KR100682828B1 - Composition of ternary refrigerant mixtures as substitutes for HCFC22 - Google Patents

Composition of ternary refrigerant mixtures as substitutes for HCFC22 Download PDF

Info

Publication number
KR100682828B1
KR100682828B1 KR1020050023325A KR20050023325A KR100682828B1 KR 100682828 B1 KR100682828 B1 KR 100682828B1 KR 1020050023325 A KR1020050023325 A KR 1020050023325A KR 20050023325 A KR20050023325 A KR 20050023325A KR 100682828 B1 KR100682828 B1 KR 100682828B1
Authority
KR
South Korea
Prior art keywords
hfc
hereinafter referred
composition
azeotropic
ternary
Prior art date
Application number
KR1020050023325A
Other languages
Korean (ko)
Other versions
KR20060101739A (en
Inventor
장영준
김규성
김태옥
유준
이헌창
Original Assignee
김태옥
장영준
김규성
유준
이헌창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김태옥, 장영준, 김규성, 유준, 이헌창 filed Critical 김태옥
Priority to KR1020050023325A priority Critical patent/KR100682828B1/en
Publication of KR20060101739A publication Critical patent/KR20060101739A/en
Application granted granted Critical
Publication of KR100682828B1 publication Critical patent/KR100682828B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/32The mixture being azeotropic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/43Type R22

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 R22 대체냉매로서, 디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다), 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다), 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다) 구성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 관한 것이다. The present invention is a replacement refrigerant for R22, difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), A chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of trifluoroiodomethane (CF3I, hereinafter referred to as "13I1").

디플루오로메탄. 테트라플루오르에탄. 트리플루오르아이오도메탄. 혼합냉매 조성물 Difluoromethane. Tetrafluoroethane. Trifluoroiodomethane. Mixed refrigerant composition

Description

클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물{Composition of ternary refrigerant mixtures as substitutes for HCFC22 }Composition of ternary refrigerant mixtures as substitutes for HCFC22}

본 발명은 열펌프 및 각종 산업용 공조기기에 냉매로 적용되어온 클로로디플루오로메탄(CClF2H, 이하 HCFC22라고 한다)을 대체할 수 있는 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 관한 것이다. 더욱 상세하게는 디플루오로메탄(CH2F2 , 이하 'HFC-32'라 한다), 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다), 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다) 구성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 관한 것이다.The present invention is a chlorodifluoromethane replacement (three-way) azeotropic mixed refrigerant composition that can replace chlorodifluoromethane (CClF 2 H, hereinafter referred to as HCFC22) that has been applied as a refrigerant in heat pumps and various industrial air conditioning equipment It is about. More specifically, difluoromethane (CH 2 F 2 , hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoroethane (CH 2 FCF 3 , hereinafter referred to as 'HFC-134a') And a chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of trifluoroiodomethane (CF 3 I, hereinafter referred to as "13I1").

지금까지 냉동장치, 공기조화장치, 열펌프 및 소온도차 열에너지 이용기관 등의 냉매로서 냉매특성과 안정성이 뛰어난 프레온계를 주로 사용하여 왔으며, 특히 열펌프 및 냉동창고 등 각종 산업용 공조기기에는 비등점이 -40.81℃이고 분자질량이 86.47인 HCFC22를 많이 사용해 왔다. Up to now, Freon system, which has excellent refrigerant characteristics and stability, has been mainly used as a refrigerant for refrigeration equipment, air conditioners, heat pumps, and small-temperature thermal energy use engines. Especially, various industrial air conditioning equipment such as heat pumps and refrigerated warehouses have a boiling point- HCFC22 having a molecular mass of 40.81 DEG C and a molecular mass of 86.47 has been used.

그러나 CFC, HCFC 화합물이 오존층을 파괴와 지구온난화를 일으키는 주요원인으로 밝혀짐에 따라 몬트리올 의정서에 의해 그 생산 및 사용이 크게 규제를 받 게 되어 CFC 및 HCFC 화합물의 대체냉매에 관한 연구가 진행되고 있는데, 이는 새로운 냉매의 개발과 기존의 냉매를 혼합해서 규제대상 냉매와 같은 성능을 가지는 혼합냉매의 연구 등 두 가지 방향으로 진행되고 있다.However, as CFC and HCFC compounds are found to be the main cause of the ozone layer destruction and global warming, the production and use of CFC and HCFC compounds are greatly regulated by the Montreal Protocol. This is in progress in two directions: the development of new refrigerants and the study of mixed refrigerants that have the same performance as the regulated refrigerants by mixing existing refrigerants.

신냉매의 개발은 많은 물적, 인적자원이 동원되어야 하고 저가의 상품으로 사용화 되기까지는 대단위 생산시설까지 갖추어야 하기 때문에 현재의 규제일정을 맞추기 어렵다. 따라서 혼합되는 단일냉매들의 물성치가 알려져 있고 기존의 생산시설에의 적용 및 상용화가 쉬운 혼합냉매에 관한 연구가 활발히 진행중에 있는데 이러한 혼합냉매에는 크게 비공비 혼합냉매와 공비 또는 공비성 혼합냉매가 있다.The development of new refrigerants is difficult to meet the current regulatory schedule, because a lot of physical and human resources must be mobilized and large-scale production facilities must be in place until they are used as low-priced products. Therefore, the properties of mixed single refrigerants are known, and studies on mixed refrigerants that are easy to apply and commercialize in existing production facilities are being actively conducted. Such mixed refrigerants include large azeotropic mixed refrigerants and azeotropic or azeotropic mixed refrigerants.

비공비 혼합냉매는 2개 이상의 냉매가 혼합되어 각각 개별적인 성격을 띠며, 등압의 증발 및 응축과정을 겪을 때 조성비가 변하고 온도가 증가 또는 감소되는 온도구배(temperature gliding)를 나타내는 냉매를 말한다. An azeotropic mixed refrigerant refers to a refrigerant having a temperature gliding in which two or more refrigerants are mixed to have individual characteristics, and the composition ratio is changed and the temperature is increased or decreased when undergoing isotropic pressure evaporation and condensation.

이러한 비공비 혼합냉매의 가장 큰 문제점은 증발 및 응축시 분류 및 분리되어 바람직하지 않은 냉각분배가 냉각 또는 가열에 불안정하게 작용한다는 것이다. 따라서 냉각사이클동안 분류되는 비공비 혼합물을 사용함으로써 장치를 변경하여야 하는 등 시스템을 부수적으로 복잡하게 한다. 비공비 냉매를 사용하는 경우 주로 냉각장치를 교환하고 수리하는 어려움이 따르며 또한 사용 혹은 수리하는 동안 2상 상태에서 냉매가 누설되면 시스템에 남아 있는 혼합냉매의 조성비가 변하여 증기압이 높은 성분이 먼저 누설되므로 새로운 조성비를 갖는 냉매가 시스템에 존재하게 된다. 따라서 냉매의 누설이 생겨 재충진을 하는 경우 시스템에 남아 있는 냉매를 전량 회수한 후 새롭게 냉매를 주입하여야 하므로 바람직하지 않다.The biggest problem of these azeotropic mixed refrigerants is that they are classified and separated during evaporation and condensation, which results in undesirable cooling distributions acting unstable to cooling or heating. The use of non-azeotropic mixtures, therefore, sorted during the cooling cycle, adds to the complexity of the system, requiring modifications to the equipment. In the case of using non-azeotropic refrigerants, it is often difficult to replace and repair the cooling system. Also, if the refrigerant leaks in the two-phase state during use or repair, the composition ratio of the mixed refrigerant remaining in the system is changed, and the high vapor pressure component leaks first. Refrigerants with a new composition ratio will be present in the system. Therefore, when refilling due to leakage of the refrigerant, it is not preferable because new refrigerant must be injected after recovering all the refrigerant remaining in the system.

공비 또는 공비성 혼합냉매는 서로 다른 2개 혹은 3개의 순수물질을 혼합하였는데도 등압의 증발 또는 응축 과정 중에 기체와 액체의 성분비가 변하지 않으며, 온도가 변하지 않는 혼합냉매를 말한다.An azeotropic or azeotropic mixed refrigerant refers to a mixed refrigerant in which the gas and liquid component ratios do not change during the isothermal evaporation or condensation process even though two or three pure substances are mixed.

다수의 공비 또는 공비성 혼합물은 CFC, HCFC 화합물의 대체물로서 유용하게 사용될 수 있는 특성을 보유한다. 예를 들어, 공비 또는 공비성 혼합물은 일정한 비점을 갖게 되므로 처리 및 사용시 비점 온도 변화를 방지할 수 있다. 또한, 일정 부피의 공비 혼합물이 용매로서 사용된 경우, 용매의 특성은 증기상에서 용매의 조성이 변하지 않기 때문에 일정하게 된다. 용매로서 사용되는 공비 혼합물은 증류에 의해 편리하게 회수할 수 있다. 현재까지 ASHRAE에서 냉매번호를 부여받아 사용되고 있는 주요 공비 혼합냉매로는 R500, R501, R502, R503, R505, R506, R507등이 있고 미국특허 제3,903,009호에는 1,1,2-트리클로로트리플루오로에탄, 에탄올 및 니트로메탄의 3성분 공비 혼합물이 개시되어 있다. Many azeotropic or azeotropic mixtures possess properties that can be usefully used as substitutes for CFC, HCFC compounds. For example, azeotropic or azeotropic mixtures may have a constant boiling point, thus preventing boiling point variations in processing and use. In addition, when a volume of azeotropic mixture is used as the solvent, the properties of the solvent become constant because the composition of the solvent does not change in the vapor phase. The azeotropic mixture used as the solvent can be conveniently recovered by distillation. The major azeotropic mixed refrigerants used by ASHRAE with a refrigerant number to date are R500, R501, R502, R503, R505, R506, R507, and the like. Three-component azeotrope mixtures of ethanol and nitromethane are disclosed.

HCFC-22의 대체물질로서 대표적인 혼합냉매의 예로는 미국냉동공조학회 (ASHRAE)에서 추천하는 HFC-407C와 HFC-410A를 들 수가 있다. HFC-407C는 HFC-32/125/134a가 23/25/52 중량%로 혼합된 냉매조성물이며 HFC-410A는 HFC-32/125가 50/50 중량%로 혼합된 냉매조성물이다.Representative mixed refrigerants as substitutes for HCFC-22 include HFC-407C and HFC-410A, which are recommended by the American Society of Refrigeration and Air Conditioning (ASHRAE). HFC-407C is a refrigerant composition in which HFC-32 / 125 / 134a is mixed at 23/25/52 wt% and HFC-410A is a refrigerant composition in which HFC-32 / 125 is mixed at 50/50 wt%.

이외에도 미국특허 제5,080,823호는 HFC-143a/프로판, 미국특허 제5,211,867호는 HFC-125/143a, 미국특허 제5,234,613호는 HFC-32/프로판, 미국특허 제5,236,611호는 PFC-218/HFC-143a, 미국특허 제5,290,466호는 HFC-32/134a/134, 미국특허 제5,340,490호는 HFC-23/CO 2 와 HFC-23/116/CO2 , 미국특허 제5,403,504호 는 HFC-125/32, 미국특허 제5,429,740호는 HFC-23/134a, 미국특허 제5,538,660호는 HFC-32/HFC-134a/FC-41과 HFC-32/HFC-134a/PFC-218, 미국특허 제5,643,492호는 HFC-32/125/134a로 이루어지는 혼합냉매 조성물을 개시하고 있다. 또한 일본특허공개 평3-172386호는 HFC-32/125/143a, 평3-170594호는 HFC-23/125/134a, 평3-170593호는 HFC-23/125/32, 평3-170591호는 HFC-23/143a/134a, 평3-170590호는 HFC-125/134a/32, 평3-170589호는 HFC-23/143a/152a, 평3-170588호는HFC-125/143a/134a, 평3-170585호는 HFC-32/125/134a, 평3-170584호는 HFC-23/134a/152a, 평3-170583호는 HFC-125/143a/32, 평4-222893호는 HFC-32/125, 평4-154887호는 HFC-134/152a, 평5-117645호는 HFC-23/134a/프로판, 평5-117643호는 HFC-125/134a/프로판, 평6-65561호는 HFC-23/152a/PFC-218, 평6-128872호는 HFC-32/PFC-218, 평6-220433호는 HFC-32/125/RC-318, 평7-173462호는 HFC-143a/125/134a/헵탄, 평8-176537호는 PFC-218/RC-270/HFC-152a, 평8-151569호는 프로판/RC-270/HFC-134a, 평8-127767호는 HFC-32/134a/RC-318, 평9-25480호는 HFC-32/134a/125/이소부탄, 평9-59611호는 HFC-134a/이소부탄, 평9-208941호는In addition, US Patent No. 5,080,823 is HFC-143a / propane, US Patent No. 5,211,867 is HFC-125 / 143a, US Patent No. 5,234,613 is HFC-32 / propane, US Patent No. 5,236,611 is PFC-218 / HFC-143a , US Patent No. 5,290,466, HFC-32 / 134a / 134, US Patent No. 5,340,490, HFC-23 / CO 2 and HFC-23 / 116 / CO2, US Patent No. 5,403,504, HFC-125 / 32, US Patent 5,429,740 is HFC-23 / 134a, US Pat. No. 5,538,660 is HFC-32 / HFC-134a / FC-41 and HFC-32 / HFC-134a / PFC-218, US Pat. No. 5,643,492 is HFC-32 / A mixed refrigerant composition comprising 125 / 134a is disclosed. In addition, Japanese Patent Application Laid-Open No. 3-172386, HFC-32 / 125 / 143a, H3-370594, HFC-23 / 125 / 134a, H3-370593, HFC-23 / 125/32, H3-370511 No. HFC-23 / 143a / 134a, H3-170590 HFC-125 / 134a / 32, H3-370589 HFC-23 / 143a / 152a, H3-170588 HFC-125 / 143a / 134a, flat 3-170585, HFC-32 / 125 / 134a, flat 3-170584, HFC-23 / 134a / 152a, flat 3-170583, HFC-125 / 143a / 32, flat 4-222893 HFC-32 / 125, flat 4-154887, HFC-134 / 152a, flat 5-117645, HFC-23 / 134a / propane, flat 5-117643, HFC-125 / 134a / propane, flat 6-65561 HFC-23 / 152a / PFC-218, H6-32872, HFC-32 / PFC-218, H6-620433, HFC-32 / 125 / RC-318, H7-7373, HFC- 143a / 125 / 134a / heptane, pp. 8-176537, PFC-218 / RC-270 / HFC-152a, pp. 8-151569, propane / RC-270 / HFC-134a, pp. 8-127767, HFC- 32 / 134a / RC-318, flat 9-25480 is HFC-32 / 134a / 125 / isobutane, flat 9-59611 is HFC-134a / isobutane, flat 9-208941

HFC-32/152a/125/RC-270, 평9-221664호는 HFC-125/143a/134a/RC-270으로 이루어지는 혼합냉매 조성물을 개시하였다.HFC-32 / 152a / 125 / RC-270, Hei 9-221664 discloses a mixed refrigerant composition consisting of HFC-125 / 143a / 134a / RC-270.

그리고, 대한민국특허공개 제91-9902호는 HFC-23/32/152a, HFC-23/125/And, Korean Patent Publication No. 91-9902 is HFC-23 / 32 / 152a, HFC-23 / 125 /

152a, HFC-32/143a/152a, HFC-125/143a/152a, HFC-32/125/125a, HFC-23/143a/152a, HFC-32 / 143a / 152a, HFC-125 / 143a / 152a, HFC-32 / 125 / 125a, HFC-23 / 143a /

152a, 대한민국특허공개 제91-9903호는 HFC-23/32/134, HFC-23/32/134a, HFC-23/125/134, HFC-32/125/134, HFC-23/143a/134a, HFC-125/143a/134a, HFC-125/143a/134, 대한민국특허공개 제96-4485호는 HFC-32/23/134a, 대한민국특허공개 제96-701168호는 HFC-227ea/HFC-152a, 대한민국특허공개 제97-704853호는 HFC-134a/HCFC-124/부탄으로 이루어지는 혼합냉매 조성물을 개시하고 있다.152a, Republic of Korea Patent Publication No. 91-9903 is HFC-23 / 32/134, HFC-23 / 32 / 134a, HFC-23 / 125/134, HFC-32 / 125/134, HFC-23 / 143a / 134a , HFC-125 / 143a / 134a, HFC-125 / 143a / 134, Korean Patent Publication No. 96-4485, HFC-32 / 23 / 134a, Korean Patent Publication No. 96-701168, HFC-227ea / HFC-152a , Korean Patent Publication No. 97-704853 discloses a mixed refrigerant composition consisting of HFC-134a / HCFC-124 / butane.

다수의 공비 또는 공비성 혼합냉매가 당업계에 공지되어 있지만, 바람직한 최종 용도 특성을 보유한 공비 조성물에 대한 요구는 계속되고 있다. 그러나, 당해 분야에 잘 알려진 바와 같이, 대부분의 경우 공비계의 형성을 확실하게 예측할 수 없어 새로운 공비 조성물의 안출을 어렵게 한다. While many azeotropic or azeotropic mixed refrigerants are known in the art, there is a continuing need for azeotropic compositions having desirable end-use properties. However, as is well known in the art, in most cases the formation of azeotropic systems cannot be reliably predicted, making it difficult to deposit new azeotropic compositions.

한편 CFC 대체냉매 개발에 있어 HFC는 ODP가 0.0으로 CFC의 대체제로 이용될 수 있는 가능성이 가장 크지만 CFC를 HFC로 전환하는 것이 쉽지 않다는 문제가 많은 응용분야에서 제시되고 있다. 즉 HFC계 냉매(R-134a, R-407C, R-410A)의 경우 압축기를 비롯한 냉동기 시스템 및 제조설비의 보완이 필요하며 또한 기존의 R12 시스템의 압축기 윤활유로 쓰이는 미네럴 오일 시스템에 적합하지 못하기 때문에 HFC냉매 재충진을 위해서는 기존의 R12 시스템 내부의 미네럴 오일 윤활유를 전부 제거한 후 재충진해야만 하고, 특히 자동차나 소형 압축기같이 오일 배출구가 없는 경우는 매우 번거롭고 많은 시간이 소요된다. 따라서 혼합냉매의 배합기술 연구는 대부분 미네럴 오일에 호환성이 있는 HCFC에 초점이 맞춰어져 있다. On the other hand, in the development of CFC alternative refrigerants, HFC is most likely to be used as an alternative to CFC with an ODP of 0.0, but the problem of converting CFC to HFC is not easy. In other words, HFC refrigerants (R-134a, R-407C, R-410A) need to be supplemented with compressor systems and manufacturing facilities, including compressors, and are not suitable for mineral oil systems used as compressor lubricants in existing R12 systems. Therefore, refilling the mineral oil in the existing R12 system requires refilling after recharging the HFC refrigerant, and it is very cumbersome and time-consuming, especially when there is no oil outlet such as a car or a compact compressor. Therefore, research on the mixing technology of mixed refrigerants focuses mostly on HCFCs compatible with mineral oil.

결론적으로 CFC 대체냉매는 끓는 동안 분류되지 않음으로 바람직한 공비 또는 공비성 혼합 조성물이어야 한다. 또한 기존의 냉동시스템 및 제조설비의 변경이 없이 바로 적용이 가능하고 미네럴 오일과의 호환이 가능한 HCFC를 혼합하여야 유 용하다. 동시에 당연하게도 우수한 열역학적 및 물리학적 특성을 가지고 ODP(오존층파괴지수)와 GWP(지구온난화지수)가 낮아 환경친화적이며 독성 및 가연성이 제한되어 직장환경을 건전하게 유지할 수 있어야 한다. In conclusion, the CFC alternative refrigerant should not be classified during boiling and should be a preferred azeotropic or azeotropic mixed composition. In addition, it is useful to mix HCFC which can be applied immediately without changing existing refrigeration system and manufacturing equipment and compatible with mineral oil. At the same time, it is natural to have excellent thermodynamic and physicochemical properties, low ODP and GWP (Global Warming Index), which is environmentally friendly, limited in toxicity and flammability.

본 발명은 상기와 같은 문제점을 해결하기 위하여, 디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다), 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다), 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)구성된 새로운 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 제공하는 것이다.The present invention to solve the above problems, Difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoroiodomethane (CF3I, It is to provide a new chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed hereinafter referred to as "13I1."

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물은 디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)40~47중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 40~45중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)8~20중량%로 조성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 관한 것이다. In order to achieve the above object, the chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition according to the present invention is difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32') Wt%, 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a') 40-45 wt%, trifluoroiodomethane (CF3I, hereinafter referred to as "13I1") Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of%.

본 발명의 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물은 실질적으로 일정한 비점을 갖고 단일 물질처럼 거동하는 3원 액상 혼합물을 의미한다. 공비성 조성물을 특정하는 한 가지 방법은 액체의 부분 증발 및 증류에 의해서 생성된 증기가, 이 증기가 증발되거나 또는 증류된 액체와 실질적으로 동일한 조성을 갖는 것, 즉 실질적인 조성 변화없이 증류/환류된 혼합물이다. 공비성으로 특징되는, 실질적으로 일정한 비점을 갖는 조성물은 동일 성분의 비공비 혼합물의 비점과 비교했을 때 최대 비점 또는 최소 비점중 어느 하나를 나타낸다.Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant compositions of the present invention refer to ternary liquid mixtures having substantially constant boiling points and behaving like a single material. One method of specifying an azeotropic composition is that a vapor produced by partial evaporation and distillation of a liquid has a composition that is substantially the same as the vapor from which it has been evaporated or distilled, ie a mixture distilled / refluxed without substantial compositional change. to be. A composition having a substantially constant boiling point, characterized by azeotropy, exhibits either a maximum or minimum boiling point when compared to the boiling point of an azeotropic mixture of the same component.

본 발명의 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 있어, 당업자에게 잘 알려진 바와 같이 상이한 압력에서 주어진 공비물의 조성은 적어도 어느 정도 변하며, 압력에 있어서의 변화는 또한 적어도 어느 정도 비점 온도를 변화시킨다. 그러므로 고정된 조성보다는 조성 범위가 공비 조성물을 정의하기 위하여 종종 사용된다.In the chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition of the present invention, as is well known to those skilled in the art, the composition of a given azeotrope at different pressures varies at least to some extent, and the change in pressure is also at least to some extent. Change the boiling point temperature. Therefore, a composition range rather than a fixed composition is often used to define an azeotrope composition.

본 발명의 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 있어 특정 중량 퍼센트 관계는 단지 하나의 특별한 관계를 나타내고 이러한 관계는 압력의 영향으로 변화되는 주어진 공비물에 대해 존재하는 것으로 인식되어야 한다.For the chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant compositions of the present invention, certain weight percent relationships represent only one particular relationship and are recognized as being present for a given azeotrope that changes under the influence of pressure. Should be.

본 발명의 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물은 주어진 압력에서 비점에 의해서 특정되는 공비물로서 정의함으로써 특정될 수 있으므로, 따라서 특정 수치 조성에 의해서 본 발명의 범위를 불필요하게 제한함이 없이 독특한 특징들을 부여한다.The chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition of the present invention can be specified by defining it as an azeotrope specified by a boiling point at a given pressure, thus unnecessarily limiting the scope of the present invention by a specific numerical composition. Unique features are given without limitation.

본 발명의 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물은 하기 조성범위내의 혼합물들이 실질적으로 대기압에서 실질적으로 일정한 비점을 나타낸 다는 점에서 공비성으로 특정된다. 실질적으로 일정한 비점이 되기 위해서, 혼합물은 증발시 크게 분별되지 않는다. 증발후, 증기의 조성과 초기 액체상의 조성 간에 단지 작은 차이가 존재한다. 이 차이는 증기 및 액상의 조성이 실질적으로 동일하다고 생각되는 정도이다. 따라서, 이 범위내의 임의의 조성물은 진정한 3원 공비 조성물의 특성을 나타낸다.The chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant compositions of the present invention are characterized as azeotropic in that the mixtures within the following composition ranges exhibit substantially constant boiling points at atmospheric pressure. In order to have a substantially constant boiling point, the mixture is not very fractionated upon evaporation. After evaporation, there is only a small difference between the composition of the vapor and the composition of the initial liquid phase. This difference is such that the composition of the vapor and the liquid phase is considered to be substantially the same. Thus, any composition within this range exhibits the properties of a true ternary azeotropic composition.

본 발명에 따른 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물은 디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)40~47중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 40~45중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)8~20중량%로 구성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 관한 것이다. Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition according to the present invention is difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32') 40 ~ 47% by weight, 1,1,1,2 -Chlorodifluoromethane replacement consisting of 40 to 45% by weight of tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a') and 8 to 20% by weight of trifluoroiodomethane (CF3I, hereinafter referred to as "13I1") Ternary) relates to an azeotropic mixed refrigerant composition.

25℃에서의 증기압이 222~306kPa이고 비점이 -23℃±약0.05℃다. 이 조성물은 상기 조성 범위에서 실질적으로 일정한 증기압, 조성을 나타내므로 공비성이다. The vapor pressure at 25 ° C is 222-306 kPa and the boiling point is -23 ° C ± about 0.05 ° C. This composition is azeotropic because it exhibits a substantially constant vapor pressure, composition in the composition range.

본 발명은 바람직하게는 디플루오로메탄(CH2 F2: 이하 'HFC-32'라 한다)40중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)중량%을 포함한다. 상기 조성물은 25℃에서의 증기압이 292.8kPa이고 C.O.P 효율이 2.23이며 공비성, 제한된 가연성을 가지고 거의 독성이 없다. The present invention is preferably 40% by weight of difluoromethane (CH2 F2: hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a') Wt%, trifluoroiodomethane (CF3I, hereinafter referred to as "13I1") The composition has a vapor pressure of 292.8 kPa, a COP efficiency of 2.23, azeotropy, limited flammability and almost no toxicity at 25 ° C. none.

이하 실시예를 통하여 본 발명을 상세하게 설명하고자 하며 하기 실시예에 의하여 본 발명이 제한되지 않는다. Hereinafter, the present invention will be described in detail with reference to the following examples, which are not intended to limit the present invention.

실시예1Example 1

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)43kg, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 47kg, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)10kg을 혼합하여 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 제조하였다.43 kg of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 47 kg of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoroiodomethane ( Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition was prepared by mixing 10 kg CF3I, hereinafter referred to as "13I1".

실시예2Example 2

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)43kg, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 44kg, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)13kg을 혼합하여 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 제조하였다.43 kg of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 44 kg of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoroiodomethane ( 13 kg of CF3I, hereinafter referred to as "13I1", were mixed to prepare a chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition.

실시예3Example 3

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)44kg, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 40kg, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)16kg을 혼합하여 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 제조하였다.44 kg of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 40 kg of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoroiodomethane ( Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition was prepared by mixing 16 kg CF3I, hereinafter referred to as "13I1".

실시예4Example 4

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)37kg, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 44kg, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)19kg을 혼합하여클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 제조하였다.37 kg of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 44 kg of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoroiodomethane ( Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition was prepared by mixing 19 kg of CF3I, hereinafter referred to as "13I1".

실시예5Example 5

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)40kg, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 44kg, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)16kg을 혼합하여 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 제조하였다.40 kg of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 44 kg of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoroiodomethane ( Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition was prepared by mixing 16 kg CF3I, hereinafter referred to as "13I1".

실험예1Experimental Example 1

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)43중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 47중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)10중량%로 조성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 증류 칼럼에서 증류하고 증류액 조성을 기체크로마토그래피에 의해 분석한 결과 25℃에서 비중 7.682kg/㎥, 냉동능력 371.11 kg/㎥, 25℃에서의 증기압(VAPOR PRESSURE)292.8kPa, C.O.P(효율) 2.23 으로 나타냈으며, 기타 하부에 기재된 표1에 나타난 바와 같다.43 wt% of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 47 wt% of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoro Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of 10% by weight of iodomethane (CF3I, hereinafter referred to as "13I1") was distilled in a distillation column, and the distillate composition was analyzed by gas chromatography. Specific gravity 7.682kg / ㎥ at 25 ℃, freezing capacity 371.11 kg / ㎥, vapor pressure (VAPOR PRESSURE) 292.8kPa, COP (efficiency) 2.23 at 25 ℃ is shown in Table 1 described below.

실험예2Experimental Example 2

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)43중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 44중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)13중량%로 조성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 증류 칼럼에서 증류하고 증류액 조성을 기체크로마토그래피에 의해 분석한 결과 25℃에서 비중 7.9kg/㎥, 냉동능력 368.85 kg/㎥, 25℃에서의 증기압(VAPOR PRESSURE)222.8kPa, C.O.P(효율) 2.24 로 나타냈으며, 기타 하부에 기재된 표1에 나타난 바와 같다.43% by weight of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 44% by weight of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoro Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of 13% by weight of iodomethane (CF3I, hereinafter referred to as "13I1") was distilled in a distillation column and the distillate composition was analyzed by gas chromatography. Specific gravity 7.9 kg / ㎥ at 25 ℃, freezing capacity 368.85 kg / ㎥, vapor pressure (VAPOR PRESSURE) 222.8 kPa, COP (efficiency) 2.24 at 25 ℃, as shown in Table 1 described below.

실험예3Experimental Example 3

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)44중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 40중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)16중량%로 조성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 증류 칼럼에서 증류하고 증류액 조성을 기체크로마토그래피에 의해 분석한 결과 25℃에서 비중 8.068kg/㎥, 냉동능력 371.11 kg/㎥, 25℃에서의 증기압(VAPOR PRESSURE)361.69kPa, C.O.P(효율) 2.246 으로 나타냈으며, 기타 하부에 기재된 표1에 나타난 바와 같다.44% by weight of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 40% by weight of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoro Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of 16% by weight of iodomethane (CF3I, hereinafter referred to as "13I1") was distilled in a distillation column, and the distillate composition was analyzed by gas chromatography. Specific gravity 8.068kg / ㎥ at 25 ℃, freezing capacity 371.11 kg / ㎥, vapor pressure (VAPOR PRESSURE) 361.69 kPa, COP (efficiency) 2.246 at 25 ℃, it is shown in Table 1 described below.

실험예4Experimental Example 4

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)37중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 44중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)19중량%로 조성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 증류 칼럼에서 증류하고 증류액 조성을 기체크로마토그래피에 의해 분석한 결과 25℃에서 비중 8.4892kg/㎥, 냉동능력 382 kg/㎥, 25℃에서의 증기압(VAPOR PRESSURE)305.6kPa, C.O.P(효율) 2.22 으로 나타냈으며, 기타 하부에 기재된 표1에 나타난 바와 같다.37% by weight of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 44% by weight of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoro Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of 19% by weight of iodomethane (CF3I, hereinafter referred to as "13I1") was distilled in a distillation column and the distillate composition was analyzed by gas chromatography. Specific gravity 8.4892 kg / ㎥ at 25 ℃, freezing capacity 382 kg / ㎥, vapor pressure (VAPOR PRESSURE) at 25 ℃ 305.6kPa, COP (efficiency) 2.22, as shown in Table 1 described below.

실험예5Experimental Example 5

디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)40중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 44중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)16중량%로 조성된 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물을 증류 칼럼에서 증류하고 증류액 조성을 기체크로마토그래피에 의해 분석한 결과 25℃에서 비중 8.178kg/㎥, 냉동능력 374.88 kg/㎥, 25℃에서의 증기압(VAPOR PRESSURE)299.2kPa, C.O.P(효율) 2.23 으로 나타냈으며, 기타 하부에 기재된 표1에 나타난 바와 같다.40% by weight of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 44% by weight of 1,1,1,2-tetrafluoroethane (CH2FCF3, hereinafter referred to as 'HFC-134a'), trifluoro Chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition composed of 16% by weight of iodomethane (CF3I, hereinafter referred to as "13I1") was distilled in a distillation column, and the distillate composition was analyzed by gas chromatography. Specific gravity 8.178kg / ㎥ at 25 ℃, freezing capacity 374.88 kg / ㎥, vapor pressure (VAPOR PRESSURE) 299.2 kPa, COP (efficiency) 2.23 at 25 ℃, it is shown in Table 1 described below.

[표 1]TABLE 1

ITEMITEM R-22R-22 R-407CR-407C M410AM410A 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 조성비Creation costs R-134a : 50 R-32 : 25 R-125 : 25R-134a: 50 R-32: 25 R-125: 25 32 : 50 125 : 5032: 50 125: 50 R-134a : 43 R-32 : 47 13I1 : 10R-134a: 43 R-32: 47 13I1: 10 R-134a : 43 R-32 : 44 13I1 : 13R-134a: 43 R-32: 44 13 I1: 13 R-134a : 44 R-32 : 40 13I1 : 16R-134a: 44 R-32: 40 13 I1: 16 R-134a : 37 R-32 : 44 13I1 : 19R-134a: 37 R-32: 44 13I1: 19 R-134a : 40 R-32 : 44 13I1 : 16R-134a: 40 R-32: 44 13I1: 16 응축기온도Condenser temperature 54.454.4 54.454.4 54.454.4 54.454.4 54.454.4 54.454.4 54.454.4 54.454.4 응축기압력Condenser pressure kPakPa 2,1462,146 23752375 3379.53379.5 2,6722,672 26502650 26022602 27382738 26832683 액체압력Liquid pressure kPakPa 2,1462,146 24922492 33833383 2,7932,793 27722772 27272727 28542854 28132813 액체증기Liquid vapor 압력pressure kPakPa 2,1462,146 22582258 33763376 2,5512,551 25272527 24772477 26212621 25732573 입력온도Input temperature (증기)(steam) 54.454.4 56.5156.51 54.4554.45 56.3656.36 56.3956.39 56.4856.48 56.2556.25 56.3356.33 출력온도Output temperature (액체)(Liquid) 54.454.4 52.2652.26 54.3554.35 52.4252.42 52.3652.36 52.2852.28 52.5252.52 52.4452.44 온도편차Temperature range 00 4.254.25 0.10.1 3.943.94 4.034.03 4.24.2 3.733.73 3.893.89 증발기온도Evaporator temperature -23.3-23.3 -23.3-23.3 -23.3-23.3 -23.3-23.3 -23.3-23.3 -23.3-23.3 -23.3-23.3 -23.3-23.3 증발기압력Evaporator pressure kPakPa 215.6215.6 222.8222.8 353.15353.15 258.9258.9 258258 253.3253.3 271271 264.1264.1 증기압력Steam pressure kPakPa 215.6215.6 253253 352.7352.7 292.8292.8 222.8222.8 289.2289.2 305.6305.6 299.2299.2 액체압력Liquid pressure kPakPa 215.6215.6 192.5192.5 353.6353.6 225.1225.1 292.6292.6 217.4217.4 235.6235.6 229229 입력온도Input temperature (액체)(Liquid) -23.3-23.3 -26.48-26.48 -23.34-23.34 -26.45-26.45 -26.53-26.53 -26.71-26.71 -26.41-26.41 -26.51-26.51 출력온도Output temperature (증기)(steam) -23.3-23.3 -19.82-19.82 -23.26-23.26 -19.92-19.92 -19.75-19.75 -19.62-19.62 -19.89-19.89 -19.84-19.84 증발기온도편차Evaporator Temperature Deviation 00 6.666.66 0.080.08 6.536.53 6.786.78 7.097.09 6.526.52 6.676.67 압력비Pressure ratio -- 9.959.95 10.6610.66 9.579.57 10.3210.32 10.2710.27 10.2710.27 10.110.1 10.210.2 배출온도Discharge temperature 152.0152.0 132.7132.7 147.4147.4 152.6152.6 150.9150.9 148.6148.6 152.3152.3 151.6151.6 비중importance kg/m3 kg / m 3 7.5637.563 7.6967.696 10.5510.55 7.6827.682 7.97.9 8.0688.068 8.4898.489 8.1788.178 냉동능력Freezing capacity kg/m3 kg / m 3 315.9315.9 321.31321.31 465.36465.36 371.11371.11 368.85368.85 361.69361.69 382382 374.88374.88 증발잠열Latent heat of evaporation kcal/kgkcal / kg 41.7841.78 41.7541.75 44.1144.11 48.3148.31 46.6946.69 44.8344.83 4545 45.8445.84 C.O.PC.O.P (효율)(efficiency) w/ww / w 2.312.31 2.2962.296 2.152.15 2.232.23 2.242.24 2.2462.246 2.222.22 2.232.23 GWPGWP 15001500 1300.0581300.058 1300.11300.1 825.01825.01 823.116823.116 827.326827.326 782.347782.347 802.95802.95 ODPODP 0.040.04 00 00 00 00 00 00 00 M.W.M.W. g/molg / mol 86.4786.47 84.82284.822 72.58172.581 72.67572.675 74.98374.983 78.01278.012 76.60276.602 75.78475.784

상기한 바와 같이 본 발명은 통상의 냉각 또는 가열 조건하에서 분류되지 않는 공비성 혼합냉매 조성물을 얻을 수 있어 시스템이 단순해지고 시스템의 수리 또는 변경시 문제점이 없다. 또한 기존의 시스템의 설계 변경이 필요 없어서 곧바로 Drop-in이 가능하고 미네럴 오일에 상용되어 기존의 냉동기 생산 설비의 추가적 보완이 불필요하여 냉동기제품의 제조원가 개선에도 효과가 크다.As described above, the present invention can obtain an azeotropic mixed refrigerant composition that is not classified under normal cooling or heating conditions, which simplifies the system and has no problem in repairing or modifying the system. In addition, it is possible to drop-in immediately because there is no need to change the design of the existing system, and it is commercially available in mineral oil, so it is not necessary to supplement the existing refrigerator production equipment.

Claims (1)

클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물에 있어서,In the chlorodifluoromethane replacement (ternary) azeotropic mixed refrigerant composition, 3클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물은 디플루오로메탄(CH2 F2 , 이하 'HFC-32'라 한다)40~47중량%, 1,1,1,2-테트라플루오르에탄(CH2FCF3, 이하 'HFC-134a'이라 한다) 40~45중량%, 트리플루오르아이오도메탄(CF3I, 이하 "13I1이라 한다)8~20중량%로 조성되어 있음을 특징으로 하는 클로로디플루오로메탄 대체 (3원) 공비성 혼합냉매 조성물.3-chlorodifluoromethane replacement (three-way) azeotropic mixed refrigerant composition is 40 to 47% by weight of difluoromethane (CH2 F2, hereinafter referred to as 'HFC-32'), 1,1,1,2-tetrafluoro Chlorodifluoro, characterized in that 40 to 45% by weight of ethane (CH2FCF3, hereinafter referred to as 'HFC-134a') and 8 to 20% by weight of trifluoroiodomethane (CF3I, hereinafter referred to as "13I1") Methane replacement (ternary) azeotropic mixed refrigerant composition.
KR1020050023325A 2005-03-21 2005-03-21 Composition of ternary refrigerant mixtures as substitutes for HCFC22 KR100682828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050023325A KR100682828B1 (en) 2005-03-21 2005-03-21 Composition of ternary refrigerant mixtures as substitutes for HCFC22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050023325A KR100682828B1 (en) 2005-03-21 2005-03-21 Composition of ternary refrigerant mixtures as substitutes for HCFC22

Publications (2)

Publication Number Publication Date
KR20060101739A KR20060101739A (en) 2006-09-26
KR100682828B1 true KR100682828B1 (en) 2007-02-15

Family

ID=37632749

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050023325A KR100682828B1 (en) 2005-03-21 2005-03-21 Composition of ternary refrigerant mixtures as substitutes for HCFC22

Country Status (1)

Country Link
KR (1) KR100682828B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957043B1 (en) * 2009-07-13 2010-05-13 주식회사 와이엠환경연구소 Near azeotropic refrigerant mixtures
KR100976449B1 (en) * 2009-07-13 2010-08-17 주식회사 와이엠환경연구소 Near azeotropic refrigerant mixtures
AU2017302342C1 (en) * 2016-07-29 2021-09-09 Honeywell International Inc. Heat transfer compositions, methods and systems
AU2020402053A1 (en) * 2019-12-12 2022-05-19 The Chemours Company Fc, Llc Refrigerant compositions comprising R-32, R-134a, and CF3I

Also Published As

Publication number Publication date
KR20060101739A (en) 2006-09-26

Similar Documents

Publication Publication Date Title
US5736063A (en) Non-azeotropic refrigerant compositions containing carbon dioxide
EP0642560B1 (en) Compositions of a fluoroether and a hydrofluorocarbon
EP0545942B2 (en) Near-azeotropic blends for use as refrigerants
EP2035524B1 (en) Refrigerant
US4943388A (en) Azeotrope-like compositions of pentafluoroethane; 1,1,1-trifluoroethane; and chlorodifluoromethane
US6557359B1 (en) Process for heating or cooling using mixtures of pentafluoropropane and a hydrofluorocarbon having 3 to 6 carbon atoms
KR100976448B1 (en) Near azeotropic refrigerant mixtures
US5232618A (en) Substantially constant boiling compositions of difluoromethane and trifluoroethane or perfluoroethane
KR100976449B1 (en) Near azeotropic refrigerant mixtures
KR100682828B1 (en) Composition of ternary refrigerant mixtures as substitutes for HCFC22
CN101984013B (en) Novel environmental-protection refrigerant component for substituting 1, 1, 1, 2- tetrafluoroethane (hydrochlorofluorocarbon (HFC)-134a)
US6503417B1 (en) Ternary compositions of ammonia, pentafluoroethane and difluoromethane
KR101139377B1 (en) Near azeotropic refrigerant mixtures
KR100969257B1 (en) Near azeotropic refrigerant mixtures
JPH06172227A (en) Pseudo azeotrope of difluoromethane/pentafluoroethane/ 1,1,1-trifluoroethane system and refrigerant for low- temperature use which is said azeotrope
KR100969256B1 (en) Near azeotropic refrigerant mixtures
JPH0570769A (en) Fluoroalkane mixture
KR100957043B1 (en) Near azeotropic refrigerant mixtures
KR101139381B1 (en) Near azeotropic refrigerant mixtures
KR100805663B1 (en) Mixed refrigerants composition
US6423757B1 (en) Process for producing polymer foam using mixtures of pentafluoropropane and a hydrofluorocarbon having 3 to 6 carbon atoms
KR20030083248A (en) Binary azeotropic-like refrigerant compositions
KR101572758B1 (en) Ternary refrigerant mixture composed of R32, RC270, R152a
KR100540284B1 (en) R12 or r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540283B1 (en) R12 or r22 substitute mixed refrigerant and refrigeration system using thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee