WO2011009469A1 - Separation apparatus for tubular flow-through apparatuses - Google Patents

Separation apparatus for tubular flow-through apparatuses Download PDF

Info

Publication number
WO2011009469A1
WO2011009469A1 PCT/EP2009/005257 EP2009005257W WO2011009469A1 WO 2011009469 A1 WO2011009469 A1 WO 2011009469A1 EP 2009005257 W EP2009005257 W EP 2009005257W WO 2011009469 A1 WO2011009469 A1 WO 2011009469A1
Authority
WO
WIPO (PCT)
Prior art keywords
separating device
annular discs
discs
materials
brittle
Prior art date
Application number
PCT/EP2009/005257
Other languages
German (de)
French (fr)
Inventor
Siegfried MÜSSIG.
Klaus Wahrmann
Stefanie Wildhack
Bernhard HOLZMÜLLER
Samuel Joly
Original Assignee
Esk Ceramics Gmbh & Co. Kg
Maersk Olie & Gas A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esk Ceramics Gmbh & Co. Kg, Maersk Olie & Gas A/S filed Critical Esk Ceramics Gmbh & Co. Kg
Priority to AU2009350223A priority Critical patent/AU2009350223B2/en
Priority to PCT/EP2009/005257 priority patent/WO2011009469A1/en
Priority to IN536DEN2012 priority patent/IN2012DN00536A/en
Priority to EA201171223A priority patent/EA023560B1/en
Priority to ES13179568.4T priority patent/ES2614718T3/en
Priority to DK09777308.9T priority patent/DK2456531T3/en
Priority to MX2012000901A priority patent/MX2012000901A/en
Priority to CN200980160592.0A priority patent/CN102639205B/en
Priority to US13/384,989 priority patent/US8833447B2/en
Priority to EP13179568.4A priority patent/EP2662124B1/en
Priority to ES09777308T priority patent/ES2435892T3/en
Priority to CA2761686A priority patent/CA2761686C/en
Priority to EP09777308.9A priority patent/EP2456531B1/en
Priority to BR112012001485A priority patent/BR112012001485B1/en
Priority to DK13179568.4T priority patent/DK2662124T3/en
Publication of WO2011009469A1 publication Critical patent/WO2011009469A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/44Edge filtering elements, i.e. using contiguous impervious surfaces
    • B01D29/46Edge filtering elements, i.e. using contiguous impervious surfaces of flat, stacked bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/40Particle separators, e.g. dust precipitators, using edge filters, i.e. using contiguous impervious surfaces
    • B01D46/406Particle separators, e.g. dust precipitators, using edge filters, i.e. using contiguous impervious surfaces of stacked bodies
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/082Screens comprising porous materials, e.g. prepacked screens

Definitions

  • the invention relates to a novel separation device with improved erosion and abrasion resistance, for use with flow devices for conveying oil, water and gas mixtures or their individual components, with the aid of which solids, such as sand and rock particles from the liquids to be conveyed and Gases can be separated.
  • the separation device is used in particular to prevent the erosive and abrasive removal of the conveying equipment in deep wells through sand and rock particles. At the same time the separator is corrosion resistant to treatment liquids.
  • borehole equipment For the conveyance of liquids and gases, such as oil, water and gas mixtures or their individual components from rock reservoirs, borehole equipment is used which consists essentially of a delivery pipe in order to guide the delivery medium from the outer delivery point into the inner delivery pipe. It may be a perforated tube or a tube which is provided with at least one opening. These openings are often provided with a suitable device, such as slide or valve, with the aid of which the influence of the pumped medium can be controlled.
  • This conveyor tube inner tube
  • This conveyor tube is also referred to below as a flow device, often the terms sliding sleeve, sliding sleeve and sliding side door are used.
  • WO 2004/099560 Al proposes additionally protecting a conventional sand filter externally by means of a sleeve made of erosion-resistant, dense rings which are attached to their ends upper and lower surfaces additionally have ribs or dimples. On the stacked rings, a tortuous fluid channel forms, on the walls of which the energy of the medium flowing through is reduced by impact, so that the wear of the underlying conventional sand filter is reduced.
  • the rings are formed of carbides or nitrides such as silicon carbide or tungsten carbide.
  • a disadvantage of this solution is that the improved wear protection is accompanied by an energy dissipation of the flowing medium; the outer sleeve does not act as a filter but as a flow resistance that degrades the flow rate. It is not disclosed how the cuff is mounted on the conveyor tube.
  • a cylindrical screen filter which includes a plurality of stacked annular filter segments.
  • the ring stack is held together by a plurality of threaded rods with threaded nuts or double nuts made of stainless steel at the top and bottom.
  • the separation of the particles takes place at the variable annular gap, which is formed between opposite filter segments.
  • the rings are made of plastic, preferably of glass-reinforced polypropylene (column 4, Z. 50-54).
  • the threaded rods are guided through openings provided in the rings (column 4, lines 31 to 33). This solution can not be realized from ceramics.
  • the cross-sectional transitions are edged;
  • the filter segments have a typical plastic design.
  • the invention has for its object, overcoming the disadvantages of the prior art, a separator for tubular flow devices for the separation of sand and rock particles in the promotion of liquids or gases from underground or rock wells available to provide better wear - and abrasion and erosion resistance and a lower tendency to fracture than the known in the prior art separation devices, and also corrosion resistant to treatment liquids, and in which the capacity is not adversely affected by the wear protection, and those in the promotion and in particular can withstand bending stresses occurring during installation.
  • the invention thus provides a separator for tubular flow devices, which serve to convey liquids or gases from rock or deep wells, wherein the separation device is suitable for the separation of sand and rock particles and comprises:
  • a ring stack of brittle annular discs the discs are stacked and braced so that between the individual discs each have a separation gap for the separation of sand and rock particles is present;
  • a coupling element at one or both ends of the ring stack; a clamping device at one or both ends of the ring stack, which on the one hand makes it possible to flexibly clamp the brittle discs and on the other hand to fix the ring stack on the tubular flow device variable.
  • the invention also relates to the use of the separation device according to the invention for the separation of sand and rock particles 1 a method for conveying liquids or gases from rock or deep wells by means of tubular flow devices.
  • the brittle annular discs also referred to below as “ringlets”.
  • the separation of the particles is ensured in direct inflow and throughflow without the flow being adversely affected by deflection or energy dissipation becomes.
  • the separator includes, in addition to the stack of annular discs, a clamping device (clamping set), which allows on the one hand to flexibly brace the brittle-hard ring elements and on the other hand to fix the ring stack on the conveyor tube variable.
  • a clamping device clamp set
  • the flow device is protected in its entirety against abrasion / erosion, namely in the region of the direct flow, ie the area of the openings and valves of the inner tube.
  • the protection is provided by the ring elements.
  • the clamping sets lying outside this area can also be protected from sections and joints.
  • the tubular flow devices may have various cross-sectional shapes, with a round cross-sectional shape being preferred. Furthermore, the tubular flow devices may also have varying cross-sectional areas over the length.
  • the complete separation device is suitable for ceramics or brittle-hard materials, deformations can be accommodated without the risk of breakage of the ring elements from the brittle-hard material.
  • the resilient mounting of the ring stack allows the ring stack to compensate for bends of the inner tube. Bends of 3 ° and more to 30 m can be compensated without difficulty.
  • the resilient position is achieved on the one hand by the clamping sets and compression springs, on the other hand by the preferred concave shape of the annular base and preferably on the ring base attached, the spacers record- the depressions, which in total lead to a mobility of the system, so that bends can be compensated.
  • the pressure loss of the separating device according to the invention is negligibly small and the separating device according to the invention is flowed through in a laminar manner (see Example 3), so that the conveying capacity is not adversely affected.
  • the separator can be used under any wellbore deflection, both in horizontal and vertical borehole, and also under any other borehole inclination, for example at a drilling clearance of 60 °. This is an advantage over the conventionally used metallic wire mesh.
  • the connection of the ring stack to the flow device, ie the inner delivery tube, is designed so that the flow device in the preferred embodiment is not altered, i. it is not necessary to change the commercially available inner tube for mounting the separating device according to the invention, for example mechanically to edit such as by turning, milling or drilling or thermal processes such as welding or by gluing to connect to the separator.
  • Another advantage is that the sand and rock particles to be separated can build on the stable brittle-hard ring elements as a so-called secondary gravel pack.
  • the stability of this secondary filter cake is favored by the separation device according to the invention, which leads to an increase in the well integrity.
  • the separating device according to the invention does not require a support structure such as the plastic filter segments in US Pat. No. 5,249,626 or the metal wire meshes of US Pat. No. 5,624,560.
  • FIGS. 2a-2c show schematically different views of a ring stack with coupling elements
  • Figure 3 shows a flow device with inventive separation device including outer cage to cover the separator;
  • Figure 3a is a cross-sectional view A-A with respect to Figure 3;
  • Figures 4a and 4b clamping devices for clamping the ring stack and for fixing the ring stack on the tubular flow device
  • Figure 5 is a schematic representation of a protective coating of clamping devices, lying outside of the wear-resistant ring stack portion of the conveying tube and sleeve portion; and Figure 6 shows schematically the test setup for a flow rate performance test.
  • the separating device according to the invention comprises brittle-hard annular discs which are simple and economical to manufacture.
  • the production of these annular disks is possible by means of powder metallurgy or ceramic processes in automated mass production.
  • the ring-shaped discs can be produced in the so-called net-shape process, in which the discs are pressed close to the final contours of powders.
  • a complex mechanical machining of the annular discs is not required.
  • the shape and dimensional deviations in the individual annular disks, which are sometimes unavoidable in a sintering process, can be tolerated in a design according to the invention of the separating device.
  • the annular discs used in the separating device are shown in FIGS. 1a-1f.
  • brittle-hard materials preferably a ceramic material, which is resistant to erosion / erosion.
  • dig is resistant to the sand and rock particles as well as corrosion-resistant to the pumped media and the media used for cleaning such as acids.
  • the separation of the sand and rock particles takes place at a radial, preferably tapered gap, which forms between two adjoining, strained ring elements.
  • the ring elements are designed to be suitable for ceramics or brittle-hard materials: cross-sectional transitions are performed without notches, the formation of bending stresses is constructively avoided or compensated.
  • the inner diameter of the annular discs is greater than the diameter of the inner tube (delivery tube) to choose, the annular discs do not lie on the inner tube. This ensures that the deflection occurring during the insertion into the borehole can be absorbed via the construction of the ring stack and a breakage of the ceramic elements is avoided.
  • the height of the annular discs depends on the required flow rate.
  • FIGS. 1a-1f show the basic shape of an annular disc 30 according to the invention which has on its upper side 31 at least three spacers 32 uniformly distributed over the circumference of the discs, with the aid of which the height of the separating gap (gap width) is adjusted.
  • the spacers 32 are preferably in the form of spherical sections in order to achieve point contact between opposing annular discs 30 and to avoid planar contacts.
  • FIG. 1b shows a sectional view along the line AA in FIG. 1a.
  • An enlarged view of region X by a spacer 32 is shown in FIG. 1c.
  • a perspective view of an annular disc according to the invention is shown in FIG.
  • the annular discs 30 preferably have on their inner peripheral surface at least three recesses / grooves 33, which serve to receive guide rods 9. Based on these guide rods 9, the rings can be easily positioned on top of each other during installation.
  • the recesses are preferably formed rounded, as shown in Figures Ia and If.
  • the top surface 31 of the annular discs 30 may be made to slope at right angles to the disc axis, or sloping inwardly or outwardly sloping with a plane or curved surface.
  • An inwardly sloping design is advantageous in terms of a reduced tendency to clog the separator.
  • the underside 34 (ring bottom) of the annular discs 30 is sloping outwardly or inwardly, preferably sloping inwardly, more preferably it is concave, as shown in Figure Ic.
  • the concave shape is to understand the ring bottom as a whole.
  • the ring bottom is designed with a radius R. Due to the concave shape, the individual annular disks can easily yield to a bending load. Due to the concave shape of the ring base in combination with the three-point support possible form and dimensional deviations can be easily compensated.
  • the inwardly sloping shape of the bottom prevents decentralized displacement of the individual rings in the stack.
  • This radial self-centering of the ring stack allows the use of the separator without support structure, which in metallic rings or plastic rings in The rule is necessary and customary, see, for example, in US 5,249,626 or in US 5,624,560.
  • the spacers 32 of the opposite upper side of the next ring segment there are preferably additionally at least three recesses 35 in which the spacers 32 of the opposite upper side of the next ring segment can be positioned.
  • the number and the distance of the recesses 35 depend on the number and distance of the spacers 32 on the ring top 31.
  • the introduced recesses 35 serve to prevent rotation of the rings and support the self-centering of the rings in the stack.
  • the depressions are preferably surfaces displaced parallel to the radius R (see FIG. Thus, a point contact with the spacers is ensured here and on the three-point support possible shape and dimensional deviations are compensated.
  • the recesses 35 may also be formed in the form of spherical or cylindrical sections. Also a rounded trapezoidal shape or a wavy structure is possible.
  • the cross-sectional shape of the annular discs is preferably not rectangular and not trapezoidal due to the preferably concavely curved surfaces. It also preferably has no sharp edges and cross-sectional transitions.
  • the outer contours 36 of the annular discs 30 are formed with a chamfer, as illustrated in Figure Ic.
  • the edges may also be rounded. This represents an even better protection of the edges from the edge load which is critical for brittle-hard materials.
  • the peripheral surfaces (lateral surfaces) of the annular disks are preferably cylindrical (flat). But it is also possible to form the peripheral surfaces outwardly convex, for example, in order to achieve a better flow.
  • the radial wall thickness of the annular disks is preferably at least 2.5 mm, more preferably at least 5 mm.
  • the height of the discs is preferably 1 to 20 mm, more preferably 1 to 10 mm.
  • the outer diameter of the annular discs is smaller than the inner diameter of the borehole or as the inner diameter of the Bohrlochfutterrohres. It is usually 50-200 mm.
  • the gap width of the separating gaps 37 is selected depending on the sand fraction to be separated. At the outer diameter, the gap width is the smallest, in order to avoid clogging of the annular gap.
  • the gap width is set by the height of the spacers on the top of the ring, the depth of the recesses on the underside of the ring and the shape of the underside of the ring, for example over the radius of the preferably concavely curved surface.
  • the selected gap geometry ensures that the flow processes in the gap are laminar, and that the pressure loss between outer and inner diameter is low.
  • the separator is backwashable. Through liquid treatment media, the filter cake can be loosened and thus the delivery rate can be increased again.
  • the brittle-hard material of the annular discs is preferably selected from oxidic and non-oxidic ceramic materials, Mischkerami- ken from these materials, ceramic materials with the addition of secondary phases, mixed materials with shares of ceramic hard materials and metallic binder phase, precipitation hardened cast materials, powder metallurgy materials with in situ formed hard material phases and long and / or short fiber reinforced ceramic materials.
  • oxidic ceramic materials are Al 2 O 3 , ZrO 2 , mullite, spinel and mixed oxides.
  • non-oxidic ceramic materials are SiC, B 4 C, TiB 2 and Si 3 N 4 .
  • Ceramic hard materials are, for example, carbides and borides.
  • mixed materials with metallic binder phase are WC-Co, TiC-Fe and TiB 2 -FeNiCr.
  • in-situ formed hard material phases are chromium carbides.
  • An example of fiber-reinforced ceramic materials is C-SiC.
  • the above-mentioned materials are characterized by being harder than the typically occurring rock particles, ie the HV or HRC hardness values of these materials are above the corresponding values of the surrounding rock. All these materials are characterized simultaneously in that they have a greater brittleness than typical uncured steel alloys.
  • these materials are referred to herein as "brittle-hard.”
  • materials having a density of at least 90%, more preferably at least 95%, of theoretical density are employed to achieve the highest possible hardness values and high abrasion and corrosion resistances silicon carbide (SSiC) or boron carbide sintered as a brittle-hard material, these materials are not only resistant to abrasion but also resistant to corrosion by the treatment fluids commonly used to flush the separator and stimulate the well such as acids (eg HCl), lyes ( eg NaOH) or steam are particularly suitable, for example, SSiC materials with fine-grained microstructure (mean particle size ⁇ 5 microns), as they are selling KG, for example, under the name EKasic ® F and EKasic ® F plus from ESK Ceramics GmbH & Co...
  • SSiC-Who Be used, for example, with bimodal microstructure, preferably 50 to 90 vol .-% of the particle size distribution of prismatic, platelet-shaped SiC crystallites having a length of 100 to 1500 microns and 10 to 50 vol .-% of prismatic, platelet-shaped SiC crystallites a length of 5 to less than 100 microns (EKasic ® C from ESK Ceramics GmbH & Co. KG).
  • the coupling elements 18, 19 form the front-side, lateral terminations of the ring stack via which the separating device is coupled to the clamping device (the clamping sets / clamping sets). They are designed so that the clamping forces are transmitted evenly to the ring stack.
  • the coupling elements are preferably made of the same material as the rings. Alternatively, however, it is also possible to use corrosion-resistant steels and plastics such as, for example, fluoroelastomers or PEEK (polyetherketone).
  • the upper surface of the upper coupling element A (18 in Figure 4a), which faces the clamping device, preferably has a flat / flat surface. che.
  • the surface directed toward the separating device, that is to say the underside of the coupling segment A, is preferably designed with a radius, ie, like the ring elements, preferably concave.
  • the inner peripheral surface preferably has three or more recesses / grooves (39 in Figure 2a) for receiving the guide rods 9.
  • the outer peripheral surface preferably has a circumferential groove (38 in Figure 2b and 2c) for receiving a sealing ring (O-ring) (14 in Figures 3 and 4a).
  • the lower surface of the lower coupling element B (19 in Figure 4b), which is directed to the clamping device, preferably has a flat / flat surface.
  • the surface facing the separating device, that is to say the upper side of the coupling segment B, preferably has at least three spacers distributed uniformly over the circumference of the disks.
  • the inner circumferential surface preferably has three or more recesses / grooves (39 in Figure 2a) for receiving the guide rods 9.
  • the outer peripheral surface preferably has a circumferential groove (38 in Figures 2b and 2c) for receiving a sealing ring (O-ring) (14 in FIGS. 3 and 4b).
  • the tolerances of the two coupling segments are selected to be narrower than those of the annular discs in order to optimally couple the brittle-hard components to the metallic components of the clamping set; In contrast to the as-sintered ring disks, the coupling segments must be machined.
  • 2a-2c show a ring stack 20 according to the invention with coupling elements 18, 19.
  • the recesses / grooves 39 in the inner peripheral surface can be seen, which are used to receive the guide rods 9 (see FIGS. 3, 4a and 4b) 4b) serve.
  • Figure 2b shows a cross-sectional view along the line BB in Figure 2a, wherein the circumferential grooves 38, which serve to receive a sealing ring, are recognizable.
  • FIG. 2c shows a corresponding cross-sectional view along the line AA in FIG. 2a.
  • the outer diameter of the coupling segments 18, 19 is equal to or greater than that of the annular discs. For handling reasons, however, it is preferred that the outer diameter is larger (see Figures 2b and 2c).
  • the upper surface of the upper coupling element A and / or the lower surface of the lower coupling element B is not flat / flat but designed as a spring seat. In this way, the springs are directly absorbed and additionally protected against the fluid.
  • the preferably provided spacer serves primarily as an assembly and guide aid as well as protection of the separator when entering the borehole, but is not mandatory. He does not contribute to the function of the separator itself. This is particularly important because the materials used have a lower abrasion and corrosion resistance and wear faster during operation of the delivery unit. However, since the spacer has no bearing / storage task and the ring stack is designed according to the invention so that it is self-centering, the function or the stability of the separator remains unaffected by the wear of the spacer.
  • the spacer preferably consists of three components: two guide rings (7, 8 in Figures 3, 3a, 4a and 4b), the spacer strips (12 in Figure 3a) and the guide rods (9 in Figure 3, 3a, 4a and 4b).
  • the two guide rings 7, 8 are on the inner tube (delivery pipe 22). At their outer peripheral surfaces, they have incorporated three or more recesses / grooves, which serve to receive the guide rods 9. Directed along the tube axis of the inner tube, these guide rods 9 receive the ring elements on the inner recesses of the rings. Guide rings 7, 8 and guide rods 9 together represent the radial distance between the ring elements and the inner tube 22.
  • the spacer strips 12 are also fastened to the outer peripheral surfaces of the guide rings, preferably via spot welding, and provide the longitudinal spacing between the clamping sleeves 1 , 2, that is, the length of the ring stack 20 a. During assembly, the annular discs 30 are built together with the two coupling elements on the spacer.
  • the alignment and guiding of the ring elements takes place during assembly.
  • the arranged on the top of the rings spacers 32 of the annular discs 30 can thus be quickly and easily aligned each other when stacking each other, so that the axial load introduction takes place in the axis of the three spacers 32. This avoids the edge loads which are critical for brittle-hard materials, and a three-point support at the desired support points is also achieved in the case of annular disks with deviations in shape.
  • the guide rings 7, 8 and the spacer strips 12 are preferably made of steel, but it is also possible to use plastic guide rings.
  • the guide rods are preferably not made of steel, but of plastic, preferably made of PEEK, to allow an elastic, sliding recording of the brittle-hard annular discs. If the plastic rods wear, so the separator remains stable due to the "self-centering" and the function is still guaranteed.
  • the attachment of the ring stack on the inner tube (conveyor tube) by means of a clamping device (clamping set / clamping set).
  • the clamping device preferably consists of clamping sleeves, compression springs, compression spring seats and clamping nuts.
  • Task of the clamping set (1 to 6 in Figure 3, 4a and 4b) is to brace the axially stacked ring elements in itself, the separating gap formed between the individual discs with a height preferably from 0.05 to 1 mm, more preferably 0 , 1 -0.5 mm to fix and to secure the separator on the inner tube (delivery tube).
  • the compression springs 13 are preferably selected from corrosion-resistant steel, coated steel or corrosion-resistant elastomer such as rubber or Viton.
  • the clamping set for fastening the separating device on the inner tube is preferably designed as a three-part non-positive, releasable interference fit. It consists of the components clamping sleeve (1, 2 in Figures 3, 4a and 4b), compression spring seat (3, 4 in Figures 3, 4a and 4b) and clamping nut (5, 6 in Figures 3, 4a and 4b).
  • the clamping sets are preferably made of steel, more preferably made of corrosion-resistant steel.
  • the clamping sleeves 1, 2 are cylindrical inside; On the outside, two areas can be distinguished: a thread (1a, 2a in FIGS. 4a and 4b) and an outer, tapered wedge surface (1b, 2b in FIGS. 4a and 4b).
  • the clamping nut engages the clamping sleeve via the thread.
  • the tapered wedge surface is preferably slotted longitudinally to allow for larger clearance play and thus relatively large tolerances.
  • the clamping sleeves can preferably be coated externally with copper for protection against contact corrosion.
  • the compression spring seats (3, 4 in Figures 3, 4a and 4b) preferably have an inner conical clamping surface, inner guides for receiving the compression springs and an outer guide for receiving the outer cage (1 1 in Figures 3 and 3a, 10 serves to receive the outer cage) ,
  • the clamping takes place via the clamping nuts 5, 6.
  • clamping sleeve 1, 2 and compression spring seat 5, 6 are shifted into each other, wherein they deform elastically and generate high contact forces in the joints between the clamping element and the inner tube and thus cause the adhesion.
  • the device is sealed by means of O-rings 15, 16 between inner tube and clamping nut, by means of O-rings 17 between clamping nut and compression spring seat and by means of O-rings 14 between compression spring seat and coupling segment.
  • Alternative types of attachment to thread and clamping nut represent the combinations of groove and circlip and counterbore and grub screw. A fastening by welding is possible.
  • a fixation on the threaded sleeve i. the transition between different conveyor component units.
  • the separating device according to the invention is preferably protected against damage during installation as well as when starting the delivery by means of an outer cage (1 1 in FIGS. 3 and 3 a) which can be flowed through freely.
  • This can for example be designed as a coarse mesh screen and preferably as a perforated plate.
  • the material used is preferably steel.
  • the outer surfaces of the clamping sets and the portions of the conveying tube, which are not protected by the brittle-hard rings and the joints / sleeve areas where the conveyor pipe is completed with other components to the drill string are preferably protected by one or more protective sheaths against wear.
  • the liquid flow is indeed conducted from the delivery point directly through the stack of rings in the delivery pipe, without flow deflection.
  • the lying outside of the separator areas are flown as a result of stray flux, as a result of inaccurate positioning of the separator to the conveyor or when the conveyor is further extended than the separator, so that it is the wear of the outside of the separator lying areas of the delivery tube comes.
  • the wear is caused by abrasion / erosion by sand and rock particles as well as by corrosion.
  • the corrosion occurs as a result of the treatment liquids used, such as HCl, H 2 SO 4 , HF and CaCl 2 / CaBr 2 , especially in conjunction with the occurring particle erosion, which prevents the formation of passivating surface layers.
  • the wear protection of the abovementioned metallic areas outside the separating device takes place by means of a plastic coating, for example by means of a heat-shrinkable tube.
  • the molded parts can be designed, for example, in the form of two shells, for example made of polyolefin, which have been machined to size.
  • the half shells can be connected via tongue and groove or by screwing.
  • suitable spacers can be attached, which can be realized as sliding nubs on the perforated plate, for example.
  • the materials for the plastic coating are preferably selected from the material group of polyolefins, preferably polyethylene, polypropylene and poly (iso) butylane, since on the one hand they have sufficient resistance to abrasion / erosion and corrosion and, on the other hand, can be applied as heat shrink tubing .
  • polyolefins preferably polyethylene, polypropylene and poly (iso) butylane
  • Other possible materials for the plastic coatings or shrink tubing are PVDF, Viton, PVC and PTFE.
  • a shrink tube has the following advantages over other solutions: - It can be dense, non-permeable coatings realize a function separation by coating with different shrink tubing is possible. For example, on the outside, a material with high erosion resistance and, on the inside, a material with high corrosion resistance could be applied.
  • connection with the areas to be protected is positive. Conveyor or cleaning media can not "crawl" under the cover. An additional sealing of the coating is not required. Any lengths can be protected by overlapping joining of tube segments.
  • Diameter and cross-sectional transitions, as here on the clamping sets, can be overcome due to the shrinkage rates up to 3: 1 (change in diameter).
  • the solution is cost-effective, as commercially available shrink tubing can be used in any dimension and easily applied.
  • SSiC coarse grained, sintered silicon carbide ceramic
  • EPC fine-grained, sintered silicon carbide ceramic
  • the experiments were carried out by means of a sandblasting machine.
  • the blasting media used were four different proppants typically used in offshore drilling: (1) 100 mesh frac sand, (2) 16/20 mesh frac sand, (3) 20/40 mesh frac sand, (4) 20/40 Mesh Frac Sand High Strength.
  • the jet pressure was 2 bar and the jet duration 2 hours, with the beam was applied quasi point-like at an angle of 90 ° to the surface. Depth and the width of the jet impression characterize the erosive wear (see Table 1).
  • the experiments show that the sintered silicon carbide ceramics are significantly more resistant to erosive wear compared to conventional steels. Both EKasic® C and EKasic® F show no measurable or even negligible erosive wear.
  • Rods (approximately 3 x 4 x 25 mm) made of coarse-grained silicon carbide ceramic type EKasic ® C and fine-grained silicon carbide ceramic type EKasic ® F were subjected to a corrosion test.
  • a ceramic ring stack separator was made and subjected to a flow through performance test to determine the pressure loss at various flow rates.
  • the annular discs have an outer diameter of L30 mm and an inner diameter of 109 mm.
  • the ring height is optionally 3, 5 and 8 mm.
  • the lower side is concavely arched, the radius of curvature is 2000 mm.
  • Outer diameter is 0.25 or 0.45 mm.
  • the annular discs are made of silicon carbide.
  • the test device comprises an inner tube, a stack of annular discs and an outer cover.
  • the inner tube has a diameter of 101 mm and a length of 300 mm. In the middle, there are four openings (23 in FIG. 3) offset by 90 ° in the lateral surface, through which the conveyed medium can flow into the inner tube.
  • the inner tube thus corresponds to commonly used, commercially available devices.
  • the annular discs are so stacked around the inner tube by means of a support structure formed of three rods which guide the annular discs on the inner side thereof, that the spacers overlap one another and form a radial gap.
  • the total length of the test device is 300 mm.
  • the separator thus comprises 38 to 105 discs. This corresponds to a free filter area of 5 to 16%.
  • the test device is covered by a perforated plate of thickness 2 mm.
  • the square holes have a length of about 10 mm and are arranged at a distance of 15 mm regularly.
  • the test was carried out by means of the construction shown in FIG.
  • the test device is installed in a cylindrical housing, over the end faces of which water (density 1.0 g / cm 3 , dynamic viscosity 1 cP) is supplied at room temperature.
  • the flow of the separator takes place via the perforated plate and the gaps on the outer diameter of the stacked annular discs.
  • the drain is through the inner tube.
  • the pressure loss between inlet and outlet at the housing is measured depending on the flow.
  • the test results are shown in Table 3. The pressure loss is very low for all flows, so that the delivery rate is not adversely affected. At the same time the low pressure loss is an indicator that the separator is flowed through laminar.
  • Table 3 Flow Performance Test Results
  • ring stacks were subjected to a pressure test to simulate the effect of increased compressive stress on the separator.
  • the ring disks were made according to Example 3, the stack each comprising 10 disks.
  • the spacers were aligned one above the other.
  • the load was carried out axially by means of a hydraulic press, wherein the force was applied continuously until the breakage of at least one of the annular discs.
  • the example shows how a separator according to the invention is mounted on a conveyor tube according to Figures 3, 4a and 4b.
  • the delivery pipe 22 has a length of 1200 mm and a minimum diameter of 90 mm. Halfway along the tube, there are four openings (offset by 90 °) in the lateral surface, through which the filtered medium flows into the
  • the pipe has a connection area with an internal or an external thread (pup joints), with the help of which the pipe can be connected during the completion with upstream and downstream equipment of the drill string.
  • the openings 23 of the conveying tube 22 are protected by the separating device according to the invention.
  • the separating device comprises the annular gap filter (ring stack), coupling elements and the clamping or tensioning device, with the aid of which the annular gap filter is mechanically braced in itself, secured and secured on the pipe.
  • the separator has a length of 570 mm and an outer diameter of 143 mm. It is arranged symmetrically to half the pipe length (center of the opening, center of the pipe).
  • the ring-shaped discs are manufactured according to the illustrations Ia- If. They have an outer diameter of 130 mm and an inner diameter of 109 mm. The ring height is 5 mm. The lower side is concave. The the curvature is 2000 mm.
  • the height of the ball sections is selected to be 0.4 mm, so that the gap height at the outer diameter is 0.25 mm.
  • the washers are made of silicon carbide (EKasic ® F plus).
  • the annular discs are stacked around the conveyor tube and aligned so that each forms a radial gap perpendicular to the longitudinal axis of the conveyor tube between the discs.
  • the stacked washers are guided by the spacer.
  • This comprises three guide rods 9 (PEEK rods with a diameter of 6 mm) which guide the annular discs against the grooves of the inner sides.
  • the ends of a guide rod 9 lie on both sides on guide rings 7, 8.
  • the guide rings enclose the delivery pipe 22 and are pushed onto this.
  • the ring stack (without coupling segments) has a total length of 351 mm and comprises 75 discs. This corresponds to a free filter area of 5%.
  • the front end of the ring stack 20 form two ceramic coupling segments 18, 19 made of EKasic ® F plus. They have an outer diameter of 133 mm, an inner diameter of 109 mm and a height of 17 mm. On the outer circumference a groove for receiving a sealing ring is incorporated ( Figure 2).
  • the attachment on the conveyor tube is carried out by means of a clamping set according to Figures 3, 4a and 4b, which is formed of clamping sleeve, clamping nut and compression spring seat.
  • a clamping set according to Figures 3, 4a and 4b, which is formed of clamping sleeve, clamping nut and compression spring seat.
  • the separator is covered by a perforated plate of thickness 2 mm.
  • the square holes have a length of about 10 mm; they are regularly arranged at a distance of 5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Centrifugal Separators (AREA)
  • Earth Drilling (AREA)
  • Filtering Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a separation apparatus for tubular flow-through apparatuses (22) which are used to convey liquids or gases from drilled wells in rock or deep wells, where the separation apparatus is suitable for separating off sand and rock particles and comprises: an annular stack (20) made up of hard and brittle annular discs, where the discs (30) are stacked and clamped in such a way that a separation gap (37) for separating off sand and rock particles is present between each of the individual discs (30); a coupling element (18, 19) is present at one or both ends of the annular stack (20); a clamping device which firstly makes it possible to clamp the hard and brittle discs (30) flexibly and secondly to fasten the annular stack (20) in a variable fashion on the tubular flow-through apparatus (22) is present at one or both ends of the annular stack (20). The invention likewise relates to the use of a separation apparatus according to the invention for separating off sand and rock particles in a process for conveying liquids or gases from drilled wells in rock or deep wells by means of tubular flow-through apparatuses.

Description

Trennvorrichtung für rohrförmige Durchflussvorrichtungen  Separating device for tubular flow devices
Gebiet der Erfindung Die Erfindung betrifft eine neuartige Trennvorrichtung mit verbessertem Erosions- und Abrasionswiderstand, zum Einsatz für Durchflussvorrichtungen zur Förderung von Öl-, Wasser- und Gasgemischen oder deren Einzelkomponenten, mit deren Hilfe Feststoffe, wie Sand- und Gesteinspartikel von den zu fördernden Flüssigkeiten und Gasen abgetrennt werden können. Die Trenn- Vorrichtung dient insbesondere dazu, den erosiven und abrasiven Abtrag der Förderausrüstung in Tiefbohrungen durch Sand- und Gesteinspartikel zu verhindern. Gleichzeitig ist die Trennvorrichtung korrosionsbeständig gegenüber Behandlungsflüssigkeiten. Hintergrund der Erfindung FIELD OF THE INVENTION The invention relates to a novel separation device with improved erosion and abrasion resistance, for use with flow devices for conveying oil, water and gas mixtures or their individual components, with the aid of which solids, such as sand and rock particles from the liquids to be conveyed and Gases can be separated. The separation device is used in particular to prevent the erosive and abrasive removal of the conveying equipment in deep wells through sand and rock particles. At the same time the separator is corrosion resistant to treatment liquids. Background of the invention
Zur Förderung von Flüssigkeiten und Gasen, wie Öl-, Wasser- und Gasgemischen oder deren Einzelkomponenten aus Gesteinsreservoires werden Bohrlochausrüstungen eingesetzt, die im Wesentlichen aus einem Förderrohr beste- hen, um das Fördermedium von der äußeren Förderstelle in das innere Förderrohr zu leiten. Dabei kann es sich um ein perforiertes Rohr handeln oder um ein Rohr, das mit mindestens einer Öffnung versehen ist. Diese Öffnungen sind häufig mit einer geeigneten Vorrichtung, wie Schieber oder Ventil versehen, mit deren Hilfe der Einfluss des Fördermediums gesteuert werden kann. Dieses Förderrohr (inneres Rohr) wird im weiteren auch als Durchflussvorrichtung bezeichnet, häufig werden auch die Begriffe Schiebemuffe, sliding sleeve und sliding side door verwendet. For the conveyance of liquids and gases, such as oil, water and gas mixtures or their individual components from rock reservoirs, borehole equipment is used which consists essentially of a delivery pipe in order to guide the delivery medium from the outer delivery point into the inner delivery pipe. It may be a perforated tube or a tube which is provided with at least one opening. These openings are often provided with a suitable device, such as slide or valve, with the aid of which the influence of the pumped medium can be controlled. This conveyor tube (inner tube) is also referred to below as a flow device, often the terms sliding sleeve, sliding sleeve and sliding side door are used.
Bei der Förderung ist es erforderlich, die Lagerstättenpartikel und gegebenen- falls künstlich eingebrachte oder durch Abrieb erzeugte Partikel vom Fördermedium zu trennen und vor dem Eintritt in das Förderrohr herauszufiltern. In the case of production, it is necessary to separate the storage particles and any artificially introduced or abrasion-generated particles from the pumped medium and to filter them out prior to entering the delivery pipe.
Stand der Technik Üblicherweise werden für diese Aufgabe metallische Drahtgewebe oder metallische Drahtgitter verwendet. Eine Lösung mit Drahtgewebe ist in der US 5,624,560 beschrieben. Diese Lösungen mit Drahtgeweben oder Drahtgittern werden noch von einer metallischen Stützstruktur getragen, um mechanisch stabil zu bleiben. Ein wesentlicher Nachteil dieser Konstruktion ist ihre geringe Beständigkeit gegenüber Verschleiß. Aufgrund der abrasiven bzw. erosiven Wirkung der mit hoher Fließgeschwindigkeit einfließenden Sand- und Ge- Steinspartikel werden die Filter zerstört und die Förderrohre, insbesondere an den Öffnungen und Ventilen, beschädigt. Gleichzeitig nimmt die Produktivität der Förderung ab, da nunmehr der Sand nicht mehr effektiv ausgefiltert sondern mit dem Fördermedium weitertransportiert wird. Ein weiteres Problem ist der durch den Einsatz von Behandlungsflüssigkeiten auftretende korrosive Verschleiß an den Filtern und Förderrohren. Dieser korrosive Verschleiß verstärkt wiederum den abrasiven Verschleiß. Behandlungsflüssigkeiten, wie beispielsweise Säuren, Laugen, Wasser oder Heißdampf, werden zur Reinigung der Trenn- und Durchflussvorrichtung eingesetzt und zur Stimulation des Bohrlochs. PRIOR ART Usually, metallic wire mesh or metallic wire mesh are used for this task. A wire mesh solution is described in US 5,624,560. These solutions with wire mesh or wireframes are still supported by a metallic support structure to remain mechanically stable. A major disadvantage of this design is its low resistance to wear. Due to the abrasive or erosive action of the sand and Ge stone particles flowing in at high flow rates, the filters are destroyed and the delivery pipes, in particular at the openings and valves, are damaged. At the same time the productivity of the promotion decreases, since now the sand is no longer effectively filtered out but is transported on with the pumped medium. Another problem is the corrosive wear on the filters and delivery pipes caused by the use of treatment liquids. This corrosive wear in turn increases the abrasive wear. Treatment fluids such as acids, alkalis, water or superheated steam are used to clean the separation and flow device and to stimulate the well.
Es ist erforderlich, die Beständigkeit der Bohrlochausrüstung gegen abrasiven bzw. erosiven Verschleiß zu verbessern sowie sicherzustellen, dass sie korrosiv nicht angegriffen wird. In der US 2004/0050217 Al und WO 2008/080402 Al sind Lösungen beschreiben, bei denen anstelle der metallischen Spaltsiebe Trennvorrichtungen aus porösen permeablen Werkstoffen eingesetzt werden. Die porösen Filterwerkstoffe der US 2004/0050217 Al können metallisch, keramisch oder organisch sein, in der WO 2008/080402 Al werden poröse keramische Werkstoffe eingesetzt. It is necessary to increase the resistance of the downhole equipment to abrasive erosion and to ensure that it is not corrosively attacked. In US 2004/0050217 Al and WO 2008/080402 Al solutions are described in which instead of the metallic gap sieves separation devices made of porous permeable materials are used. The porous filter materials of US 2004/0050217 A1 can be metallic, ceramic or organic, in WO 2008/080402 Al porous ceramic materials are used.
Ein Problem der in diesen beiden Schriften beschriebenen Lösungen ist, dass Filter aus porösen Werkstoffen aufgrund ihrer schlechten mechanischen Eigenschaften zum Bruch durch Biegebelastung neigen. Die Biegebruchbelast- barkeit liegt in der Regel bei deutlich weniger als 30% derjenigen des entsprechenden dichten Werkstoffs und ist daher für die mechanischen Belastungen bei den Einsatzbedingungen in Gesteinsbohrungen nicht ausreichend. A problem of the solutions described in these two documents is that filters made of porous materials tend to break due to bending stress due to their poor mechanical properties. As a rule, the bending load capacity is considerably less than 30% of that of the corresponding dense material and is therefore not sufficient for the mechanical loads under the operating conditions in rock boreholes.
Ein weiteres Problem ist, dass die Abrasions- und Erosionsbeständigkeit von porösen keramischen Werkstoffen deutlich geringer ist als die von dichten keramischen Werkstoffen. Eine weitere Lösung mit einer Trennvorrichtung aus porösen Werkstoffen ist in der WO 2004/099560 Al beschrieben, die ebenfalls die oben beschriebenen Nachteile aufweist. In einer weiteren Ausführungsform (Seite 7, Zeile 24 - Seite 8, Zeile 2 und Anspruch 20) sieht die WO 2004/099560 Al vor, einen kon- ventionellen Sandfilter außen zusätzlich durch eine Manschette aus erosionsbeständigen, dichten Ringen zu schützen, die an ihren oberen und unteren Oberflächen zusätzlich Rippen oder Grübchen haben. An den aufeinanderge- stapelten Ringen bildet sich ein gewundener Flüssigkeitskanal aus, an dessen Wänden sich die Energie des durchströmenden Mediums durch Aufprall ver- ringert, so dass der Verschleiß des darunter liegenden, konventionellen Sandfilters reduziert wird. Vorzugsweise sind die Ringe aus Carbiden oder Nitriden wie Siliziumcarbid oder Wolframcarbid gebildet. Nachteilig bei dieser Lösung ist, dass der verbesserte Verschleißschutz mit einer Energiedissipation des strömenden Mediums einhergeht; die äußere Manschette wirkt nicht als Filter sondern als Strömungswiderstand, der die Förderleistung verschlechtert. Es wird nicht offenbart, wie die Manschette auf dem Förderrohr befestigt wird. Another problem is that the abrasion and erosion resistance of porous ceramic materials is significantly lower than that of dense ceramic materials. Another solution with a separator of porous materials is described in WO 2004/099560 Al, which also has the disadvantages described above. In a further embodiment (page 7, line 24 - page 8, line 2 and claim 20), WO 2004/099560 A1 proposes additionally protecting a conventional sand filter externally by means of a sleeve made of erosion-resistant, dense rings which are attached to their ends upper and lower surfaces additionally have ribs or dimples. On the stacked rings, a tortuous fluid channel forms, on the walls of which the energy of the medium flowing through is reduced by impact, so that the wear of the underlying conventional sand filter is reduced. Preferably, the rings are formed of carbides or nitrides such as silicon carbide or tungsten carbide. A disadvantage of this solution is that the improved wear protection is accompanied by an energy dissipation of the flowing medium; the outer sleeve does not act as a filter but as a flow resistance that degrades the flow rate. It is not disclosed how the cuff is mounted on the conveyor tube.
In der US 5,249,626 wird ein zylindrischer Siebfilter vorgestellt, der eine Vielzahl von gestapelten, ringförmigen Filtersegmenten beinhaltet. Der Ringstapel wird durch mehrere Gewindestäbe mit Gewindemuttern oder auch Doppelmuttern aus Edelstahl jeweils am oberen und unteren Ende zusammengehalten. Die Trennung der Partikel erfolgt am variablen Ringspalt, der zwischen gegenüberliegenden Filtersegmenten ausgebildet ist. Die Ringe sind aus Kunststoff, bevorzugt aus glasverstärktem Polypropylen (Spalte 4, Z. 50-54). Die Gewindestäbe werden durch dafür vorgesehene Öffnungen in den Ringen geführt (Spalte 4, Z. 31 -33). Diese Lösung lässt sich aus Keramiken nicht realisieren. Die Querschnittsübergänge sind kantig; die Filtersegmente haben ein typisches Kunststoff-Design. Die Abstandshalter sind flächig ausgebildet, Biegespannungen könnten so bei keramischen Ringen nicht ausgeglichen wer- den. Die starre Lagerung der Stützkonstruktion würde es bei keramischen Ringen zudem nicht gestatten, Verformungen aufzunehmen; dies ist aber bei der Einbringung des Filters in die Bohrung zwingend erforderlich. Weitere Nachteile des in der US 5,249,626 beschriebenen Siebfilters aus glasverstärktem Polypropylen sind dessen unzureichende Erosions- und Abrasionsbe- ständigkeit sowie ungenügende Korrosionsbeständigkeit. Aufgabe der Erfindung In US 5,249,626 a cylindrical screen filter is presented which includes a plurality of stacked annular filter segments. The ring stack is held together by a plurality of threaded rods with threaded nuts or double nuts made of stainless steel at the top and bottom. The separation of the particles takes place at the variable annular gap, which is formed between opposite filter segments. The rings are made of plastic, preferably of glass-reinforced polypropylene (column 4, Z. 50-54). The threaded rods are guided through openings provided in the rings (column 4, lines 31 to 33). This solution can not be realized from ceramics. The cross-sectional transitions are edged; The filter segments have a typical plastic design. The spacers are designed flat, so bending stresses could not be compensated for ceramic rings. The rigid support of the support structure would also not allow ceramic rings to absorb deformations; but this is absolutely necessary for the introduction of the filter into the bore. Further disadvantages of the screen filter made of glass-reinforced polypropylene described in US Pat. No. 5,249,626 are its inadequate erosion and abrasion resistance as well as insufficient corrosion resistance. Object of the invention
Der Erfindung liegt die Aufgabe zugrunde, unter Überwindung der Nachteile des Standes der Technik eine Trennvorrichtung für rohrförmige Durchfluss- Vorrichtungen zur Abtrennung von Sand- und Gesteinspartikeln bei der Förderung von Flüssigkeiten oder Gasen aus Tief- oder Gesteinsbohrungen zur Verfügung zu stellen, die eine bessere Verschleiß- bzw. Abrasions- und Erosionsbeständigkeit und eine geringere Bruchneigung als die im Stand der Technik bekannten Trennvorrichtungen aufweist, und die zudem korrosionsbe- ständig gegenüber Behandlungsflüssigkeiten ist, und bei der die Förderleistung durch den Verschleißschutz nicht nachteilig beeinflusst wird, und die den bei der Förderung und insbesondere beim Einbau auftretenden Biegebelastungen standhalten kann. Zusammenfassung der Erfindung The invention has for its object, overcoming the disadvantages of the prior art, a separator for tubular flow devices for the separation of sand and rock particles in the promotion of liquids or gases from underground or rock wells available to provide better wear - and abrasion and erosion resistance and a lower tendency to fracture than the known in the prior art separation devices, and also corrosion resistant to treatment liquids, and in which the capacity is not adversely affected by the wear protection, and those in the promotion and in particular can withstand bending stresses occurring during installation. Summary of the invention
Die vorstehende Aufgabe wird erfindungsgemäß gelöst durch eine Trennvorrichtung gemäß Anspruch 1 sowie deren Verwendung gemäß Anspruch 23. Vorteilhafte und besonders zweckmäßige Ausgestaltungen des Anmeldungsge- genstandes sind in den Unteransprüchen angegeben. The above object is achieved by a separation device according to claim 1 and their use according to claim 23. Advantageous and particularly expedient embodiments of the subject of the application are given in the dependent claims.
Gegenstand der Erfindung ist somit eine Trennvorrichtung für rohrförmige Durchflussvorrichtungen, die zur Förderung von Flüssigkeiten oder Gasen aus Gesteins- oder Tiefbohrungen dienen, wobei die Trennvorrichtung zur Abtrennung von Sand- und Gesteinspartikeln geeignet ist und umfasst: The invention thus provides a separator for tubular flow devices, which serve to convey liquids or gases from rock or deep wells, wherein the separation device is suitable for the separation of sand and rock particles and comprises:
einen Ringstapel aus sprödharten ringförmigen Scheiben, wobei die Scheiben so gestapelt und verspannt sind, dass zwischen den einzelnen Scheiben jeweils ein Trennspalt zur Abtrennung von Sand- und Gesteinspartikeln vorhanden ist;  a ring stack of brittle annular discs, the discs are stacked and braced so that between the individual discs each have a separation gap for the separation of sand and rock particles is present;
- ein Ankopplungselement an einem oder beiden Enden des Ringstapels; eine Klemmvorrichtung an einem oder beiden Enden des Ringstapels, welche es einerseits ermöglicht, die sprödharten Scheiben flexibel zu verspannen und andererseits den Ringstapel auf der rohrförmigen Durchflussvorrichtung variabel zu befestigen. a coupling element at one or both ends of the ring stack; a clamping device at one or both ends of the ring stack, which on the one hand makes it possible to flexibly clamp the brittle discs and on the other hand to fix the ring stack on the tubular flow device variable.
Gegenstand der Erfindung ist ebenso die Verwendung der erfindungsgemäßen Trennvorrichtung zur Abtrennung von Sand- und Gesteinspartikeln bei 1 einem Verfahren zur Förderung von Flüssigkeiten oder Gasen aus Gesteinsoder Tiefbohrungen mittels rohrförmigen Durchflussvorrichtungen. The invention also relates to the use of the separation device according to the invention for the separation of sand and rock particles 1 a method for conveying liquids or gases from rock or deep wells by means of tubular flow devices.
Die aus sprödharten ringförmigen Scheiben (im Folgenden auch als "Ringel-The brittle annular discs (also referred to below as "ringlets")
5 emente" bezeichnet) aufgebaute Trennvorrichtung ist abrasions- bzw. erosi- ons- und korrosionsbeständig und keramikgerecht bzw. sprödharten Werkstoffen gerecht konstruiert. Die Abtrennung der Partikel ist in direkter An- und Durchströmung gewährleistet, ohne dass die Strömung negativ durch Umlenkung oder Energiedissipation beeinflusst wird. The separation of the particles is ensured in direct inflow and throughflow without the flow being adversely affected by deflection or energy dissipation becomes.
I O  I O
Die Trennvorrichtung beinhaltet neben dem Stapel aus ringförmigen Scheiben eine Klemmvorrichtung (Klemmsatz), die es einerseits ermöglicht, die sprödharten Ringelemente flexibel zu verspannen und andererseits den Ringstapel auf dem Förderrohr variabel zu befestigen.  The separator includes, in addition to the stack of annular discs, a clamping device (clamping set), which allows on the one hand to flexibly brace the brittle-hard ring elements and on the other hand to fix the ring stack on the conveyor tube variable.
15  15
Die Durchflussvorrichtung ist in ihrer Gesamtheit gegen Abrasion /Erosion geschützt, und zwar im Bereich des direkten Durchflusses, also dem Bereich der Öffnungen und Ventile des inneren Rohrs. Der Schutz erfolgt durch die Ringelemente. Vorzugsweise können auch die außerhalb dieses Bereiches lie- 0 genden Klemmsätze, Rohr ab schnitte und Verbindungsstellen geschützt sein.  The flow device is protected in its entirety against abrasion / erosion, namely in the region of the direct flow, ie the area of the openings and valves of the inner tube. The protection is provided by the ring elements. Preferably, the clamping sets lying outside this area can also be protected from sections and joints.
Die rohrförmigen Durchflussvorrichtungen können verschiedene Querschnittsformen aufweisen, wobei eine runde Querschnittsform bevorzugt ist. Ferner können die rohrförmigen Durchflussvorrichtungen auch über die Län- 25 ge wechselnde Querschnittsflächen besitzen. The tubular flow devices may have various cross-sectional shapes, with a round cross-sectional shape being preferred. Furthermore, the tubular flow devices may also have varying cross-sectional areas over the length.
Die komplette Trennvorrichtung ist keramikgerecht bzw. sprödharten Werkstoffen gerecht montiert, Verformungen können aufgenommen werden, ohne dass die Gefahr eines Bruches der Ringelemente aus dem sprödharten 30 Werkstoff besteht. The complete separation device is suitable for ceramics or brittle-hard materials, deformations can be accommodated without the risk of breakage of the ring elements from the brittle-hard material.
Die federnde Lagerung des Ringstapels ermöglicht, dass der Ringstapel Biegungen des inneren Rohrs ausgleichen kann. Biegungen von 3° und mehr auf 30 m können ohne Schwierigkeiten ausgeglichen werden. Die federnde Lage- 35 rung wird einerseits erreicht durch die Klemmsätze und Druckfedern, andererseits durch die bevorzugte konkave Ausformung des Ringbodens und die auf dem Ringboden bevorzugt angebrachten, die Abstandshalter aufnehmen- den Vertiefungen, die insgesamt zu einer Beweglichkeit des Systems führen, so dass Biegungen ausgeglichen werden können. The resilient mounting of the ring stack allows the ring stack to compensate for bends of the inner tube. Bends of 3 ° and more to 30 m can be compensated without difficulty. The resilient position is achieved on the one hand by the clamping sets and compression springs, on the other hand by the preferred concave shape of the annular base and preferably on the ring base attached, the spacers record- the depressions, which in total lead to a mobility of the system, so that bends can be compensated.
Der Druckverlust der erfindungsgemäßen Trennvorrichtung ist vernachlässig- bar gering und die erfindungsgemäße Trennvorrichtung wird laminar durchströmt (siehe Beispiel 3), so dass die Förderleistung nicht nachteilig beein- flusst wird. The pressure loss of the separating device according to the invention is negligibly small and the separating device according to the invention is flowed through in a laminar manner (see Example 3), so that the conveying capacity is not adversely affected.
Die Trennvorrichtung ist unter jeder Bohrlochablenkung einsetzbar, sowohl im horizontalen als auch im vertikalen Bohrloch und auch unter jeder anderen Bohrlochneigung, beispielsweise unter einer Bohrlohneigung von 60°. Dies ist ein Vorteil gegenüber den herkömmlich eingesetzten metallischen Drahtgittern. Die Verbindung des Ringstapels mit der Durchflussvorrichtung, also dem inneren Förderrohr ist so konstruiert, dass die Durchflussvorrichtung in der bevorzugten Ausführungsform nicht verändert wird, d.h. es ist nicht erforderlich, das im Handel erhältliche innere Rohr zur Montage der erfindungsgemäße Trennvorrichtung zu verändern, beispielsweise mechanisch zu bearbeiten wie etwa durch Drehen, Fräsen oder Bohren oder über thermische Verfahren wie beispielsweise Schweißen oder auch durch Kleben mit der Trennvorrichtung zu verbinden. The separator can be used under any wellbore deflection, both in horizontal and vertical borehole, and also under any other borehole inclination, for example at a drilling clearance of 60 °. This is an advantage over the conventionally used metallic wire mesh. The connection of the ring stack to the flow device, ie the inner delivery tube, is designed so that the flow device in the preferred embodiment is not altered, i. it is not necessary to change the commercially available inner tube for mounting the separating device according to the invention, for example mechanically to edit such as by turning, milling or drilling or thermal processes such as welding or by gluing to connect to the separator.
Ein weiterer Vorteil ist, dass sich die abzutrennenden Sand- und Gesteinspar - tikel an den stabilen sprödharten Ringelementen als sogenannter sekundärer Filterkuchen (secondary gravel pack) aufbauen können. Die Stabilität dieses sekundären Filterkuchens wird durch die erfindungsgemäße Trennvorrichtung begünstigt, was zu einer Erhöhung der Bohrlochintegrität führt. Ein weiterer Vorteil ist, dass die erfindungsgemäße Trennvorrichtung keine Stützkonstruktion benötigt wie die Kunststoff-Filtersegmente in der US 5,249,626 oder die metallischen Drahtgitter der US 5,624,560. Another advantage is that the sand and rock particles to be separated can build on the stable brittle-hard ring elements as a so-called secondary gravel pack. The stability of this secondary filter cake is favored by the separation device according to the invention, which leads to an increase in the well integrity. A further advantage is that the separating device according to the invention does not require a support structure such as the plastic filter segments in US Pat. No. 5,249,626 or the metal wire meshes of US Pat. No. 5,624,560.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Die Erfindung wird anhand der Zeichnungen näher erläutert. Hierbei zeigen Figuren Ia-If verschiedene Ansichten einer erfindungsgemäßen ringförmigen Scheibe; The invention will be explained in more detail with reference to the drawings. Show here Figures Ia-If different views of an annular disc according to the invention;
Figuren 2a-2c schematisch verschiedene Ansichten eines Ringstapels mit An- kopplungselementen; FIGS. 2a-2c show schematically different views of a ring stack with coupling elements;
Figur 3 eine Durchflussvorrichtung mit erfindungsgemäßer Trennvorrichtung einschließlich Außenkäfig zur Abdeckung der Trennvorrichtung; Figur 3a eine Querschnittsansicht A-A bezüglich Figur 3; Figure 3 shows a flow device with inventive separation device including outer cage to cover the separator; Figure 3a is a cross-sectional view A-A with respect to Figure 3;
Figuren 4a und 4b Klemmvorrichtungen zum Verspannen des Ringstapels und zur Befestigung des Ringstapels auf der rohrförmigen Durchflussvorrichtung; Figures 4a and 4b clamping devices for clamping the ring stack and for fixing the ring stack on the tubular flow device;
Figur 5 schematische Darstellung einer Schutzummantelung von Klemmvorrichtungen, außerhalb des verschleißbeständigen Ringstapels liegendem Abschnitt des Förderrohrs und Muffenbereich; und Figur 6 schematisch den Testaufbau für einen Durchfluss-Leistungstest. Figure 5 is a schematic representation of a protective coating of clamping devices, lying outside of the wear-resistant ring stack portion of the conveying tube and sleeve portion; and Figure 6 shows schematically the test setup for a flow rate performance test.
Detaillierte Beschreibung der Erfindung Detailed description of the invention
Die erfindungsgemäße Trennvorrichtung umfasst sprödharte ringförmige Scheiben, die einfach und wirtschaftlich zu fertigen sind. Die Herstellung dieser ringförmigen Scheiben ist mittels pulvermetallurgischer oder keramischer Verfahren in einer automatisierten Mengenfertigung möglich. Die ringförmigen Scheiben können im so genannten Net-Shape-Prozess, bei dem die Ringscheiben aus Pulvern endkonturnah gepresst werden, hergestellt werden. Eine auf- wändige mechanische Bearbeitung der Ringscheiben ist nicht erforderlich. Die bei einem Sinterprozess teilweise nicht vermeidbaren Form- und Maßabweichungen bei den einzelnen Ringscheiben sind bei einem erfindungsgemäßen Aufbau der Trennvorrichtung tolerierbar. Die in der Trennvorrichtung eingesetzten ringförmigen Scheiben sind in den Figuren I a- If dargestellt. Sie sind aus einem sprödharten Werkstoff, vorzugsweise einem keramischen Werkstoff gefertigt, der abrasions- /erosionsbestän- dig ist gegen die Sand- und Gesteinspartikel sowie korrosionsbeständig gegen die Fördermedien und die zur Reinigung verwendeten Medien wie beispielsweise Säuren. Die Abtrennung der Sand- und Gesteinspartikel erfolgt an einem radialen, vorzugsweise sich verjüngenden Spalt, der sich zwischen zwei aneinanderliegenden, verspannten Ringelementen bildet. Die Ringelemente sind keramikgerecht bzw. sprödharten Werkstoffen gerecht konstruiert: Querschnittsübergänge sind ohne Kerben ausgeführt, die Ausbildung von Biegespannungen wird konstruktiv vermieden oder ausgeglichen. The separating device according to the invention comprises brittle-hard annular discs which are simple and economical to manufacture. The production of these annular disks is possible by means of powder metallurgy or ceramic processes in automated mass production. The ring-shaped discs can be produced in the so-called net-shape process, in which the discs are pressed close to the final contours of powders. A complex mechanical machining of the annular discs is not required. The shape and dimensional deviations in the individual annular disks, which are sometimes unavoidable in a sintering process, can be tolerated in a design according to the invention of the separating device. The annular discs used in the separating device are shown in FIGS. 1a-1f. They are made of a brittle-hard material, preferably a ceramic material, which is resistant to erosion / erosion. dig is resistant to the sand and rock particles as well as corrosion-resistant to the pumped media and the media used for cleaning such as acids. The separation of the sand and rock particles takes place at a radial, preferably tapered gap, which forms between two adjoining, strained ring elements. The ring elements are designed to be suitable for ceramics or brittle-hard materials: cross-sectional transitions are performed without notches, the formation of bending stresses is constructively avoided or compensated.
Der Innendurchmesser der ringförmigen Scheiben ist größer als der Durchmesser des inneren Rohres (Förderrohr) zu wählen, die ringförmigen Scheiben liegen auf dem inneren Rohr nicht auf. So wird gewährleistet, dass die beim Einbringen ins Bohrloch auftretende Durchbiegung über die Konstruktion des Ringstapels aufgenommen werden kann und ein Bruch der keramischen Elemente vermieden wird. The inner diameter of the annular discs is greater than the diameter of the inner tube (delivery tube) to choose, the annular discs do not lie on the inner tube. This ensures that the deflection occurring during the insertion into the borehole can be absorbed via the construction of the ring stack and a breakage of the ceramic elements is avoided.
Die Höhe der ringförmigen Scheiben ist abhängig von der geforderten Durch- flussrate. The height of the annular discs depends on the required flow rate.
Die Figuren Ia- If zeigen die Grundform einer erfindungsgemäßen ringförmigen Scheibe 30, die auf ihrer Oberseite 31 mindestens drei über den Kreisumfang der Scheiben gleichmäßig verteilte Abstandshalter 32 aufweist, mit deren Hilfe die Höhe des Trennspaltes (Spaltweite) eingestellt wird. Wie aus der Seitenansicht gemäß Figur Id und der vergrößerten Schnittansicht gemäß Figur Ie entlang der Linie B-B in Figur Ia ersichtlich, sind die Abstandshalter 32 vorzugsweise in Form von Kugelabschnitten ausgebildet, um einen Punktkontakt zwischen gegenüberliegenden ringförmigen Scheiben 30 zu erzielen und flächige Kontakte zu vermeiden. FIGS. 1a-1f show the basic shape of an annular disc 30 according to the invention which has on its upper side 31 at least three spacers 32 uniformly distributed over the circumference of the discs, with the aid of which the height of the separating gap (gap width) is adjusted. As can be seen from the side view according to FIG. Id and the enlarged sectional view according to FIG. 1e along the line B-B in FIG. 1a, the spacers 32 are preferably in the form of spherical sections in order to achieve point contact between opposing annular discs 30 and to avoid planar contacts.
Es ist aber auch möglich, dass es zwischen gegenüberliegenden ringförmigen Scheiben einen Linienkontakt oder auch einen Flächenkontakt gibt. Ein Linienkontakt wird beispielsweise erhalten, wenn die Oberseiten der ringförmigen Scheiben eine wellenförmige Struktur aufweisen. Ein Flächenkontakt kann beispielsweise über elliptische Plateaus erreicht werden. Es sind aber auch andere Ausformungen möglich. Beim Aufeinanderstapeln werden die einzel- nen Abstandshalter im Stapel fluchtend übereinander positioniert. Die Abstandshalter sind keine separat aufgebrachten Elemente, sie werden direkt bei der Herstellung der ringförmigen Scheiben ausgebildet. Figur Ib zeigt eine Schnittansicht entlang der Linie A-A in Figur Ia. Eine vergrößerte Darstellung des Bereichs X durch einen Abstandshalter 32 ist in Figur Ic gezeigt. Eine perspektivische Ansicht einer erfindungsgemäßen ringförmigen Scheibe ist in Figur If dargestellt. Die ringförmigen Scheiben 30 haben an ihrer inneren Umfangsfläche vorzugsweise wenigstens drei Aussparungen /Nuten 33 , die der Aufnahme von Führungsstäben 9 dienen. Anhand dieser Führungsstäbe 9 können die Ringe beim Einbau leichter fluchtend übereinander positioniert werden. Die Aussparungen sind vorzugsweise abgerundet ausgeformt, wie in Figuren Ia und If gezeigt. But it is also possible that there is a line contact or a surface contact between opposing annular discs. Line contact is obtained, for example, when the tops of the annular discs have a wave-like structure. Surface contact can be achieved, for example, via elliptical plateaus. But there are also other forms possible. When stacking up, the individual NEN spacer in the stack aligned over each other. The spacers are not separately applied elements, they are formed directly in the manufacture of the annular discs. FIG. 1b shows a sectional view along the line AA in FIG. 1a. An enlarged view of region X by a spacer 32 is shown in FIG. 1c. A perspective view of an annular disc according to the invention is shown in FIG. The annular discs 30 preferably have on their inner peripheral surface at least three recesses / grooves 33, which serve to receive guide rods 9. Based on these guide rods 9, the rings can be easily positioned on top of each other during installation. The recesses are preferably formed rounded, as shown in Figures Ia and If.
Die Oberseite 31 der ringförmigen Scheiben 30 kann im rechten Winkel zur Scheibenachse oder nach innen abfallend oder nach außen abfallend mit ebener oder gekrümmter Fläche ausgeführt sein. Eine nach innen abfallende Ausführung ist vorteilhaft in Bezug auf eine verminderte Neigung zum Zusetzen der Trennvorrichtung. The top surface 31 of the annular discs 30 may be made to slope at right angles to the disc axis, or sloping inwardly or outwardly sloping with a plane or curved surface. An inwardly sloping design is advantageous in terms of a reduced tendency to clog the separator.
Die Unterseite 34 (Ringboden) der ringförmigen Scheiben 30 ist nach außen oder nach innen abfallend, vorzugsweise nach innen abfallend, weiter vor- zugsweise ist sie konkav ausgebildet, wie in Figur Ic gezeigt. Die konkave Ausformung ist auf den Ringboden als ganzes zu verstehen. Hier ist der Ringboden mit einem Radius R ausgeführt. Durch die konkave Ausformung können die einzelnen ringförmigen Scheiben einer Biegebelastung leicht ausweichen. Durch die konkave Ausformung des Ringbodens in Kombination mit der Drei-Punkt-Auflage können mögliche Form- und Maßabweichungen leicht ausgeglichen werden. The underside 34 (ring bottom) of the annular discs 30 is sloping outwardly or inwardly, preferably sloping inwardly, more preferably it is concave, as shown in Figure Ic. The concave shape is to understand the ring bottom as a whole. Here, the ring bottom is designed with a radius R. Due to the concave shape, the individual annular disks can easily yield to a bending load. Due to the concave shape of the ring base in combination with the three-point support possible form and dimensional deviations can be easily compensated.
Außerdem verhindert die nach innen abfallende Form der Unterseite eine dezentrale Verschiebung der einzelnen Ringe im Stapel. Diese radiale Selbstzen- trierung des Ringstapels ermöglicht die Verwendung der Trennvorrichtung ohne Stützkonstruktion, die bei metallischen Ringen oder Kunststoffringen in der Regel notwendig und üblich ist, siehe beispielsweise in der US 5,249,626 oder in der US 5,624,560. In addition, the inwardly sloping shape of the bottom prevents decentralized displacement of the individual rings in the stack. This radial self-centering of the ring stack allows the use of the separator without support structure, which in metallic rings or plastic rings in The rule is necessary and customary, see, for example, in US 5,249,626 or in US 5,624,560.
Auf der Unterseite 34 der Ringe gibt es vorzugsweise zusätzlich mindestens drei Vertiefungen 35 , in denen die Abstandshalter 32 der gegenüberliegenden Oberseite des nächsten Ringsegmentes positioniert werden können. Die Anzahl und der Abstand der Vertiefungen 35 richten sich nach Anzahl und Abstand der Abstandshalter 32 auf der Ringoberseite 31. Die eingebrachten Vertiefungen 35 dienen als Verdrehsicherung der Ringe und unterstützen die Selbstzentrierung der Ringe im Stapel. Bei den Vertiefungen handelt es sich vorzugsweise um parallel zum Radius R verschobene Flächen (s. Figur Ic). So wird auch hier ein Punktkontakt zu den Abstandshaltern gewährleistet und über die Drei-Punkt-Auflage werden mögliche Form- und Maßabweichungen ausgeglichen. Die Vertiefungen 35 können auch in Form von Kugel- oder Zylinderabschnitten ausgebildet sein. Auch eine abgerundete Trapezform oder eine wellenförmige Struktur ist möglich. On the underside 34 of the rings there are preferably additionally at least three recesses 35 in which the spacers 32 of the opposite upper side of the next ring segment can be positioned. The number and the distance of the recesses 35 depend on the number and distance of the spacers 32 on the ring top 31. The introduced recesses 35 serve to prevent rotation of the rings and support the self-centering of the rings in the stack. The depressions are preferably surfaces displaced parallel to the radius R (see FIG. Thus, a point contact with the spacers is ensured here and on the three-point support possible shape and dimensional deviations are compensated. The recesses 35 may also be formed in the form of spherical or cylindrical sections. Also a rounded trapezoidal shape or a wavy structure is possible.
Die Querschnittsform der ringförmigen Scheiben ist bevorzugt nicht recht- eckig und nicht trapezförmig aufgrund der vorzugsweise konkav gewölbten Flächen. Sie hat außerdem vorzugsweise keine scharfen Kanten und Querschnittsübergänge. The cross-sectional shape of the annular discs is preferably not rectangular and not trapezoidal due to the preferably concavely curved surfaces. It also preferably has no sharp edges and cross-sectional transitions.
In einer bevorzugten Ausführungsform sind die Außenkonturen 36 der ring- förmigen Scheiben 30 mit einer Fase ausgeführt, wie in Figur Ic veranschaulicht. Gemäß einer anderen bevorzugten Ausführungsform können die Kanten auch verrundet sein. Dies stellt einen noch besseren Schutz der Kanten vor der für sprödharte Werkstoffe kritischen Kantenbelastung dar. Die Umfangsflächen (Mantelflächen) der ringförmigen Scheiben sind bevorzugt zylindrisch (eben). Es ist aber auch möglich, die Umfangsflächen nach außen beispielsweise konvex auszuformen, um eine bessere Anströmung zu erzielen. In a preferred embodiment, the outer contours 36 of the annular discs 30 are formed with a chamfer, as illustrated in Figure Ic. According to another preferred embodiment, the edges may also be rounded. This represents an even better protection of the edges from the edge load which is critical for brittle-hard materials. The peripheral surfaces (lateral surfaces) of the annular disks are preferably cylindrical (flat). But it is also possible to form the peripheral surfaces outwardly convex, for example, in order to achieve a better flow.
Die radiale Wandstärke der ringförmigen Scheiben beträgt vorzugsweise min- destens 2,5 mm, weiter vorzugsweise mindestens 5 mm. Die Höhe der Scheiben beträgt vorzugsweise 1 bis 20 mm, weiter vorzugsweise 1 bis 10 mm. Der Außendurchmesser der ringförmigen Scheiben ist kleiner als der innere Durchmesser des Bohrlochs beziehungsweise als der Innendurchmesser des Bohrlochfutterrohres. Er beträgt üblicherweise 50-200 mm. Die Spaltweite der Trennspalte 37 wird abhängig von der zu trennenden Sandfraktion gewählt. Am Außendurchmesser ist die Spaltweite am kleinsten, um ein Zusetzen des Ringspaltes zu vermeiden. Die Spaltweite wird eingestellt über die Höhe der Abstandshalter auf der Ringoberseite, die Tiefe der Vertiefungen auf der Ringunterseite und die Form der Ringunterseite, z.B. über den Radius der bevorzugt konkav gewölbten Fläche. Die gewählte Spaltgeometrie gewährleistet, dass die Strömungsvorgänge im Spalt laminar sind, und dass der Druckverlust zwischen Außen- und Innendurchmesser gering ist. The radial wall thickness of the annular disks is preferably at least 2.5 mm, more preferably at least 5 mm. The height of the discs is preferably 1 to 20 mm, more preferably 1 to 10 mm. The outer diameter of the annular discs is smaller than the inner diameter of the borehole or as the inner diameter of the Bohrlochfutterrohres. It is usually 50-200 mm. The gap width of the separating gaps 37 is selected depending on the sand fraction to be separated. At the outer diameter, the gap width is the smallest, in order to avoid clogging of the annular gap. The gap width is set by the height of the spacers on the top of the ring, the depth of the recesses on the underside of the ring and the shape of the underside of the ring, for example over the radius of the preferably concavely curved surface. The selected gap geometry ensures that the flow processes in the gap are laminar, and that the pressure loss between outer and inner diameter is low.
Die Trennvorrichtung ist rückspülbar. Durch flüssige Behandlungsmedien kann der Filterkuchen gelockert und damit die Förderleistung wieder gesteigert werden. The separator is backwashable. Through liquid treatment media, the filter cake can be loosened and thus the delivery rate can be increased again.
Der sprödharte Werkstoff der ringförmigen Scheiben ist vorzugsweise gewählt aus oxidischen und nichtoxidischen keramischen Werkstoffen, Mischkerami- ken aus diesen Werkstoffen, keramischen Werkstoffen mit Zusatz von Sekundärphasen, Mischwerkstoffen mit Anteilen von keramischen Hartstoffen und mit metallischer Bindephase, ausscheidungsgehärteten Gusswerkstoffen, pulvermetallurgischen Werkstoffen mit in- situ gebildeten Hartstoffphasen und lang- und / oder kurzfaserverstärkten Keramikwerkstoffen. The brittle-hard material of the annular discs is preferably selected from oxidic and non-oxidic ceramic materials, Mischkerami- ken from these materials, ceramic materials with the addition of secondary phases, mixed materials with shares of ceramic hard materials and metallic binder phase, precipitation hardened cast materials, powder metallurgy materials with in situ formed hard material phases and long and / or short fiber reinforced ceramic materials.
Beispiele für oxidische keramische Werkstoffe sind AI2O3, Zrθ2, Mullit, Spinell und Mischoxide. Beispiele für nichtoxidische keramische Werkstoffe sind SiC, B4C, TiB2 und Si3N4. Keramische Hartstoffe sind beispielsweise Carbide und Boride. Beispiele für Mischwerkstoffe mit metallischer Bindephase sind WC-Co, TiC-Fe und TiB2-FeNiCr. Beispiele für in-situ gebildet Hartstoffphasen sind Chrom-Carbide. Ein Beispiel für faserverstärkte Keramikwerkstoffe ist C- SiC. Examples of oxidic ceramic materials are Al 2 O 3 , ZrO 2 , mullite, spinel and mixed oxides. Examples of non-oxidic ceramic materials are SiC, B 4 C, TiB 2 and Si 3 N 4 . Ceramic hard materials are, for example, carbides and borides. Examples of mixed materials with metallic binder phase are WC-Co, TiC-Fe and TiB 2 -FeNiCr. Examples of in-situ formed hard material phases are chromium carbides. An example of fiber-reinforced ceramic materials is C-SiC.
Die oben genannten Werkstoffe zeichnen sich dadurch aus, dass sie härter sind als die typischerweise vorkommenden Gesteinspartikel, das heißt die HV- oder HRC-Härtewerte dieser Werkstoffe liegen über den entsprechenden Werten des umgebenden Gesteins. Alle diese Werkstoffe zeichnen sich gleichzeitig dadurch aus, dass sie eine größere Sprödigkeit als typische ungehärtete Stahllegierungen haben. In diesem Sinne werden diese Werkstoffe hierin als „sprödhart" bezeichnet. Vorzugsweise werden Werkstoffe mit einer Dichte von mindestens 90%, weiter vorzugsweise mindestens 95%, der theoretischen Dichte eingesetzt, um möglichst hohe Härtewerte und hohe Abrasions- und Korrosionswiderstände zu erzielen. Vorzugsweise werden als sprödharter Werkstoff gesintertes Silicium- carbid (SSiC) oder Borcarbid eingesetzt. Diese Werkstoffe sind nicht nur abra- sionsbeständig, sondern auch korrosionsbeständig gegenüber den üblicherweise für das Freispülen der Trennvorrichtung und die Stimulation des Bohrlochs verwendeten Behandlungsflüssigkeiten wie Säuren (z.B. HCl), Laugen (z.B. NaOH) oder auch Wasserdampf. Besonders geeignet sind beispielsweise SSiC- Werkstoffe mit feinkörnigem Gefüge (mittlere Korngröße < 5 μm), wie sie beispielsweise unter dem Namen EKasic® F und EKasic® F plus von ESK Ceramics GmbH & Co. KG vertreiben werden. Außerdem können aber auch grobkörnige SSiC-Werkstoffe eingesetzt werden, beispielsweise mit bimodalem Gefüge, wobei vorzugsweise 50 bis 90 Vol.-% der Korngrößenverteilung aus prismatischen, plättchenförmigen SiC- Kristalliten einer Länge von 100 bis 1500 μm besteht und 10 bis 50 Vol.-% aus prismatischen, plättchenförmigen SiC-Kristalliten einer Länge von 5 bis weniger als 100 μm (EKasic® C von ESK Ceramics GmbH & Co. KG). Die Ankopplungselemente 18, 19 (siehe Figuren 2a-2c, 3, 4a und 4b) bilden die stirnseitigen, seitlichen Abschlüsse des Ringstapels über die die Trennvorrichtung an der Klemmvorrichtung (den Klemmsätzen /Spannsätzen) ankoppelt. Sie sind so gestaltet, dass die Spannkräfte gleichmäßig auf den Ringstapel übertragen werden. The above-mentioned materials are characterized by being harder than the typically occurring rock particles, ie the HV or HRC hardness values of these materials are above the corresponding values of the surrounding rock. All these materials are characterized simultaneously in that they have a greater brittleness than typical uncured steel alloys. In this sense, these materials are referred to herein as "brittle-hard." Preferably, materials having a density of at least 90%, more preferably at least 95%, of theoretical density are employed to achieve the highest possible hardness values and high abrasion and corrosion resistances silicon carbide (SSiC) or boron carbide sintered as a brittle-hard material, these materials are not only resistant to abrasion but also resistant to corrosion by the treatment fluids commonly used to flush the separator and stimulate the well such as acids (eg HCl), lyes ( eg NaOH) or steam are particularly suitable, for example, SSiC materials with fine-grained microstructure (mean particle size <5 microns), as they are selling KG, for example, under the name EKasic ® F and EKasic ® F plus from ESK Ceramics GmbH & Co... In addition, but also coarse-grained SSiC-Who Be used, for example, with bimodal microstructure, preferably 50 to 90 vol .-% of the particle size distribution of prismatic, platelet-shaped SiC crystallites having a length of 100 to 1500 microns and 10 to 50 vol .-% of prismatic, platelet-shaped SiC crystallites a length of 5 to less than 100 microns (EKasic ® C from ESK Ceramics GmbH & Co. KG). The coupling elements 18, 19 (see FIGS. 2a-2c, 3, 4a and 4b) form the front-side, lateral terminations of the ring stack via which the separating device is coupled to the clamping device (the clamping sets / clamping sets). They are designed so that the clamping forces are transmitted evenly to the ring stack.
Die Ankopplungselemente sind vorzugsweise aus demselben Werkstoff wie die Ringe hergestellt. Alternativ können aber auch korrosionsbeständige Stähle und Kunststoffe wie beispielsweise Fluorelastomere oder PEEK (Polyetherke- ton) eingesetzt werden. The coupling elements are preferably made of the same material as the rings. Alternatively, however, it is also possible to use corrosion-resistant steels and plastics such as, for example, fluoroelastomers or PEEK (polyetherketone).
Die obere Fläche des oberen Ankopplungselementes A ( 18 in Figur 4a), die zur Klemmvorrichtung gerichtet ist, hat vorzugsweise eine ebene/flache Oberflä- che. Die zur Trennvorrichtung gerichtete Fläche, also die Unterseite des An- kopplungssegmentes A, ist vorzugsweise mit Radius ausgeführt, d.h. wie die Ringelemente vorzugsweise konkav. Die innere Umfangsfläche hat vorzugsweise drei oder mehr Aussparungen /Nuten (39 in Figur 2a) zur Aufnahme der Führungsstäbe 9. Die äußere Umfangsfläche hat vorzugsweise eine umlaufende Nut (38 in Figur 2b und 2c) zur Aufnahme eines Dichtrings (O-Ring) ( 14 in Figuren 3 und 4a). The upper surface of the upper coupling element A (18 in Figure 4a), which faces the clamping device, preferably has a flat / flat surface. che. The surface directed toward the separating device, that is to say the underside of the coupling segment A, is preferably designed with a radius, ie, like the ring elements, preferably concave. The inner peripheral surface preferably has three or more recesses / grooves (39 in Figure 2a) for receiving the guide rods 9. The outer peripheral surface preferably has a circumferential groove (38 in Figure 2b and 2c) for receiving a sealing ring (O-ring) (14 in Figures 3 and 4a).
Die untere Fläche des unteren Ankopplungselementes B ( 19 in Figur 4b), die zur Klemmvorrichtung gerichtet ist, hat vorzugsweise eine ebene/flache Oberfläche. Die zur Trennvorrichtung gerichtete Fläche, also die Oberseite des An- kopplungssegmentes B, hat vorzugsweise mindestens drei über den Kreisumfang der Scheiben gleichmäßig verteilte Abstandshalter. Die innere Umfangsfläche hat vorzugsweise drei oder mehr Aussparungen /Nuten (39 in Figur 2a) zur Aufnahme der Führungsstäbe 9. Die äußere Umfangsfläche hat vorzugsweise eine umlaufende Nut (38 in Figuren 2b und 2c) zur Aufnahme eines Dichtrings (O-Ring) ( 14 in Figuren 3 und 4b). The lower surface of the lower coupling element B (19 in Figure 4b), which is directed to the clamping device, preferably has a flat / flat surface. The surface facing the separating device, that is to say the upper side of the coupling segment B, preferably has at least three spacers distributed uniformly over the circumference of the disks. The inner circumferential surface preferably has three or more recesses / grooves (39 in Figure 2a) for receiving the guide rods 9. The outer peripheral surface preferably has a circumferential groove (38 in Figures 2b and 2c) for receiving a sealing ring (O-ring) (14 in FIGS. 3 and 4b).
Die Toleranzen der beiden Ankopplungssegmente sind enger gewählt als die der Ringscheiben, um die sprödharten Komponenten optimal an die metallischen Komponenten des Klemmsatzes anzukoppeln; im Gegensatz zu den unbearbeiteten (as-sintered) Ringscheiben müssen die Ankopplungssegmente mechanisch bearbeitet werden. Die Figuren 2a-2c zeigen einen erfindungsgemäßen Ringstapel 20 mit An- kopplungselementen 18, 19. In der Draufsicht gemäß Figur 2a sind die Aussparungen/Nuten 39 in der inneren Umfangsfläche zu erkennen, die zur Aufnahme der Führungsstäbe 9 (siehe Figuren 3, 4a und 4b) dienen. Figur 2b zeigt eine Querschnittsansicht entlang der Linie B-B in Figur 2a, worin die umlaufenden Nuten 38, welche zur Aufnahme eines Dichtrings dienen, erkennbar sind. Ebenfalls erkennbar sind die Trennspalten 37 zwischen den einzelnen Ringscheiben. Figur 2c zeigt eine entsprechende Querschnittsansicht entlang der Linie A-A in Figur 2a. Der Außendurchmesser der Ankopplungssegmente 18, 19 ist gleich oder größer als derjenige der Ringscheiben. Aus Handhabungsgründen ist es jedoch bevorzugt, dass der Außendurchmesser größer ist (s. Figuren 2b und 2c). In einer alternativen Ausführungsform ist die obere Fläche des oberen An- kopplungselementes A und /oder die untere Fläche des unteren Ankopp- lungselementes B nicht eben/flach sondern als Federsitz ausgebildet. Auf diese Weise werden die Druckfedern direkt aufgenommen und zusätzlich gegen das Fördermedium geschützt. The tolerances of the two coupling segments are selected to be narrower than those of the annular discs in order to optimally couple the brittle-hard components to the metallic components of the clamping set; In contrast to the as-sintered ring disks, the coupling segments must be machined. 2a-2c show a ring stack 20 according to the invention with coupling elements 18, 19. In the plan view according to FIG. 2a, the recesses / grooves 39 in the inner peripheral surface can be seen, which are used to receive the guide rods 9 (see FIGS. 3, 4a and 4b) 4b) serve. Figure 2b shows a cross-sectional view along the line BB in Figure 2a, wherein the circumferential grooves 38, which serve to receive a sealing ring, are recognizable. Also visible are the separating gaps 37 between the individual annular disks. FIG. 2c shows a corresponding cross-sectional view along the line AA in FIG. 2a. The outer diameter of the coupling segments 18, 19 is equal to or greater than that of the annular discs. For handling reasons, however, it is preferred that the outer diameter is larger (see Figures 2b and 2c). In an alternative embodiment, the upper surface of the upper coupling element A and / or the lower surface of the lower coupling element B is not flat / flat but designed as a spring seat. In this way, the springs are directly absorbed and additionally protected against the fluid.
Der vorzugsweise vorgesehene Distanzhalter dient vor allem als Montage- und Führungshilfe sowie als Schutz der Trennvorrichtung beim Einlassen ins Bohrloch, ist aber nicht zwingend erforderlich. Er trägt zur Funktion der Trennvorrichtung selbst nicht bei. Dies ist besonders deshalb wichtig, da die eingesetzten Materialien eine geringere Abrasions- und Korrosionsbeständigkeit aufweisen und beim Betrieb der Fördereinheit schneller verschleißen. Da der Distanzhalter jedoch keine tragende /lagernde Aufgabe besitzt und der Ringstapel erfindungsgemäß so gestaltet ist, dass er selbstzentrierend ist, bleibt die Funktion beziehungsweise die Stabilität der Trennvorrichtung durch den Verschleiß des Distanzhalters unbeeinflusst. The preferably provided spacer serves primarily as an assembly and guide aid as well as protection of the separator when entering the borehole, but is not mandatory. He does not contribute to the function of the separator itself. This is particularly important because the materials used have a lower abrasion and corrosion resistance and wear faster during operation of the delivery unit. However, since the spacer has no bearing / storage task and the ring stack is designed according to the invention so that it is self-centering, the function or the stability of the separator remains unaffected by the wear of the spacer.
Der Distanzhalter besteht bevorzugt aus drei Komponenten: zwei Führungsringen (7, 8 in Figuren 3, 3a, 4a und 4b), den Abstandsleisten (12 in Figur 3a) und den Führungsstäben (9 in Figur 3, 3a, 4a und 4b). The spacer preferably consists of three components: two guide rings (7, 8 in Figures 3, 3a, 4a and 4b), the spacer strips (12 in Figure 3a) and the guide rods (9 in Figure 3, 3a, 4a and 4b).
Die beiden Führungsringe 7, 8 liegen auf dem inneren Rohr (Förderrohr 22) auf. An ihren äußeren Umfangsflächen haben sie drei oder mehr Aussparungen/Nuten eingearbeitet, die zur Aufnahme der Führungsstäbe 9 dienen. Längs zur Rohrachse des inneren Rohrs gerichtet nehmen diese Führungsstä- be 9 die Ringelemente an den inneren Aussparungen der Ringe auf. Führungsringe 7, 8 und Führungsstäbe 9 stellen zusammen den radialen Abstand zwischen den Ringelementen und dem inneren Rohr 22 dar. Die Abstandsleisten 12 sind ebenfalls an den äußeren Umfangsflächen der Führungsringe befestigt, vorzugsweise über Punktschweißen, und stellen den längsseitigen Ab- stand zwischen den Klemmhülsen 1 , 2, das heißt die Länge des Ringstapels 20 ein. Bei der Montage werden die ringförmigen Scheiben 30 zusammen mit den beiden Ankopplungselementen auf dem Distanzhalter aufgebaut. Mit Hilfe der biegeelastischen Führungsstäbe 9 erfolgt die Ausrichtung und Führung der Ringelemente bei der Montage. Die auf der Oberseite der Ringe angeordneten Abstandshalter 32 der ringförmigen Scheiben 30 können so beim Aufeinanderstapeln schnell und einfach jeweils übereinander ausgerichtet werden, so dass die axiale Lasteinleitung in der Achse der drei Abstandshalter 32 erfolgt. Dadurch werden die für sprödharte Werkstoffe kritischen Kantenbelastungen vermieden, und es wird auch bei Ringscheiben mit Formabweichungen eine Drei-Punkt-Auflage an den gewünschten Auflagepunkten erreicht. The two guide rings 7, 8 are on the inner tube (delivery pipe 22). At their outer peripheral surfaces, they have incorporated three or more recesses / grooves, which serve to receive the guide rods 9. Directed along the tube axis of the inner tube, these guide rods 9 receive the ring elements on the inner recesses of the rings. Guide rings 7, 8 and guide rods 9 together represent the radial distance between the ring elements and the inner tube 22. The spacer strips 12 are also fastened to the outer peripheral surfaces of the guide rings, preferably via spot welding, and provide the longitudinal spacing between the clamping sleeves 1 , 2, that is, the length of the ring stack 20 a. During assembly, the annular discs 30 are built together with the two coupling elements on the spacer. With the help of the flexurally elastic guide rods 9, the alignment and guiding of the ring elements takes place during assembly. The arranged on the top of the rings spacers 32 of the annular discs 30 can thus be quickly and easily aligned each other when stacking each other, so that the axial load introduction takes place in the axis of the three spacers 32. This avoids the edge loads which are critical for brittle-hard materials, and a three-point support at the desired support points is also achieved in the case of annular disks with deviations in shape.
Die Führungsringe 7, 8 sowie die Abstandsleisten 12 sind vorzugsweise aus Stahl, es ist aber auch möglich, Führungsringe aus Kunststoff zu verwenden. Die Führungsstäbe sind vorzugsweise nicht aus Stahl, sondern aus Kunststoff, vorzugsweise aus PEEK gefertigt, um eine elastische, gleitende Aufnahme der sprödharten Ringscheiben zu ermöglichen. Sollten die Kunststoffstäbe verschleißen, so bleibt die Trennvorrichtung aufgrund der„Selbstzentrierung" in sich stabil und die Funktion ist weiterhin gewährleistet. The guide rings 7, 8 and the spacer strips 12 are preferably made of steel, but it is also possible to use plastic guide rings. The guide rods are preferably not made of steel, but of plastic, preferably made of PEEK, to allow an elastic, sliding recording of the brittle-hard annular discs. If the plastic rods wear, so the separator remains stable due to the "self-centering" and the function is still guaranteed.
Vorzugsweise erfolgt die Befestigung des Ringstapels auf dem inneren Rohr (Förderrohr) mittels einer Klemmvorrichtung (Klemmsatz/ Spannsatz). Preferably, the attachment of the ring stack on the inner tube (conveyor tube) by means of a clamping device (clamping set / clamping set).
Die Klemmvorrichtung besteht vorzugsweise aus Klemmhülsen, Druckfedern, Druckfedersitzen und Klemm-Muttern. The clamping device preferably consists of clamping sleeves, compression springs, compression spring seats and clamping nuts.
Aufgabe des Klemmsatzes ( 1 bis 6 in Figur 3, 4a und 4b) ist es, die axial aufeinander gestapelten Ringelemente in sich zu verspannen, den zwischen den einzelnen Scheiben gebildeten Trennspalt mit einer Höhe vorzugsweise von 0,05-1 mm, weiter vorzugsweise 0, 1 -0,5 mm zu fixieren und die Trennvorrichtung auf dem inneren Rohr (Förderrohr) zu befestigen. Task of the clamping set (1 to 6 in Figure 3, 4a and 4b) is to brace the axially stacked ring elements in itself, the separating gap formed between the individual discs with a height preferably from 0.05 to 1 mm, more preferably 0 , 1 -0.5 mm to fix and to secure the separator on the inner tube (delivery tube).
Mit Hilfe des Klemmsatzes und der Druckfedern 13 wird der Ringstapel flexibel verspannt, d.h. Verformungen (Biegungen) können aufgenommen werden, und variabel auf dem inneren Rohr befestigt. Es lassen sich Trennvorrichtungen beliebiger Länge zusammenstellen und die Trennvorrichtung kann auf Förderrohren unterschiedlicher Bauart montiert werden. Die Druckfedern ( 13 in Figur 3, 4a und 4b) sorgen für eine elastische Kompensation und erlauben so eine Biegeverformung der Trennvorrichtung, die insbesondere beim Einbringen ins Bohrloch und gegen Bruch bei Überlast schützt. With the help of the clamping set and the compression springs 13 of the ring stack is flexibly braced, ie deformations (bends) can be accommodated, and fastened variable on the inner tube. It can be combined separators arbitrary length and the separator can be mounted on conveyor tubes of different types. The compression springs (13 in Figures 3, 4a and 4b) provide an elastic compensation and thus allow a bending deformation of the separator, which protects in particular during insertion into the wellbore and against breakage in case of overload.
Die Druckfedern 13 sind vorzugsweise aus korrosionsbeständigem Stahl, beschichtetem Stahl oder korrosionsbeständigem Elastomer wie beispielsweise Gummi oder Viton gewählt. Der Klemmsatz zur Befestigung der Trennvorrichtung am inneren Rohr wird vorzugsweise als dreiteiliger kraftschlüssiger, lösbarer Pressverband ausgeführt. Er besteht aus den Komponenten Klemmhülse ( 1 , 2 in Figuren 3, 4a und 4b), Druckfedersitz (3, 4 in Figuren 3, 4a und 4b) und Klemm-Mutter (5, 6 in Figuren 3, 4a und 4b). The compression springs 13 are preferably selected from corrosion-resistant steel, coated steel or corrosion-resistant elastomer such as rubber or Viton. The clamping set for fastening the separating device on the inner tube is preferably designed as a three-part non-positive, releasable interference fit. It consists of the components clamping sleeve (1, 2 in Figures 3, 4a and 4b), compression spring seat (3, 4 in Figures 3, 4a and 4b) and clamping nut (5, 6 in Figures 3, 4a and 4b).
Die Klemmsätze sind vorzugsweise aus Stahl, weiter vorzugsweise aus korrosionsbeständigem Stahl, gefertigt. The clamping sets are preferably made of steel, more preferably made of corrosion-resistant steel.
Die Klemmhülsen 1 , 2 sind innen zylindrisch; außen lassen sich zwei Berei- che unterscheiden: ein Gewinde ( Ia, 2a in Figuren 4a und 4b) und eine äußere, kegelige Keilfläche ( Ib, 2b in Figuren 4a und 4b). Über das Gewinde greift die Klemm-Mutter an die Klemmhülse an. Die kegelige Keilfläche ist vorzugsweise in Längsrichtung geschlitzt, um größere Passungsspiele und somit relativ große Toleranzen zuzulassen. Die Klemmhülsen können vorzugsweise au- ßen mit Kupfer beschichtet werden zum Schutz vor Kontaktkorrosion. The clamping sleeves 1, 2 are cylindrical inside; On the outside, two areas can be distinguished: a thread (1a, 2a in FIGS. 4a and 4b) and an outer, tapered wedge surface (1b, 2b in FIGS. 4a and 4b). The clamping nut engages the clamping sleeve via the thread. The tapered wedge surface is preferably slotted longitudinally to allow for larger clearance play and thus relatively large tolerances. The clamping sleeves can preferably be coated externally with copper for protection against contact corrosion.
Die Druckfedersitze (3, 4 in Figuren 3, 4a und 4b) haben vorzugsweise eine innere konische Spannfläche, Innenführungen zur Aufnahme der Druckfedern und eine äußere Führung zur Aufnahme des Außenkäfigs ( 1 1 in Figuren 3 und 3a; 10 dient zur Aufnahme des Außenkäfigs). The compression spring seats (3, 4 in Figures 3, 4a and 4b) preferably have an inner conical clamping surface, inner guides for receiving the compression springs and an outer guide for receiving the outer cage (1 1 in Figures 3 and 3a, 10 serves to receive the outer cage) ,
Das Spannen erfolgt über die Klemm- Muttern 5, 6. Durch die axiale Spannkraft werden Klemmhülse 1 , 2 und Druckfedersitz 5, 6 ineinander verschoben, wobei sie sich elastisch verformen und in den Fugen zwischen dem Spannelement und dem inneren Rohr hohe Anpresskräfte erzeugen und damit den Kraftschluss bewirken. Die Vorrichtung wird mittels O-Ringen 15, 16 zwischen innerem Rohr und Klemm-Mutter, mittels O-Ringen 17 zwischen Klemm-Mutter und Druckfedersitz sowie mittels O-Ringen 14 zwischen Druckfedersitz und Ankopplungsseg- ment abgedichtet. The clamping takes place via the clamping nuts 5, 6. By the axial clamping force clamping sleeve 1, 2 and compression spring seat 5, 6 are shifted into each other, wherein they deform elastically and generate high contact forces in the joints between the clamping element and the inner tube and thus cause the adhesion. The device is sealed by means of O-rings 15, 16 between inner tube and clamping nut, by means of O-rings 17 between clamping nut and compression spring seat and by means of O-rings 14 between compression spring seat and coupling segment.
Alternative Befestigungsarten zu Gewinde und Klemm-Mutter stellen die Kombinationen aus Nut und Sicherungsring sowie Senkbohrung und Madenschraube dar. Auch eine Befestigung mittels Schweißen ist möglich. Außerdem ist es denkbar, alternativ zur beidseitigen biegelastischen Aufnahme eine einseitige zu wählen. Dies ist beispielsweise möglich, wenn die Verspannung gegen einen festen Anschlag auf dem Förderrohr erfolgt. Dieser Anschlag kann alternativ als ebene Fläche oder als Federsitz ausgebildet sein. Alternativ zur Befestigung auf dem Förderrohr kann auch eine Fixierung auf den Gewindemuffen, d.h. dem Übergang zwischen verschiedenen Förderequip- menteinheiten, gewählt werden. Alternative types of attachment to thread and clamping nut represent the combinations of groove and circlip and counterbore and grub screw. A fastening by welding is possible. In addition, it is conceivable to choose a one-sided alternative to the two-sided biegelastischen recording. This is possible, for example, if the tension is against a fixed stop on the conveyor pipe. This stop may alternatively be formed as a flat surface or as a spring seat. As an alternative to mounting on the conveyor tube, a fixation on the threaded sleeve, i. the transition between different conveyor component units.
Die erfindungsgemäße Trennvorrichtung ist vorzugsweise gegen Beschädigun- gen beim Einbau sowie beim Anfahren der Förderung durch einen frei durchströmbaren Außenkäfig ( 1 1 in Figuren 3 und 3a) geschützt. The separating device according to the invention is preferably protected against damage during installation as well as when starting the delivery by means of an outer cage (1 1 in FIGS. 3 and 3 a) which can be flowed through freely.
Dieser kann beispielsweise als grobmaschiges Sieb und vorzugsweise als Lochblech ausgeführt sein. Als Material wird vorzugsweise Stahl verwendet. This can for example be designed as a coarse mesh screen and preferably as a perforated plate. The material used is preferably steel.
Alternativ ist aber auch der Einsatz eines beim Einbau schützenden, nicht durchströmbaren Polymermantels denkbar, der dann beim Anfahren der Förderung durch die Abrasion zersetzt wird und somit die Trennvorrichtung freigibt. Alternatively, however, it is also conceivable to use a polymer sheath which protects during installation and can not be flowed through, which is then decomposed by the abrasion when starting the delivery and thus releases the separating device.
Die außen liegenden Flächen der Klemmsätze und die Abschnitte des Förderrohres, die nicht durch die sprödharten Ringe geschützt sind sowie die Verbindungsstellen/Muffenbereiche, an denen das Förderrohr mit anderen Komponenten zum Bohrstrang komplettiert wird, werden vorzugsweise durch eine oder mehrere Schutzummantelungen gegen Verschleiß geschützt. Grundsätzlich wird der Flüssigkeitsstrom zwar von der Förderstelle direkt durch den Ringstapel in das Förderrohr geführt, ohne Strömungsumlenkung. Es ist jedoch nicht vermeidbar, dass auch die außerhalb der Trennvorrichtung liegenden Bereiche angeströmt werden als Folge von Streuflüssen, als Folge einer ungenauen Positionierung der Trennvorrichtung zur Förderstelle oder wenn die Förderstelle weiter ausgedehnt ist als die Trennvorrichtung, so dass es zum Verschleiß der außerhalb der Trennvorrichtung liegenden Bereiche des Förderrohrs kommt. Der Verschleiß wird hervorgerufen durch Abrasion / Erosion durch Sand- und Gesteinspartikel sowie durch Korrosion. Die Korrosion tritt als Folge der verwendeten Behandlungsflüssigkeiten auf, wie beispielsweise HCl, H2SO4, HF und CaCl2/CaBr2, vor allem in Verbindung mit der auftretenden Partikelerosion, die die Ausbildung von passivierenden Oberflächenschichten verhindert. Vorzugsweise erfolgt der Verschleißschutz der oben genannten außerhalb der Trennvorrichtung liegenden metallischen Bereiche mittels eines Kunststoffüberzuges, beispielsweise mittels eines Schrumpfschlauchs. Es ist jedoch auch möglich, den Verschleißschutz durch (Pulver-)beschichtungen oder Lackierungen zu erreichen, durch Abdeckmatten oder -folien, die beispielsweise mittels mechanischer Klemmen fixiert werden, oder auch durch Formteile. Die Formteile können beispielsweise in Form von zwei auf Maß bearbeitete HaIb- schalen, beispielsweise aus Polyolefin, gestaltet sein. Die Halbschalen können über Nut und Feder verbunden werden oder auch durch Verschraubung. Um Beschädigungen der Schutzummantelung beim Einbau zu verhindern, können geeignete Abstandshalter angebracht werden, die z.B. als Gleitnoppen auf dem Lochblech realisiert werden können. The outer surfaces of the clamping sets and the portions of the conveying tube, which are not protected by the brittle-hard rings and the joints / sleeve areas where the conveyor pipe is completed with other components to the drill string are preferably protected by one or more protective sheaths against wear. In principle, the liquid flow is indeed conducted from the delivery point directly through the stack of rings in the delivery pipe, without flow deflection. However, it is unavoidable that the lying outside of the separator areas are flown as a result of stray flux, as a result of inaccurate positioning of the separator to the conveyor or when the conveyor is further extended than the separator, so that it is the wear of the outside of the separator lying areas of the delivery tube comes. The wear is caused by abrasion / erosion by sand and rock particles as well as by corrosion. The corrosion occurs as a result of the treatment liquids used, such as HCl, H 2 SO 4 , HF and CaCl 2 / CaBr 2 , especially in conjunction with the occurring particle erosion, which prevents the formation of passivating surface layers. Preferably, the wear protection of the abovementioned metallic areas outside the separating device takes place by means of a plastic coating, for example by means of a heat-shrinkable tube. However, it is also possible to achieve wear protection by (powder) coatings or coatings, by covering mats or foils, which are fixed for example by means of mechanical clamps, or by molded parts. The molded parts can be designed, for example, in the form of two shells, for example made of polyolefin, which have been machined to size. The half shells can be connected via tongue and groove or by screwing. In order to prevent damage to the protective coating during installation, suitable spacers can be attached, which can be realized as sliding nubs on the perforated plate, for example.
Die Materialien für den Kunststoffüberzug werden vorzugsweise aus der Stoff- gruppe der Polyolefine, bevorzugt Polyethylen, Polypropylen und Poly(iso)bu- tylan, gewählt, da diese einerseits einen ausreichenden Widerstand gegen Abrasion / Erosion und Korrosion besitzen und sich andererseits als Schrumpfschlauch applizieren lassen. Andere mögliche Materialien für die Kunststoffüberzüge oder Schrumpfschläuche sind PVDF, Viton, PVC und PTFE. The materials for the plastic coating are preferably selected from the material group of polyolefins, preferably polyethylene, polypropylene and poly (iso) butylane, since on the one hand they have sufficient resistance to abrasion / erosion and corrosion and, on the other hand, can be applied as heat shrink tubing , Other possible materials for the plastic coatings or shrink tubing are PVDF, Viton, PVC and PTFE.
Die Verwendung eines Schrumpfschlauchs hat gegenüber anderen Lösungen folgende Vorteile: - Es lassen sich dichte, nicht permeable Überzüge realisieren, eine Funktionstrennung durch Beschichtung mit verschiedenen Schrumpfschlauchmaterialien ist möglich. So könnte beispielsweise außen ein Material mit hohem Erosionswiderstand und innen ein Material mit hohem Korrosionswiderstand aufgebracht werden. The use of a shrink tube has the following advantages over other solutions: - It can be dense, non-permeable coatings realize a function separation by coating with different shrink tubing is possible. For example, on the outside, a material with high erosion resistance and, on the inside, a material with high corrosion resistance could be applied.
Die Verbindung mit den zu schützenden Bereichen ist formschlüssig. Förder- oder Reinigungsmedien können nicht unter den Überzug "kriechen". Eine zusätzliche Abdichtung des Überzuges ist nicht erforderlich. Beliebige Längen können durch überlappendes Aneinanderfügen von Schlauchsegmenten geschützt werden.  The connection with the areas to be protected is positive. Conveyor or cleaning media can not "crawl" under the cover. An additional sealing of the coating is not required. Any lengths can be protected by overlapping joining of tube segments.
Durchmesser- und Querschnittsübergänge, wie hier an den Klemmsätzen, können überwunden werden aufgrund der Schrumpfraten bis zu 3: 1 (Durchmesseränderung).  Diameter and cross-sectional transitions, as here on the clamping sets, can be overcome due to the shrinkage rates up to 3: 1 (change in diameter).
Die Lösung ist kostengünstig, da kommerziell verfügbare Schrumpf- schlauche in beliebigen Dimensionen eingesetzt und einfach appliziert werden können.  The solution is cost-effective, as commercially available shrink tubing can be used in any dimension and easily applied.
Eine Ausführung des Schrumpfschlauchs 21 ist in Figur 5 dargestellt. Beispiele An embodiment of the shrink tube 21 is shown in FIG. Examples
Die nachfolgenden Beispiele dienen zur weiteren Erläuterung der Erfindung. The following examples serve to further illustrate the invention.
Beispiel 1: Widerstand gegen Erosion Example 1: Resistance to erosion
Zur Ermittlung des erosiven Verschleißes wurden Platten (ca. 75 x 75 x 15 mm) aus grobkörniger, gesinterter Siliziumcarbid-Keramik (SSiC) vom Typ EKasic ® C (ESK Ceramics GmbH & Co. KG) und aus feinkörniger, gesinterter Siliziumcarbid-Keramik (SSiC) vom Typ EKasic ® F (ESK Ceramics GmbH & Co. KG) einem Sandstrahlversuch unterzogen. Als Referenz diente eine Stahlprobe. 75 x 75 x 15 mm) of coarse grained, sintered silicon carbide ceramic (SSiC) of the type EKasic® C (ESK Ceramics GmbH & Co. KG) and of fine-grained, sintered silicon carbide ceramic (EPC) were used to determine the erosive wear. SSiC) of the type EKasic® F (ESK Ceramics GmbH & Co. KG) subjected to a sandblast test. The reference was a steel sample.
Die Versuche wurden mittels einer Sandstrahlanlage durchgeführt. Als Strahlmedien dienten vier verschiedene Stützmittel, die typischerweise in Offshore-Bohrungen verwandt werden: (1) 100 Mesh Frac Sand, (2) 16/20 Mesh Frac Sand, (3) 20/40 Mesh Frac Sand, (4) 20/40 Mesh Frac Sand High Strength. Der Strahldruck betrug 2 bar und die Strahldauer 2 Stunden, wobei der Strahl quasi punktförmig in einem Winkel von 90° zur Oberfläche aufgebracht wurde. Tiefe und die Weite des Strahleindrucks charakterisieren den erosiven Verschleiß (s. Tabelle 1). Die Versuche zeigen, dass die gesinterten Siliciumcarbid-Keramiken im Vergleich zu konventionellen Stählen deutlich beständiger sind gegenüber erosivem Verschleiß. Sowohl EKasic® C als auch EKasic® F zeigen keinen messbaren oder allenfalls einen vernachlässigbaren geringen erosiven Verschleiß. The experiments were carried out by means of a sandblasting machine. The blasting media used were four different proppants typically used in offshore drilling: (1) 100 mesh frac sand, (2) 16/20 mesh frac sand, (3) 20/40 mesh frac sand, (4) 20/40 Mesh Frac Sand High Strength. The jet pressure was 2 bar and the jet duration 2 hours, with the beam was applied quasi point-like at an angle of 90 ° to the surface. Depth and the width of the jet impression characterize the erosive wear (see Table 1). The experiments show that the sintered silicon carbide ceramics are significantly more resistant to erosive wear compared to conventional steels. Both EKasic® C and EKasic® F show no measurable or even negligible erosive wear.
Tabelle 1 : Ergebnisse der Sandstrahlversuche Table 1: Results of the sandblast tests
Figure imgf000022_0001
Figure imgf000022_0001
Beispiel 2: Widerstand gegen Korrosion Example 2: Resistance to corrosion
Stäbe (ca. 3 x 4 x 25 mm) aus grobkörniger Silicumcarbid-Keramik vom Typ EKasic ® C und aus feinkörniger Siliciumcarbid-Keramik vom Typ EKasic ® F wurden einem Korrosionstest unterzogen. Rods (approximately 3 x 4 x 25 mm) made of coarse-grained silicon carbide ceramic type EKasic ® C and fine-grained silicon carbide ceramic type EKasic ® F were subjected to a corrosion test.
Jeweils drei Stäbe wurden 14 Tage bei 80 0C in einem verschließbaren, beheizbaren Behälter in die zu untersuchende Flüssigkeit eingetaucht. Als Flüs- sigkeiten dienten dabei zwei verschiedene Säuremischungen, die typischerweise in Offshore- Bohrungen verwandt werden: ( 1) H2SO4, 70% und (2) HCL 12% / HF 2%. Im Anschluss an die Auslagerung wurden die Masseveränderungen zur Charakterisierung des korrosiven Verschleißes bestimmt. Three bars each were immersed for 14 days at 80 ° C. in a sealable, heatable container in the liquid to be examined. The liquids used were two different acid mixtures, which are typically used in offshore drilling: (1) H 2 SO 4 , 70% and (2) HCL 12% / HF 2%. Following the aging, the mass changes were determined to characterize the corrosive deterioration.
Die Versuche zeigen, dass die gesinterten Siliciumcarbid-Keramiken über eine ausgezeichnete Korrosionsbeständigkeit verfügen. Sowohl EKasic® C als auch EKasic® F zeigen bei Beaufschlagung mit HCl und H2SO4 keinen messbaren bzw. detektierbaren Verschleiß. The experiments show that the sintered silicon carbide ceramics have excellent corrosion resistance. Both EKasic® C and EKasic® F show no measurable or detectable wear on exposure to HCl and H 2 SO 4 .
Tabelle 2: Ergebnisse der Korrosionsversuche Table 2: Results of the corrosion tests
Figure imgf000023_0001
Figure imgf000023_0001
Beispiel 3: Durchflusstest Example 3: Flow test
Es wurde eine Trennvorrichtung aus einem keramischen Ringstapel hergestellt und einem Durchfluss-Leistungstest unterzogen, um den Druckverlust bei verschiedenen Durchflussraten zu ermitteln. A ceramic ring stack separator was made and subjected to a flow through performance test to determine the pressure loss at various flow rates.
Ringe rings
Die ringförmigen Scheiben haben einen Außendurchmesser von L30 mm und einen Innendurchmesser von 109 mm. Die Ringhöhe beträgt wahlweise 3, 5 und 8 mm. Die untere Seite ist konkav gewölbt, der Radius der Verwölbung beträgt 2000 mm. Die obere Seite ist unverwölbt eben mit drei kugelkappen- förmigen Abstandshaltern mit einem Radius R = 25 mm. Die Spalthöhe amThe annular discs have an outer diameter of L30 mm and an inner diameter of 109 mm. The ring height is optionally 3, 5 and 8 mm. The lower side is concavely arched, the radius of curvature is 2000 mm. The upper side is unbalanced with three spherical cap spacers with a radius R = 25 mm. The gap height at
Außendurchmesser beträgt 0,25 bzw. 0,45 mm. Die ringförmigen Scheiben sind aus Siliziumcarbid gefertigt. Outer diameter is 0.25 or 0.45 mm. The annular discs are made of silicon carbide.
Testvorrichtung test device
Die Testvorrichtung umfasst ein inneres Rohr, einen Stapel von ringförmigen Scheiben und eine äußere Abdeckung. Das innere Rohr hat einen Durchmesser von 101 mm und eine Länge von 300 mm. Mittig befinden sich in der Mantelfläche vier um 90° versetzte Öffnungen (23 in Figur 3), durch die das geförderte Medium in das innere Rohr einströmen kann. Das innere Rohr entspricht damit üblicherweise eingesetzten, im Handel erhältlichen Vorrichtungen. The test device comprises an inner tube, a stack of annular discs and an outer cover. The inner tube has a diameter of 101 mm and a length of 300 mm. In the middle, there are four openings (23 in FIG. 3) offset by 90 ° in the lateral surface, through which the conveyed medium can flow into the inner tube. The inner tube thus corresponds to commonly used, commercially available devices.
Die ringförmigen Scheiben sind mittels einer Stützkonstruktion, die aus drei Stäben gebildet wird, welche die ringförmigen Scheiben auf deren Innenseite führen, so um das innere Rohr gestapelt, dass die Distanzhalter übereinan- derliegen und sich ein radialer Spalt ausbildet. Die Gesamtlänge der Testvorrichtung beträgt 300 mm. In Abhängigkeit von den jeweils gewählten Geometrien der Ringscheiben umfasst die Trennvorrichtung damit 38 bis 105 Scheiben. Dies entspricht einer freien Filterfläche von 5 bis 16 %. Nach außen ist die Testvorrichtung durch ein Lochblech der Dicke 2 mm abgedeckt. Die quadratischen Löcher haben eine Länge von ca. 10 mm und sind in einem Abstand von 15 mm regelmäßig angeordnet. The annular discs are so stacked around the inner tube by means of a support structure formed of three rods which guide the annular discs on the inner side thereof, that the spacers overlap one another and form a radial gap. The total length of the test device is 300 mm. Depending on the respective selected geometries of the annular discs, the separator thus comprises 38 to 105 discs. This corresponds to a free filter area of 5 to 16%. To the outside, the test device is covered by a perforated plate of thickness 2 mm. The square holes have a length of about 10 mm and are arranged at a distance of 15 mm regularly.
Durchflusstest Flow Test
Der Test wurde mittels des in Figur 6 dargestellten Aufbaus durchgeführt. Die Testvorrichtung ist in ein zylindrisches Gehäuse eingebaut, über dessen Stirnflächen Wasser (Dichte 1,0 g/cm3, dynamische Viskosität 1 cP) bei Raumtemperatur zugeführt wird. Die Anströmung der Trennvorrichtung er- folgt über das Lochblech und die Spalte am äußeren Durchmesser der gestapelten Ringscheiben. Der Abfluss erfolgt durch das innere Rohr. Der Druckverlust zwischen Ein- und Austritt am Gehäuse wird in Abhängigkeit vom Durchfluss gemessen. Die Testergebnisse sind in Tabelle 3 dargestellt. Der Druckverlust ist für alle Durchflüsse sehr gering, so dass die Förderleistung nicht nachteilig beein- flusst wird. Gleichzeitig ist der geringe Druckverlust ein Indikator dafür, dass die Trennvorrichtung laminar durchströmt wird. Tabelle 3: Ergebnisse des Durchfluss-Leistungstests The test was carried out by means of the construction shown in FIG. The test device is installed in a cylindrical housing, over the end faces of which water (density 1.0 g / cm 3 , dynamic viscosity 1 cP) is supplied at room temperature. The flow of the separator takes place via the perforated plate and the gaps on the outer diameter of the stacked annular discs. The drain is through the inner tube. The pressure loss between inlet and outlet at the housing is measured depending on the flow. The test results are shown in Table 3. The pressure loss is very low for all flows, so that the delivery rate is not adversely affected. At the same time the low pressure loss is an indicator that the separator is flowed through laminar. Table 3: Flow Performance Test Results
Figure imgf000025_0001
Figure imgf000025_0001
Beispiel 4: Drucktest Example 4: Pressure test
Mehrere Ringstapel wurden einem Drucktest unterworfen, um den Effekt einer erhöhten Druckbeanspruchung auf die Trennvorrichtung zu simulieren. Die Ringscheiben waren gemäß Beispiel 3 ausgeführt, wobei der Stapel jeweils 10 Scheiben umfasste. Die Abstandshalter waren fluchtend übereinander angeordnet. Die Belastung erfolgte axial mittels einer hydraulischen Presse, wobei die Kraft kontinuierlich bis zum Bruch von mindestens einer der Ringscheiben aufgebracht wurde. Several ring stacks were subjected to a pressure test to simulate the effect of increased compressive stress on the separator. The ring disks were made according to Example 3, the stack each comprising 10 disks. The spacers were aligned one above the other. The load was carried out axially by means of a hydraulic press, wherein the force was applied continuously until the breakage of at least one of the annular discs.
Die Testergebnisse sind in Tabelle 4 dargestellt. The test results are shown in Table 4.
Die Versuche zeigen, dass die Ringstapel auch bei hohen Druckbeanspruchungen ihre mechanische Integrität behalten. Damit kann die Trennvorrichtung sicher mechanisch gespannt werden. Sie ist ausreichend stabil gegen Überlast. Tabelle 4: Ergebnisse des Drucktests The tests show that the ring stacks retain their mechanical integrity even under high pressure loads. Thus, the separator can be securely clamped mechanically. It is sufficiently stable against overload. Table 4: Results of the pressure test
Figure imgf000026_0001
Figure imgf000026_0001
Beispiel 5 Example 5
Das Beispiel zeigt, wie eine erfindungsgemäße Trennvorrichtung auf einem Förderrohr gemäß Abbildungen 3, 4a und 4b befestigt wird. The example shows how a separator according to the invention is mounted on a conveyor tube according to Figures 3, 4a and 4b.
Das Förderrohr 22 hat eine Länge von 1200 mm und einen minimalen Durch- messer von 90 mm. Auf halber Rohrlänge befinden sich in der Mantelfläche vier um 90° versetzte Öffnungen 23, durch die das gefilterte Medium in dasThe delivery pipe 22 has a length of 1200 mm and a minimum diameter of 90 mm. Halfway along the tube, there are four openings (offset by 90 °) in the lateral surface, through which the filtered medium flows into the
Innere des Rohres geleitet werden kann. An den Enden hat das Rohr jeweils einen Anschlussbereich mit einem Innen- bzw. einem Außengewinde (pup joints), mit deren Hilfe das Rohr bei der Komplettierung mit vor- und nachge- schaltetem Equipment des Bohrstranges verbunden werden kann. Interior of the pipe can be routed. At the ends, the pipe has a connection area with an internal or an external thread (pup joints), with the help of which the pipe can be connected during the completion with upstream and downstream equipment of the drill string.
Die Öffnungen 23 des Förderrohres 22 werden durch die erfindungsgemäße Trennvorrichtung geschützt. Die Trennvorrichtung umfasst den Ringspaltfilter (Ringstapel), Ankopplungselemente sowie die Klemm- bzw. Spannvorrichtung, mit deren Hilfe der Ringspaltfilter in sich mechanisch verspannt, gesichert und auf dem Rohr befestigt wird. Die Trennvorrichtung hat eine Länge von 570 mm und einen Außendurchmesser von 143 mm. Sie ist symmetrisch zur halben Rohrlänge (Öffnungsmitte, Rohrmitte) angeordnet. Die ringförmigen Scheiben sind gemäß Abbildungen Ia- If gefertigt. Sie haben einen Außendurchmesser von 130 mm und einen Innendurchmesser von 109 mm. Die Ringhöhe beträgt 5 mm. Die untere Seite ist konkav gewölbt. Der Ra- dius der Verwölbung beträgt 2000 mm. An den Positionen, an denen die Distanzhalter der im Stapel benachbarten Ringscheibe aufliegen, ist jeweils eine Vertiefung ausgebildet. Die obere Seite ist unverwölbt eben, sie weist drei ku- gelkappenförmige Abstandshalter mit einem Radius R = 25 mm auf. Die Höhe der Kugelabschnitte ist zu 0,4 mm gewählt, so dass die Spalthöhe am Außendurchmesser 0,25 mm beträgt. Die Ringscheiben sind aus Siliziumcarbid (EKasic ® F plus) gefertigt. The openings 23 of the conveying tube 22 are protected by the separating device according to the invention. The separating device comprises the annular gap filter (ring stack), coupling elements and the clamping or tensioning device, with the aid of which the annular gap filter is mechanically braced in itself, secured and secured on the pipe. The separator has a length of 570 mm and an outer diameter of 143 mm. It is arranged symmetrically to half the pipe length (center of the opening, center of the pipe). The ring-shaped discs are manufactured according to the illustrations Ia- If. They have an outer diameter of 130 mm and an inner diameter of 109 mm. The ring height is 5 mm. The lower side is concave. The the curvature is 2000 mm. At the positions at which rest the spacers of the adjacent annular disc in the stack, a recess is formed in each case. The upper side is unbalanced and has three spherical cap spacers with a radius R = 25 mm. The height of the ball sections is selected to be 0.4 mm, so that the gap height at the outer diameter is 0.25 mm. The washers are made of silicon carbide (EKasic ® F plus).
Die Ringscheiben sind um das Förderrohr gestapelt und so ausgerichtet, dass sich zwischen den Scheiben jeweils ein radialer Spalt senkrecht zur Längsachse des Förderrohres ausbildet. The annular discs are stacked around the conveyor tube and aligned so that each forms a radial gap perpendicular to the longitudinal axis of the conveyor tube between the discs.
Der gestapelten Ringscheiben werden vom Distanzhalter geführt. Dieser um- fasst drei Führungsstäbe 9 (PEEK-Stäbe mit Durchmesser 6 mm), die die Ringscheiben an den Nuten der Innenseiten führen. Die Enden eines Führungsstabes 9 liegen beidseitig auf Führungsringen 7, 8 auf. Die Führungsringe umschließen das Förderrohr 22 und sind auf diesem aufgeschoben. The stacked washers are guided by the spacer. This comprises three guide rods 9 (PEEK rods with a diameter of 6 mm) which guide the annular discs against the grooves of the inner sides. The ends of a guide rod 9 lie on both sides on guide rings 7, 8. The guide rings enclose the delivery pipe 22 and are pushed onto this.
Der Ringstapel (ohne Ankopplungs-Segmente) hat eine Gesamtlänge von 351 mm und umfasst 75 Scheiben. Dies entspricht einer freien Filterfläche von 5 % . The ring stack (without coupling segments) has a total length of 351 mm and comprises 75 discs. This corresponds to a free filter area of 5%.
Den stirnseitigen Abschluss des Ringstapels 20 bilden zwei keramische Ankopplungs-Segmente 18, 19 aus EKasic ® F plus. Sie haben einen Außen- durchmesser von 133 mm, einen Innendurchmesser von 109 mm und eine Höhe von 17 mm. Am äußeren Umfang ist eine Nut zur Aufnahme eines Dichtrings eingearbeitet (Figur 2). The front end of the ring stack 20 form two ceramic coupling segments 18, 19 made of EKasic ® F plus. They have an outer diameter of 133 mm, an inner diameter of 109 mm and a height of 17 mm. On the outer circumference a groove for receiving a sealing ring is incorporated (Figure 2).
In Längsrichtung ist der Ringstapel mit Hilfe von 8 Druckfedern aus Stahl verspannt, die - außen geführt - im Druckfedersitz symmetrisch angeordnet sind. In the longitudinal direction of the ring stack is braced by means of 8 compression springs made of steel, which - are guided outside - symmetrically in the compression spring seat.
Die Befestigung auf dem Förderrohr erfolgt mit Hilfe eines Klemmsatzes gemäß den Abbildungen 3, 4a und 4b, welches aus Klemmhülse, Klemm-Mutter und Druckfedersitz gebildet wird. Nach außen ist die Trennvorrichtung durch ein Lochblech der Dicke 2 mm abgedeckt. Die quadratischen Löcher haben eine Länge von ca. 10 mm; sie sind in einem Abstand von 5 mm regelmäßig angeordnet. The attachment on the conveyor tube is carried out by means of a clamping set according to Figures 3, 4a and 4b, which is formed of clamping sleeve, clamping nut and compression spring seat. To the outside, the separator is covered by a perforated plate of thickness 2 mm. The square holes have a length of about 10 mm; they are regularly arranged at a distance of 5 mm.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 Klemmhülse 30 Ringscheibe 1 clamping sleeve 30 annular disc
Ia Gewinde 31 Oberseite Ringscheibe Ib kegelige Keilfläche 32 AbstandshalterIa thread 31 top ring disk Ib conical wedge surface 32 spacers
2 Klemmhülse 33 Aussparung 2 clamping sleeve 33 recess
2a Gewinde 34 Unterseite Ringscheibe2a thread 34 bottom ring disc
2b kegelige Keilfläche 35 Aussparung 2b conical wedge surface 35 recess
3 Druckfedersitz 36 Außenkanten  3 compression spring seat 36 outer edges
4 Druckfedersitz 37 Trennspalt 4 compression spring seat 37 separating gap
5 Klemm-Mutter 38 Nut  5 clamping nut 38 groove
6 Klemm-Mutter 39 Aussparung  6 clamping nut 39 recess
7 Führungsring  7 guide ring
8 Führungsring  8 guide ring
9 Führungsstab 9 management staff
10 Aufnahme für Außenkäfig  10 receptacle for outdoor cage
11 Außenkäfig  11 outer cage
12 Abstandsleisten  12 spacer strips
13 Druckfeder  13 compression spring
14 O-Ring 14 O-ring
15 O-Ring  15 O-ring
16 O-Ring  16 O-ring
17 O-Ring  17 O-ring
18 oberes Ankopplungselement  18 upper coupling element
19 unteres Ankopplungselement 19 lower coupling element
20 Ringstapel  20 ring stacks
21 Schutzummantelung  21 protective coating
22 Förderrohr  22 conveying pipe
23 Öffnung  23 opening
24 Bohrlochfutterrohr 24 borehole feed pipe

Claims

Patentansprüche claims
1. Trennvorrichtung für rohrförmige Durchflussvorrichtungen (22), die zur Förderung von Flüssigkeiten oder Gasen aus Gesteins- oder Tiefbohrungen dienen, wobei die Trennvorrichtung zur Abtrennung von Sand- und Gesteinspartikeln geeignet ist und umfasst A separator for tubular flow devices (22), which serve to convey liquids or gases from rock or deep wells, wherein the separation device is suitable for the separation of sand and rock particles and includes
einen Ringstapel (20) aus sprödharten ringförmigen Scheiben, wobei die Scheiben (30) so gestapelt und verspannt sind, dass zwischen den einzelnen Scheiben (30) jeweils ein Trennspalt (37) zur Abtrennung von Sand- und Gesteinspartikeln vorhanden ist,  a ring stack (20) of brittle-hard annular disks, wherein the disks (30) are stacked and braced so that between the individual disks (30) in each case a separating gap (37) for the separation of sand and rock particles is present,
ein Ankopplungselement ( 18, 19) an einem oder beiden Enden des Ringstapels (20);  a coupling element (18, 19) at one or both ends of the ring stack (20);
eine Klemmvorrichtung an einem oder beiden Enden des Ringstapels (20) , welche es einerseits ermöglicht, die sprödharten Scheiben (30) flexibel zu verspannen und andererseits den Ringstapel (20) auf der rohrförmigen Durchflussvorrichtung (22) variabel zu befestigen.  a clamping device at one or both ends of the ring stack (20), which on the one hand enables the brittle discs (30) to be flexibly clamped and, on the other hand, to fix the ring stack (20) variably on the tubular flow device (22).
2. Trennvorrichtung nach Anspruch 1 , wobei die ringförmigen Scheiben (30) auf ihrer Oberseite (31) mindestens drei über den Kreisumfang der Scheiben gleichmäßig verteilte Abstandshalter (32) aufweisen, welche es ermöglichen, die Höhe des Trennspaltes (37) (Spaltweite) einzustellen. 2. Separating device according to claim 1, wherein the annular discs (30) on its upper side (31) at least three uniformly distributed over the circumference of the discs spacers (32), which make it possible to adjust the height of the separating gap (37) (gap width) ,
3. Trennvorrichtung nach Anspruch 2, wobei die Abstandshalter (32) in Form von Kugelabschnitten ausgebildet sind. 3. Separating device according to claim 2, wherein the spacers (32) are in the form of spherical sections.
4. Trennvorrichtung nach Anspruch 2 und/oder 3, wobei die ringförmigen Scheiben (30) auf ihrer Unterseite (34) mindestens drei Vertiefungen (35) aufweisen, in welchen die Abstandshalter (32) positioniert werden können. 4. Separating device according to claim 2 and / or 3, wherein the annular discs (30) on its underside (34) at least three recesses (35), in which the spacers (32) can be positioned.
5. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei die ringförmigen Scheiben (30) an ihrer inneren Umfangsfläche mindestens drei Aussparungen (33) aufweisen, die zur Aufnahme von Führungsstäben (9) dienen. 5. Separating device according to at least one of the preceding claims, wherein the annular discs (30) on its inner circumferential surface at least three recesses (33) which serve to receive guide rods (9).
6. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei die Oberseite (31 ) der ringförmigen Scheiben (30) im rechten Winkel zur Scheibenachse ausgebildet ist. 6. Separating device according to at least one of the preceding claims, wherein the upper side (31) of the annular discs (30) is formed at right angles to the disc axis.
7. Trennvorrichtung nach mindestens einem der Ansprüche 1 bis 5, wobei die Oberseite (31 ) der ringförmigen Scheiben (30) nach außen oder innen abfallend mit einer ebenen oder gekrümmten Fläche ausgebildet ist. 7. Separating device according to at least one of claims 1 to 5, wherein the upper side (31) of the annular discs (30) is formed outwardly or inwardly sloping with a flat or curved surface.
8. Trennvorrichtung nach mindestens einem der vorangehenen Ansprüche, wobei die Unterseite (34) der ringförmigen Scheiben (30) nach außen oder innen abfallend, vorzugsweise nach innen abfallend, weiter vorzugsweise konkav ausgebildet ist. 8. A separator according to at least one of the preceding claims, wherein the underside (34) of the annular discs (30) sloping outwardly or inwardly, preferably sloping inwardly, more preferably concave.
9. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei die Außenkanten (36) der ringförmigen Scheiben (30) abgefast oder verrundet sind. 9. Separating device according to at least one of the preceding claims, wherein the outer edges (36) of the annular discs (30) are chamfered or rounded.
10. Trennvorrichtung nach mindestens einem der vorangehenden Ansprü- che, wobei die radiale Wandstärke der ringförmigen Scheiben (30) mindestens10. Separating device according to at least one of the preceding claims, wherein the radial wall thickness of the annular discs (30) at least
2,5 mm, vorzugsweise mindestens 5 mm, beträgt. 2.5 mm, preferably at least 5 mm.
1 1. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei die Dicke der ringförmigen Scheiben 1 bis 20 mm, vorzugsweise 1 bis 10 mm, beträgt. 1 1. Separating device according to at least one of the preceding claims, wherein the thickness of the annular discs 1 to 20 mm, preferably 1 to 10 mm.
12. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei der Trennspalt (37) zwischen den einzelnen Scheiben (30) eine Höhe von 0,05- 1 mm, vorzugsweise 0, 1 -0,5 mm, aufweist. 12. Separating device according to at least one of the preceding claims, wherein the separating gap (37) between the individual discs (30) has a height of 0.05-1 mm, preferably 0, 1-0.5 mm.
13. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei der sprödharte Werkstoff der ringförmigen Scheiben (30) gewählt ist aus oxidischen und nicht oxidischen keramischen Werkstoffen, Mischkeramiken aus diesen Werkstoffen, keramischen Werkstoffen mit Zusatz von Sekundärphasen, Mischwerkstoffen mit Anteilen von keramischen Hartstoffen und mit metallischer Bindephase, ausscheidungsgehärteten Gusswerkstoffen, pulvermetallurgischen Werkstoffen mit in-situ gebildeten Hartstoffphasen und lang- und /oder kurzfaserverstärkten Keramikwerkstoffen. 13. Separating device according to claim 1, wherein the brittle-hard material of the annular discs is selected from oxidic and non-oxidic ceramic materials, mixed ceramics from these materials, ceramic materials with addition of secondary phases, mixed materials with proportions of ceramic hard materials and Metallic binder phase, precipitation-hardened cast materials, powder metallurgy materials with in-situ formed hard material phases and long and / or short fiber reinforced ceramic materials.
14. Trennvorrichtung nach Anspruch 13, wobei die sprödharten Werkstoffe eine Dichte von mindestens 90%, vorzugsweise mindestens 95%, der theoretischen Dichte aufweisen. 14. Separating device according to claim 13, wherein the brittle-hard materials have a density of at least 90%, preferably at least 95%, of the theoretical density.
15. Trennvorrichtung nach Anspruch 13 und/oder 14, wobei es sich bei dem sprödharten Werkstoff um gesintertes Siliciumcarbid (SSiC) oder Borcar- bid handelt. 15. Separating device according to claim 13 and / or 14, wherein the brittle-hard material is sintered silicon carbide (SSiC) or boron carbide.
16. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei die Ankopplungselemente ( 18, 19) an ihrer äußeren Umfangsflä- che mindestens eine umlaufende Nut (38) zur Aufnahme eines Dichtrings ( 14) aufweisen. 16. Separating device according to at least one of the preceding claims, wherein the coupling elements (18, 19) on its outer peripheral surface at least one circumferential groove (38) for receiving a sealing ring (14).
17. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei die Ankopplungselemente ( 18, 19) an ihrer inneren Umfangsfläche mindestens drei Aussparungen (39) aufweisen, die zur Aufnahme von Führungsstäben (9) dienen. 17. A separating device according to at least one of the preceding claims, wherein the coupling elements (18, 19) on its inner circumferential surface at least three recesses (39), which serve to receive guide rods (9).
18. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei der Außendurchmesser der Ankopplungselemente ( 18, 19) gleich oder größer ist als derjenige der ringförmigen Scheiben (30). 18. A separator according to at least one of the preceding claims, wherein the outer diameter of the coupling elements (18, 19) is equal to or greater than that of the annular discs (30).
19. Trennvorrichtung nach mindestens einem der vorangehenden Ansprü- che, wobei die Ankopplungselemente ( 18, 19) aus dem selben sprödharten19. Separating device according to at least one of the preceding claims, wherein the coupling elements (18, 19) of the same brittle
Werkstoff wie die ringförmigen Scheiben (30) hergestellt sind. Material as the annular discs (30) are made.
20. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, wobei die Klemmvorrichtungen Klemmhülsen ( 1 , 2), Druckfedern ( 13), Druckfedersitze (3, 4) und Klemm-Muttern (5, 6) umfassen. 20. Separating device according to at least one of the preceding claims, wherein the clamping devices comprise clamping sleeves (1, 2), compression springs (13), compression spring seats (3, 4) and clamping nuts (5, 6).
21. Trennvorrichtung nach Anspruch 20, wobei die Klemmvorrichtungen aus Stahl, vorzugsweise korrosionsbeständigem Stahl, gefertigt sind. 21. Separating device according to claim 20, wherein the clamping devices are made of steel, preferably corrosion-resistant steel.
22. Trennvorrichtung nach mindestens einem der vorangehenden Ansprüche, welche weiterhin einen Distanzhalter als Montage- und Führungshilfe und/oder einen Außenkäfig ( 1 1 ) und/oder eine oder mehrere Schutzummantelungen (21 ) umfasst. 22. Separating device according to at least one of the preceding claims, which further comprises a spacer as an assembly and guide aid and / or an outer cage (1 1) and / or one or more protective sheaths (21).
23. Verwendung einer Trennvorrichtung gemäß mindestens einem der vorangehenden Ansprüche zur Abtrennung von Sand- und Gesteinspartikeln bei einem Verfahren zur Förderung von Flüssigkeiten oder Gasen aus Gesteinsoder Tiefbohrungen mittels rohrförmigen Durchflussvorrichtungen. 23. Use of a separation device according to at least one of the preceding claims for the separation of sand and rock particles a method for conveying liquids or gases from rock or deep wells by means of tubular flow devices.
PCT/EP2009/005257 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses WO2011009469A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
AU2009350223A AU2009350223B2 (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses
PCT/EP2009/005257 WO2011009469A1 (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses
IN536DEN2012 IN2012DN00536A (en) 2009-07-20 2009-07-20
EA201171223A EA023560B1 (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses
ES13179568.4T ES2614718T3 (en) 2009-07-20 2009-07-20 Separation device for continuous circulation tubular devices
DK09777308.9T DK2456531T3 (en) 2009-07-20 2009-07-20 Separation device for tubular flow devices
MX2012000901A MX2012000901A (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses.
CN200980160592.0A CN102639205B (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses
US13/384,989 US8833447B2 (en) 2009-07-20 2009-07-20 Separating device for tubular flow-through devices
EP13179568.4A EP2662124B1 (en) 2009-07-20 2009-07-20 Separation apparatus for tubular throughflow apparatuses
ES09777308T ES2435892T3 (en) 2009-07-20 2009-07-20 Separation device for continuous circulation tubular devices
CA2761686A CA2761686C (en) 2009-07-20 2009-07-20 Separating device for tubular flow-through devices
EP09777308.9A EP2456531B1 (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses
BR112012001485A BR112012001485B1 (en) 2009-07-20 2009-07-20 separation device for flow-through tubular devices.
DK13179568.4T DK2662124T3 (en) 2009-07-20 2009-07-20 Separation device for tubular flow devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/005257 WO2011009469A1 (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses

Publications (1)

Publication Number Publication Date
WO2011009469A1 true WO2011009469A1 (en) 2011-01-27

Family

ID=41228730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005257 WO2011009469A1 (en) 2009-07-20 2009-07-20 Separation apparatus for tubular flow-through apparatuses

Country Status (12)

Country Link
US (1) US8833447B2 (en)
EP (2) EP2456531B1 (en)
CN (1) CN102639205B (en)
AU (1) AU2009350223B2 (en)
BR (1) BR112012001485B1 (en)
CA (1) CA2761686C (en)
DK (2) DK2456531T3 (en)
EA (1) EA023560B1 (en)
ES (2) ES2435892T3 (en)
IN (1) IN2012DN00536A (en)
MX (1) MX2012000901A (en)
WO (1) WO2011009469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980348A1 (en) 2014-07-30 2016-02-03 3M Innovative Properties Company of 3M Center Separator for separating solid particles from liquid and gas flows for high differential pressures

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2738171C (en) * 2010-03-31 2016-05-17 Esk Ceramics Gmbh & Co. Kg Wear-resistant separating device for removing sand and rock particles
GB201202640D0 (en) * 2012-02-16 2012-04-04 Simpson Neil A A Swaged friction reducing collar
CN103075151B (en) * 2013-01-24 2015-08-26 西南石油大学 Flow measurement tool for small section
US11779864B2 (en) * 2014-06-13 2023-10-10 Danfoss Power Solutions Gmbh & Co Ohg Screen for hydraulic fluid
CN104239479A (en) * 2014-09-04 2014-12-24 浪潮(北京)电子信息产业有限公司 Document classification method and system
CN105396354B (en) * 2015-11-16 2017-04-12 江苏源之翼电气有限公司 Self-cleaning lamination permeation water purifier
EP3336305A1 (en) 2016-12-19 2018-06-20 3M Innovative Properties Company Separating device, process for making a separating device, and use of a separating device
WO2019056112A1 (en) 2017-09-25 2019-03-28 1460798 Alberta Ltd. A device for separating solids from a fluid stream
EP3477043A1 (en) * 2017-10-26 2019-05-01 3M Innovative Properties Company Separating device and use of a separating device
CN108392881A (en) * 2018-04-17 2018-08-14 苏州清荷坊环保科技有限公司 A kind of sewage water filtration processing unit
EP3604734B1 (en) 2018-08-01 2021-10-20 3M Innovative Properties Company Separating device and use of a separating device
CA3106853C (en) 2018-09-06 2023-09-26 Sand Separation Technologies Inc. Counterflow vortex breaker
CN113167111A (en) * 2018-12-10 2021-07-23 3M创新有限公司 Separating device and use of a separating device
EP3670828A1 (en) 2018-12-18 2020-06-24 3M Innovative Properties Company Separating device and use of a separating device
EP3760831B1 (en) 2019-07-03 2022-03-23 3M Innovative Properties Company Separating device and use of a separating device
EP3779121A1 (en) 2019-08-14 2021-02-17 3M Innovative Properties Company Separating device and use of a separating device
EP3922810A1 (en) 2020-06-10 2021-12-15 3M Innovative Properties Company Separating device and use of a separating device
RU203727U1 (en) * 2020-11-16 2021-04-19 Общество с ограниченной ответственностью "Билдинг Строй Гроуп" WATER FILTER

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1995850A (en) 1933-08-14 1935-03-26 Charles J Harter Strainer
US2250871A (en) 1938-09-27 1941-07-29 Johns Manville Well screen
US2746552A (en) 1950-04-04 1956-05-22 Grospas Sa Ets Cylindrical strainer or filter units
US5249626A (en) * 1992-06-11 1993-10-05 Lynn Gibbins Bottom hole well strainer
US5624560A (en) 1995-04-07 1997-04-29 Baker Hughes Incorporated Wire mesh filter including a protective jacket
WO1999006669A1 (en) 1997-08-01 1999-02-11 Jeffery Spray Wire-wrapped well screen
WO2004099560A1 (en) 2003-05-07 2004-11-18 Bp Exploration Operating Company Limited Erosion resistant sand screen

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1533747A (en) * 1923-05-21 1925-04-14 Lough William David Adjustable well casing and sand screen
US1709222A (en) * 1926-01-13 1929-04-16 Joseph P Lawlor Well casing and strainer
US1705848A (en) * 1928-04-30 1929-03-19 Austin George Well screen
US2314477A (en) * 1940-11-25 1943-03-23 Edward E Johnson Inc Well screen having water contacting surfaces formed of plastic material
US2646126A (en) * 1950-08-18 1953-07-21 Grover D Goodner Well screen
US3009519A (en) * 1959-07-31 1961-11-21 Western Well Screen Mfg Compan Well screen
US3568842A (en) * 1969-03-11 1971-03-09 John W Bozek Apparatus for separating mixtures of immiscible liquids
AT320535B (en) * 1971-06-17 1975-02-10 Fl Upo Osakeyhtioe Well filter
FI47001C (en) * 1971-10-11 1973-08-10 Reijonen Sieve pipe for pipe well.
US4102395A (en) * 1977-02-16 1978-07-25 Houston Well Screen Company Protected well screen
US4267045A (en) * 1978-10-26 1981-05-12 The Babcock & Wilcox Company Labyrinth disk stack having disks with integral filter screens
IL71674A0 (en) * 1984-04-27 1984-07-31 Drori Mordeki Multiple-disc type filters
US4752394A (en) * 1986-01-07 1988-06-21 Loadarm Australia Pty. Limited Bore screen
DE3909810A1 (en) * 1989-03-24 1990-09-27 Simon Lajos FILTERS FOR CYLINDRICAL OR LEVEL FILTER SYSTEMS FOR MECHANICAL CLEANING OF LIQUIDS
USD365139S (en) * 1993-10-04 1995-12-12 Lynn Gibbins Bottom hole well strainer ring
US7066252B2 (en) 2002-08-29 2006-06-27 Shell Oil Company Erosion resistant, self and/or artificial external cleaning solid exclusion system
US6769484B2 (en) * 2002-09-03 2004-08-03 Jeffrey Longmore Downhole expandable bore liner-filter
DK178114B1 (en) 2006-12-29 2015-06-01 Mærsk Olie Og Gas As Ceramic display screen
DE102008057894A1 (en) * 2008-11-18 2010-06-02 Esk Ceramics Gmbh & Co. Kg Separator for separating sand and rock particles
US8196653B2 (en) * 2009-04-07 2012-06-12 Halliburton Energy Services, Inc. Well screens constructed utilizing pre-formed annular elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1995850A (en) 1933-08-14 1935-03-26 Charles J Harter Strainer
US2250871A (en) 1938-09-27 1941-07-29 Johns Manville Well screen
US2746552A (en) 1950-04-04 1956-05-22 Grospas Sa Ets Cylindrical strainer or filter units
US5249626A (en) * 1992-06-11 1993-10-05 Lynn Gibbins Bottom hole well strainer
US5624560A (en) 1995-04-07 1997-04-29 Baker Hughes Incorporated Wire mesh filter including a protective jacket
WO1999006669A1 (en) 1997-08-01 1999-02-11 Jeffery Spray Wire-wrapped well screen
WO2004099560A1 (en) 2003-05-07 2004-11-18 Bp Exploration Operating Company Limited Erosion resistant sand screen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980348A1 (en) 2014-07-30 2016-02-03 3M Innovative Properties Company of 3M Center Separator for separating solid particles from liquid and gas flows for high differential pressures
WO2016018821A1 (en) 2014-07-30 2016-02-04 3M Innovative Properties Company Separating device for removing solid particles from liquid and gas flows for high differential pressures
CN106574494A (en) * 2014-07-30 2017-04-19 3M创新有限公司 Separating device for removing solid particles from liquid and gas flows for high differential pressures
RU2645393C1 (en) * 2014-07-30 2018-02-21 3М Инновейтив Пропертиз Компани Separating device for removing solid particles from liquid and gas flows for large pressure drops
AU2015296866B2 (en) * 2014-07-30 2018-03-29 3M Innovative Properties Company Separating device for removing solid particles from liquid and gas flows for high differential pressures
US10415351B2 (en) 2014-07-30 2019-09-17 3M Innovative Properties Company Separating device for removing solid particles from liquid and gas flows for high differential pressures

Also Published As

Publication number Publication date
MX2012000901A (en) 2012-06-19
US8833447B2 (en) 2014-09-16
EP2662124B1 (en) 2016-11-09
EP2662124A1 (en) 2013-11-13
IN2012DN00536A (en) 2015-06-05
CN102639205A (en) 2012-08-15
AU2009350223B2 (en) 2015-07-09
DK2662124T3 (en) 2017-02-13
EA201171223A1 (en) 2012-04-30
EP2456531B1 (en) 2013-08-28
ES2435892T3 (en) 2013-12-26
US20120125601A1 (en) 2012-05-24
AU2009350223A1 (en) 2011-12-08
CA2761686C (en) 2015-12-29
DK2456531T3 (en) 2013-11-18
BR112012001485A8 (en) 2017-09-19
CA2761686A1 (en) 2011-01-27
ES2614718T3 (en) 2017-06-01
BR112012001485A2 (en) 2016-11-08
EA023560B1 (en) 2016-06-30
CN102639205B (en) 2015-06-17
EP2456531A1 (en) 2012-05-30
BR112012001485B1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
EP2456531B1 (en) Separation apparatus for tubular flow-through apparatuses
EP2553216B1 (en) Wear-resistant separator for separating sand and rock particles
EP2347092B1 (en) Separator for separating sand and rock particles
EP2980348B1 (en) Separator for separating solid particles from liquid and gas flows for high differential pressures
EP1996889B1 (en) Plate heat exchanger, method for its production, and its use
DE3345796A1 (en) FILTER FOR SEPARATING SOLID PARTICLES FROM A FLUID FLOW
EP1864695B1 (en) Flame trap assembly and method for drilling bores to a flame trap assembly
EP0685325A2 (en) Device for separating the liquid portion from the solid portion in two-phase systems
EP3148672A1 (en) Filter system and filter element having a glass fiber filter medium and a sintered body
DE202005002870U1 (en) Filter pipe for a well comprises a filter jacket which consists of several slit jacket sections made up of a plastic and glass fiber mixture attached to a carrier pipe by means of an adhesive
DE102008039213A1 (en) Filter mechanism for vacuum pump utilized in vacuum coating plant for evacuation of vacuum chamber, has gas-permeable slot shaped opening provided at other end of filter housing and at lateral surface of filter housing
AT507726B1 (en) HYDRO VALVE
WO2021250608A1 (en) Separating device, use of a separating device and method for making a separating device
BE903486A (en) Well water extraction system - has suction passage wall resistance decreasing in stages from top
WO1999059692A1 (en) Filtration device for removing fluids
WO2012052396A2 (en) Installation for transferring heat or cold to a fluid medium
AT3006U1 (en) FILTER DEVICE FOR TAKING FLUIDS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160592.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201171223

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2761686

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009350223

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009350223

Country of ref document: AU

Date of ref document: 20090720

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 536/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13384989

Country of ref document: US

Ref document number: MX/A/2012/000901

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009777308

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012001485

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012001485

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120123