 to H3 (hereinafter referred to as a high resolution detection value H). More specifically, the control unit 106 according to the present embodiment uses the low resolution detection value L indicated by the detection signal L1 to the detection signal L3 and the detection signal H1 to the detection signal H3 as current values used for PWM control.
  • the control unit 106 indicates a rotation speed indicated by the rotation speed signal V generated by the rotation speed detection unit 105 (hereinafter simply referred to as a rotation speed) and a torque target signal To generated by a generation unit (not shown).
  • a rotation speed the rotation speed signal
  • a torque target signal To generated by a generation unit not shown.
  • torque target value the torque target value
  • the control unit 106 is a low rotational speed whose rotational speed is less than a predetermined threshold th1 (hereinafter referred to as a low rotational speed), and a small torque target value less than a predetermined threshold th2.
  • a torque target value hereinafter referred to as a low torque target value
  • it is determined to use the high-resolution detection value H described above for PWM control. This is because if the PWM control is performed based on the low resolution detection value L, the torque when the rotor of the induction motor 101 rotates cannot be controlled smoothly.
  • the low resolution detection value L is a value obtained by amplifying the digital value converted by the AD converter 302 at a predetermined magnification, and is intermittent according to the magnification. Since it is a value (for example, an intermittent value of a multiple of 10 if the magnification is 10 times), the resolution is relatively low compared to the resolution of the high resolution detection value H detected by the high resolution detection unit 202 The current value detected at. That is, the low resolution detection value L is an intermittent value that can show only a relatively large change.
  • the control unit 106 performs PWM control based on the low resolution detection value L, the low resolution detection value L indicating a relatively large change is fed back, so that the torque controlled by the control unit 106 is also relative. Therefore, control can be performed only to make a large and steep change, so-called torque ripple occurs, and smooth control cannot be performed.
  • the induction motor 101 when used for generating a driving force for driving a moving body such as an automobile (hereinafter referred to as the host vehicle), the low rotation speed described above and the low torque described above are used.
  • the control unit 106 performs PWM control based on the low resolution detection value L when the target value is reached, a relatively large and sharply changing torque is transmitted to the passenger as vibration of the host vehicle.
  • the high resolution detection value H reflects the changed current value. That is, the high-resolution detection value H is a value that can indicate a relatively small change in addition to a relatively large change.
  • the control unit 106 performs PWM control based on the high-resolution detection value H, the high-resolution detection value H that indicates a relatively small change is fed back, so that the torque controlled by the control unit 106 is also relative.
  • the torque can be controlled so as to change slightly, and the torque can be controlled so as to change more smoothly.
  • the control unit 106 determines to use the high-resolution detection value H for PWM control when the rotation speed is low and the torque target value is low.
  • the control unit 106 performs PWM control that can smoothly change the torque by performing PWM control using the high resolution detection value H when the rotation speed is low and the target torque value is low. Can do.
  • the controller 106 has a high rotational speed whose rotational speed is not less than the aforementioned threshold value th1 (hereinafter referred to as high rotational speed), or a high torque target value whose torque target value is not less than the aforementioned threshold value th2.
  • a high torque target value it is determined that the low resolution detection value L is used for PWM control. This is because the control unit 106 controls the drive unit 107 so that the current flowing through the induction motor 101 becomes relatively large when the rotational speed is high or the target value is a high torque.
  • the high resolution detection unit 202 has a higher amplification rate than the amplification unit 301 included in the low resolution detection unit 201 and has a relatively large amount flowing in each of the first to third phases.
  • the amplifying unit 401 amplifies the voltages of the relatively high current signals A1 to A3 that are proportional to the current value.
  • the magnitude of the relatively high voltage amplified by the amplification unit 401 with a relatively high amplification factor is set as the AD converter 402. Converts to a digital value.
  • an allowable voltage range of a voltage that can be converted into a digital value by the AD converter 402 is determined in advance. For this reason, when a relatively high voltage amplified with a relatively high amplification factor is converted into a digital value by the AD converter 402, the AD converter 402 is not saturated even though the digital value converted by the AD converter 302 is not saturated. The digital value converted by is saturated. Therefore, the high resolution detection value H detected when the rotation speed is high or the target torque value is a value that does not accurately indicate the value of the current flowing in each phase.
  • the control unit 106 determines to use a digital value that does not saturate, that is, the low resolution detection value L, for PWM control when the rotational speed is high or the target torque value is high. Based on the high-resolution detection value H that does not indicate an accurate value by performing PWM control using the low-resolution detection value L when the control unit 106 has a high rotation speed or a high torque target value. This prevents PWM control.
  • the control unit 106 performs PWM control based on the low resolution detection value L, smooth control cannot be performed as described above.
  • the induction motor 101 when used to generate a driving force that causes the host vehicle to travel, the host vehicle is relatively less than when it has a high rotational speed or a high torque target value. It can be considered that the vehicle is traveling at a high traveling speed, or a relatively high torque load is applied to the rotor of the induction motor 101 of the host vehicle.
  • the torque when the rotor of the induction motor 101 rotates is increased. Even if the change is relatively large and steep, the vibration of the host vehicle that occurs as described above is not noticeable to the passenger of the host vehicle.
  • the above is the description of the process in which the control unit 106 determines the value of the current used for the PWM control.
  • the control unit 106 determines the current value used for the PWM control as described above, and performs the PWM control with the determined value, so that the optimum current according to the rotation speed and the torque target value is obtained.
  • PWM control can be performed using the value of the switched current.
  • the control unit 106 calculates the low resolution detection value L and the high resolution detection value H as described above.
  • the control unit 106 when the control unit 106 performs PWM control while switching between the low resolution detection value L and the high resolution detection value H, during the period in which the PWM control is performed using any of the detection values, It is possible to reduce the vibration of the host vehicle caused by the change.
  • the control unit 106 when the control unit 106 performs PWM control while switching between the low resolution detection value L and the high resolution detection value H, the torque may change greatly at the time of switching. There are two reasons why the torque changes greatly when switching between the low resolution detection value L and the high resolution detection value H.
  • the first cause is a variation in the electrical characteristics of the electric circuits constituting the low resolution detector 201 and the high resolution detector 202, respectively.
  • the amplification units 301 included in each of the first phase current detection unit 102 to the third phase current detection unit 104 have the aforementioned variation in electrical characteristics even if the same amplification factor is determined in advance. As a result, the amplification factor also varies. The same applies to the amplification unit 401 included in each of the first phase current detection unit 102 to the third phase current detection unit 104.
  • the magnification of the correction unit 303 is determined in advance based on the amplification factor of the amplification unit 301 and the amplification factor of the amplification unit 401, the amplification unit 301 included in the same phase current detection unit, and the amplification unit Variations occur in the amplification factors of the units 401. For this reason, there may be a discrepancy between the respective digital values indicated by the detection signals generated by the low resolution detector 201 and the high resolution detector 202 included in the same phase current detector.
  • FIG. 3A illustrates a case where each of the amplifying unit 301 and the amplifying unit 401 is assumed to have no variation in electrical characteristics, and each of the amplifying unit 301 and the amplifying unit 401 includes a low-resolution detecting unit 201 included in the first phase current detecting unit 102. It is a figure which compares and shows an example of the value shown by the signal produced
  • a digital value (low resolution detection value L) corrected by the correction unit 303, the voltage of the current signal A1 amplified by the amplification unit 401 included in the same phase current detection unit, and the voltage of the current signal A1 are converted into an AD converter.
  • the digital value (high resolution detection value H) converted in 402 is shown.
  • FIG. 3A only the digital value corrected by the correction unit 303 is indicated by a broken line for convenience of illustration.
  • the example illustrated in FIG. 3A illustrates signals generated when an amplification factor of the amplification unit 401 is determined in advance by an amplification factor that is ten times higher than the amplification factor of the amplification unit 301.
  • the correction unit 303 When an amplification factor that is 10 times higher than the amplification factor of the amplification unit 301 is predetermined in the amplification unit 401, the correction unit 303 has a predetermined magnification of 10 times, as is apparent from the above description. Therefore, the digital value converted by the AD converter 302 is corrected to 10 times the value.
  • the voltage of the current signal A1 amplified by the amplification unit 301 is converted into a digital value by the AD converter 302, and then the correction unit 303 performs 10 minutes.
  • the digital value corrected so as to be 1 is the same value as the digital value converted by the AD converter 402.
  • FIG. 3B is generated inside the low-resolution detection unit 201 included in the first phase current detection unit 102 when variation in electrical characteristics occurs in each of the amplification unit 301 and the amplification unit 401. It is a figure which compares and shows an example of the value shown by the signal and the signal each produced
  • a digital value (low resolution detection value L) corrected by the correction unit 303, the voltage of the current signal A1 amplified by the amplification unit 401 included in the same phase current detection unit, and the voltage of the current signal A1 are converted into an AD converter.
  • the digital value (high resolution detection value H) converted in 402 is shown. In FIG. 3B, only the digital value corrected by the correction unit 303 is indicated by a broken line for convenience of illustration.
  • the amplification factor 401 has an amplification factor that is 10 times higher than the amplification factor of the amplification unit 301 in advance.
  • a signal generated when the amplification unit 401 amplifies the voltage of the current signal A1 by 9.5 times the amplification factor of the amplification unit 301 is shown.
  • the digital value corrected by the correction unit 303 does not match the digital value converted by the AD converter 402.
  • the amplification factor of the amplification unit 401 varies even though the magnification of the correction unit 303 is predetermined based on the amplification factor predetermined for each of the amplification unit 401 and the amplification unit 301. This is because. More specifically, when the amplification factor of 10 times that of the amplification unit 301 is predetermined in the amplification unit 401, the magnification predetermined in the correction unit 303 is 10 times as described above. However, in actuality, the amplifying unit 401 amplifies the voltage of the signal at an amplification factor 9.5 times that of the amplifying unit 301.
  • the corrected digital value is the AD value included in the same phase current detection unit. This is because it is 10 / 9.5 times the digital value converted by the converter 402.
  • the digital value corrected by the correction unit 303 that is, the high resolution detection value H detected by the high resolution detection unit 202, and the digital value converted by the AD converter 302, that is, the low resolution detection value L are one. If not, when the control unit 106 switches between the low resolution detection value L and the high resolution detection value H as described above, the current value detected by the first phase current detection unit 102 becomes the first value. From the value indicated by the detection signal L1 generated by the low resolution detection unit 201 included in the phase current detection unit 102, the detection signal H1 generated by the high resolution detection unit 202 included in the same phase current detection unit is indicated. Switch instantly to the value. That is, the value of the current used by the control unit 106 for PWM control greatly changes to a different value.
  • the electric current of the electric power which the control part 106 controls the drive part 107 and supplies to the induction motor 101 changes a lot according to the value of the electric current which the control part 106 uses for PWM control. Therefore, when the control unit 106 performs PWM control while switching between the low resolution detection value L and the high resolution detection value H as described above, the torque greatly changes at the time of switching. This is the explanation of the first cause.
  • the second cause is that the resolution of the low resolution detector 201 and the resolution of the high resolution detector 202 when the range of current that can be passed through the induction motor 101 (hereinafter referred to as the allowable current range) is relatively large. This is the reason why the difference between The second cause will be described by taking, as an example, a difference that occurs in the resolution of the low resolution detection unit 201 and the high resolution detection unit 202 included in the first phase current detection unit 102.
  • the AD converter 302 and AD converter 402 included in the first phase current detection unit 102 respectively change the voltage allowable range of the current signal (hereinafter referred to as the allowable voltage range), the resolution, and the like.
  • the allowable voltage range the voltage allowable range of the current signal
  • the resolution the resolution
  • the like the range of current values that can be detected by the low-resolution detection unit 201 according to the present embodiment
  • a detection range the range of current values that can be detected by the low-resolution detection unit 201 according to the present embodiment
  • the detection range of the low resolution detection unit 201 becomes the same range as the allowable current range of the induction motor 101. Must be expanded as follows. For this reason, the resolution of the low resolution detector 201 is further lowered.
  • a current signal A1 having a relatively large voltage is generated. Even so, the amplification factor of the amplifying unit 301 must be relatively small so as not to exceed the allowable voltage range of the AD converter 302. However, even if the amount of change in voltage of the current signal A1 is the same, if the amplification factor of the amplification unit 301 is relatively small, the amplification factor of the amplification unit 301 is not relatively small compared to the case where the amplification factor 301 is not relatively small. The amount of change in the voltage of the signal A1 is relatively reduced.
  • the resolution of the high resolution detection unit 202 is determined in advance so as to be a resolution corresponding to the smoothness of control required when the rotation speed is low and the target torque value is low as described above. Further, as is apparent from the above description, the resolution of the high resolution detection unit 202 is determined by the amplification factor of the amplification unit 401 regardless of the allowable current range of the induction motor 101. For this reason, even if the allowable current range of the induction motor 101 is relatively increased without changing the specifications of the AD converter 402, the resolution of the high resolution detection unit 202 can be reduced by setting the amplification factor of the amplification unit 401 in advance. The required high resolution can be achieved.
  • the allowable current range of the induction motor 101 is relatively increased without changing the specifications of the AD converter 302 and the AD converter 402
  • the resolution of the low resolution detector 201 is relatively lowered, and the high resolution detector The resolution of 202 need not be changed. For this reason, when the allowable current range of the induction motor 101 is relatively increased, the difference between the resolution of the low resolution detector 201 and the resolution of the high resolution detector 202 is relatively increased.
  • FIG. 3C shows the value of the current detected by the low resolution detection unit 201 included in the first phase current detection unit 102 when the allowable current range of the induction motor 101 is relatively small, that is, the low resolution detection value L.
  • FIG. 6 is a diagram comparing an example of a current value detected by a high resolution detection unit 202 included in the same phase current detection unit, that is, a high resolution detection value H.
  • the high resolution detection value H is indicated by a solid line
  • the low resolution detection value L is indicated by a broken line.
  • the voltage of the current signal A1 is indicated by a solid line.
  • the largest difference between the low resolution detection value L and the high resolution detection value H that occurs when the allowable current range of the induction motor 101 is relatively small is ⁇ 1.
  • FIG. 3D shows a low resolution detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the first phase current detection unit 102 when the allowable current range of the induction motor 101 is relatively large. It is a figure which compares an example of the resolution detection value L and the high resolution detection value H.
  • the high resolution detection value H is indicated by a solid line
  • the low resolution detection value L is indicated by a broken line.
  • the voltage of the current signal A1 is indicated by a solid line.
  • 3D also shows the difference ⁇ 1 shown in FIG. 3C for comparison.
  • the largest difference between the low resolution detection value L and the high resolution detection value H when the allowable current range of the induction motor 101 is relatively large is ⁇ 2 which is larger than the above-described difference ⁇ 1.
  • the low resolution detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the first phase current detection unit 102 respectively indicates that the torque greatly changes due to the first cause.
  • the mismatch occurring between the detection value L and the high resolution detection value H has been described as an example.
  • the low resolution detection value L and the high resolution detection value detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the second phase current detection unit 103 to the third phase current detection unit 104 respectively. Needless to say, there may be a discrepancy with H due to the same first cause.
  • the difference generated between the detection value L and the high resolution detection value H has been described as an example.
  • the low resolution detection value L and the high resolution detection value detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the second phase current detection unit 103 to the third phase current detection unit 104 respectively.
  • the control unit 106 switches between the low resolution detection value L and the high resolution detection value H, the torque of the induction motor 101 is caused by the first cause and the second cause described above. It will change greatly. For example, when the induction motor 101 is used to generate a driving force for running the host vehicle, the torque change caused by the first cause and the second cause described above becomes the vibration of the host vehicle. Will be transmitted to the passenger.
  • the detection range of the low resolution detection unit 201 is the same as the allowable current range of the induction motor 101. If the amplification factor of the amplification unit 401 is set higher than the amplification factor of the amplification unit 301, the digital value converted by the AD converter 302 is not saturated as described above as the current flowing through the induction motor 101 increases. Nevertheless, the digital value converted by the AD converter 402 is saturated. That is, in the present embodiment, the low resolution detection unit 201 accurately measures all currents within the allowable current range of the induction motor 101 with low resolution, and the high resolution detection unit 202 performs relative measurement within the allowable current range of the induction motor 101. In particular, the current flowing in a low range is measured with high resolution more accurately and accurately.
  • FIG. 4 is a diagram for explaining a method of gradually changing the current value used by the control unit 106 for PWM control between the low resolution detection value L and the high resolution detection value H.
  • FIG. 4 shows, as an example, a case where the current value used by the control unit 106 for PWM control is gradually changed from the high resolution detection value H to the low resolution detection value L and switched.
  • the low resolution detection unit 201 and the high resolution detection unit included in the first phase current detection unit 102 are shown.
  • control unit 106 When the control unit 106 switches the current value used for the PWM control between the low resolution detection value L and the high resolution detection value H, the respective values are gradually changed by weighted averaging. More specifically, when the control unit 106 switches between the low-resolution detection value L and the high-resolution detection value H by gradually changing the calculation, the control unit 106 performs an operation represented by the following formula.
  • S is a current value gradually changed for use in PWM control
  • is a coefficient
  • L is the aforementioned low resolution detection value L
  • H is the above high resolution detection value H.
  • the rotation speed is the low rotation speed described above, Further, this corresponds to the state where the torque target value is the low torque target value described above and the rotational speed is the high rotational speed described above or the torque target value is the high torque target value described above.
  • the control unit 106 When the switching start time Ts1 arrives, the control unit 106 gradually increases the above-mentioned ⁇ from 0 to 1 as shown in FIG. 5 until the switching end time Te1 arrives. Then, the current value S used for the PWM control is sequentially calculated. The controller 106 uses the calculated current value S for PWM control while sequentially calculating the current value S. Thereby, as is clear from the above formula (1), the control unit 106 determines the value of the current used for PWM control from the time when the switching start time Ts1 arrives until the time when the switching end time Te1 arrives. Switching can be performed while gradually changing from H to a low resolution detection value L. When the switching end time Te1 arrives and the switching ends, the control unit 106 performs PWM control using the low resolution detection value L.
  • the control unit 106 also switches the current value used for PWM control from the low resolution detection value L to the high resolution detection value H. Perform the operation indicated by. More specifically, when the switching start time Ts2 for switching from the low resolution detection value H to the high resolution detection value L has arrived, the control unit 106 starts the calculation represented by the above formula (1) and uses it for PWM control. The current value is gradually changed from the low resolution detection value L to the high resolution detection value H.
  • the switching start time Ts2 for switching from the low resolution detection value L to the high resolution detection value H has arrived (hereinafter simply referred to as the switching start time Ts2)
  • the rotation speed is the high rotation speed described above or the torque target. This corresponds to a state where the value is the aforementioned high torque target value and the rotational speed is the aforementioned low rotational speed and the torque target value is the aforementioned low torque target value.
  • the control unit 106 When the switching start time Ts2 arrives, the control unit 106 gradually decreases the above-described ⁇ from 1 to 0, unlike the case described above with reference to FIG. 5 until the switching end time Te2 arrives.
  • the current value S used for the PWM control is sequentially calculated by performing the calculation represented by the above formula (1).
  • the controller 106 uses the calculated current value S for PWM control while sequentially calculating the current value S.
  • the value used for the PWM control after the switching start time Ts2 arrives and until the switching end time Te2 arrives. Switching can be performed while gradually changing from the low resolution detection value L to the high resolution detection value H.
  • the control unit 106 switches the low resolution detection value L and the high resolution detection value H while gradually changing them.
  • the low-resolution detection unit included in the first phase current detection unit 102 is used to describe a method of gradually changing the low-resolution detection value L and the high-resolution detection value H that are switched by the control unit 106. Only the low resolution detection value L and the high resolution detection value H detected by the high resolution detection unit 201 and the high resolution detection unit 202 have been described with reference to FIG. However, when the control unit 106 according to the present embodiment switches the low resolution detection value L and the high resolution detection value H, the low resolution detection value L and the high resolution detection value detected for each of the phase current detection units, respectively.
  • the current value S is sequentially calculated for each phase current detection unit using H in the calculation represented by the above formula (1). Then, the control unit 106 sequentially calculates the current value S for each phase current detection unit, and applies the calculated current value S to the PWM control as the current value detected by each phase current detection unit. Use.
  • the period from the switching start time Ts1 to the switching end time Te1 and the period from the switching start time Ts2 to the switching end time Te2 may be periods of any arbitrary length.
  • processing of the control unit 106 according to the present embodiment will be described with reference to the flowchart shown in FIG.
  • the processing shown in the flowchart of FIG. 5 is started when power supply is started to the current switching device 1 according to the present embodiment, and is ended when power supply is stopped.
  • the current switching device 1 according to the present embodiment is mounted on the host vehicle, the ignition switch of the host vehicle is turned on, and power supply to the current switching device 1 is started as shown in the flowchart of FIG.
  • the process is terminated when the ignition switch is turned off and the power supply to the current switching device 1 is stopped.
  • This is the same as the processing for PWM control processed by the control unit 106 in parallel with the processing shown in the flowchart shown in FIG. 5 as described above.
  • step S101 the control unit 106 determines whether the rotation speed of the rotor of the induction motor 101 is the low rotation speed described above or the high rotation speed described above.
  • step S101 the control unit 106 acquires the rotation speed signal V generated by the rotation speed detection unit 105, and the rotation speed indicated by the acquired rotation speed signal V. Is less than the above-mentioned threshold value th1.
  • the control unit 106 determines that the rotation speed is a low rotation speed and advances the process to step S102.
  • the control unit 106 determines that the rotation speed is a high rotation speed and advances the process to step S104.
  • step S102 the control unit 106 determines whether the torque target value given from a generating unit (not shown) is the above-described low torque target value or the above-described high torque target value.
  • step S101 the control unit 106 acquires a torque target signal To generated by a generation unit (not shown), and a torque target value indicated by the acquired torque target signal To. Is less than the threshold value th2.
  • the control unit 106 determines that the torque target value is a low torque target value, and advances the process to step S103.
  • the control unit 106 determines that the torque target value is a high torque target value, and advances the process to step S104.
  • step S103 the control unit 106 determines whether or not the current value used for PWM control is the high-resolution detection value H.
  • the control unit 106 recognizes and recognizes the value of the current used in the parallel PWM control process as described above. It is determined whether or not the value of the measured current is the high resolution detection value H.
  • the control unit 106 determines in step S103 that the current value used for the PWM control is not the high resolution detection value H, the control unit 106 proceeds to step S105.
  • the control unit 106 determines in step S103 that the current value used for PWM control is the high-resolution detection value H, the process returns to step S101.
  • step S104 the control unit 106 determines whether or not the current value used for PWM control is the low-resolution detection value L.
  • the control unit 106 recognizes the current value used in the parallel PWM control process as described above, It is determined whether or not the recognized current value is the low resolution detection value L.
  • the control unit 106 proceeds to step S105.
  • the control unit 106 determines in step S103 that the current value used for the PWM control is the low resolution detection value L
  • the control unit 106 returns the process to step S101.
  • step S105 the control unit 106 switches the current value used for the PWM control between the low resolution detection value L and the high resolution detection value H by the above-described method.
  • An example of a specific process in step S105 will be described.
  • the control unit 106 determines in step S105 that the process has proceeded from the process in step S103 to step S105, the switching start time Ts2 has been reached.
  • the current value used for the PWM control is switched while gradually changing from the low resolution detection value L to the high resolution detection value H as described above. The reason why the control unit 106 can determine that the aforementioned switching start time Ts2 has arrived when the process proceeds from step S103 to step S105.
  • the control unit 106 can advance the process from step S103 to step S105 because it is determined in step S101 that the rotation speed is a low rotation speed, and in step S102, the torque target value is a low torque target. Only when it is determined that there is.
  • the control unit 106 can determine that the current value used for PWM control in step S103 is not the high resolution detection value H.
  • step S105 when the control unit 106 proceeds from step S103 to step S105, the low rotational speed and the low torque target value are obtained from the state of the high rotational speed or the high torque target value as described above.
  • the control unit 106 determines that the above-described switching start time Ts2 has arrived, and determines the current value used for PWM control by the above-described method using the low-resolution detection value L. Is switched while gradually changing from 1 to the high-resolution detection value H.
  • step S105 determines that the process has proceeded from step S104 to step S105
  • the control unit 106 determines that the switching start time Ts1 has been reached, and performs PWM control as described above.
  • the current value to be used is switched while gradually changing from the low resolution detection value L to the high resolution detection value H.
  • the reason for this is that the control unit 106 can proceed from step S104 to step S105 because it is determined in step S101 that the rotation speed is a high rotation speed, or in step S102, torque is determined. Only when it is determined that the target value is a high torque target.
  • the control unit 106 can determine that the current value used for the PWM control in step S104 is not the low resolution detection value L.
  • the control unit 106 that repeats the processing shown in the flowchart of FIG. , When it is determined that the rotation speed is low and the target torque value is low, and the current value used for PWM control has already been switched to the high resolution detection value H.
  • step S104 when the control unit 106 advances the process from step S104 to step S105, the low rotational speed and the low torque target value are changed to the high rotational speed or the high torque target value as described above.
  • the control unit 106 determines that the above-described switching start time Ts1 has arrived, and determines the current value used for the PWM control by the above-described method using the high-resolution detection value H. To low resolution detection value L.
  • step S105 When the process of step S105 is completed, the control unit 106 returns the process to step S101.
  • the above is the description of the current switching device 1 according to the present embodiment.
  • the current switching device 1 according to the present embodiment uses a low-resolution detection value L and a high-resolution detection value H detected by the first phase current detection unit 102 to the third phase current detection unit 104, respectively, to detect a phase current. It is used for PWM control by switching while gradually changing each part. Therefore, according to the current switching device 1 according to the present embodiment, it is possible to eliminate a large change in the torque of the induction motor 101 that occurs when switching between the low resolution detection value L and the high resolution detection value H.
  • the induction motor 101 according to the present embodiment when the induction motor 101 according to the present embodiment is mounted on the host vehicle, it is caused by a large change in the torque of the induction motor 101 that occurs when switching between the low resolution detection value L and the high resolution detection value H. It is possible to prevent the vibration of the own vehicle from being transmitted to the passenger.
  • the current switching device 1 when the rotation speed of the induction motor 101 is low and the torque target value is the low torque target value, the high resolution detected by each phase current detection unit. Since PWM control is performed based on the detected value H, torque can be controlled smoothly. On the other hand, according to the current switching device 1 according to the present embodiment, when the rotation speed of the induction motor 101 is a high rotation speed or the torque target value is a high torque target value, the low resolution detected by each phase current detection unit. Since PWM control is performed based on the detection value L, it is possible to prevent PWM control based on a saturated inaccurate value.
  • control unit 106 typically includes an integration of a CPU (Central Processing Unit), an LSI (Large Scale Integration), a microcomputer, and the like that can interpret and execute the above-described control and processing programs. It may be realized by a circuit. Further, when the control unit 106 according to the present embodiment is realized by the above-described integrated circuit, an electronic circuit capable of realizing the functions of the first phase current detection unit 102 to the third phase current detection unit 104 in the integrated circuit. May be integrated.
  • CPU Central Processing Unit
  • LSI Large Scale Integration
  • the induction motor 101 is a three-phase AC induction motor has been described as an example.
  • the control unit 106 can control the torque based on the flowing current
  • the induction motor is used.
  • 101 may be any electric motor.
  • the motor that can be used as the induction motor 101 is a motor having two or less phases or a motor having four or more phases by increasing or decreasing the number of phase current detection units according to the phase of the motor used as the induction motor 101.
  • Various electric motors can be used.
  • control unit 106 performs PWM control.
  • PFM Pulse Frequency Modulation
  • Other control methods such as control may be used.
  • the gain of the amplification unit 301 included in each of the first phase current detection unit 102 to the third phase current detection unit 104 according to the first embodiment is calculated by the control unit 106 using the torque of the induction motor 101.
  • the amplification factors may be the same or different from each other.
  • control unit 106 has been described as performing control according to the rotation speed of the rotor of the induction motor 101. However, the control unit 106 is based on the rotation speed of the rotor of the induction motor 101. As described in the first embodiment, the control may be performed while switching between the low resolution detection value L and the high resolution detection value H.
  • the current values detected by the two detection units of the low resolution detection unit 201 and the high resolution detection unit 202 are switched while being gradually changed by weighted averaging.
  • the current values detected by the three or more detection units may be switched while being weighted and averaged in order.
  • the weighted average is used when the current values detected by the two detection units of the low resolution detection unit 201 and the high resolution detection unit 202 are gradually changed.
  • it may be gradually changed by a method using other mathematical expressions such as a quadratic function using the current value detected by each detection unit as a variable.
  • each of the AD converter 302 and the AD converter 402 included in each of the first phase current detection unit 102 to the third phase current detection unit 104 according to the first embodiment 0V-5V etc. are mentioned.
  • a specific example of the resolution of each of the AD converter 302 and the AD converter 402 is 10 bits (1024 steps from 0 to 1023).
  • the case where the value of the current flowing in each phase of the induction motor 101 is detected with low resolution and high resolution has been described.
  • other types of values such as a rotation speed or a rotation speed calculated based on the speed signal Vs generated by the resolver or the rotary encoder described above are detected by a plurality of detection units.
  • the values detected by the respective detection units may be switched while being gradually changed as described in the first embodiment.
  • the current flowing in each phase of the induction motor 101 is amplified and then converted into a digital value to detect each with low resolution and high resolution.
  • a first known method based on the width of a pulse generated by a rotary encoder or the like, and a rotary encoder per unit time are used.
  • the number of rotations may be obtained by the second conventionally known method based on the number of edges of the pulse generated by the above method.
  • the induction motor 101 may be an electric motor for generating a driving force for running the host vehicle, or an electric motor for controlling the driving force of the rear wheels of the host vehicle. May be.
  • the torque greatly changes, for example, for driving the host vehicle.
  • a higher reduction effect can be achieved. More specifically, an induction motor 101 having an allowable maximum current of 200 A (ampere) to 1000 A (ampere) or a maximum power consumption (wattage) of 20 kW (kilowatt) to 200 kW (kilowatt) is used.
  • the induction motor that operates at the above-described maximum allowable current or maximum power consumption is typically mounted on a passenger car (a normal passenger car or a small passenger car) among moving objects such as automobiles.
  • the present invention can reduce a large change in torque generated when controlling an electric motor, and can be used for, for example, a current switching device for controlling an induction motor mounted on a moving body such as an automobile.

Abstract

Provided is a current switching device the output of which does not change abruptly even when an induction motor is controlled by using a plurality of current detection sensors. The currents flowing through the respective phases of the induction motor are detected with a low resolution and a high resolution. When the rotational speed of the induction motor is low, and a torque target value is low, the torque of the induction motor is controlled according to a current detected with the high resolution. On the other hand, when the rotational speed thereof is high, or the torque target value is high, the torque thereof is controlled according to a current detected with the low resolution. The currents detected with the respective resolutions are switched while being gradually changed from one to the other.

Description

電流切替装置、及び当該装置で用いられる方法Current switching device and method used in the device
 本発明は、電流切替装置に関し、より特定的には、自動車などの移動体に搭載される電流切替装置に関する。 The present invention relates to a current switching device, and more particularly to a current switching device mounted on a moving body such as an automobile.
 近年、自動車などの車両には、例えば、駆動力の源となる誘導電動機、車両に搭載される車載機器で消費される電力を起こすための誘導電動機、及び車両の後輪を駆動して舵角を制御するための誘導電動機など様々な誘導電動機が搭載されている。そして、車両に搭載される誘導電動機を制御するための技術の一例として、特許文献1に示すステッピングモータの駆動方法とその装置(以下、従来技術と称する)が挙げられる。 In recent years, vehicles such as automobiles have, for example, an induction motor that is a source of driving force, an induction motor that generates power consumed by in-vehicle devices mounted on the vehicle, and a rear wheel of the vehicle by driving the steering wheel. Various induction motors such as an induction motor for controlling the motor are mounted. As an example of a technique for controlling an induction motor mounted on a vehicle, there is a stepping motor driving method and an apparatus (hereinafter referred to as a conventional technique) disclosed in Patent Document 1.
特開平5-207794号公報JP-A-5-207794
 上記従来技術などのようにステッピングモータを制御するときには、一般的には、ステッピングモータに流れる電流の値を電流値としてCPU(Central Processing Unit)にフィードバックし、当該CPUがフィードバックされた電流値に基づいてステッピングモータを制御するためのパルスを生成する。ここで、ステッピングモータに流すことのできる電流の許容範囲が相対的に広い場合、フィードバックする電流値を1つの電流検出センサで測定すると、測定するときの分解能を低くしなければならないため、測定範囲に応じた分解能で測定することが困難である。そこで、従来では、前述の許容範囲が大きいステッピングモータに流れる電流値を測定範囲に応じた分解能で測定するために、分解能が互いに異なる複数の電流検出センサを切り替えながら測定していた。 When controlling a stepping motor as in the above prior art, generally, a value of a current flowing through a stepping motor is fed back to a CPU (Central Processing Unit) as a current value, and the CPU is based on the fed back current value. To generate pulses for controlling the stepping motor. Here, when the allowable range of the current that can be passed through the stepping motor is relatively wide, if the current value to be fed back is measured by one current detection sensor, the resolution at the time of measurement must be lowered. It is difficult to measure with a resolution corresponding to. Therefore, conventionally, in order to measure the current value flowing through the stepping motor having a large allowable range described above with a resolution corresponding to the measurement range, measurement is performed while switching a plurality of current detection sensors having different resolutions.
 しかしながら、複数の電流検出センサを切り替えながら電流値を測定する場合、互いの電流検出センサの電気的特性のばらつき、及び分解能の差などに起因して、それぞれの電流検出センサを切り替えるときに測定される電流値に差が生じてしまう。そして、電流検出センサを切り替えるときに差の生じる電流値に基づいてステッピングモータを制御すると、ステッピングモータのトルク、或いは回転速度などの出力が急峻に変化してしまう。このことは、ステッピングモータに限らず、種々の誘導電動機を制御するときも同様である。 However, when measuring a current value while switching a plurality of current detection sensors, it is measured when switching each current detection sensor due to variations in electrical characteristics of each current detection sensor and differences in resolution. Difference in current value. Then, if the stepping motor is controlled based on the current value that causes a difference when switching the current detection sensor, the output of the stepping motor, such as the torque or the rotation speed, changes steeply. This is the same when controlling various induction motors as well as stepping motors.
 それ故に、本発明は、複数の電流検出センサを用いて誘導電動機を制御するときでも出力が急峻に変化しない電流切替装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a current switching device in which the output does not change sharply even when an induction motor is controlled using a plurality of current detection sensors.
 本発明は、上記目的を達成するために、以下に示すような特徴を有する。
 本発明の第1の局面は、誘導電動機のそれぞれの相に流れる電流を第1の電流として検出する第1の電流検出手段と、電流を第1の電流検出手段よりも高い分解能で第2の電流として検出する第2の電流検出手段と、第1の電流、及び第2の電流の少なくともいずれか一方に基づき誘導電動機のトルクが目標値になるように制御する制御手段と、制御手段が誘導電動機を制御するときの電流を第1の電流と第2の電流との間で切り替えるとき、一方の電流から他方の電流へ漸次変化させながら切り替える切替手段とを備える。
In order to achieve the above object, the present invention has the following features.
According to a first aspect of the present invention, there is provided a first current detection unit that detects a current flowing in each phase of an induction motor as a first current, and a second current having a higher resolution than the first current detection unit. A second current detection unit that detects the current; a control unit that controls the torque of the induction motor to be a target value based on at least one of the first current and the second current; and And switching means for switching while gradually changing the current from one current to the other when the current for controlling the electric motor is switched between the first current and the second current.
 第2の局面は、上記第1の局面において、切替手段は、制御手段が誘導電動機を制御するときの電流を第1の電流と第2の電流との間で漸次変化させて切り替えるとき、当該第1の電流と当該第2の電流とを加重平均して漸次変化させる。 According to a second aspect, in the first aspect, when the switching unit switches the current when the control unit controls the induction motor by gradually changing the current between the first current and the second current, The first current and the second current are gradually changed by weighted averaging.
 第3の局面は、上記第1の局面において、誘導電動機の回転子の回転速度を検知する回転速度検知手段をさらに備え、制御手段は、回転速度検知手段によって検知された回転速度が予め定められた第1のしきい値未満であり、且つ目標値が予め定められた第2のしきい値未満であるとき、第2の電流に基づいて誘導電動機を制御する。 A third aspect further includes a rotation speed detection means for detecting the rotation speed of the rotor of the induction motor in the first aspect, and the control means has a predetermined rotation speed detected by the rotation speed detection means. The induction motor is controlled based on the second current when the target value is less than the second threshold value that is less than the first threshold value.
 第4の局面は、上記第1の局面において、誘導電動機の回転子の回転速度を検知する回転速度検知手段をさらに備え、制御手段は、回転速度検知手段によって検知された回転速度が予め定められた第1のしきい値未満でない、又は目標値が予め定められた第2のしきい値未満でないとき、第1の電流に基づいて誘導電動機を制御する。 According to a fourth aspect, in the first aspect described above, the control unit further includes a rotation speed detection unit that detects a rotation speed of the rotor of the induction motor, and the control unit has a predetermined rotation speed detected by the rotation speed detection unit. When the current value is not less than the first threshold value or the target value is not less than the predetermined second threshold value, the induction motor is controlled based on the first current.
 第5の局面は、上記第2の局面において、誘導電動機は車両を走行させる駆動力を発生する。 In the fifth aspect, in the second aspect, the induction motor generates a driving force that causes the vehicle to travel.
 第6の局面は、上記第1の局面において、誘導電動機は、乗用車に搭載され、制御手段は、許容最大電流が200アンペア乃至1000アンペアの誘導電動機のトルクを制御する。 In a sixth aspect according to the first aspect, the induction motor is mounted on a passenger car, and the control means controls the torque of the induction motor having an allowable maximum current of 200 amperes to 1000 amperes.
 第7の局面は、上記第1の局面において、誘導電動機は、乗用車に搭載され、制御手段は、消費最大電力が20キロワット乃至200キロワットの誘導電動機のトルクを制御する。 In a seventh aspect, in the first aspect, the induction motor is mounted on a passenger car, and the control means controls the torque of the induction motor having a maximum power consumption of 20 kilowatts to 200 kilowatts.
 第8の局面は、誘導電動機のそれぞれの相に流れる電流を第1の電流として検出する第1の電流検出ステップと、電流を第1の電流検出ステップで検出するときよりも高い分解能で第2の電流として検出する第2の電流検出ステップと、第1の電流、及び第2の電流の少なくともいずれか一方に基づき誘導電動機のトルクが目標値になるように制御する制御ステップと、制御手段が誘導電動機を制御するときの電流を第1の電流と第2の電流との間で切り替えるとき、一方の電流から他方の電流へ漸次変化させながら切り替える切替ステップとを備える。 The eighth aspect includes a first current detection step for detecting a current flowing in each phase of the induction motor as a first current, and a second resolution with higher resolution than when the current is detected in the first current detection step. A control step for controlling the induction motor torque to be a target value based on at least one of the first current and the second current; And a switching step of switching while gradually changing from one current to the other when switching the current for controlling the induction motor between the first current and the second current.
 上記第1の局面によれば、第1の電流検出手段、及び第2の電流検出手段を複数の電流検出センサとして用いて誘導電動機を制御するときでも出力されるトルクが急峻に変化しない電流切替装置を提供できる。 According to the first aspect, even when the induction motor is controlled by using the first current detection unit and the second current detection unit as a plurality of current detection sensors, the current switching is performed so that the output torque does not change sharply. Equipment can be provided.
 上記第2の局面によれば、誘導電動機を制御するときに用いる電流を、低分解能で検出された電流と高分解能で検出された電流とのいずれか一方から他方へ切り替えるときに誘導電動機のトルクが急峻に変化することを防げる。 According to the second aspect, when the current used for controlling the induction motor is switched from one of the current detected with low resolution and the current detected with high resolution to the other, the torque of the induction motor Can be prevented from changing sharply.
 上記第3の局面によれば、誘導電動機の回転速度が低回転速度であって、且つトルクの目標値が低トルク目標値であるときには、誘導電動機のトルクを滑らかに制御できる。 According to the third aspect, when the rotation speed of the induction motor is low and the target torque value is the low torque target value, the torque of the induction motor can be controlled smoothly.
 上記第4の局面によれば、誘導電動機の回転速度が低回転速度であって、且つトルクの目標値が高トルク目標値であるときには、正確でない電流の値に基づいて誘導電動機のトルクを制御することを防げる。 According to the fourth aspect, when the rotation speed of the induction motor is a low rotation speed and the target value of the torque is a high torque target value, the torque of the induction motor is controlled based on an incorrect current value. You can prevent it.
 上記第5の局面によれば、低分解能で検出された電流と高分解能で検出された電流とのいずれか一方から他方へ切り替えるときに生じる誘導電動機のトルクの急峻な変化に起因して車両の搭乗者に振動が伝わることを防げる。 According to the fifth aspect, the vehicle is caused by a steep change in the torque of the induction motor that occurs when switching from one of the current detected with low resolution and the current detected with high resolution to the other. This prevents vibrations from being transmitted to the passenger.
 上記第6の局面によれば、乗用車に搭載される誘導電動機を制御するときに生じる振動を低減するときに格段に高い低減効果を奏することができる。 According to the sixth aspect, a markedly high reduction effect can be achieved when reducing vibrations that occur when controlling an induction motor mounted on a passenger car.
 上記第7の局面によれば、乗用車に搭載される誘導電動機を制御するときに生じる振動を低減するときに格段に高い低減効果を奏することができる。 According to the seventh aspect, a markedly high reduction effect can be achieved when reducing vibrations that occur when controlling an induction motor mounted on a passenger car.
 また、本発明に係る切替方法によれば、本発明に係る電流切替装置と同様の効果を奏することができる。 Further, according to the switching method according to the present invention, the same effects as those of the current switching device according to the present invention can be obtained.
図1は、第1の実施形態に係る電流切替装置の概略構成を示すブロック図である。FIG. 1 is a block diagram illustrating a schematic configuration of the current switching device according to the first embodiment. 図2は、相電流検出部のより詳細な構成を示す図である。FIG. 2 is a diagram showing a more detailed configuration of the phase current detection unit. 図3Aは、低分解能検出部と高分解能検出部とでそれぞれ生成される値の一例を比較する図である。FIG. 3A is a diagram comparing an example of values generated by the low resolution detection unit and the high resolution detection unit, respectively. 図3Bは、低分解能検出部と高分解能検出部とでそれぞれ生成される値の一例を比較する図である。FIG. 3B is a diagram comparing an example of values generated by the low resolution detection unit and the high resolution detection unit, respectively. 図3Cは、低分解能検出値と高分解能検出値との一例を比較する図である。FIG. 3C is a diagram comparing an example of a low resolution detection value and a high resolution detection value. 図3Dは、低分解能検出値と高分解能検出値との一例を比較する図である。FIG. 3D is a diagram comparing an example of a low resolution detection value and a high resolution detection value. 図4は、低分解能検出値と高分解能検出値とに基づいて漸次変化するように算出される電流の値の一例を示す図である。FIG. 4 is a diagram illustrating an example of a current value calculated so as to gradually change based on the low resolution detection value and the high resolution detection value. 図5は、第1の実施形態に係る制御部の処理を示すフローチャートである。FIG. 5 is a flowchart showing processing of the control unit according to the first embodiment.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る電流切替装置1の概略構成を示すブロック図である。本実施形態に係る電流切替装置1は、誘導電動機101と、第1の相電流検出部102と、第2の相電流検出部103と、第3の相電流検出部104と、回転速度検出部105と、制御部106と、駆動部107とを備える。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a current switching device 1 according to a first embodiment of the present invention. The current switching device 1 according to the present embodiment includes an induction motor 101, a first phase current detection unit 102, a second phase current detection unit 103, a third phase current detection unit 104, and a rotation speed detection unit. 105, a control unit 106, and a drive unit 107.
 誘導電動機101は、駆動部107から供給される電力で回転子を回転させる所謂モータである。本実施形態では、一例として、誘導電動機101が三相交流誘導電動機である場合について説明する。 The induction motor 101 is a so-called motor that rotates a rotor with electric power supplied from the drive unit 107. In this embodiment, the case where the induction motor 101 is a three-phase AC induction motor will be described as an example.
 第1の相電流検出部102は、駆動部107から誘導電動機101の第1の相(本実施形態では、U相)に流れる電流の値を検出する。第1の相電流検出部102は、予め相対的に高く定められた分解能(以下、高分解能と称する)と予め相対的に低く定められた分解能(以下、低分解能と称する)とで第1の相に流れる電流の値を検出する。第1の相電流検出部102は、高分解能で検出した電流の値を示す検出信号H1を生成する。また、第1の相電流検出部102は、低分解能で検出した電流の値を示す検出信号L1を生成する。 The first phase current detection unit 102 detects the value of the current flowing from the drive unit 107 to the first phase (in this embodiment, the U phase) of the induction motor 101. The first phase current detection unit 102 has a first resolution with a relatively high resolution (hereinafter referred to as “high resolution”) and a relatively low resolution (hereinafter referred to as “low resolution”). Detect the value of the current flowing through the phase. The first phase current detection unit 102 generates a detection signal H1 indicating the value of the current detected with high resolution. Further, the first phase current detection unit 102 generates a detection signal L1 indicating the value of the current detected with low resolution.
 第2の相電流検出部103は、駆動部107から誘導電動機101の第2の相(本実施形態では、V相)に流れる電流の値を第1の相電流検出部102と同様に低分解能、及び高分解能でそれぞれ検出する。第2の相電流検出部103は、高分解能で検出した電流の値を示す検出信号H2を生成する。また、第2の相電流検出部103は、低分解能で検出した電流の値を示す検出信号L2を生成する。 The second phase current detection unit 103 is configured to reduce the value of the current flowing from the drive unit 107 to the second phase (V phase in the present embodiment) of the induction motor 101 as in the first phase current detection unit 102. And with high resolution. The second phase current detection unit 103 generates a detection signal H2 indicating the value of the current detected with high resolution. Further, the second phase current detection unit 103 generates a detection signal L2 indicating the value of the current detected with low resolution.
 第3の相電流検出部104は、駆動部107から誘導電動機101の第3の相(本実施形態では、W相)に流れる電流の値を第1の相電流検出部102と同様に低分解能、及び高分解能でそれぞれ検出する。第3の相電流検出部104は、高分解能で検出した電流の値を示す検出信号H3を生成する。また、第3の相電流検出部104は、低分解能で検出した電流の値を示す検出信号L3を生成する。 The third phase current detection unit 104 is configured to reduce the value of the current flowing from the drive unit 107 to the third phase (W phase in this embodiment) of the induction motor 101 in the same manner as the first phase current detection unit 102. And with high resolution. The third phase current detection unit 104 generates a detection signal H3 indicating the value of the current detected with high resolution. Further, the third phase current detection unit 104 generates a detection signal L3 indicating the value of the current detected with low resolution.
 尚、第1の相電流検出部102~第3の相電流検出部104のそれぞれのより詳細な説明は後述する。 A more detailed description of each of the first phase current detection unit 102 to the third phase current detection unit 104 will be given later.
 回転速度検出部105は、誘導電動機101の回転子の回転速度を検出する。回転速度検出部105は、誘導電動機101の回転子の回転速度に応じた電圧を有する速度信号Vsを取得する。速度信号Vsは、例えば、誘導電動機101の回転子の回転速度に応じた電圧を生成できるように取り付けられたレゾルバ、或いはロータリーエンコーダなどによって生成される信号である。そして、回転速度検出部105は、速度信号Vsの電圧を、当該電圧の大きさに応じた回転速度を示すデジタル値に変換して、変換したデジタル値を示すデジタル信号を回転速度信号Vとして生成する。 Rotational speed detector 105 detects the rotational speed of the rotor of induction motor 101. The rotation speed detection unit 105 acquires a speed signal Vs having a voltage corresponding to the rotation speed of the rotor of the induction motor 101. The speed signal Vs is a signal generated by, for example, a resolver or a rotary encoder attached so as to be able to generate a voltage corresponding to the rotation speed of the rotor of the induction motor 101. Then, the rotation speed detection unit 105 converts the voltage of the speed signal Vs into a digital value indicating the rotation speed corresponding to the magnitude of the voltage, and generates a digital signal indicating the converted digital value as the rotation speed signal V. To do.
 制御部106は、検出信号H1~検出信号H3、検出信号L1~検出信号L3、回転速度信号V、及びトルク目標信号Toによってそれぞれ示される値に基づき、誘導電動機101の回転子が回転するときのトルクがトルク目標信号Toによって示される大きさのトルク目標値となるように後述する駆動部107に指示を与えて制御する。尚、トルク目標信号Toは図示しない生成部によって生成されるものとする。また、制御部106のより詳細な説明については後述する。 Based on the values indicated by detection signal H1 to detection signal H3, detection signal L1 to detection signal L3, rotation speed signal V, and torque target signal To, control unit 106 determines when the rotor of induction motor 101 rotates. Control is performed by giving an instruction to the drive unit 107 described later so that the torque becomes a torque target value having a magnitude indicated by the torque target signal To. It is assumed that the torque target signal To is generated by a generator not shown. A more detailed description of the control unit 106 will be described later.
 駆動部107は、図示しない電源から供給される電力の電圧、及び電流を制御部106から与えられる指示に応じて制御し、誘導電動機101に供給する。駆動部107は、典型的には、1以上のスイッチング素子を含む(誘導電動機101が三相誘導電動機の場合には、一例として、6つのスイッチング素子を含む)インバータ回路である。制御部106は、検出信号H1~検出信号H3、検出信号L1~検出信号L3、回転速度信号V、及びトルク目標信号Toによってそれぞれ示される値に基づいて、駆動部107に含まれるスイッチング素子をそれぞれ開閉する指示を与え、それぞれを開閉するタイミング、或いはデューティ比を変化させる。制御部106は、検出信号H1~検出信号H3、検出信号L1~検出信号L3、回転速度信号V、及びトルク目標信号Toによってそれぞれ示される値に基づいて、駆動部107に含まれるスイッチング素子をそれぞれ開閉するタイミング、或いはデューティ比を変化させることによって、誘導電動機101の回転子が回転するときのトルクの大きさがトルク目標信号Toによって示される大きさとなるように当該誘導電動機101のそれぞれの相に流れる電流を制御する従来周知の所謂PWM(Pulse Width Modulation)制御をする。 The drive unit 107 controls the voltage and current of power supplied from a power source (not shown) according to an instruction given from the control unit 106, and supplies it to the induction motor 101. The drive unit 107 is typically an inverter circuit including one or more switching elements (in the case where the induction motor 101 is a three-phase induction motor, for example, six switching elements are included). Based on the values indicated by the detection signal H1 to detection signal H3, the detection signal L1 to detection signal L3, the rotation speed signal V, and the torque target signal To, the control unit 106 sets the switching elements included in the drive unit 107, respectively. An instruction to open and close is given, and the timing or duty ratio for opening and closing each is changed. Based on the values indicated by the detection signal H1 to detection signal H3, the detection signal L1 to detection signal L3, the rotation speed signal V, and the torque target signal To, the control unit 106 sets the switching elements included in the drive unit 107, respectively. By changing the timing for opening and closing or the duty ratio, the magnitude of the torque when the rotor of the induction motor 101 rotates becomes the magnitude indicated by the torque target signal To in each phase of the induction motor 101. The so-called PWM (Pulse Width Modulation) control for controlling the flowing current is performed.
 以上が、本実施形態に係る電流切替装置1の概略構成の説明である。 The above is the description of the schematic configuration of the current switching device 1 according to the present embodiment.
 次に、本実施形態に係る第1の相電流検出部102~第3の相電流検出部104について詳細に説明する。図2は、本実施形態に係る第1の相電流検出部102~第3の相電流検出部104のより詳細な構成を示すブロック図である。本実施形態に係る第1の相電流検出部102~第3の相電流検出部104のそれぞれは、前述の低分解能で電流の値を検出する低分解能検出部201と、前述の高分解能で電流の値を検出する高分解能検出部202とを含む。 Next, the first phase current detection unit 102 to the third phase current detection unit 104 according to the present embodiment will be described in detail. FIG. 2 is a block diagram showing a more detailed configuration of the first phase current detection unit 102 to the third phase current detection unit 104 according to the present embodiment. Each of the first phase current detection unit 102 to the third phase current detection unit 104 according to the present embodiment includes a low resolution detection unit 201 that detects a current value at the low resolution described above, and a current at the high resolution described above. And a high-resolution detection unit 202 that detects the value of.
 低分解能検出部201は、増幅部301と、ADコンバータ302と、補正部303とを含む。増幅部301は、増幅部301をそれぞれ含む第1の相電流検出部102~第3の相電流検出部104でそれぞれ検出する相に流れる電流に比例した電圧を増幅する。ここで、相に流れる電流に比例した電圧について説明する。駆動部107から誘導電動機101のそれぞれの相に流れる電流の経路のそれぞれは、導線を巻き付けたリング状の磁性体(図示せず)の中心の空隙を通るように配線されている。導線を巻き付けたリング状の磁性体とは、所謂カレントトランスであって、中心の空隙を通る経路に電流が流れるときに起電力を生じ、流れる電流に応じた電圧(電位差)が巻き付けられた導線の両端で生じる。本実施形態では、一例として、第1の相~第3の相の全ての相にそれぞれ流れる電流に応じた電圧を生成できるように、それぞれの相に流れる電流の経路毎にカレントトランスが設けられているものとする。つまり、相に流れる電流に比例した電圧とは、それぞれの相に流れる電流の経路に設けられているカレントトランスで検出される電圧のことである。 The low resolution detection unit 201 includes an amplification unit 301, an AD converter 302, and a correction unit 303. The amplifying unit 301 amplifies a voltage proportional to the current flowing in the phase detected by each of the first phase current detecting unit 102 to the third phase current detecting unit 104 including the amplifying unit 301. Here, the voltage proportional to the current flowing through the phase will be described. Each path of current flowing from the drive unit 107 to each phase of the induction motor 101 is wired so as to pass through a gap at the center of a ring-shaped magnetic body (not shown) around which a conducting wire is wound. A ring-shaped magnetic body around which a conductive wire is wound is a so-called current transformer, which generates an electromotive force when a current flows through a path passing through a central gap, and is a conductive wire wound with a voltage (potential difference) corresponding to the flowing current. At both ends. In the present embodiment, as an example, a current transformer is provided for each path of the current flowing in each phase so that a voltage corresponding to the current flowing in each of the first to third phases can be generated. It shall be. That is, the voltage proportional to the current flowing in the phase is a voltage detected by a current transformer provided in the path of the current flowing in each phase.
 そして、第1の相に流れる電流の経路に設けられたカレントトランスは、第1の相に流れる電流に比例した電圧の電流信号A1を生成する。同様に、第2の相に流れる電流の経路に設けられたカレントトランスは、第2の相に流れる電流に比例した電圧の電流信号A2を生成する。そして、第3の相に流れる電流の経路に設けられたカレントトランスは、第3の相に流れる電流に比例した電圧の電流信号A3を生成する。 The current transformer provided in the path of the current flowing in the first phase generates a current signal A1 having a voltage proportional to the current flowing in the first phase. Similarly, the current transformer provided in the path of the current flowing through the second phase generates a current signal A2 having a voltage proportional to the current flowing through the second phase. The current transformer provided in the path of the current flowing in the third phase generates a current signal A3 having a voltage proportional to the current flowing in the third phase.
 そして、第1の相電流検出部102に含まれる増幅部301は、第1の相に流れる電流の経路に設けられたカレントトランスで生成される電流信号A1を取得し、取得した電流信号A1の電圧を予め定められた増幅率で増幅する。同様に、第2の相電流検出部103に含まれる増幅部301は、第2の相に流れる電流の経路に設けられたカレントトランスで生成される電流信号A2を取得し、取得した電流信号A2の電圧を予め定められた増幅率で増幅する。そして、第3の相電流検出部104に含まれる増幅部301は、第3の相に流れる電流の経路に設けられたカレントトランスで生成される電流信号A3を取得し、取得した電流信号A3の電圧を予め定められた増幅率で増幅する。 Then, the amplification unit 301 included in the first phase current detection unit 102 acquires the current signal A1 generated by the current transformer provided in the path of the current flowing in the first phase, and the acquired current signal A1 The voltage is amplified with a predetermined amplification factor. Similarly, the amplification unit 301 included in the second phase current detection unit 103 acquires the current signal A2 generated by the current transformer provided in the path of the current flowing in the second phase, and acquires the acquired current signal A2. Is amplified at a predetermined amplification factor. Then, the amplification unit 301 included in the third phase current detection unit 104 acquires the current signal A3 generated by the current transformer provided in the path of the current flowing in the third phase, and the acquired current signal A3 The voltage is amplified with a predetermined amplification factor.
 ADコンバータ302は、増幅部301で増幅された電圧の大きさをデジタル値に変換して、変換したデジタル値を示すデジタル信号D1~デジタル信号D3をそれぞれ生成する。 The AD converter 302 converts the magnitude of the voltage amplified by the amplifying unit 301 into a digital value, and generates digital signals D1 to D3 indicating the converted digital values, respectively.
 より具体的には、第1の相電流検出部102に含まれるADコンバータ302は、第1の相電流検出部102に含まれる増幅部301で増幅された電流信号A1の電圧を、当該電圧の大きさに応じた電流の大きさを示すデジタル値に変換して、変換したデジタル値を示すデジタル信号D1を生成する。同様に、第2の相電流検出部103に含まれるADコンバータ302は、第2の相電流検出部103に含まれる増幅部301で増幅された電流信号A2の電圧を、当該電圧の大きさに応じた電流の大きさを示すデジタル値に変換して、変換したデジタル値を示すデジタル信号D2を生成する。そして、第3の相電流検出部104に含まれるADコンバータ302は、第3の相電流検出部104に含まれる増幅部301で増幅された電流信号A3の電圧を、当該電圧の大きさに応じた電流の大きさを示すデジタル値に変換して、変換したデジタル値を示すデジタル信号D3を生成する。 More specifically, the AD converter 302 included in the first phase current detection unit 102 uses the voltage of the current signal A1 amplified by the amplification unit 301 included in the first phase current detection unit 102 as the voltage. A digital signal D1 indicating the converted digital value is generated by converting into a digital value indicating the magnitude of the current according to the magnitude. Similarly, the AD converter 302 included in the second phase current detection unit 103 converts the voltage of the current signal A2 amplified by the amplification unit 301 included in the second phase current detection unit 103 to the magnitude of the voltage. The digital value indicating the magnitude of the corresponding current is converted into a digital signal D2 indicating the converted digital value. Then, the AD converter 302 included in the third phase current detection unit 104 determines the voltage of the current signal A3 amplified by the amplification unit 301 included in the third phase current detection unit 104 according to the magnitude of the voltage. The digital value indicating the magnitude of the current is converted to a digital signal D3 indicating the converted digital value.
 補正部303は、ADコンバータ302で変換されたデジタル信号で示されるデジタル値を補正し、補正したデジタル値を示す前述の検出信号L1~検出信号L3を生成する。より具体的には、第1の相電流検出部102に含まれる補正部303は、第1の相電流検出部102に含まれるADコンバータ302で変換されたデジタル信号によって示されるデジタル値を補正し、補正したデジタル値を示す検出信号L1を生成する。同様に、第2の相電流検出部103に含まれる補正部303は、第2の相電流検出部103に含まれるADコンバータ302で変換されたデジタル信号によって示されるデジタル値を補正し、補正したデジタル値を示す検出信号L2を生成する。そして、第3の相電流検出部104に含まれる補正部303は、第3の相電流検出部104に含まれるADコンバータ302で変換されたデジタル信号によって示されるデジタル値を補正し、補正したデジタル値を示す検出信号L3を生成する。 The correction unit 303 corrects the digital value indicated by the digital signal converted by the AD converter 302, and generates the detection signal L1 to the detection signal L3 described above indicating the corrected digital value. More specifically, the correction unit 303 included in the first phase current detection unit 102 corrects the digital value indicated by the digital signal converted by the AD converter 302 included in the first phase current detection unit 102. The detection signal L1 indicating the corrected digital value is generated. Similarly, the correction unit 303 included in the second phase current detection unit 103 corrects and corrects the digital value indicated by the digital signal converted by the AD converter 302 included in the second phase current detection unit 103. A detection signal L2 indicating a digital value is generated. Then, the correction unit 303 included in the third phase current detection unit 104 corrects the digital value indicated by the digital signal converted by the AD converter 302 included in the third phase current detection unit 104, and corrects the digital value. A detection signal L3 indicating a value is generated.
 低分解能検出部201は、上述したカレントトランスによって生成される電流信号を増幅部301で取得して増幅し、増幅した信号の電圧の大きさをADコンバータ302でデジタル値に変換して、補正部303で補正する。これにより、第1の相電流検出部102~第3の相電流検出部104にそれぞれ含まれる低分解能検出部201は、第1の相~第3の相にそれぞれ流れる電流の値を検出し、検出した電流の値をデジタル値で示すデジタル信号を検出信号L1~検出信号L3としてそれぞれ生成できる。 The low resolution detection unit 201 obtains and amplifies the current signal generated by the current transformer described above by the amplification unit 301, converts the magnitude of the voltage of the amplified signal into a digital value by the AD converter 302, and corrects the current signal. Correction is made at 303. Thereby, the low resolution detector 201 included in each of the first phase current detector 102 to the third phase current detector 104 detects the value of the current flowing in each of the first phase to the third phase, Digital signals indicating the detected current values as digital values can be generated as detection signals L1 to L3, respectively.
 高分解能検出部202は、増幅部401と、ADコンバータ402とを含む。増幅部401は、低分解能検出部201に含まれる増幅部301と同様に、検出する相に流れる電流に比例した電圧を予め定められた増幅率で増幅する。ただし、高分解能検出部202に含まれる増幅部401の増幅率は、低分解能検出部201に含まれる増幅部301に予め定められた増幅率よりも高くなるように予め定められている。 The high resolution detection unit 202 includes an amplification unit 401 and an AD converter 402. Similarly to the amplification unit 301 included in the low resolution detection unit 201, the amplification unit 401 amplifies a voltage proportional to the current flowing in the phase to be detected with a predetermined amplification factor. However, the amplification factor of the amplification unit 401 included in the high resolution detection unit 202 is determined in advance so as to be higher than the amplification factor predetermined in the amplification unit 301 included in the low resolution detection unit 201.
 より具体的には、第1の相電流検出部102に含まれる増幅部401は、第1の相に流れる電流の経路に設けられたカレントトランスで生成される電流信号A1を取得し、取得した電流信号A1の電圧を予め定められた増幅率で増幅する。同様に、第2の相電流検出部103に含まれる増幅部401は、第2の相に流れる電流の経路に設けられたカレントトランスで生成される電流信号A2を取得し、取得した電流信号A2の電圧を予め定められた増幅率で増幅する。そして、第3の相電流検出部104に含まれる増幅部401は、第3の相に流れる電流の経路に設けられたカレントトランスで生成される電流信号A3を取得し、取得した電流信号A3の電圧を予め定められた増幅率で増幅する。 More specifically, the amplification unit 401 included in the first phase current detection unit 102 acquires and acquires the current signal A1 generated by the current transformer provided in the path of the current flowing in the first phase. The voltage of the current signal A1 is amplified with a predetermined amplification factor. Similarly, the amplification unit 401 included in the second phase current detection unit 103 acquires the current signal A2 generated by the current transformer provided in the path of the current flowing in the second phase, and acquires the acquired current signal A2. Is amplified at a predetermined amplification factor. Then, the amplification unit 401 included in the third phase current detection unit 104 acquires the current signal A3 generated by the current transformer provided in the path of the current flowing in the third phase, and the acquired current signal A3 The voltage is amplified with a predetermined amplification factor.
 ADコンバータ402は、増幅部401で増幅された電圧の大きさをデジタル値に変換する。より具体的には、第1の相電流検出部102に含まれるADコンバータ402は、第1の相電流検出部102に含まれる増幅部401で増幅された電流信号A1の電圧の大きさをデジタル値に変換して、変換したデジタル値を示す検出信号H1を生成する。同様に、第2の相電流検出部103に含まれるADコンバータ402は、第2の相電流検出部103に含まれる増幅部401で増幅された電流信号A2の電圧の大きさをデジタル値に変換して、変換したデジタル値を示す検出信号H2を生成する。そして、第3の相電流検出部104に含まれる増幅部401は、第3の相電流検出部104に含まれる増幅部401で増幅された電流信号A3の電圧の大きさをデジタル値に変換して、変換したデジタル値を示す検出信号H3を生成する。 The AD converter 402 converts the magnitude of the voltage amplified by the amplification unit 401 into a digital value. More specifically, the AD converter 402 included in the first phase current detection unit 102 digitally calculates the magnitude of the voltage of the current signal A1 amplified by the amplification unit 401 included in the first phase current detection unit 102. The detection signal H1 indicating the converted digital value is generated. Similarly, the AD converter 402 included in the second phase current detection unit 103 converts the magnitude of the voltage of the current signal A2 amplified by the amplification unit 401 included in the second phase current detection unit 103 into a digital value. Thus, a detection signal H2 indicating the converted digital value is generated. Then, the amplification unit 401 included in the third phase current detection unit 104 converts the voltage magnitude of the current signal A3 amplified by the amplification unit 401 included in the third phase current detection unit 104 into a digital value. Thus, a detection signal H3 indicating the converted digital value is generated.
 高分解能検出部202は、低分解能検出部201に含まれる増幅部301よりも高い増幅率を定められた増幅部401で増幅した電流信号の電圧の大きさをADコンバータ402でデジタル値に変換することにより、低分解能検出部201よりも相対的に高い高分解能で電流の値を検出できる。 The high resolution detection unit 202 converts the magnitude of the voltage of the current signal amplified by the amplification unit 401 having a higher amplification factor than the amplification unit 301 included in the low resolution detection unit 201 into a digital value by the AD converter 402. As a result, the current value can be detected with a higher resolution than that of the low resolution detector 201.
 この理由について、増幅部401の増幅率を増幅部301の増幅率よりも10倍だけ高く予め定めた場合を一例として説明する。増幅部401の増幅率を増幅部301の増幅率よりも10倍だけ高く予め定めると、高分解能検出部202に含まれるADコンバータ402で変換されるデジタル値は、低分解能検出部201に含まれるADコンバータ302で変換されるデジタル値よりも10倍だけ大きくなる。したがって、ADコンバータ402で変換されるデジタル値は、ADコンバータ302で変換されるデジタル値よりも10分の1だけ小さい値の変化が反映される。これにより、高分解能検出部202で検出される電流の値は、ADコンバータ302で変換されたデジタル値、すなわち、低分解能検出部201で検出される電流の値よりも10分の1だけ小さい値が反映され、高分解能検出部202は、低分解能検出部201よりも相対的に高い高分解能で電流の値を検出できることとなる。 For this reason, a case where the amplification factor of the amplification unit 401 is set in advance by 10 times higher than the amplification factor of the amplification unit 301 will be described as an example. When the amplification factor of the amplification unit 401 is predetermined to be ten times higher than the amplification factor of the amplification unit 301, the digital value converted by the AD converter 402 included in the high resolution detection unit 202 is included in the low resolution detection unit 201. The digital value converted by the AD converter 302 is 10 times larger. Therefore, the digital value converted by the AD converter 402 reflects a change in value that is smaller by one tenth than the digital value converted by the AD converter 302. As a result, the current value detected by the high resolution detection unit 202 is a digital value converted by the AD converter 302, that is, a value that is smaller by one tenth than the current value detected by the low resolution detection unit 201. Is reflected, and the high resolution detection unit 202 can detect the current value with a relatively high resolution higher than that of the low resolution detection unit 201.
 また、ADコンバータ302で変換されたデジタル値を補正部303で補正する理由は、増幅部301と増幅部401とのそれぞれの増幅率が互いに異なるからである。より具体的には、例えば、上述した一例のように増幅部402の増幅率が増幅部302の増幅率よりも10倍だけ大きい場合には、ADコンバータ302で変換されたデジタル値は、ADコンバータ402で変換されたデジタル値よりも10分の1だけ小さな値となる。このため、補正部303は、ADコンバータ302で変換したデジタル値が同一の相電流検出部に含まれるADコンバータ402で変換されたデジタル値と一致するように、ADコンバータ302で変換したデジタル値を10倍に大きく増幅する補正をする。これにより、補正部303で補正されたデジタル値は、ADコンバータ402で変換されたデジタル値と同様に電流の大きさを示すデジタル値となる。尚、補正部303がADコンバータ302で変換されたデジタル値を増幅して補正するときの倍率は、ADコンバータ302で変換したデジタル値がADコンバータ402で変換されたデジタル値と一致するように、増幅部301、及び増幅部401のそれぞれの増幅率に基づいて予め定められるものとする。例えば、上述で説明したように、増幅部401の増幅率が、増幅部301の増幅率に対して10倍となるように定められていれば、補正部303に予め定めておく倍率は10倍となる。 The reason why the correction unit 303 corrects the digital value converted by the AD converter 302 is that the amplification factors of the amplification unit 301 and the amplification unit 401 are different from each other. More specifically, for example, when the amplification factor of the amplification unit 402 is 10 times larger than the amplification factor of the amplification unit 302 as in the above-described example, the digital value converted by the AD converter 302 is It becomes a value smaller by 1/10 than the digital value converted in 402. For this reason, the correction unit 303 converts the digital value converted by the AD converter 302 so that the digital value converted by the AD converter 302 matches the digital value converted by the AD converter 402 included in the same phase current detection unit. A correction that amplifies the signal by 10 times is performed. As a result, the digital value corrected by the correction unit 303 becomes a digital value indicating the magnitude of the current in the same manner as the digital value converted by the AD converter 402. The magnification when the correction unit 303 amplifies and corrects the digital value converted by the AD converter 302 is such that the digital value converted by the AD converter 302 matches the digital value converted by the AD converter 402. It is assumed that the amplification unit 301 and the amplification unit 401 are determined in advance based on the respective amplification factors. For example, as described above, if the amplification factor of the amplification unit 401 is determined to be 10 times the amplification factor of the amplification unit 301, the magnification set in advance in the correction unit 303 is 10 times. It becomes.
 以上が、第1の相電流検出部102~第3の相電流検出部104のより詳細な説明である。次に、本実施形態に係る制御部106についてより詳細に説明する。本実施形態に係る制御部106は、後述する図5のフローチャートに示す処理と共に上述した従来周知のPWM制御をする処理も並行して処理している。そして、本実施形態に係る制御部106は、PWM制御をするときに用いる電流の値を判断して切り替えながら制御する。したがって、図5のフローチャートに示す処理を説明する前に、まず、制御部106がPWM制御に用いる電流の値を判断する処理について説明する。 The above is a more detailed description of the first phase current detection unit 102 to the third phase current detection unit 104. Next, the control unit 106 according to the present embodiment will be described in more detail. The control unit 106 according to the present embodiment performs processing in parallel with the above-described conventionally known PWM control together with the processing shown in the flowchart of FIG. Then, the control unit 106 according to the present embodiment performs control while judging and switching the value of the current used when performing PWM control. Therefore, before describing the processing shown in the flowchart of FIG. 5, first, processing in which the control unit 106 determines a current value used for PWM control will be described.
 本実施形態に係る制御部106は、PWM制御に用いる電流の値を、第1の相電流検出部102~第3の相電流検出部104のそれぞれに含まれる低分解能検出部201によって検出されたそれぞれの電流の値(検出信号L1~L3でそれぞれ示されるデジタル値。以下、低分解能検出値Lと称する)と、それぞれに含まれる高分解能検出部202によって検出されるそれぞれの電流の値(検出信号H1~H3でそれぞれ示されるデジタル値。以下、高分解能検出値Hと称する)との間で切り替える。より具体的には、本実施形態に係る制御部106は、PWM制御に用いる電流の値として、検出信号L1~検出信号L3によってそれぞれ示される低分解能検出値Lと、検出信号H1~検出信号H3によってそれぞれ示される高分解能検出値Hとを切り替えながら用いてPWM制御をする。そして、制御部106は、回転速度検出部105によって生成される回転速度信号Vによって示される回転速度(以下、単に回転速度と称する)と、図示しない生成部によって生成されるトルク目標信号Toによって示されるトルク目標値(以下、単にトルク目標値と称する)とに基づいて、PWM制御に用いる電流の値として低分解能検出値Lと高分解能検出値Hとのいずれを用いるかを判断する。 The control unit 106 according to the present embodiment detects the current value used for PWM control by the low resolution detection unit 201 included in each of the first phase current detection unit 102 to the third phase current detection unit 104. Each current value (digital value indicated by each of the detection signals L1 to L3; hereinafter referred to as a low resolution detection value L) and each current value detected by the high resolution detection unit 202 included therein (detection) The digital value indicated by each of the signals H1 to H3 (hereinafter referred to as a high resolution detection value H). More specifically, the control unit 106 according to the present embodiment uses the low resolution detection value L indicated by the detection signal L1 to the detection signal L3 and the detection signal H1 to the detection signal H3 as current values used for PWM control. PWM control is performed while switching between the high-resolution detection values H indicated by. The control unit 106 indicates a rotation speed indicated by the rotation speed signal V generated by the rotation speed detection unit 105 (hereinafter simply referred to as a rotation speed) and a torque target signal To generated by a generation unit (not shown). On the basis of the torque target value (hereinafter simply referred to as torque target value), it is determined which of the low resolution detection value L and the high resolution detection value H is used as the current value used for PWM control.
 制御部106は、回転速度が予め定められたしきい値th1未満の低い回転速度(以下、低回転速度と称する)であって、且つトルク目標値が予め定められたしきい値th2未満の小さいトルク目標値(以下、低トルク目標値と称する)であるときには、前述の高分解能検出値HをPWM制御に用いる判断をする。この理由は、低分解能検出値Lに基づいてPWM制御をすると、誘導電動機101の回転子が回転するときのトルクを滑らかに制御できないからである。より詳細には、低分解能検出値Lは、上述の説明から明らかなように、ADコンバータ302で変換されたデジタル値を予め定められた倍率で増幅した値であり、倍率に応じた間欠的な値(例えば、10倍の倍率であれば10の倍数の間欠的な値)となるため、高分解能検出部202で検出される高分解能検出値Hの分解能と比較して相対的に低い低分解能で検出される電流の値となる。つまり、低分解能検出値Lは、相対的に大きな変化しか示せない間欠的な値となる。そして、低分解能検出値Lに基づいて制御部106がPWM制御をすると、相対的に大きな変化を示す低分解能検出値Lがフィードバックされることになるので、制御部106が制御するトルクも相対的に大きく急峻な変化をするようにしか制御できず、所謂トルクリップルが生じてしまい、滑らかな制御ができなくなる。 The control unit 106 is a low rotational speed whose rotational speed is less than a predetermined threshold th1 (hereinafter referred to as a low rotational speed), and a small torque target value less than a predetermined threshold th2. When it is a torque target value (hereinafter referred to as a low torque target value), it is determined to use the high-resolution detection value H described above for PWM control. This is because if the PWM control is performed based on the low resolution detection value L, the torque when the rotor of the induction motor 101 rotates cannot be controlled smoothly. More specifically, as is clear from the above description, the low resolution detection value L is a value obtained by amplifying the digital value converted by the AD converter 302 at a predetermined magnification, and is intermittent according to the magnification. Since it is a value (for example, an intermittent value of a multiple of 10 if the magnification is 10 times), the resolution is relatively low compared to the resolution of the high resolution detection value H detected by the high resolution detection unit 202 The current value detected at. That is, the low resolution detection value L is an intermittent value that can show only a relatively large change. When the control unit 106 performs PWM control based on the low resolution detection value L, the low resolution detection value L indicating a relatively large change is fed back, so that the torque controlled by the control unit 106 is also relative. Therefore, control can be performed only to make a large and steep change, so-called torque ripple occurs, and smooth control cannot be performed.
 例えば、本実施形態に係る誘導電動機101が、自動車などの移動体(以下、自車両と称する)を走行させる駆動力を発生させるために用いられる場合、前述の低回転速度、且つ前述の低トルク目標値であるときに低分解能検出値Lに基づいて制御部106がPWM制御をすると、相対的に大きく急峻に変化するトルクが自車両の振動となって搭乗者に伝わってしまう。 For example, when the induction motor 101 according to the present embodiment is used for generating a driving force for driving a moving body such as an automobile (hereinafter referred to as the host vehicle), the low rotation speed described above and the low torque described above are used. When the control unit 106 performs PWM control based on the low resolution detection value L when the target value is reached, a relatively large and sharply changing torque is transmitted to the passenger as vibration of the host vehicle.
 一方、上述の説明から明らかなように、検出している電流の値が相対的に小さく変化したときでも、高分解能検出値Hには、変化した電流の値が反映される。つまり、高分解能検出値Hは、相対的に大きな変化に加えて、相対的に小さな変化も示せる値となる。そして、高分解能検出値Hに基づいて制御部106がPWM制御をすると、相対的に小さな変化を示せる高分解能検出値Hがフィードバックされることになるので、制御部106が制御するトルクも相対的に小さく変化するように制御でき、トルクがより滑らかに変化するように制御できる。 On the other hand, as is clear from the above description, even when the detected current value changes relatively small, the high resolution detection value H reflects the changed current value. That is, the high-resolution detection value H is a value that can indicate a relatively small change in addition to a relatively large change. When the control unit 106 performs PWM control based on the high-resolution detection value H, the high-resolution detection value H that indicates a relatively small change is fed back, so that the torque controlled by the control unit 106 is also relative. The torque can be controlled so as to change slightly, and the torque can be controlled so as to change more smoothly.
 したがって、本実施形態に係る制御部106は、低回転速度、且つ低トルク目標値であるときには、高分解能検出値HをPWM制御に用いる判断をする。制御部106が、低回転速度であり、且つ低トルク目標値であるときに、高分解能検出値Hを用いてPWM制御をすることにより、トルクを滑らかに変化させることのできるPWM制御をすることができる。 Therefore, the control unit 106 according to the present embodiment determines to use the high-resolution detection value H for PWM control when the rotation speed is low and the torque target value is low. The control unit 106 performs PWM control that can smoothly change the torque by performing PWM control using the high resolution detection value H when the rotation speed is low and the target torque value is low. Can do.
 一方、制御部106は、回転速度が前述のしきい値th1未満ではない高い回転速度(以下、高回転速度と称する)、又はトルク目標値が前述のしきい値th2未満ではない高いトルク目標値(以下、高トルク目標値と称する)であるときには、低分解能検出値LをPWM制御に用いる判断をする。この理由は、高回転速度であるとき、又は高トルク目標値であるときには、制御部106は、誘導電動機101に流れる電流が相対的に大きくなるように、駆動部107を制御するからである。より詳細には、高回転速度、又は高トルク目標値であるときには、駆動部107から第1の相~第3の相のそれぞれに流れる電流の値は相対的に大きくなる。そして、高分解能検出部202は、上述したように低分解能検出部201に含まれる増幅部301の増幅率よりも高い増幅率で、第1の相~第3の相にそれぞれ流れる相対的に大きな電流の値に比例する相対的に高い電流信号A1~電流信号A3の電圧を増幅部401で増幅する。 On the other hand, the controller 106 has a high rotational speed whose rotational speed is not less than the aforementioned threshold value th1 (hereinafter referred to as high rotational speed), or a high torque target value whose torque target value is not less than the aforementioned threshold value th2. When it is (hereinafter referred to as a high torque target value), it is determined that the low resolution detection value L is used for PWM control. This is because the control unit 106 controls the drive unit 107 so that the current flowing through the induction motor 101 becomes relatively large when the rotational speed is high or the target value is a high torque. More specifically, when the rotational speed is high or the target torque value is high, the value of the current flowing from the driving unit 107 to each of the first to third phases is relatively large. As described above, the high resolution detection unit 202 has a higher amplification rate than the amplification unit 301 included in the low resolution detection unit 201 and has a relatively large amount flowing in each of the first to third phases. The amplifying unit 401 amplifies the voltages of the relatively high current signals A1 to A3 that are proportional to the current value.
 したがって、上述したように高回転速度、又は高トルク目標値である場合には、相対的に高い増幅率が定められた増幅部401で増幅された相対的に高い電圧の大きさをADコンバータ402がデジタル値に変換する。しかしながら、ADコンバータ402がデジタル値に変換することのできる電圧の許容電圧範囲は予め定められている。このため、相対的に高い増幅率で増幅された相対的に高い電圧を当該ADコンバータ402でデジタル値に変換すると、ADコンバータ302で変換されたデジタル値は飽和しないにも拘わらず、ADコンバータ402で変換されたデジタル値は飽和してしまう。したがって、高回転速度、又は高トルク目標値であるときに検出される高分解能検出値Hはそれぞれの相に流れる電流の値を正確に示さない値となる。 Therefore, as described above, when the rotation speed is high or the torque target value is high, the magnitude of the relatively high voltage amplified by the amplification unit 401 with a relatively high amplification factor is set as the AD converter 402. Converts to a digital value. However, an allowable voltage range of a voltage that can be converted into a digital value by the AD converter 402 is determined in advance. For this reason, when a relatively high voltage amplified with a relatively high amplification factor is converted into a digital value by the AD converter 402, the AD converter 402 is not saturated even though the digital value converted by the AD converter 302 is not saturated. The digital value converted by is saturated. Therefore, the high resolution detection value H detected when the rotation speed is high or the target torque value is a value that does not accurately indicate the value of the current flowing in each phase.
 そこで、本実施形態に係る制御部106は、高回転速度であるとき、又は高トルク目標値であるときには、飽和しないデジタル値、すなわち、低分解能検出値LをPWM制御に用いる判断をする。制御部106が、高回転速度であるとき、又は高トルク目標値であるときに、低分解能検出値Lを用いてPWM制御をすることにより、正確な値を示さない高分解能検出値Hに基づいてPWM制御をすることを防げる。 Therefore, the control unit 106 according to the present embodiment determines to use a digital value that does not saturate, that is, the low resolution detection value L, for PWM control when the rotational speed is high or the target torque value is high. Based on the high-resolution detection value H that does not indicate an accurate value by performing PWM control using the low-resolution detection value L when the control unit 106 has a high rotation speed or a high torque target value. This prevents PWM control.
 尚、低分解能検出値Lに基づいて制御部106がPWM制御をするときには、上述したように滑らかな制御ができない。しかしながら、例えば、本実施形態に係る誘導電動機101が自車両を走行させる駆動力を発生させるために用いられる場合、高回転速度、又は高トルク目標値であるときとは、自車両が相対的に速い走行速度で走行している場合、又は自車両の誘導電動機101の回転子に相対的に高いトルクの負荷がかかっている場合であると考えられる。そして、相対的に速い走行速度で自車両が走行している場合、又は自車両の誘導電動機101に相対的に高い負荷がかかっているときには、誘導電動機101の回転子が回転するときのトルクが相対的に大きく急峻に変化したとしても、上述したように生じる自車両の振動が自車両の搭乗者に顕著に感じられることはない。 When the control unit 106 performs PWM control based on the low resolution detection value L, smooth control cannot be performed as described above. However, for example, when the induction motor 101 according to the present embodiment is used to generate a driving force that causes the host vehicle to travel, the host vehicle is relatively less than when it has a high rotational speed or a high torque target value. It can be considered that the vehicle is traveling at a high traveling speed, or a relatively high torque load is applied to the rotor of the induction motor 101 of the host vehicle. When the host vehicle is traveling at a relatively high traveling speed or when a relatively high load is applied to the induction motor 101 of the host vehicle, the torque when the rotor of the induction motor 101 rotates is increased. Even if the change is relatively large and steep, the vibration of the host vehicle that occurs as described above is not noticeable to the passenger of the host vehicle.
 以上が、制御部106がPWM制御に用いる電流の値を判断する処理の説明である。本実施形態に係る制御部106は、上述したようにPWM制御に用いる電流の値を判断して、判断した値でPWM制御をすることにより、回転速度、及びトルク目標値に応じて最適な電流の値に切り替えて、切り替えた電流の値を用いてPWM制御をすることができる。例えば、本実施形態に係る誘導電動機101が自車両を走行させる駆動力を発生させるために用いられる場合には、制御部106が上述したように低分解能検出値Lと高分解能検出値Hとを切り替えながらPWM制御をすることにより、トルクの急峻な変化に起因して生じる自車両の振動を低減することができる。 The above is the description of the process in which the control unit 106 determines the value of the current used for the PWM control. The control unit 106 according to the present embodiment determines the current value used for the PWM control as described above, and performs the PWM control with the determined value, so that the optimum current according to the rotation speed and the torque target value is obtained. PWM control can be performed using the value of the switched current. For example, when the induction motor 101 according to the present embodiment is used to generate a driving force for driving the host vehicle, the control unit 106 calculates the low resolution detection value L and the high resolution detection value H as described above. By performing PWM control while switching, it is possible to reduce the vibration of the host vehicle caused by a sharp change in torque.
 上述したように、制御部106が低分解能検出値Lと高分解能検出値Hとを切り替えながらPWM制御をすることにより、いずれかの検出値を用いてPWM制御をしている期間では、トルクの変化に起因して生じる自車両の振動を低減することができる。しかしながら、制御部106が低分解能検出値Lと高分解能検出値Hとを切り替えながらPWM制御をする場合、切り替え時にトルクが大きく変化してしまう場合がある。低分解能検出値Lと高分解能検出値Hとを切り替えるときにトルクが大きく変化してしまう原因は2つある。 As described above, when the control unit 106 performs PWM control while switching between the low resolution detection value L and the high resolution detection value H, during the period in which the PWM control is performed using any of the detection values, It is possible to reduce the vibration of the host vehicle caused by the change. However, when the control unit 106 performs PWM control while switching between the low resolution detection value L and the high resolution detection value H, the torque may change greatly at the time of switching. There are two reasons why the torque changes greatly when switching between the low resolution detection value L and the high resolution detection value H.
 第1の原因は、低分解能検出部201と高分解能検出部202とをそれぞれ構成する電気回路の電気的特性のばらつきである。 The first cause is a variation in the electrical characteristics of the electric circuits constituting the low resolution detector 201 and the high resolution detector 202, respectively.
 より詳細には、第1の相電流検出部102~第3の相電流検出部104にそれぞれ含まれる増幅部301は、互いに同一の増幅率を予め定めたとしても、前述の電気的特性のばらつきが生じるため、増幅率にもばらつきが生じる。これは、第1の相電流検出部102~第3の相電流検出部104にそれぞれ含まれる増幅部401についても同様である。 More specifically, the amplification units 301 included in each of the first phase current detection unit 102 to the third phase current detection unit 104 have the aforementioned variation in electrical characteristics even if the same amplification factor is determined in advance. As a result, the amplification factor also varies. The same applies to the amplification unit 401 included in each of the first phase current detection unit 102 to the third phase current detection unit 104.
 したがって、増幅部301の増幅率、及び増幅部401の増幅率に基づいて上述したように補正部303の倍率を予め定めたとしても、同一の相電流検出部に含まれる増幅部301、及び増幅部401の増幅率にはそれぞればらつきが生じる。このため、それぞれ同一の相電流検出部に含まれる低分解能検出部201、及び高分解能検出部202で生成される検出信号によって示されるそれぞれのデジタル値の不一致が生じる場合がある。 Therefore, even if the magnification of the correction unit 303 is determined in advance based on the amplification factor of the amplification unit 301 and the amplification factor of the amplification unit 401, the amplification unit 301 included in the same phase current detection unit, and the amplification unit Variations occur in the amplification factors of the units 401. For this reason, there may be a discrepancy between the respective digital values indicated by the detection signals generated by the low resolution detector 201 and the high resolution detector 202 included in the same phase current detector.
 低分解能検出部201、及び高分解能検出部202で生成される検出信号によって示されるそれぞれのデジタル値に不一致が生じる場合について、第1の相電流検出部102に含まれる低分解能検出部201、及び高分解能検出部202の内部でそれぞれ生成される信号で示される値を比較して説明する。 The low-resolution detector 201 and the low-resolution detector 201 included in the first phase current detector 102 in the case where a mismatch occurs between the digital values indicated by the detection signals generated by the high-resolution detector 202 and the high-resolution detector 202, and A description will be given by comparing values indicated by signals generated in the high-resolution detection unit 202, respectively.
 図3Aは、増幅部301、及び増幅部401のそれぞれに電気的特性のばらつきが生じないと仮に想定した場合に、第1の相電流検出部102に含まれる低分解能検出部201の内部でそれぞれ生成される信号、及び同一の相電流検出部に含まれる高分解能検出部202の内部でそれぞれ生成される信号によって示される値の一例を比較して示す図である。図3Aには、第1の相電流検出部102に含まれる増幅部301で増幅された電流信号A1の電圧と、当該電流信号A1の電圧をADコンバータ302で変換したデジタル値と、当該デジタル値を補正部303で補正したデジタル値(低分解能検出値L)と、同一の相電流検出部に含まれる増幅部401で増幅された電流信号A1の電圧と、当該電流信号A1の電圧をADコンバータ402で変換したデジタル値(高分解能検出値H)とをそれぞれ示している。尚、図3Aでは、図示の便宜のため補正部303で補正したデジタル値のみを破線で示している。また、図3Aに示す例は、増幅部401の増幅率として、増幅部301の増幅率よりも10倍だけ高い増幅率が予め定められている場合に生成される信号をそれぞれ示している。増幅部301の増幅率よりも10倍だけ高い増幅率が増幅部401に予め定められている場合、補正部303には、上述の説明から明らかなように、10倍の倍率が予め定められており、ADコンバータ302で変換されたデジタル値を10倍の値に補正することとなる。 FIG. 3A illustrates a case where each of the amplifying unit 301 and the amplifying unit 401 is assumed to have no variation in electrical characteristics, and each of the amplifying unit 301 and the amplifying unit 401 includes a low-resolution detecting unit 201 included in the first phase current detecting unit 102. It is a figure which compares and shows an example of the value shown by the signal produced | generated and the signal each produced | generated inside the high-resolution detection part 202 contained in the same phase current detection part. 3A shows the voltage of the current signal A1 amplified by the amplification unit 301 included in the first phase current detection unit 102, the digital value obtained by converting the voltage of the current signal A1 by the AD converter 302, and the digital value. A digital value (low resolution detection value L) corrected by the correction unit 303, the voltage of the current signal A1 amplified by the amplification unit 401 included in the same phase current detection unit, and the voltage of the current signal A1 are converted into an AD converter. The digital value (high resolution detection value H) converted in 402 is shown. In FIG. 3A, only the digital value corrected by the correction unit 303 is indicated by a broken line for convenience of illustration. In addition, the example illustrated in FIG. 3A illustrates signals generated when an amplification factor of the amplification unit 401 is determined in advance by an amplification factor that is ten times higher than the amplification factor of the amplification unit 301. When an amplification factor that is 10 times higher than the amplification factor of the amplification unit 301 is predetermined in the amplification unit 401, the correction unit 303 has a predetermined magnification of 10 times, as is apparent from the above description. Therefore, the digital value converted by the AD converter 302 is corrected to 10 times the value.
 増幅部301、及び増幅部401の増幅率にばらつきが生じない場合には、増幅部301で増幅された電流信号A1の電圧をADコンバータ302でデジタル値に変換した後、補正部303で10分の1の値となるように補正したデジタル値は、図3Aに示すように、ADコンバータ402で変換されたデジタル値と同一の値となる。 When there is no variation in the amplification factors of the amplification unit 301 and the amplification unit 401, the voltage of the current signal A1 amplified by the amplification unit 301 is converted into a digital value by the AD converter 302, and then the correction unit 303 performs 10 minutes. As shown in FIG. 3A, the digital value corrected so as to be 1 is the same value as the digital value converted by the AD converter 402.
 一方、図3Bは、増幅部301、及び増幅部401のそれぞれに電気的特性のばらつきが生じる場合に、第1の相電流検出部102に含まれる低分解能検出部201の内部でそれぞれ生成される信号、及び同一の相電流検出部に含まれる高分解能検出部202の内部でそれぞれ生成される信号によって示される値の一例を比較して示す図である。図3Bには、第1の相電流検出部102に含まれる増幅部301で増幅された電流信号A1の電圧と、当該電流信号A1の電圧をADコンバータ302で変換したデジタル値と、当該デジタル値を補正部303で補正したデジタル値(低分解能検出値L)と、同一の相電流検出部に含まれる増幅部401で増幅された電流信号A1の電圧と、当該電流信号A1の電圧をADコンバータ402で変換したデジタル値(高分解能検出値H)とをそれぞれ示している。尚、図3Bでは、図示の便宜のため補正部303で補正したデジタル値のみを破線で示している。 On the other hand, FIG. 3B is generated inside the low-resolution detection unit 201 included in the first phase current detection unit 102 when variation in electrical characteristics occurs in each of the amplification unit 301 and the amplification unit 401. It is a figure which compares and shows an example of the value shown by the signal and the signal each produced | generated inside the high resolution detection part 202 contained in the same phase current detection part. 3B shows the voltage of the current signal A1 amplified by the amplifier 301 included in the first phase current detector 102, the digital value obtained by converting the voltage of the current signal A1 by the AD converter 302, and the digital value. A digital value (low resolution detection value L) corrected by the correction unit 303, the voltage of the current signal A1 amplified by the amplification unit 401 included in the same phase current detection unit, and the voltage of the current signal A1 are converted into an AD converter. The digital value (high resolution detection value H) converted in 402 is shown. In FIG. 3B, only the digital value corrected by the correction unit 303 is indicated by a broken line for convenience of illustration.
 図3Bに示す例は、増幅部401の増幅率として、増幅部301の増幅率よりも10倍だけ高い増幅率が予め定められているのにも拘わらず、前述の電気的特性のばらつきに起因して実際には増幅部401が増幅部301の増幅率の9.5倍で電流信号A1の電圧を増幅する場合に生成される信号を示している。図3Bに一例として示すように、前述の電気的特性のばらつきが生じている場合には、補正部303で補正されたデジタル値と、ADコンバータ402で変換されたデジタル値とが一致しない。この理由は、増幅部401、及び増幅部301にそれぞれ予め定められている増幅率に基づいて補正部303の倍率が予め定められているにも拘わらず、増幅部401の増幅率にばらつきが生じているためである。より詳細には、増幅部301の10倍の増幅率が増幅部401に予め定められている場合、補正部303に予め定められる倍率は、上述したように10倍となる。しかしながら、実際には、増幅部401は増幅部301の増幅率の9.5倍の増幅率で信号の電圧を増幅する。このため、増幅された電流信号A1の電圧をADコンバータ302で変換したデジタル値を補正部303で10倍の値に補正すると、補正後のデジタル値は、同一の相電流検出部に含まれるADコンバータ402で変換されたデジタル値の10/9.5倍となるからである。 In the example shown in FIG. 3B, the amplification factor 401 has an amplification factor that is 10 times higher than the amplification factor of the amplification unit 301 in advance. In fact, a signal generated when the amplification unit 401 amplifies the voltage of the current signal A1 by 9.5 times the amplification factor of the amplification unit 301 is shown. As shown as an example in FIG. 3B, when the above-described variation in electrical characteristics occurs, the digital value corrected by the correction unit 303 does not match the digital value converted by the AD converter 402. This is because the amplification factor of the amplification unit 401 varies even though the magnification of the correction unit 303 is predetermined based on the amplification factor predetermined for each of the amplification unit 401 and the amplification unit 301. This is because. More specifically, when the amplification factor of 10 times that of the amplification unit 301 is predetermined in the amplification unit 401, the magnification predetermined in the correction unit 303 is 10 times as described above. However, in actuality, the amplifying unit 401 amplifies the voltage of the signal at an amplification factor 9.5 times that of the amplifying unit 301. For this reason, when the digital value obtained by converting the voltage of the amplified current signal A1 by the AD converter 302 is corrected to a value 10 times by the correction unit 303, the corrected digital value is the AD value included in the same phase current detection unit. This is because it is 10 / 9.5 times the digital value converted by the converter 402.
 そして、補正部303で補正されたデジタル値、すなわち、高分解能検出部202で検出された高分解能検出値Hと、ADコンバータ302で変換されたデジタル値、すなわち、低分解能検出値Lとが一致していない場合に、制御部106が上述したように低分解能検出値Lと高分解能検出値Hとを切り替えると、第1の相電流検出部102で検出される電流の値が、第1の相電流検出部102に含まれる低分解能検出部201で生成された検出信号L1によって示される値から、同一の相電流検出部に含まれる高分解能検出部202で生成された検出信号H1によって示される値に瞬時に切り替わる。すなわち、制御部106がPWM制御に用いる電流の値が、互いに異なる値に大きく変化する。このため、制御部106が駆動部107を制御して誘導電動機101に供給させる電力の電流は制御部106がPWM制御に用いる電流の値に応じて大きく変化する。したがって、制御部106が上述したように低分解能検出値Lと高分解能検出値Hとを切り替えながらPWM制御をする場合、切り替え時にトルクが大きく変化してしまう。これが、第1の原因の説明である。 The digital value corrected by the correction unit 303, that is, the high resolution detection value H detected by the high resolution detection unit 202, and the digital value converted by the AD converter 302, that is, the low resolution detection value L are one. If not, when the control unit 106 switches between the low resolution detection value L and the high resolution detection value H as described above, the current value detected by the first phase current detection unit 102 becomes the first value. From the value indicated by the detection signal L1 generated by the low resolution detection unit 201 included in the phase current detection unit 102, the detection signal H1 generated by the high resolution detection unit 202 included in the same phase current detection unit is indicated. Switch instantly to the value. That is, the value of the current used by the control unit 106 for PWM control greatly changes to a different value. For this reason, the electric current of the electric power which the control part 106 controls the drive part 107 and supplies to the induction motor 101 changes a lot according to the value of the electric current which the control part 106 uses for PWM control. Therefore, when the control unit 106 performs PWM control while switching between the low resolution detection value L and the high resolution detection value H as described above, the torque greatly changes at the time of switching. This is the explanation of the first cause.
 第2の原因は、誘導電動機101に流すことのできる電流の範囲(以下、許容電流範囲と称する)が相対的に大きい場合には、低分解能検出部201の分解能と高分解能検出部202の分解能との差が大きくなるという原因である。第2の原因について、第1の相電流検出部102に含まれる低分解能検出部201、及び高分解能検出部202の分解能に生じる差を一例に挙げて説明する。 The second cause is that the resolution of the low resolution detector 201 and the resolution of the high resolution detector 202 when the range of current that can be passed through the induction motor 101 (hereinafter referred to as the allowable current range) is relatively large. This is the reason why the difference between The second cause will be described by taking, as an example, a difference that occurs in the resolution of the low resolution detection unit 201 and the high resolution detection unit 202 included in the first phase current detection unit 102.
 ここで、第1の相電流検出部102にそれぞれ含まれるADコンバータ302、及びADコンバータ402が変換可能な電流信号の電圧の許容範囲(以下、許容電圧範囲と称する)、及び分解能などをそれぞれ変えずに、すなわち、それぞれのADコンバータの仕様を変えずに、相対的に大きな許容電流範囲の誘導電動機101を用いる場合を仮に想定する。また、本実施形態に係る低分解能検出部201で検出できる電流の値の範囲(以下、検出範囲と称する)は、誘導電動機101の許容電流範囲と同じであるものとする。本実施形態では、ADコンバータ302の仕様を変えずに、誘導電動機101の許容電流範囲を相対的に大きくすると、低分解能検出部201の検出範囲を誘導電動機101の許容電流範囲と同じ範囲になるように拡大しなければならない。このため、低分解能検出部201の分解能はより低くなる。 Here, the AD converter 302 and AD converter 402 included in the first phase current detection unit 102 respectively change the voltage allowable range of the current signal (hereinafter referred to as the allowable voltage range), the resolution, and the like. In other words, it is assumed that the induction motor 101 having a relatively large allowable current range is used without changing the specifications of each AD converter. In addition, the range of current values that can be detected by the low-resolution detection unit 201 according to the present embodiment (hereinafter referred to as a detection range) is the same as the allowable current range of the induction motor 101. In the present embodiment, if the allowable current range of the induction motor 101 is relatively increased without changing the specifications of the AD converter 302, the detection range of the low resolution detection unit 201 becomes the same range as the allowable current range of the induction motor 101. Must be expanded as follows. For this reason, the resolution of the low resolution detector 201 is further lowered.
 より詳細には、低分解能検出部201に含まれるADコンバータ302の許容電圧範囲を変えずに、低分解能検出部201の検出範囲を拡大するには、相対的に大きな電圧の電流信号A1が生成されても、ADコンバータ302の許容電圧範囲を超えないように、増幅部301の増幅率を相対的に小さくしなければならない。しかしながら、電流信号A1の電圧の変化量が同一であったとしても、増幅部301の増幅率を相対的に小さくすると、増幅部301の増幅率を相対的に小さくしない場合と比較して、電流信号A1の電圧の変化量が相対的に縮小されてしまうこととなる。そして、上述したようにADコンバータ302の分解能を変化させずに変化量が相対的に縮小した電流信号A1の電圧をADコンバータ302でデジタル値に変換すると、変換されたデジタル値には電流信号A1の電圧の相対的に小さな変化が反映されなくなる。このため、上述したように、ADコンバータ302の仕様を変えずに、相対的に大きな許容電流範囲の誘導電動機101を用いると、低分解能検出部201の分解能がより低くなる。 More specifically, in order to expand the detection range of the low resolution detection unit 201 without changing the allowable voltage range of the AD converter 302 included in the low resolution detection unit 201, a current signal A1 having a relatively large voltage is generated. Even so, the amplification factor of the amplifying unit 301 must be relatively small so as not to exceed the allowable voltage range of the AD converter 302. However, even if the amount of change in voltage of the current signal A1 is the same, if the amplification factor of the amplification unit 301 is relatively small, the amplification factor of the amplification unit 301 is not relatively small compared to the case where the amplification factor 301 is not relatively small. The amount of change in the voltage of the signal A1 is relatively reduced. As described above, when the voltage of the current signal A1 whose amount of change is relatively reduced without changing the resolution of the AD converter 302 is converted into a digital value by the AD converter 302, the converted digital value is converted into the current signal A1. A relatively small change in the voltage is not reflected. For this reason, as described above, when the induction motor 101 having a relatively large allowable current range is used without changing the specifications of the AD converter 302, the resolution of the low resolution detection unit 201 becomes lower.
 一方、高分解能検出部202の分解能は、上述したように低回転速度、且つ低トルク目標値であるときに求められる制御の滑らかさに応じた分解能となるように予め定められる。また、高分解能検出部202の分解能は、上述した説明から明らかなように、誘導電動機101の許容電流範囲に拘わらず、増幅部401の増幅率によって定められる。このため、ADコンバータ402の仕様を変化させずに、誘導電動機101の許容電流範囲を相対的に大きくしたとしても、増幅部401の増幅率を予め定めることによって、高分解能検出部202の分解能を求められる高分解能にできる。 On the other hand, the resolution of the high resolution detection unit 202 is determined in advance so as to be a resolution corresponding to the smoothness of control required when the rotation speed is low and the target torque value is low as described above. Further, as is apparent from the above description, the resolution of the high resolution detection unit 202 is determined by the amplification factor of the amplification unit 401 regardless of the allowable current range of the induction motor 101. For this reason, even if the allowable current range of the induction motor 101 is relatively increased without changing the specifications of the AD converter 402, the resolution of the high resolution detection unit 202 can be reduced by setting the amplification factor of the amplification unit 401 in advance. The required high resolution can be achieved.
 したがって、ADコンバータ302、及びADコンバータ402の仕様をそれぞれ変えずに、誘導電動機101の許容電流範囲を相対的に大きくすると、低分解能検出部201の分解能が相対的に低くなり、高分解能検出部202の分解能は変化させずにすむ。このため、誘導電動機101の許容電流範囲を相対的に大きくすると、低分解能検出部201の分解能と高分解能検出部202の分解能との差が相対的に大きくなる。 Therefore, if the allowable current range of the induction motor 101 is relatively increased without changing the specifications of the AD converter 302 and the AD converter 402, the resolution of the low resolution detector 201 is relatively lowered, and the high resolution detector The resolution of 202 need not be changed. For this reason, when the allowable current range of the induction motor 101 is relatively increased, the difference between the resolution of the low resolution detector 201 and the resolution of the high resolution detector 202 is relatively increased.
 図3Cは、誘導電動機101の許容電流範囲が相対的に小さい場合に、第1の相電流検出部102に含まれる低分解能検出部201で検出される電流の値、すなわち、低分解能検出値Lと、同一の相電流検出部に含まれる高分解能検出部202で検出される電流の値、すなわち、高分解能検出値Hとの一例を比較する図である。図3Cでは、高分解能検出値Hを実線で示し、低分解能検出値Lを破線で示している。さらに、図3Cには、電流信号A1の電圧を実線の直線で示している。図3Cに示すように、誘導電動機101の許容電流範囲が相対的に小さい場合において生じる低分解能検出値Lと、高分解能検出値Hとの最も大きい差はΔ1となる。 FIG. 3C shows the value of the current detected by the low resolution detection unit 201 included in the first phase current detection unit 102 when the allowable current range of the induction motor 101 is relatively small, that is, the low resolution detection value L. FIG. 6 is a diagram comparing an example of a current value detected by a high resolution detection unit 202 included in the same phase current detection unit, that is, a high resolution detection value H. In FIG. 3C, the high resolution detection value H is indicated by a solid line, and the low resolution detection value L is indicated by a broken line. Further, in FIG. 3C, the voltage of the current signal A1 is indicated by a solid line. As shown in FIG. 3C, the largest difference between the low resolution detection value L and the high resolution detection value H that occurs when the allowable current range of the induction motor 101 is relatively small is Δ1.
 一方、図3Dは、誘導電動機101の許容電流範囲が相対的に大きい場合に、第1の相電流検出部102に含まれる低分解能検出部201、及び高分解能検出部202でそれぞれ検出される低分解能検出値Lと高分解能検出値Hとの一例を比較する図である。図3Dでは、図3Cと同様に、高分解能検出値Hを実線で示し、低分解能検出値Lを破線で示している。さらに、図3Dには、電流信号A1の電圧を実線の直線で示している。また、図3Dには比較のために図3Cに示した差Δ1も併せて示している。図3Dに示すように、誘導電動機101の許容電流範囲が相対的に大きい場合における低分解能検出値Lと、高分解能検出値Hとの最も大きな差は前述の差Δ1よりも大きいΔ2となる。 On the other hand, FIG. 3D shows a low resolution detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the first phase current detection unit 102 when the allowable current range of the induction motor 101 is relatively large. It is a figure which compares an example of the resolution detection value L and the high resolution detection value H. In FIG. 3D, as in FIG. 3C, the high resolution detection value H is indicated by a solid line, and the low resolution detection value L is indicated by a broken line. Further, in FIG. 3D, the voltage of the current signal A1 is indicated by a solid line. 3D also shows the difference Δ1 shown in FIG. 3C for comparison. As shown in FIG. 3D, the largest difference between the low resolution detection value L and the high resolution detection value H when the allowable current range of the induction motor 101 is relatively large is Δ2 which is larger than the above-described difference Δ1.
 したがって、相対的に大きい許容電流範囲の誘導電動機101を用いている場合において低分解能検出値Lと高分解能検出値Hとの差が図3Dに例として示したように相対的に大きくなったときに、制御部106が、低分解能検出値Lと高分解能検出値Hとを上述したように切り替えると、誘導電動機101のトルクが大きく変化してしまう。これが、第2の原因の説明である。 Therefore, when the induction motor 101 having a relatively large allowable current range is used, when the difference between the low resolution detection value L and the high resolution detection value H becomes relatively large as shown in FIG. 3D as an example. In addition, when the control unit 106 switches the low resolution detection value L and the high resolution detection value H as described above, the torque of the induction motor 101 changes greatly. This is the explanation of the second cause.
 尚、上述では第1の原因でトルクが大きく変化してしまうことを、それぞれ第1の相電流検出部102に含まれる低分解能検出部201、及び高分解能検出部202でそれぞれ検出される低分解能検出値L、及び高分解能検出値Hとの間に生じる不一致を一例に挙げて説明した。しかしながら、第2の相電流検出部103~第3の相電流検出部104に含まれる低分解能検出部201、及び高分解能検出部202でそれぞれ検出される低分解能検出値L、及び高分解能検出値Hとの間にも同じ第1の原因で不一致が生じる場合があることは言うまでもない。 In the above description, the low resolution detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the first phase current detection unit 102 respectively indicates that the torque greatly changes due to the first cause. The mismatch occurring between the detection value L and the high resolution detection value H has been described as an example. However, the low resolution detection value L and the high resolution detection value detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the second phase current detection unit 103 to the third phase current detection unit 104, respectively. Needless to say, there may be a discrepancy with H due to the same first cause.
 また、上述では第2の原因でトルクが大きく変化してしまうことを、それぞれ第1の相電流検出部102に含まれる低分解能検出部201、及び高分解能検出部202でそれぞれ検出される低分解能検出値L、及び高分解能検出値Hとの間に生じる差を一例に挙げて説明した。しかしながら、第2の相電流検出部103~第3の相電流検出部104に含まれる低分解能検出部201、及び高分解能検出部202でそれぞれ検出される低分解能検出値L、及び高分解能検出値Hとの間にも同じ第2の原因で差が生じる場合があることは言うまでもない。 In the above description, the low resolution detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the first phase current detection unit 102 respectively indicates that the torque greatly changes due to the second cause. The difference generated between the detection value L and the high resolution detection value H has been described as an example. However, the low resolution detection value L and the high resolution detection value detected by the low resolution detection unit 201 and the high resolution detection unit 202 included in the second phase current detection unit 103 to the third phase current detection unit 104, respectively. Needless to say, there may be a difference from H due to the same second cause.
 以上の説明から明らかなように、制御部106が、低分解能検出値Lと高分解能検出値Hとを切り替えるときには、上述した第1の原因、及び第2の原因により、誘導電動機101のトルクが大きく変化してしまう。例えば、誘導電動機101が、自車両を走行させるための駆動力を発生させるために用いられる場合、上述した第1の原因、及び第2の原因により生じたトルクの変化が自車両の振動となって搭乗者に伝わってしまう。 As is clear from the above description, when the control unit 106 switches between the low resolution detection value L and the high resolution detection value H, the torque of the induction motor 101 is caused by the first cause and the second cause described above. It will change greatly. For example, when the induction motor 101 is used to generate a driving force for running the host vehicle, the torque change caused by the first cause and the second cause described above becomes the vibration of the host vehicle. Will be transmitted to the passenger.
 尚、本実施形態では、上述したように低分解能検出部201の検出範囲は誘導電動機101の許容電流範囲と同じである。また、増幅部401の増幅率を増幅部301の増幅率よりも高く定めると、誘導電動機101に流す電流が大きくなるにしたがって、上述したように、ADコンバータ302で変換されるデジタル値は飽和しないにも拘わらず、ADコンバータ402で変換されるデジタル値は飽和してしまう。つまり、本実施形態では、低分解能検出部201は誘導電動機101の許容電流範囲内の電流を全て低分解能で正確に測定し、高分解能検出部202は誘導電動機101の許容電流範囲の内、相対的に低い範囲で流れる電流を高分解能でより正確に精度よく測定している。 In the present embodiment, as described above, the detection range of the low resolution detection unit 201 is the same as the allowable current range of the induction motor 101. If the amplification factor of the amplification unit 401 is set higher than the amplification factor of the amplification unit 301, the digital value converted by the AD converter 302 is not saturated as described above as the current flowing through the induction motor 101 increases. Nevertheless, the digital value converted by the AD converter 402 is saturated. That is, in the present embodiment, the low resolution detection unit 201 accurately measures all currents within the allowable current range of the induction motor 101 with low resolution, and the high resolution detection unit 202 performs relative measurement within the allowable current range of the induction motor 101. In particular, the current flowing in a low range is measured with high resolution more accurately and accurately.
 上述したように、前述の第1の原因、及び前述の第2の原因により、誘導電動機101のトルクが大きく変化してしまうことがある。そこで、本実施形態に係る制御部106は、PWM制御をするときに用いる電流の値を、低分解能検出値Lと高分解能検出値Hとの中から判断して切り替えるときに、一方から他方の値へ漸次変化させて切り替える。図4は、制御部106がPWM制御に用いる電流の値を低分解能検出値Lと高分解能検出値Hとの間で切り替えるときに漸次変化させる手法を説明するための図である。図4は、一例として、制御部106がPWM制御に用いる電流の値を高分解能検出値Hから低分解能検出値Lへ漸次変化させて切り替える場合を示している。また、図4には、制御部106が切り替える低分解能検出値L、及び高分解能検出値Hの一例として、第1の相電流検出部102に含まれる低分解能検出部201、及び高分解能検出部202でそれぞれ検出される低分解能検出値L、及び高分解能検出値Hを示している。 As described above, the torque of the induction motor 101 may greatly change due to the first cause and the second cause. Therefore, when the control unit 106 according to the present embodiment determines and switches the value of the current used when performing PWM control from the low resolution detection value L and the high resolution detection value H, the control unit 106 changes the current value from one to the other. Change gradually to value. FIG. 4 is a diagram for explaining a method of gradually changing the current value used by the control unit 106 for PWM control between the low resolution detection value L and the high resolution detection value H. FIG. 4 shows, as an example, a case where the current value used by the control unit 106 for PWM control is gradually changed from the high resolution detection value H to the low resolution detection value L and switched. In FIG. 4, as an example of the low resolution detection value L and the high resolution detection value H switched by the control unit 106, the low resolution detection unit 201 and the high resolution detection unit included in the first phase current detection unit 102. A low-resolution detection value L and a high-resolution detection value H detected at 202 are shown.
 制御部106は、PWM制御に用いる電流の値を低分解能検出値Lと高分解能検出値Hとの間で切り替えるとき、それぞれの値を加重平均して漸次変化させる。より詳細には、制御部106は、低分解能検出値Lと高分解能検出値Hとを漸次変化させて切り替えるとき、以下の数式で示す演算をする。 When the control unit 106 switches the current value used for the PWM control between the low resolution detection value L and the high resolution detection value H, the respective values are gradually changed by weighted averaging. More specifically, when the control unit 106 switches between the low-resolution detection value L and the high-resolution detection value H by gradually changing the calculation, the control unit 106 performs an operation represented by the following formula.
  
Figure JPOXMLDOC01-appb-I000001
  
Figure JPOXMLDOC01-appb-I000001
 上記数式(1)において、SはPWM制御に用いるために漸次変化させた電流の値、λは係数、Lは前述の低分解能検出値L、Hは前述の高分解能検出値Hである。制御部106は、図5に一例として示すように、高分解能検出値Hから低分解能検出値Lへ切り替える切替開始時点Ts1が到来したとき、上記数式(1)で示される演算を開始して、PWM制御に用いる電流の値を高分解能検出値Hから低分解能検出値Lへ漸次変化させる。ここで、高分解能検出値Hから低分解能検出値Lへ切り替える切替開始時点Ts1(以下、単に切替開始時点Ts1と称する)が到来したときとは、回転速度が前述の低回転速度であって、且つトルク目標値が前述の低トルク目標値である状態から、当該回転速度が前述の高回転速度、又は当該トルク目標値が前述の高トルク目標値になったときに相当する。 In the above equation (1), S is a current value gradually changed for use in PWM control, λ is a coefficient, L is the aforementioned low resolution detection value L, and H is the above high resolution detection value H. As illustrated in FIG. 5 as an example, when the switching start time Ts1 for switching from the high resolution detection value H to the low resolution detection value L has arrived, the control unit 106 starts the calculation represented by the above formula (1), The current value used for the PWM control is gradually changed from the high resolution detection value H to the low resolution detection value L. Here, when the switching start time Ts1 for switching from the high resolution detection value H to the low resolution detection value L (hereinafter simply referred to as the switching start time Ts1) has arrived, the rotation speed is the low rotation speed described above, Further, this corresponds to the state where the torque target value is the low torque target value described above and the rotational speed is the high rotational speed described above or the torque target value is the high torque target value described above.
 切替開始時点Ts1が到来すると、制御部106は、切替終了時点Te1が到来するまでに、図5に示すように前述のλを0から1まで漸増させながら、上記数式(1)で示される演算をしてPWM制御に用いる電流の値Sを逐次算出する。そして、制御部106は、電流の値Sを逐次算出しながら、算出した電流の値SをPWM制御に用いる。これにより、上記数式(1)から明らかなように、制御部106は、切替開始時点Ts1が到来してから切替終了時点Te1が到来するまでに、PWM制御に用いる電流の値を高分解能検出値Hから低分解能検出値Lに漸次変化させながら切り替えることができる。そして、切替終了時点Te1が到来して切り替えを終了すると、制御部106は、低分解能検出値Lを用いてPWM制御をする。 When the switching start time Ts1 arrives, the control unit 106 gradually increases the above-mentioned λ from 0 to 1 as shown in FIG. 5 until the switching end time Te1 arrives. Then, the current value S used for the PWM control is sequentially calculated. The controller 106 uses the calculated current value S for PWM control while sequentially calculating the current value S. Thereby, as is clear from the above formula (1), the control unit 106 determines the value of the current used for PWM control from the time when the switching start time Ts1 arrives until the time when the switching end time Te1 arrives. Switching can be performed while gradually changing from H to a low resolution detection value L. When the switching end time Te1 arrives and the switching ends, the control unit 106 performs PWM control using the low resolution detection value L.
 尚、図5を参照しながら上述で説明した場合と異なり、制御部106が、PWM制御に用いる電流の値を低分解能検出値Lから高分解能検出値Hに切り替えるときにも上記数式(1)で示される演算をする。より詳細には、制御部106は、低分解能検出値Hから高分解能検出値Lへ切り替える切替開始時点Ts2が到来したとき、上記数式(1)で示される演算を開始して、PWM制御に用いる電流の値を低分解能検出値Lから高分解能検出値Hへ漸次変化させる。ここで、低分解能検出値Lから高分解能検出値Hへ切り替える切替開始時点Ts2(以下、単に切替開始時点Ts2と称する)が到来したときとは、回転速度が前述の高回転速度、又はトルク目標値が前述の高トルク目標値である状態から、当該回転速度が前述の低回転速度であって、且つ当該トルク目標値が前述の低トルク目標値になったときに相当する。 Note that, unlike the case described above with reference to FIG. 5, the control unit 106 also switches the current value used for PWM control from the low resolution detection value L to the high resolution detection value H. Perform the operation indicated by. More specifically, when the switching start time Ts2 for switching from the low resolution detection value H to the high resolution detection value L has arrived, the control unit 106 starts the calculation represented by the above formula (1) and uses it for PWM control. The current value is gradually changed from the low resolution detection value L to the high resolution detection value H. Here, when the switching start time Ts2 for switching from the low resolution detection value L to the high resolution detection value H has arrived (hereinafter simply referred to as the switching start time Ts2), the rotation speed is the high rotation speed described above or the torque target. This corresponds to a state where the value is the aforementioned high torque target value and the rotational speed is the aforementioned low rotational speed and the torque target value is the aforementioned low torque target value.
 切替開始時点Ts2が到来すると、制御部106は、切替終了時点Te2が到来するまでに、図5を参照して上述で説明した場合とは異なり、前述のλを1から0まで漸減させながら、上記数式(1)で示される演算をしてPWM制御に用いる電流の値Sを逐次算出する。そして、制御部106は、電流の値Sを逐次算出しながら、算出した電流の値SをPWM制御に用いる。これにより、上述で説明した高分解能検出値Hから低分解能検出値Lへ切り替える場合と同様に、切替開始時点Ts2が到来してから切替終了時点Te2が到来するまでに、PWM制御に用いる値を低分解能検出値Lから高分解能検出値Hに漸次変化させながら切り替えることができる。 When the switching start time Ts2 arrives, the control unit 106 gradually decreases the above-described λ from 1 to 0, unlike the case described above with reference to FIG. 5 until the switching end time Te2 arrives. The current value S used for the PWM control is sequentially calculated by performing the calculation represented by the above formula (1). The controller 106 uses the calculated current value S for PWM control while sequentially calculating the current value S. As a result, as in the case of switching from the high resolution detection value H to the low resolution detection value L described above, the value used for the PWM control after the switching start time Ts2 arrives and until the switching end time Te2 arrives. Switching can be performed while gradually changing from the low resolution detection value L to the high resolution detection value H.
 尚、制御部106は、低分解能検出値L、及び高分解能検出値Hのいずれか一方への切り替えを終了した後は、切り替え後の値(低分解能検出値L、又は高分解能検出値H)を直接用いてもよいし、上記数式(1)で示される演算を継続して算出した値を用いてもよい。上記数式(1)で示される演算を継続するとは、具体的には、低分解能検出値Lに切り替えた後にはλを1にして演算を継続し、高分解能検出値Hに切り替えた後にはλを0にして演算を継続するということである。 In addition, after the control part 106 complete | finishes switching to either one of the low resolution detection value L and the high resolution detection value H, it is the value after switching (low resolution detection value L or high resolution detection value H). May be used directly, or a value calculated by continuing the calculation represented by the mathematical formula (1) may be used. To continue the calculation represented by the above formula (1), specifically, after switching to the low resolution detection value L, the calculation is continued by setting λ to 1, and after switching to the high resolution detection value H, λ This means that the calculation is continued with 0 being set to 0.
 以上が、本実施形態に係る制御部106が、低分解能検出値Lと高分解能検出値Hとを漸次変化させながら切り替える手法の説明である。尚、上述の説明では、制御部106が切り替える低分解能検出値L、及び高分解能検出値Hを漸次変化させる手法を説明するために、第1の相電流検出部102に含まれる低分解能検出部201、及び高分解能検出部202でそれぞれ検出される低分解能検出値L、及び高分解能検出値Hのみを図4に示して説明した。しかしながら、本実施形態に係る制御部106は、低分解能検出値L、及び高分解能検出値Hを切り替えるとき、全ての相電流検出部毎にそれぞれ検出される低分解能検出値Lと高分解能検出値Hとを上記数式(1)で示される演算に用いて、相電流検出部毎に電流の値Sを逐次算出する。そして、制御部106は、相電流検出部毎に電流の値Sを逐次算出しながら、算出したそれぞれの電流の値Sを、それぞれの相電流検出部で検出された電流の値としてPWM制御に用いる。 The above is the description of the method in which the control unit 106 according to the present embodiment switches the low resolution detection value L and the high resolution detection value H while gradually changing them. In the above description, the low-resolution detection unit included in the first phase current detection unit 102 is used to describe a method of gradually changing the low-resolution detection value L and the high-resolution detection value H that are switched by the control unit 106. Only the low resolution detection value L and the high resolution detection value H detected by the high resolution detection unit 201 and the high resolution detection unit 202 have been described with reference to FIG. However, when the control unit 106 according to the present embodiment switches the low resolution detection value L and the high resolution detection value H, the low resolution detection value L and the high resolution detection value detected for each of the phase current detection units, respectively. The current value S is sequentially calculated for each phase current detection unit using H in the calculation represented by the above formula (1). Then, the control unit 106 sequentially calculates the current value S for each phase current detection unit, and applies the calculated current value S to the PWM control as the current value detected by each phase current detection unit. Use.
 また、切替開始時点Ts1から切替終了時点Te1までの期間、及び切替開始時点Ts2から切替終了時点Te2までの期間は、それぞれの任意の長さの期間であってよい。 Also, the period from the switching start time Ts1 to the switching end time Te1 and the period from the switching start time Ts2 to the switching end time Te2 may be periods of any arbitrary length.
 次に、本実施形態に係る制御部106の処理を、図5に示すフローチャートを参照しながら説明する。尚、図5のフローチャートに示す処理は、本実施形態に係る電流切替装置1に給電が開始されたときに開始され、給電が停止されたときに終了されるものとする。例えば、本実施形態に係る電流切替装置1が自車両に搭載される場合には、自車両のイグニッションスイッチがオンになり、電流切替装置1に給電が開始されたときに図5のフローチャートに示される処理が開始され、当該イグニッションスイッチがオフになり、電流切替装置1への給電が停止されたときに当該処理が終了されるものとする。このことは、上述したように図5に示すフローチャートに示す処理と並行して制御部106が処理するPWM制御のための処理も同様である。 Next, processing of the control unit 106 according to the present embodiment will be described with reference to the flowchart shown in FIG. Note that the processing shown in the flowchart of FIG. 5 is started when power supply is started to the current switching device 1 according to the present embodiment, and is ended when power supply is stopped. For example, when the current switching device 1 according to the present embodiment is mounted on the host vehicle, the ignition switch of the host vehicle is turned on, and power supply to the current switching device 1 is started as shown in the flowchart of FIG. The process is terminated when the ignition switch is turned off and the power supply to the current switching device 1 is stopped. This is the same as the processing for PWM control processed by the control unit 106 in parallel with the processing shown in the flowchart shown in FIG. 5 as described above.
 ステップS101において、制御部106は、誘導電動機101の回転子の回転速度が前述の低回転速度であるか前述の高回転速度であるかを判断する。ステップS101の具体的な処理の一例を説明すると、ステップS101において、制御部106は、回転速度検出部105によって生成された回転速度信号Vを取得し、取得した回転速度信号Vによって示される回転速度が、前述のしきい値th1未満であるか否かを判断する。制御部106は、ステップS101において、回転速度がしきい値th1未満であると判断したとき、回転速度が低回転速度であると判断して、ステップS102へ処理を進める。一方、制御部106は、ステップS101において、回転速度がしきい値th1未満でないと判断したとき、回転速度が高回転速度であると判断して、ステップS104へ処理を進める。 In step S101, the control unit 106 determines whether the rotation speed of the rotor of the induction motor 101 is the low rotation speed described above or the high rotation speed described above. An example of specific processing in step S101 will be described. In step S101, the control unit 106 acquires the rotation speed signal V generated by the rotation speed detection unit 105, and the rotation speed indicated by the acquired rotation speed signal V. Is less than the above-mentioned threshold value th1. When the control unit 106 determines in step S101 that the rotation speed is less than the threshold th1, the control unit 106 determines that the rotation speed is a low rotation speed and advances the process to step S102. On the other hand, when determining in step S101 that the rotation speed is not less than the threshold value th1, the control unit 106 determines that the rotation speed is a high rotation speed and advances the process to step S104.
 ステップS102において、制御部106は、図示しない生成部から与えられているトルク目標値が前述の低トルク目標値であるか前述の高トルク目標値であるかを判断する。ステップS102の具体的な処理の一例を説明すると、ステップS101において、制御部106は、図示しない生成部によって生成されたトルク目標信号Toを取得し、取得したトルク目標信号Toによって示されるトルク目標値が、前述のしきい値th2未満であるか否かを判断する。制御部106は、ステップS102において、トルク目標値がしきい値th2未満であると判断したとき、トルク目標値が低トルク目標値であると判断して、ステップS103へ処理を進める。一方、制御部106は、ステップS102において、トルク目標値がしきい値th2未満でないと判断したとき、トルク目標値が高トルク目標値であると判断して、ステップS104へ処理を進める。 In step S102, the control unit 106 determines whether the torque target value given from a generating unit (not shown) is the above-described low torque target value or the above-described high torque target value. An example of specific processing in step S102 will be described. In step S101, the control unit 106 acquires a torque target signal To generated by a generation unit (not shown), and a torque target value indicated by the acquired torque target signal To. Is less than the threshold value th2. When the control unit 106 determines in step S102 that the torque target value is less than the threshold value th2, the control unit 106 determines that the torque target value is a low torque target value, and advances the process to step S103. On the other hand, when it is determined in step S102 that the torque target value is not less than the threshold value th2, the control unit 106 determines that the torque target value is a high torque target value, and advances the process to step S104.
 ステップS103において、制御部106は、PWM制御をするために用いている電流の値が、高分解能検出値Hであるか否かを判断する。ステップS103の具体的な処理の一例を説明すると、ステップS103において、制御部106は、上述で説明したように並行しているPWM制御のための処理において用いている電流の値を認識し、認識した電流の値が高分解能検出値Hであるか否かを判断する。制御部106は、ステップS103において、PWM制御をするために用いている電流の値が、高分解能検出値Hではないと判断したとき、ステップS105へ処理を進める。一方、制御部106は、ステップS103において、PWM制御をするために用いている電流の値が、高分解能検出値Hであると判断したとき、ステップS101へ処理を戻す。 In step S103, the control unit 106 determines whether or not the current value used for PWM control is the high-resolution detection value H. An example of a specific process in step S103 will be described. In step S103, the control unit 106 recognizes and recognizes the value of the current used in the parallel PWM control process as described above. It is determined whether or not the value of the measured current is the high resolution detection value H. When the control unit 106 determines in step S103 that the current value used for the PWM control is not the high resolution detection value H, the control unit 106 proceeds to step S105. On the other hand, when the control unit 106 determines in step S103 that the current value used for PWM control is the high-resolution detection value H, the process returns to step S101.
 ステップS104において、制御部106は、PWM制御をするために用いている電流の値が、低分解能検出値Lであるか否かを判断する。ステップS104の具体的な処理の一例を説明すると、ステップS104において、制御部106は、上述で説明したように並行しているPWM制御のための処理において用いられている電流の値を認識し、認識した電流の値が低分解能検出値Lであるか否かを判断する。制御部106は、ステップS103において、PWM制御をするために用いている電流の値が、低分解能検出値Lではないと判断したとき、ステップS105へ処理を進める。一方、制御部106は、ステップS103において、PWM制御をするために用いている電流の値が、低分解能検出値Lであると判断したとき、ステップS101へ処理を戻す。 In step S104, the control unit 106 determines whether or not the current value used for PWM control is the low-resolution detection value L. An example of a specific process in step S104 will be described. In step S104, the control unit 106 recognizes the current value used in the parallel PWM control process as described above, It is determined whether or not the recognized current value is the low resolution detection value L. When the control unit 106 determines in step S103 that the current value used for PWM control is not the low resolution detection value L, the control unit 106 proceeds to step S105. On the other hand, when the control unit 106 determines in step S103 that the current value used for the PWM control is the low resolution detection value L, the control unit 106 returns the process to step S101.
 ステップS105において、制御部106は、上述した手法で、PWM制御をするために用いる電流の値を、低分解能検出値Lと高分解能検出値Hとの間で切り替える。ステップS105の具体的な処理の一例を説明すると、制御部106は、ステップS105において、ステップS103の処理からステップS105へ処理を進めたと判断した場合には、前述の切替開始時点Ts2が到来したと判断して、上述で説明したようにPWM制御に用いる電流の値を低分解能検出値Lから高分解能検出値Hに漸次変化させながら切り替える。制御部106が、ステップS103の処理からステップS105へ処理を進めた場合に前述の切替開始時点Ts2が到来したと判断できる理由について説明する。制御部106がステップS103からステップS105へ処理を進めることができるのは、ステップS101の処理で回転速度が低回転速度であると判断し、且つステップS102の処理でトルク目標値が低トルク目標であると判断した場合のみである。また、制御部106が、ステップS103の処理でPWM制御に用いる電流の値が高分解能検出値Hでないと判断できるのは、図5のフローチャートに示す処理を繰り返す制御部106が、前回以前の処理において、高回転速度、又は高トルク目標値であると判断して、PWM制御に用いる電流の値を低分解能検出値Lに既に切り替えていたときである。 In step S105, the control unit 106 switches the current value used for the PWM control between the low resolution detection value L and the high resolution detection value H by the above-described method. An example of a specific process in step S105 will be described. When the control unit 106 determines in step S105 that the process has proceeded from the process in step S103 to step S105, the switching start time Ts2 has been reached. As described above, the current value used for the PWM control is switched while gradually changing from the low resolution detection value L to the high resolution detection value H as described above. The reason why the control unit 106 can determine that the aforementioned switching start time Ts2 has arrived when the process proceeds from step S103 to step S105. The control unit 106 can advance the process from step S103 to step S105 because it is determined in step S101 that the rotation speed is a low rotation speed, and in step S102, the torque target value is a low torque target. Only when it is determined that there is. The control unit 106 can determine that the current value used for PWM control in step S103 is not the high resolution detection value H. The control unit 106 that repeats the processing shown in the flowchart of FIG. Is a time when the current value used for the PWM control is already switched to the low resolution detection value L because it is determined that the rotational speed is high or the torque target value is high.
 すなわち、制御部106が、ステップS103からステップS105へ処理を進めたときとは、上述したように高回転速度、又は高トルク目標値である状態から、低回転速度、且つ低トルク目標値となったときである。したがって、制御部106は、ステップS103からステップS105へ処理を進めたときには、前述の切替開始時点Ts2が到来したと判断して、PWM制御に用いる電流の値を上述した手法で低分解能検出値Lから高分解能検出値Hへ漸次変化させながら切り替える。 That is, when the control unit 106 proceeds from step S103 to step S105, the low rotational speed and the low torque target value are obtained from the state of the high rotational speed or the high torque target value as described above. When Therefore, when the processing proceeds from step S103 to step S105, the control unit 106 determines that the above-described switching start time Ts2 has arrived, and determines the current value used for PWM control by the above-described method using the low-resolution detection value L. Is switched while gradually changing from 1 to the high-resolution detection value H.
 一方、制御部106は、ステップS105において、ステップS104からステップS105へ処理を進めたと判断した場合には、前述の切替開始時点Ts1が到来したと判断して、上述で説明したようにPWM制御に用いる電流の値を低分解能検出値Lから高分解能検出値Hに漸次変化させながら切り替える。制御部106が、ステップS104の処理からステップS105へ処理を進めた場合に前述の切替開始時点Ts1が到来したと判断できる理由について説明する。この理由は、制御部106がステップS104の処理からステップS105へ処理を進めることができるのは、ステップS101の処理で回転速度が高回転速度であると判断するか、又はステップS102の処理でトルク目標値が高トルク目標であると判断した場合のみである。また、制御部106が、ステップS104の処理でPWM制御に用いる電流の値が低分解能検出値Lでないと判断できるのは、図5のフローチャートに示す処理を繰り返す制御部106が、前回以前の処理において、低回転速度、且つ低トルク目標値であると判断して、PWM制御に用いる電流の値を高分解能検出値Hに既に切り替えていたときである。 On the other hand, if the control unit 106 determines in step S105 that the process has proceeded from step S104 to step S105, the control unit 106 determines that the switching start time Ts1 has been reached, and performs PWM control as described above. The current value to be used is switched while gradually changing from the low resolution detection value L to the high resolution detection value H. The reason why it can be determined that the above-described switching start time Ts1 has arrived when the control unit 106 proceeds from step S104 to step S105. The reason for this is that the control unit 106 can proceed from step S104 to step S105 because it is determined in step S101 that the rotation speed is a high rotation speed, or in step S102, torque is determined. Only when it is determined that the target value is a high torque target. The control unit 106 can determine that the current value used for the PWM control in step S104 is not the low resolution detection value L. The control unit 106 that repeats the processing shown in the flowchart of FIG. , When it is determined that the rotation speed is low and the target torque value is low, and the current value used for PWM control has already been switched to the high resolution detection value H.
 すなわち、制御部106が、ステップS104からステップS105へ処理を進めたときとは、上述したように低回転速度、且つ低トルク目標値である状態から、高回転速度、又は高トルク目標値となったときである。したがって、制御部106は、ステップS104からステップS105へ処理を進めたときには、前述の切替開始時点Ts1が到来したと判断して、PWM制御に用いる電流の値を上述した手法で高分解能検出値Hから低分解能検出値Lへ切り替える。 That is, when the control unit 106 advances the process from step S104 to step S105, the low rotational speed and the low torque target value are changed to the high rotational speed or the high torque target value as described above. When Therefore, when the process proceeds from step S104 to step S105, the control unit 106 determines that the above-described switching start time Ts1 has arrived, and determines the current value used for the PWM control by the above-described method using the high-resolution detection value H. To low resolution detection value L.
 ステップS105の処理を完了すると、制御部106は、ステップS101へ処理を戻す。 When the process of step S105 is completed, the control unit 106 returns the process to step S101.
 以上が、本実施形態に係る電流切替装置1の説明である。本実施形態に係る電流切替装置1は、第1の相電流検出部102~第3の相電流検出部104によってそれぞれ検出される低分解能検出値Lと高分解能検出値Hとを、相電流検出部毎に漸次変化させながら切り替えてPWM制御に用いる。したがって、本実施形態に係る電流切替装置1によれば、低分解能検出値Lと高分解能検出値Hとを切り替えるときに生じる誘導電動機101のトルクの大きな変化をなくすことができる。例えば、本実施形態に係る誘導電動機101が自車両に搭載される場合には、低分解能検出値Lと高分解能検出値Hとを切り替えるときに生じる誘導電動機101のトルクの大きな変化に起因して生じる自車両の振動が搭乗者に伝わることを防げる。 The above is the description of the current switching device 1 according to the present embodiment. The current switching device 1 according to the present embodiment uses a low-resolution detection value L and a high-resolution detection value H detected by the first phase current detection unit 102 to the third phase current detection unit 104, respectively, to detect a phase current. It is used for PWM control by switching while gradually changing each part. Therefore, according to the current switching device 1 according to the present embodiment, it is possible to eliminate a large change in the torque of the induction motor 101 that occurs when switching between the low resolution detection value L and the high resolution detection value H. For example, when the induction motor 101 according to the present embodiment is mounted on the host vehicle, it is caused by a large change in the torque of the induction motor 101 that occurs when switching between the low resolution detection value L and the high resolution detection value H. It is possible to prevent the vibration of the own vehicle from being transmitted to the passenger.
 また、本実施形態に係る電流切替装置1によれば、誘導電動機101の回転速度が低回転速度、且つトルク目標値が低トルク目標値であるときにはそれぞれの相電流検出部で検出される高分解能検出値Hに基づいてPWM制御をするのでトルクを滑らかに制御できる。一方、本実施形態に係る電流切替装置1によれば、誘導電動機101の回転速度が高回転速度、又はトルク目標値が高トルク目標値であるときにはそれぞれの相電流検出部で検出される低分解能検出値Lに基づいてPWM制御をするので飽和した不正確な値に基づいてPWM制御することを防げる。 Further, according to the current switching device 1 according to the present embodiment, when the rotation speed of the induction motor 101 is low and the torque target value is the low torque target value, the high resolution detected by each phase current detection unit. Since PWM control is performed based on the detected value H, torque can be controlled smoothly. On the other hand, according to the current switching device 1 according to the present embodiment, when the rotation speed of the induction motor 101 is a high rotation speed or the torque target value is a high torque target value, the low resolution detected by each phase current detection unit. Since PWM control is performed based on the detection value L, it is possible to prevent PWM control based on a saturated inaccurate value.
 尚、本実施形態に係る制御部106は、典型的には、上述した制御、及び処理を示すプログラムを解釈実行可能なCPU(Central Processing Unit)、LSI(Large Scale Integration)、マイクロコンピュータなどの集積回路で実現されてもよい。また、本実施形態に係る制御部106を前述の集積回路で実現する場合には、当該集積回路に第1の相電流検出部102~第3の相電流検出部104の機能を実現できる電子回路を組み込んで一体化してもよい。 Note that the control unit 106 according to the present embodiment typically includes an integration of a CPU (Central Processing Unit), an LSI (Large Scale Integration), a microcomputer, and the like that can interpret and execute the above-described control and processing programs. It may be realized by a circuit. Further, when the control unit 106 according to the present embodiment is realized by the above-described integrated circuit, an electronic circuit capable of realizing the functions of the first phase current detection unit 102 to the third phase current detection unit 104 in the integrated circuit. May be integrated.
 また、第1の実施形態の説明では、誘導電動機101が三相交流誘導電動機である場合を一例として説明したが、流れる電流に基づいて制御部106がトルクを制御できる電動機であれば、誘導電動機101はどのような電動機であってもよい。また、誘導電動機101として用いることのできる電動機は、誘導電動機101として用いる電動機の相に応じて相電流検出部の数を増減させることにより、2以下の相の電動機や、4以上の相の電動機など様々な電動機を用いることができる。 In the description of the first embodiment, the case where the induction motor 101 is a three-phase AC induction motor has been described as an example. However, if the control unit 106 can control the torque based on the flowing current, the induction motor is used. 101 may be any electric motor. In addition, the motor that can be used as the induction motor 101 is a motor having two or less phases or a motor having four or more phases by increasing or decreasing the number of phase current detection units according to the phase of the motor used as the induction motor 101. Various electric motors can be used.
 また、第1の実施形態では、制御部106がPWM制御をするものとしたが、誘導電動機101に流れる電流に基づいて当該誘導電動機101のトルクを制御できるのであれば、PFM(Pulse Frequency Modulation)制御など他の制御手法を用いてもよい。 In the first embodiment, the control unit 106 performs PWM control. However, if the torque of the induction motor 101 can be controlled based on the current flowing through the induction motor 101, PFM (Pulse Frequency Modulation) is used. Other control methods such as control may be used.
 また、第1の実施形態に係る第1の相電流検出部102~第3の相電流検出部104のそれぞれに含まれる増幅部301の増幅率は、制御部106が誘導電動機101のトルクを第1の実施形態で説明したように制御できるのであれば、互いに同じ増幅率にしてもよいし、互いに異なる増幅率にしてもよい。 In addition, the gain of the amplification unit 301 included in each of the first phase current detection unit 102 to the third phase current detection unit 104 according to the first embodiment is calculated by the control unit 106 using the torque of the induction motor 101. As long as it can be controlled as described in the first embodiment, the amplification factors may be the same or different from each other.
 また、第1の実施形態では、制御部106が誘導電動機101の回転子の回転速度に応じて制御をするものとして説明したが、制御部106は誘導電動機101の回転子の回転数に基づいて第1の実施形態で説明したように低分解能検出値L、及び高分解能検出値Hとを切替ながら制御をしてもよい。 In the first embodiment, the control unit 106 has been described as performing control according to the rotation speed of the rotor of the induction motor 101. However, the control unit 106 is based on the rotation speed of the rotor of the induction motor 101. As described in the first embodiment, the control may be performed while switching between the low resolution detection value L and the high resolution detection value H.
 また、第1の実施形態では、低分解能検出部201、及び高分解能検出部202の2つの検出部で検出される電流の値を加重平均して漸次変化させながら切り替えていた。しかしながら、他の一実施形態では、3以上の検出部で検出される電流の値を順番に加重平均して漸次変化させながら切り替えてもよい。 Further, in the first embodiment, the current values detected by the two detection units of the low resolution detection unit 201 and the high resolution detection unit 202 are switched while being gradually changed by weighted averaging. However, in another embodiment, the current values detected by the three or more detection units may be switched while being weighted and averaged in order.
 また、第1の実施形態では、低分解能検出部201、及び高分解能検出部202の2つ検出部で検出される電流の値を漸次変化させるときに加重平均するものとした。しかしながら、他の一実施形態では、それぞれの検出部で検出される電流の値を変数とする2次関数など、他の数式を用いた手法で漸次変化させてもよい。 In the first embodiment, the weighted average is used when the current values detected by the two detection units of the low resolution detection unit 201 and the high resolution detection unit 202 are gradually changed. However, in another embodiment, it may be gradually changed by a method using other mathematical expressions such as a quadratic function using the current value detected by each detection unit as a variable.
 また、第1の実施形態に係る第1の相電流検出部102~第3の相電流検出部104にそれぞれ含まれるADコンバータ302、及びADコンバータ402の許容電圧範囲の具体的な一例としては、0V~5Vなどが挙げられる。また、ADコンバータ302、及びADコンバータ402のそれぞれの分解能の具体的な一例としては、10bit(0~1023の1024段階)などが挙げられる。 Further, as a specific example of the allowable voltage range of the AD converter 302 and the AD converter 402 included in each of the first phase current detection unit 102 to the third phase current detection unit 104 according to the first embodiment, 0V-5V etc. are mentioned. A specific example of the resolution of each of the AD converter 302 and the AD converter 402 is 10 bits (1024 steps from 0 to 1023).
 また、第1の実施形態では、誘導電動機101のそれぞれの相に流れる電流の値を低分解能、及び高分解能でそれぞれ検出する場合について説明した。しかしながら、他の一実施形態では、前述のレゾルバ、或いはロータリーエンコーダによって生成される速度信号Vsに基づいて算出される回転速度、或いは回転数など、他の種類の値を複数の検出部で検出する検出するときにそれぞれの検出部で検出された値を第1の実施形態で説明したように漸次変化させながら切り替えてもよい。 In the first embodiment, the case where the value of the current flowing in each phase of the induction motor 101 is detected with low resolution and high resolution has been described. However, in another embodiment, other types of values such as a rotation speed or a rotation speed calculated based on the speed signal Vs generated by the resolver or the rotary encoder described above are detected by a plurality of detection units. When detecting, the values detected by the respective detection units may be switched while being gradually changed as described in the first embodiment.
 また、第1の実施形態では、誘導電動機101のそれぞれの相に流れる電流を増幅してからデジタル値に変換することによって、低分解能、及び高分解能でそれぞれ検出する場合について説明した。しかしながら、他の一実施形態では、例えば、誘導電動機101の回転数を検出する場合に、ロータリーエンコーダなどで生成されるパルスの幅に基づく第1の従来周知の手法と、単位時間当たりでロータリーエンコーダなどによって生成されるパルスのエッジ数に基づく第2の従来周知の手法とでそれぞれ回転数を求めてもよい。この場合、回転数が相対的に低いときには前述の第1の従来周知の手法で求めた回転数を用い、回転数が相対的に高いときには前述の第2の従来周知の手法で求めた回転数を用いるようにする。そして、互いの手法で求めた回転数を切り替えるときに、第1の実施形態で説明したように漸次変化させながら切り替えてもよい。すなわち、互いに異なる手法で検出した同一の種類の検出量を第1の実施形態で説明したように漸次変化させながら切り替えてもよい。 In the first embodiment, a case has been described in which the current flowing in each phase of the induction motor 101 is amplified and then converted into a digital value to detect each with low resolution and high resolution. However, in another embodiment, for example, when detecting the number of rotations of the induction motor 101, a first known method based on the width of a pulse generated by a rotary encoder or the like, and a rotary encoder per unit time are used. The number of rotations may be obtained by the second conventionally known method based on the number of edges of the pulse generated by the above method. In this case, when the rotational speed is relatively low, the rotational speed obtained by the above-described first conventional well-known method is used, and when the rotational speed is relatively high, the rotational speed obtained by the above-described second conventional well-known technique. To use. And when switching the rotation speed calculated | required by the mutual method, you may switch, changing gradually, as demonstrated in 1st Embodiment. That is, the same type of detection amount detected by different methods may be switched while being gradually changed as described in the first embodiment.
 また、第1の実施形態に係る誘導電動機101は、自車両を走行させる駆動力を発生するための電動機であってもよいし、自車両の後輪の駆動力を制御するための電動機であってもよい。 In addition, the induction motor 101 according to the first embodiment may be an electric motor for generating a driving force for running the host vehicle, or an electric motor for controlling the driving force of the rear wheels of the host vehicle. May be.
 また、本発明の第1の実施形態では、上述したように、低分解能検出値Lと高分解能検出値Hとを切り替えるときにトルクが大きく変化することによって、例えば、自車両を走行させるための駆動力を発生させるために用いられる誘導電動機101を制御する場合に生じる振動を低減する場合により高い低減効果を奏することができる。より特定的には、流すことのできる許容最大電流が200A(アンペア)~1000A(アンペア)、或いは消費最大電力(ワッテージ)が20kW(キロワット)~200kW(キロワット)の電動機を誘導電動機101として用いることにより、格段に高い低減効果を奏することができる。また、上述の許容最大電流、或いは消費最大電力で動作する誘導電動機は、典型的には、自動車などの移動体の中でも、乗用車(普通乗用車、或いは小型乗用車)に搭載される。 In the first embodiment of the present invention, as described above, when the low-resolution detection value L and the high-resolution detection value H are switched, the torque greatly changes, for example, for driving the host vehicle. In the case of reducing the vibration generated when controlling the induction motor 101 used for generating the driving force, a higher reduction effect can be achieved. More specifically, an induction motor 101 having an allowable maximum current of 200 A (ampere) to 1000 A (ampere) or a maximum power consumption (wattage) of 20 kW (kilowatt) to 200 kW (kilowatt) is used. Thus, a remarkably high reduction effect can be achieved. Further, the induction motor that operates at the above-described maximum allowable current or maximum power consumption is typically mounted on a passenger car (a normal passenger car or a small passenger car) among moving objects such as automobiles.
 以上、本発明を詳細に説明してきたが、上述の説明はあらゆる点において本発明の一例にすぎず、その範囲を限定しようとするものではない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。 Although the present invention has been described in detail above, the above description is merely an example of the present invention in all respects, and is not intended to limit the scope thereof. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention.
 本発明は、電動機を制御するときに生じるトルクの大きな変化を低減することができ、例えば、自動車などの移動体に搭載される誘導電動機を制御するための電流切替装置などに利用できる。 The present invention can reduce a large change in torque generated when controlling an electric motor, and can be used for, for example, a current switching device for controlling an induction motor mounted on a moving body such as an automobile.
 1  電流切替装置
 101  誘導電動機
 102  第1の相電流検出部
 103  第2の相電流検出部
 104  第3の相電流検出部
 105  回転速度検出部
 106  制御部
 107  駆動部
 201  低分解能検出部
 202  高分解能検出部
 301  増幅部
 302  ADコンバータ
 401  増幅部
 402  ADコンバータ
 403  補正部
DESCRIPTION OF SYMBOLS 1 Current switching device 101 Induction motor 102 1st phase current detection part 103 2nd phase current detection part 104 3rd phase current detection part 105 Rotational speed detection part 106 Control part 107 Drive part 201 Low resolution detection part 202 High resolution Detection unit 301 Amplification unit 302 AD converter 401 Amplification unit 402 AD converter 403 Correction unit

Claims (8)

  1.  誘導電動機のそれぞれの相に流れる電流を第1の電流として検出する第1の電流検出手段と、
     前記電流を前記第1の電流検出手段よりも高い分解能で第2の電流として検出する第2の電流検出手段と、
     前記第1の電流、及び前記第2の電流の少なくともいずれか一方に基づき前記誘導電動機のトルクが目標値になるように制御する制御手段と、
     前記制御手段が前記誘導電動機を制御するときの電流を前記第1の電流と前記第2の電流との間で切り替えるとき、一方の電流から他方の電流へ漸次変化させながら切り替える切替手段とを備える、電流切替装置。
    First current detection means for detecting current flowing in each phase of the induction motor as a first current;
    Second current detection means for detecting the current as a second current with higher resolution than the first current detection means;
    Control means for controlling the torque of the induction motor to be a target value based on at least one of the first current and the second current;
    And a switching means for switching the current when the control means controls the induction motor between the first current and the second current while gradually changing from one current to the other current. , Current switching device.
  2.  前記切替手段は、前記制御手段が前記誘導電動機を制御するときの電流を前記第1の電流と前記第2の電流との間で漸次変化させて切り替えるとき、当該第1の電流と当該第2の電流とを加重平均して漸次変化させる、請求項1に記載の電流切替装置。 The switching means changes the current when the control means controls the induction motor by gradually changing between the first current and the second current, and switches the first current and the second current. The current switching device according to claim 1, wherein the current is gradually changed by weighted averaging.
  3.  前記誘導電動機の回転子の回転速度を検知する回転速度検知手段をさらに備え、
     前記制御手段は、前記回転速度検知手段によって検知された前記回転速度が予め定められた第1のしきい値未満であり、且つ前記目標値が予め定められた第2のしきい値未満であるとき、前記第2の電流に基づいて前記誘導電動機を制御する、請求項1に記載の電流切替装置。
    A rotation speed detecting means for detecting the rotation speed of the rotor of the induction motor;
    The control means has the rotation speed detected by the rotation speed detection means less than a predetermined first threshold value, and the target value is less than a predetermined second threshold value. The current switching device according to claim 1, wherein the induction motor is controlled based on the second current.
  4.  前記誘導電動機の回転子の回転速度を検知する回転速度検知手段をさらに備え、
     前記制御手段は、前記回転速度検知手段によって検知された前記回転速度が予め定められた第1のしきい値未満でない、又は前記目標値が予め定められた第2のしきい値未満でないとき、前記第1の電流に基づいて前記誘導電動機を制御する、請求項1に記載の電流切替装置。
    A rotation speed detecting means for detecting the rotation speed of the rotor of the induction motor;
    The control means, when the rotational speed detected by the rotational speed detection means is not less than a predetermined first threshold, or when the target value is not less than a predetermined second threshold, The current switching device according to claim 1, wherein the induction motor is controlled based on the first current.
  5.  前記誘導電動機は車両を走行させる駆動力を発生する、請求項2に記載の電流切替装置。 The current switching device according to claim 2, wherein the induction motor generates a driving force for driving the vehicle.
  6.  前記誘導電動機は、乗用車に搭載され、
     前記制御手段は、許容最大電流が200アンペア乃至1000アンペアの前記誘導電動機のトルクを制御する、請求項1に記載の電流切替装置。
    The induction motor is mounted on a passenger car,
    2. The current switching device according to claim 1, wherein the control means controls a torque of the induction motor having an allowable maximum current of 200 amperes to 1000 amperes.
  7.  前記誘導電動機は、乗用車に搭載され、
     前記制御手段は、消費最大電力が20キロワット乃至200キロワットの前記誘導電動機のトルクを制御する、請求項1に記載の電流切替装置。
    The induction motor is mounted on a passenger car,
    The current switching device according to claim 1, wherein the control means controls the torque of the induction motor having a maximum power consumption of 20 kilowatts to 200 kilowatts.
  8.  誘導電動機のそれぞれの相に流れる電流を第1の電流として検出する第1の電流検出ステップと、
     前記電流を前記第1の電流検出ステップで検出するときよりも高い分解能で第2の電流として検出する第2の電流検出ステップと、
     前記第1の電流、及び前記第2の電流の少なくともいずれか一方に基づき前記誘導電動機のトルクが目標値になるように制御する制御ステップと、
     前記制御手段が前記誘導電動機を制御するときの電流を前記第1の電流と前記第2の電流との間で切り替えるとき、一方の電流から他方の電流へ漸次変化させながら切り替える切替ステップとを備える、切替方法。
    A first current detection step of detecting a current flowing in each phase of the induction motor as a first current;
    A second current detection step for detecting the current as a second current with a higher resolution than when the current is detected in the first current detection step;
    A control step of controlling the torque of the induction motor to be a target value based on at least one of the first current and the second current;
    A switching step of switching the current when the control means controls the induction motor between the first current and the second current while gradually changing from one current to the other current. , Switching method.
PCT/JP2009/003410 2009-07-21 2009-07-21 Current switching device and method used in the device WO2011010341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003410 WO2011010341A1 (en) 2009-07-21 2009-07-21 Current switching device and method used in the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003410 WO2011010341A1 (en) 2009-07-21 2009-07-21 Current switching device and method used in the device

Publications (1)

Publication Number Publication Date
WO2011010341A1 true WO2011010341A1 (en) 2011-01-27

Family

ID=43498832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003410 WO2011010341A1 (en) 2009-07-21 2009-07-21 Current switching device and method used in the device

Country Status (1)

Country Link
WO (1) WO2011010341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012408A1 (en) * 2016-07-11 2018-01-18 カルソニックカンセイ株式会社 Current measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233549A (en) * 1992-12-08 1994-08-19 Nippondenso Co Ltd Inverter control device
JP2006266738A (en) * 2005-03-22 2006-10-05 Denso Corp Sensitivity switching type sensor circuit and electronic circuit using the sensitivity switching type sensor circuit
JP2008005596A (en) * 2006-06-21 2008-01-10 Nsk Ltd Current detector, motor controller, and method of current detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233549A (en) * 1992-12-08 1994-08-19 Nippondenso Co Ltd Inverter control device
JP2006266738A (en) * 2005-03-22 2006-10-05 Denso Corp Sensitivity switching type sensor circuit and electronic circuit using the sensitivity switching type sensor circuit
JP2008005596A (en) * 2006-06-21 2008-01-10 Nsk Ltd Current detector, motor controller, and method of current detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012408A1 (en) * 2016-07-11 2018-01-18 カルソニックカンセイ株式会社 Current measuring device

Similar Documents

Publication Publication Date Title
US10666183B2 (en) Motor control circuit
JP4780223B2 (en) Vehicle drive motor control device
JP7102407B2 (en) Inverter device and electric power steering device
US10479341B2 (en) Electrically powered brake device
JP4596185B2 (en) Voltage control device for vehicle
CN107888119B (en) Control system and method of controlling an electric motor
JP2015208143A (en) Motor drive device
KR102068914B1 (en) How to detect torque control defects in electric motors of a power-assisted steering system of a car
JP5395127B2 (en) Semiconductor device for current control and control device using the same
JP5406145B2 (en) Semiconductor device for current control and control device using the same
WO2011010341A1 (en) Current switching device and method used in the device
KR102177720B1 (en) Apparatus for compensating offset and sensing failure of current sensor for inverter driving and Method thereof
CN108702114B (en) Device and method for detecting revolution of EPB motor without sensor
CN114830526B (en) Demagnetizing diagnosis device for motor and demagnetizing diagnosis method for motor control device
JP2010063239A (en) Controller and control system of multiple phase rotating machine
JP2014045503A (en) Semiconductor element for controlling current and controller using the same
US9276517B2 (en) Control device of AC motor
US10615729B2 (en) Method for controlling a synchronous machine and control device for a synchronous machine
JP2009106129A (en) Electronic equipment
JP3784746B2 (en) Electric power steering control device and motor current calculation method for electric power steering control device
JP6295183B2 (en) Motor control device
US9024553B2 (en) AC motor control apparatus
WO2024075798A1 (en) Inverter control device and electric vehicle
EP3226405B1 (en) Apparatus for correcting current reference
JP2006025548A (en) Control device for generator, and method for setting control operation constant of the control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP