WO2011007966A2 - Refrigerant composition - Google Patents

Refrigerant composition Download PDF

Info

Publication number
WO2011007966A2
WO2011007966A2 PCT/KR2010/004100 KR2010004100W WO2011007966A2 WO 2011007966 A2 WO2011007966 A2 WO 2011007966A2 KR 2010004100 W KR2010004100 W KR 2010004100W WO 2011007966 A2 WO2011007966 A2 WO 2011007966A2
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
composition
weight
temperature
hfc
Prior art date
Application number
PCT/KR2010/004100
Other languages
French (fr)
Korean (ko)
Other versions
WO2011007966A3 (en
WO2011007966A9 (en
Inventor
오경화
오석재
Original Assignee
주식회사 와이엠환경연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 와이엠환경연구소 filed Critical 주식회사 와이엠환경연구소
Publication of WO2011007966A2 publication Critical patent/WO2011007966A2/en
Publication of WO2011007966A3 publication Critical patent/WO2011007966A3/en
Publication of WO2011007966A9 publication Critical patent/WO2011007966A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons

Definitions

  • Refrigerant is the working fluid of the refrigeration cycle, which refers to a medium that takes heat away from low-temperature objects and transfers heat to high-temperature objects. It is cheap, chemically stable, and efficient.
  • 'CFC' Hydrochlorofluorocarbons (HCFCs) and Hydrofluorofluorocarbons (HFCs) have been mainly used.
  • any material in order to use any material as an alternative refrigerant to a conventional refrigerant, it must first have a coefficient of performance (COP) similar to that of a conventional refrigerant to exhibit a refrigerating effect similar to that of a conventional refrigerant, and also have a vapor pressure similar to that of a conventional refrigerant.
  • COP coefficient of performance
  • VC volumetric capacity
  • the volumetric capacity of the replacement refrigerant is inevitably required to change the compressor or to greatly modify the existing condenser or evaporator, and it is very difficult to obtain a similar coefficient of performance as the existing refrigerant.
  • mixed refrigerants One way to solve this problem is to use a mixed refrigerant.
  • the characteristic of mixed refrigerants is that the composition is well formulated to make the coefficient of performance (COP) similar to conventional refrigerants and at the same time to have a volumetric capacity (VC) similar to conventional refrigerants, so that the compressor does not need to be greatly modified. When these conditions are met, the manufacturer will not pay for the replacement of the compressor or any additional costs.
  • azeotropes in which the evaporation temperature or condensation temperature is constant when evaporation or condensation occurs at isostatic pressure, such as pure refrigerant, the evaporation temperature increases when evaporation occurs, and condensation temperature increases when condensation occurs.
  • NARMs non-azeotropic Refrigerant Mixtures
  • GTD 'Gliding Temperature Difference
  • the Kyoto Protocol also prohibits the use of HFC-134a refrigerant, which is used as a CFC alternative refrigerant. Therefore, the refrigerant composed only of HFC is not a suitable substitute in the long term. And AllaidSignal Inc.
  • the company developed and sells a binary mixture refrigerant (R-32 50% by weight / R-125 50% by weight) called R-410A, but this refrigerant also has a high global warming index and 60% higher vapor pressure than HCFC. Essentially, there is a problem in that the compressor needs to be modified and the system pressure is high to increase the strength of the material used in the condenser.
  • Korean Patent Publication No. 10-0405189 discloses difluoromethane (CH2F2, hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a').
  • CH2F2F3 1,1,1,2-tetrafluoroethane
  • 'HFC-134a' 1,1,1,2-tetrafluoroethane
  • CF3CHFCF3 1,1,1,2,3,3,3-heptafluoropropane
  • Publication No. 10-0540286 discloses 1 to 78% by weight of R-134a (1,1,1,2-tetrafluoroethane), 1 to 78% by weight of RE170 (dimethyl ether) and R-600a (isobutane). ) Is a mixed refrigerant composed of 21 to 98% by weight and a refrigeration system using the same,
  • 0-0305079 contains difluoromethane (CH2F2, HFC-32) in the composition of a refrigerant mixture that can be used in place of HCFC-22, in a content of 40 to 96% by weight.
  • Cyclopropane (C3F6, RC-270) and 1,1,1,2,2-pentafluoropropane (CH3CF2CF2, HFC-245cb), and butane (C4 H10, R-600) as the second and third components
  • a refrigerant mixture containing 1 to 40% by weight and 4 to 40% by weight of a fluorine compound selected from the group consisting of and bis (difluoromethyl) ether (CHF 2 OCHF 2, HFE-134), respectively, are disclosed.
  • Publication No. 10-0540284 discloses a mixed refrigerant comprising a combination of propane, 1,1,1,2-tetrafluoroethane, dimethyl ether (hereinafter referred to as DME) and isobutane and a refrigeration system using the same. It is about.
  • Mixed refrigerant according to a preferred embodiment of the present invention is 30 to 98% by weight of R-290 (propane), R-134a (1,1,1,2-tetrafluoroethane), 1 to 70% by weight, RE-170
  • a refrigerant mixture containing 1 to 70% by weight of (dimethyl ether) is disclosed.
  • Korean Patent No. 10-540280 discloses a mixed refrigerant composed of a selective combination of propylene, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether and isobutane and It relates to a refrigeration system used.
  • Mixed refrigerant according to a preferred embodiment of the present invention is 30 to 70% by weight of R-1270 (propylene), 1 to 69% by weight of R-134a (1,1,1,2-tetrafluoroethane), R-152a ( 1,1-difluoroethane) 1 to 69% by weight of a refrigerant composition is described,
  • Publication No. 10-305080 includes difluoromethane (CH3F2, HFC-32) as the first component and 1,1,1-trifluoroethane (CH3CF3, HFC-143a) as the second component.
  • Korean Patent Publication No. 10-305905 includes difluoromethane (CH 3 F 2, HFC-32) as a first component, and perfluoropropane (C 3 F 8, 2) as a second component and a third component.
  • Korean Patent Publication No. 10-0492172 discloses a mixed refrigerant composed by selectively combining propylene, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethylether and isobutane and It relates to a refrigeration system used.
  • Mixed refrigerant according to a preferred embodiment of the present invention is 30 to 70 parts by weight of R-1270 (propylene), 1 to 69 parts by weight of R-134a (1,1,1,2-tetrafluoroethane), R-152a ( 1,1-difluoroethane) 1 to 69 parts by weight of a refrigerant mixture is disclosed,
  • Korean Patent Publication No. 10-2005-0057852 discloses difluoromethane (CH2F2, hereinafter HFC-32) and
  • the present invention is 55 to 65 kg of 1,1-difluoroethane (R-152a), 10 to 25 kg of trifluoromethyl iodine (CF3I), propylene (R-1270) 10 ⁇ 19 kg), propane (R-290) 3 ⁇ 5 kg, ethane (R-170) 2 ⁇ 5 kg, nucleated methyl silicone oil 0.1 ⁇ 1.5 kg, and the ozone layer destruction index
  • the mixed refrigerant according to the present invention is a mixed refrigerant forming a near azeotropy, there is no change in composition due to the phase change, and thus it is possible to stably replace the refrigerant immediately without changing the refrigeration system as in the case of using pure refrigerant. .
  • the refrigeration effect is 5 to 10% or more, which is an energy saving effect.
  • FIG. 1 is a block diagram of a general refrigeration / air conditioner used in the present invention
  • Figure 3 is a pressure-en stripping diagram of the refrigerant composition
  • a refrigerant composition was prepared by mixing 65 kg of 1,1-difluoroethane (R-152a), 20 kg of trifluoromethyl iodide (CF3I), 14.9 kg of propylene (R-1270), and 0.1 kg of nucleated methyl silicone oil.
  • mixed refrigerants have different boiling points (boiling points) between the refrigerants, so they are not mixed well and thus are separated from each other, resulting in a temperature gradient. Therefore, it is very difficult to develop a near azeotropic mixed refrigerant composition having an ionic gradient within at least 1 ° C. There is this.
  • nucleated methylsilicon oil is added as an additive to the mixed refrigerant selected and combined by the present inventors, thereby obtaining a near azeotropic mixed refrigerant composition which minimizes the temperature gradient.
  • the refrigerant composition according to the present invention having the composition as described above is an azeotropic mixed refrigerant composition having an ozone depletion index (ODP) of 0.0 and a temperature gradient of 1 ° C. or less when evaporated, and thus can be used like a conventional pure refrigerant. It has a value close to or higher than the 134a coefficient of performance (COP) and the volumetric capacity (VC), so it is not necessary to change any parts of the refrigeration system, so it can be used as a replacement refrigerant of R-134a.
  • ODP ozone depletion index
  • COP 134a coefficient of performance
  • VC volumetric capacity
  • the present inventors have developed the CYCLE-D program developed by the National Institute of Standards and Technology to simulate the performance of the refrigeration / air conditioner Used.
  • the program performed thermodynamic and heat transfer analyzes of the components that make up the refrigeration / air conditioner, such as heat exchangers and compressors, and finally all of them were used in combination.
  • the program uses the Carnahan-Starling-De Santis (CSD) refrigerant state equation, which is based in the United States and Japan, as a bubble point for various refrigerants, and the dew point at which dew condenses as the gas condenses. Point) and a temperature gradient plot of the near azeotropic ternary refrigerant.
  • CSD Carnahan-Starling-De Santis
  • the CSD refrigerant state equation known as REFPROP, was developed by the National Institute of Standards and Technology and is the most widely used program in leading refrigeration and air conditioning companies, research institutes, and universities worldwide for its proven accuracy and applicability. .
  • the actual data was used as input data for the development and execution of the mixed refrigerant.
  • the present inventors have developed the present invention using the above program in the determination that the ozone depletion index (ODP) of the alternative refrigerant must be 0.0 and the global warming index (GWP) should be as low as possible.
  • ODP ozone depletion index
  • GWP global warming index
  • the refrigerant composition of the present invention is a near azeotropic mixed refrigerant composition having no fear of destroying the ozone layer, having a temperature gradient (TG) of 1 ° C and a global warming index (GWP) of 79.
  • TG temperature gradient
  • GWP global warming index
  • a refrigerant composition was prepared by mixing 65 kg of 1,1-difluoroethane (R-152a), 20 kg of trifluoromethyl iodide (CF3I), 14.9 kg of propylene (R-1270), and 0.1 kg of nucleated methyl silicone oil.
  • a refrigerant composition was prepared by mixing 65 kg of 1,1-difluoroethane (R-152a), 19 kg of trifluoromethyl iodide (CF3I), 15.9 kg of propylene (R-1270), and 0.1 kg of nucleated methyl silicone oil. .
  • composition of the refrigerant composition of the present invention is 55 to 65 kg of ethane-based 1,1-difluoroethane (R-152a), 10 to 20 kg of trifluoromethyl iodide (CF3I), and 10 to 19 propylene (R-1270) kg, 0.1-1.5 kg of nucleated methyl silicone oil, or
  • Figure 2 shows the temperature gradient diagram of the ternary mixed refrigerant composition obtained by the program of REFPROP6.0 of the present invention. However, it was found that the temperature gradient was minimized as shown in FIG. 4, after the additive was added to form a near azeotropic refrigerant composition, which is an object of the present invention.
  • the UL2182 standard requires compositional analysis to determine the worst case for a case where a liquid refrigerant is 90% charged and 15% charged in a vessel under some temperature conditions.
  • the composition separation analysis was performed under the following three temperature conditions.
  • composition separation analysis the following definitions were made for composition.
  • Worst-filled composition The most mixed composition of flammable refrigerants due to the error in formulation. Depending on the error of the refrigerant blending machine, the amount of flammable refrigerant is usually 1% higher than that of the filling composition.
  • the filling composition and the worst filling composition in the refrigerant of the present invention were determined as follows.
  • the REFLEAK program calculated the worst leakage composition with no problem for 15% filling, but did not do harm due to its own convergence judgment problem at -18.28 ° C and 25 ° C for 90% charge, in which case less than 90% fill It is known that the value may be obtained by an external method after obtaining.
  • the worst leakage composition of the worst-case filling composition refrigerant occurs when the amount of R-1270 is the highest. This is because the composition of the liquid R-1270 at -18.28 ° C is 15.9% when the vapor leaks.
  • Tables 1 and 2 show the liquid and gas composition separation experiments of the first " YM-1234A “ and “ YM-1234A1 " first second best condition refrigerants, and Tables 3 and 4 show " YM-1234A " The results of the composition separation experiments in which 15% of the liquid and gas leaked out under the worst conditions for the liquid and gas composition of the first second best condition refrigerant of YM-1234A1 "" are shown. However, the additive was ignored because of its small amount.
  • Table 5 shows the results of the composition separation experiment at the time of liquid leakage at -18.28 °C at 60% charge with the worst composition of the "YM-1234A" first best condition refrigerant,
  • Figure 7 is a graph .
  • Table 7 shows the results of the composition separation experiment at the time of liquid leakage at -18.28 °C at 15% charge with the worst composition of the "YM-1234A" first best condition refrigerant, Figure 9 shows a graph.
  • Table 8 shows the results of the composition separation experiment at the time of liquid leakage at -18.28 °C at 15% charge with the worst composition of the "YM-1234A1" second best condition refrigerant,
  • Figure 10 is a graph.
  • Table 8 "YM-1234A1" The second best condition The composition of the composition separation at the time of gas leakage at -18.28 °C at 15% charge with the worst composition of the refrigerant Starting temperature (°C) -18.28 Start rate 15% fill Start composition ratio 60.0 / 20.0 / 14.9 / 3.0 / 2.0 The furtherance ratio according to% Leakage (%) Composition ratio (wt%) 10 60.0674 / 20.0433 / 14.9074 / 3.0020 / 1.9799 20 60.0773 / 20.0076 / 14.8428 / 2.9891 / 2.0832 30 60.0329 / 19.9939 / 14.9305 / 3.0328 / 2.0099 40 60.0445 / 20.0308 / 14.8891 / 3.0049 / 2.0307 50 60.0839 / 20.0177 / 14.8030 / 3.0231 / 2.0723 60 60.0204 / 20.0644 / 14.8991 / 3.0144 / 2.0017 70
  • Refrigerant R-134a has been widely used in air conditioners for home refrigerators and automobiles, but its use is currently restricted.
  • the impact of refrigerants on the global environment should be taken into account not only by the refrigerant itself, but also by the effects of carbon dioxide on the production of the power used to operate the system, which represents the total equivalent warming impact (TEWI). ).
  • TEWI total equivalent warming impact
  • the evaporator temperature was 0 ° C and the condenser temperature was 40 ° C. There was no overheating and supercooling temperature at the evaporator outlet and the condenser outlet, and the compressor inlet outlet was an isotropic entropy process. .
  • FIG. 5 shows R-134a and FIG. 6 shows pressure-enthalpy diagrams of the refrigerants "YM-1234A”.
  • YM-1234A is the best alternative refrigerant because performance is more important than the refrigerant itself.
  • the pressure ratio or the compressor discharge temperature can be seen that the two refrigerants are almost the same.
  • YM-1234A has no ozone depletion index (ODP) and GWP 79 is very low, so there is no problem in using it as a replacement refrigerant for R-134a in the long run.
  • ODP ozone depletion index
  • COPr Refrigeration performance coefficient (Coefficient of performance, evaporator capacity / work done on the compressor)
  • This coefficient of performance is the capacity of the work done by the evaporator divided by the work done on the compressor, the higher the energy savings.
  • the capacity of this evaporator is a value that is directly related to the freezing performance. The larger the capacity, the greater the freezing effect.
  • Tdis diff Compressor discharge temperature difference compared to R134a
  • freezing also called freezing
  • the temperature difference (GTD) is 6.0 ⁇ 7.3 °C when the additive is not added despite the mixed refrigerant.
  • the temperature difference (GTD) of the evaporator is 0.1.
  • the muscle azeotropes it can be seen that additives are essential for making refrigerants of the aerosols.
  • the global warming index is shown according to the refrigerant composition.
  • the global warming index is very important because it is necessary to develop a refrigerant of 150 or less because it is the purpose of developing an environmentally friendly refrigerant.
  • Examples 1 and 2 show relatively low warming index.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

The present invention relates to a refrigerant composition with an ozone depletion potential (ODP) of 0 and a global warming potential (GWP) of 79, the refrigerant composition comprising 55 to 65 kg of ethane-based 1,1-difluoroethane (R-152a), 10 to 25 kg of trifluoromethyl iodide (CF3I), 10 to 19 kg of propylene (R-1270), 3 to 5 kg of propane (R-290), 2 to 5 kg of ethane (R-170), and 0.1 to 1.5 kg of hexamethyl silicone oil.

Description

냉매 조성물 Refrigerant composition
본 발명은 에탄계인 1,1-디플루오로에탄 (R-152a)을 55~65 kg, 트리플루오르메틸아이오드(CF3I)을 10~25 kg, 프로필렌(R-1270)을 10~19 kg,프로판 (R-290)을 3~5 kg,에탄 (R-170)을 2~5 kg, 핵사 메틸 실리콘 오일을 0.1~1.5 kg,으로 조성되어 있으며, 오존층 파괴지수가 (ODP=0) 이며, 지구 온난화 지수가(GWP=79) 인 냉매조성물에 관한 것이다.The present invention is 55 to 65 kg of ethane 1,1-difluoroethane (R-152a), 10 to 25 kg of trifluoromethyl iodine (CF3I), 10 to 19 kg of propylene (R-1270), 3 to 5 kg of propane (R-290), 2 to 5 kg of ethane (R-170) and 0.1 to 1.5 kg of nucleated methyl silicone oil, and the ozone layer destruction index is (ODP = 0). The present invention relates to a refrigerant composition having a global warming index (GWP = 79).
냉매(Refrigerant)란 냉동사이클의 작동유체로서 저온의 물체에서 열을 빼앗아 고온의 물체로 열을 운반해 주는 매체를 총칭하는 것으로, 저렴하면서도 화학적으로 안정하며, 효율이 좋은 염화 불화탄소 (Chlorofluorocarbon,이하'CFC')와 수소화 염화불화탄소 (Hydrochlorofluorocarbon, 이하 'HCFC') 그리고 수소화 불화탄소(Hydrofluorocarbon 아하 'HFC') 가 주로 사용되어 왔다. Refrigerant is the working fluid of the refrigeration cycle, which refers to a medium that takes heat away from low-temperature objects and transfers heat to high-temperature objects. It is cheap, chemically stable, and efficient. 'CFC'), Hydrochlorofluorocarbons (HCFCs) and Hydrofluorofluorocarbons (HFCs) have been mainly used.
그러나 CFC와 HCFC에 의한 성층권 내 오존층 파괴가 중요한 지구환경문제로 대두되었고 이로 인해 성층권내 오존을 파괴하는 CFC와 HCFC의 생산과 사용은 1987년에 채택된 몬트리올 의정서에 의해 규제되고 있다. 따라서 전 세계 대부분의 국가가 오존파괴지수(ODP)가 0.0인 대체냉매를 사용하려 하고 있다. However, the destruction of the stratospheric ozone layer by CFCs and HCFCs has emerged as an important global environmental problem, and therefore the production and use of stratospheric ozone-depleting CFCs and HCFCs is regulated by the Montreal Protocol adopted in 1987. Therefore, most countries around the world are trying to use alternative refrigerants with an ozone depletion index (ODP) of 0.0.
교도 (Kyoto Protocol) 프로토콜에서 지구 오존층 파괴 지수가 0 인 HFC도 지구 온난화 물질 (GWP=1,300) 규제 품목으로 규정 되게 되었다.In the Kyoto Protocol protocol, HFCs with a global ozone depletion index of zero were also regulated as global warming substances (GWP = 1,300).
어떤 물질이든 기존 냉매의 대체냉매로 사용하려면 우선 기존 냉매와 유사한 성능계수(Coefficient of performance, C.O.P)를 가져 기존의 냉매와 유사한 냉동효과를 나타내어야 하고, 또한 기존 냉매와 비슷한 증기압을 가져서 궁극적으로 비슷한 체적용량(Volumetric capacity, VC)을 제공해야 한다. 그러나 순수 물질로 기존 냉매를 대체하는 경우에는, 대체냉매의 체적용량이 달라서 필연적으로 압축기를 바꾸거나 기존의 응축기나 증발기를 크게 개조하여야 하며, 또 기존 냉매와 비슷한 성능계수를 얻기가 매우 어렵다. In order to use any material as an alternative refrigerant to a conventional refrigerant, it must first have a coefficient of performance (COP) similar to that of a conventional refrigerant to exhibit a refrigerating effect similar to that of a conventional refrigerant, and also have a vapor pressure similar to that of a conventional refrigerant. You must provide a volumetric capacity (VC). However, in the case of replacing the existing refrigerant with pure material, the volumetric capacity of the replacement refrigerant is inevitably required to change the compressor or to greatly modify the existing condenser or evaporator, and it is very difficult to obtain a similar coefficient of performance as the existing refrigerant.
이러한 문제점을 해결할 수 있는 방법 중 하나가 혼합 냉매를 이용하는 것이다. 혼합냉매의 특성은 조성을 잘 배합하여 성능계수(COP)를 기존의 냉매와 비슷하게 하고 동시에 기존의 냉매와 비슷한 체적용량(VC)을 갖게 하여, 압축기를 크게 개조할 필요가 없다는 것이다. 이러한 조건이 갖추어졌을 때 제조업체는 압축기의 교체비용이나 기타 추가적인 비용을 지불하지 않게 된다.One way to solve this problem is to use a mixed refrigerant. The characteristic of mixed refrigerants is that the composition is well formulated to make the coefficient of performance (COP) similar to conventional refrigerants and at the same time to have a volumetric capacity (VC) similar to conventional refrigerants, so that the compressor does not need to be greatly modified. When these conditions are met, the manufacturer will not pay for the replacement of the compressor or any additional costs.
한편, 혼합냉매에는 등압상태에서 증발이나 응축이 일어날 때에 증발온도나 응축온도가 순수냉매처럼 일정한 공비혼합냉매 (Azeotropes)와는 달리, 증발이 일어날 때에 증발온도가 올라가고, 반대로 응축이 일어날 때에 응축온도가 감소하는 비 공비 혼합냉매 (Non Azeotropic Refrigerant Mixtures, NARMs)가 있다. 이와 같이 비 공비 혼합냉매의 특성을 '온도 구배 현상'(Gliding Temperature Phenomenon)이라 하고 증발이 시작되는 점과 끝나는 점간의 온도 차이는 '온도 구배 차'(Gliding Temperature Difference, GTD)라고 하는데, 상기 GTD는 혼합냉매를 구성하는 순수물질의 종류와 그 조성에 따라 값이 크게 변한다. On the other hand, unlike azeotropes in which the evaporation temperature or condensation temperature is constant when evaporation or condensation occurs at isostatic pressure, such as pure refrigerant, the evaporation temperature increases when evaporation occurs, and condensation temperature increases when condensation occurs. There is a non-azeotropic Refrigerant Mixtures (NARMs). As such, the characteristics of the azeotropic mixed refrigerant are referred to as 'Gliding Temperature Phenomenon' and the temperature difference between the point at which evaporation starts and ends is called 'Gliding Temperature Difference' (GTD). The value varies greatly depending on the type and composition of pure materials constituting the mixed refrigerant.
따라서 최근에는 비 공비 (Non Azeotropic Refrigerant Mixtures)혼합냉매 중에서 GTD가 약 3℃ 미만이 되는, 근 공비 혼합냉매 (Near Azeotropic Refrigerant Mixtures)를 개발하여 냉매로서 사용하고자 하는 시도가 많이 이루어지고 있으며, 지난 몇 년간 CFC와 HFC 및 HCFC의 대체물로 여러 종류의 혼합냉매가 제안된바 있다. 그러나 그것들 중 몇몇은 몬트리올 의정서에서 사용을 금하는 HCFC를 구성 성분으로 가지고 있어 장기적인 관점에서 볼 때 적합한 대체물이라 할 수 없다.Recently, many attempts have been made to develop Near Azeotropic Refrigerant Mixtures and use them as refrigerants in which GTD is less than about 3 ° C. among non-azeotropic Refrigerant Mixtures mixed refrigerants. Several types of mixed refrigerants have been proposed over the years as alternatives to CFCs, HFCs and HCFCs. However, some of them contain HCFCs, which are prohibited from use in the Montreal Protocol, and are not suitable alternatives in the long run.
지금까지, 미국의 DuPont 사는 오존층 파괴를 시키지 않고(ODP=0) 온난화 지수가 비교적 낮은(GWP=1,300)HFC를 개발하여 자동차 및 냉장고용으로 사용하여 왔으나 이 또한 장기적인 대안의 물질은 되지 못하고 또 교도 프로토콜의 규제 대상 이 되어있다. 최근 들어 미국 DuPont 에서는 HFO-1234yf라는 제품을 개발하여 높은 가격으로 소게 되고 있으나 이 제품은 가연성 제품이다.So far, DuPont of the United States has developed and used HFCs with low warming index (GWP = 1,300) for automobiles and refrigerators without destroying the ozone layer (ODP = 0), but this is also not a long-term alternative material, The protocol is subject to regulation. Recently, DuPont in the US has developed a product called HFO-1234yf and it is being kept at a high price, but this product is a combustible product.
또 Kyoto 의정서에서 CFC 대체 냉매로서 사용되고 있는 HFC-134a 냉매 또한 사용을 금지하도록 하고 있다. 따라서 HFC만으로 구성되어 있어 있는 냉매는 장기적 관점에서 적합한 대체물이라 할 수 없다. 그리고 AllaidSignal Inc. 사 등에서는 R-410A라는 2원 혼합냉매 ( R-32 50중량%/ R-125 50중량%)를 개발하여 판매하고 있으나 이 냉매 역시 지구 온난화 지수가 높고 증기압이 기존의 HCFC보다 60% 정도 높아서 필수적으로 압축기를 개조해야 하고 시스템의 압력이 높아서 응축기에 쓰이는 재질의 강도를 높여야 한다는 문제점이 있다. The Kyoto Protocol also prohibits the use of HFC-134a refrigerant, which is used as a CFC alternative refrigerant. Therefore, the refrigerant composed only of HFC is not a suitable substitute in the long term. And AllaidSignal Inc. The company developed and sells a binary mixture refrigerant (R-32 50% by weight / R-125 50% by weight) called R-410A, but this refrigerant also has a high global warming index and 60% higher vapor pressure than HCFC. Essentially, there is a problem in that the compressor needs to be modified and the system pressure is high to increase the strength of the material used in the condenser.
국내등록특허공보 등록번호 제10-0405189호에는 디플루오로메탄(CH2F2, 이하 'HFC-32'라 한다), 1,1,1,2-테트라플루오로에탄(CH2FCF3, 이하 'HFC-134a'라 한다) 및 1,1,1,2,3,3,3-헵타플루오로프로판(CF3CHFCF3, 이하 'HFC-227ea'라 한다)의 혼합물에 이소부탄(CH(CH3)2CH3, 이하 'R-600a'라 한다), 1,1,1,2,3,3-헥사플루오로프로판(CHF2CHFCF3, 이하 'HFC-236ea'라 한다) 및 부탄(C4H10, 이하 'R-600'라 한다) 중에서 선택된 하나의 성분을 혼합하거나, 또는 HFC-32, 1,1-디플루오로에탄(CH3CHF2, 이하 'HFC-152a'라 한다) 및HFC-227ea의 혼합물에 R-600a, HFC-236ea 및R-600 중에서 선택된 하나의 성분을 혼합한 4원 혼합냉매 조성물로서, 지금까지 사용되어온 클로로디플루오로메탄(CHClF2: 이하 'HCFC-22'라 한다)의 대체냉매로서 사용되어 오존 파괴능이 전혀 없으며, 가정용 냉장고 및 자동차 공기조화기 등의 냉매 물질로 사용될 수 있는 혼합냉매 조성물이 기술되어 있으며,Korean Patent Publication No. 10-0405189 discloses difluoromethane (CH2F2, hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'). ) And isobutane (CH (CH3) 2CH3, hereinafter 'R-) in a mixture of 1,1,1,2,3,3,3-heptafluoropropane (CF3CHFCF3, hereinafter referred to as' HFC-227ea'). 600a '), 1,1,1,2,3,3-hexafluoropropane (CHF2CHFCF3, hereinafter referred to as' HFC-236ea') and butane (C4H10, hereinafter referred to as' R-600 ') One component is mixed or R-600a, HFC-236ea and R-600 in a mixture of HFC-32, 1,1-difluoroethane (CH3CHF2, hereinafter referred to as 'HFC-152a') and HFC-227ea. It is a four-way mixed refrigerant composition in which one component is selected from among them, and it is used as an alternative refrigerant of chlorodifluoromethane (CHClF2: hereinafter referred to as 'HCFC-22') which has been used so far, and has no ozone depleting ability. And refrigerant materials for automobile air conditioners And the mixed refrigerant composition is described which may be,
동 공보 등록번호 제10-0492169호에는 냉동/공조기용 혼합냉매에 있어서 R-1270(프로필렌) 1 내지 99 중량부, R-290(프로판) 98중량부 이하, R134a(1,1,1,2-테트라플루오로에탄) 1 내지 70 중량부로 구성된 혼합냉매가 공개되어 있고,Publication No. 10-0492169 discloses 1 to 99 parts by weight of R-1270 (propylene), 98 parts by weight or less of R-290 (propane), and R134a (1,1,1,2) in a mixed refrigerant for refrigeration / air conditioner. Tetrafluoroethane) mixed refrigerant consisting of 1 to 70 parts by weight is disclosed,
동 공보 등록번호 제10-0540286호에는 R-134a(1,1,1,2-테트라플루오로에탄) 1 내지 78중량%, RE170(디메틸에테르) 1 내지 78중량%, R-600a(이소부탄) 21 내지 98중량%로 구성된 혼합냉매 및 이를 사용한 냉동시스템이 기술되어 있으며,Publication No. 10-0540286 discloses 1 to 78% by weight of R-134a (1,1,1,2-tetrafluoroethane), 1 to 78% by weight of RE170 (dimethyl ether) and R-600a (isobutane). ) Is a mixed refrigerant composed of 21 to 98% by weight and a refrigeration system using the same,
동 공보 등록번호 제10-0571358호에는 메탄계 냉매성분인 디플로로메탄(CH2F2, 이하 R-32)과, 프로판(CH3CH2CH3, 이하 R-290), 프로필렌 (CH3CH=CH2, 이하 R-1270)이 혼합되어 조성되되, 그 조성비는 메탄계 냉매성분인 디플로로메탄(CH2F2) 5~40 중량 %와, 프로판(CH3CH2CH3) 35~70 중량 %와, 프로필렌 (CH3CH=CH2) 25~60 중량 %가 전체 100 중량 %에 대해 혼합되어 조성된 것을 특징으로 하는 저온용 대체 혼합냉매가 기재되어 있고,Publication No. 10-0571358 discloses difluoromethane (CH2F2, hereinafter R-32), propane (CH3CH2CH3, hereinafter R-290), propylene (CH3CH = CH2, hereinafter R-1270), a methane refrigerant component. The mixture is composed of 5 to 40% by weight of dichloromethane (CH2F2), 35 to 70% by weight of propane (CH3CH2CH3), and 25 to 60% by weight of propylene (CH3CH = CH2). It is described a low-temperature alternative mixed refrigerant, characterized in that the composition is mixed with respect to the total 100% by weight,
동 공보 등록번호 제10-0305079에는 HCFC-22를 대신하여 사용할 수 있는 냉매 혼합물의 조성에 있어서, 제 1 성분으로 디플루오로메탄(CH2F2, HFC-32)를 40 내지 96 중량%으로 함유하고, 제 2 성분과 제 3 성분으로 사이클로프로판(C3F6,RC-270)과1,1,1,2,2-펜타플루오로프로판(CH3CF2CF2, HFC-245cb),및 부탄(C4 H10,R-600)과 비스(디플루오로메틸)에테르(CHF2OCHF2, HFE-134)로 이루어진 군중에서 선택된 플루오르 화합물을 각각 1 내지 40 중량% 및 4 내지 40 중량%로 함유하는 냉매 혼합물가 공개되어 있고, Publication No. 10-0305079 contains difluoromethane (CH2F2, HFC-32) in the composition of a refrigerant mixture that can be used in place of HCFC-22, in a content of 40 to 96% by weight. Cyclopropane (C3F6, RC-270) and 1,1,1,2,2-pentafluoropropane (CH3CF2CF2, HFC-245cb), and butane (C4 H10, R-600) as the second and third components And a refrigerant mixture containing 1 to 40% by weight and 4 to 40% by weight of a fluorine compound selected from the group consisting of and bis (difluoromethyl) ether (CHF 2 OCHF 2, HFE-134), respectively, are disclosed.
동 공보 등록번호 제 제10-400345호에는 디플루오로메탄(CH2F2, 이하 HFC-32)과 1,1,1-트리플루오로에탄(CH3CF3, 이하 HFC-143a)과 1,1-디플루오로에탄(CH3CHF2,이하HFC-152a)과1,1,1,2,3,3,3-헵타플루오로 프로판(CF3CHFCF3, 이하 HFC-227ea), 이소부탄(CH(CH3)2CH3,R-600a), 1,1,1,2,3,3-헥사플루오로프로판(CHF2CHFCF3, 이하 HFC-236ea) 및 부탄(C4H10, 이하 R-600)으로 이루어지는 군에서 선택되는 하나의 화합물로 이루어진 냉매 조성물이 기술되어 있으며,Publication No. 10-400345 discloses difluoromethane (CH2F2, HFC-32), 1,1,1-trifluoroethane (CH3CF3, HFC-143a) and 1,1-difluoro. Ethane (CH3CHF2, hereinafter HFC-152a), 1,1,1,2,3,3,3-heptafluoro propane (CF3CHFCF3, hereinafter HFC-227ea), isobutane (CH (CH3) 2CH3, R-600a) , 1,1,1,2,3,3-hexafluoropropane (CHF2CHFCF3, hereinafter HFC-236ea) and butane (C4H10, hereinafter R-600) refrigerant composition consisting of a compound selected from the group consisting of It is
동 공보 등록번호 제10-0540284호에는 프로판, 1,1,1,2-테트라플루오로에탄, 디메틸에테르(이하 DME라 한다) 및 이소부탄을 선택적으로 조합하여 구성되는 혼합냉매 및 이를 사용한 냉동시스템에 관한 것이다. 본 발명의 바람직한 실시예에 따른 혼합냉매는 R-290(프로판) 30 내지 98중량%, R-134a(1,1,1,2-테트라플루오로에탄), 1 내지 70중량%, RE-170(디메틸에테르) 1 내지 70중량%로 함유하는 냉매 혼합물가 공개되어 있고, Publication No. 10-0540284 discloses a mixed refrigerant comprising a combination of propane, 1,1,1,2-tetrafluoroethane, dimethyl ether (hereinafter referred to as DME) and isobutane and a refrigeration system using the same. It is about. Mixed refrigerant according to a preferred embodiment of the present invention is 30 to 98% by weight of R-290 (propane), R-134a (1,1,1,2-tetrafluoroethane), 1 to 70% by weight, RE-170 A refrigerant mixture containing 1 to 70% by weight of (dimethyl ether) is disclosed.
동 공보 등록번호 제10-540280호에는 프로필렌, 1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르 및 이소부탄을 선택적으로 조합하여 구성되는 혼합냉매 및 이를 사용한 냉동시스템에 관한 것이다. 본 발명의 바람직한 실시예에 따른 혼합냉매는 R-1270(프로필렌) 30 내지 70중량%, R-134a(1,1,1,2-테트라플루오로에탄) 1 내지 69중량%, R-152a(1,1-디플루오로에탄) 1 내지 69중량%로 구성된 냉매 조성물이 기술되어 있으며, Korean Patent No. 10-540280 discloses a mixed refrigerant composed of a selective combination of propylene, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether and isobutane and It relates to a refrigeration system used. Mixed refrigerant according to a preferred embodiment of the present invention is 30 to 70% by weight of R-1270 (propylene), 1 to 69% by weight of R-134a (1,1,1,2-tetrafluoroethane), R-152a ( 1,1-difluoroethane) 1 to 69% by weight of a refrigerant composition is described,
동 공보 등록번호 제10-305080호는 제 1 성분으로 디플루오로메탄(CH3F2, HFC-32), 제 2 성분으로 1,1,1-트리플루오로에탄(CH3CF3, HFC-143a)를 포함하고, 제 3 성분으로 사이클로프로판(C3H6, RC-270), 1,1,1,2,3,3,3-헵타플루오로프로판(CF3CHFCF3, HFC-227ea), 1,1,1,2,2-펜타플루오로프로판(CH3CF2CF3, HFC-245cb), 1,1,1,2,3,3-헥사플루오로프로판(CHF2CHFCF3, HFC-236ea), 부탄(C4H10, R-600), 비스(디플루오로메틸)에테르(CHF2OCHF2, HFE-134) 및 펜타플루오로에틸메틸에테르(CF3CF2OCH3, HFE-245)로 이루어진 군중에서 선택된 어느 한 성분으로 이루어진 HCFC-22로 함유하는 냉매 혼합물가 공개되어 있고, Publication No. 10-305080 includes difluoromethane (CH3F2, HFC-32) as the first component and 1,1,1-trifluoroethane (CH3CF3, HFC-143a) as the second component. Cyclopropane (C3H6, RC-270), 1,1,1,2,3,3,3-heptafluoropropane (CF3CHFCF3, HFC-227ea), 1,1,1,2,2 Pentafluoropropane (CH3CF2CF3, HFC-245cb), 1,1,1,2,3,3-hexafluoropropane (CHF2CHFCF3, HFC-236ea), butane (C4H10, R-600), bis (difluoro A refrigerant mixture containing HCFC-22 consisting of any one component selected from the group consisting of rhomethyl) ether (CHF 2 OCHF 2, HFE-134) and pentafluoroethylmethyl ether (CF 3 CF 2 OCH 3, HFE-245) is disclosed,
동 공보 등록번호 제10-305905호는 제1 성분으로 디플루오로메탄(CH 3 F 2 , HFC-32)을 포함하고, 제 2 성분 및 제 3 성분으로 퍼플루오로프로판(C 3 F 8 , PFC-218)과 1,1-디플루오로에탄(CH 3 CHF 2 , HFC-152a), 또는 사이클로프로판(C 3 H 6 , RC-270)과 1,1,1,2,2-펜타플루오로프로판(CH 3 CF 2 CF 3 , HFC-245cb), 또는 부탄(C 4 H 10 , R-600)과 비스(디플루오로메틸)에테르(CHF 2 OCHF 2 , HFE-134)를 포함하는 HCFC-22 대체용 냉매 조성물이 기술되어 있으며,Korean Patent Publication No. 10-305905 includes difluoromethane (CH 3 F 2, HFC-32) as a first component, and perfluoropropane (C 3 F 8, 2) as a second component and a third component. PFC-218) and 1,1-difluoroethane (CH 3 CHF 2, HFC-152a), or cyclopropane (C 3 H 6, RC-270) and 1,1,1,2,2-pentafluoro HCFC comprising lopropanane (CH 3 CF 2 CF 3, HFC-245cb), or butane (C 4 H 10, R-600) and bis (difluoromethyl) ether (CHF 2 OCHF 2, HFE-134) -22 alternative refrigerant compositions are described,
동 공보 등록번호 제10-0333503호에는 제 1 성분으로 디플루오로메탄(CH 3 F 2 , HFC-32), 제 2 성분으로 1,1,1-트리플루오로에탄(CH 3 CF 3 , HFC-143a)를 포함하고, 제 3 성분으로 사이클로프로판(C 3 H 6 , RC-270), 1,1,1,2,3,3,3-헵타플루오로프로판(CF 3 CHFCF 3 , HFC-227ea), 1,1,1,2,2-펜타플루오로프로판(CH 3 CF 2 CF 3 , HFC-245cb), 1,1,1,2,3,3-헥사플루오로프로판(CHF 2 CHFCF 3 , HFC-236ea), 부탄(C 4 H 10 , R-600), 비스(디플루오로메틸)에테르(CHF 2 OCHF 2 , HFE-134) 및 펜타플루오로에틸메틸에테르(CF 3 CF 2 OCH 3 , HFE-245)로 이루어진 군 중에서 선택된 어느 한 성분으로 이루어진 HCFC-22로 함유하는 냉매 혼합물가 공개되어 있고, Publication No. 10-0333503 discloses difluoromethane (CH 3 F 2, HFC-32) as the first component and 1,1,1-trifluoroethane (CH 3 CF 3, HFC as the second component. -143a), and as a third component cyclopropane (C 3 H 6, RC-270), 1,1,1,2,3,3,3-heptafluoropropane (CF 3 CHFCF 3, HFC- 227ea), 1,1,1,2,2-pentafluoropropane (CH 3 CF 2 CF 3, HFC-245cb), 1,1,1,2,3,3-hexafluoropropane (CHF 2 CHFCF 3, HFC-236ea), butane (C 4 H 10, R-600), bis (difluoromethyl) ether (CHF 2 OCHF 2, HFE-134) and pentafluoroethylmethylether (CF 3 CF 2 OCH 3, HFE-245) is disclosed a refrigerant mixture containing HCFC-22 consisting of any one component selected from the group consisting of,
동 공보 등록번호 제10-0682828호에는 R-22 대체냉매로서, 디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다), 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다), 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다) 구성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물이 기술되어 있으며,Publication No. 10-0682828 discloses an alternative refrigerant to R-22, difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter). Chlorodifluoromethane replacement (tertiary) azeotropic mixed refrigerant compositions composed of 'HFC-134a'), trifluoroiodomethane (CF3I, hereinafter referred to as "13I1"),
동 공보 등록번호 제10-0492172호에는 프로필렌, 1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르 및 이소부탄을 선택적으로 조합하여 구성되는 혼합냉매 및 이를 사용한 냉동시스템에 관한 것이다. 본 발명의 바람직한 실시예에 따른 혼합냉매는 R-1270(프로필렌) 30 내지 70중량부, R-134a(1,1,1,2-테트라플루오로에탄) 1 내지 69중량부, R-152a(1,1-디플루오로에탄) 1 내지 69중량부로 함유하는 냉매 혼합물가 공개되어 있고, Korean Patent Publication No. 10-0492172 discloses a mixed refrigerant composed by selectively combining propylene, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethylether and isobutane and It relates to a refrigeration system used. Mixed refrigerant according to a preferred embodiment of the present invention is 30 to 70 parts by weight of R-1270 (propylene), 1 to 69 parts by weight of R-134a (1,1,1,2-tetrafluoroethane), R-152a ( 1,1-difluoroethane) 1 to 69 parts by weight of a refrigerant mixture is disclosed,
국내공개특허공보 공개번호 제10-2005-0057852호에는 디플루오로메탄(CH2F2, 이하 HFC-32)과| 1,1,1-트리플루오로에탄(CH3CF3, 이하 HFC-143a라 함)과 사이클로프로판(C3H6, 이하 RC-270) 또는 프로판(C3H8, 이하 R-290) 중에서 선택되는 하나의 화합물로 이루어지는 냉매 조성물이 공개되어 있음을 알 수 있다.Korean Patent Publication No. 10-2005-0057852 discloses difluoromethane (CH2F2, hereinafter HFC-32) and | Refrigerant consisting of 1,1,1-trifluoroethane (CH3CF3, hereinafter HFC-143a), cyclopropane (C3H6, rc-270) or propane (C3H8, hereinafter R-290) It can be seen that the composition is disclosed.
기존에 사용되어온 냉매조성 물과 유사한 냉동효과를 나타내어야 하고, 또한 기존 냉매와 비슷한 증기압을 가져서 궁극적으로 비슷한 체적용량(Volumetric capacity, VC)을 제공해야 하는데, 종래의 개발된 냉매조성 물을 살펴보면, 순수 물질로 기존 냉매를 대체하는 경우에는 대체냉매의 체적용량이 달라서 필연적으로 압축기를 바꾸거나 기존의 응축기나 증발기를 크게 개조하여야 하며, 또 기존 냉매와 비슷한 성능계수를 얻기가 매우 어려운 문제점을 해결하고자 하는 과제인 것이다. It should have a similar refrigerating effect as the refrigerant composition used in the past, and also have a similar vapor pressure as the existing refrigerant and ultimately provide a similar volumetric capacity (VC). Looking at the conventionally developed refrigerant composition, In case of replacing the existing refrigerant with pure material, it is necessary to change the compressor or greatly modify the existing condenser or evaporator because the volume of the replacement refrigerant is different, and to solve the problem that it is very difficult to obtain the performance coefficient similar to the existing refrigerant. It is a task to do.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 1,1-디플루오로에탄 (R-152a)을 55~65 kg, 트리플루오르메틸아이오드(CF3I)을 10~25 kg, 프로필렌(R-1270)을 10~19 kg,프로판 (R-290)을 3~5 kg,에탄 (R-170)을 2~5 kg, 핵사 메틸 실리콘 오일을 0.1~1.5 kg,으로 조성되어 있으며, 오존층 파괴지수가 (ODP=0) 이며, 지구 온난화 지수가(GWP=79) 인 냉매조성물을 제공하는 것이 과제 해결 수단인 것이다.In order to solve the above problems, the present invention is 55 to 65 kg of 1,1-difluoroethane (R-152a), 10 to 25 kg of trifluoromethyl iodine (CF3I), propylene (R-1270) 10 ~ 19 kg), propane (R-290) 3 ~ 5 kg, ethane (R-170) 2 ~ 5 kg, nucleated methyl silicone oil 0.1 ~ 1.5 kg, and the ozone layer destruction index The problem solving means is to provide a refrigerant composition having (ODP = 0) and a global warming index (GWP = 79).
발명의 냉매 조성물은 The refrigerant composition of the invention
1) 혼합냉매를 구성하는 물질의 오존층파괴지수가 0.0이므로 냉매의 유출이 있거나 냉매를 폐기하는 경우에도 지구의 오존층파괴를 방지할 수 있는 현저한 효과가 있으며1) Since the ozone layer destruction index of the material constituting the mixed refrigerant is 0.0, there is a remarkable effect of preventing the destruction of the earth's ozone layer even when the refrigerant flows out or discards the refrigerant.
2) 기존의 R-134a가 가지는 지구 온난화 지수 1,300 보다 훨씬 더 낮은 GWP 79 로 낮출 수 있고.2) It can be lowered to GWP 79 which is much lower than the existing global warming index of 1,300 of R-134a.
3) 본 발명에 따른 혼합냉매는 근 공비를 이루는 혼합냉매이므로 상변화에 따른 조성의 변화가 없어, 순수 냉매를 사용하는 경우와 같이 냉동시스템을 변경하지 않고 곧바로 냉매만 교체하여 안정적으로 사용할 수 있고.3) Since the mixed refrigerant according to the present invention is a mixed refrigerant forming a near azeotropy, there is no change in composition due to the phase change, and thus it is possible to stably replace the refrigerant immediately without changing the refrigeration system as in the case of using pure refrigerant. .
4)냉매 유출시의 조성 분리 현상으로 인한 냉동 효과의 변동이 없고 냉매 유출 시 보충만으로도 사용 가능하며.4) There is no change in the freezing effect due to the composition separation during the outflow of the refrigerant, and it can be used only by replenishing the outflow of the refrigerant.
5)본 발명에 따른 혼합냉매를 사용하면 냉동/공조기의 열효율을 개선 할 수 있을 뿐 아니라, 기존의 윤활유인 PAG의 오일과 호환성이 좋고.5) By using the mixed refrigerant according to the present invention can not only improve the thermal efficiency of the refrigerating / air conditioning, but also compatible with the oil of the existing lubricating oil PAG.
6)본 발명에 따른 냉매를 사용하면 냉동효과가 5~10% 이상 더 뛰나 에너지 절감효과가 있는 것이다.6) When the refrigerant according to the present invention is used, the refrigeration effect is 5 to 10% or more, which is an energy saving effect.
도1 본 발명에서 사용한 일반적인 냉동/공조기의 구성도1 is a block diagram of a general refrigeration / air conditioner used in the present invention
도2 본 발명의 REFPROP6.0의 프로그램에 의하여 얻어진 3원 혼합 Figure 2 Ternary mixture obtained by the program of REFPROP6.0 of the present invention
냉매조성물의 온도 구배 선도     Temperature gradient diagram of refrigerant composition
도3 냉매조성물의 압력-엔 탈피선도Figure 3 is a pressure-en stripping diagram of the refrigerant composition
도4 본 발명의 냉매조성물에 의해 최소화된 압력-엔 탈피선도 4 is a pressure-en stripping diagram minimized by the refrigerant composition of the present invention.
도5 R-134a의 압력-엔 탈피선도 Figure 5 Pressure-En Stripping Diagram of R-134a
도6 YM-1234A의 압력-엔 탈피선도Fig. 6- Pressure stripping diagram of YM-1234A
도7 YM-1234A의 제 1 최선의 조건 냉매의 최악 조성으로, 60%충전 시 7 is the worst composition of the first best condition refrigerant of YM-1234A, when 60% charge
-18.28℃에서 액체 누출시의 조성 분리 험 결과도     Result of composition separation test in case of liquid leakage at -18.28 ℃
도8 YM-1234A1 제 2 최선의 조건 냉매의 최악 조성 60%충전 시8 YM-1234A1 2nd best condition at the time of the worst composition 60% charge of the refrigerant
-18.28℃에서 액체 누출시의 조성 분리 실험 결과도     The result of composition separation experiment in case of liquid leakage at -18.28 ℃
도9 YM-1234A 제 1 최선의 조건 최악의 조성, 15% 충전 시9 YM-1234A first best condition worst composition at 15% charge
-18.28℃에서 기체 누출시의 조성 분리 실험 결과도     The result of composition separation experiment at the time of gas leakage at -18.28 ℃
도10 YM-1234A1 제 2 최선의 조건 냉매의 최악의 조성 15% 충전진 시 -18.28℃에서 기체 누출시의 조성분리 실험 결과도Fig. 10 YM-1234A1 second best condition worst composition of refrigerant composition separation test result at the time of gas leakage at -18.28 ℃ when 15% filled
1,1-디플루오로에탄 (R-152a) 65kg, 트리플루오르메틸아이오드 (CF3I) 20kg, 프로필렌 (R-1270) 14.9kg, 핵사 메틸 실리콘오일 0.1kg,을 혼합하여 냉매조성물을 제조하였다.A refrigerant composition was prepared by mixing 65 kg of 1,1-difluoroethane (R-152a), 20 kg of trifluoromethyl iodide (CF3I), 14.9 kg of propylene (R-1270), and 0.1 kg of nucleated methyl silicone oil.
상기와 같은 목적을 달성하기 위하여 본 발명은 에탄계인 1,1-디플루오로에탄 (R-152a)을 55~65 kg, 트리플루오르메틸아이오드(CF3I)을 10~25 kg, 프로필렌(R-1270)을 10~19 kg,프로판 (R-290)을 3~5 kg,에탄 (R-170)을 2~5 kg, 핵사 메틸 실리콘 오일을 0.1~1.5 kg,으로 조성되어 있으며, 오존층 파괴지수가 (ODP=0) 이며, 지구 온난화 지수가(GWP=79) 인 냉매조성물에 관한 것이다.In order to achieve the above object, the present invention provides 55 to 65 kg of ethane-based 1,1-difluoroethane (R-152a), 10 to 25 kg of trifluoromethyl iodine (CF3I), and propylene (R- 1270) 10 ~ 19 kg, propane (R-290) 3 ~ 5 kg, ethane (R-170) 2 ~ 5 kg, nucleated methyl silicone oil 0.1 ~ 1.5 kg, the ozone layer destruction index Is (ODP = 0) and relates to a refrigerant composition having a global warming index (GWP = 79).
일반적으로 혼합 냉매는, 냉매 간의 끓는점(Boiling Point)이 서로 다르기 때문에 혼합이 잘 되지 않아 서로 분리되어 온도 구배가 생기게 됨으로, 이온도 구배가 최소한 1℃ 이내인 근공비성 혼합 냉매조성물을 개발하는데 매우 어려움이 있다. In general, mixed refrigerants have different boiling points (boiling points) between the refrigerants, so they are not mixed well and thus are separated from each other, resulting in a temperature gradient. Therefore, it is very difficult to develop a near azeotropic mixed refrigerant composition having an ionic gradient within at least 1 ° C. There is this.
본 발명에서는 온도 구배의 문제를 해결하기 위해, 핵사메틸실리콘오일을 본 발명자에 의해 선택되어 조합된 혼합냉매에 첨가제로 첨가함으로써, 상기 온도 구배를 최소화한 근 공비 성 혼합 냉매조성물을 얻을 수 있게 하였다.In the present invention, in order to solve the problem of temperature gradient, nucleated methylsilicon oil is added as an additive to the mixed refrigerant selected and combined by the present inventors, thereby obtaining a near azeotropic mixed refrigerant composition which minimizes the temperature gradient. .
상기와 같은 조성을 가지는 본 발명에 따른 냉매조성물은 오존파괴지수 (ODP)가 0.0이고, 증발 시 온도 구배가 1℃ 이내인 근 공비 성 혼합 냉매조성물이므로 기존의 순수 냉매처럼 사용할 수 있으며, 또 R-134a의 성능계수(COP)와 체적용량(VC)에 근접하거나 높은 값을 가지므로 냉동 시스템의 어떠한 부품도 바꿀 필요가 없어, 종전 사용되어오던 R-134a의 대체 냉매로서 사용이 가능하다.The refrigerant composition according to the present invention having the composition as described above is an azeotropic mixed refrigerant composition having an ozone depletion index (ODP) of 0.0 and a temperature gradient of 1 ° C. or less when evaporated, and thus can be used like a conventional pure refrigerant. It has a value close to or higher than the 134a coefficient of performance (COP) and the volumetric capacity (VC), so it is not necessary to change any parts of the refrigeration system, so it can be used as a replacement refrigerant of R-134a.
상기와 같이, 본 발명에 따른 근 공비 성 대체 혼합 냉매조성물을 개발하기 위하여, 본 발명자는 냉동/공조기의 성능을 모사하는 미국 표준 연구소(National Institute of Standards and Technology)에서 개발한 CYCLE-D 프로그램을 사용하였다. 프로그램을 통해 냉동/공조기를 구성하는 요소들 예를 들어 열 교환기 및 압축기 등에 대한 열역학 및 열전달 해석을 수행하였고 최종적으로 이 모든 것을 조합하여 사용했다. As described above, in order to develop a near azeotropic alternative mixed refrigerant composition according to the present invention, the present inventors have developed the CYCLE-D program developed by the National Institute of Standards and Technology to simulate the performance of the refrigeration / air conditioner Used. The program performed thermodynamic and heat transfer analyzes of the components that make up the refrigeration / air conditioner, such as heat exchangers and compressors, and finally all of them were used in combination.
프로그램의 정확도를 결정하는 중요 인자 중 하나는 냉매조성물의 물성 치이다. 본 프로그램에서는 미국, 일본 등에서 기준으로 삼고 있는 Carnahan-Starling-De Santis (CSD) 냉매 상태방정식을 이용하여 여러 냉매에 대해 기포가 생기는 기포 점(Bubble Point)과 기체가 응축하여 이슬점을 만드는 이슬점(Dew Point)을 계산하고, 근 공비 성 3원 냉매의 온도 구배 선도를 만들었다. One of the important factors that determine the accuracy of the program is the properties of the refrigerant composition. The program uses the Carnahan-Starling-De Santis (CSD) refrigerant state equation, which is based in the United States and Japan, as a bubble point for various refrigerants, and the dew point at which dew condenses as the gas condenses. Point) and a temperature gradient plot of the near azeotropic ternary refrigerant.
REFPROP으로 알려진 CSD 냉매 상태방정식은 미국 표준 연구소(National Institute of Standards and Technology)에서 개발한 것으로 정확성 및 적용 성이 이미 입증되어 전 세계 냉동/공조 관련 유수 기업, 연구소, 대학에서 가장 널리 사용되는 프로그램이다. 이번에 만든 혼합냉매 개발 및 실행을 위한 입력 데이터로는 가능한 한 실제 데이터를 사용했다.The CSD refrigerant state equation, known as REFPROP, was developed by the National Institute of Standards and Technology and is the most widely used program in leading refrigeration and air conditioning companies, research institutes, and universities worldwide for its proven accuracy and applicability. . The actual data was used as input data for the development and execution of the mixed refrigerant.
본 발명자는 대체 냉매의 오존파괴지수가(ODP)가 반드시 0.0이어야 하며, 가능한 한 지구 온난화 지수(GWP) 가 낮아야 한다는 판단 하에, 상기 프로그램을 이용하여, 본 발명을 개발하였다. The present inventors have developed the present invention using the above program in the determination that the ozone depletion index (ODP) of the alternative refrigerant must be 0.0 and the global warming index (GWP) should be as low as possible.
본 발명의 냉매조성물은 오존층을 파괴할 염려가 없고, 온도 구배 (TG) 가 1℃ 이내 이며 지구 온난화 지수(GWP)가 79 인 근 공비 성 혼합 냉매조성물인 것이다. The refrigerant composition of the present invention is a near azeotropic mixed refrigerant composition having no fear of destroying the ozone layer, having a temperature gradient (TG) of 1 ° C and a global warming index (GWP) of 79.
이하에서는 본 발명의 바람직한 실시 예에 따른 근 공비 성 혼합냉매에 대하여 상세히 설명하기로 한다. 단, 하기 실시 예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시 예에 의해 한정이 되는 것은 아니다.Hereinafter, a near azeotropic mixed refrigerant according to a preferred embodiment of the present invention will be described in detail. However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.
실시예1(제1최선의 조건)Example 1 (First Best Condition)
1,1-디플루오로에탄 (R-152a) 65kg, 트리플루오르메틸아이오드 (CF3I) 20kg, 프로필렌 (R-1270) 14.9kg, 핵사 메틸 실리콘오일 0.1kg,을 혼합하여 냉매조성물을 제조하였다.A refrigerant composition was prepared by mixing 65 kg of 1,1-difluoroethane (R-152a), 20 kg of trifluoromethyl iodide (CF3I), 14.9 kg of propylene (R-1270), and 0.1 kg of nucleated methyl silicone oil.
실시예2(제2최선의 조건)Example 2 (second best condition)
1,1-디플루오로에탄 (R-152a) 60 kg, 트리플루오르메틸아이오드 (CF3I) 20 kg, 프로필렌 (R-1270) 14.9 kg, 프로판 (R-290) 3 kg, 에탄 (R-170) 2 kg, 핵사 메틸 실리콘 오일 0.1 kg, 을 혼합하여 냉매조성물을 제조하였다.60 kg 1,1-difluoroethane (R-152a), 20 kg trifluoromethyliodine (CF3I), 14.9 kg propylene (R-1270), 3 kg propane (R-290), ethane (R-170 2), 0.1 kg of nucleated methyl silicone oil, were mixed to prepare a refrigerant composition.
실시예3(제1최악의 조건)Example 3 (First Worst Condition)
1,1-디플루오로에탄 (R-152a) 65kg, 트리플루오르메틸아이오드 (CF3I) 19 kg, 프로필렌 (R-1270) 15.9 kg, 핵사 메틸 실리콘오일 0.1 kg,을 혼합하여 냉매조성물을 제조하였다.A refrigerant composition was prepared by mixing 65 kg of 1,1-difluoroethane (R-152a), 19 kg of trifluoromethyl iodide (CF3I), 15.9 kg of propylene (R-1270), and 0.1 kg of nucleated methyl silicone oil. .
실시예4(제2최악의 조건)Example 4 (second worst condition)
1,1-디플루오로에탄 (R-152a) 60kg, 트리플루오르메틸아이오드 (CF3I) 19kg, 프로필렌(R-1270) 15.9 kg, 프로판(R-290) 3kg, 에탄 (R-170) 2kg, 및 핵사 메틸 실리콘 오일 0.1 kg,을 혼합하여 냉매조성물을 제조하였다.60 kg of 1,1-difluoroethane (R-152a), 19 kg of trifluoromethyl iodine (CF3I), 15.9 kg of propylene (R-1270), 3 kg of propane (R-290), 2 kg of ethane (R-170), And 0.1 kg of nucleated methyl silicone oil were mixed to prepare a refrigerant composition.
본 발명의 냉매조성물의 조성은 에탄계인 1,1-디플루오로에탄 (R-152a) 55~65 kg,트리플루오르메틸아이오드(CF3I) 10~20 kg, 프로필렌(R-1270) 10~19 kg, 핵사 메틸 실리콘 오일을 0.1~1.5 kg로 조성되어 있거나,The composition of the refrigerant composition of the present invention is 55 to 65 kg of ethane-based 1,1-difluoroethane (R-152a), 10 to 20 kg of trifluoromethyl iodide (CF3I), and 10 to 19 propylene (R-1270) kg, 0.1-1.5 kg of nucleated methyl silicone oil, or
에탄계인 1,1-디플루오로에탄 (R-152a) 55~65 kg, 트리플루오르메틸 아이오드(CF3I) 10~25 kg, 프로필렌(R-1270) 10~19 kg,에탄 (R-170) 2~5 kg, 프로판 (R-290) 3~5 kg, 핵사 메틸 실리콘 오일을 0.1~1.5 kg로 조성되어 있으며, 오존층 파괴지수가 (ODP=0) 이며, 지구 온난화 지수가(GWP=79) 인 냉매조성물인 것이다.Ethane-based 1,1-difluoroethane (R-152a) 55-65 kg, trifluoromethyl iodine (CF3I) 10-25 kg, propylene (R-1270) 10-19 kg, ethane (R-170) 2 ~ 5 kg, propane (R-290) 3 ~ 5 kg, nucleated methyl silicone oil 0.1 ~ 1.5 kg, ozone depletion index (ODP = 0), global warming potential (GWP = 79) Phosphorus refrigerant composition.
실험예 1 (이론적 및 실제 온도 구배 시험)Experimental Example 1 (Theoretical and Actual Temperature Gradient Test)
도 2 본 발명의 REFPROP6.0의 프로그램에 의하여 얻어진 3원 혼합 냉매조성물의 온도 구배 선도를 나타낸 것이다. 그러나 본 발명의 목적인 근 공비 냉매조성물을 조성하기 위하여 첨가제를 넣은 다음 도 1 의 실험 장치에 실험하여 얻은 결과를 도 4 와 같이 온도 구배가 최소화되었음을 알 수 있었다. Figure 2 shows the temperature gradient diagram of the ternary mixed refrigerant composition obtained by the program of REFPROP6.0 of the present invention. However, it was found that the temperature gradient was minimized as shown in FIG. 4, after the additive was added to form a near azeotropic refrigerant composition, which is an object of the present invention.
실험예 2(조성 분리 실험)Experimental Example 2 (Composition Separation Experiment)
본 발명의 냉매조성물이 근 공비임을 확인하기 위하여 조성 분리 실험을 실시하였다. 본 실험에서는 미국의 표준연구소에서 개발한 REFLEAK 프로그램을 사용하여 최악의 조성(실시 예3)을 결정하였다. REFLEAK은 위에서 설명한 REFPROP 프로그램을 사용하여 기체 상태나 액체 상태로 누출이 있을 경우 최악의 조성을 결정해 주는 프로그램이다. In order to confirm that the refrigerant composition of the present invention is near azeotropy, a composition separation experiment was performed. In this experiment, the worst composition (Example 3) was determined using the REFLEAK program developed by the US Standards Research Institute. REFLEAK is a program that uses the REFPROP program described above to determine the worst case composition in case of a leak in gas or liquid.
UL2182 기준은 몇몇 온도 조건 하에서 용기 내에 액체 냉매가 90% 충전되었을 경우와 15% 충전되었을 경우에 대해 조성 분리 해석을 통해 최악의 조건을 결정할 것을 요구하고 있다. 그래서 본 발명의 냉매조성물의 경우 다음과 같은 3가지 온도조건 하에서 조성 분리 해석을 수행하였다.   The UL2182 standard requires compositional analysis to determine the worst case for a case where a liquid refrigerant is 90% charged and 15% charged in a vessel under some temperature conditions. Thus, in the case of the refrigerant composition of the present invention, the composition separation analysis was performed under the following three temperature conditions.
90% 충전 시 : -18.28℃, 25.0℃, 54.4℃ 90% charge: -18.28 ℃, 25.0 ℃, 54.4 ℃
15% 충전 시 : -18.28℃, 25.0℃, 60.0℃ 15% charge: -18.28 ℃, 25.0 ℃, 60.0 ℃
조성 분리 해석을 하기 위해서는 조성에 대해 다음과 같은 정의를 내렸다.   For composition separation analysis, the following definitions were made for composition.
충전 조성 : 처음에 배합해서 판매되는 냉매의 조성 Filling composition: composition of the refrigerant that is initially formulated and sold
최악 충전 조성 : 배합 시 오차가 있을 수밖에 없으므로 가연성 냉매가 가장 많이 배합된 조성. 냉매 배합 기계의 오차에 따라 다르며 충전 조성보다 가연성 냉매의 량이 보통 1% 정도 많은 것을 최악 충전 조성으로 정하였다. Worst-filled composition: The most mixed composition of flammable refrigerants due to the error in formulation. Depending on the error of the refrigerant blending machine, the amount of flammable refrigerant is usually 1% higher than that of the filling composition.
상기와 같은 정의에 따라, 본 발명의 냉매에 있어서 충전 조성과 최악 충진 조성은 다음과 같이 결정하였다. According to the above definition, the filling composition and the worst filling composition in the refrigerant of the present invention were determined as follows.
최선의 충전 조성은 The best filling composition
1)R-152a 65중량%/R-CF3I 20중량%/R-1270 14.9중량%/첨가제를 0.1중량%. 1) 65% by weight of R-152a / 20% by weight of R-CF3I / 14.9% by weight of R-1270 / 0.1% by weight of additive.
2)R-152a 60중량%/R-CF3I 20중량%/R-1270 14.9중량%/R-290 3중량%/R-170 2) 60% by weight R-152a / 20% by weight R-CF3I / 14.9% by weight R-1270 / 3% by weight R-290 / R-170
2중량%/첨가제를 0.1중량%이며.2 wt% / additive is 0.1 wt%.
최악의 충전 조성은 Worst charge composition
1)R-152a 65중량%/R-CF3I 19중량%/R-1270 15.9중량%/첨가제를 0.1중량%. 1) 65% by weight of R-152a / 19% by weight of R-CF3I / 15.9% by weight of R-1270 / 0.1% by weight of additive.
2)R-152a 60중량%/R-CF3I 19중량%/R-1270 15.9중량%/R-290 3중량%/ R-170 2중량%/ 첨가제를 0.1중량%로 하였다.2) 60 wt% of R-152a / 19 wt% of R-CF3I / 15.9 wt% of R-1270 / 3 wt% of R-290 / 2 wt% of R-170 / 0.1 wt% of the additive was used.
상기 조건들을 정한 뒤, 위에서 정한 온도에서 프로그램을 돌려 최악 누출 조성을 결정하였다. REFLEAK 프로그램은 15% 충전의 경우 아무 문제없이 최악 누출 조성을 계산했지만, 90% 충전의 경우 -18.28℃와 25℃에서는 자체 내의 수렴 판정 문제로 인해 해를 내지 못하였는데 이런 경우에는 90% 충진 미만에서 해를 구한 뒤 외사 법에 의해 값을 구해도 되는 것으로 알려져 있다.After setting the above conditions, the program was run at the temperature specified above to determine the worst leakage composition. The REFLEAK program calculated the worst leakage composition with no problem for 15% filling, but did not do harm due to its own convergence judgment problem at -18.28 ° C and 25 ° C for 90% charge, in which case less than 90% fill It is known that the value may be obtained by an external method after obtaining.
최선의 혼합 냉매조성물 Best mixed refrigerant composition
R-152a 65중량%/R-CF3I 20중량%/R-1270 14.9중량%/첨가제를 0.1중량%.를65% by weight R-152a / 20% by weight R-CF3I / 14.9% by weight R-1270 / 0.1% by weight additives.
(이하 "YM-1234A")로 (Hereinafter "YM-1234A")
R-152a 60중량%/R-CF3I 20중량%/R-1270 14.9중량%/R-290 3중량%/R-17060% by weight R-152a / 20% by weight R-CF3I / 14.9% by weight R-1270 / 3% by weight R-290 / R-170
2중량%/첨가제를 0.1중량%이며. 2 wt% / additive is 0.1 wt%.
(이하 "YM-1234A1") 라 칭한다. (Hereinafter referred to as "YM-1234A1").
본 발명 냉매조성물의 경우 R-1270 이 가연성이 가장 크기 때문에 최악의 충진 조성 냉매의 최악 누출 조성은 R-1270의 양이 가장 많은 경우에 생겼다. 왜냐하면 증기가 누출될 때 -18.28℃에서 액체상의 R-1270의 조성이 15.9%이기 때문이다. In the case of the refrigerant composition of the present invention, since R-1270 has the greatest flammability, the worst leakage composition of the worst-case filling composition refrigerant occurs when the amount of R-1270 is the highest. This is because the composition of the liquid R-1270 at -18.28 ° C is 15.9% when the vapor leaks.
표 1, 2 는 ""YM-1234A"및 "YM-1234A1"" 제 1 제 2 최선의 조건 냉매의 액체 및 기체 조성 분리 실험을 나타낸 것이고, 표 3, 4 는 ""YM-1234A"및"YM-1234A1""의 제 1 제 2 최선의 조건 냉매의 액체 및 기체 조성물에 대한 최악의 조건에서 액체와 기체가 새어 15%남아 있을 경우의 조성 분리 실험 결과를 나타낸 것이다. 다만 첨가제는 그 량이 작아 무시 하였다.Tables 1 and 2 show the liquid and gas composition separation experiments of the first " YM-1234A " and " YM-1234A1 " first second best condition refrigerants, and Tables 3 and 4 show " YM-1234A " The results of the composition separation experiments in which 15% of the liquid and gas leaked out under the worst conditions for the liquid and gas composition of the first second best condition refrigerant of YM-1234A1 "" are shown. However, the additive was ignored because of its small amount.
표 1 "YM-1234A"제 1 최선의 조건 냉매의 액체 및 기체 조성 분리 실험 결과
시험 온도 기체 누출(중량%) 액체 누출(중량%)
-18.28℃ (60%충전) 실험 (1) (L) 64.9857/19.9978/15.0165 (V) 65.0243/19,9922/14.9835 실험 (2) (L) 64.9827/19.9988/15.0140 (V) 65.0043/19,9942/15.0015
25℃ (85% 충전) 실험 (3) (L) 65.0150/19.9865/14.9985 (V) 65.0027/19,9938/15.0035 실험 (4) (L) 65.0197/19.9838/14.9965 (V) 65.0243/19,9659/15.0098
54.4℃ (90%충전) 실험(5) (L) 64.9868/19.9987/15.0145 (V) 65.0113/19,9952/14.9935 실험(6) (L) 64.9968/19.9967/15.0047 (V) 65.0093/19,9972/14.9935
Table 1 "YM-1234A" first best condition liquid and gas composition separation experiment results of refrigerant
Test temperature Gas leak (% by weight) Liquid Leak (wt%)
-18.28 ℃ (60% charge) Experiment (1) (L) 64.9857 / 19.9978 / 15.0165 (V) 65.0243 / 19,9922 / 14.9835 Experiment (2) (L) 64.9827 / 19.9988 / 15.0140 (V) 65.0043 / 19,9942 / 15.0015
25 ° C (85% charge) Experiment (3) (L) 65.0150 / 19.9865 / 14.9985 (V) 65.0027 / 19,9938 / 15.0035 Experiment (4) (L) 65.0197 / 19.9838 / 14.9965 (V) 65.0243 / 19,9659 / 15.0098
54.4 ℃ (90% charge) Experiment (5) (L) 64.9868 / 19.9987 / 15.0145 (V) 65.0113 / 19,9952 / 14.9935 Experiment (6) (L) 64.9968 / 19.9967 / 15.0047 (V) 65.0093 / 19,9972 / 14.9935
표 2 "YM-1234A1"제 2 최선의 조건 냉매의 액체 및 기체 조성 분리 실험 결과
시험 온도 기체 누출(중량%) 액체 누출(중량%)
-18.28℃ (60% 충전) 실험 (1) (L) 60.0081/20.0191/14.8713/ 3.0626/2.0452 (V) 60.0224/20.0604/14.9076/ 3.0225/1.9871 실험 (2) (L) 60.0194/20.0209/14.9001/ 3.0222/2.0374 (V) 59.9943/20.0542/14.9647/ 3.0094/1.9774
25℃ (85% 충전) 실험 (3) (L) 60.0301/20.1900/14.8839/ 2.8981/1.9979 (V) 59.9987/20.2070/14.8732/ 2.9040/2.0171 실험 (4) (L) 59.9799/20.0019/14.9020/ 3.0325/2.0837 (V) 60.0341/19.9898/14.9128/ 2.9697/2.0234
54.4℃ (90% 충전) 실험 (5) (L) 60.0783/20.0011/14.9534/ 2.9705/1.9967 (V) 59.9809/19.9980/14.9011/ 3.1107/2.0093 실험 (6) (L) 60.0474/19.9654/14.9298/ 3.0475/2.0099 (V) 59.9470/20.0921/14.8945/ 3.0391/2.0273
TABLE 2 "YM-1234A1" second best condition liquid and gas composition separation experiment results of refrigerant
Test temperature Gas leak (% by weight) Liquid Leak (wt%)
-18.28 ℃ (60% charge) Experiment (1) (L) 60.0081 / 20.0191 / 14.8713 / 3.0626 / 2.0452 (V) 60.0224 / 20.0604 / 14.9076 / 3.0225 / 1.9871 Experiment (2) (L) 60.0194 / 20.0209 / 14.9001 / 3.0222 / 2.0374 (V) 59.9943 / 20.0542 / 14.9647 / 3.0094 / 1.9774
25 ° C (85% charge) Experiment (3) (L) 60.0301 / 20.1900 / 14.8839 / 2.8981 / 1.9979 (V) 59.9987 / 20.2070 / 14.8732 / 2.9040 / 2.0171 Experiment (4) (L) 59.9799 / 20.0019 / 14.9020 / 3.0325 / 2.0837 (V) 60.0341 / 19.9898 / 14.9128 / 2.9697 / 2.0234
54.4 ° C (90% charge) Experiment (5) (L) 60.0783 / 20.0011 / 14.9534 / 2.9705 / 1.9967 (V) 59.9809 / 19.9980 / 14.9011 / 3.1107 / 2.0093 Experiment (6) (L) 60.0474 / 19.9654 / 14.9298 / 3.0475 / 2.0099 (V) 59.9470 / 20.0921 / 14.8945 / 3.0391 / 2.0273
표 3 "YM-1234A"제 1 최선의 조건 냉매의 액체 및 기체 조성물에 대한 최악의 조건에서 액체와 기체가 새어 15%남아 있을 경우의 조성 분리 실험 결과
시험 온도 기체 누출(중량%) 액체 누출(중량%)
-18.28℃ (60% 충전) 실험 (1) (L) 65.0857/19.0098/15.9045 (V) 65.0943/18,9992/15.9065 실험 (2) (L) 65.0327/18.9888/15.9785 (V) 65.0143/18,9842/16.0015
25℃ (85% 충전) 실험 (3) (L) 65.0097/18.9975/15.9928 (V) 64.9827/19,0038/16.0135 실험 (4) (L) 65.0997/18.9938/15.9065 (V) 64.9843/19,0059/16.0098
54.4℃ (90% 충전) 실험 (5) (L) 64.9888/18.9967/16.0145 (V) 65.0133/19,0092/15.9775 실험 (6) (L) 65.0038/18.9897/16.0065 (V) 65.0893/19,0092/15.9015
TABLE 3 "YM-1234A" First best condition Composition separation test result when liquid and gas leak 15% at worst condition for liquid and gas composition of refrigerant
Test temperature Gas leak (% by weight) Liquid Leak (wt%)
-18.28 ℃ (60% charge) Experiment (1) (L) 65.0857 / 19.0098 / 15.9045 (V) 65.0943 / 18,9992 / 15.9065 Experiment (2) (L) 65.0327 / 18.9888 / 15.9785 (V) 65.0143 / 18,9842 / 16.0015
25 ° C (85% charge) Experiment (3) (L) 65.0097 / 18.9975 / 15.9928 (V) 64.9827 / 19,0038 / 16.0135 Experiment (4) (L) 65.0997 / 18.9938 / 15.9065 (V) 64.9843 / 19,0059 / 16.0098
54.4 ° C (90% charge) Experiment (5) (L) 64.9888 / 18.9967 / 16.0145 (V) 65.0133 / 19,0092 / 15.9775 Experiment (6) (L) 65.0038 / 18.9897 / 16.0065 (V) 65.0893 / 19,0092 / 15.9015
표 4 "YM-1234A1"제 2 최선의 조건 냉매의 액체 및 기체 조성물에 대한 최악의 조건에서 액체와 기체가 새어 15%남아 있을 경우의 조성 분리 실험 결과
시험 온도 기체 누출(중량%) 액체 누출(중량%)
-18.28℃ (60% fill) 실험 (1) (L) 60.0047/20.0043/14.9738/ 2.9680/2.0492 (V) 60.0077/20.0800/14.8099/ 0950/2.0074 실험 (2) (L) 59.9949/19.9949/14.9001/ 3.1088/2.0013 (V) 60.0039/20.0021/14.8847/ 2.9820/2.1273
25℃ (85% fill) 실험 (3) (L) 59.9878/19.9899/14.9098/ 3.0638/2.0738 (V) 60.0015/20.0070/14.9036/ 3.0815/2.0064 실험 (4) (L) 60.0007/20.0131/14.8947/ 3.0910/2.0005 (V) 59.9876/20.0024/14.8895/ 3.0552/2.0437
54.4℃ (90% fill) 실험 (5) (L) 60.0008/20.0013/14.9005/ 2.9979/2.1003 (V) 59.9799/19.9778/14.9231/ 3.0251/2.0941 실험 (6) (L) 60.0021/20.0004/14.9077/ 3.0474/2.0424 (V) 59.9998/20.0045/14.8997/ 2.9890/2.1070
Table 4 "YM-1234A1" Second best condition Composition separation test result when liquid and gas leak 15% at worst condition for liquid and gas composition of refrigerant
Test temperature Gas leak (% by weight) Liquid Leak (wt%)
-18.28 ℃ (60% fill) Experiment (1) (L) 60.0047 / 20.0043 / 14.9738 / 2.9680 / 2.0492 (V) 60.0077 / 20.0800 / 14.8099 / 0950 / 2.0074 Experiment (2) (L) 59.9949 / 19.9949 / 14.9001 / 3.1088 / 2.0013 (V) 60.0039 / 20.0021 / 14.8847 / 2.9820 / 2.1273
25 ℃ (85% fill) Experiment (3) (L) 59.9878 / 19.9899 / 14.9098 / 3.0638 / 2.0738 (V) 60.0015 / 20.0070 / 14.9036 / 3.0815 / 2.0064 Experiment (4) (L) 60.0007 / 20.0131 / 14.8947 / 3.0910 / 2.0005 (V) 59.9876 / 20.0024 / 14.8895 / 3.0552 / 2.0437
54.4 ℃ (90% fill) Experiment (5) (L) 60.0008 / 20.0013 / 14.9005 / 2.9979 / 2.1003 (V) 59.9799 / 19.9778 / 14.9231 / 3.0251 / 2.0941 Experiment (6) (L) 60.0021 / 20.0004 / 14.9077 / 3.0474 / 2.0424 (V) 59.9998 / 20.0045 / 14.8997 / 2.9890 / 2.1070
또한 하기의 표 5 는"YM-1234A"제 1 최선의 조건 냉매의 최악의 조성으로 60% 충전 시 -18.28℃에서 액체 누출시의 조성분리 실험 결과를 나타낸 것이고, 이를 그래프로 나타낸 것이 도 7 이다. In addition, Table 5 below shows the results of the composition separation experiment at the time of liquid leakage at -18.28 ℃ at 60% charge with the worst composition of the "YM-1234A" first best condition refrigerant, Figure 7 is a graph .
표 5 "YM-1234A"제 1 최선의 조건 냉매의 최악의 조성으로 60% 충전 시 -18.28℃에서 액체 누출시의 조성분리 실험 결과
시작 온도 (℃) -18.28
시작 비율 60% 충전
시작 조성비 65.0/19.0/15.9/0.1
%별 조성비 누출 량(%) 조성 (중량%)
10 65.0847/19.0098/15.9055
20 65.0097/18.9975/15.9928
30 65.0843/19.0058/15.9099
40 64.9928/18.9967/16.0105
50 65.0023/18.9975/16.0002
60 65.0038/18.9827/16.0135
70 65.0107/19.0028/15.9865
80 65.0067/18.9985/15.9948
90 65.0038/18.9897/15.9975
99 65.0088/18.9847/16.0065
Table 5 "YM-1234A" First best condition Composition separation test result in liquid leakage at -18.28 ℃ when 60% filling with worst composition of refrigerant
Starting temperature (℃) -18.28
Start rate 60% charge
Start subsidy 65.0 / 19.0 / 15.9 / 0.1
The furtherance ratio according to% Leakage (%) Composition (wt%)
10 65.0847 / 19.0098 / 15.9055
20 65.0097 / 18.9975 / 15.9928
30 65.0843 / 19.0058 / 15.9099
40 64.9928 / 18.9967 / 16.0105
50 65.0023 / 18.9975 / 16.0002
60 65.0038 / 18.9827 / 16.0135
70 65.0107 / 19.0028 / 15.9865
80 65.0067 / 18.9985 / 15.9948
90 65.0038 / 18.9897 / 15.9975
99 65.0088 / 18.9847 / 16.0065
또한 하기의 표 6 은"YM-1234A1"제 2 최선의 조건 냉매의 최악의 조성으로 15% 충전 시 -18.28℃에서 액체 누출시의 조성분리 실험 결과를 나타낸 것이고, 이를 그래프로 나타낸 것이 도 8 이다. In addition, Table 6 below shows the results of the composition separation experiment at the time of liquid leakage at -18.28 ℃ at 15% charge with the worst composition of the "YM-1234A1" second best condition refrigerant, Figure 8 is a graph .
표 6 "YM-1234A1" 제 2 최선의 조건 냉매의 최악의 조성으로 60% 충전 시 -18.28℃에서 액체 누출시의 조성분리 실험 결과
시작 온도 (℃) -18.28
시작 비율 60% 충전
시작 조성비 60.0/20.0/14.9/3.0/2.0
%별 조성비 누출 량(%) 조성 (중량%)
10 60.0249/20.0127/14.8831/3.0049/2.0744
20 60.0125/20.0054/14.9013/3.0671/2.0137
30 60.0044/20.0037/14.9009/3.0361/2.0549
40 60.0308/20.0159/14.8974/3.0233/2.0326
50 60.0237/20.0438/14.8279/3.0123/2.0923
60 60.0190/20.0075/14.9047/2.9029/1.9949
70 60.0284/20.0847/14.8949/3.0550/1.9370
80 60.0980/20.0084/14.9043/2.9009/2.0803
90 60.1070/20.1003/14.8792/2.9089/2.0046
99 60.1049/20.0749/14.8648/2.9217/2.0337
Table 6 "YM-1234A1" Second best condition Composition separation test result in liquid leakage at -18.28 ℃ when 60% filling with worst composition of refrigerant
Starting temperature (℃) -18.28
Start rate 60% charge
Start subsidy 60.0 / 20.0 / 14.9 / 3.0 / 2.0
The furtherance ratio according to% Leakage (%) Composition (wt%)
10 60.0249 / 20.0127 / 14.8831 / 3.0049 / 2.0744
20 60.0125 / 20.0054 / 14.9013 / 3.0671 / 2.0137
30 60.0044 / 20.0037 / 14.9009 / 3.0361 / 2.0549
40 60.0308 / 20.0159 / 14.8974 / 3.0233 / 2.0326
50 60.0237 / 20.0438 / 14.8279 / 3.0123 / 2.0923
60 60.0190 / 20.0075 / 14.9047 / 2.9029 / 1.9949
70 60.0284 / 20.0847 / 14.8949 / 3.0550 / 1.9370
80 60.0980 / 20.0084 / 14.9043 / 2.9009 / 2.0803
90 60.1070 / 20.1003 / 14.8792 / 2.9089 / 2.0046
99 60.1049 / 20.0749 / 14.8648 / 2.9217 / 2.0337
또한 하기의 표 7 은"YM-1234A"제 1 최선의 조건 냉매의 최악 조성으로 15% 충전 시 -18.28℃에서 액체 누출시의 조성분리 실험 결과를 나타낸 것이고, 이를 그래프로 나타낸 것이 도 9 이다.In addition, Table 7 below shows the results of the composition separation experiment at the time of liquid leakage at -18.28 ℃ at 15% charge with the worst composition of the "YM-1234A" first best condition refrigerant, Figure 9 shows a graph.
표 7 "YM-1234A"제 1 최선의 조건 냉매의 최악의 조성으로, 15% 충전 시-18.28℃에서 기체 누출시의 조성 분리 실험 결과
시작 온도(℃) -18.28
시작 비율 15% 충전
시작 조성비 65.0/19.0/15.9/0.1
%별 조성비 누출 량 (%) 조성 (중량%)
10 65.0357/19.0098/15.9545
20 65.0297/18.9938/15.9605
30 64.9938/18.9994/16.0068
40 65.0012/19.0079/15.9909
50 65.0128/18.9985/15.9887
60 65.0092/18.9767/16.0141
70 64.9967/19.0045/15.9988
80 64.9996/18.9897/16.0107
90 65.0093/19.0048/15.9859
99 65.0088/18.9955/15.9957
TABLE 7 "YM-1234A" first best condition The composition of the composition separation at the time of gas leakage at -18.28 ℃ at 15% charge with the worst composition of the refrigerant
Start temperature (℃) -18.28
Start rate 15% charge
Start subsidy 65.0 / 19.0 / 15.9 / 0.1
The furtherance ratio according to% Leakage (%) Composition (wt%)
10 65.0357 / 19.0098 / 15.9545
20 65.0297 / 18.9938 / 15.9605
30 64.9938 / 18.9994 / 16.0068
40 65.0012 / 19.0079 / 15.9909
50 65.0128 / 18.9985 / 15.9887
60 65.0092 / 18.9767 / 16.0141
70 64.9967 / 19.0045 / 15.9988
80 64.9996 / 18.9897 / 16.0107
90 65.0093 / 19.0048 / 15.9859
99 65.0088 / 18.9955 / 15.9957
또한 하기의 표 8 은"YM-1234A1"제 2 최선의 조건 냉매의 최악 조성으로 15% 충전 시 -18.28℃에서 액체 누출시의 조성분리 실험 결과를 나타낸 것이고, 이를 그래프로 나타낸 것이 도 10 이다. In addition, Table 8 below shows the results of the composition separation experiment at the time of liquid leakage at -18.28 ℃ at 15% charge with the worst composition of the "YM-1234A1" second best condition refrigerant, Figure 10 is a graph.
표 8 "YM-1234A1"제 2 최선의 조건 냉매의 최악의 조성으로, 15% 충전 시-18.28℃에서 기체 누출시의 조성 분리 실험 결과
시작 온도 (℃) -18.28
시작 비율 15% fill
시작 조성 비 60.0/20.0/14.9/3.0/2.0
%별 조성비 누출 량 (%) 조성비(중량%)
10 60.0674/20.0433/14.9074/3.0020/1.9799
20 60.0773/20.0076/14.8428/2.9891/2.0832
30 60.0329/19.9939/14.9305/3.0328/2.0099
40 60.0445/20.0308/14.8891/3.0049/2.0307
50 60.0839/20.0177/14.8030/3.0231/2.0723
60 60.0204/20.0644/14.8991/3.0144/2.0017
70 60.0248/20.0733/14.9038/3.0108/1.9873
80 60.0841/20.0092/14.8948/3.0115/2.0004
90 60.0349/20.0249/14.9070/3.0102/2.0230
99 60.0548/20.0073/14.8947/3.0221/2.02110
Table 8 "YM-1234A1" The second best condition The composition of the composition separation at the time of gas leakage at -18.28 ℃ at 15% charge with the worst composition of the refrigerant
Starting temperature (℃) -18.28
Start rate 15% fill
Start composition ratio 60.0 / 20.0 / 14.9 / 3.0 / 2.0
The furtherance ratio according to% Leakage (%) Composition ratio (wt%)
10 60.0674 / 20.0433 / 14.9074 / 3.0020 / 1.9799
20 60.0773 / 20.0076 / 14.8428 / 2.9891 / 2.0832
30 60.0329 / 19.9939 / 14.9305 / 3.0328 / 2.0099
40 60.0445 / 20.0308 / 14.8891 / 3.0049 / 2.0307
50 60.0839 / 20.0177 / 14.8030 / 3.0231 / 2.0723
60 60.0204 / 20.0644 / 14.8991 / 3.0144 / 2.0017
70 60.0248 / 20.0733 / 14.9038 / 3.0108 / 1.9873
80 60.0841 / 20.0092 / 14.8948 / 3.0115 / 2.0004
90 60.0349 / 20.0249 / 14.9070 / 3.0102 / 2.0230
99 60.0548 / 20.0073 / 14.8947 / 3.0221 / 2.02110
실험예 3 (성능 시험)Experimental Example 3 (Performance Test)
본 발명 냉매조성물의 ""YM-1234A"및 "YM-1234A1"" 이론적 성능 및 R-134a 와의 성능을 비교하였다.The theoretical performances of "YM-1234A" and "YM-1234A1" of the refrigerant composition of the present invention and the performance with R-134a were compared.
R-134a 냉매는 가정 냉장고 및 자동차용의 공조기에 널리 사용되고 있었으나 현재 그 사용이 규제되고 있어, 이를 대체하는 냉매의 개발이 진행되고 있다. 냉매가 지구환경에 미치는 영향은 냉매자체의 영향뿐만 아니라 이 시스템이 작동되는데 사용되는 전력을 생산하는데 발생하는 이산화탄소의 영향도 고려되어야 하는데, 이를 나타내는 지수로 총 등가 온난화 지수(TEWI : total equivalent warming impact)를 사용한다. 이 지수를 기준으로 보면 가정용 냉동 공조기의 경우 냉매에 의한 직접적인 영향은 4%이며 간접적인 영향은 96%로 공조기의 효율이 냉매를 선정하는데 매우 중요하다. Refrigerant R-134a has been widely used in air conditioners for home refrigerators and automobiles, but its use is currently restricted. The impact of refrigerants on the global environment should be taken into account not only by the refrigerant itself, but also by the effects of carbon dioxide on the production of the power used to operate the system, which represents the total equivalent warming impact (TEWI). ). Based on this index, in the case of domestic refrigeration air conditioners, the direct effect of the refrigerant is 4% and the indirect effect is 96%, so the efficiency of the air conditioner is very important for selecting the refrigerant.
한편, 프레온계열에서 R-134a 보다 성능이 우수한 순수냉매는 아직 개발되지 않고 있다. On the other hand, pure refrigerant having better performance than R-134a in freon series has not been developed yet.
하기 열역학적 성능 비교에 있어서, 증발 기 온도는 0℃, 응축기의 온도는 40℃로 하였고, 증발 기 출구와 응축기출구 에서의 과열온도와 과랭온도는 없는 것으로 하였으며, 압축기 입 출구는 등 엔트로피 과정으로 하였다. In the following thermodynamic performance comparison, the evaporator temperature was 0 ° C and the condenser temperature was 40 ° C. There was no overheating and supercooling temperature at the evaporator outlet and the condenser outlet, and the compressor inlet outlet was an isotropic entropy process. .
도 5 는 R-134a, 도 6 은"YM-1234A" 각 냉매의 압력-엔 탈피 선도를 표시하였다. FIG. 5 shows R-134a and FIG. 6 shows pressure-enthalpy diagrams of the refrigerants "YM-1234A".
표 9 R-134a 와 ""YM-1234A"및"YM-1234A1"" 대체냉매의 냉동성능 비교표
냉배의 종류항목 단위 YM-1234A YM-1234A1 R-134a
응축기 중간온도 ℃℃ 40.0 40.0 40.0
응축기 중간 압력 969.5 1012 1016
액체 압력 P. 969.5 1012 1016
기체 압력 P. 959.5 1012 1016
입구 온도(기체) T. ℃℃ 40.1 40.2 40.0
출구 온도 (액체) T. ℃℃ 39.9 40.1 40.0
△t 응축기 온도차 ℃℃ 0.2 0.1 0
증발기 중간 온도 ℃℃ -30.0 -30.0 -30.0
증발기 중간 압력 98.5 99.5 84.36
기체 압력 P. 98.4 99.4 84.36
액체 압력P. 98.5 99.5 84.36
입구 온도 (액체+ 기체)T. ℃℃ -30.1 -31.1 -30.0
출구 온도 (기체) T. ℃℃ -29.9 -31.0 -30.0
△t 증발기 온도 차 ℃℃ 0.2 0.1 0
압력 비 11.79 11.79 12.04
출구 측 온도 ℃℃ 106.4 110.4 112.3
P1 (흡입 측 밀도) Kg/㎥ 1.966 1.986 3.47
체적 용량 Kcal/㎥ 163.9 169.7 155.4
△h (응축) 용량. Kcal/kg 83.37 87.35 44.8
C. O. P. (w/w) 2.97 2.90 2.81
분자량 (g/mol) 88.35 87.1 102.0
Table 9 Comparison table of R-134a and "" YM-1234A "and" YM-1234A1 "" replacement refrigerants
Types of cold items unit YM-1234A YM-1234A1 R-134a
Condenser Medium Temperature ℃℃ 40.0 40.0 40.0
Condenser medium pressure 969.5 1012 1016
Liquid pressure P. 969.5 1012 1016
Gas pressure P. 959.5 1012 1016
Inlet temperature (gas) T. ℃℃ 40.1 40.2 40.0
Outlet temperature (liquid) T. ℃℃ 39.9 40.1 40.0
Δt condenser temperature difference ℃℃ 0.2 0.1 0
Evaporator medium temperature ℃℃ -30.0 -30.0 -30.0
Evaporator medium pressure 98.5 99.5 84.36
Gas pressure P. 98.4 99.4 84.36
Liquid pressure P. 98.5 99.5 84.36
Inlet temperature (liquid + gas) T. ℃℃ -30.1 -31.1 -30.0
Outlet temperature (gas) T. ℃℃ -29.9 -31.0 -30.0
△ t evaporator temperature difference ℃℃ 0.2 0.1 0
Pressure ratio 11.79 11.79 12.04
Outlet side temperature ℃℃ 106.4 110.4 112.3
P1 (suction side density) Kg / ㎥ 1.966 1.986 3.47
Volumetric capacity Kcal / ㎥ 163.9 169.7 155.4
Δh (condensation) capacity. Kcal / kg 83.37 87.35 44.8
COP (w / w) 2.97 2.90 2.81
Molecular Weight (g / mol) 88.35 87.1 102.0
응축기 온도: 40.0℃Condenser Temperature: 40.0 ℃
증발기 온도 : -30.0℃ Evaporator Temperature: -30.0 ℃
Sub cooled 액체 온도 : 30.0℃Sub cooled liquid temperature: 30.0 ℃
Superheated 기체 온도 : 30.0℃Superheated gas temperature: 30.0 ℃
미국 표준연구소 PEFPROP 6.0(Based on NIST, PEFPROP 6.0 & New Developed Refrigerant Program)에 특별히 (주)테크노켐에서 추가한 새로운 버전으로 이론적인 계산을 하였다.The theoretical calculation was performed with the new version added by Technochem Co., Ltd. to the US Standards Institute PEFPROP 6.0 (Based on NIST, PEFPROP 6.0 & New Developed Refrigerant Program).
COP : 성능계수(Coefficient of performance, 총 냉동효과/압축기에 가해진 일)COP: coefficient of performance (Coefficient of performance, total refrigeration effect / work done on the compressor)
GWP : 85.4GWP: 85.4
상기 표 9 을 통해, HFC계열의 냉매인 기존의 R-134a는 YM-1234A 보다 성능계수(COP)가 낮게 나타났으며, 유일하게 YM-1234A 만이 R-134a 보다 9.4% 높은 효율을 나타냈음을 알 수 있다. Table 9 above Through the R-134a, which is a refrigerant of the HFC series, the coefficient of performance (COP) was lower than that of YM-1234A, and only YM-1234A showed that the efficiency was 9.4% higher than that of R-134a.
TEWI (전체 등가 온난화 지수)를 기준으로 할 때, 냉매자체적인 영향보다는 성능이 중요하기 때문에, 대체냉매로는 YM-1234A 가 가장 적합하다. 또한 압력 비나 압축기 토출 온도도 두 냉매가 거의 비슷함을 알 수 있다. Based on TEWI (Total Equivalent Warming Index), YM-1234A is the best alternative refrigerant because performance is more important than the refrigerant itself. In addition, the pressure ratio or the compressor discharge temperature can be seen that the two refrigerants are almost the same.
따라서 YM-1234A는 오존파괴지수(ODP)도 전혀 없고 GWP 79 인 매우 낮으므로 장기적으로 R-134a의 대체용 냉매로 사용하는 데 문제가 없다. Therefore, YM-1234A has no ozone depletion index (ODP) and GWP 79 is very low, so there is no problem in using it as a replacement refrigerant for R-134a in the long run.
실험예 4 성분비에 따른 냉매조성물의 성능 비교 및 첨가제 성능 비교Experimental Example 4 Comparison of Performance and Additive Performance of Refrigerant Compositions According to Component Ratios
Figure PCTKR2010004100-appb-I000001
Figure PCTKR2010004100-appb-I000001
실험 조건: Experimental condition:
증발기 냉매 온도: 7℃, Evaporator refrigerant temperature: 7 ℃,
응축기 냉매 온도: 45℃ Condenser Refrigerant Temperature: 45 ℃
COPr : 냉동성능계수(Coefficient of performance, 증발기 용량/압축기에 가해진 일)COPr: Refrigeration performance coefficient (Coefficient of performance, evaporator capacity / work done on the compressor)
이 성능 계수는 증발기가 한 일의 용량을 압축기에 가해진 일로 나눈 값으로서 높을수록 에너지 절감 효과가 크다.             This coefficient of performance is the capacity of the work done by the evaporator divided by the work done on the compressor, the higher the energy savings.
QE : 증발기(냉방) 용량(Evaporator capacity) QE: Evaporator capacity
이 증발기의 용량은 냉동성능과 직접적인 관계의 수치로서 이 용량이 크면 냉동 효과도 크다.            The capacity of this evaporator is a value that is directly related to the freezing performance. The larger the capacity, the greater the freezing effect.
Tdis : 압축기 토출 온도(Compressor discharge temperature)Tdis: Compressor discharge temperature
COPrdiff : R134a 대비 냉동성능계수 차이COPr diff : Frozen performance coefficient difference compared to R134a
QEdiff : R134a 대비 증발기(냉방) 용량 차이QE diff : Evaporator (cooling) capacity difference compared to R134a
Tdisdiff : R134a 대비 압축기 토출 온도 차이Tdis diff : Compressor discharge temperature difference compared to R134a
GTD : R134a 대비 증발기 입, 출구 온도(Glide Temperature Difference)차이  GTD: difference between evaporator inlet and outlet temperature (Glide Temperature Difference)
일반적으로 이온도의 차가 3℃이상 이면 증발기의 표면에 결빙 현상이 (성해가 낀다고도 함) 나타나 열전달 및 냉동 성능을 떨 어트린다. 따라서 온도 구배가 없거나 낮은 것이 좋다.In general, if the difference in ionicity is more than 3 ° C, freezing (also called freezing) appears on the surface of the evaporator, which degrades heat transfer and freezing performance. Therefore, it is better to have no or no temperature gradient.
상기와 같이 조성 성분을 다르게 또 첨가제를 첨가하지 안고 실험한 결과 실시 예 1,2 가 가장 높은 성능 지수(COP) 8.4%, 7.9% 를 보여주고 있습니다.As described above, the results of experiments with different composition ingredients and without adding additives showed that Examples 1 and 2 showed the highest performance index (COP) of 8.4% and 7.9%.
특히 혼합 냉매 입에도 불구하고 첨가제를 첨가하지 안았을 때는 온도차(GTD)가 6.0~7.3℃ 까지 큰 차가 있지만 실시 예 1,2에서 보여준 것과 같이 첨가제를 첨가했을 때는 증발기의 온도차(GTD)가 0.1 로서 근 공비임을 보여주고 있는 것과 같이 첨가제는 근공비의 냉매를 만드는데 필수적임을 알 수 있습니다. In particular, the temperature difference (GTD) is 6.0 ~ 7.3 ℃ when the additive is not added despite the mixed refrigerant. However, when the additive is added as shown in Examples 1 and 2, the temperature difference (GTD) of the evaporator is 0.1. As shown by the muscle azeotropes, it can be seen that additives are essential for making refrigerants of the aerosols.
실험예5 본 발명의 냉매조성물의 지구 온난화 지수(GWP) Experimental Example 5 Global Warming Index (GWP) of Refrigerant Composition of the Present Invention
Figure PCTKR2010004100-appb-I000002
Figure PCTKR2010004100-appb-I000002
상기와 같이 냉매 조성 성분에 따라 지구 온난화 지수를 나타내었습니다. 본 발명에 있어서 지구 온난화 지수는 친 환경적인 냉매개발이라는 목적이기 때문에 반드시 150이하인 냉매의 개발이 요구되기 때문에 매우 중요합니다. 상기 표에서 보여 준 것과 같이 실시 예 1, 2 는 비교적 낮은 온난화 지수를 나타내고 있음을 알 수 있습니다. As shown above, the global warming index is shown according to the refrigerant composition. In the present invention, the global warming index is very important because it is necessary to develop a refrigerant of 150 or less because it is the purpose of developing an environmentally friendly refrigerant. As shown in the above table, it can be seen that Examples 1 and 2 show relatively low warming index.
실험예6 본 발명의 냉매조성물의 하한가연한계(LFL) Experimental Example 6 Lower Flammability Limit (LFL) of Refrigerant Composition of the Present Invention
Figure PCTKR2010004100-appb-I000003
Figure PCTKR2010004100-appb-I000003
상기와 같이 조성 성분에 따라 가연성 실험(실험 규격 ASTM-E-681 2008)한 첨가제를 넣은 조성성분에서는 가연성의 위험도 또한 평균 15%이상 안전성이 확보되었음을 알 수 있습니다.As described above, it can be seen that the risk of flammability is also more than 15% secured in the composition containing the additive that has been tested for flammability according to the composition (experimental standard ASTM-E-681 2008).
본 발명은 자동차에어컨이나 냉장고에 주로 사용되며,혼합냉매의 성능계수(COP)를 기존의 냉매와 비슷하게 하고 동시에 기존의 냉매와 비슷한 체적용량(VC)을 갖게 하여, 종래의 압축기를 크게 개조할 필요가 없어 압축기의 교체비용이나 기타 추가적인 비용을 지불하지 않으며, 오존층 파괴지수가 (ODP=0) 이며, 지구 온난화 지수가(GWP=79) 인 냉매조성물을 제공하는데 있다.The present invention is mainly used in automobile air conditioners or refrigerators, and the coefficient of performance (COP) of the mixed refrigerant to be similar to the existing refrigerant and at the same time have a volume capacity (VC) similar to the existing refrigerant, it is necessary to greatly modify the conventional compressor It does not pay for the replacement of the compressor or other additional costs, and provides a refrigerant composition with an ozone depletion index (ODP = 0) and a global warming index (GWP = 79).

Claims (4)

  1. 냉매조성물에 있어서,In the refrigerant composition,
    1,1-디플루오로에탄 (R-152a) 55~65 kg, 트리플루오르메틸아이오드1,1-difluoroethane (R-152a) 55-65 kg, trifluoromethyliode
    (CF3I) 10~20 kg, 프로필렌(R-1270) 10~19 kg, 핵사 메틸 실리콘 오일을 0.1~1.5 kg로 조성되어 있으며, 오존층 파괴지수가 (ODP=0) 이며, 지구 온난화 지수가(GWP=79) 임을 특징으로 하는 냉매조성물.10 to 20 kg (CF3I), 10 to 19 kg of propylene (R-1270), 0.1 to 1.5 kg of nucleated methyl silicone oil, ozone depletion index (ODP = 0), global warming potential (GWP) 79) a refrigerant composition characterized in that.
  2. 냉매조성물에 있어서, In the refrigerant composition,
    1,1-디플루오로에탄 (R-152a) 55~65 kg, 트리플루오르메틸아이오드(CF3I) 10~25 kg, 프로필렌(R-1270) 10~19 kg, 에탄(R-170) 2~5 kg, 프로판 (R-290) 3~5 kg, 핵사 메틸 실리콘 오일을 0.1~1.5 kg로 조성되어 있으며, 오존층 파괴지수가 (ODP=0) 이며, 지구 온난화 지수가(GWP=79) 임을 특징으로 하는 냉매조성물.  55 to 65 kg of 1,1-difluoroethane (R-152a), 10 to 25 kg of trifluoromethyl iodine (CF3I), 10 to 19 kg of propylene (R-1270), ethane (R-170) 2 to 5 kg, propane (R-290) 3 ~ 5 kg, nucleated methyl silicone oil 0.1 ~ 1.5 kg, ozone depletion index (ODP = 0), global warming potential (GWP = 79) Refrigerant composition.
  3. 청구 항 1 에 있어서, According to claim 1,
    1,1-디플루오로에탄 (R-152a) 65 kg, 트리플루오르메틸아이오드(CF3I) 20 kg, 프로필렌(R-1270) 14.9 kg, 핵사 메틸 실리콘 오일을 0.1 kg 로 조성되어 있음을 특징으로 하는 냉매조성물.  65 kg of 1,1-difluoroethane (R-152a), 20 kg of trifluoromethyl iodide (CF3I), 14.9 kg of propylene (R-1270), and 0.1 kg of nucleated methyl silicone oil. Refrigerant composition.
  4. 청구항 2 에 있어서, The method according to claim 2,
    1,1-디플루오로에탄 (R-152a) 60 kg, 트리플루오르메틸아이오드(CF3I) 20 kg, 프로필렌(R-1270) 14.9 kg, 에탄 (R-170) 2 kg, 프로판 (R-290) 3 kg, 핵사 메틸 실리콘 일을 0.1 kg조성되어 있음을 특징으로 하는 냉매조성물.  60 kg of 1,1-difluoroethane (R-152a), 20 kg of trifluoromethyliode (CF3I), 14.9 kg of propylene (R-1270), 2 kg of ethane (R-170), propane (R-290 A refrigerant composition, characterized in that 3 kg, 0.1 kg of nucleated methyl silicon work.
PCT/KR2010/004100 2009-07-13 2010-06-24 Refrigerant composition WO2011007966A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090063299A KR100976449B1 (en) 2009-07-13 2009-07-13 Near azeotropic refrigerant mixtures
KR10-2009-0063299 2009-07-13

Publications (3)

Publication Number Publication Date
WO2011007966A2 true WO2011007966A2 (en) 2011-01-20
WO2011007966A3 WO2011007966A3 (en) 2011-04-21
WO2011007966A9 WO2011007966A9 (en) 2011-06-09

Family

ID=42759735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004100 WO2011007966A2 (en) 2009-07-13 2010-06-24 Refrigerant composition

Country Status (2)

Country Link
KR (1) KR100976449B1 (en)
WO (1) WO2011007966A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257015A (en) * 2019-07-22 2019-09-20 珠海格力电器股份有限公司 Mixed working fluid and refrigerating plant comprising it
CN112080254A (en) * 2020-09-15 2020-12-15 珠海格力电器股份有限公司 Ternary environment-friendly refrigerant and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102254272B1 (en) 2018-11-07 2021-05-20 이선 Environment-friendly, non-flammable refrigerant mixture
KR102186985B1 (en) 2018-12-03 2020-12-04 주식회사 레미 Environment-friendly, lower-flammability refrigerant mixture
KR102181412B1 (en) 2018-12-03 2020-11-23 주식회사 레미 Environment-friendly, non-flammable refrigerant mixture
CN110878195B (en) * 2019-10-16 2020-11-27 珠海格力电器股份有限公司 Coolant containing trifluoroiodomethane, mixture containing coolant and heat exchange system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013437A1 (en) * 1996-09-27 1998-04-02 The University Of New Mexico Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants, foam blowing agents, solvents, aerosol propellants, and sterilants
KR20060101739A (en) * 2005-03-21 2006-09-26 김태옥 Composition of ternary refrigerant mixtures as substitutes for hcfc22
WO2008009922A2 (en) * 2006-07-17 2008-01-24 Ineos Fluor Holdings Limited Heat transfer compositions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100255477B1 (en) * 1998-02-13 2000-05-01 박왕근 Refrigerant
KR100492169B1 (en) * 2004-08-25 2005-06-02 함윤식 R502 and r22 substitute mixed refrigerant and refrigeration system using thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013437A1 (en) * 1996-09-27 1998-04-02 The University Of New Mexico Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants, foam blowing agents, solvents, aerosol propellants, and sterilants
KR20060101739A (en) * 2005-03-21 2006-09-26 김태옥 Composition of ternary refrigerant mixtures as substitutes for hcfc22
WO2008009922A2 (en) * 2006-07-17 2008-01-24 Ineos Fluor Holdings Limited Heat transfer compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257015A (en) * 2019-07-22 2019-09-20 珠海格力电器股份有限公司 Mixed working fluid and refrigerating plant comprising it
CN112080254A (en) * 2020-09-15 2020-12-15 珠海格力电器股份有限公司 Ternary environment-friendly refrigerant and preparation method thereof

Also Published As

Publication number Publication date
KR100976449B1 (en) 2010-08-17
WO2011007966A3 (en) 2011-04-21
WO2011007966A9 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2011007968A9 (en) Refrigerant composition
EP0642560B1 (en) Compositions of a fluoroether and a hydrofluorocarbon
WO2011007966A2 (en) Refrigerant composition
EP0699222B1 (en) Refrigerant compositions including an acyclic fluoroether
AU686433B2 (en) Constant boiling compositions
US5441659A (en) Compositions including a fluoroamine and a second component
EP1118648A2 (en) Hydrofluorocarbon compositions
WO2002026913A2 (en) Fluorocarbon refrigerant compositions
EP0692008A1 (en) Refrigerant compositions including hexafluoropropane and a hydrofluorocarbon
EP0680503A1 (en) Refrigerant compositions
EP1193305A1 (en) Hydrofluorocarbon refrigerant compositions soluble in lubricating oil
WO2011037314A9 (en) Coolant composition
WO1995008603A1 (en) Compositions including two hydrofluorocarbons
US6846792B2 (en) Hydrofluorocarbon compositions
US7459101B2 (en) Environmentally friendly alternative refrigerant for HCFC-22
CN101984013B (en) Novel environmental-protection refrigerant component for substituting 1, 1, 1, 2- tetrafluoroethane (hydrochlorofluorocarbon (HFC)-134a)
WO2011037313A2 (en) Coolant composition
KR101139377B1 (en) Near azeotropic refrigerant mixtures
KR100682828B1 (en) Composition of ternary refrigerant mixtures as substitutes for HCFC22
KR100969258B1 (en) Near azeotropic refrigerant mixtures
WO2020096347A1 (en) Non-flammable environment-friendly refrigerant
KR100957043B1 (en) Near azeotropic refrigerant mixtures
CN102115662B (en) Novel environment-friendly refrigeration agent composition for replacing monochlorodifluoromethane
KR101139381B1 (en) Near azeotropic refrigerant mixtures
KR100340186B1 (en) Refrigerant mixtures containing difluromethane, pentafluroethane and 1,1,1-trifluoroethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799977

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799977

Country of ref document: EP

Kind code of ref document: A2