WO2011010285A1 - Method and system of sludge treatment - Google Patents

Method and system of sludge treatment Download PDF

Info

Publication number
WO2011010285A1
WO2011010285A1 PCT/IB2010/053314 IB2010053314W WO2011010285A1 WO 2011010285 A1 WO2011010285 A1 WO 2011010285A1 IB 2010053314 W IB2010053314 W IB 2010053314W WO 2011010285 A1 WO2011010285 A1 WO 2011010285A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
electric field
volume
dewatering
reactor
Prior art date
Application number
PCT/IB2010/053314
Other languages
French (fr)
Inventor
Tissa Fernando
Original Assignee
Fde Process Systems Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fde Process Systems Limited filed Critical Fde Process Systems Limited
Priority to EP10802021.5A priority Critical patent/EP2523910A4/en
Publication of WO2011010285A1 publication Critical patent/WO2011010285A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/15Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46155Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Treatment Of Sludge (AREA)

Abstract

A sludge dewatering system that includes a reactor to apply an electric field across at least a portion of the volume of the sludge and a dewatering station to dewater the sludge. The dewatering system may include one or more bypass lines so that at a portion of volume the sludge bypasses particular stages of the system. The dewatering station may use, for example, pressing or a centrifuge.

Description

METHOD AND SYSTEM OF SLUDGE TREATMENT
CROSS-REFERENCE TO RELATED APPLICATIONS
This international patent application is a continuation-in-part of international patent application PCT/NZ2008/000188 filed on July 30, 2008 and claims priority to New Zealand patent application NZ 578512 filed on July 20, 2009, and New Zealand patent application NZ 561695 filed on July 30, 2007, which are incorporated by reference herein in their entirety.
TECHNICAL FIELD
This invention relates to a method of treating sludges and has been designed particularly though not necessarily solely for use in the treatment of biosolids.
BACKGROUND
The treatment of sewage sludge results in a final residue for disposal. This residue is often referred to as biosolids. The dry solids (DS) contents of the biosolids varies typically from 0.5% DS to 4% DS. The production of this dilute phase sludge from treated waste water depends on the type of treatment process used. Typically, the dilute phase is discharged from a process comprising of mesophilic digesters, thermophilic digesters, extended aeration, activated sludge, waste activated sludge, primary treatment, sequencing batch reactors and in certain processes combinations of the above.
Typically the dilute phase is dewatered by applying pressure in belt presses, other type of presses, or decanter centrifuges. The dewatered cake typically has a concentration of 13% DS to 30% DS and is further treated by thermal drying, lime stabilisation, composting, solar drying or by use in land fill.
The cost of the final disposal depends on the DS content of the sludge. The higher the DS the lower the cost. SUMMARY
An aspect of the present invention is to provide a method of treating sludges which will obviate or minimize the foregoing disadvantages in a simple yet effective manner. In one general aspect, a method of treating sludge includes applying an electric field to at least a portion of the volume of the sludge prior to further dewatering of the sludge.
In one of the embodiments the sludge comprises dilute phase sludge.
In one of the embodiments the electric field is a DC electric field.
In one of the embodiments, prior to applying electric field the pH of the sludge is adjusted to substantially between 5 and 6. For example, the pH may be adjusted by addition of an acid, such as, for example, sulphuric acid or hydrochloric acid.
In one of the embodiments the electric field is applied through carbon, or graphite, or carbon fibre, or stainless steel electrodes or plates. The plates may be positioned in a holding vessel of a reactor.
In one of the embodiments the voltage of the DC field applied to the sludge is between substantially 2 volts and substantially 20 volts. In one of the embodiments the voltage of the DC field applied to the sludge is between substantially 2 volts and substantially 14 volts. In one of the embodiments the voltage applied to the sludge is between substantially 3 volts and substantially 5 volts.
In one of the embodiments the current density of the DC field applied to the sludge is between substantially 10 amps per square meter to substantially 80 amps per square meter. In one of the embodiments the current density is from substantially 20 amps per square meter to substantially 40 amps per square meter. In one of the embodiments the current density is substantially 22 amps per square meter.
In one of the embodiments the application time of the DC field to the sludge is from substantially 2 minutes to substantially 10 minutes. In one of the embodiments the application time is substantially 5 minutes.
In one of the embodiments the temperature of at least a portion of the volume of the sludge is adjusted to substantially from 150C to 370C. In one of the embodiments the temperature is substantially from 250C and 370C.
In one of the embodiments the method further comprises adding polymer at a dose rate of substantially 4kg per dry ton to substantially 20kg per dry ton after the application of the electric field to the sludge. In one of the embodiments the method further includes pressing or centrifuging the sludge after the polymer has been added.
In another general aspect, a sludge dewatering system includes a reactor to apply an electric field across at least a portion of the volume of the sludge and a dewatering station to dewater the sludge. Embodiments may include one or more of the following or above features.
For example, a mixer may be positioned between the reactor and the dewatering station wherein the mixer adds a polymer to the sludge.
A sludge tank may be used to contain at least a portion of the volume of the sludge and to receive an acid to adjust the pH of the sludge. An inlet pipe may deliver at least a portion of the volume of the sludge to the sludge tank and a bypass line may connect the inlet pipe to the mixer to bypass the sludge tank and the reactor with a portion of the volume of the sludge. In another embodiment, a bypass line connects the sludge tank to the mixer to bypass the reactor with a portion of the volume of the sludge.
As another feature, the dewatering system of claim may include a heating system to raise the temperature of the sludge.
In one of the embodiments, the reactor includes a holding vessel and a series of positive and negative plates in the holding vessel to apply the electric field. An inlet may feed sludge to the interior of the holding vessel, through a collection chamber and to an outlet that removes the sludge from the holding vessel after the electric field is applied.
To those, skilled in the art to which the invention relates, many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined in the appended claims. The disclosures and the description herein are purely illustrative and are not intended to be in any sense limiting.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention are described with reference to the accompanying drawings:
Figure 1 is a diagrammatic representation of equipment of the sludge dewatering system,
Figure 2 is a perspective view and enlargement of an electric reaction tank for use in sludge dewatering,
Figure 3 shows how banks of electrodes can be built up for alternative reaction tanks usable.
Figures 4 - 6 are various diagrammatic representations of the sludge dewatering system with bypass lines.
DETAILED DESCRIPTION
Referring to drawings dilute phase sludge typically 0.5 to 4% more particularly 2 to 3% dry solids is provided at 1 and mixed with acid provided from an acid pump 2. Typically the acid is sulphuric acid or hydrochloric acid. The sludge and acid is mixed in a mixer 3 and when thoroughly mixed is taken through outlet pipe 4 to reactor 5. A typical flow rate of the dilute phase sludge is from about 10 to about 100 m3/h.
The reactor 5 applies a DC field across the sludge. The reactor 5 may comprise a holding vessel 6 with an inlet 7 towards to the bottom of the vessel 6. The vessel has therein a series of plates 8 across which the DC field is applied. In the example there are ten positive plates and ten negative plates. The gap between the plates is preferably from about 10mm to about 30mm. We have found about a gap of 15mm gives good results.
Referring now to Figure 2 the inlet 7 feeds to the interior of holding vessel 6 in which plates 8 are positioned. Positive and negative plates are connected by electrically conducting bridges 20 and 21 connecting all positive or all negative plates 8. After passing upwardly past plates 8 the mixture passes downwardly at 22 to collection chamber 11 to outlet 23.
Figure 3 shows how, banks of plates 8 can be built up to provide a range of sizes of holding vessel 6, 6a, 6b, 6c, 6d. Figure 3 shows the banks of plates in pairs, each pair having an inlet 7 and the chamber 11 being positional between each bank of plates 8 in the pair.
The DC field is desirably between 2 and 20 volts, preferably 2 and 14 volts, and most preferably between substantially 3 volts and substantially 5 volts. The current density is typically between 10 to 80 amps per square meter, preferably 20 to 40 amps per square meter. About 22 amps per square meter has been found to give good results. The current to achieve this current density will depend on the size of the plant being for example 60 to 400 amps preferably 100 to 200 amps.
The temperature in the reactor is adjusted to desirably be between substantially 150C and 370C and more particularly substantially 250C to substantially 370C. Any desirable heating method can be used.
The sludge moves upwardly through the vessel 6 substantially in the direction of arrow 10 so as to collect in a collection chamber 11 after exiting the top of the reactor container 6. The sludge flows upwardly through a series of space provided between in the electrodes.
The speed of flow through the reactor 5 is adjusted so that the application-time of the-field-to the sludge is between substantially 2 to substantially 10 minutes and most preferably substantially 5 minutes.
After exiting the chamber 11 to outlet 12 the sludge is mixed with a polymer typically a cationic coagulation agent in a mixer 13 from where the sludge travels to a further dewatering stage at 14 which may be of known form, for example, belt presses, centrifuges or the like. The final dry solids could be 25% DS to 40% DS.
In trials studies were collected before the application of polymer and subjected to a bench scale process using the parameters outlined above. This sludge was processed after a time passage of 0.5 hours to 30 hours from collection. After subjecting the sludge to the DC field the polymer was added at a rate of about 4kg per dry ton to 20kg per dry ton.
It was found that at least 20% less polymer is required after the treatment in reactor 5 compared to conventional present day treatments. After pressing or centrifuging the dry solids content is increased by anything ,from about 10% to 70% after the polymer and centrifuging. Thus, for example, from an initial dry solids of 23% a final dry solids between 26.45% and 34.5% can be expected. Consumption of electricity varied between 25 to 100 kilowatt hours per dry ton of solids. Thus it can be seen the invention provides a method of assisting the dewatering of sludges in which savings can be achieved. Savings can be achieved in the amount of polymer used and also in the reduction of electricity consumption. It is also believed that time in the dryer could be reduced by substantially 50% which again effects a reduction in electricity consumption. Advantages of the system are that the application of a DC electric field is carried out when the fluid has low dry solids. At these low dry solids the application of electricity is easily carried out in a safe manner. Also existing polymer dosing and dewatering equipment in the wastewater treatment plant can be used as the method of the present invention provides a stand alone separate element which can be incorporated into the existing wastewater treatment plant. The two step process is an effective method to reduce polymer use by up to 20% to 50%.
In one embodiment, a bypass line 20 may be used to route some of the sludge by the reactor 5 and/or other components. Referring to Figure 4, the bypass line 20 bypasses the sludge tank 3 and the reactor 5. The amount of sludge passing through the bypass line may be between 10% and 90%, and more particularly, between 20% to 50% of the sludge by volume. The proportion may be controlled by a suitable valve 21, such as a directional control valve or other suitable valve, or by pipe diameter or in any other suitable manner.
After exiting the chamber 11 to outlet 12 the sludge is mixed with the sludge from the bypass line 20 and with the polymer as explained above and the sludge travels to the further dewatering stage 14.
In the configuration shown in Figure 5, the bypass line 20 bypasses only the reactor 5 and not the sludge tank/mixer 3.
Figure 6 shows a construction similar to Figure 5 in which the electrodes of the reactor are substantially horizontal.
Throughout the description and claims of this specification the word "comprise" and variations of that word, such as "comprises" and "comprising", are not intended to exclude other additives, components, integers or operations.

Claims

WHAT WE CLAIM IS:
1. A method of treating sludge, the method comprising:
applying an electric field to at least a portion of volume the sludge to effect dewatering; and
further dewatering the sludge after the application of the electric field.
2. The method of claim, further comprising:
adjusting the pH of at least a portion of the volume of the sludge prior to application of the electric field.
3. The method of claim 1 wherein applying the electric field comprises applying the electric field to only a portion of the sludge by volume.
4. The method of claim 1, further comprising:
bypassing the electric field with a portion of the volume of the sludge.
5. The method of claiml wherein the electric field is applied in a reactor with a holding vessel having a series of positive and negative plates such that applying the electric field comprises applying the electric field with the series of positive and negative plates in the holding vessel of the reactor.
6. The method of claim 1 wherein the electric field is a direct current (DC) electric field at substantially between 2 volts and 20 volts.
7. The method of claim 1 wherein the current density of the electric field applied to the sludge is substantially between 10 amps per square meter to 80 amps per square meter.
8. The method of claim 1 wherein applying the electric field comprises applying the electric field for substantially between 2 minutes to 10 minutes.
9. The method of claim 1 further comprising:
adjusting the temperature of at least the portion of the volume of the sludge.
10. The method of claim 1, further comprising:
adding a polymer to the sludge after the application of the electric field to at least the portion of the volume of the sludge.
11. The method of claim 10, wherein further dewatering the sludge after the application of the electric field comprises pressing the sludge that is mixed with the added polymer.
12. The method of claim 10, wherein further dewatering the sludge after the application of the electric field comprises centrifuging the sludge that is mixed with the added polymer.
13. A sludge dewatering system, comprising:
a reactor to apply an electric field across at least a portion of the volume of the sludge; and
a dewatering station to dewater the sludge.
14. The dewatering station of claim 13, further comprising:
a mixer between the reactor and the dewatering station wherein the mixer adds a polymer to the sludge.
15. The dewatering system of claim 14, further comprising:
a sludge tank to contain at least a portion of the volume of the sludge and to receive an acid to adjust the pH of the sludge.
16. The dewatering system of claim 14, further comprising:
an inlet pipe to deliver at least a portion of the volume of the sludge to the sludge tank; and
a bypass line that connects the inlet pipe to the mixer to bypass the sludge tank and the reactor with a portion of the volume of the sludge.
17. The dewatering system of claim 14, further comprising:
a bypass line that connects the sludge tank to the mixer to bypass the reactor with a portion of the volume of the sludge.
18. The dewatering system of claim 13, further comprising a heating system to raise the temperature of the sludge.
19. The dewatering system of claim 13, wherein the reactor comprises:
a holding vessel; and
a series of positive and negative plates in the holding vessel to apply the electric field.
20. The dewatering system of claim 19, wherein the positive and negative plates are positioned with a maximum surface area in a horizontal direction and the holding vessel further comprises:
an inlet at the bottom of the holding vessel to feed at least a portion of the volume of the sludge to the interior of the holding vessel;
a collection chamber; and
an outlet to remove the sludge from the holding vessel after passing through the collection chamber.
PCT/IB2010/053314 2009-07-20 2010-07-20 Method and system of sludge treatment WO2011010285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10802021.5A EP2523910A4 (en) 2009-07-20 2010-07-20 Method and system of sludge treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ578512 2009-07-20
NZ57851209 2009-07-20

Publications (1)

Publication Number Publication Date
WO2011010285A1 true WO2011010285A1 (en) 2011-01-27

Family

ID=43498822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/053314 WO2011010285A1 (en) 2009-07-20 2010-07-20 Method and system of sludge treatment

Country Status (2)

Country Link
EP (1) EP2523910A4 (en)
WO (1) WO2011010285A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928493A (en) * 1997-11-24 1999-07-27 Kaspar Electroplating Corporation Process and apparatus for electrocoagulative treatment of industrial waste water
US6540919B2 (en) * 1995-11-02 2003-04-01 Dh20 L.L.C. Method of treating waste-activated sludge using electroporation
WO2007050041A1 (en) * 2005-10-28 2007-05-03 Thiam Seng Lee Advanced electro-coagulation device and process of using the same for wastewater treatment
US20070131621A1 (en) * 2005-12-14 2007-06-14 Denton Mark S Method and system for treating radioactive waste water
WO2009017426A1 (en) * 2007-07-30 2009-02-05 Fde Process Systems Limited Improvements in/or relating to a method of treating sludges

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540919B2 (en) * 1995-11-02 2003-04-01 Dh20 L.L.C. Method of treating waste-activated sludge using electroporation
US5928493A (en) * 1997-11-24 1999-07-27 Kaspar Electroplating Corporation Process and apparatus for electrocoagulative treatment of industrial waste water
WO2007050041A1 (en) * 2005-10-28 2007-05-03 Thiam Seng Lee Advanced electro-coagulation device and process of using the same for wastewater treatment
US20070131621A1 (en) * 2005-12-14 2007-06-14 Denton Mark S Method and system for treating radioactive waste water
WO2009017426A1 (en) * 2007-07-30 2009-02-05 Fde Process Systems Limited Improvements in/or relating to a method of treating sludges

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2523910A4 *

Also Published As

Publication number Publication date
EP2523910A1 (en) 2012-11-21
EP2523910A4 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
AU2008283114B2 (en) Improvements in/or relating to a method of treating sludges
JP6121589B2 (en) Anaerobic treatment method
JP2004502541A (en) Method for dewatering activated sludge of municipal waste liquid using high voltage
JP6909878B2 (en) Organic matter processing method and processing equipment
US20110000857A1 (en) Method and system of sludge treatment
Özyurt et al. A consecutive electrocoagulation and electro-oxidation treatment for pulp and paper mill wastewater
CN110002639A (en) A kind of processing unit and method of middle and advanced stage aged refuse in MSW landfill percolate
AU2010316835B2 (en) Method for anaerobic treatment of wastewater and associated device
KR20170116591A (en) sludge concentrating and dehydrating system in Wastewater treatment process and method of the same
US20090194487A1 (en) Method and installation for packaging muds before drying
Borja et al. Performance evaluation of an anaerobic hybrid digester treating palm oil mill effluent
Snyman et al. The feasibility of electro-osmotic belt filter dewatering technology at pilot scale
Basset et al. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment
CN203373221U (en) Laboratory wastewater treatment process equipment
Nugroho et al. Slaughterhouse wastewater treatment by electrocoagulation process
CN111943461A (en) Electrolytic capacitor and electrode foil wastewater treatment method and treatment system
WO2009021552A1 (en) Improved separation/purification method / installation for aqueous liquid dispersions of organic material, and use of such method / installation in an integrated treatment of manure and/or organic disgestates
WO2011010285A1 (en) Method and system of sludge treatment
CN210313930U (en) Chemical wastewater treatment system
Li et al. Diatomite enhanced dynamic membrane technology for simultaneous backwash sludge pre-dewatering and backwash wastewater recycling
KR101938024B1 (en) Sludge-concentrating method and apparatus
JP6882288B2 (en) Electrodynamic enrichment and dehydration methods and systems
CN210313921U (en) Energy-efficient pharmacy effluent disposal system
JP2004344782A5 (en)
KR20170116592A (en) sludge concentrating and dehydrating system in Wastewater treatment process and and method of maintaining performance the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010802021

Country of ref document: EP