WO2011009736A1 - Generierung eines gesamtdatensatzes - Google Patents

Generierung eines gesamtdatensatzes Download PDF

Info

Publication number
WO2011009736A1
WO2011009736A1 PCT/EP2010/059819 EP2010059819W WO2011009736A1 WO 2011009736 A1 WO2011009736 A1 WO 2011009736A1 EP 2010059819 W EP2010059819 W EP 2010059819W WO 2011009736 A1 WO2011009736 A1 WO 2011009736A1
Authority
WO
WIPO (PCT)
Prior art keywords
generation
data set
set according
optical sensor
total data
Prior art date
Application number
PCT/EP2010/059819
Other languages
English (en)
French (fr)
Inventor
Thomas Ertl
Original Assignee
Degudent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degudent Gmbh filed Critical Degudent Gmbh
Priority to BR112012001590A priority Critical patent/BR112012001590B1/pt
Priority to EP10734084.6A priority patent/EP2457058B1/de
Priority to JP2012520993A priority patent/JP2013500463A/ja
Priority to CA2768449A priority patent/CA2768449A1/en
Priority to US13/386,845 priority patent/US20120133742A1/en
Priority to CN2010800334924A priority patent/CN102648390A/zh
Publication of WO2011009736A1 publication Critical patent/WO2011009736A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00795Reading arrangements
    • H04N1/00827Arrangements for reading an image from an unusual original, e.g. 3-dimensional objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/107Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with manual scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • A61C9/006Optical means or methods, e.g. scanning the teeth by a laser or light beam projecting one or more stripes or patterns on the teeth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image

Definitions

  • the invention relates to the generation of an overall data set of at least one section of an object, such as jaw region, for determining at least one characteristic, such as shape and position, by combining individual data sets, which are detected by means of an optical sensor moving relative to the object. Camera, and image processing are determined, wherein individual data sets of successive shots of the object contain redundant data, which are matched to assemble the individual records.
  • 3D data By intra-oral scanning of a jaw area 3D data can be generated on the basis of which a dental prosthesis can be produced in the CAD / CAM procedure.
  • the visible portion of a tooth or jaw portion from which the 3D data is measured is usually much smaller than the entire tooth or jaw, so there is a need to take multiple images or images. to combine the data derived from these into an overall data set of the tooth or jaw section.
  • an optical sensor such as a 3D camera is manually guided in order to continuously detect the relevant areas of a jaw, in order then to generate 3D data from the individual images by means of image processing, from which subsequently a complete data record is created. Since the movement is done by hand, it can not be ensured that enough data is available for fast sensor movement. Too slow movement results in too many redundant data in certain areas of the object. Redundant data are those resulting from overlaps of successive images, that is, the redundant data are those generated from the overlap area.
  • US-A-2006/0093206 discloses a method for determining a 3D data set from 2D point clouds. To do this, an object like tooth is scanned, with the frame rate depending on the speed of the scanner used to take the pictures.
  • US-A-2006/0212260 relates to a method of scanning an intra-oral cavity.
  • the distance between a scanning device and an area to be measured for evaluating the data sets is taken into account.
  • US-B-6,542,249 is a method and apparatus for three-dimensional non-contact scanning of objects. Single shots overlap to obtain 3D data of a surface.
  • the present invention has the object, a method of the type mentioned in such a way that the data obtained during scanning of the object in their amount are sufficient that an optimal evaluation can be made, but without an excessive amount of data is to be processed would lead to a complex electronics with high bandwidth and large storage requirements.
  • the invention essentially provides that, depending on the size of the relative movement between the optical sensor and the object, the individual data records determined per unit of time are varied.
  • the data acquisition rate is varied as a function of the relative movement of the optical sensor relative to the object.
  • the individual data sets are determined discontinuously. This means that the refresh rate during the scanning process is not constant but parameter-dependent. Parameter dependent means that e.g. Relative speed between the object and the optical sensor and / or distance between the sensor and the object to be measured and / or overlapping sgrad of two successive images is taken into account.
  • the number of determined individual data sets per time unit is regulated.
  • the number of individual data records to be determined is controlled as a function of the relative speed between the object and the optical sensor.
  • the invention does not exclude the idea that redundant images with a high degree of overlap are omitted in the registration process after a permanently high data rate acquisition. However, this does not completely solve the problem of high bandwidth during data acquisition. Therefore, it is provided according to the invention in particular that a subsequent change of the data acquisition rate is omitted, as would be the case with a control over the current overlap s degree in a real-time registration process, since only two or more consecutive data sets of the overlap s degree can be calculated.
  • the movement of the object can be determined by means of an inertial platform or a suitable acceleration sensor. By this measure, the relative movement between the sensor and the object as well as the movement of the object itself can be determined and if necessary, the data acquisition rate can be adjusted.
  • the number of individual data sets to be determined is changed in particular in the case of relative movement made by rotary motion as a function of the distance between the optical sensor and the object or section of the object to be measured.
  • the method is carried out by means of a 3D camera with a chip such as a CCD chip, which is read out and then the data is evaluated by means of image processing.
  • the chip is read in dependence on the relative movement between the optical sensor and the object.
  • the framerate of the chip is controlled as a function of the relative speed between the sensor and the object.
  • the framerate of the chip is also the possibility of controlling the framerate of the chip as a function of the overlapping area of pictures taken with the chip and successive pictures.
  • the distance between the optical sensor and the object to be measured should be between 2 mm and 20 mm. Furthermore, a spacing should be such that the measuring field is 10 mm x 10 mm. Due to the teaching according to the invention, the data acquisition rate is discontinuously optimally determined from the current movement of the optical sensor, such as the 3D camera, in order to achieve best registration results, ie match results, with minimal need for memory and bandwidth.
  • the individual data sets are matched with the aid of suitable software, ie registered, in order then to generate an overall data set which represents the shape and position of a jaw region to be provided with a dental prosthesis in a dental application and on the basis of which the dental prosthesis is replaced by e.g. CAD / CAM method can be produced.
  • the object distance can be assumed as the mean value of the valid measuring points.
  • the necessary data acquisition rate can then be set.
  • Table 2 shows the data acquisition rate (Hz) for rotational movements as a function of the rotational speed, the distance to the object and the required degree of overlap.
  • Table 2 illustrates that, for example, at a rotation speed of 30 7sec and an overlap degree of 95% 21 recordings / sec must be made.
  • the overlap of two images in a translational movement is shown in FIG. 1.
  • the overlap occurs due to a translational movement and the optical sensor.
  • the images are two sequential, ie immediately consecutively recorded measuring fields.
  • the image acquisition and thus the data acquisition rate must be varied.
  • the data acquisition rate can be controlled as a function of the translation speed.
  • the frame rate that is, the frame rate
  • the degree of overlap depending on the rotation speed. The higher the rotational speed, the higher the image repetition rate must be, as long as the overlap area is to be constant.
  • FIG. 3 shows again the principle of the teaching according to the invention.
  • 1 denotes an acceleration sensor or an inertial platform in order to measure the movement of a 3D sensor or scanner 2 to an object 3 such as tooth or jaw area. If object 3 also moves, it too should have or be associated with a corresponding acceleration pickup.
  • the scanner 2 has an image sensor 5, which is connected to a computer 4, via which the image readout rate of the sensor 5 is controlled or controlled, such as this has previously been explained.
  • the computer 4 also includes image processing in order to generate from the images taken by the sensor 5 or the contents of the individual pixels data required for the registration or determination of the overall data record.
  • a measurement or data acquisition field is marked with 6. If the scanner 2 is moved in translation, pictures are taken in a time-shifted manner in accordance with the movement speed, with overlapping occurring to the extent necessary in order to obtain redundant data which enable matching of the individual pictures or the individual data records.
  • the mutually offset data acquisition fields are shown in the figure in principle.
  • a first data field is denoted by the reference numeral 6 and a second data field by the reference numeral 7, which has been recorded before the image 6 when the translational movement takes place in accordance with the case 8.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Studio Devices (AREA)

Abstract

Die Erfindung bezieht sich auf die Generierung eines Gesamtdatensatzes von zumindest einem Abschnitt eines Objekts zur Ermittlung zumindest eines Charakteristikums durch Zusammenfügung von Einzeldatensätzen, die mittels eines relativ zu dem Objekt sich bewegenden optischen Sensors und einer Bildverarbeitung ermittelt werden, wobei Einzeldatensätze von aufeinanderfolgenden Aufnahmen des Objekts redundante Daten enthalten, die zum Zusammenfügen der einzelnen Datensätze gematcht werden. Damit die beim Scannen des Objekts gewonnenen Daten in ihrer Menge hinreichend sind, eine optimale Auswertung erfolgen kann, ohne dass jedoch eine zu hohe Datenmenge zu verarbeiten ist, wird vorgeschlagen, dass in Abhängigkeit von Größe der Relativbewegung zwischen dem optischen Sensor und dem Objekt die pro Zeiteinheit ermittelten Einzeldatensätze variiert werden.

Description

Beschreibung
Generierung eines Gesamtdatensatzes
Die Erfindung bezieht sich auf die Generierung eines Gesamtdatensatzes von zumindest einem Abschnitt eines Objekts, wie Kieferbereich, zur Ermittlung zumindest eines Charakteristikums, wie Form und Lage, durch Zusammenfügung von Einzeldatensätzen, die mittels eines relativ zu dem Objekt sich bewegenden optischen Sensors, wie SD- Kamera, und einer Bildverarbeitung ermittelt werden, wobei Einzeldatensätze von aufeinanderfolgenden Aufnahmen des Objekts redundante Daten enthalten, die zum Zusammenfügen der einzelnen Datensätze gematcht werden.
Durch intraorales Scannen eines Kieferbereichs können 3D-Daten generiert werden, auf deren Basis im CAD/CAM- Verfahren ein Zahnersatz hergestellt werden kann. Allerdings ist beim intraoralen Scannen von Zähnen der sichtbare Teilbereich eines Zahns oder Kieferabschnitts, von dem die 3D-Daten gemessen werden, zumeist viel kleiner als der gesamte Zahn oder Kiefer, so dass die Notwendigkeit besteht, mehrere Bilder bzw. die von diesen abgeleiteten Daten zu einem Gesamtdatensatz des Zahns oder Kieferabschnitts zu vereinigen.
Üblicherweise wird ein optischer Sensor wie 3D-Kamera von Hand geführt, um kontinuierlich die relevanten Bereiche eines Kiefers zu erfassen, um sodann mittels einer Bildverarbeitung aus den einzelnen Bildern 3D-Daten zu generieren, aus denen anschließend ein Gesamtdatensatz erstellt wird. Da die Bewegung von Hand erfolgt, kann nicht sichergestellt werden, dass bei schneller Sensorbewegung hinreichend genug Daten zur Verfügung stehen. Bei zu langsamer Bewegung ergeben sich zu viele redundante Daten in bestimmten Bereichen des Objekts. Redundante Daten sind dabei diejenigen, die sich aus Überlappungen von aufeinanderfolgenden Bildern ergeben, d.h., dass die redundanten Daten diejenigen sind, die aus dem Überlappungsbereich erzeugt werden.
Um diese Risiken auszuschließen, ist eine hohe konstante Bildwiederholrate erforderlich, um auch im Fall einer schnellen Bewegung genügend Daten mit ausreichendem Überlappung s grad der einzelnen Datensätze zu erhalten. Eine aufwendige Elektronik mit hoher Bandbreite und ein großer Speicherbedarf sind die Folgen hiervon.
Aus der US-A-2006/0093206 ist ein Verfahren zur Ermittlung eines 3D-Datensatzes aus 2D-Punktwolken zu entnehmen. Hierzu wird ein Objekt wie Zahn gescannt, wobei die Frame-Rate von der Geschwindigkeit des Scanners abhängig ist, mit dem die Aufnahmen vorgenommen werden.
Die US-A-2006/0212260 bezieht sich auf ein Verfahren zum Scannen eines intraoralen Hohlraums. Dabei wird der Abstand zwischen einer scannenden Vorrichtung und einem zu messenden Bereich zur Auswertung der Datensätze berücksichtigt.
Gegenstand der US-B-6, 542,249 sind ein Verfahren und eine Vorrichtung zum dreidimensionalen berührungslosen Scannen von Gegenständen. Einzelaufnahmen überlappen sich, um 3D-Daten einer Oberfläche zu erhalten. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so weiterzubilden, dass die beim Scannen des Objekts gewonnenen Daten in ihrer Menge hinreichend sind, dass eine optimale Auswertung erfolgen kann, ohne dass jedoch eine zu hohe Datenmenge zu verarbeiten ist, die zu einer aufwendigen Elektronik mit hoher Bandbreite und großem Speicherbedarf führen würde.
Zur Lösung der Aufgabe sieht die Erfindung im Wesentlichen vor, dass in Abhängigkeit von Größe der Relativbewegung zwischen dem optischen Sensor und dem Objekt die pro Zeiteinheit ermittelten Einzeldatensätze variiert werden.
Erfindungsgemäß ist vorgesehen, dass die Datenerfassungsrate in Abhängigkeit von der Relativbewegung des optischen Sensors zum Objekt variiert wird. Es werden die einzelnen Datensätze diskontinuierlich ermittelt. Dies bedeutet, dass die Bildwiederholungsrate während des Scannvorgangs nicht konstant ist, sondern parameterabhängig. Parameterabhängig bedeutet dabei, dass z.B. relative Geschwindigkeit zwischen dem Objekt und dem optischen Sensor und/oder Abstand zwischen Sensor und zu messendem Objekt und/oder Überlappung sgrad von zwei aufeinanderfolgenden Bildern berücksichtigt wird.
Insbesondere ist vorgesehen, dass in Abhängigkeit von der Anzahl der redundanten Daten von aufeinanderfolgenden Datensätzen die Anzahl der ermittelten Einzeldatensätze pro Zeiteinheit geregelt wird. Es besteht jedoch auch die Möglichkeit, dass in Abhängigkeit der Relativgeschwindigkeit zwischen dem Objekt und dem optischen Sensor die Anzahl der zu ermittelnden Einzeldatensätze gesteuert wird.
Von der Erfindung ist jedoch auch nicht der Gedanke ausgeschlossen, dass nach einer Erfassung mit permanent hoher Datenrate redundante Bilder mit hohem Überlappungsgrad im Registrierprozess weggelassen werden. Hierdurch wird jedoch das Problem der hohen Bandbreite während der Datenerfassung nicht vollständig gelöst. Daher ist erfindungsgemäß insbesondere vorgesehen, dass eine nachlaufende Änderung der Datenerfassungsrate unterbleibt, wie dies bei einer Steuerung über den aktuellen Überlappung s grad bei einem Realtime-Registrierungsprozess der Fall wäre, da erst aus zwei oder mehreren aufeinanderfolgenden Datensätzen der Überlappung s grad berechnet werden kann.
Da eine Abhängigkeit der Anzahl der Einzeldatensätze pro Zeiteinheit von der Relativbewegung zwischen dem optischen Sensor und dem Objekt abhängig ist, wird neben der Bewegung des Sensors zusätzlich die Bewegung des Objekts berücksichtigt. Die Bewegung des Objekts kann dabei mittels einer Inertialplattform oder eines geeigneten Beschleunigungssensors ermittelt werden. Durch diese Maßnahme kann die Relativbewegung zwischen dem Sensor und dem Objekt als auch die Bewegung des Objekts selbst ermittelt und bei Bedarf die Datenerfassungsrate angepasst werden.
In Weiterbildung der Erfindung ist vorgesehen, dass die Anzahl der zu ermittelnden Einzeldatensätze insbesondere bei durch Drehbewegung erfolgter Relativbewegung in Abhängigkeit vom Abstand zwischen dem optischen Sensor und zu messendem Objekt bzw. Abschnitt des Objekts verändert wird.
Insbesondere wird das Verfahren mittels einer 3D-Kamera mit einem Chip wie CCD- Chip durchgeführt, der ausgelesen und sodann die Daten mittels einer Bildverarbeitung ausgewertet werden. Dabei wird der Chip in Abhängigkeit von der Relativbewegung zwischen dem optischen Sensor und dem Objekt ausgelesen. Insbesondere wird die Framerate des Chips in Abhängigkeit von Relativgeschwindigkeit zwischen dem Sensor und dem Objekt gesteuert. Es besteht jedoch auch die Möglichkeit, die Framerate des Chips in Abhängigkeit vom Überlappungsbereich von mit dem Chip aufgenommenen und aufeinanderfolgenden Bildern geregelt wird.
Der Abstand zwischen dem optischen Sensor und dem zu messenden Objekt sollte zwischen 2 mm und 20 mm liegen. Des Weiteren sollte eine Beabstandung derart erfolgen, dass das Messfeld 10 mm x 10 mm beträgt. Aufgrund der erfindungsgemäßen Lehre wird aus der aktuellen Bewegung des optischen Sensors wie der 3D-Kamera die Datenerfassungsrate diskontinuierlich optimal festgelegt, um beste Registrierergebnisse, also Match-Ergebnisse, bei minimalem Bedarf an Speicher und Bandbreite zu erreichen.
Die Einzeldatensätze werden mit Hilfe einer geeigneten Software gematcht, also registriert, um sodann einen Gesamtdatensatz zu generieren, der bei einer zahntechnischen Anwendung Form und Lage eines Kieferbereichs repräsentiert, der mit einem Zahnersatz versehen werden soll, und auf dessen Basis der Zahnersatz im z.B. CAD/CAM- Verfahren herstellbar ist.
Als besonders wichtig und vorteilhaft ist die Kontrolle der Rotation, d.h. der Drehbewegung zur Längsachse des optischen Sensors wie Erfassungskamera zu bezeichnen, da relativ schnell hohe Rotationsgeschwindigkeiten erreicht werden. In einem kostenoptimierten System sollte die Erfassung dieser Achse allen anderen vorgezogen werden.
Bei einer Rotationserfassung ist zudem die Erfassung des Abstands zwischen zu erfassendem Objekt und dem optischen Sensor wie 3D-Kamera sinnvoll, da die erreichbaren Überlappung s grade auch vom Abstand abhängen.
Dies erfolgt durch Auswertung einer Histogrammfunktion über die Abstände zwischen Kamera und aller oder auch nur einiger weniger Einzelmesspunkte des zu messenden Objekts.
Sodann kann der Objektabstand als Mittelwert der gültigen Messpunkte angenommen werden. In Verbindung mit der aktuellen Drehrate kann sodann die notwendige Datenerfassungsrate eingestellt werden.
Nachstehend soll anhand von Tabellen verdeutlicht werden, wie die Datenerfassungsrate (Hz) in Abhängigkeit von der Translations- bzw. Rotationsgeschwindigkeit und des erforderlichen Überlappungsgrads variiert werden kann, wobei von einem Messfeld von 10 mm x 10 mm ausgegangen wird. Tabelle 1 zeigt für Translationsbewegungen die Datenerfassungsrate (Hz) in Abhängigkeit von der Translationsgeschwindigkeit und des erforderlichen Überlappungsgrades.
Tabelle 1
Figure imgf000008_0001
Tabelle 2 zeigt für Rotationsbewegungen die Datenerfassungsrate (Hz) in Abhängigkeit von der Rotationsgeschwindigkeit, des Abstands zum Objekt und des erforderlichen Überlappungsgrades .
Tabelle 2
Figure imgf000008_0002
Aus den Tabellen wird ersichtlich, dass dann, wenn z.B. ein Überlappungsgrad von 90 % von zwei aufeinanderfolgenden Bildern für erforderlich erachtet wird, um das Objekt im hinreichenden Umfang messen zu können, pro Sekunde ein Bild aufzunehmen ist, sofern die Translationsgeschwindigkeit 1 mm/sec beträgt. Bei höheren Geschwindigkeit wie z.B. 50 mm/sec und einem Überlappung sgrad von 99 % müsste die Bildwiederholungsrate 500/sec betragen.
Die Tabelle 2 verdeutlicht, dass z.B. bei einer Rotationsgeschwindigkeit von 30 7sec und einem Überlappung sgrad von 95 % 21 Aufnahmen/sec erfolgen müssen. Die Überlappung zweier Bilder bei einer Translationsbewegung ist aus Fig. 1 ersichtlich. Man erkennt ein erstes Messfeld 10 und ein dieses überlappendes folgendes zweites Messfeld 12, wobei der Überlappungsbereich mit 14 gekennzeichnet ist. Die Überlappung erfolgt aufgrund einer translatorischen Bewegung und des optischen Sensors. Bei den Bildern handelt es sich um zwei sequenzielle, also unmittelbar nacheinander aufgenommene Messfelder.
In Abhängigkeit von dem Überlappung sgrad und den diesem entsprechenden Daten, die mittels eines Bildverarbeitungs Systems aus den Bild- wie Grauwerten gewonnen werden, ist sodann die Bildaufnahme und damit Datenerfassungsrate zu variieren. Je geringer der Überlappungsbereich gewählt wird, umso geringer ist die Datenerfassungsrate einzustellen. Dabei kann entsprechend der erfindungs gemäßen Lehre die Datenerfassungsrate in Abhängigkeit von der Translationsgeschwindigkeit gesteuert werden.
Die Fig. 2 verdeutlicht prinzipiell, dass durch Rotation eines optischen Sensors 20 um dessen Längsachse 22 sich das jeweilige Messfeld 24, 26, also der Bild- und damit der Datenerfassungsbereich in Abhängigkeit von der Drehung um die Längsachse 22 verändert. Zum Messen eines Objekts ist es gleichfalls erforderlich, dass die Bildwiederholungsrate, also die Framerate bei einem Chip in Abhängigkeit von dem Überlappungsbereich variiert wird, wobei der Grad der Überlappung von der Rotationsgeschwindigkeit abhängig ist. Je höher die Rotationsgeschwindigkeit, umso höher muss die Bildwiederholung srate sein, sofern der Überlappungsbereich konstant sein soll.
Der Fig. 3 ist noch einmal das Prinzip der erfindungsgemäßen Lehre zu entnehmen. In dieser ist mit 1 ein Beschleunigungsaufnehmer bzw. eine Inertialplattform bezeichnet, um die Bewegung eines 3D-Sensors bzw. Scanners 2 zu einem Objekt 3 wie Zahn bzw. Kieferbereich zu messen. Sofern sich das Objekt 3 gleichfalls bewegt, sollte auch dieses einen entsprechenden Beschleunigungsaufnehmer aufweisen bzw. diesem zugeordnet sein.
Der Scanner 2 weist einen Bildaufnahmesensor 5 auf, der mit einem Rechner 4 verbunden ist, über den die Bildausleserate des Sensors 5 geregelt bzw. gesteuert wird, wie dies zuvor erläutert worden ist. Auch umfasst der Rechner 4 eine Bildverarbeitung, um aus den von dem Sensor 5 aufgenommenen Bildern bzw. den Inhalten der einzelnen Pixel Daten zu generieren, die für die Registrierung bzw. Ermittlung des Gesamtdatensatzes benötigt werden.
Ein Mess- bzw. Datenerfassungsfeld ist mit 6 gekennzeichnet. Wird der Scanner 2 translatorisch bewegt, so werden entsprechend der Bewegungsgeschwindigkeit Bilder zeitversetzt aufgenommen, wobei im erforderlichen Umfang eine Überlappung erfolgt, um redundante Daten zu erhalten, die ein Matchen der Einzelbilder bzw. der Einzeldatensätze ermöglichen. Die versetzt zueinander verlaufenden Datenerfassungsfelder sind der Figur prinzipiell zu entnehmen. So ist ein erstes Datenfeld mit dem Bezugszeichen 6 und ein zweites Datenfeld mit dem Bezugszeichen 7 gekennzeichnet, das dann, wenn die translatorische Bewegung entsprechend dem Fall 8 erfolgt, vor dem Bild 6 aufgenommen worden ist.
Aus der Fig. 3 ergibt sich des Weiteren, dass eine Bewegung nicht nur in Richtung des Pfeils 8, sondern in jeder Richtung des xyz-Koordinatensystems erfolgen kann, wie auch durch den Pfeil 9 angedeutet wird.

Claims

Patentansprüche Generierung eines Gesamtdatensatzes
1. Generierung eines Gesamtdatensatzes von zumindest einem Abschnitt eines Objekts, wie Kieferbereich, zur Ermittlung zumindest eines Charakteristikums, wie Form und Lage, durch Zusammenfügung von Einzeldatensätzen, die mittels eines relativ zu dem Objekt sich bewegenden optischen Sensors, wie 3D-Kamera, und einer Bildverarbeitung ermittelt werden, wobei Einzeldatensätze von aufeinanderfolgenden Aufnahmen des Objekts redundante Daten enthalten, die zum Zusammenfügen der einzelnen Datensätze gematcht werden,
dadurch gekennzeichnet,
dass in Abhängigkeit von Größe der Relativbewegung zwischen dem optischen
Sensor und dem Objekt die pro Zeiteinheit ermittelten Einzeldatensätze variiert werden.
2. Generierung eines Gesamtdatensatzes nach Anspruch 1,
dadurch gekennzeichnet,
dass die Einzeldatensätze diskontinuierlich ermittelt werden.
3. Generierung eines Gesamtdatensatzes nach Anspruch 1 oder 2, dadurch gekennzeichnet,
dass die Anzahl der Einzeldatensätze pro Zeiteinheit durch Regelung und/oder Steuerung variiert wird.
4. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in Abhängigkeit von Anzahl der redundanten Daten von aufeinanderfolgenden Datensätzen die Anzahl der ermittelten Einzeldatensätze pro Zeiteinheit geregelt wird.
5. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in Abhängigkeit von Relativgeschwindigkeit zwischen dem Objekt und dem optischen Sensor die Anzahl der zu ermittelnden Einzeldatensätze gesteuert wird.
6. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass zusätzlich zur Abhängigkeit der Anzahl der Einzeldatensätze pro Zeiteinheit von der Relativbewegung zwischen dem optischen Sensor und dem Objekt dessen Bewegung berücksichtigt wird.
7. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Bewegung des Objekts mittels einer Inertialplatform bestimmt wird.
8. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Relativbewegung zwischen dem Objekt und dem optischen Sensor mittels zumindest eines Beschleunigungssensors und/oder zumindest eines Rotationssensors ermittelt wird.
9. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Relativbewegung zwischen dem Objekt und dem optischen Sensor mittels zumindest einer Inertialplatform ermittelt wird.
10. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Anzahl der zu ermittelnden Einzeldatensätze insbesondere bei durch Drehbewegung erfolgter Relativbewegung in Abhängigkeit vom Abstand zwischen optischem Sensor und zu messendem Objekt bzw. Abschnitt des Objekts verändert wird.
11. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass Daten eines Überlappungsbereichs von zwei aufeinanderfolgenden von dem optischen Sensor aufgenommenen Bildern die redundanten Daten sind.
12. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Objekt auf einem Chip, wie CCD-Chip, des optischen Sensors, wie SD- Kamera, abgebildet wird und der Chip in Abhängigkeit von der Relativbewegung zwischen dem optischen Sensor und dem Objekt ausgelesen wird.
13. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass Framerate des Chips in Abhängigkeit von Relativgeschwindigkeit zwischen dem Sensor und dem Objekt gesteuert wird.
14. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass Framerate des Chips in Abhängigkeit vom Überlappungsbereich von mit dem
Chip aufgenommenen und aufeinanderfolgenden Bildern geregelt wird.
15. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der optische Sensor im Abstand a mit 2 mm < a < 20 mm zu dem Objekt bewegt wird.
16. Generierung eines Gesamtdatensatzes nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der optische Sensor derart zu dem Objekt positioniert wird, dass sich grundsätzlich ein Messfeld von 10 mm x 10 mm ergibt.
PCT/EP2010/059819 2009-07-24 2010-07-08 Generierung eines gesamtdatensatzes WO2011009736A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112012001590A BR112012001590B1 (pt) 2009-07-24 2010-07-08 geração de um conjunto global de dados
EP10734084.6A EP2457058B1 (de) 2009-07-24 2010-07-08 Generierung eines gesamtdatensatzes
JP2012520993A JP2013500463A (ja) 2009-07-24 2010-07-08 全データセットを生成するための方法
CA2768449A CA2768449A1 (en) 2009-07-24 2010-07-08 Generation of an aggregate data set
US13/386,845 US20120133742A1 (en) 2009-07-24 2010-07-08 Generating a total data set
CN2010800334924A CN102648390A (zh) 2009-07-24 2010-07-08 总数据组的生成

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009026248A DE102009026248A1 (de) 2009-07-24 2009-07-24 Generierung eines Gesamtdatensatzes
DE102009026248.2 2009-07-24

Publications (1)

Publication Number Publication Date
WO2011009736A1 true WO2011009736A1 (de) 2011-01-27

Family

ID=42968970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/059819 WO2011009736A1 (de) 2009-07-24 2010-07-08 Generierung eines gesamtdatensatzes

Country Status (8)

Country Link
US (1) US20120133742A1 (de)
EP (1) EP2457058B1 (de)
JP (1) JP2013500463A (de)
CN (1) CN102648390A (de)
BR (1) BR112012001590B1 (de)
CA (1) CA2768449A1 (de)
DE (1) DE102009026248A1 (de)
WO (1) WO2011009736A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562675A (zh) * 2011-05-19 2014-02-05 赫克斯冈技术中心 确定测量物体表面上的3d坐标的光学测量方法和测量系统
JP2014524795A (ja) * 2011-07-08 2014-09-25 デュレ,フランソワ 歯科分野で使用される三次元測定デバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977473B1 (fr) * 2011-07-08 2013-08-02 Francois Duret Dispositif de mesure tridimensionnelle utilise dans le domaine dentaire
US9113053B2 (en) * 2012-08-10 2015-08-18 Lg Electronics Inc. Input apparatus and method for acquiring a scan image
US20140199649A1 (en) * 2013-01-16 2014-07-17 Pushkar Apte Autocapture for intra-oral imaging using inertial sensing
JP6366546B2 (ja) * 2015-07-13 2018-08-01 株式会社モリタ製作所 口腔内三次元計測装置、口腔内三次元計測方法及び口腔内三次元計測結果の表示方法
US9971355B2 (en) * 2015-09-24 2018-05-15 Intel Corporation Drone sourced content authoring using swarm attestation
WO2017062044A1 (en) * 2015-10-08 2017-04-13 Carestream Health, Inc. Adaptive tuning of 3d acquisition speed for dental surface imaging
US9757020B1 (en) 2016-05-26 2017-09-12 Dental Smartmirror, Inc. Using an intraoral mirror with an integrated camera to record dental impressions, and applicants thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063293A1 (de) * 2000-12-19 2002-07-04 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur mehrkanaligen Inspektion von Oberflächen im Durchlauf
US6542249B1 (en) 1999-07-20 2003-04-01 The University Of Western Ontario Three-dimensional measurement method and apparatus
US20060093206A1 (en) 2000-04-28 2006-05-04 Rudger Rubbert System and method for mapping a surface
US20060212260A1 (en) 2005-03-03 2006-09-21 Cadent Ltd. System and method for scanning an intraoral cavity
US20060228010A1 (en) * 1999-03-08 2006-10-12 Rudger Rubbert Scanning system and calibration method for capturing precise three-dimensional information of objects
US20070276184A1 (en) * 2006-05-29 2007-11-29 Olympus Corporation Endoscope system and endoscopic observation method
US20090004948A1 (en) * 2007-06-19 2009-01-01 Konami Digital Entertainment Co., Ltd. Travelling toy system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667472A (en) * 1994-03-18 1997-09-16 Clarus Medical Systems, Inc. Surgical instrument and method for use with a viewing system
DE19636354A1 (de) * 1996-09-02 1998-03-05 Ruedger Dipl Ing Rubbert Verfahren und Vorrichtung zur Durchführung von optischen Aufnahmen
CN101027900A (zh) * 2004-09-24 2007-08-29 皇家飞利浦电子股份有限公司 包括或利用一个或多个相机以提供重叠图像的用于生成合成图像的系统和方法
US20070106111A1 (en) * 2005-11-07 2007-05-10 Eli Horn Apparatus and method for frame acquisition rate control in an in-vivo imaging device
JP5089286B2 (ja) * 2007-08-06 2012-12-05 株式会社神戸製鋼所 形状測定装置,形状測定方法
DE102007060263A1 (de) * 2007-08-16 2009-02-26 Steinbichler Optotechnik Gmbh Vorrichtung zur Ermittlung der 3D-Koordinaten eines Objekts, insbesondere eines Zahns
US8482613B2 (en) * 2007-09-10 2013-07-09 John Kempf Apparatus and method for photographing birds
DE102007043366A1 (de) * 2007-09-12 2009-03-19 Degudent Gmbh Verfahren zur Positionsbestimmung eines intraoral messenden Messgerätes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228010A1 (en) * 1999-03-08 2006-10-12 Rudger Rubbert Scanning system and calibration method for capturing precise three-dimensional information of objects
US6542249B1 (en) 1999-07-20 2003-04-01 The University Of Western Ontario Three-dimensional measurement method and apparatus
US20060093206A1 (en) 2000-04-28 2006-05-04 Rudger Rubbert System and method for mapping a surface
DE10063293A1 (de) * 2000-12-19 2002-07-04 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur mehrkanaligen Inspektion von Oberflächen im Durchlauf
US20060212260A1 (en) 2005-03-03 2006-09-21 Cadent Ltd. System and method for scanning an intraoral cavity
US20070276184A1 (en) * 2006-05-29 2007-11-29 Olympus Corporation Endoscope system and endoscopic observation method
US20090004948A1 (en) * 2007-06-19 2009-01-01 Konami Digital Entertainment Co., Ltd. Travelling toy system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562675A (zh) * 2011-05-19 2014-02-05 赫克斯冈技术中心 确定测量物体表面上的3d坐标的光学测量方法和测量系统
JP2014524795A (ja) * 2011-07-08 2014-09-25 デュレ,フランソワ 歯科分野で使用される三次元測定デバイス

Also Published As

Publication number Publication date
DE102009026248A1 (de) 2011-01-27
CN102648390A (zh) 2012-08-22
US20120133742A1 (en) 2012-05-31
EP2457058B1 (de) 2015-09-02
CA2768449A1 (en) 2011-01-27
BR112012001590B1 (pt) 2019-10-22
BR112012001590A2 (pt) 2016-03-08
EP2457058A1 (de) 2012-05-30
JP2013500463A (ja) 2013-01-07

Similar Documents

Publication Publication Date Title
EP2457058B1 (de) Generierung eines gesamtdatensatzes
DE3854348T2 (de) Verfahren und Vorrichtung zum Messen der Form einer dreidimensional gekrümmten Oberfläche.
EP2079981B1 (de) Vorrichtung und verfahren zum berührungslosen erfassen einer dreidimensionalen kontur
EP1711777B1 (de) Verfahren zur bestimmung der lage und der relativverschiebung eines objekts im raum
DE60218386T2 (de) Verfahren und System zur Erstellung eines dentalen Modells mittels Bildgebung
EP2710794B1 (de) Verfahren zur erzeugung und auswertung eines bilds
EP1181814B1 (de) Verfahren zur erfassung und darstellung eines oder mehrerer objekte, beispielsweise zähne
DE10020893B4 (de) Verfahren zur optischen Formerfassung von Gegenständen
DE19802141C1 (de) Vorrichtung zur Bestimmung der Partikelgrößenverteilung eines Partikelgemisches
DE3636671A1 (de) Verfahren zur dreidimensionalen bestimmung der relativbewegung zwischen zwei koerpern sowie messanordnung zur durchfuehrung dieses verfahrens
EP2309925A1 (de) Röntgenbild-aufnahmesystem und röntgenbild-aufnahmeverfahren zur aufnahme von bilddaten mit röntgengeräten für eine volumenrekonstruktion
DE102010040386A1 (de) Dentale Röntgeneinrichtung mit Bilderfassungseinheit zur Oberflächenerfassung und Verfahren zur Erzeugung einer Röntgenaufnahme eines Patienten
EP3389496A1 (de) Verfahren zur kalibrierung einer röntgenaufnahme
DE102004052199A1 (de) Streifenprojektions-Triangulationsanordnung zur dreidimensionalen Objekterfassung, insbesondere auch zur dreidimensionalen Erfassung des Gesichts eines Menschen
DE3810455A1 (de) Verfahren und vorrichtung zur beruehrungsfreien raeumlichen erfassung eines unregelmaessigen koerpers
DE3807578A1 (de) Verfahren zur raeumlichen erfassung und/oder bestimmung eines koerpers, insbesondere eines menschlichen schaedels
DE10328523B4 (de) Verfahren und Meßvorrichtung zur berührungslosen Vermessung einer Kontur einer Oberfläche
DE102004018498A1 (de) Betriebsverfahren für eine Röntgenanlage, rechnergestütztes Ermittlungsverfahren für mindestens eine 3D-Rekonstruktion eines Objekts und hiermit korrespondierende Einrichtungen
DE102018211371A1 (de) Optisches Messverfahren sowie optische Messvorrichtung
DE102017100885B4 (de) Verfahren und vorrichtung zum erzeugen und projizieren eines 3d-thermogramms samt daten zu den aufnahmebedingungen
DE102004058655A1 (de) Verfahren und Anordnung zum Messen von Geometrien eines Objektes mittels eines Koordinatenmessgerätes
WO2009018894A1 (de) Verfahren und vorrichtung zum bestimmen von geometriedaten eines messobjekts
AT520426B1 (de) Verfahren zur Kalibrierung einer Bildaufnahmeeinheit
EP3821201B1 (de) Optisches messverfahren sowie optische messvorrichtung
DE102019209849B4 (de) Verfahren und Steuergerät zur abstandsmessenden Bildverarbeitung für eine Stereokameraeinrichtung für ein Fahrzeug und Stereokamerasystem mit einer Stereokameraeinrichtung und einem Steuergerät

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033492.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10734084

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2768449

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012520993

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13386845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010734084

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012001590

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012001590

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120124