WO2011007444A1 - Coaxial multi-layered stent - Google Patents

Coaxial multi-layered stent Download PDF

Info

Publication number
WO2011007444A1
WO2011007444A1 PCT/JP2009/062955 JP2009062955W WO2011007444A1 WO 2011007444 A1 WO2011007444 A1 WO 2011007444A1 JP 2009062955 W JP2009062955 W JP 2009062955W WO 2011007444 A1 WO2011007444 A1 WO 2011007444A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
component
struts
strut
csb
Prior art date
Application number
PCT/JP2009/062955
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 森
Original Assignee
株式会社メドバン・アイ・ピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メドバン・アイ・ピー filed Critical 株式会社メドバン・アイ・ピー
Priority to PCT/JP2009/062955 priority Critical patent/WO2011007444A1/en
Publication of WO2011007444A1 publication Critical patent/WO2011007444A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/826Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts

Definitions

  • the present invention relates to coaxial multi-layer stents and to intraluminal endoprostheses and endoprostheses having similar or similar support structures.
  • a stent that has been attracting attention in recent years in order to enable non-invasive treatment.
  • This is a cylindrical structure with open ends or a coiled type, and is composed of a metal material that can be plastically deformed, such as stainless steel, and has properties such as shape memory and superelasticity.
  • Nitinol (Ni-Ti) alloy etc.
  • metal materials biopolymer materials, ceramics, biodegradable plastics, etc. that have superplasticity and melting characteristics in vivo. is there.
  • stents made of a plastically deformable metal material such as stainless steel are most frequently used, and will be described below by taking this as an example. It should be noted that those skilled in the art can easily guess that the same applies to stents made of other materials.
  • the stent is attached to the balloon part at the tip of the catheter, which is called a balloon catheter and a delivery device called a catheter together with a small radius so that it can be placed in a tubular organ inside the body in advance. It has been. If the radius of the stent can be reduced when attached to the balloon catheter, it can be very easily transported to the lesion during and after insertion into the body.
  • the stent is delivered to the lesion site, where the tip of the balloon catheter is expanded.
  • a stent is attached to the distal end portion of the balloon catheter, but the portion to which the stent is attached has a balloon shape and can be expanded.
  • the stent is also expanded in the body by the expansion of the balloon catheter.
  • the stent is a plastic material, the stent is expanded to cause plastic deformation and the deformation is retained permanently.
  • the balloon catheter is removed after the balloon portion is deflated after the stent is expanded, only the plastically deformed stent remains in a state where the lesion site where the stenosis or the like has occurred is expanded.
  • stents General requirements for stents
  • Many functions are required for a stent.
  • the most basic required functions are expansion of a tubular organ, radial rigidity that supports the tubular organ from the inside, and tubular organ that runs in the long axis direction. It is flexible enough to follow complex shapes.
  • the stent is basically constituted by repeating the same shape in the circumferential direction and the major axis direction.
  • a typical stent structure includes a portion called a “cell” 2 that expands a tubular organ and supports the organ, and a “link” 3 that gives the stent flexibility in the longitudinal direction.
  • a stent having a structured structure see, for example, Patent Document 14).
  • Such a stent is called a closed cell structure and is characterized in that a portion called a link has an S-shape or an N-shape.
  • Non-Patent Document 1 since the coil stent has a relatively low radial rigidity (see, for example, Non-Patent Document 1), the blood vessel cannot be sufficiently expanded, and the treatment results are inferior. Such a problem also exists in the stent of Patent Document 13. Therefore, at present, stents such as Patent Documents 12 and 14 are often used. Such stents are typically fabricated from a single material hollow tube, referred to herein as a single-layer stent.
  • Patent Document 1 and Patent Document 2 propose a stent including an inner layer and an outer layer. These are a shape memory alloy superelastic material and a malleable material (elastic plastic material) such as stainless steel, which are processed into one tube shape and then processed into a stent shape.
  • the basic characteristics of these stents are the same as those of the single layer stent described above, and do not solve the essential problems caused by the structural reasons of the single layer stent.
  • single-layer stents mainly have a structure called a closed cell structure and an open cell structure.
  • the closed cell structure and the open cell structure are characterized by the difference in the size of the repeating structural unit, in addition to the above-described characteristics.
  • the closed cell structure has a smaller size of the repeating structural unit.
  • the closed cell structure and the open cell structure have advantages and disadvantages.
  • the closed cell structure has a preferable characteristic that it can expand and support a tubular organ with a uniform stress distribution while it has little change in shape when bent, but has a problem that it is difficult to use in a portion where the tubular organ is branched.
  • the open cell structure is suitable for use in a branched part of a tubular organ, and is highly flexible, but when bent, a part of the stent may be unexpectedly deformed excessively. Therefore, there is a problem that uneven stress distribution may be given to the tubular organ.
  • a conventional single-layer stent has a structure in which cells and links (or connectors) are alternately arranged in a row when viewed in the longitudinal direction, and the tubular organ is expanded and supported in the link or connector portion.
  • cells and links or connectors
  • the tubular organ is expanded and supported in the link or connector portion.
  • the stent is required to have followability to the shape of the tubular organ to be applied (shape followability).
  • This followability means that a stent placed in a tubular organ that meanders in the long axis direction can faithfully follow the organ shape even after expansion and placement.
  • the stent has insufficient ability to follow the shape of the tubular organ, when the stent is expanded and placed in the tubular organ, there is a problem that the expandability of the tubular organ becomes non-uniform with respect to the long axis direction. It develops into the problem of non-uniformity of stress distribution in the organ and damage of the tubular organ at the stress concentration site and the occurrence of restenosis.
  • FIGS. 2 (i)-(iv) illustrate this state, and thus a high therapeutic effect can be expected.
  • Patent Document 3 and Patent Document 4 disclose a stent applied to a portion having a side branch and a dedicated balloon catheter.
  • This balloon catheter is provided with a special side branch discriminating device and can specify the position of the side branch in the long axis direction and the angle in the circumferential direction.
  • the stent has a structure that allows easy opening of one portion outward so that the balloon catheter can be easily introduced into the side branch.
  • a stent intended to improve flexibility and transportability to a lesion site by providing an engagement portion capable of connecting and separating two stents in the longitudinal direction.
  • Patent Document 7 proposes a stent intended to improve flexibility and transportability to a lesion site by providing an engagement portion capable of connecting and separating two stents in the longitudinal direction.
  • Patent Document 5 a stent (“coil stent”) in which metal wires of a single material are formed in a spiral shape are overlapped, and the overlapping strut portions are joined by welding or the like.
  • a method of enhancing the radial rigidity which is a weak point of a coil stent, is disclosed.
  • the thinner the stent struts the lower the restenosis rate.
  • superimposing stents in the radial direction in order to enhance the radial rigidity is rational in engineering, but medically, on the contrary, it does not provide useful results. This is because, as shown in Non-Patent Document 3, the restenosis rate is reduced as the struts of the stent are thinner.
  • Patent Document 11 a stent having a plurality of thin struts having slightly different radii (hereinafter referred to as “thin stent”) is prepared, and the other thin stent is inserted into one thin stent in the long axis direction.
  • a multi-layered stent suitable for treatment of a side branch or the like is disclosed by superimposing them on the same axis and joining a part of struts at both ends (see FIG. 3 of Patent Document 11).
  • joining utilizing resistance welding or thermocompression bonding is assumed (refer to paragraph [0040] and FIG. 5 (b) of Patent Document 11 for this).
  • the two thin stents have the same position and direction of the central axis (long axis) of each stent when they are joined, and the outer diameter (ri_out) of the inner thin stent is There was a need to match the inner diameter (ro_in) of the outer thin stent. Since the dimensions of the joining struts are about 0.1-0.5 mm, the required accuracy is the precision below this strut, specifically, the precision is 0.1 mm or less. In order to achieve this, alignment under a microscope is necessary. For resistance welding and thermocompression bonding, it is necessary to prepare a dedicated machine for development.
  • Patent Document 11 a joining method by fitting is also disclosed.
  • the details are not specifically disclosed, and there is only a description that “a concave portion and a convex portion are formed, and both are press-fitted and fitted”. From this description, it is only presumed that a support column for fitting is provided in addition to the cell and the link.
  • a support column for fitting is provided in addition to the cell and the link.
  • precise alignment using a microscope is required.
  • the support column in order to complete the fitting, the support column must be deformed (to press fit), and the operation amount (deformation amount) is assumed to be a very fine operation amount from the thickness and width of the support column. Is done. To achieve this, it is necessary to support a special device under a microscope. The manufacturer also needs special training. There is a problem that these constraints lead to an increase in manufacturing cost, and it is difficult to actually realize them.
  • stents are folded to a small diameter and transported to a lesion site such as a luminal organ. Therefore, the designer designs the stent by assuming a small folded state. For this reason, as disclosed in Patent Document 11, if a support column that is not necessary for treatment and is merely used for conjugation is provided, there is a restriction on the design of the support column that has a function essential for the treatment of cells and links. Or, due to the presence of the extra struts, smooth folding (warping) is hindered, and the stent does not fold sufficiently small.
  • An object of the present invention is to provide a thin, coaxial multi-layered stent that eliminates such constraints and does not require a dedicated machine such as a welding machine and does not require precise alignment. It is what.
  • the radial rigidity is almost the same as that of a conventional single-layer stent, and it can be easily assembled by a doctor without any special struts at a medical site and inserted into the body.
  • a planar structure consisting of multiple struts (Supporting Strut Members (SSM or Just SM)) arranged to form a mesh structure is rolled into a cylindrical shape, and consists of a cylindrical body with a long axis at the center.
  • Coaxial multi-layer stent that forms two component stents A and B (hereinafter sometimes referred to as CSA and CSB) that can be reduced and expanded, and is arranged and configured coaxially with the CSA as the inner layer and CSB as the outer layer.
  • CMLS Coaxial Multi-Layered Stent
  • the column is composed of a plurality of cells, each of which has a bent portion, and at least one link connecting the cells in the long axis direction.
  • the CSA and CSB are each composed of a main body part (Main Body Portion (MBP) occupying most of the center and both side (left and right) ends (LEP, REP) of the main body part,
  • the radii of the body portions are Ra and Rb (where Ra ⁇ Rb)
  • the component stent A (CSA) and the component stent B (CSB) are composed of the component stent A (CSA) strut (SSM) and the component stent B at least at the left end (LEP) of the both ends of the CMLS.
  • the radius (Ra, in) of the cylindrical body of the component stent A (CSA) is the same as the radius Ra of the main body portion, and the struts can receive the struts of other component stents.
  • the component stent B is (A) A support column arranged at the same radial position (Rb, in) as the radius (Rb) of the main body, (A) a strut disposed at a radius position (Rb, df) smaller than the main body radius (Ra) of the component stent A; and (C) A strut (Radially-running SM (RRSM)) (running or disposed in the radial direction of the cylindrical body connecting the two struts arranged at the two radial positions (Rb, in Rb, df). Or Radially-disposed SM (RDSM), Radially-arranged SM (RASM))
  • the component stent A (CSA) is inserted in the longitudinal direction of the cylindrical body of the component stent B with respect to the component stent B (CSB), and the strut (RRSM) of the component stent B (CSB) is inserted into the component stent B (CSB).
  • CSA component stent A
  • CSB component stent B
  • RRSM strut of the component stent B
  • CSB component stent B
  • a coaxial multi-layer stent characterized in that the two component stents A and B are engaged with each other by inserting and fitting the stent A (CSA) into the receiving portion (AP) so as to penetrate the radial direction. Is provided.
  • a planar structure consisting of multiple struts (Supporting Strut Members (SSM or Just SM)) arranged to form a mesh structure is rolled into a cylindrical shape, and consists of a cylindrical body with a long axis at the center.
  • a coaxial multi-layered stent in which two component stents A and B (hereinafter sometimes referred to as CSA and CSB) that can be contracted and expanded are formed and arranged coaxially with the CSA as an inner layer and the CSB as an outer layer.
  • CMLS Coaxial Multi-Layered Stent
  • the column is composed of a plurality of cells, each of which has a bent portion, and at least one link connecting the cells in the long axis direction.
  • the CSA and CSB are each composed of a main body part (Main Body Portion (MBP) occupying most of the center and both side (left and right) ends (LEP, REP) of the main body part.
  • the radii of the body portions are Ra and Rb (where Ra ⁇ Rb),
  • the component stent A (CSA) and the component stent B (CSB) intersect the strut (SSM) of the component stent A (CSA) and the strut (CSB) of the component stent B at the right end (REP) of the CMLS. Is performed,
  • the component stent A is (A) A support column arranged at the same radial position (Ra, in) as the radius (Ra) of the main body, (A) a strut disposed at a radius position (Ra, df) larger than the main body radius (Rb) of the component stent B; and (C) A strut (Radially-running SM (RRSM)) running or arranged in the radial direction of the cylinder connecting the two struts arranged at the two radial positions (Ra, in Ra, df) (Or Radially-disposed SM (RDSM), Radially-arranged SM (RASM))
  • the radius (Rb, in) of the cylindrical body of the component stent B (CSB) is the same as the radius Rb of the main body portion, and the struts are capable of receiving struts of other component stents.
  • Department Accommodation Port Portion (AP)
  • the component stent A is inserted into the component stent B (CSB) in the longitudinal direction of the cylindrical body of the component stent B, and the RRSM of the component stent A (CSA) is inserted into the component stent B (CSB).
  • a coaxial multi-layer stent is provided in which the two component stents A and B are engaged with each other by inserting and fitting the receiving portion so as to penetrate the receiving portion in the radial direction.
  • the strut (SSM) and the component stent B strut (CSB) of the component stent A (CSA) are crossed, respectively, and the coaxial stent in which the two component stents A and B are engaged.
  • a coaxial multi-layer stent is provided.
  • a part of the strut of the component stent A or B partially surrounds the long axis by connecting a plurality of cells having bent portions capable of reducing and extending the circumferential length of the cylindrical body in the vertical direction. It is composed of a ring-shaped support (Ring-shaped SM) configured by arranging a plurality of the same and at least one link connecting the adjacent ring-shaped support in the major axis direction [ [1]
  • the coaxial multilayer stent according to any one of [3].
  • the receiving portion AP of the component stent A or B is provided as a part of the cell having the bent portion, and a part thereof is opened in the direction of the left end portion (LEP) and / or the right end portion (REP),
  • LEP left end portion
  • REP right end portion
  • the receiving portion AP of the component stent A or B includes the passage and a locking holder (Latch Holder) having a circular opening (Round-Rectangular Aperture) communicating with the passage.
  • the radius of curvature of the column that forms the opening located at a position opposite to the passage is longer than the radius of the bent portion of the cell, and forms the passage of the passage communicating with the holder.
  • the distance between the two opposing struts (SM) is narrower than the strut width forming the bent portion of the holder or cell, according to any one of [1]-[5] A layer stent is provided.
  • the holder In the receiving portion AP of the component stent A or B, the holder is symmetrical with respect to a straight vertical bisector connecting the cell bent portions in the circumferential direction, but the opposing struts forming the passage are The coaxial multilayer stent according to [6], which is disposed at a position shifted in the circumferential direction from the perpendicular bisector thereof.
  • the receiving portion AP of the component stent A or B is provided as a part of a cell having a bent portion, and at least two of the receiving portions (AP) are part of at least two or more cells.
  • the coaxial multilayer stent according to any one of [1] to [7], characterized in that each is provided.
  • the receiving portion AP of the component stent A or B is characterized in that at least one receiving portion (AP) has a mirror image relationship with the other receiving portion (AP) with respect to the major axis of the stent A or B [ 8] is provided.
  • the component stent A or B has a radially running or arranged strut (Radially-running SM (RRSM)) (or Radially-disposed SM (RDSM), Radially-arranged SM (RASM)).
  • RRSM Radially-running SM
  • RDSM Radially-disposed SM
  • RASM Radially-arranged SM
  • Struts (Radially-running SM (RRSM), Radially-arranged, Radially-running SM (RRSM)) provided in the link portion of the component stent A or B. SM (RASM))
  • the length in the major axis direction of the link part is longer than the length in the major axis direction of the link part of the pillar without the strut (RRSM) traveling in the radial direction.
  • the coaxial multilayer stent according to [10] is provided.
  • a gap in the main body between the two component stents A and B (CSA, CSB)
  • the drug elution is characterized by the fact that the part can be preferably used as a site for storing or holding a drug reservoir (Drug Reserver or Holder) (Said space is favorably used for, or serves as, a DR)
  • a coaxial multi-layer stent is provided.
  • [13] According to the present invention, [1] In the coaxial multi-layered stent (CMLS) according to any one of [11], a gap in the main body between the two component stents A and B (CSA, CSB) A drug-eluting coaxial multi-layer stent (DE-CMLS) is provided in which the drug to be eluted is accommodated or accommodated in a part as a drug reservoir.
  • CMLS coaxial multi-layered stent
  • DE-CMLS drug-eluting coaxial multi-layer stent
  • the present invention has the following advantageous effects.
  • the coaxial multilayer stent of the present invention it is possible to assemble the coaxial multilayer stent without using a dedicated machine such as a welding machine and without requiring precise alignment.
  • the cells located at the end of the stent have a wide interval between the opposing struts, and the cell struts are formed so as to gradually narrow toward the struts for engagement. This eliminates the need for an assembly machine (manufacturer) or a dedicated joining machine, and enables engagement by simply moving and sliding a plurality of thin stents (component stents) in the longitudinal direction.
  • the coaxial multilayer stent of the present invention can be assembled.
  • the coaxial multi-layer stent of the present invention can be easily assembled, even if the circumferential position is inappropriate before joining, only the length of the long axis of the cell in the long axis direction ( If it slides about 1.0mm-2.5mm), as will be described later, the struts that run in the radial direction are guided to an appropriate position.
  • the moving length slide amount is the long axis length of the cell (or the long axis length of the receiving part receiving the column) (approximately 1.0mm-2.5mm), so the joining operation is performed manually without using a special machine. it can.
  • the struts that run in the radial direction are engaged with the struts (receiving portions) for engaging the component stent A constituting the inner layer.
  • the positions of the central axes of the two component stents A and B do not have to coincide with each other.
  • the thickness of the struts radially running in the outer component stent B is different from the thickness radius difference of the struts of the inner component stent A.
  • a gap error is allowed as much as the thickness is subtracted.
  • the two stent central axes are in sharp contrast to the fact that they had to be exactly coincident.
  • the coaxial multilayer stent of this invention was mounted in the balloon, and it was overlapped on the way of conveying to a lesioned part.
  • a force to pull the struts often acts.
  • This force is a force in the r direction in the stent coordinate system. For example, it occurs when the stent passes through a bend in a blood vessel.
  • the struts involved in the engagement of the inner component stent A and the outer component stent B intersect with each other at the radial positions in the engaging portions as will be described later. is doing.
  • a radial force r-force
  • the strut of the component stent B is arranged on the outer side of the component stent A by the strut of the component stent A. Prevent separation from the column.
  • the strut of the component stent B is disposed outside the component stent B, so that the strut of the component stent B becomes the component stent. Prevents from leaving the A column.
  • the coaxial multi-layer stent of the present invention has a novel engagement mechanism in which struts that run in the radial direction are formed in each of the inner component stent A and the outer component stent B, thereby engaging with each other. Therefore, the problem of dropping off the outer component stent during transportation, which is one of the biggest problems in the conventional coaxial multilayer stent, has been essentially solved.
  • the foldability of the stent it is not necessary to newly provide struts for engagement formed on both ends of the component stents A and B as elements different from the cells as in the prior art. Since it is fused with the cell and is provided as a part of the cell, it is possible to fold the stent after joining, for example, in a contraction time without being disturbed.
  • the number of links affecting the flexibility is the same as the total number of inner layers and outer layers.
  • the thickness of the struts at the link site is thinner than that of a conventional stent, so that it has excellent flexibility.
  • the thickness of the stacked struts is designed to be the same as that of the conventional stent, so that the radial rigidity is comparable to that of the conventional stent.
  • Each component stent before overlapping has a large mesh (pattern consisting of cells and links).
  • Each stent has a strut joined at its end, but the other portions do not affect the deformation of the stent struts. Therefore, the coaxial multilayer stent of the present invention can make a large hole in the side surface.
  • the component stent constituting the present invention is provided with a connector fused with a cell or a link, and is thereby joined.
  • work such as welding can be omitted for the joining, it is expected that productivity can be improved by facilitating assembly work and preventing assembly errors.
  • the design method equivalent to the conventional single layer stent can be applied. Therefore, the coaxial multilayer stent of the present invention can be realized without complicating the design process.
  • the coaxial multi-layer stent of the present invention has a function of holding such a drug. If it mentions, since the said stent of this invention is the state in which the some component stent was piled up, the space exists in the radial direction between each component stent. It is possible to store a drug reservoir formed in a spiral shape or the like that is stored in the shape of the space with a polymer mixed with the drug. The drug reservoir (shape and capacity) is formed regardless of the shape and structure of each component stent. Therefore, the shape and structure of the component stent and the multi-layer stent do not affect the amount of drug mixed in the drug reservoir. This means that the drug loading can be set independently from the shape and structure of the component stent and the multilayer stent.
  • the drug is applied to the surface of the stent cell or link as it is or together with a binder, and the amount of the drug is regulated by the surface area and can be changed (increased) significantly. It was difficult.
  • the degree of freedom is extremely large, and the drug can be eluted for a long time. The effect is very great.
  • the configuration of the drug reservoir by the coaxial multilayer stent of the present invention and the accommodation mechanism thereof will be described in detail later.
  • FIG. 1 is a developed view of a general stent.
  • FIG. 2 is a schematic view of a bifurcation treatment.
  • FIG. 3 is a conceptual diagram showing a method for assembling a coaxial stent.
  • FIG. 4 is an explanatory diagram showing the definition of the coordinate system.
  • FIG. 5 is a development view of the cell.
  • FIG. 6 is a photograph showing a state before and after expansion of the stent.
  • FIG. 7 is a photograph showing a state when the stent is expanded when there is no cell bent portion on the cell central axis.
  • FIG. 8 is an explanatory view of a receiving portion (female connector FC).
  • FIG. 9 is an explanatory view showing the receiving portion and the locking holder.
  • FIG. 10 is a diagram illustrating the passage portion in detail.
  • FIG. 11 is a diagram illustrating the definition of the angle of the passage portion and another embodiment of the passage portion.
  • FIG. 12 is an explanatory diagram showing a receiving portion and a receiving portion that is in a mirror image relationship with the receiving portion.
  • FIG. 13 is a schematic view showing a cell and a receiving portion.
  • FIG. 14 is a conceptual diagram showing a radial traveling strut in the mail connector MC.
  • FIG. 15 is a conceptual diagram showing a component stent in which a mail connector MC is formed on a part of a link.
  • FIG. 16 is a conceptual diagram showing a component stent in which both a receiving portion and a mail connector are formed.
  • FIG. 17 is a cross-sectional view of component stents A and B.
  • FIG. 18 is a cross-sectional view showing a state where the end portions of the component stents A and B are deformed for joining.
  • FIG. 19 is a cross-sectional view showing a state where the end portions of the component stents A and B are deformed for joining.
  • FIG. 20 is a diagram showing a state in the middle of the crossing of the component stents, where (i) is a cross-sectional view and (ii) is a development view.
  • FIG. 21 is a diagram showing a state where the crossing process of the component stent has further progressed (immediately before joining), where (i) is a sectional view and (ii) is a developed view.
  • FIG. 22 is a diagram illustrating a state where the crossing of the component stents is completed (after joining), where (i) is a cross-sectional view and (ii) is a developed view.
  • FIG. 23 is an enlarged view showing the receiving portion and the radial traveling strut in a state where the intersection is completed and joined.
  • FIG. 24 is a developed view showing the positions of the struts when the joined component stents are displaced in the circumferential direction.
  • FIG. 25 is a cross-sectional view of a coaxial multilayer stent mounted on a balloon catheter.
  • FIG. 26 is a development view showing stents having the same shape and different strut thicknesses t.
  • FIG. 27 is a developed view showing stents that differ only in the number n of links in the circumferential direction.
  • FIG. 28 is a graph showing a change in radius during pressurization of a coaxial multilayer stent and a conventional single layer stent.
  • FIG. 29 is a developed view showing two coarse component stents A and B. (However, the connector is omitted.)
  • FIG. 30 shows a development view (i) when the component stents A and B of FIG. 29 are joined, and a development view (ii) when a hole is made in the side wall thereof. (However, the connector is omitted.)
  • FIG. 31 is an explanatory view showing a preferable shape of the medicine reservoir.
  • Planar structure of a stent A composed of a plurality of struts arranged so as to form an A 0 network structure
  • Planar structure of a stent B composed of a plurality of struts arranged so as to form a A 0 network structure
  • a component stent B forming an inner layer Component stent forming the outer layer MBP (Main Body Portion))
  • LEP Left side end of main body part REP Left side end part of main body part Ra Radius of main part of stent A Ra, in Radius of cylindrical body of stent A (before forming a step) Ra, df Radius of cylindrical body of stent A (after forming a step) Rb
  • Radius of stent B main body radius Rb in Radius of cylindrical body of stent B (before forming a step) Rb
  • df Radius of the stent B cylinder (after forming the step)
  • joining refers to bringing two struts into contact with each other.
  • Fixation refers to a state where two struts are in contact and the two struts do not change their relative position and angle at the contacted portion.
  • a fixed state can be created by joining the struts by welding.
  • Attachment refers to a state in which two struts are in contact with each other and the relative position of the two struts does not change, but the relative angle changes.
  • a joined state can be created by joining the struts by engagement.
  • (C) Engagement means that in two parts or elements, a claw part, a projecting part, or a convex part (hereinafter referred to as a claw part or the like) of one part or element is formed. Other parts or elements are provided with a locking part or a hook-like part (hereinafter referred to as a locking part or the like) having a space part for fixing the claw part or the like corresponding to the claw part or the like. When the or element is brought close to each other, the claw portion or the like is received by the space portion such as the locking portion, the two engage with each other, and the two parts or elements are connected. In the present specification, engagement and fitting are used interchangeably.
  • the coordinate system used in the present invention will be described with reference to FIG.
  • the global coordinate system Og-XYZ is a general three-dimensional coordinate system.
  • the stent coordinate system Os-r ⁇ z (FIG. 4 (i)) is a coordinate system used to represent the position and orientation of the stent, and is the same as the cylindrical coordinate system, and has a radius r, a circumferential angle ⁇ , and a length. It consists of an axis z. The long axis z coincides with the central axis of the stent.
  • Reference numeral 7 denotes a central axis of the stent.
  • the stent development coordinate system Oe- ⁇ z (FIG. 4 (ii)) is a two-dimensional coordinate system. It is used to describe the shape of the struts that are placed at any radius of the stent when it is deployed. The direction perpendicular to the plane of the paper coincides with the radius r in the stent coordinate system. FIG. 4 also shows the relationship between the coordinate systems.
  • the multi-layer stent of the present invention is configured by stacking two stents.
  • the basic configuration of each stent (component stent) is schematically shown in FIG.
  • a planar structure 01 composed of a plurality of support columns arranged so as to form a mesh structure is rolled into a cylindrical shape, has a long axis at the center, and its circumferential length can be reduced and expanded as shown in FIG. It consists of a cylindrical stent 1 as shown in c).
  • FIG. 1B is an enlarged view of a part of the column, and shows that the cell 2 and the link 3 connecting the cells are included as elements.
  • FIGS. 17 to 22 are diagrams showing the process of assembling the laminated stent of the present invention.
  • FIGS. 19A and 19B show planar structures A 0 and B 0 composed of a plurality of support columns arranged so as to form a mesh structure, and FIGS. 19A and 19B show this structure.
  • Two component stents A and B (hereinafter referred to as CSA and CSB, respectively), each of which is formed by a cylindrical body having a long axis at the center, and whose circumferential length can be reduced and expanded, Yes.) (The figure is a longitudinal sectional view.)
  • the component stent A (CSA) is used as an inner layer, and the component stent B (CSB) is used as an outer layer to be coaxially disposed and configured to form a coaxial multi-layered stent (CMLS) as follows.
  • component stent A may be simply referred to as stent A, and component stent B may be referred to as stent B.
  • CMLS coaxial multi-layered stent
  • the CSA and CSB each have a main body portion (Main Body Portion (MBP)) that occupies most of the center. And end portions on both sides (left and right) of the main body, that is, a left end portion (LEP) and a right end portion (REP).
  • the radii of the main body portions are Ra and Rb (where Ra ⁇ Rb), respectively. (Of course, this means that the radius of the body portion of the component stent B forming the outer layer is larger than the radius of the body portion of the component stent A forming the inner layer.)
  • the component stent A (CSA) and the component stent (B) (CSB) are at least the left end (LEP) or the right end (REP) of the both ends of the CMLS.
  • the strut (SSM) of the component stent A (CSA) and the strut (CSB) of the component stent B are configured to be crossed.
  • the most characteristic point of the present invention is that the stent A and the stent B are connected by performing the “crossing of the struts”.
  • stents A and B as shown in FIG. 17 are used as starting stents, and as shown in FIG. 18 (i), the stent A (main body radius Ra) is directed outward at the right end thereof.
  • the radius (Ra, in) of the cylindrical body of the component stent A (CSA) constituting the inner layer is the same as the radius Ra of the main body at the left end. (That is, the component stent A is not particularly provided with a “step” at the left end portion thereof, and the left end portion and the main body portion are on the same plane.)
  • a receiving port (Accommodation Port or Portion (AP (A))) that can receive the column is formed.
  • the receiving unit AP (A) consists of a passage for introducing the column and an opening for holding the introduced column.
  • An example of a typical shape is as shown in the left side view of Fig. 20 (ii), which will be described in detail later.
  • the component stent B (CSB) constituting the outer layer is formed with a “step” that extends downward from the main body at the left end thereof. That is, the step is (A) A column 10B arranged at the same radial position (Rb, in) as the radius (Rb) of the main body, (A) a strut 12B disposed at a radius position (Rb, df) smaller than the main body radius (Ra) of the component stent A; and (C) A strut 14B (Radially-running SM (RRSM)) running or arranged in the radial direction of the cylindrical body connecting the two struts arranged at the two radial positions (Rb, in Rb, df). (Or also referred to as Radially-disposed SM (RDSM) or Radially-arranged SM (RASM)).
  • RDSM Radially-disposed SM
  • RASM Radially-arranged SM
  • the component stent A constituting the inner layer is inserted into the component stent B constituting the outer layer in the direction indicated by IN along the long axis Ld.
  • the figure shows a state in which the receiving portion AP (A) at the left end of the inner component stent A is approaching the “step” of the component stent B, that is, the strut 14B that runs in the radial direction, at the left end LEP. Show. (The left view of FIG. 20 (ii) shows the support 14B and the receiving portion AP (A) in this state as seen from the radial direction.)
  • FIG. 21 shows a stage where the component stents A and B are in the middle of crossing at the left end thereof. That is, as shown in FIG. 21 (i), the supporting portion AP (A) (the supporting strut) at the left end portion of the inner component stent A intersects the strut 14B traveling in the radial direction. (In other words, it is understood that the columns cross in a cross section.)
  • the receiving portion AP (A) is composed of a passage 16A for introducing a support column and an opening 18A for holding the introduced support column. The state where the column 14B is entering the passage is shown.
  • FIG. 22 shows a state in which the component stents A and B have completed the crossing process at the left end thereof. That is, as shown in the left end of FIG. 22 (i), the intersection of the strut 14B traveling in the radial direction and the receiving portion AP (A) (the strut constituting the left end of the inner component stent) is completed. Thereafter, the intersection cannot be solved (that is, this state does not return to the state of FIG. 21 or FIG. 20).
  • the column 14B introduced from the passage 16A is trapped in the opening 18A of the receiving portion AP (A). Because it is.
  • the column 14B is movable in the opening (in other words, in a loosely fitted state), but is configured not to run backward to the passage. The mechanism by which the receiving portion traps the support will be described in detail later.
  • the component stent A (CSA) that forms the inner layer is arranged in the major axis direction of the cylindrical body of the component stent B with respect to the component stent B (CSB) that forms the outer layer. Inserting and fitting the strut (RRSM) of the component stent B (CSB) into the receiving portion AP of the component stent A (CSA) so as to penetrate the component stent A (CSA) in the radial direction. , B are formed into a coaxial multilayer stent.
  • the radius (Rb, in) of the cylindrical body of the component stent B (CSB) constituting the outer layer is the same as the radius Rb of the main body. (That is, the component stent B is not particularly provided with a “step” at the right end thereof, and the left end portion and the main body portion are on the same plane.)
  • a receiving portion (Accommodation Port or Portion (AP (B))) capable of receiving the support is formed (the receiving portion AP (B) includes a passage for introducing the support and an opening for holding the introduced support.
  • An example of a typical shape is as shown in the right diagram of Fig. 20 (ii), which will be described in detail later.
  • the component stent A (CSA) constituting the inner layer is formed with a “step” toward the upper side from the main body at the right end thereof. That is, the step is (A) A support 10A disposed at the same radial position (Ra, in) as the radius (Ra) of the main body, (A) a column 12A disposed at a radial position (Ra, df) larger than the main body radius (Ra) of the component stent (A); and (C) A strut 14A (Radially-running SM (RRSM)) that travels or is arranged in the radial direction of the cylindrical body connecting the two struts arranged at the two radial positions (Ra, in Ra, df). , (Or Radially-disposed SM (RDSM), Radially-arranged SM (RASM)).
  • RDSM Radially-disposed SM
  • RASM Radially-arranged SM
  • the component stent A constituting the inner layer is inserted into the component stent B constituting the outer layer in the direction indicated by IN along the long axis Ld.
  • the figure shows a state in which the receiving portion AP (B) at the right end portion of the outer component stent is approaching the “step” of the component stent A, that is, the strut 14A running in the radial direction at the right end portion thereof. .
  • the right side view of FIG. 20 (ii) is a view of the column 14A and the receiving portion AP (B) in this state from the radial direction.
  • FIG. 21 shows a stage in which the component stents A and B are in the middle of crossing at the right end thereof. That is, in the right end portion of FIG. 21 (i), the receiving portion AP (B) (the supporting strut) of the right end portion of the outer layer component stent B is disposed on the strut 14A running in the radial direction of the inner layer component stent A. Crossed. (In other words, it is understood that the columns cross in a cross section.) Specifically, as shown in the right diagram of FIG. 21 (ii), the receiving portion AP (B) is composed of a passage 16B for introducing a support column and an opening 18B for holding the introduced support column. However, a state in which the column 14A is entering the passage is shown.
  • FIG. 22 shows a state in which the crossing process of the component stents A and B is completed at the right end portion thereof. That is, as shown in the right end portion of FIG. 22 (i), the struts constituting the struts 14A that run in the radial direction of the inner layer component stent A and the receiving portions AP (B) (at the right end portion of the outer layer component stents). ) Is completed and the intersection cannot be solved (that is, this state does not return to the state of FIG. 21 or FIG. 20).
  • the column 14A introduced from the passage 16B is trapped in the opening 18B of the receiving portion AP (B). Because it is.
  • the support column 14A is movable in the opening, but is configured not to run backward to the passage.
  • the component stent A (CSA) is inserted into the major axis direction of the cylindrical body of the component stent B with respect to the component stent B (CSB).
  • CSB component stent B
  • the left end or the right end is crossed, but preferably both the left end and the right end. In Fig. 3, the intersection is performed.
  • the coaxial multilayer stent of the present invention can be defined as follows. That is, a component stent A that forms an inner layer having a strut (receiving portion) that can engage a strut that is configured in the radial direction of struts of other stents and that has a uniform strut radius, and a stent Outer layer having struts arranged at larger radial positions, struts arranged at smaller radii, and struts (struts running in the radial direction) for connecting the struts arranged at the two radii as compared to A
  • the stent A is inserted in the longitudinal direction relative to the stent B, and the struts of the stent B are arranged at three radial positions formed by engaging the receiving portion of the stent A.
  • a coaxial multi-layer stent having a strut and a strut having a continuously changing radius.
  • FIG. 5 (a) shows a state in which a plurality of cells 30 having bent portions are connected in a waveform in the radial direction (circumferential direction). A ring is formed that surrounds the long axis.
  • FIG. 5B is an enlarged view of the shape of the one cell.
  • the cell has a cell center axis ld, two above the cell center axis (J side), Two cell bent portions (cell bent portion 31j, cell bent portion 31k, cell bent portion 32j, cell bent 32k) and two cell central long side portions 34j, 34k are formed on the side (K side).
  • a straight bisector of a straight line connecting the cell bent portion 31j and the cell bent portion 31k in the circumferential direction is the cell center axis ld. (That is, in one cell, the elements constituting it extend from 31j ⁇ 34j ⁇ 32j ⁇ 32k ⁇ 34k ⁇ 31k to form one cell. In this case, the cell bent portion 32j and the cell bent 32k are directly Are connected to form one arc 36 as a whole.)
  • the cell bending portions 32j and 32k that continuously form an arc are deformed, so that the circumferential distance between the cell bending portions 31i-31k is increased. Since the distance between the bent portions 31i-31k is a part of the circumference of the stent having a cylindrical shape, the longer distance between the cell bent portions 31i-31k means that the circumference of the stent becomes longer, in other words, This means that the radius of the stent is increased.
  • FIGS. 6A and 6B show photographs of the stent actually produced by the present inventors.
  • the arc formed by the cell bent portion 31i and the cell bent portion 31k is offset in the circumferential direction from the cell central axis ld, the stent is twisted during expansion. It was found that this phenomenon was observed.
  • FIGS. 7 (i)-(iii) are photographs showing the result of expanding an actually produced stent based on the drawing disclosed in Patent Document 15 (FIG. (Iv)).
  • the arc formed by the cell bent portion 32j and the cell bent portion 32k is preferably located on the cell center axis ld that passes through the midpoint between the cell bent portion 31i and the cell bent portion 31k. It is understood that a symmetrical shape with respect to the axis is preferred.
  • the radial stiffness of the stent is largely governed by the length of the cell in the long axis direction. Therefore, the shape of the strut of the cell central long side portion (also simply referred to as the cell central portion) other than the cell bent portion forming the corrugation hardly affects the radial rigidity of the stent (for example, Stent design using sensitivity analysis, see Koji Mori, Ken Ikeuchi, Kazuaki Mitsudo, Journal of Japanese Society for Clinical Biomechanics, 22, 381-387, 2001). Therefore, it is possible to change the shape of the column in the central part of the cell so that the column in the central part of the cell plays the role of a claw or protrusion necessary for realizing the engagement mechanism by crossing as described above. preferable.
  • the radius of the stent is usually further reduced from an unexpanded state (for example, FIG. 6A). This is because the smaller the radius of the stent, the easier it is to pass through the blood vessel. In such a case, as for the shape of the cell, the circumferential distance between the cell bent portion 31j and the cell bent portion 31k is reduced, but the curvature radius of the bent portion is hardly reduced.
  • the receiving portion (AP (A), AP (B), etc.) for receiving the struts that run in the radial direction in a part of the cell, but by forming the receiving portion, From the above-mentioned knowledge, in order to maintain or achieve the function as the original link without obstructing the function required as the link (also referred to as a connector), the shape as shown in the developed view of FIG. It is preferable to form.
  • the receiving portion is also referred to as a “female connector” (FC) from the viewpoint that it is an element that receives a strut that travels in the radial direction and functions as a link.
  • the receiving portion AP is composed of the cell bending portions 31 j and 31 k, the cell center long side portions 34 j and 34 k, the passage portion 16, and the locking holder 38 having the opening 18.
  • the opening 18 is divided into a J-side opening 18j and a K-side opening 18k.
  • the struts of the component stent moving in the radial direction moving from the left are already assembled at the time of assembling (in the crossing process), It is smoothly guided to the opening 18.
  • the opening 18 is preferably circular.
  • FIG. 10 shows the passage portion 16 divided according to the function.
  • the entrance portion Inlet Port j, k) ((i)), the taxiway (Guide Path j, k) ((ii) ), Outlet part (Outlet Port j, k) ((iii)), and locking part (Locking Port j, k) ((iv)).
  • the cell center long side portions 34j, 34k and the entrance portion 16 of the passage portion are smoothly connected to each other.
  • FIGS. 11 (a)-(c) the angle formed between the J-side inlet and the cell center axis ld in the support of the inlet (Inlet Port) (j, k) and outlet (Outlet Port) (j, k)
  • the relationship between ⁇ and the angle ⁇ between the J-side outlet portion (Outlet Port) (j) and the cell center axis ld is formed such that ⁇ ⁇ .
  • the relationship between the angle ⁇ formed by the other K-side inlet (Inlet Port) and the cell center axis ld and the angle K between the K-side outlet (Otelet Port) (k) and the cell center axis ld is ⁇ ⁇ . It forms so that it may become.
  • the passage 16 is preferably formed at a position offset in either of the circumferential directions with respect to the cell center axis ld. Therefore, the relationship between the angle ⁇ and the angle ⁇ in FIG. 11A is preferably ⁇ ⁇ ⁇ .
  • the major axis direction interval of the square portion of the circular opening shown in FIG. 9 is close to the thickness of the struts of the component stent to be joined.
  • the fixing mechanism of the strut running in the radial direction by the receiving portion or the locking holder in the present invention a long-axis direction (friction with living tissue) force generated when the stent is transported to the lesioned part.
  • the stent can be prevented from shifting in the long axis direction.
  • shaft ld is near the width
  • the passage portion is formed by a column having a constant thickness.
  • the passage portion is formed by locally changing the thickness of the column.
  • the same function can be achieved by maintaining the relationship of the angles ⁇ , ⁇ , ⁇ , and ⁇ .
  • FIG. 11C it is obvious that the same function can be exhibited even if the passage is formed by branching the support.
  • the opening 18 in the locking holder reduces its expansion strain and allows its radius of curvature to be received by the receiving portion (or locking holder) in order to secure space for holding another component stent strut. It is preferable to form the cell larger than the bent portions 32j and 32k of the cell in which no is formed. The larger the opening 18, the greater the tolerance in the assembly process when manufacturing the stent including the locking holder (or receiving part), and the ease of assembly and the yield are improved. However, if the radius of curvature is too large, restrictions on the cell shape and the link shape, which are other structural parts of the stent, are not preferable.
  • One of the objects of the present invention is to prevent the overlapped stent from falling off due to frictional force with the living tissue generated in the longitudinal direction when the stent is transported to the lesion.
  • the shape is preferably short in the long axis direction and long in the circumferential direction. (This is why it is preferable that the opening 18 has a circular shape.) By adopting such a shape, the radius of curvature at the center of the opening is increased, and strain concentration during expansion can be reduced. The following effects can also be expected. Also, the opening 18 plays the same role as the cell bent portions 32j and 32k in the cell (where no receiving portion or locking holder is formed) when the stent is expanded. A symmetrical shape is preferred, which can prevent twisting during expansion.
  • the receiving portion AP female connector
  • the portion is preferably formed to be AP and AP * (AP having a mirror image relationship with respect to the cell center axis ld).
  • the cell 2 in which the receiving portion AP having such a shape is formed with at least two or more of the cells arranged at the end of the stent.
  • the receiving parts AP * that is, a mirror image of the AP
  • the struts of the component stent inserted into the opening of the receiving portion AP are the struts having the configuration described below, whereby the stent forming the inner layer and the two struts forming the outer layer are formed.
  • the binding force of the stent can be further increased.
  • the strut RRSM that travels in the radial direction may be referred to as a “mail connector” (MC), focusing on its function.
  • a mail connector MC is preferably formed in the portion of the link 3, and more preferably, the link shape thereof is formed in such a shape that the engagement with the receiving portion is more reliably performed. desirable.
  • the link portion 3 as a support is connected in series with a function as a radial traveling support RRSM (mail connector MC). That is, at the time of assembling the stent, preferably, a connecting portion 14 ′ is provided at a position (corresponding) to the opening 18 of the receiving portion AP, and this is connected to the link 3 in series.
  • the connecting portion 14 ′ is an element that finally constitutes the radial traveling strut RRSM, and is also a portion that constitutes a mail connector.
  • the post of the mail connector MC that is, the radial running post RRSM is located on the cell center axis of the adjacent cell, and when the coaxial multi-layer stent described above is assembled, the mail connector MC The post is deformed in the radial direction so that the radially deformed portion (RDP) 14 ′′ is positioned between the link 3 and the connecting portion 14 ′. Further, it is understood that the connecting portion 14 ′ is connected to the cell 2 through another radial deformation portion 14 ′′ ′′.
  • the struts of the mail connector are preferably wider than the interval (circumferential direction) of the passage portion of the receiving portion.
  • the link portion 3 is typically narrower than the cell portion 2.
  • a part or all of the struts be formed wider than the other ordinary link portions 3 as shown by 14 'in the figure.
  • pillar width is wider than another link part.
  • the portion indicated by the dotted line S has the same width as the normal link portion 3. Basically, as shown in the dotted line S, it is essential to form the link portion 3 to be long (L) as the post of the mail connector. However, in order to ensure a more reliable engagement with the AP, it is preferable not only to make it as long as L but also to have a wide configuration as shown in FIG. Note that the radially deforming portions 14 ′′, 14 ′ ′′ in the struts that run in the radial direction bend greatly when the mail connector is deformed in the radial direction. Therefore, it is preferable that this portion has a relatively narrow column width compared to the connecting portion, and it is preferable to make this column the same as the column width of the other link 3.
  • the struts 14A, 14B are configured to run radially (RRSM).
  • the mail connector MC is preferably configured to be replaced with some of the links 3 in the stent, like the receiving portion AP.
  • the part L of the mail connector MC that forms the struts that run in the radial direction is preferably longer than the other links. That is, the length of the component stent in this case is such that the length of the component stent can be easily understood by changing the radius of part of the component stent for joining and forming struts that run in the radial direction. Since the length of the component stent without the connector is approached, it is desirable that the length of the two component stents be equal when the component stents are joined.
  • a conventional single-layer stent is composed of cells 2 and links 3.
  • a stent in addition to the cell 2 and the link 3, it is composed of a stent to which a mail connector MC and / or a female connector FC is added.
  • a stent is a component stent, and in the above-described one, the component stent A forms the inner layer and the component stent B forms the outer layer, and forms a coaxial bilayer stent.
  • the component stent A, the component stent B, the component stent C,... Are formed as coaxial multilayer (coaxial multilayer) stents.
  • the coaxial multi-layer stent of the present invention is configured by coaxially laminating a plurality of component stents as described above in the assembly section.
  • the strut thickness of one component stent is about 1/2 to 1/4 of the strut thickness of a single layer stent.
  • the radial stiffness of the component stent is greatly affected by the strut thickness.
  • a single component stent alone does not reach the radial stiffness of a single layer stent. This suggests that the component stent alone is incomplete as a therapeutic device.
  • the present invention by combining (combining) a plurality of component stents as coaxial multi-layer stents, the present invention provides a therapeutic instrument that exhibits strength in the radial direction equivalent to that of a conventional single-layer stent. It is.
  • FIG. 23 is an enlarged view three-dimensionally showing how the female connector (that is, the receiving portion AP) and the male connector (radial travel strut 14 thereof) thus joined are locked.
  • the component stent B forming the outer layer is determined in the major axis direction and the circumferential direction by the openings of the component stent B constituting the inner layer.
  • the radial position of the stent B is determined by the radial position of the struts of the component stent A.
  • the tolerance of these positions can be controlled by the size of the opening 18 and the amount of deformation of the mail connector in the radial direction (that is, the size of the “step”). If these are reduced, the tolerance is reduced and the relative position of the two component stents can be determined precisely. On the other hand, if these are increased, the accuracy of the relative positions of the two component stents is lowered. Maintaining low positioning accuracy allows for relative movement of the two component stent struts.
  • the coaxial multi-layer stent of the present invention allows treatment impossible with a conventional single-layer stent by preventing deformation of one layer of struts from interfering with struts of other layers. Therefore, allowing low positioning accuracy contributes to stronger properties of the coaxial multilayer stent.
  • ⁇ Sliding amount in the long axis direction for engaging and joining the component stent is almost equal to the long axis length of the cell or the female connector. Specifically, it is about 1.0 mm-2.5 mm. This slide amount can be realized manually without the assistance of a special device. If the state shown in FIG. 22 or FIG. 23 is realized, when the component stent is moved in either of the circumferential directions relatively, as shown in FIG. It should be noted that the mail connector post 14 is not located at the exit of the AP) passage.
  • the struts of the joined component stent have moved away from the outlet (in the circumferential direction) and are in contact with the lock. Accordingly, the two component stents once joined are less likely to be released when they are relatively displaced in the circumferential direction. This is because, when the coaxial multi-layer stent of the present invention is transported in a blood vessel, even if the component stent is displaced in the circumferential direction due to a frictional force with a living tissue, the component stent does not easily fall off.
  • the multi-layer stent of the present invention is composed of two component stents in which two component stents are joined (engaged) at this position. At this time, the radius of the component stent strut is, for example, as shown in FIG. As shown, there are four different radii (Ra, Ra, df, Rb, Rb, df).
  • the two component stents (coaxial multi-layer stent) connected to each other are placed on a balloon catheter, and the two components are utilized by utilizing the device disclosed in, for example, Patent Document 16.
  • the stent (multi-layer stent) is compressed radially. This force causes the two component stents (multilayer stent) to be mounted on the balloon catheter 50.
  • FIG. 25 shows the mounted state.
  • the radius of the struts of the component stent (multi-layer stent) at this time becomes two, Ra_mount and Rb_mount.
  • the component stent strut (which forms part of the cell or link) straddles (intersects) the other component stent strut, so that the radial force in the stent coordinate system is reduced.
  • it has the effect that the struts of the two component stents are difficult to separate.
  • the compressed multilayer stent needs to pass through the bent part of the blood vessel.
  • a stent is bent, it tries to return to a straight state.
  • this force is expressed in the stent coordinate system in the radial direction and bent, the struts located on the outside try to separate from each other.
  • the component stent A when a radial (r direction) force is applied to the inner component stent A, the component stent A is supported by the struts of the component stent B arranged on the outer side. Acts to prevent it from leaving the strut of the component stent B.
  • a force in the r direction acts on the component stent B of the outer layer, the strut of the component stent A is separated from the strut of the component stent A by the strut of the component stent A arranged outside the component stent B. Acts to prevent separation.
  • the coaxial multi-layer stent according to the present invention is bonded to the component stent as described above even if a force is generated in the major axis direction, the circumferential direction, or the radial direction of the stent at the time of transportation to the lesioned part. Will not separate.
  • a strong connection can be achieved by simply inserting the two component stents from the longitudinal direction and intersecting them, as described above in detail in the assembly section. ing.
  • the manufacturer can easily perform this simple operation manually without the assistance of a microscope.
  • the coaxial multilayer stent of the present invention has further advantages over conventional single layer stents. As shown in FIG. 29, the meshes of the component stents A and B in the present invention are large. Thus, it is essentially understood that it can be used to treat side branches as shown in FIG.
  • the positions of the meshes of the two component stents can be slid in the circumferential direction and joined.
  • the mesh of the composite stent after assembly is small. This means that blood vessels can be expanded uniformly.
  • the central portions of the two component stents can be deformed independently of each other. Therefore, large holes can be drilled in the side walls of the combined multilayer stent to ensure side branch blood flow.
  • the mesh size is the same as that of the closed cell structure, and as described above, as shown in FIG. 30 (ii), a large hole is formed in the side wall of the composite stent. I can open it.
  • the side branch can be treated without precisely controlling the indwelling position in the lesion.
  • a device for examining the indwelling position is not required as in Patent Document 3 and Patent Document 4.
  • the coaxial multi-layer stent of the present invention differs from the conventional multi-layer stent in that most of the struts overlap each other, but the overlapping struts are not joined. Alternatively, even when the struts of each layer intersect, bonding at the intersecting portion is not performed. As already mentioned in the assembly section, it is characterized in that only specific struts of specific parts of the stent end are joined.
  • This configuration has the great advantage that the struts of each layer in the central part (in the longitudinal direction) of the stent used for treatment can be deformed without being interfered with the struts of the other layers. Since such deformation is possible, a therapeutic effect that is impossible with a normal stent can be exhibited. For example, in the side branch treatment at the bifurcation as described above, it is possible to make a large hole on the side wall of the stent as compared with a normal stent.
  • the coaxial multi-layer stent of the present invention has a high degree of freedom in the struts of each layer with respect to the overlapping portion, so that a treatment function that cannot be realized by a single-layer stent or other conventional multi-layer stents Can be expressed.
  • the coaxial multilayer stent of the present invention has a greater degree of freedom of deformation of the struts, specifically, in the treatment of the bifurcation, a larger hole can be formed in the side wall as needed. This greatly contributes to further reducing the influence of the inhibition of the blood flow of the branched blood vessels as a result of the treatment.
  • FIG. 3 shows an example of a coaxial multilayer stent of the present invention as a three-dimensional view.
  • FIG. 3 (i) shows a case where the stent A constituting the inner layer is inserted into the component stent B constituting the outer layer.
  • FIG. 3 is an explanatory view showing an assembling process constituting a laminated stent
  • FIG. 3 (ii) is an enlarged view of a part of the constructed multilayer stent.
  • each component stent is composed of component stents having half the number of links in the circumferential direction and half the strut thickness as compared with a general stent (single-layer stent).
  • the mechanical properties of the coaxial multilayer stent composed of such component stents will be considered.
  • Stent flexibility can be evaluated by bending stiffness.
  • Small bending stiffness means high flexibility.
  • Such bending stiffness can be measured by a bending test.
  • the present inventors measured the bending rigidity of stents having two same stent shapes and different thicknesses t as shown in FIG. That is, the bending stiffness of a stent having a thickness of 0.100 mm (FIG. 26 (i)) and a stent having a thickness t of 0.080 mm (FIG. 26 (ii)) was measured.
  • This result shows that the thinner the stent is, the more the bending rigidity of the stent can be reduced and the flexibility is improved.
  • the number n of links in the circumferential direction affects the flexibility of the stent.
  • the bending stiffness of two stents as shown in FIG. 27 was measured.
  • the stent with 8 links n (FIG. 27 (ii)) had a flexural rigidity of 80.9 Nmm2, and the stent with 6 links n (FIG. 27 (i)) had 43.6 Nmm2.
  • This result shows that a stent having a smaller number of links n has higher flexibility.
  • a stent having a small number of links means a stent having a large mesh. From the above results, it was shown that a stent having a small thickness and a small number of links in the circumferential direction has excellent flexibility.
  • the coaxial multi-layered stent of the present invention is made by connecting two male and female stents A and B having thin struts and connecting the male connector and the female connector. To do.
  • the assembly method has already been described in detail.
  • Each component stent has a large mesh, that is, a component stent with a small number of links. Therefore, in the assembled coaxial multilayer stent of the present invention, the number of links (the total number of links of the inner layer and the outer layer) is equal to that of the conventional single layer stent, but the thickness t of the link strut is thin. Thus, it is clear that the flexibility is superior to that of single layer stents.
  • the radial stiffness of the coaxial multilayer stent of the present invention was examined by numerical analysis.
  • a pressure p of 0.5 atm was applied via Each stent was pressurized after expanding to a radius of about 1.5 mm.
  • the material constituting the stent may be known per se and is not particularly limited, but is basically a metal material that can be plastically deformed, preferably stainless steel such as SUS316L,
  • shape memory alloys such as Ni-Ti alloys and Cu-Al-Mn alloys already described, Cu-Zn alloys, Ni-Al alloys, titanium, titanium alloys, tantalum, tantalum alloys, platinum, platinum alloys, tungsten, tungsten Alloys can be appropriately employed depending on the purpose.
  • a mesh pattern before the stent is expanded from a tube or pipe (substantially tubular body) of the metal base by a laser or the like. Cut out and made. Further, the flat plate of the metal material may be laser-processed to form a mesh pattern, which is subsequently rounded into a tubular shape.
  • the stent of the present invention is a very fine and complicated structure, and the struts constituting the stent are generally strut widths of 0.050 mm-0.300 mm, The strut thickness is about 0.050 mm-0.300 mm, and the diameter is about 1.0 mm-1.5 mm (before expansion) and the length is about 10.0 mm-30.0 mm for coronary arteries, although there are individual differences.
  • a mesh pattern before expansion of a stent is cut out from a metal tube or the like with a laser or the like.
  • the coaxial multilayer stent of the present invention described in detail above can be suitably used as a drug-eluting coaxial multilayer stent.
  • the gap Vab in the main body between the two component stents A and B is a reservoir for storing a drug such as a thrombolytic agent (see FIG. 21-22).
  • Drug Reserver, DR can be preferably used as a site for accommodating.
  • An eluting coaxial multi-layer stent (DE-CMLS) can be formed.
  • Patent Document 8 it is disclosed that a therapeutic effect is enhanced when a stent is placed in a blood vessel by applying a drug to the stent by application or the like. Therefore, in Patent Document 8, the drug is fixed to the stent by applying a biodegradable polymer mixed with the drug to the stent strut.
  • Non-patent document 2 shows that the rate of restenosis is significantly reduced in a drug-eluting stent compared to a stent (Bare Stent) in which no drug is applied and the drug is not eluted. In this way, the therapeutic effect can be enhanced by the drug-eluting stent, so that it is expected to be applied to the treatment of restenosis of blood vessels and the like, which are conventionally considered difficult to treat, and the treatment of blood vessels with narrow occlusions and branches. ing.
  • the stent used for the drug-eluting stent is a conventional single-layer stent, the above structural problem remains.
  • Another problem of the drug eluting stent is a method of loading the drug on the stent as the base material. Since the loading of the drug is performed by application (coating) to the stent strut, the loading amount of the drug is physically limited by the surface area of the stent strut. Therefore, only drugs that exhibit a therapeutic effect with a limited loading amount can be used, or treatment must be performed with an insufficient amount of loading agent, which narrows treatment options.
  • Patent Document 9 discloses a method in which a number of holes for storing a drug are formed in a stent column and the drug is stored there. This is a technique intended to enhance the therapeutic effect by controlling the sustained release speed of the drug. In addition, this method has an advantage that, unlike the coating, there is no possibility of the drug falling off during transportation. However, this method still has the problem that the loading amount is limited by the surface area of the stent strut.
  • Patent Document 10 discloses a method for enhancing a therapeutic effect by forming a stent itself with a biodegradable polymer and mixing a drug with the polymer in advance. Compared with Patent Document 8 and Patent Document 9, this method determines the loading amount of drug (content in the volume of the stent) not by the surface area of the stent but by the volume of the stent. Can be installed.
  • biodegradable polymers are significantly inferior in material properties such as Young's modulus compared to metals, and the stent has a mechanical problem in that the radial rigidity is reduced.
  • Non-Patent Document 4 discloses a treatment result of a stent using a biodegradable polymer in which a drug is premixed. Even in this case, the restenosis rate is inferior to that of a stent made by the method as described in Patent Document 8.
  • the gap Vab in the main body between the two component stents A and B more specifically, most of the center, not the end where the struts intersect.
  • the struts of the two stents are arranged in a separated state, and this portion forms a void portion Vab.
  • a drug-eluting coaxial multi-layer stent (DE-CMLS) can be formed in which the drug to be eluted is preferably accommodated as a drug reservoir (Drug Rseaver, DR).
  • the drug reservoir DR is formed in advance so as to mix the drug to be eluted and the polymer (preferably, those having biocompatibility) and to match the shape of the cavity of the coaxial multilayer stent. ⁇ Processed. For example, it is preferably processed into a spiral shape as shown in FIG.
  • one method is based on a thin film. This is because a base material (polymer composition containing a biodegradable material such as polylactic acid and containing a drug) placed on a flat plate (because the base material on the flat plate has low viscosity) When the temperature is high), the flat plate is rotated at a high speed, and when the base material temperature decreases, a thin and uniform film can be formed. This is a method called spin coating (or double spin coating) and is one of the manufacturing methods generally used in the semiconductor field.
  • spin coating or double spin coating
  • the used thin film may be formed.
  • the thin film formed by the above method is cut out with a certain width (about 0.05 to 1.0 mm).
  • the length is appropriately determined depending on the length of the stent used as the carrier.
  • a rectangular thin film having a determined width and length is wound around the component stent (in the middle) of the coaxial multilayer stent so as to be spiral in the long axis direction.
  • it may be directly wound around the component stent, or separately wound around a rod having the same circular cross section as that of the component stent, spirally formed, and then combined with the component stent.
  • Other methods include substances produced in human bodies (substances such as hyaluronic acid and collagen) themselves, or polymeric substances to which a thickener is added to increase the viscosity (preferably biocompatible). It is also possible to use a technique in which a drug or the like is contained in a thin sheet processed and sandwiched between coaxial multilayer stents. Furthermore, a polymer or the like (preferably biocompatible material is desirable) is processed into a sheet shape by containing a drug or the like, but a microneedle is formed on one surface of the sheet and this is directly inserted into the inner wall of the blood vessel. However, it is also possible to create a shape in which the drug contained in the sheet main body is injected into the blood vessel wall from the micro needle just like the function of the syringe.
  • the drug reservoir does not become a deformation resistance when the stent is expanded, and does not overlap in the radial direction in the contracted state.
  • a shape even if it is basically a cylindrical shape, a plurality of incisions are made in the circumferential direction and the long axis direction, and cracks progress from there in the expansion direction.
  • a shape that can lower the thickness is preferable. That is, at the time of expansion, a plurality of holes and cuts are opened in the drug reservoir. Therefore, it can be said that the above-described spiral shape is one of preferable shapes.
  • this drug reservoir is a structure for actively leaking sufficient blood from the side wall of the stent (for blood flowing in the stent). Is fundamentally different. This is because the stent graft is a kind of artificial blood vessel and blood should not leak through the side wall of the stent.
  • drugs in the drug reservoir of the present invention include, for example, anticoagulants, antithrombotic agents, antiplatelet agents, cytokines, steroids and nonsteroids, antibiotics, anticancer agents, anticholesterol agents, anticholesterol agents, Immunity agent, antiallergic agent, regeneration promoting or inhibiting factor substance in the field of regenerative medicine, intracellular substance, extracellular matrix, drug such as cell growth or inhibiting factor or gene in the field of gene therapy, genetic factor or gene, inhibitor or more Derivatives such as drugs, analogs, metabolites, by-products, etc., or combinations of these drugs and the like, heparin which is a substance that effectively reduces the degree of intimal hyperplasia in animal models and Heparin fragment, colchicine taxol, angiotensin converting enzyme (ACE) inhibitor, angiopeptin, chic Includes rosporin A, goat-anti-rabbit PDGF antibody, terbinafine, trapidil, tranilast, interferon- gamm
  • Heparin and heparin conjugates that have antiproliferative effects on smooth muscle cells in vitro, taxol, tranilast, colchicine, ACE inhibitors, fusiontoxins, antisense oligonucleotides, rapamycin And a substance containing ionizing radiation.
  • These drugs are dispersed and held in the polymer molded in the above-mentioned form as DR, and when the outer surface comes into contact with the bloodstream in the living body, diffusion, dissolution, and other mass transfer mechanisms, It is gradually released (released) from the surface of the reservoir, and functions to suppress the formation of thrombus and the like in the vicinity of the stent and to exert other desired effects.
  • the stent As a polymer mixed with a drug to form a reservoir (preferably, a biocompatible polymer is desirable), the stent is compressed, expanded, bent or deformed while being accommodated in a coaxial multilayer stent.
  • the polymer material preferably having biocompatibility
  • an effective amount of an anticoagulant or the like that is a polymer that is not soluble in blood or physiological saline (preferably having biocompatibility is desirable) and that can inhibit blood coagulation is obtained in vivo. There is no particular limitation as long as it can be gradually eluted (slow release) from the surface of the coating layer.
  • polymers examples include polyvinyl acetate, (meth) acrylic ester polymers, polyester elastomers, polyamide elastomers, polyurethane elastomers, poly (ethylene-vinyl alcohol) copolymers, and 2-methacryloyloxy.
  • Ethyl phosphorylcholine (MPC) (2-hydroxyethyl-methacrylate) -styrene block copolymer is exemplified as a preferable one.
  • a biodegradable polymer is more preferable.
  • Such polymers include PLA (polylactic acid), PLGA (lactic acid / glycolic acid copolymer), PLGAC (lactic acid / glycolic acid / ⁇ -caprolactone copolymer), and in-vivo products, which are usually used for DDS.
  • PLA polylactic acid
  • PLGA lactic acid / glycolic acid copolymer
  • PLGAC lactic acid / glycolic acid / ⁇ -caprolactone copolymer
  • in-vivo products which are usually used for DDS.
  • Hyaluronic acid, collagen, extracellular matrix, etc. and inorganic substances for example, magnesium, calcium, etc.
  • this pre-formed drug reservoir is sandwiched in a void Vab formed by the inner component stent A and the outer component stent B, and is narrowed by both component stents.
  • the drug reservoir DR is formed in a spiral shape, and is formed of a polymer that can follow the deformation of the stent. Can follow deformation (expansion).
  • the shape and structure of the coaxial multilayer stent and the drug reservoir are basically separate elements and are independent of each other. Therefore, the amount of medicine loaded in the medicine reservoir depends only on the shape and structure of the medicine reservoir. Thus, if the volume of the medicine reservoir is increased, the amount of medicine loaded can be easily increased.
  • the concentration of the drug in the drug reservoir can be appropriately selected. For example, in the drug reservoir (based on the total mass), 0.01-80% by mass, preferably 0.1-60% by mass, more preferably 1. It is about 0-50% by mass.
  • the method for forming the drug reservoir (molded body) DR has been described in detail above. However, the method is not limited to this.
  • the shape of the void Vab formed by the target component stent A and the component stent B is used.
  • a mold is prepared as a split mold, and in the split mold, a resin composition composed of a drug and a polymer (preferably those having biocompatibility is desirable) is melted in an injection molding machine, It is injected into the mold and cured, or a solvent of at least the polymer (preferably biocompatible) is added to the composition to obtain a resin solution containing a drug, This may be poured into the split mold, and then the solvent may be removed by drying.
  • the drug and the monomer of the resin can be injected into a split mold together with a polymerization initiator or the like, and polymerized in the mold.
  • the volume of the drug reservoir is not affected by the structural characteristics of the stent.
  • the volume of the drug reservoir can be increased or decreased independently of the stent structure.
  • a large volume drug reservoir is combined with a coaxial multilayer stent using an open cell component stent, or a small volume drug reservoir is combined with a coaxial multilayer stent composed of a closed cell structure component stent.
  • the drug reservoir of the present invention is also housed in the void portion Vab of the coaxial multilayer stent composed of the two component stents A and B, and is guided to the lesioned portion in a sandwiched state. Therefore, it is unlikely that the drug reservoir comes into contact with the blood vessel wall or the like during transportation and a part of the drug reservoir falls off.
  • the coaxial multilayer stent protects the drug reservoir held by it.
  • the present invention has the following industrial applicability.
  • the coaxial multilayer stent of the present invention it is possible to assemble the coaxial multilayer stent without using a dedicated machine such as a welding machine and without requiring precise alignment. That is, engagement can be realized by simply moving and sliding a plurality of thin stents (component stents) in the long axis direction, and the coaxial multilayer stent of the present invention can be assembled. Further, since the moving amount of the component stent in the major axis direction is about 1.0 mm-2.5 mm, it can be easily assembled without using a microscope.
  • the inner component stent A and the outer stent One of the biggest problems in the conventional coaxial multi-layer stent is that it has a new engagement mechanism that forms struts that run in the radial direction in each of the component stents B, and thereby performs engagement. The problem of falling out of the outer component stent during transportation is essentially solved.
  • each component stent before overlapping has a large mesh (pattern composed of cells and links).
  • Each stent has a strut joined at its end, but the other portions do not affect the deformation of the stent struts. Therefore, the coaxial multilayer stent of the present invention can make a large hole in the side surface and can be effectively applied to the treatment of a blood vessel portion having a side branch.
  • a drug eluting stent can be formed by having a space part that can suitably store a drug reservoir between component stents. That is, in the drug-eluting coaxial multi-layer stent of the present invention, since the drug is stored in the space between the layers, the degree of freedom is extremely large, and the drug can be eluted for a long time. The availability is very large.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided is a coaxial multi-layered stent which has a radial rigidity almost equivalent to a single layer stent, can be fabricated by a medical doctor by him/herself in clinical practice without forming a special supporting strut member, is free from the separation of the stent in the course of the delivery to a lesion site, enables a side branch treatment, and ensures a space for storing a large amount of a drug. Use is made of a coaxial multi-layered stent comprising a component stent A forming the inner layer in which a supporting strut member constituting the same has uniform diameter and which is provided with a supporting strut member (accommodation port) engageable with a radially running supporting strut member of a supporting strut member of another stent, and another component stent B forming the outer layer which has a supporting strut member located at a larger radial position than the stent A, a supporting strut member located at a smaller radial position and a supporting strut member (radially running supporting strut member) connecting the two supporting strut members as described above, wherein the stent A is inserted in the longitudinal direction to the stent B so as to provide supporting strut members arranged at three radial positions formed by engaging the supporting strut member of the stent B with the accommodation port of the stent A and a single supporting strut member the radius of which varies continuously.

Description

同軸複層ステントCoaxial multilayer stent
 本発明は、同軸複層ステントに関し、及びそれに同様のまたは類似する支持構造体を有する腔内用内部人工器官および内部人工器官に関する。 The present invention relates to coaxial multi-layer stents and to intraluminal endoprostheses and endoprostheses having similar or similar support structures.
 生体内の血管などの管状臓器が狭窄等を起こす病気があり、これらの病気は時として生命に重大な影響をおよぼすものである。一例として、冠動脈において狭窄等が生じると心筋への血流量が減少し、心臓の機能を低下させ、これにより生命が脅かされる。このような病気を治療する器具として、非侵襲で治療を可能にするため、近年注目されているステントと呼ばれる器具がある。これは、両端部分が開口した円筒状の構造体あるいはコイル状形式のもので、材料としてはステンレスなどの塑性変形可能な金属材料等から構成されるもの、形状記憶や超弾性などの性質を有したニチノ-ル(Ni-Ti)合金などから構成されるもの、超塑性や生体内で溶ける特性を有する金属材料、生体高分子材料、セラミック,生分解性を示すプラスチックなどから構成されるものもある。
 このうち、ステンレス鋼などの塑性変形可能な金属材料から構成されるステントがもっとも多く利用されているので、これを例にとって、以下説明する。なおそれ以外の材料から構成されるステントにおいても同様であることは当業者であれば容易に推測可能である。
There are diseases in which tubular organs such as blood vessels in the body cause stenosis and the like, and these diseases sometimes have a serious effect on life. As an example, when a stenosis or the like occurs in a coronary artery, the blood flow to the myocardium is reduced, and the function of the heart is lowered, thereby threatening life. As a device for treating such a disease, there is a device called a stent that has been attracting attention in recent years in order to enable non-invasive treatment. This is a cylindrical structure with open ends or a coiled type, and is composed of a metal material that can be plastically deformed, such as stainless steel, and has properties such as shape memory and superelasticity. Some of them are composed of Nitinol (Ni-Ti) alloy, etc., some are composed of metal materials, biopolymer materials, ceramics, biodegradable plastics, etc. that have superplasticity and melting characteristics in vivo. is there.
Of these, stents made of a plastically deformable metal material such as stainless steel are most frequently used, and will be described below by taking this as an example. It should be noted that those skilled in the art can easily guess that the same applies to stents made of other materials.
(ステントの一般的使用方法)
 通常ステントは、体外であらかじめ生体内の管状臓器に留置しやすいように半径を小さくした状態でバルーンカテーテルと呼ばれる、風船部とカテーテルと呼ばれる運搬装置が一緒になったカテーテルの先端の風船部に取り付けられている。バルーンカテーテルに取り付ける際にステントの半径を小さくすることが出来れば、体内等への挿入時および挿入後、病変部までの運搬が非常に容易になる。
(General usage of stent)
Usually, the stent is attached to the balloon part at the tip of the catheter, which is called a balloon catheter and a delivery device called a catheter together with a small radius so that it can be placed in a tubular organ inside the body in advance. It has been. If the radius of the stent can be reduced when attached to the balloon catheter, it can be very easily transported to the lesion during and after insertion into the body.
 これを生体のごく一部を切開した箇所から血管などに挿入し、そこから病変部に運ばれる。病変部位までステントを運搬し、そこでバルーンカテーテルの先端部分を拡張する。バルーンカテーテルの先端部分にはステントが取り付けられているが、ステントの取り付けられている部分は風船状になっており、拡張が可能である。バルーンカテーテルの拡張によってステントも体内で拡張される。ステントが塑性材料である場合、ステントは塑性変形を起こすほど拡張され、その変形は永久に保持される。ステントを拡張した後に風船部分を収縮させてからバルーンカテーテルを除去すると、塑性変形をしたステントのみが狭窄等を起こした病変部位を拡張したままの状態で残される。 This is inserted into a blood vessel or the like from a part where a small part of the living body is incised, and is carried from there to the lesioned part. The stent is delivered to the lesion site, where the tip of the balloon catheter is expanded. A stent is attached to the distal end portion of the balloon catheter, but the portion to which the stent is attached has a balloon shape and can be expanded. The stent is also expanded in the body by the expansion of the balloon catheter. When the stent is a plastic material, the stent is expanded to cause plastic deformation and the deformation is retained permanently. When the balloon catheter is removed after the balloon portion is deflated after the stent is expanded, only the plastically deformed stent remains in a state where the lesion site where the stenosis or the like has occurred is expanded.
(ステントの一般的要求機能)
 従来、ステントとしては、様々な機能、構造が提案されている。ステントには多くの機能が要求されるが、そのうち、最も基本的な要求機能は、管状臓器の拡張、及び当該管状臓器を内部より支持する半径方向の剛性と、長軸方向に走行する管状臓器の複雑な形状に追従しうる柔軟性である。
 ステントは基本的に円周方向、長軸方向に同じ形状が繰り返し、それによって構成されることが多い。代表的なステントの構造としては、図1に示すように、管状臓器の拡張および当該臓器を支持する「セル」2と呼ばれる部分と、ステントに長軸方向の柔軟性を与える「リンク」3から構成される構造のステントである(たとえば、特許文献14を参照。)。このようなステントは、クローズドセル構造と呼ばれ、リンクと呼ばれる部位がS字形状やN字形状などをしているのが特徴である。
(General requirements for stents)
Conventionally, various functions and structures have been proposed as stents. Many functions are required for a stent. Among them, the most basic required functions are expansion of a tubular organ, radial rigidity that supports the tubular organ from the inside, and tubular organ that runs in the long axis direction. It is flexible enough to follow complex shapes.
In many cases, the stent is basically constituted by repeating the same shape in the circumferential direction and the major axis direction. As shown in FIG. 1, a typical stent structure includes a portion called a “cell” 2 that expands a tubular organ and supports the organ, and a “link” 3 that gives the stent flexibility in the longitudinal direction. A stent having a structured structure (see, for example, Patent Document 14). Such a stent is called a closed cell structure and is characterized in that a portion called a link has an S-shape or an N-shape.
 他方、管状臓器の拡張および支持する「セル」2を、ステントの長軸方向に略平行で略直線状の「コネクター」(リンクともいう。)などと呼ばれる、支柱で接続している構造が提案されている(例えば、特許文献12を参照。)。これはオープンセル構造と呼ばれる。
 さらに、それ以外にも、ワイヤーをコイル状に形成したステント(「コイルステント(coil stent)」と呼ばれる。)や、ステントの長軸方向をほぼ平行に背骨と呼ばれる支柱を有し,その支柱に対し垂直,つまり円周方向に支柱を配置したステント(例えば、特許文献13を参照。)なども存在する。
On the other hand, a structure is proposed in which “cells” 2 for expanding and supporting tubular organs are connected by struts called “connectors” (also referred to as links) that are substantially parallel to the long axis direction of the stent. (For example, see Patent Document 12). This is called an open cell structure.
In addition, it has a stent in which the wire is formed in a coil shape (called a “coil stent”), and a strut called the spine that is almost parallel to the long axis direction of the stent. On the other hand, there is a stent (see, for example, Patent Document 13) in which struts are arranged vertically, that is, in a circumferential direction.
 しかしながら、コイルステントは、半径方向剛性が比較的低いため(例えば、非特許文献1参照。)、血管を充分に拡張し続けることが出来ずに治療成績が劣るものであった。このような問題点は、上記特許文献13のステントについても同様に存在している。したがって現在では、特許文献12や14のようなステントが用いられることが多い。このようなステントは単一の材料の中空チューブから加工されるのが一般的で、本明細書ではこれを単一層ステント(single-layer stent)と呼ぶ。 However, since the coil stent has a relatively low radial rigidity (see, for example, Non-Patent Document 1), the blood vessel cannot be sufficiently expanded, and the treatment results are inferior. Such a problem also exists in the stent of Patent Document 13. Therefore, at present, stents such as Patent Documents 12 and 14 are often used. Such stents are typically fabricated from a single material hollow tube, referred to herein as a single-layer stent.
 このような単一層ステントにおいては、複数の材料を組合せてステントの機械的特性を向上することを意図したステントがある。たとえば、特許文献1、特許文献2において、内側層と外側層で構成されるステントが提案されている。これらは形状記憶合金である超弾性材料とステンレスなどの展性材料(弾塑性材料)などの異なる2種類の材料を1本のチューブ状に加工し、その後にステント形状に加工し、1つのステントでありながら支柱における材料構成が半径方向に層状構造を呈するように形成されたステントであり、層状構造を与えた支柱の材料学的特性によってステント機能向上(主に柔軟性の向上)を意図したものである。しかしながら、これらのステントの基本特性は、上述の単一層ステントと同じであり、単一層ステントの構造学的理由に起因する本質的な問題点を解決するものではない。 Among such single-layer stents, there are stents intended to improve the mechanical properties of a stent by combining a plurality of materials. For example, Patent Document 1 and Patent Document 2 propose a stent including an inner layer and an outer layer. These are a shape memory alloy superelastic material and a malleable material (elastic plastic material) such as stainless steel, which are processed into one tube shape and then processed into a stent shape. However, it is a stent formed so that the material composition of the struts has a layered structure in the radial direction, and intended to improve the stent function (mainly to improve flexibility) by the material properties of the struts provided with the layered structure. Is. However, the basic characteristics of these stents are the same as those of the single layer stent described above, and do not solve the essential problems caused by the structural reasons of the single layer stent.
 単一層ステントは、上記したように、クローズドセル構造とオープンセル構造と呼ばれる構造が主流である。これらクローズドセル構造とオープンセル構造とは、上述の特徴以外に、繰り返し構造単位の大きさの違いによって特徴付けられる。一般にクローズドセル構造の方が繰り返し構造単位の大きさが小さい。 As described above, single-layer stents mainly have a structure called a closed cell structure and an open cell structure. The closed cell structure and the open cell structure are characterized by the difference in the size of the repeating structural unit, in addition to the above-described characteristics. In general, the closed cell structure has a smaller size of the repeating structural unit.
 また、クローズドセル構造およびオープンセル構造は、非特許文献2に記載されるように、一長一短の性質を持つ。例えばクローズドセル構造は、曲げた際の形状の変化が少なく、管状臓器を均一な応力分布で拡張、支持できる好ましい特性を有する反面、管状臓器が分岐した部分では使用しにくいなどの問題がある。他方、オープンセル構造では、管状臓器が分岐した部分での使用には好適であり、また柔軟性は高いが、曲げた際にステントの一部が予期しない過大な変形をすることがあり、それによって管状臓器に不均一な応力分布を与えることがあるという問題を有する。 Also, as described in Non-Patent Document 2, the closed cell structure and the open cell structure have advantages and disadvantages. For example, the closed cell structure has a preferable characteristic that it can expand and support a tubular organ with a uniform stress distribution while it has little change in shape when bent, but has a problem that it is difficult to use in a portion where the tubular organ is branched. On the other hand, the open cell structure is suitable for use in a branched part of a tubular organ, and is highly flexible, but when bent, a part of the stent may be unexpectedly deformed excessively. Therefore, there is a problem that uneven stress distribution may be given to the tubular organ.
 一般に、従来の単一層ステントは、これを長軸方向に見るとセルとリンク(またはコネクター)が1列ずつに交互に並んだ構造となっており、リンクまたはコネクター部分では管状臓器の拡張、支持機能がほとんど期待できないという問題点がある。これは、特にクローズドセル構造では顕著であり、また、オープンセル構造でも拡張時には顕著に現れる。 In general, a conventional single-layer stent has a structure in which cells and links (or connectors) are alternately arranged in a row when viewed in the longitudinal direction, and the tubular organ is expanded and supported in the link or connector portion. There is a problem that almost no function can be expected. This is particularly noticeable in the closed cell structure, and also appears in the open cell structure when expanded.
(臓器形状追従性)
 また、ステントは、適用すべき管状臓器の形状に追従性を有することが求められる(形状追従性)。この追従性は、長軸方向に蛇行しているような管状臓器に留置されるステントが、拡張、留置後にも忠実に当該臓器形状に追従できることを意味する。そして、同時に、管状臓器の半径方向の断面形状に対しても追従すること、すなわち管状臓器を円形形状に拡張、支持することが望まれる。
(Organ shape following)
In addition, the stent is required to have followability to the shape of the tubular organ to be applied (shape followability). This followability means that a stent placed in a tubular organ that meanders in the long axis direction can faithfully follow the organ shape even after expansion and placement. At the same time, it is desirable to follow the radial cross-sectional shape of the tubular organ, that is, to expand and support the tubular organ into a circular shape.
 もし、ステントの管状臓器形状追従性が不十分であると、ステントを管状臓器内に拡張、留置した際に、管状臓器の拡張性が長軸方向に関して不均一になるという問題が生じ、ひいては管状臓器における応力分布の不均一性、そして応力集中部位での管状臓器の損傷とそれによる再狭窄等の発生という問題に発展する。 If the stent has insufficient ability to follow the shape of the tubular organ, when the stent is expanded and placed in the tubular organ, there is a problem that the expandability of the tubular organ becomes non-uniform with respect to the long axis direction. It develops into the problem of non-uniformity of stress distribution in the organ and damage of the tubular organ at the stress concentration site and the occurrence of restenosis.
(側枝を有する血管部分)
 ところで、ステントの重要な適用部位である冠状動脈のごとき、図2に示すような側枝2bのある血管部分へのステント1’による治療を可能とすることが要請されている。このためには、側枝分岐部分(側枝基部)2aに配置される(対応する)部位のステント1の支柱を少なくして、(すなわち、網目減少のため、ステント1のセル部位の面積を広くしリンク数を減らす。)、隙間を大きくしてやればよい。これによって、ステント1のこの隙間から側枝2bへのステント1’の導入、(及びこれによるバルーンカテーテル導入)などが容易になり(この意味でオープンセル構造は側枝へのアプローチ性が優れているといわれている。)。図2(i)-(iv)は、この状態を説明するもので、かくして、高い治療効果が期待できる。
(Vessel part with side branch)
By the way, there is a demand for enabling treatment with a stent 1 'to a blood vessel portion having a side branch 2b as shown in FIG. 2 such as a coronary artery which is an important application site of a stent. For this purpose, the number of struts of the stent 1 at the (corresponding) portion disposed on the side branch branch portion (side branch base) 2a is reduced (that is, the area of the cell portion of the stent 1 is widened to reduce the mesh). Reduce the number of links), and increase the gap. This facilitates the introduction of the stent 1 ′ into the side branch 2 b from this gap of the stent 1 (and the introduction of the balloon catheter thereby), etc. (In this sense, the open cell structure has an excellent approach to the side branch. It is said.) FIGS. 2 (i)-(iv) illustrate this state, and thus a high therapeutic effect can be expected.
 ところが、これを実現するためには2つの困難が存在する。一つは、側枝内にステントを留置したい場合は、大抵、その側枝の分岐部分に狭窄等が生じており、側枝にバルーンカテーテルをアプローチさせやすくするためにステント支柱を減らしたい領域と、狭窄等が生じている部分を拡張させるために充分な半径方向剛性が必要となる領域が非常に近接していることである。二つ目は、ステントによる治療に際しては、通常X線透視下で当該治療が実施されるために、特定の箇所のステント支柱を減らしても、その部位が確実に側枝部分に位置決めできない。(位置決めのためには、長軸方向の位置と円周方向の角度を特定する必要がある。)このため、ステントの支柱を減らした部位が、血管の狭窄等部位に正確に配置されず、狭窄部位等を充分に拡張できない可能性がある。 However, there are two difficulties in realizing this. First, when a stent is to be placed in a side branch, there is usually a stenosis or the like at the branch of the side branch. The areas where sufficient radial stiffness is required to expand the part where the erosion occurs are in close proximity. Second, in the treatment with a stent, since the treatment is usually performed under fluoroscopy, even if the number of stent struts at a specific location is reduced, the location cannot be reliably positioned on the side branch portion. (For positioning, it is necessary to specify the position in the major axis direction and the angle in the circumferential direction.) For this reason, the site where the stent struts are reduced is not accurately placed in a site such as a stenosis of the blood vessel, There is a possibility that the stenosis site etc. cannot be expanded sufficiently.
 このような問題を解決するため、特許文献3と特許文献4においては、側枝を有する箇所に適用するステントと専用のバルーンカテーテルが開示されている。このバルーンカテーテルは特別の側枝判別装置を備えており、側枝の長軸方向の位置と円周方向の角度を特定することができる。当該ステントは側枝へバルーンカテーテルが導入しやすいように、一箇所を外側に開きやすい構造にしてある。しかしながら、このように分岐部の治療効果を高めるためには、特別のステントや特別のデリバリーデバイスを用意する必要があるというような難点がある。 In order to solve such problems, Patent Document 3 and Patent Document 4 disclose a stent applied to a portion having a side branch and a dedicated balloon catheter. This balloon catheter is provided with a special side branch discriminating device and can specify the position of the side branch in the long axis direction and the angle in the circumferential direction. The stent has a structure that allows easy opening of one portion outward so that the balloon catheter can be easily introduced into the side branch. However, in order to enhance the therapeutic effect of the bifurcation as described above, there is a problem that it is necessary to prepare a special stent or a special delivery device.
(複数ステントの組み合わせ/複合ステント)
 これら単一層ステントの問題点を解決するために、複数のステントを組合せる方法が提案されている。
例えば、複数のステントを長軸方向に連結することにより、より多くの機能をステントに付与することを意図している提案がされている(特許文献6を参照。)。すなわち、長軸方向の柔軟性を確保するために、ステントを長軸方向に連結するものである。これにより一つの金属チューブから作製されたリンクよりも、多くのリンクを有することになり、高い柔軟性をステントに付与することができるとされている。
(Combination of multiple stents / composite stent)
In order to solve the problems of these single layer stents, a method of combining a plurality of stents has been proposed.
For example, the proposal which intends to provide more functions to a stent by connecting a plurality of stents in the major axis direction has been made (see Patent Document 6). That is, in order to ensure flexibility in the long axis direction, the stent is connected in the long axis direction. This means that there are more links than links made from one metal tube, and it is said that high flexibility can be imparted to the stent.
 また別の提案では、2つのステントを長軸方向に連結および分離可能な係合部分を設けることによって、柔軟性を向上させて病変部位への運搬性の向上を意図したステントが開示されている(例えば、特許文献7を参照。)。 In another proposal, there is disclosed a stent intended to improve flexibility and transportability to a lesion site by providing an engagement portion capable of connecting and separating two stents in the longitudinal direction. (For example, see Patent Document 7).
 これらのステントにおいては、柔軟性を向上させることはある程度可能であるが、病変部位への運搬中に生じるステントと生体組織の摩擦などの外力によってステント同士が分離する問題を解決していない。すなわち、ステントを運搬する際に、生体組織との摩擦が発生し、その摩擦力は長軸方向や円周方向に作用することによる。しかしながら、一般的に、長軸方向の摩擦力のほうが大きく、長い時間発生する。したがって、ステントをデリバリーデバイスの長軸方向に移動しないように固定することが必要なのである。特許文献6や特許文献7においては、機械的に長軸方向に連結しているので、そのようなステントの長軸方向に作用する力に対して、上記摩擦力に由来する力が当該連結部分に直接的に作用する。その力が連結力を上回れば、その連結は破壊されて壊れてしまう。 In these stents, it is possible to improve the flexibility to some extent, but the problem that the stents are separated from each other by an external force such as friction between the stent and the living tissue generated during transportation to the lesion site has not been solved. That is, when the stent is transported, friction with the living tissue is generated, and the friction force acts in the major axis direction or the circumferential direction. However, generally, the frictional force in the major axis direction is larger and occurs for a longer time. Therefore, it is necessary to fix the stent so as not to move in the longitudinal direction of the delivery device. In Patent Document 6 and Patent Document 7, since the mechanical connection is made in the long axis direction, a force derived from the frictional force is applied to the connecting portion in relation to the force acting in the long axis direction of such a stent. Act directly on. If the force exceeds the connection force, the connection is broken and broken.
 特許文献5においては、単一の材料の金属ワイヤーをらせん状に形成したステント(「コイルステント(coil stent)」)を2重に重ね合わせて、重なり合った支柱部分を溶接などによって接合することにより、コイルステントの弱点である半径方向の剛性を強化する方法が開示されている。しかしながら、一方、ステント支柱は薄いほうが再狭窄率は減少することも考慮しなければならない。すなわち、半径方向剛性を強化するために半径方向にステントを重ね合わせることは、工学的には合理性があるが、医学的には逆に有益な結果を得られないのである。非特許文献3に示すように、ステントの支柱は薄いほうが再狭窄率は低減するためである。 In Patent Document 5, a stent (“coil stent”) in which metal wires of a single material are formed in a spiral shape are overlapped, and the overlapping strut portions are joined by welding or the like. A method of enhancing the radial rigidity, which is a weak point of a coil stent, is disclosed. However, it must also be taken into account that the thinner the stent struts, the lower the restenosis rate. In other words, superimposing stents in the radial direction in order to enhance the radial rigidity is rational in engineering, but medically, on the contrary, it does not provide useful results. This is because, as shown in Non-Patent Document 3, the restenosis rate is reduced as the struts of the stent are thinner.
 特許文献11においては、半径がわずかに異なる複数の薄い支柱を有するステント(以下、「薄型ステント」という。)を準備し、一方の薄型ステントに他方の薄型ステントを長軸方向に挿入し、支柱を同軸上に重ね合わせて両端部分の支柱の一部を接合することによって側枝などの治療に好適な多層ステントが開示されている(特許文献11の図3参照。)。しかしながら、薄型ステントの接合については、抵抗溶接や熱圧着を利用する接合を想定している(これに関しては、特許文献11の段落〔0040〕や図5(b)などを参照。)。さらに、これらの接合法は、薄型ステントに使われる素材の特性を変化させる可能性があるので、ステント治療に必要なセル(血管を拡張する機能)やリンク(柔軟性を付与する機能)とは関係ない接合用の支柱を別途設け、2つの薄型ステントの接合用の支柱同士を接合することによって2つの薄型ステントを接合する方法を採用せざるを得ないものであった。 In Patent Document 11, a stent having a plurality of thin struts having slightly different radii (hereinafter referred to as “thin stent”) is prepared, and the other thin stent is inserted into one thin stent in the long axis direction. A multi-layered stent suitable for treatment of a side branch or the like is disclosed by superimposing them on the same axis and joining a part of struts at both ends (see FIG. 3 of Patent Document 11). However, for the joining of thin stents, joining utilizing resistance welding or thermocompression bonding is assumed (refer to paragraph [0040] and FIG. 5 (b) of Patent Document 11 for this). In addition, these bonding methods may change the properties of the materials used in thin stents, so what are the cells (functions that expand blood vessels) and links (functions that give flexibility) necessary for stent treatment? A method of joining two thin stents by separately providing unrelated joining struts and joining the two thin stent joining struts to each other has been unavoidable.
 また、この方法では、接合工程において、長軸方向と円周方向に関する位置合わせが必要である。支柱同士の位置を合わせるためには、2つの薄型ステントに形成された接合用の支柱を、長軸方向(位置z)および円周方向(角度θ)に関して一致させる必要がある。さらには外側の薄型ステントの支柱は、内側の薄型ステントの支柱と接触させなければならないので、半径rについても厳密に位置をコントロールする必要がある。これを実現する為に2つの薄型ステントは、接合の際に、それぞれのステント中心軸(長軸)の位置と方向が厳密に一致しており、かつ内側の薄型ステントの外径(ri_out)は、外側の薄型ステントの内径(ro_in)と一致している必要性があった。接合用の支柱の寸法は、0.1-0.5mm程度であるため、要求される精度は、この支柱以下の精度であり、具体的には0.1mm以下の精度である。これを実現するためには、顕微鏡視下での位置合わせが必要である。また抵抗溶接や熱圧着には、専用の機械を開発準備する必要がある。 In this method, alignment in the major axis direction and the circumferential direction is necessary in the joining process. In order to align the positions of the struts, it is necessary to match the joining struts formed on the two thin stents with respect to the major axis direction (position z) and the circumferential direction (angle θ). Furthermore, since the strut of the outer thin stent must be brought into contact with the strut of the inner thin stent, the position of the radius r must be strictly controlled. In order to achieve this, the two thin stents have the same position and direction of the central axis (long axis) of each stent when they are joined, and the outer diameter (ri_out) of the inner thin stent is There was a need to match the inner diameter (ro_in) of the outer thin stent. Since the dimensions of the joining struts are about 0.1-0.5 mm, the required accuracy is the precision below this strut, specifically, the precision is 0.1 mm or less. In order to achieve this, alignment under a microscope is necessary. For resistance welding and thermocompression bonding, it is necessary to prepare a dedicated machine for development.
 さらに、特許文献11においては、嵌合による接合法も開示されている。しかしながら、その詳細については具体的には開示されておらず、ただ、「凹部と凸部を形成し、両者を圧入し嵌合する」との記述があるのみである。かかる記載からは、セルやリンク以外に、嵌合用の支柱を設けることが推測されるのみである。なお、この嵌合による接合を実現するためには、上述のように、顕微鏡を使った精密な位置合わせが必要である。また嵌合を完成させるために、支柱を(圧入するために)変形させなければならず、その操作量(変形量)は、支柱の厚さや幅から非常に微細な操作量であることが想定される。これを実現するためには顕微鏡視下で、特別の装置の支援が必要である。また製造者に特別の訓練が必要である。これらの制約条件は製造におけるコストを増大させることにつながるという問題点があり、実際に実現することは困難である。 Furthermore, in Patent Document 11, a joining method by fitting is also disclosed. However, the details are not specifically disclosed, and there is only a description that “a concave portion and a convex portion are formed, and both are press-fitted and fitted”. From this description, it is only presumed that a support column for fitting is provided in addition to the cell and the link. In addition, in order to implement | achieve joining by this fitting, as mentioned above, precise alignment using a microscope is required. Moreover, in order to complete the fitting, the support column must be deformed (to press fit), and the operation amount (deformation amount) is assumed to be a very fine operation amount from the thickness and width of the support column. Is done. To achieve this, it is necessary to support a special device under a microscope. The manufacturer also needs special training. There is a problem that these constraints lead to an increase in manufacturing cost, and it is difficult to actually realize them.
 一般にステントは、小さな直径になるように折りたたんで管腔臓器等病変部位に運搬される。そのために設計者は小さく折りたたまれた状態をも想定して、ステントを設計する。そのため、特許文献11で開示されたように治療に不要な、単に結合に資するための支柱を設けると、セルやリンクという治療に必須の機能を有する支柱の設計に制約が設けられる。または、当該余計な支柱の存在のため、スムーズな折りたたみ(縮経)が妨害され、十分に小さく折りたためないステントになる。 Generally, stents are folded to a small diameter and transported to a lesion site such as a luminal organ. Therefore, the designer designs the stent by assuming a small folded state. For this reason, as disclosed in Patent Document 11, if a support column that is not necessary for treatment and is merely used for conjugation is provided, there is a restriction on the design of the support column that has a function essential for the treatment of cells and links. Or, due to the presence of the extra struts, smooth folding (warping) is hindered, and the stent does not fold sufficiently small.
 本発明は、このような制約条件を解消することを目的としており、溶接機などの専用の機械を用いることなく、そして、精密な位置合わせを不要にしての薄い、同軸複層ステントを提供しようとするものである。 An object of the present invention is to provide a thin, coaxial multi-layered stent that eliminates such constraints and does not require a dedicated machine such as a welding machine and does not require precise alignment. It is what.
特表2002-537027号公報Japanese translation of PCT publication No. 2002-537027 特開平11-332998号公報Japanese Patent Laid-Open No. 11-332998 特表2003-532447号公報Special table 2003-532447 gazette 特表2003-532446号公報Special table 2003-532446 gazette 米国特許出願公開第2005/278017号US Patent Application Publication No. 2005/278017 特表2003-503152号公報Special table 2003-503152 gazette 特開2005-118571号公報JP 2005-118571 A 米国特許第571698号明細書US Pat. No. 5,716,698 特表2004-511297号公報Special table 2004-511297 gazette 特許第3713488号明細書Japanese Patent No. 3713488 特開2008-301923号公報JP 2008-301923 A 特表2001-50149号公報JP-T-2001-50149 米国特許第5282824号明細書US Pat. No. 5,282,824 特許第3236628号明細書Japanese Patent No. 3236628 特開2000-42119号公報JP 2000-42119 A 特表2008-503264号公報Special table 2008-503264
 本発明は、半径方向の剛性は従来の単一層ステントとほぼ同等であり、特別の支柱を設けることなく、簡便に、医師みずからが、医療の現場にて組立可能であり、体内に挿入して血管内を病変部への運搬時にステントが分離せず、特別な運搬装置を用いずに側枝治療が可能で、さらには、大量の薬剤を貯蔵するスペースを確保しうる新規な同軸多層ステントを提供することを目的とするものである。 In the present invention, the radial rigidity is almost the same as that of a conventional single-layer stent, and it can be easily assembled by a doctor without any special struts at a medical site and inserted into the body. Providing a new coaxial multi-layered stent that does not separate the stent during delivery to the lesion in the blood vessel, enables side branch treatment without using a special delivery device, and can secure a space for storing a large amount of drug. It is intended to do.
 そこで本発明者は、以上の課題を解決するために鋭意検討を重ねた結果、次の発明に到達した。
[1]本発明にしたがえば、
 網目構造をなすように配置された複数の支柱(Supporting Strut Member (SSM or Just SM))からなる平面構造を円筒状に丸めて、中心に長軸を有する円筒体からなり、その円周長が縮小及び伸張が可能である二つのコンポーネントステントA、B(以下、CSA,CSBという場合がある。)を形成し、当該CSAを内層,CSBを外層として同軸に配設・構成した同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)であって、
Therefore, as a result of intensive studies to solve the above problems, the present inventor has reached the following invention.
[1] According to the present invention,
A planar structure consisting of multiple struts (Supporting Strut Members (SSM or Just SM)) arranged to form a mesh structure is rolled into a cylindrical shape, and consists of a cylindrical body with a long axis at the center. Coaxial multi-layer stent that forms two component stents A and B (hereinafter sometimes referred to as CSA and CSB) that can be reduced and expanded, and is arranged and configured coaxially with the CSA as the inner layer and CSB as the outer layer. (Coaxial Multi-Layered Stent) (CMLS)
 前記支柱は、その一部が屈曲部を有する複数のセルと、当該セルを長軸方向に連結する少なくとも一つのリンクより構成されるものであり、
当該CSA,CSBは、それぞれ中央の大部分を占める本体部(Main Body Portion (MBP)と、当該本体部の両側(左右)の端部(LEP,REP)からなり、
当該本体部の半径はそれぞれ、Ra, Rb (但し、Ra<Rb)であり、
当該コンポーネントステントA(CSA)とコンポーネントステントB(CSB)は、当該CMLSの当該両端部のうち、少なくとも左側端部(LEP)において、当該コンポーネントステントA(CSA)の支柱(SSM)とコンポーネントステントBの支柱(CSB)の交差が行われるものであって、
The column is composed of a plurality of cells, each of which has a bent portion, and at least one link connecting the cells in the long axis direction.
The CSA and CSB are each composed of a main body part (Main Body Portion (MBP) occupying most of the center and both side (left and right) ends (LEP, REP) of the main body part,
The radii of the body portions are Ra and Rb (where Ra <Rb),
The component stent A (CSA) and the component stent B (CSB) are composed of the component stent A (CSA) strut (SSM) and the component stent B at least at the left end (LEP) of the both ends of the CMLS. The crossing of the columns (CSB) of the
 かつ、当該左端部(LEP)において、
(i)当該コンポーネントステントA(CSA)の円筒体の半径(Ra,in)は本体部の半径Raと同一であり、かつ、その支柱には、他のコンポーネントステントの支柱を受け入れることができる受容部 (Accommodation Port or Portion(AP)) が形成されており、
And at the left end (LEP),
(I) The radius (Ra, in) of the cylindrical body of the component stent A (CSA) is the same as the radius Ra of the main body portion, and the struts can receive the struts of other component stents. Part (Accommodation Port or Portion (AP))
(ii)当該コンポーネントステントB(CSB)は、
(ア)その本体部の半径(Rb)と同一の半径位置(Rb,in)に配置された支柱と、
(イ)コンポーネントステントAの本体部半径(Ra)より小さな半径位置(Rb,df)に配置された支柱と、及び
(ウ)当該二つの半径位置(Rb,in Rb,df)に配置された二つの支柱を、連結する当該円筒体の半径方向に走行または配設された支柱(Radially-running SM (RRSM)(または、Radially-disposed SM(RDSM), Radially-arranged SM (RASM))を有し、
(Ii) The component stent B (CSB) is
(A) A support column arranged at the same radial position (Rb, in) as the radius (Rb) of the main body,
(A) a strut disposed at a radius position (Rb, df) smaller than the main body radius (Ra) of the component stent A; and
(C) A strut (Radially-running SM (RRSM)) (running or disposed in the radial direction of the cylindrical body connecting the two struts arranged at the two radial positions (Rb, in Rb, df). Or Radially-disposed SM (RDSM), Radially-arranged SM (RASM))
 当該コンポーネントステントA(CSA)を、当該コンポーネントステントB(CSB)に対して、当該コンポーネントステントBの前記円筒体の長軸方向に挿入し、コンポーネントステントB(CSB)の支柱(RRSM)を、コンポーネントステントA(CSA)の当該受容部(AP)に、これを半径方向に貫くように挿入して嵌め合わせて、当該二つのコンポーネントステントA、Bを係合することを特徴とする同軸複層ステント、が提供される。 The component stent A (CSA) is inserted in the longitudinal direction of the cylindrical body of the component stent B with respect to the component stent B (CSB), and the strut (RRSM) of the component stent B (CSB) is inserted into the component stent B (CSB). A coaxial multi-layer stent characterized in that the two component stents A and B are engaged with each other by inserting and fitting the stent A (CSA) into the receiving portion (AP) so as to penetrate the radial direction. Is provided.
〔2〕また、本発明にしたがえば、
 網目構造をなすように配置された複数の支柱(Supporting Strut Member (SSM or Just SM))からなる平面構造を円筒状に丸めて、中心に長軸を有する円筒体からなり、その円周長が縮小及び伸張が可能である二つのコンポーネントステントA、B(以下、CSA,CSBという場合がある。)を形成し、当該CSAを内層,CSBを外層として同軸に配設・構成した同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)であって、
[2] According to the present invention,
A planar structure consisting of multiple struts (Supporting Strut Members (SSM or Just SM)) arranged to form a mesh structure is rolled into a cylindrical shape, and consists of a cylindrical body with a long axis at the center. A coaxial multi-layered stent in which two component stents A and B (hereinafter sometimes referred to as CSA and CSB) that can be contracted and expanded are formed and arranged coaxially with the CSA as an inner layer and the CSB as an outer layer. (Coaxial Multi-Layered Stent) (CMLS)
 前記支柱は、その一部が屈曲部を有する複数のセルと、当該セルを長軸方向に連結する少なくとも一つのリンクより構成されるものであり、
当該CSA,CSBは、それぞれ中央の大部分を占める本体部(Main Body Portion (MBP)と、当該本体部の両側(左右)の端部(LEP,REP) からなり、
当該本体部の半径はそれぞれ、Ra, Rb (但し、Ra<Rb)であり、
当該コンポーネントステントA(CSA)とコンポーネントステントB(CSB)は、当該CMLSの当該右端部(REP)において、当該コンポーネントステントA(CSA)の支柱(SSM)とコンポーネントステントBの支柱(CSB)の交差が行われるものであって、
The column is composed of a plurality of cells, each of which has a bent portion, and at least one link connecting the cells in the long axis direction.
The CSA and CSB are each composed of a main body part (Main Body Portion (MBP) occupying most of the center and both side (left and right) ends (LEP, REP) of the main body part.
The radii of the body portions are Ra and Rb (where Ra <Rb),
The component stent A (CSA) and the component stent B (CSB) intersect the strut (SSM) of the component stent A (CSA) and the strut (CSB) of the component stent B at the right end (REP) of the CMLS. Is performed,
 かつ、当該右端部(REP)において、
(i)当該コンポーネントステントA(CSA)は、
(ア)その本体部の半径(Ra)と同一の半径位置(Ra,in)に配置された支柱と、
(イ)コンポーネントステントBの本体部半径(Rb)より大きな半径位置(Ra,df)に配置された支柱と、及び
(ウ)当該二つの半径位置(Ra,in Ra,df)に配置された二つの支柱を、連結する当該円筒体の半径方向に走行または配設された支柱(Radially-running SM (RRSM))(または、Radially-disposed SM(RDSM), Radially-arranged SM (RASM))を有し、
And at the right end (REP),
(I) The component stent A (CSA) is
(A) A support column arranged at the same radial position (Ra, in) as the radius (Ra) of the main body,
(A) a strut disposed at a radius position (Ra, df) larger than the main body radius (Rb) of the component stent B; and
(C) A strut (Radially-running SM (RRSM)) running or arranged in the radial direction of the cylinder connecting the two struts arranged at the two radial positions (Ra, in Ra, df) (Or Radially-disposed SM (RDSM), Radially-arranged SM (RASM))
(ii)当該コンポーネントステントB(CSB)の円筒体の半径(Rb,in)は本体部の半径Rbと同一であり、かつ、その支柱には、他のコンポーネントステントの支柱を受け入れることができる受容部 (Accommodation Port or Portion(AP))が形成されており、 (Ii) The radius (Rb, in) of the cylindrical body of the component stent B (CSB) is the same as the radius Rb of the main body portion, and the struts are capable of receiving struts of other component stents. Department (Accommodation Port Portion (AP)) is formed,
 当該コンポーネントステントAを、当該コンポーネントステントB(CSB)に対して、当該コンポーネントステントBの前記円筒体の長軸方向に挿入し、コンポーネントステントA(CSA)のRRSMを、コンポーネントステントB(CSB)の当該受容部に、これを半径方向に貫くように挿入して嵌め合わせて、当該二つのコンポーネントステントA、Bを係合することを特徴とする同軸複層ステント、が提供される。 The component stent A is inserted into the component stent B (CSB) in the longitudinal direction of the cylindrical body of the component stent B, and the RRSM of the component stent A (CSA) is inserted into the component stent B (CSB). A coaxial multi-layer stent is provided in which the two component stents A and B are engaged with each other by inserting and fitting the receiving portion so as to penetrate the receiving portion in the radial direction.
〔3〕また、本発明にしたがえば、
 その左右の両端部において、当該コンポーネントステントA(CSA)の支柱(SSM)とコンポーネントステントB支柱(CSB)の交差がそれぞれ行われ、当該二つのコンポーネントステントA、Bが係合されている同軸複層ステントであって、前記左端部(LEP)における係合が〔1〕に規定のごとく行われ、前記右端部(REP)における係合が〔2〕に規定のごとく行われていることを特徴とする同軸複層ステント、が提供される。
[3] Also, according to the present invention,
At the left and right ends, the strut (SSM) and the component stent B strut (CSB) of the component stent A (CSA) are crossed, respectively, and the coaxial stent in which the two component stents A and B are engaged. A layered stent, wherein the engagement at the left end (LEP) is performed as defined in [1], and the engagement at the right end (REP) is performed as defined in [2]. A coaxial multi-layer stent is provided.
〔4〕また、本発明にしたがえば、
 前記コンポーネントステントA、またはBの支柱は、その一部が、前記円筒体の円周長を縮小及び伸張可能な屈曲部を有するセルを複数個上下方向に連結して、前記長軸を取り囲むように複数配列することにより構成されるリング状支柱(Ring-shaped SM)と、隣り合う当該リング状支柱を長軸方向に連結する少なくとも一つのリンクより構成されるものであることを特徴とする〔1〕-〔3〕のいずれかに記載の同軸複層ステント。
[4] According to the present invention,
A part of the strut of the component stent A or B partially surrounds the long axis by connecting a plurality of cells having bent portions capable of reducing and extending the circumferential length of the cylindrical body in the vertical direction. It is composed of a ring-shaped support (Ring-shaped SM) configured by arranging a plurality of the same and at least one link connecting the adjacent ring-shaped support in the major axis direction [ [1] The coaxial multilayer stent according to any one of [3].
〔5〕また、本発明にしたがえば、
 前記コンポーネントステントAまたはBの受容部APは、前記屈曲部を有するセルの一部として設けられており、前記左端部(LEP)及び/又は右端部(REP)の方向に一部が開放され、当該開放部が、支柱を導入する通路を画定(defining)していることを特徴とする〔1〕-〔4〕のいずれかに記載の同軸複層ステント、が提供される。
[5] Also, according to the present invention,
The receiving portion AP of the component stent A or B is provided as a part of the cell having the bent portion, and a part thereof is opened in the direction of the left end portion (LEP) and / or the right end portion (REP), The coaxial multilayer stent according to any one of [1] to [4], wherein the opening defines a passage for introducing a strut.
〔6〕また、本発明にしたがえば、
 前記コンポーネントステントAまたはBの受容部APは、前記通路と、当該通路に連通する円方形状の開口部(Round-Rectangular Aperture)を有する係止ホルダ(Latch Holder)から成り、当該円方形状の開口部において、通路と反対位置に位置する当該開口部を形成する支柱の曲率半径は、前記セルの屈曲部の半径より長いものであり、また、当該ホルダに連通する通路の、当該通路を形成する2つの対向する支柱(SM)の間隔が、当該ホルダまたはセルの屈曲部を形成する支柱幅よりも狭いものであることを特徴とする〔1〕-〔5〕のいずれかに記載の同軸複層ステント、が提供される。
[6] According to the present invention,
The receiving portion AP of the component stent A or B includes the passage and a locking holder (Latch Holder) having a circular opening (Round-Rectangular Aperture) communicating with the passage. In the opening, the radius of curvature of the column that forms the opening located at a position opposite to the passage is longer than the radius of the bent portion of the cell, and forms the passage of the passage communicating with the holder. The distance between the two opposing struts (SM) is narrower than the strut width forming the bent portion of the holder or cell, according to any one of [1]-[5] A layer stent is provided.
〔7〕また、本発明にしたがえば、
 前記コンポーネントステントAまたはBの受容部APにおいて、前記ホルダは、前記セル屈曲部を円周方向に結んだ直線の垂直二等分線に対して対称であるが、通路を形成する対向する支柱は,その垂直2等分線から円周方向にずれた位置に配置されていることを特徴とする〔6〕に記載の同軸複層ステント、が提供される。
[7] Also, according to the present invention,
In the receiving portion AP of the component stent A or B, the holder is symmetrical with respect to a straight vertical bisector connecting the cell bent portions in the circumferential direction, but the opposing struts forming the passage are The coaxial multilayer stent according to [6], which is disposed at a position shifted in the circumferential direction from the perpendicular bisector thereof.
〔8〕また、本発明にしたがえば、
 前記コンポーネントステントAまたはBの受容部APが屈曲部を有するセルの一部として設けられており、当該受容部(AP)は、少なくともその2つ以上が、少なくとも2つ以上のセルの一部としてそれぞれ設けられていることを特徴とする〔1〕-〔7〕のいずれかに記載の同軸複層ステント、が提供される。
[8] According to the present invention,
The receiving portion AP of the component stent A or B is provided as a part of a cell having a bent portion, and at least two of the receiving portions (AP) are part of at least two or more cells. The coaxial multilayer stent according to any one of [1] to [7], characterized in that each is provided.
〔9〕また、本発明にしたがえば、
 前記コンポーネントステントAまたはBの受容部APは、その少なくとも1つの受容部(AP)は、他の受容部(AP)とステントAまたはBの長軸に関して鏡像の関係であることを特徴とする〔8〕に記載の同軸複層ステント、が提供される。
[9] Also, according to the present invention,
The receiving portion AP of the component stent A or B is characterized in that at least one receiving portion (AP) has a mirror image relationship with the other receiving portion (AP) with respect to the major axis of the stent A or B [ 8] is provided.
〔10〕また、本発明にしたがえば、
 前記コンポーネントステントAまたはBの前記半径方向に走行するまたは配設された支柱(Radially-running SM (RRSM))(または、Radially-disposed SM(RDSM), Radially-arranged SM (RASM))は、前記リンク部分の一部として設けられていることを特徴とする〔1〕-〔9〕のいずれかに記載の同軸複層ステント。
[10] According to the present invention,
The component stent A or B has a radially running or arranged strut (Radially-running SM (RRSM)) (or Radially-disposed SM (RDSM), Radially-arranged SM (RASM)). The coaxial multilayer stent according to any one of [1] to [9], wherein the coaxial multilayer stent is provided as a part of a link portion.
〔11〕また、本発明にしたがえば、
 前記コンポーネントステントAまたはBの前記リンク部分に設けられている前記半径方向に走行するまたは配設された支柱(Radially-running SM(RRSM)、(または、Radially-disposed SM(RDSM), Radially-arranged SM (RASM)))において、当該リンク部分の長軸方向の長さは、当該半径方向に走行する支柱(RRSM)が存在しない支柱のリンク部分の長軸方向の長さよりも、長いことを特徴とする〔10〕に記載の同軸複層ステント、が提供される。
[11] According to the present invention,
Struts (Radially-running SM (RRSM), Radially-arranged, Radially-running SM (RRSM)) provided in the link portion of the component stent A or B. SM (RASM))), the length in the major axis direction of the link part is longer than the length in the major axis direction of the link part of the pillar without the strut (RRSM) traveling in the radial direction. The coaxial multilayer stent according to [10] is provided.
〔12〕また、本発明にしたがえば、
 〔1〕-〔11〕のいずれかに記載の同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)において、前記二つのコンポーネントステントAとB(CSA、CSB)の層間の、本体部における空隙部は、薬剤リザーバ(Drug Reserver or Holder)を収容、または保持する部位として好ましく使用することができるものであること(Said space is favorably used for, or serves as, a DR) を特徴とする薬剤溶出型同軸多層ステント、が提供される。
[12] Also, according to the present invention,
[1] In the coaxial multi-layered stent (CMLS) according to any one of [11], a gap in the main body between the two component stents A and B (CSA, CSB) The drug elution is characterized by the fact that the part can be preferably used as a site for storing or holding a drug reservoir (Drug Reserver or Holder) (Said space is favorably used for, or serves as, a DR) A coaxial multi-layer stent is provided.
〔13〕また、本発明にしたがえば、
 〔1〕-〔11〕のいずれかに記載の同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)において、前記二つのコンポーネントステントAとB(CSA、CSB)の層間の、本体部における空隙部に、溶出させるべき薬剤を薬剤リザーバとして収容、又は保持(accommodate)してなることを特徴とする薬剤溶出型同軸複層ステント(DE-CMLS)、が提供される。
[13] According to the present invention,
[1] In the coaxial multi-layered stent (CMLS) according to any one of [11], a gap in the main body between the two component stents A and B (CSA, CSB) A drug-eluting coaxial multi-layer stent (DE-CMLS) is provided in which the drug to be eluted is accommodated or accommodated in a part as a drug reservoir.
 本発明は以下の有利な効果を有する。
 本発明の同軸複層ステントにおいては、これを溶接機などの専用の機械を用いることなく、そして精密な位置合わせを不要にして、当該同軸複層ステントを組み立てることが可能である。ステント端部に位置するセルは対向する支柱の間隔は広く、係合のための支柱に向かってセルの支柱は徐々に間隔が狭くなるように形成されている。これによって、これを組み立てる者(製造者)、専用の接合用の機械が不要であり、複数の薄型ステント(コンポーネントステント)を、長軸方向に、手動で移動スライドさせるだけで係合を実現でき、本発明の同軸複層ステントを組み立てることができる。
The present invention has the following advantageous effects.
In the coaxial multilayer stent of the present invention, it is possible to assemble the coaxial multilayer stent without using a dedicated machine such as a welding machine and without requiring precise alignment. The cells located at the end of the stent have a wide interval between the opposing struts, and the cell struts are formed so as to gradually narrow toward the struts for engagement. This eliminates the need for an assembly machine (manufacturer) or a dedicated joining machine, and enables engagement by simply moving and sliding a plurality of thin stents (component stents) in the longitudinal direction. The coaxial multilayer stent of the present invention can be assembled.
 本発明の同軸複層ステントが容易に組み立てられることについてさらに説明すれば、接合前に円周方向の位置が不適切であっても、長軸方向にセルの長軸長さの長さだけ(約1.0mm-2.5mm)移動スライドすれば、後述するように、その半径方向に走行する支柱が適切な位置に導かれる。その移動長スライド量は、セルの長軸長さ(または当該支柱を受け入れる受容部の長軸長さ)(約1.0mm-2.5mm)なので、特別の機械を用いることなく手動で接合操作を実施できる。 Further explaining that the coaxial multi-layer stent of the present invention can be easily assembled, even if the circumferential position is inappropriate before joining, only the length of the long axis of the cell in the long axis direction ( If it slides about 1.0mm-2.5mm), as will be described later, the struts that run in the radial direction are guided to an appropriate position. The moving length slide amount is the long axis length of the cell (or the long axis length of the receiving part receiving the column) (approximately 1.0mm-2.5mm), so the joining operation is performed manually without using a special machine. it can.
 後述するように、外層を構成するコンポーネントステントBにおいて、半径方向に走向する支柱を、内層を構成するコンポーネントステントAの係合のための支柱(受容部)で、係合するために、当該2つのコンポーネントステントA、Bの中心軸の位置が、厳密に一致している必要はなく、外層のコンポーネントステントBにおいて半径方向に走向する支柱の厚さ半径差から,内層のコンポーネントステントAの支柱の厚さを差し引いた分だけ、隙間誤差が許容される。この点、従来技術においては、2つのステント中心軸は、厳密に一致していなければならなかったことと著しい対照をなしている。 As will be described later, in the component stent B constituting the outer layer, the struts that run in the radial direction are engaged with the struts (receiving portions) for engaging the component stent A constituting the inner layer. The positions of the central axes of the two component stents A and B do not have to coincide with each other. The thickness of the struts radially running in the outer component stent B is different from the thickness radius difference of the struts of the inner component stent A. A gap error is allowed as much as the thickness is subtracted. In this regard, in the prior art, the two stent central axes are in sharp contrast to the fact that they had to be exactly coincident.
 接合前に円周方向の位置(角度θ)が不適切であっても、長軸方向にセルの長軸長さだけ(約1.0mm-2.5mm)移動スライドすれば、コンポーネントステントBの支柱(半径方向に走向している支柱)は、コンポーネントステントAの係合のための支柱(受容部)にコンポーネントステントBの支柱がガイドになって自然に導かれる。これは、接合時の角度θに関する要求精度も、従来の同軸複層ステントに比べると緩和することが出来ることを示している。これらは半径方向と円周方向に関して接合時の精密な位置合わせを不要にすることに貢献または寄与している。また長軸方向の、コンポーネントステントの移動量は、約1.0mm-2.5mmなので、顕微鏡を用いなくても容易に組み立てが可能になるという、大きな作用効果を奏する。 Even if the circumferential position (angle θ) is inadequate before joining, if the cell is moved and slid in the long axis direction by the length of the long axis of the cell (approximately 1.0mm-2.5mm), the struts of the component stent B ( The struts that run in the radial direction are naturally guided to the struts (receiving portions) for engaging the component stent A with the struts of the component stent B serving as a guide. This indicates that the required accuracy regarding the angle θ at the time of joining can be relaxed as compared with the conventional coaxial multilayer stent. These contribute to or contribute to eliminating the need for precise alignment during bonding in the radial direction and the circumferential direction. Moreover, since the moving amount of the component stent in the major axis direction is about 1.0 mm to 2.5 mm, it has a great effect that it can be easily assembled without using a microscope.
 また、運搬時の外側のコンポーネントステントBの脱落が効果的に防止される点について説明すれば、本発明の同軸複層ステントをバルーンにマウントして、病変部に運搬する途中で、重ね合わされた当該支柱を引き離そうとする力がしばしば作用する。この力は、ステント座標系ではr方向の力である。たとえば、当該ステントが血管中の屈曲部を通過するときに発生する。 Moreover, if the point which the fall of the component stent B of the outer side at the time of conveyance is effectively prevented is demonstrated, the coaxial multilayer stent of this invention was mounted in the balloon, and it was overlapped on the way of conveying to a lesioned part. A force to pull the struts often acts. This force is a force in the r direction in the stent coordinate system. For example, it occurs when the stent passes through a bend in a blood vessel.
 本発明の同軸複層ステントにおいては、内側のコンポーネントステントAと外側のコンポーネントステントBの、係合に関与する支柱は、後記するように、お互いの係合部分における半径位置において、半径位置が交差している。内側のコンポーネントステントAに半径方向の力(r力)が作用する場合は、コンポーネントステントAよりも外側に配置されているコンポーネントステントBの支柱によって、当該コンポーネントステントAの支柱が、コンポーネントステントBの支柱から離れることを防止する。同様にして、外側のコンポーネントステントBに、r方向の力が作用する場合は、当該コンポーネントステントBよりも外側に配置されている、コンポーネントステントAの支柱によって、コンポーネントステントBの支柱が、コンポーネントステントAの支柱から離れることを防止する。 In the coaxial multi-layer stent of the present invention, the struts involved in the engagement of the inner component stent A and the outer component stent B intersect with each other at the radial positions in the engaging portions as will be described later. is doing. When a radial force (r-force) is applied to the inner component stent A, the strut of the component stent B is arranged on the outer side of the component stent A by the strut of the component stent A. Prevent separation from the column. Similarly, when a force in the r direction acts on the outer component stent B, the strut of the component stent B is disposed outside the component stent B, so that the strut of the component stent B becomes the component stent. Prevents from leaving the A column.
 本発明の同軸複層ステントにおいては、内側のコンポーネントステントAと、外側のコンポーネントステントBのそれぞれにおいて半径方向に走行する支柱を形成し、これにより係合を行うという新規な係合メカニズムを有しているため、従来の同軸複層ステントにおける、もっとも大きな問題の一つであった運搬時の外側コンポーネントステントの脱落という問題が、本質的に解決されたものである。 The coaxial multi-layer stent of the present invention has a novel engagement mechanism in which struts that run in the radial direction are formed in each of the inner component stent A and the outer component stent B, thereby engaging with each other. Therefore, the problem of dropping off the outer component stent during transportation, which is one of the biggest problems in the conventional coaxial multilayer stent, has been essentially solved.
 なお、ステントの折りたたみ性については、コンポーネントステントA、Bの両端に互いに形成されている係合のための支柱は、従来のようにセルとは別のエレメントとして新たに設けることは必要でなく、セルと融合し、いわばセルの一部として設けられているので、接合後のステントを、たとえば縮経時に、当該縮経が妨げられることなく、小さく折りたたむことが可能である。 As for the foldability of the stent, it is not necessary to newly provide struts for engagement formed on both ends of the component stents A and B as elements different from the cells as in the prior art. Since it is fused with the cell and is provided as a part of the cell, it is possible to fold the stent after joining, for example, in a contraction time without being disturbed.
 本発明の同軸複層ステントの剛性、柔軟性及び側面への開口性についていえば、本発明のステントにおいては、柔軟性に影響を与えるリンクの数は、内層と外層の総数としては、従来の単層ステントと同等の数であるが、リンク部位の支柱の厚さは、従来のステントよりも薄いので、優れた柔軟性を有する。また、半径方向剛性に関しては、重ね合わされた支柱の厚さは従来のステントと同じ厚さになるように設計されることにより、半径方向剛性は、従来のステントと同程度である。 Regarding the rigidity, flexibility and side opening of the coaxial multilayer stent of the present invention, in the stent of the present invention, the number of links affecting the flexibility is the same as the total number of inner layers and outer layers. Although the number is the same as that of a single-layer stent, the thickness of the struts at the link site is thinner than that of a conventional stent, so that it has excellent flexibility. In addition, regarding the radial rigidity, the thickness of the stacked struts is designed to be the same as that of the conventional stent, so that the radial rigidity is comparable to that of the conventional stent.
 重ね合わせる前のそれぞれのコンポーネントステントは、網目(セルとリンクから成る模様)が大きい。それぞれのステントは、その端部で支柱が接合されているが、それ以外の部分では互いのステント支柱の変形に影響しない。そのために、本発明の同軸複層ステントは、側面に大きな穴を開けることが可能である。 Each component stent before overlapping has a large mesh (pattern consisting of cells and links). Each stent has a strut joined at its end, but the other portions do not affect the deformation of the stent struts. Therefore, the coaxial multilayer stent of the present invention can make a large hole in the side surface.
 本発明を構成するコンポーネントステントは、セルやリンクと融合したコネクターを備えており、これにより接合が行われる。また、当該接合のために溶接などの作業を省略することができるので、組み付け作業の容易化、組立ミスの防止等による生産性の向上が期待できる。また、接合のための支柱を用意しなくてもよいので、従来の単一層ステントと同等の設計手法が応用できる。そのため設計工程を複雑化することなく本発明の同軸複層ステントを実現できる。 The component stent constituting the present invention is provided with a connector fused with a cell or a link, and is thereby joined. In addition, since work such as welding can be omitted for the joining, it is expected that productivity can be improved by facilitating assembly work and preventing assembly errors. Moreover, since it is not necessary to prepare the support | pillar for joining, the design method equivalent to the conventional single layer stent can be applied. Therefore, the coaxial multilayer stent of the present invention can be realized without complicating the design process.
 現在、ステントの表面に血栓溶解剤等の薬剤を塗布したDES(Drug Eluting Stent)が注目されているが、本発明の同軸複層ステントが、かかる薬剤を保持する機能を奏する点について、簡単に言及すれば、本発明の当該ステントは、複数のコンポーネントステントが重ねあわされた状態であるので、それぞれのコンポーネントステントの間には半径方向に空間が存在している。そこに薬剤を混合したポリマーなどで、当該空間の形状に収容されるラセン状等の形状に形成された薬剤リザーバを収納することが可能となる。当該薬剤リザーバ(の形状や容量)は、それぞれのコンポーネントステントの形状・構造とは関係なく形成される。したがって、コンポーネントステントや複層ステントの形状・構造は薬剤リザーバに混ぜられる薬剤量に影響を与えない。これは、薬剤搭載量を、コンポーネントステントや複層ステントの形状・構造から独立して設定できることを意味している。 At present, DES (Drug Eluting Stent), in which a drug such as a thrombolytic agent is applied to the surface of the stent, is attracting attention. However, the coaxial multi-layer stent of the present invention has a function of holding such a drug. If it mentions, since the said stent of this invention is the state in which the some component stent was piled up, the space exists in the radial direction between each component stent. It is possible to store a drug reservoir formed in a spiral shape or the like that is stored in the shape of the space with a polymer mixed with the drug. The drug reservoir (shape and capacity) is formed regardless of the shape and structure of each component stent. Therefore, the shape and structure of the component stent and the multi-layer stent do not affect the amount of drug mixed in the drug reservoir. This means that the drug loading can be set independently from the shape and structure of the component stent and the multilayer stent.
 特に、従来の薬剤溶出ステントにおいては、ステントのセルやリンクの表面に薬剤をそのまま、あるいはバインダとともに塗布するものであり、薬剤量は、当該表面積によって規制され、大幅に変化(増量)させることは困難であった。しかるに、本発明においては、薬剤はステント表面でなく、同軸複層ステントの層間の空間部に収納されるので、その自由度は極めて大きく、長時間にわたる薬剤の溶出を可能にするものであるから、その効果は非常に大きい。なお、本発明の同軸複層ステントによる薬剤リザーバの構成及びその収容メカニズムについては、後に詳細に説明する。
In particular, in a conventional drug-eluting stent, the drug is applied to the surface of the stent cell or link as it is or together with a binder, and the amount of the drug is regulated by the surface area and can be changed (increased) significantly. It was difficult. However, in the present invention, since the drug is stored not in the stent surface but in the space between the layers of the coaxial multi-layer stent, the degree of freedom is extremely large, and the drug can be eluted for a long time. The effect is very great. The configuration of the drug reservoir by the coaxial multilayer stent of the present invention and the accommodation mechanism thereof will be described in detail later.
図1は、一般的なステントの展開図である。FIG. 1 is a developed view of a general stent. 図2は、分岐部分の治療の概略図である。FIG. 2 is a schematic view of a bifurcation treatment. 図3は、同軸ステントの組立法を示す概念図である。FIG. 3 is a conceptual diagram showing a method for assembling a coaxial stent. 図4は、座標系の定義を示す説明図である。FIG. 4 is an explanatory diagram showing the definition of the coordinate system. 図5は、セルの展開図である。FIG. 5 is a development view of the cell. 図6は、ステントの拡張前と拡張後の状態示す写真である。FIG. 6 is a photograph showing a state before and after expansion of the stent. 図7は、セル中心軸にセル屈曲部がない場合のステントを拡張したときの状態を示す写真である。FIG. 7 is a photograph showing a state when the stent is expanded when there is no cell bent portion on the cell central axis. 図8は、受容部(フィメイル・コネクターFC)の説明図である。FIG. 8 is an explanatory view of a receiving portion (female connector FC). 図9は、受容部と係止ホルダを示す説明図である。FIG. 9 is an explanatory view showing the receiving portion and the locking holder. 図10は、通路部を詳細に説明した図である。FIG. 10 is a diagram illustrating the passage portion in detail. 図11は、通路部の角度の定義と、通路部の別の実施例を示す図である。FIG. 11 is a diagram illustrating the definition of the angle of the passage portion and another embodiment of the passage portion. 図12は、受容部とその鏡像関係にある受容部を示す説明図である。FIG. 12 is an explanatory diagram showing a receiving portion and a receiving portion that is in a mirror image relationship with the receiving portion. 図13は、セルと受容部とを示す概略図である。FIG. 13 is a schematic view showing a cell and a receiving portion. 図14は、メイル・コネクターMCにおける半径方向走行支柱を示す概念図である。FIG. 14 is a conceptual diagram showing a radial traveling strut in the mail connector MC. 図15は、リンクの一部にメイル・コネクターMCを形成したコンポーネントステントを示す概念図である。FIG. 15 is a conceptual diagram showing a component stent in which a mail connector MC is formed on a part of a link. 図16は、受容部とメイル・コネクターの両方を形成したコンポーネントステントを示す概念図である。FIG. 16 is a conceptual diagram showing a component stent in which both a receiving portion and a mail connector are formed. 図17は、コンポーネントステントA、Bの断面図である。FIG. 17 is a cross-sectional view of component stents A and B. 図18は、コンポーネントステントA、Bを接合のために端部を変形させた状態を示す断面図である。FIG. 18 is a cross-sectional view showing a state where the end portions of the component stents A and B are deformed for joining. 図19は、コンポーネントステントA、Bを接合のために端部を変形させた状態を示す断面図である。FIG. 19 is a cross-sectional view showing a state where the end portions of the component stents A and B are deformed for joining. 図20は、コンポーネントステントの交差の途中の状態を示す図であり、(i)が断面図、(ii)が展開図である。FIG. 20 is a diagram showing a state in the middle of the crossing of the component stents, where (i) is a cross-sectional view and (ii) is a development view. 図21は、コンポーネントステントの交差過程がさらに進行した状態(接合される直前)を示す図であり、(i)が断面図、(ii)が展開図である。FIG. 21 is a diagram showing a state where the crossing process of the component stent has further progressed (immediately before joining), where (i) is a sectional view and (ii) is a developed view. 図22は、コンポーネントステントの交差が完了した状態(接合後)を示す図であり、(i)が断面図、(ii)が展開図である。FIG. 22 is a diagram illustrating a state where the crossing of the component stents is completed (after joining), where (i) is a cross-sectional view and (ii) is a developed view. 図23は、交差が完了し接合された状態の受容部と半径方向走行支柱を示す拡大図である。FIG. 23 is an enlarged view showing the receiving portion and the radial traveling strut in a state where the intersection is completed and joined. 図24は、接合されたコンポーネントステントが円周方向にずれた場合の支柱の位置を示す展開図である。FIG. 24 is a developed view showing the positions of the struts when the joined component stents are displaced in the circumferential direction. 図25は、バルーンカテーテルにマウントされた同軸複層ステントの断面図である。FIG. 25 is a cross-sectional view of a coaxial multilayer stent mounted on a balloon catheter. 図26は、同じ形状で支柱厚さtの異なるステントを示す展開図である。FIG. 26 is a development view showing stents having the same shape and different strut thicknesses t. 図27は、円周方向のリンクの数nのみが異なるステントを示す展開図である。FIG. 27 is a developed view showing stents that differ only in the number n of links in the circumferential direction. 図28は、同軸複層ステントと従来の単一層ステントの加圧時の半径の変化を示すグラフである。FIG. 28 is a graph showing a change in radius during pressurization of a coaxial multilayer stent and a conventional single layer stent. 図29は、2つの網目の粗いコンポーネントステントA、Bを示す展開図である。(但し、コネクターは省略している。)FIG. 29 is a developed view showing two coarse component stents A and B. (However, the connector is omitted.) 図30は、図29のコンポーネントステントA、Bを接合したときの展開図(i)と、その側壁に穴を開けたときの展開図(ii)を示す。(但し、コネクターは省略している。)FIG. 30 shows a development view (i) when the component stents A and B of FIG. 29 are joined, and a development view (ii) when a hole is made in the side wall thereof. (However, the connector is omitted.) 図31は、薬剤リザーバの好ましい形状を示す説明図である。FIG. 31 is an explanatory view showing a preferable shape of the medicine reservoir.
 A0  網目構造をなすように配置された複数の支柱からなるステントAの平面構造
 B0  網目構造をなすように配置された複数の支柱からなるステントBの平面構造
 A  内層を形成するコンポーネントステント
 B  外層を形成するコンポーネントステント
 MBP 本体部(Main Body Portion)) 
 LEP  本体部の左側端部
 REP  本体部の左側端部
 Ra    ステントAの本体部の半径
 Ra,in ステントAの円筒体の半径(段差を形成する前)
 Ra,df ステントAの円筒体の半径(段差を形成した後)
 Rb    ステントBの本体部の半径
 Rb,in ステントBの円筒体の半径(段差を形成する前)
 Rb,df ステントBの円筒体の半径(段差を形成した後)
 AP   ステントの受容部
 AP* APと鏡像の関係にある受容部
 AP(A)  ステントAの受容部
 AP(B)  ステントBの受容部
 Ld   ステントの長軸
 ld   セルの中心軸
 RRSM 半径方向に走行する支柱(半径方向走行支柱)
 Vab  本体部における空隙部
 FC   フィメイル・コネクター
 MC   メイル・コネクター
 DR   薬剤リザーバ

 01   複数の支柱からなるステントの平面構造
 1,1’ ステント
 7    ステントの中心軸
 2a   側枝基部
 2b   側枝
 10A  ステントAの支柱
 12A  ステントAの支柱
 14A  ステントAの半径方向に走行する支柱
 14’   連結部
 14’’  半径方向変形部
 14’’’ 半径方向変形部
 10B  ステントBの支柱
 12B  ステントBの支柱
 14B  ステントBの半径方向に走行する支柱
 16A  ステントAの通路
 18A  ステントAの開口部 
 16B  ステントBの通路
 18B  ステントBの開口部 
 30   屈曲部を有するセルの波状体
 31j  J側のセル屈曲部
 32j  J側のセル屈曲部
 34j  J側のセル中央長辺部
 31k  K側のセル屈曲部
 32k  K側のセル屈曲部
 34k  J側のセル中央長辺部
 36   円弧
 38   係止ホルダ
 50   バルーンカテーテル
Planar structure of a stent A composed of a plurality of struts arranged so as to form an A 0 network structure B Planar structure of a stent B composed of a plurality of struts arranged so as to form a A 0 network structure A A component stent B forming an inner layer Component stent forming the outer layer MBP (Main Body Portion))
LEP Left side end of main body part REP Left side end part of main body part Ra Radius of main part of stent A Ra, in Radius of cylindrical body of stent A (before forming a step)
Ra, df Radius of cylindrical body of stent A (after forming a step)
Rb Radius of stent B main body radius Rb, in Radius of cylindrical body of stent B (before forming a step)
Rb, df Radius of the stent B cylinder (after forming the step)
AP Stent Receptor AP * Receptor in a mirror image relationship with AP AP (A) Stent A Receptor AP (B) Stent B Receptor Ld Stent Long Axis ld Cell Central Axis RRSM Runs in Radial Direction Prop (radial travel prop)
Vab gap in the body FC Female connector MC Mail connector DR Drug reservoir

01 Planar structure of a stent composed of a plurality of struts 1, 1 'Stent 7 Stent central axis 2a Side branch base 2b Side branch 10A Stent A strut 12A Stent A strut 14A Strut 14 A connecting section 14 running in the radial direction of stent A '' Radial Deformation 14 '''Radial Deformation 10B Stent B Strut 12B Stent B Strut 14B Stent B Radial Strut 16A Stent A Passage 18A Stent A Opening
16B passage of stent B 18B opening of stent B
30 Cell-like corrugated body 31j J-side cell bent portion 32j J-side cell bent portion 34j J-side cell central long side portion 31k K-side cell bent portion 32k K-side cell bent portion 34k J-side cell side Long side of cell center 36 Arc 38 Locking holder 50 Balloon catheter
 以下、図面を参照しながら本発明を詳細に説明する。まず、以下のように本明細書で使用する用語の意義を明確にしておく。
(用語の定義)
(ア)支柱
 本明細書において、「支柱」(Supporting Strut Member)(SSM or Just SM))とは、ステントの網目構造を構成する要素(エレメント)であって、主としてセルと、セルを結合するリンクからなるものであるが、さらに他の要素を含んでいてもよい。
Hereinafter, the present invention will be described in detail with reference to the drawings. First, the meanings of terms used in the present specification are clarified as follows.
(Definition of terms)
(A) Strut In this specification, “strut” (Supporting Strut Member) (SSM or Just SM)) is an element (element) that constitutes the network structure of a stent, and mainly connects cells and cells. Although it consists of a link, it may contain other elements.
(イ)接合、固着、連結
 本明細書において、「接合」(Connection)とは、2つの支柱を接触した状態にすることを指す。「固着」(fixation)とは、2つの支柱は接触し、接触した部分において2つの支柱はその相対位置および相対角度は変化しない状態を指す。溶接によって支柱を接合することによって固着状態を作り出せる。「連結」(attachment)とは、2つの支柱は接触し、接触した部分において2つの支柱の相対位置は変化しないが、相対角度は変化する状態を指す。係合により支柱を接合することによって、連結状態を作り出すことができる。
(A) Joining, adhering, connecting In this specification, “joining” refers to bringing two struts into contact with each other. “Fixation” refers to a state where two struts are in contact and the two struts do not change their relative position and angle at the contacted portion. A fixed state can be created by joining the struts by welding. “Attachment” refers to a state in which two struts are in contact with each other and the relative position of the two struts does not change, but the relative angle changes. A joined state can be created by joining the struts by engagement.
(ウ)係合
「係合」(Engagement)とは、二つの部品またはエレメントにおいて、一つの部品またはエレメントの爪部、突状部、または凸部(以下爪部等という。)が形成され、他の部品またはエレメントには、当該爪部等に対応する当該爪部等を固定する空間部を有する係止部や鉤状部(以下係止部等という。)が設けられており、両部品やエレメントを近接させると、当該爪部等を当該係止部等の空間部が受け入れて、両者がかみ合い、当該二つの部品またはエレメントが連結されることをいう。なお、本明細書においては、係合と嵌合は、同じ意味で使用する。
(C) Engagement “Engagement” means that in two parts or elements, a claw part, a projecting part, or a convex part (hereinafter referred to as a claw part or the like) of one part or element is formed. Other parts or elements are provided with a locking part or a hook-like part (hereinafter referred to as a locking part or the like) having a space part for fixing the claw part or the like corresponding to the claw part or the like. When the or element is brought close to each other, the claw portion or the like is received by the space portion such as the locking portion, the two engage with each other, and the two parts or elements are connected. In the present specification, engagement and fitting are used interchangeably.
 係合の具体的態様の一例としては、弾性を有する金属で形成された突状部を持つ一つの部品と、空間部及びそれに連通する幅狭の通路を有する他の部品との組において、当該突状部を、空間部を有する部品中に当該通路を通じて圧入すると、挿入時には当該突状部が弾性的に変形し、また、当該通路を押し広げながら、その間隙を通過して、当該空間部内に圧入され、そして完全に当該空間部に挿入されると、弾性で元に戻った突状部が空間部の一部に引っかかり、また、通路の間隙は当該幅狭に戻っているため、当該通路を逆に戻ることが出来ないので、両者が安定的に連結されるような態様である。なお、ここで空間部を当該突状部より大きく形成しておくと、突状部は、当該空間部内で「遊びを有して」可動であるため、所謂「遊嵌」状態で係合することになる。 As an example of a specific mode of engagement, in a set of one part having a projecting portion formed of elastic metal and another part having a space portion and a narrow passage communicating with the space portion, When the protrusion is press-fitted into the part having the space through the passage, the protrusion is elastically deformed at the time of insertion and passes through the gap while expanding the passage so that the inside of the space Is inserted into the space portion, and the protruding portion that has returned to its original shape is caught by a part of the space portion, and the gap of the passage is returned to the narrow width. Since the passage cannot be reversed, the two are stably connected. Here, if the space is formed larger than the protrusion, the protrusion is movable “with play” in the space, so that it engages in a so-called “free fit” state. It will be.
(座標系の定義)
 本発明において使用座標系について図4を参照しながら説明する。図において、全体座標系Og-XYZは、一般的な3次元座標系である。ステント座標系Os-rθz(図4(i))は、ステントの位置や向きを表すために利用する座標系で、円筒座標系と同一であって、半径r、円周方向の角度θ、長軸zからなる。なお長軸zは、ステントの中心軸と一致する。なお、7はステントの中心軸である。
(Definition of coordinate system)
The coordinate system used in the present invention will be described with reference to FIG. In the figure, the global coordinate system Og-XYZ is a general three-dimensional coordinate system. The stent coordinate system Os-rθz (FIG. 4 (i)) is a coordinate system used to represent the position and orientation of the stent, and is the same as the cylindrical coordinate system, and has a radius r, a circumferential angle θ, and a length. It consists of an axis z. The long axis z coincides with the central axis of the stent. Reference numeral 7 denotes a central axis of the stent.
 またステント展開図座標系Oe-θz(図4(ii))は、2次元の座標系である。ステントを展開したときのステントの任意の半径に配置される支柱の形状を記述するのに利用される。なお紙面に垂直な方向は、ステント座標系における半径rと一致している。なお、図4には、それぞれの座標系の関係も示した。 The stent development coordinate system Oe-θz (FIG. 4 (ii)) is a two-dimensional coordinate system. It is used to describe the shape of the struts that are placed at any radius of the stent when it is deployed. The direction perpendicular to the plane of the paper coincides with the radius r in the stent coordinate system. FIG. 4 also shows the relationship between the coordinate systems.
(同軸複層ステントの組み立て)
 本発明の対象とする複層ステントは、二つのステントを積層して構成するが、それぞれのステント(コンポーネントステント)の基本的な構成は、概略的に、図1(a)に示すように、網目構造をなすように配置された複数の支柱からなる平面構造01を円筒状に丸めて、中心に長軸を有し、その円周長が縮小及び伸張が可能であるような、図1(c)に示すごとき円筒体のステント1からなるものである。なお、図1(b)は、支柱の一部を拡大して示すものであって、セル2とセルを結合するリンク3をそのエレメントとして含んでいることを示す。
(Assembly of coaxial multi-layer stent)
The multi-layer stent of the present invention is configured by stacking two stents. The basic configuration of each stent (component stent) is schematically shown in FIG. A planar structure 01 composed of a plurality of support columns arranged so as to form a mesh structure is rolled into a cylindrical shape, has a long axis at the center, and its circumferential length can be reduced and expanded as shown in FIG. It consists of a cylindrical stent 1 as shown in c). FIG. 1B is an enlarged view of a part of the column, and shows that the cell 2 and the link 3 connecting the cells are included as elements.
 さて、図17~図22は、本発明の積層ステントの組み立ての過程を示す図である。
 まず図19を参照する。図19(a)、(b)は、網目構造をなすように配置された複数の支柱からなる平面構造A0、B0を示し、図19(a')、(b')は、これをそれぞれ円筒状に丸めて形成した、中心に長軸を有する円筒体からなり、その円周長が縮小及び伸張が可能である二つのコンポーネントステントステントA、B(以下、それぞれCSA、CSBという場合がある。)である。(なお、図は、その縦断面図である。)
FIGS. 17 to 22 are diagrams showing the process of assembling the laminated stent of the present invention.
Reference is first made to FIG. FIGS. 19A and 19B show planar structures A 0 and B 0 composed of a plurality of support columns arranged so as to form a mesh structure, and FIGS. 19A and 19B show this structure. Two component stents A and B (hereinafter referred to as CSA and CSB, respectively), each of which is formed by a cylindrical body having a long axis at the center, and whose circumferential length can be reduced and expanded, Yes.) (The figure is a longitudinal sectional view.)
 このコンポーネントステントA(CSA)を内層とし、コンポーネントステントB(CSB)を外層として同軸に配設・構成して同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)を以下のようにして形成する。(以下、コンポーネントステントAのことを単にステントA、コンポーネントステントBのことをステントBということもある。) The component stent A (CSA) is used as an inner layer, and the component stent B (CSB) is used as an outer layer to be coaxially disposed and configured to form a coaxial multi-layered stent (CMLS) as follows. . (Hereinafter, component stent A may be simply referred to as stent A, and component stent B may be referred to as stent B.)
 図19(a')、(b')(及びその拡大図である図17-18)に示すように、当該CSA、CSBは、それぞれ中央の大部分を占める本体部(Main Body Portion (MBP)と、当該本体部の両側(左右)の端部、すなわち、左側端部(LEP)と、右側端部(REP)からなる。
 当該本体部の半径は、それぞれ、Ra, Rb (但し、Ra<Rb)である。(当然のことながら、これは、内層を形成するコンポーネントステントAの本体部の半径より、外層を形成するコンポーネントステントBの本体部の半径の方が大きいことを意味する。)
As shown in FIGS. 19 (a ′) and 19 (b ′) (and FIG. 17-18 which is an enlarged view thereof), the CSA and CSB each have a main body portion (Main Body Portion (MBP)) that occupies most of the center. And end portions on both sides (left and right) of the main body, that is, a left end portion (LEP) and a right end portion (REP).
The radii of the main body portions are Ra and Rb (where Ra <Rb), respectively. (Of course, this means that the radius of the body portion of the component stent B forming the outer layer is larger than the radius of the body portion of the component stent A forming the inner layer.)
 ここで、重要なことは、当該コンポーネントステントA(CSA)とコンポーネントステント(B)(CSB)は、当該CMLSの当該両端部のうち、少なくとも左側端部(LEP)または右側端部(REP)のいずれかにおいて、当該コンポーネントステントA(CSA)の支柱(SSM)とコンポーネントステントBの支柱(CSB)の交差が行われるように構成されていることである。 Here, it is important that the component stent A (CSA) and the component stent (B) (CSB) are at least the left end (LEP) or the right end (REP) of the both ends of the CMLS. In any case, the strut (SSM) of the component stent A (CSA) and the strut (CSB) of the component stent B are configured to be crossed.
 本発明の最も特徴とする点は、この「支柱の交差」を行うことにより、ステントAとステントBの連結が行われる点にある。そのために、まず、図17のような、ステントA、Bを出発ステントとし、これから、図18(i)に示すように、ステントA(本体部半径Ra)をその右側端部において、外側に向かう段差を形成し、その半径を、Ra,dfとする(なお、段差を形成する直前の半径はRa,inであり、Ra=Ra,inである。)。また、図18(ii)に示すように、ステントB(本体部半径Rb)をその左側端部において、半径方向に向かう段差を形成し、その半径を、Rb,dfとする(なお、段差を形成する直前の半径はRb,inであり、Rb=Rb,inである。)。 The most characteristic point of the present invention is that the stent A and the stent B are connected by performing the “crossing of the struts”. For this purpose, first, stents A and B as shown in FIG. 17 are used as starting stents, and as shown in FIG. 18 (i), the stent A (main body radius Ra) is directed outward at the right end thereof. A step is formed, and its radius is Ra, df (note that the radius immediately before forming the step is Ra, in, and Ra = Ra, in). Further, as shown in FIG. 18 (ii), the stent B (main body radius Rb) is formed with a step in the radial direction at the left end thereof, and the radius is defined as Rb, df (The radius immediately before forming is Rb, in, and Rb = Rb, in.)
(左端部交差/交差前)
 まず、図20のような様式により、左側端部(LEP)において支柱の交差が行われる場合を説明する。
(i)図20(i)に示すように、この左側端部において、内層を構成するコンポーネントステントA(CSA)の円筒体の半径(Ra,in)は、本体部の半径Raと同一であり(すなわち、コンポーネントステントAは、その左端部において、特に「段差」が設けられておらず、左端部と本体部は同一平面上にある。)、かつ、その支柱には、他のコンポーネントステントの支柱を受け入れることができる受容部(Accommodation Port or Portion(AP(A)) が形成されている。(受容部AP(A)は、支柱を導入する通路と導入した支柱を保持する開口部からなるものであり、典型的な形状の一例は、図20(ii)の左側図に示すようなものである。これについては、後に詳述する。)
(Left end crossing / Before crossing)
First, the case where a support | pillar crossing is performed in a left end part (LEP) by the style like FIG. 20 is demonstrated.
(I) As shown in FIG. 20 (i), the radius (Ra, in) of the cylindrical body of the component stent A (CSA) constituting the inner layer is the same as the radius Ra of the main body at the left end. (That is, the component stent A is not particularly provided with a “step” at the left end portion thereof, and the left end portion and the main body portion are on the same plane.) A receiving port (Accommodation Port or Portion (AP (A))) that can receive the column is formed. (The receiving unit AP (A) consists of a passage for introducing the column and an opening for holding the introduced column.) An example of a typical shape is as shown in the left side view of Fig. 20 (ii), which will be described in detail later.
(ii)また、外層を構成するコンポーネントステントB(CSB)は、その左側端部において、その本体部より下方に向かう「段差」が形成されている。すなわち、当該段差は、
(ア)その本体部の半径(Rb)と同一の半径位置(Rb,in)に配置された支柱10Bと、
(イ)コンポーネントステントAの本体部半径(Ra)より小さな半径位置(Rb,df)に配置された支柱12Bと、及び
(ウ)当該二つの半径位置(Rb,in Rb,df)に配置された二つの支柱を、連結する当該円筒体の半径方向に走行または配設された支柱14B(Radially-running SM (RRSM), (又は、Radially-disposed SM(RDSM), Radially-arranged SM (RASM)とも称す。 )から構成される。
(Ii) Further, the component stent B (CSB) constituting the outer layer is formed with a “step” that extends downward from the main body at the left end thereof. That is, the step is
(A) A column 10B arranged at the same radial position (Rb, in) as the radius (Rb) of the main body,
(A) a strut 12B disposed at a radius position (Rb, df) smaller than the main body radius (Ra) of the component stent A; and
(C) A strut 14B (Radially-running SM (RRSM)) running or arranged in the radial direction of the cylindrical body connecting the two struts arranged at the two radial positions (Rb, in Rb, df). (Or also referred to as Radially-disposed SM (RDSM) or Radially-arranged SM (RASM)).
 このような状態において、外層を構成するコンポーネントステントB中に、内層を構成するコンポーネントステントAを、その長軸Ldに沿って、INに示す方向に挿入する。図は、その左端部LEPにおいて、コンポーネントステントBの「段差」すなわち、半径方向に走行する支柱14Bに、内層のコンポーネントステントAの左側端部の受容部AP(A)が近接しつつある状態を示す。(図20(ii)の左側図は、この状態における支柱14Bと受容部AP(A)を半径方向から見たものである。) In such a state, the component stent A constituting the inner layer is inserted into the component stent B constituting the outer layer in the direction indicated by IN along the long axis Ld. The figure shows a state in which the receiving portion AP (A) at the left end of the inner component stent A is approaching the “step” of the component stent B, that is, the strut 14B that runs in the radial direction, at the left end LEP. Show. (The left view of FIG. 20 (ii) shows the support 14B and the receiving portion AP (A) in this state as seen from the radial direction.)
(交差途中)
 図21は、コンポーネントステントAとBが、その左側端部において交差が進行しつつある途中の段階を示すものである。
 すなわち、図21(i)に示すように、半径方向に走行する支柱14Bに、内層のコンポーネントステントAの左側端部の受容部AP(A)(を構成する支柱)が、交差している。(すなわち、断面的に支柱が交わっていることが理解される。)
 なお、具体的には、図21(ii)左図に示したように、受容部AP(A)は、支柱を導入する通路16Aと導入した支柱を保持する開口部18Aからなるものであるが、当該通路に支柱14Bが、侵入しつつある状態が示されている。
(Intersection)
FIG. 21 shows a stage where the component stents A and B are in the middle of crossing at the left end thereof.
That is, as shown in FIG. 21 (i), the supporting portion AP (A) (the supporting strut) at the left end portion of the inner component stent A intersects the strut 14B traveling in the radial direction. (In other words, it is understood that the columns cross in a cross section.)
Specifically, as shown in the left diagram of FIG. 21 (ii), the receiving portion AP (A) is composed of a passage 16A for introducing a support column and an opening 18A for holding the introduced support column. The state where the column 14B is entering the passage is shown.
(交差完了)
 図22は、コンポーネントステントAとBが、その左側端部において交差過程が完了した状態を示すものである。
 すなわち、図22(i)の左側端部に示すように、半径方向に走行する支柱14Bと、内層のコンポーネントステントの左側端部の受容部AP(A)(を構成する支柱)の交差が完了し、以後当該交差が解けることはない(すなわち、この状態から、図21又は図20の状態に戻ることはないことを意味する。)
(Intersection completed)
FIG. 22 shows a state in which the component stents A and B have completed the crossing process at the left end thereof.
That is, as shown in the left end of FIG. 22 (i), the intersection of the strut 14B traveling in the radial direction and the receiving portion AP (A) (the strut constituting the left end of the inner component stent) is completed. Thereafter, the intersection cannot be solved (that is, this state does not return to the state of FIG. 21 or FIG. 20).
 これは、具体的には、図21(ii)の左図に示したように、受容部AP(A)の開口部18A内に、通路16Aから導入された支柱14Bがトラップされている状態となっているからである。当該支柱14Bは、当該開口部内を可動(いわば遊嵌状態である。)であるが、通路にまで逆走することはないように構成されている。なお、受容部が支柱をトラップするメカニズムについては、後に詳述する。 Specifically, as shown in the left diagram of FIG. 21 (ii), the column 14B introduced from the passage 16A is trapped in the opening 18A of the receiving portion AP (A). Because it is. The column 14B is movable in the opening (in other words, in a loosely fitted state), but is configured not to run backward to the passage. The mechanism by which the receiving portion traps the support will be described in detail later.
 以上のごとくして、本発明においては、内層を形成するコンポーネントステントA(CSA)を、外層を形成するコンポーネントステントB(CSB)に対して、当該コンポーネントステントBの前記円筒体の長軸方向に挿入し、コンポーネントステントB(CSB)の支柱(RRSM)を、コンポーネントステントA(CSA)の当該受容部APに、これを半径方向に貫くように挿入して嵌め合わせて、当該二つのコンポーネントステントA、Bを係合した同軸複層ステントが形成される。 As described above, in the present invention, the component stent A (CSA) that forms the inner layer is arranged in the major axis direction of the cylindrical body of the component stent B with respect to the component stent B (CSB) that forms the outer layer. Inserting and fitting the strut (RRSM) of the component stent B (CSB) into the receiving portion AP of the component stent A (CSA) so as to penetrate the component stent A (CSA) in the radial direction. , B are formed into a coaxial multilayer stent.
(右端部交差/交差前)
 同様にして、右側端部において支柱の交差が行われる場合を説明する。
(i)図20(i)に示すように、この右側端部において、外層を構成するコンポーネントステントB(CSB)の円筒体の半径(Rb,in)は、本体部の半径Rbと同一であり(すなわち、コンポーネントステントBは、その右端部において、特に「段差」が設けられておらず、左端部と本体部は同一平面上にある。)、かつ、その支柱には、他のコンポーネントステントの支柱を受け入れることができる受容部(Accommodation Port or Portion(AP(B)) が形成されている。(受容部AP(B)は、支柱を導入する通路と導入した支柱を保持する開口部からなるものであり、典型的な形状の一例は、図20(ii)の右図に示すようなものである。これについては、後に詳述する。)
(Right end crossing / Before crossing)
Similarly, the case where the pillars cross at the right end will be described.
(I) As shown in FIG. 20 (i), at the right end, the radius (Rb, in) of the cylindrical body of the component stent B (CSB) constituting the outer layer is the same as the radius Rb of the main body. (That is, the component stent B is not particularly provided with a “step” at the right end thereof, and the left end portion and the main body portion are on the same plane.) A receiving portion (Accommodation Port or Portion (AP (B))) capable of receiving the support is formed (the receiving portion AP (B) includes a passage for introducing the support and an opening for holding the introduced support. An example of a typical shape is as shown in the right diagram of Fig. 20 (ii), which will be described in detail later.
(ii)また、内層を構成するコンポーネントステントA(CSA)は、その右側端部において、その本体部より上方に向かう「段差」が形成されている。すなわち、当該段差は、
(ア)その本体部の半径(Ra)と同一の半径位置(Ra,in)に配置された支柱10Aと、
(イ)コンポーネントステント(A)の本体部半径(Ra)より大きな半径位置(Ra,df)に配置された支柱12Aと、及び
(ウ)当該二つの半径位置(Ra,in Ra,df)に配置された二つの支柱を、連結する当該円筒体の半径方向に走行または配設された支柱14A(Radially-running SM (RRSM), (または、Radially-disposed SM(RDSM), Radially-arranged SM (RASM))から構成される。
(Ii) Further, the component stent A (CSA) constituting the inner layer is formed with a “step” toward the upper side from the main body at the right end thereof. That is, the step is
(A) A support 10A disposed at the same radial position (Ra, in) as the radius (Ra) of the main body,
(A) a column 12A disposed at a radial position (Ra, df) larger than the main body radius (Ra) of the component stent (A); and
(C) A strut 14A (Radially-running SM (RRSM)) that travels or is arranged in the radial direction of the cylindrical body connecting the two struts arranged at the two radial positions (Ra, in Ra, df). , (Or Radially-disposed SM (RDSM), Radially-arranged SM (RASM)).
 このような状態において、外層を構成するコンポーネントステントB中に、内層を構成するコンポーネントステントAを、その長軸Ldに沿って、INに示す方向に挿入する。図は、その右側端部において、コンポーネントステントAの「段差」すなわち、半径方向に走行する支柱14Aに、外層のコンポーネントステントの右側端部の受容部AP(B)が近接しつつある状態を示す。(図20(ii)の右側図は、この状態における支柱14Aと受容部AP(B)を半径方向から見ものである。) In such a state, the component stent A constituting the inner layer is inserted into the component stent B constituting the outer layer in the direction indicated by IN along the long axis Ld. The figure shows a state in which the receiving portion AP (B) at the right end portion of the outer component stent is approaching the “step” of the component stent A, that is, the strut 14A running in the radial direction at the right end portion thereof. . (The right side view of FIG. 20 (ii) is a view of the column 14A and the receiving portion AP (B) in this state from the radial direction.)
(交差途中)
 図21は、コンポーネントステントAとBが、その右側端部において交差が進行しつつある途中の段階を示すものである。
 すなわち、図21(i)の右側端部において、内層コンポーネントステントAの半径方向に走行する支柱14Aに、外層のコンポーネントステントBの右側端部の受容部AP(B)(を構成する支柱)が、交差している。(すなわち、断面的に支柱が交わっていることが理解される。)
 なお、具体的には、図21(ii)の右図に示したように、受容部AP(B)は、支柱を導入する通路16Bと導入した支柱を保持する開口部18Bからなるものであるが、当該通路に支柱14Aが、侵入しつつある状態が示されている。
(Intersection)
FIG. 21 shows a stage in which the component stents A and B are in the middle of crossing at the right end thereof.
That is, in the right end portion of FIG. 21 (i), the receiving portion AP (B) (the supporting strut) of the right end portion of the outer layer component stent B is disposed on the strut 14A running in the radial direction of the inner layer component stent A. Crossed. (In other words, it is understood that the columns cross in a cross section.)
Specifically, as shown in the right diagram of FIG. 21 (ii), the receiving portion AP (B) is composed of a passage 16B for introducing a support column and an opening 18B for holding the introduced support column. However, a state in which the column 14A is entering the passage is shown.
(交差完了)
 図22は、コンポーネントステントAとBが、その右側端部において交差過程が完了した状態を示すものである。
 すなわち、図22(i)の右側端部に示すように、内層コンポーネントステントAの半径方向に走行する支柱14Aと、外層のコンポーネントステントの右側端部の受容部AP(B)(を構成する支柱)の交差が完了し、当該交差が解けることはない(すなわち、この状態から、図21又は図20の状態に戻ることはないことを意味する。)
(Intersection completed)
FIG. 22 shows a state in which the crossing process of the component stents A and B is completed at the right end portion thereof.
That is, as shown in the right end portion of FIG. 22 (i), the struts constituting the struts 14A that run in the radial direction of the inner layer component stent A and the receiving portions AP (B) (at the right end portion of the outer layer component stents). ) Is completed and the intersection cannot be solved (that is, this state does not return to the state of FIG. 21 or FIG. 20).
 これは、具体的には、図22(ii)の右側図に示したように、受容部AP(B)の開口部18B内に、通路16Bから導入された支柱14Aがトラップされている状態となっているからである。当該支柱14Aは、当該開口部内を可動であるが、通路にまで逆走することはないように構成されている。 Specifically, as shown in the right side view of FIG. 22 (ii), the column 14A introduced from the passage 16B is trapped in the opening 18B of the receiving portion AP (B). Because it is. The support column 14A is movable in the opening, but is configured not to run backward to the passage.
 以上のごとくして、本発明においては、当該コンポーネントステントA(CSA)を、当該コンポーネントステントB(CSB)に対して、当該コンポーネントステントBの前記円筒体の長軸方向に挿入し、コンポーネントステントA(CSA)のRRSMを、コンポーネントステントB(CSB)の当該受容部に、これを半径方向に貫くように挿入して嵌め合わせて、当該二つのコンポーネントステントA、Bを係合することにより同軸複層ステントが形成される。 As described above, in the present invention, the component stent A (CSA) is inserted into the major axis direction of the cylindrical body of the component stent B with respect to the component stent B (CSB). By inserting and fitting the RRSM of (CSA) into the receiving portion of the component stent B (CSB) so as to penetrate in the radial direction, and engaging the two component stents A and B, A layered stent is formed.
 なお、本発明の同軸複層ステントにおいては、上記したように、少なくとも左側端部または右側端部において、交差が行われているものであるが、好ましくは、左側端部及び右側端部の両者において、交差が行われているものである。 In the coaxial multi-layer stent of the present invention, as described above, at least the left end or the right end is crossed, but preferably both the left end and the right end. In Fig. 3, the intersection is performed.
 また、本発明の同軸複層ステントは、以下のように規定することも可能である。すなわち、当該構成している支柱の半径が均一で、他のステントの支柱の半径方向に走向している支柱を係合できる支柱(受容部)を備えた内層を形成するコンポーネントステントAと、ステントAに比べて、より大きな半径位置に配置された支柱とより小さな半径に配置された支柱とそれら2つの半径に配置された支柱をつなぐための支柱(半径方向に走向する支柱)とを有する外層を形成するコンポーネントステントBからなり、ステントAをステントBに対して長軸方向に挿入し、ステントBの支柱がステントAの受容部に係合されることによって形成された3つの半径位置に配置された支柱と、半径が連続的に変化する一つの支柱を有する同軸複層ステント。 Also, the coaxial multilayer stent of the present invention can be defined as follows. That is, a component stent A that forms an inner layer having a strut (receiving portion) that can engage a strut that is configured in the radial direction of struts of other stents and that has a uniform strut radius, and a stent Outer layer having struts arranged at larger radial positions, struts arranged at smaller radii, and struts (struts running in the radial direction) for connecting the struts arranged at the two radii as compared to A The stent A is inserted in the longitudinal direction relative to the stent B, and the struts of the stent B are arranged at three radial positions formed by engaging the receiving portion of the stent A. A coaxial multi-layer stent having a strut and a strut having a continuously changing radius.
 以下、本発明をより具体的に説明する。
(セル)
 本発明において、支柱を構成するエレメントの一つが、セルである。一般的なセルの形状を図5(a)、(b)に展開図として示す。すなわち、図5(a)は、屈曲部を有するセル30が半径方向(円周方向)に複数個波形に接続されている状態を示すもので、その波形体は両端部で接続され、ステントの長軸を取り囲むような一つの環状体(ring)を形成する。
Hereinafter, the present invention will be described more specifically.
(cell)
In the present invention, one of the elements constituting the support column is a cell. A typical cell shape is shown in FIGS. 5A and 5B as development views. That is, FIG. 5 (a) shows a state in which a plurality of cells 30 having bent portions are connected in a waveform in the radial direction (circumferential direction). A ring is formed that surrounds the long axis.
 図5(b)は、その一つのセルの形状を拡大して示すものであって、当該セルは、セル中心軸ldを有し、そのセル中心軸の上側(J側)に二つと、下側(K側)二つの4つのセル屈曲部(セル屈曲部31j、セル屈曲部31k、セル屈曲部32j、セル屈曲32k)及び2つのセル中央長辺部34j、34kから構成される。なお、セル屈曲部31jとセル屈曲部31kを円周方向に結んだ直線の垂直二等分線がセル中心軸ldである。
(すなわち、一つのセルは、これを構成するエレメントが、31j→34j→32j→32k→34k→31kと伸びて一つのセルを形成する。この場合、セル屈曲部32jとセル屈曲32kは、直接接続されており、全体として一つの円弧36を形成する。)
FIG. 5B is an enlarged view of the shape of the one cell. The cell has a cell center axis ld, two above the cell center axis (J side), Two cell bent portions (cell bent portion 31j, cell bent portion 31k, cell bent portion 32j, cell bent 32k) and two cell central long side portions 34j, 34k are formed on the side (K side). A straight bisector of a straight line connecting the cell bent portion 31j and the cell bent portion 31k in the circumferential direction is the cell center axis ld.
(That is, in one cell, the elements constituting it extend from 31j → 34j → 32j → 32k → 34k → 31k to form one cell. In this case, the cell bent portion 32j and the cell bent 32k are directly Are connected to form one arc 36 as a whole.)
 ステントが病変部位で拡張される際は、連続して円弧を形成するセル屈曲部32jと32kが変形することによりセル屈曲部31i-31k間の円周方向距離が長くなる。屈曲部31i-31k間の距離は、円筒形状であるステントの円周の一部なので、セル屈曲部31i-31k間の距離が長くなることは、ステントの円周が長くなること、言い換えれば、ステントの半径が大きくなることを意味する。 When the stent is expanded at a lesion site, the cell bending portions 32j and 32k that continuously form an arc are deformed, so that the circumferential distance between the cell bending portions 31i-31k is increased. Since the distance between the bent portions 31i-31k is a part of the circumference of the stent having a cylindrical shape, the longer distance between the cell bent portions 31i-31k means that the circumference of the stent becomes longer, in other words, This means that the radius of the stent is increased.
 ステントの拡張の状態については、図6(a)、(b)に、本発明者らが実際に作製したステントの写真を示す。この際、本発明者らが知見したところによれば、セル屈曲部31iとセル屈曲部31kからなる円弧が、セル中心軸ldから円周方向にオフセットされている場合は、拡張時にステントがねじれるという現象が観察されることが見いだされた。 Regarding the expanded state of the stent, FIGS. 6A and 6B show photographs of the stent actually produced by the present inventors. At this time, according to the findings of the present inventors, when the arc formed by the cell bent portion 31i and the cell bent portion 31k is offset in the circumferential direction from the cell central axis ld, the stent is twisted during expansion. It was found that this phenomenon was observed.
 図7(i)-(iii)は、特許文献15において開示された図面(図(iv))に基づいて、実際に作製したステントを拡張した結果を示す写真である。容易に理解されるように、拡張時にねじれが生じており、それ以上の拡張が出来ない場合があることが確認された。このことから、セル屈曲部32jとセル屈曲部32kからなる円弧は、セル屈曲部31i -セル屈曲部31k間の中点を通るセル中心軸ld上に位置することが好ましく、さらにはこのセル中心軸に対して対称形状であることが好ましいことが理解される。 FIGS. 7 (i)-(iii) are photographs showing the result of expanding an actually produced stent based on the drawing disclosed in Patent Document 15 (FIG. (Iv)). As can be easily understood, it was confirmed that twisting occurred during expansion, and further expansion might not be possible. Therefore, the arc formed by the cell bent portion 32j and the cell bent portion 32k is preferably located on the cell center axis ld that passes through the midpoint between the cell bent portion 31i and the cell bent portion 31k. It is understood that a symmetrical shape with respect to the axis is preferred.
 ステントの半径方向剛性は、セルの長軸方向の長さによって大きく支配される。したがって波型を形成するセル屈曲部以外を構成するセル中央長辺部(単にセル中央部ともいう。)の支柱の形状は、ほとんどステントの半径方向剛性にほとんど影響をおよぼさない(たとえば、感度解析を用いたステントの設計、森浩二 池内健 光藤和明、日本臨床バイオメカニクス学会誌、22、381-387、2001を参照。)。したがってセル中央部の支柱が、すでに述べたような交差による係合機構を実現するために必要な爪部または突状部の役割を果たすように、セル中央部の支柱の形状を変更することが好ましい。 The radial stiffness of the stent is largely governed by the length of the cell in the long axis direction. Therefore, the shape of the strut of the cell central long side portion (also simply referred to as the cell central portion) other than the cell bent portion forming the corrugation hardly affects the radial rigidity of the stent (for example, Stent design using sensitivity analysis, see Koji Mori, Ken Ikeuchi, Kazuaki Mitsudo, Journal of Japanese Society for Clinical Biomechanics, 22, 381-387, 2001). Therefore, it is possible to change the shape of the column in the central part of the cell so that the column in the central part of the cell plays the role of a claw or protrusion necessary for realizing the engagement mechanism by crossing as described above. preferable.
 セル屈曲部32jとセル屈曲部32kの部分(およびセル屈曲部31jとセル屈曲部31kの部分)は、ステントが拡張する際にひずみが集中する。この集中したひずみの最大値が、ステントに使用する材料の破断ひずみを超えると、ステントは破損する。セルの長さが同じステントで曲率半径を、0.09mm、0.12mm、0.16mmに変えたステントの拡張時の最大ひずみは、本発明者らの解析によれば、それぞれ33.4%,29.1%,25.1%である。拡張時に集中したひずみの最大値は、このように、一般的には、曲率半径が大きいほうが低減する。 In the cell bent portion 32j and the cell bent portion 32k (and the cell bent portion 31j and the cell bent portion 31k), strain concentrates when the stent expands. If this concentrated strain maximum exceeds the fracture strain of the material used for the stent, the stent will break. According to the analysis by the present inventors, the maximum strain when expanding the stent with the same cell length and changing the radius of curvature to 0.09 mm, 0.12 mm, and 0.16 mm is 33.4%, 29.1%, and 25.1, respectively. %. As described above, the maximum value of strain concentrated at the time of expansion generally decreases as the radius of curvature increases.
 ステントを病変部へ運搬するためには、通常ステントの半径を未拡張の状態(例えば図6(a))からさらに半径を縮小する場合がある。これは、ステントの半径が小さいほうが血管内を通過させやすいためである。このような場合、セルの形状はセル屈曲部31jとセル屈曲部31kの円周方向の距離が縮まるが、その屈曲部分の曲率半径はほとんど減少しない。 In order to transport the stent to the lesioned part, the radius of the stent is usually further reduced from an unexpanded state (for example, FIG. 6A). This is because the smaller the radius of the stent, the easier it is to pass through the blood vessel. In such a case, as for the shape of the cell, the circumferential distance between the cell bent portion 31j and the cell bent portion 31k is reduced, but the curvature radius of the bent portion is hardly reduced.
(受容部の具体的構成)
 本発明における半径方向に走行する支柱を受け入れる受容部(AP(A)、AP(B)等)は、セルの一部に形成するのが実際的であるが、当該受容部を形成することにより、上記した知見から、リンク(コネクターともいう。)としての要求機能を阻害されることなく、その本来のリンクとしての機能を保持または達成するためには、図8に示す展開図のような形状に形成することが好ましい。(なお、半径方向に走行する支柱を受け入れ、かつ、リンクとしての機能を奏するエレメントであるという観点から、当該受容部を、また、「フィメイル・コネクター」(FC)ということがある。)
(Specific configuration of receiving part)
In the present invention, it is practical to form the receiving portion (AP (A), AP (B), etc.) for receiving the struts that run in the radial direction in a part of the cell, but by forming the receiving portion, From the above-mentioned knowledge, in order to maintain or achieve the function as the original link without obstructing the function required as the link (also referred to as a connector), the shape as shown in the developed view of FIG. It is preferable to form. (Note that the receiving portion is also referred to as a “female connector” (FC) from the viewpoint that it is an element that receives a strut that travels in the radial direction and functions as a link.)
 すなわち、図8において、受容部APは、セル屈曲部31j、31k、セル中央長辺部34j、34k、通路部16、及び開口部18を有する係止ホルダ38からなる。なお、図8において、開口部18は、J側開口部18j、K側開口部18kに分割される。 That is, in FIG. 8, the receiving portion AP is composed of the cell bending portions 31 j and 31 k, the cell center long side portions 34 j and 34 k, the passage portion 16, and the locking holder 38 having the opening 18. In FIG. 8, the opening 18 is divided into a J-side opening 18j and a K-side opening 18k.
 このように構成されているので、たとえば図8に示す受容部APにおいて、左方から移動してくる半径方向に走向するコンポーネントステントの支柱は、すでにのべたような組立時(交差過程において)、スムーズに、前記開口部18に誘導される。当該開口部18は、円方形状であることが好ましい。 Since it is configured in this manner, for example, in the receiving portion AP shown in FIG. 8, the struts of the component stent moving in the radial direction moving from the left are already assembled at the time of assembling (in the crossing process), It is smoothly guided to the opening 18. The opening 18 is preferably circular.
 そして、図9に示すように、係止ホルダ38(開口部18を形成する支柱をいう。)をその構成要素に分割すると、J側の屈曲部38’j、K側の屈曲部38’k(これは円方形状の開口部の円弧部に相当する部分である。)、J側の直線部38’’j、K側の直線部38’’k(これは円方形状の開口部の方形部に相当する部分である。)からなるものである。 Then, as shown in FIG. 9, when the locking holder 38 (referring to a column that forms the opening 18) is divided into its constituent elements, a J-side bent portion 38'j and a K-side bent portion 38'k. (This is the portion corresponding to the arc portion of the circular opening.) The straight portion 38 ″ j on the J side and the straight portion 38 ″ k on the K side (this is the shape of the circular opening. It is a part corresponding to a square part.).
 図10は、通路部16を、より機能に応じて分割して示したもので、入口部(Inlet Port j、k)((i))、誘導路(Guide Path j、k)((ii))、出口部(Outlet Port j、k)((iii))、係止部(Locking Port j、k)((iv))からなる。ここで、セル中央長辺部34j、34kと通路部の入口部16は滑らかに支柱がつながっている。 FIG. 10 shows the passage portion 16 divided according to the function. The entrance portion (Inlet Port j, k) ((i)), the taxiway (Guide Path j, k) ((ii) ), Outlet part (Outlet Port j, k) ((iii)), and locking part (Locking Port j, k) ((iv)). Here, the cell center long side portions 34j, 34k and the entrance portion 16 of the passage portion are smoothly connected to each other.
 次に、図11(a)-(c)に着目する。
図11(a)に示すように、入口部(Inlet Port)(j、k)と出口部(Outlet Port)(j、k)の支柱において、当該J側入口部とセル中心軸ldのなす角αと、J側出口部出口部(Outlet Port)(j)とセル中心軸ldの角βの関係は、α<βとなるように形成する。もう一方のK側の入口部(Inlet Port)とセル中心軸ldのなす角γとK側の出口部(Otelet Port)(k)とセル中心軸ldの角δの関係は、γ<δとなるように形成する。
Next, attention is focused on FIGS. 11 (a)-(c).
As shown in FIG. 11 (a), the angle formed between the J-side inlet and the cell center axis ld in the support of the inlet (Inlet Port) (j, k) and outlet (Outlet Port) (j, k) The relationship between α and the angle β between the J-side outlet portion (Outlet Port) (j) and the cell center axis ld is formed such that α <β. The relationship between the angle γ formed by the other K-side inlet (Inlet Port) and the cell center axis ld and the angle K between the K-side outlet (Otelet Port) (k) and the cell center axis ld is γ <δ. It forms so that it may become.
 ここで、通路16は、セル中心軸ldに対して、円周方向のどちらかにオフセットされた位置に形成することが好ましい。したがって図11(a)における角αと角γの関係はα≠γであることが好ましい。ただし、α=γでも、通路の位置が、中心軸に対して円周方向のどちらかにオフセットするように形成することは可能である。すなわち、α≠γであることは、中心軸に対して円周方向のどちらかにオフセットすることの必要条件である。また、通路16の長軸方向の位置は、円方形状の開口部18とセル屈曲部31j、31kの中間地点よりも、当該開口部18に近い位置に形成することが好ましい。 Here, the passage 16 is preferably formed at a position offset in either of the circumferential directions with respect to the cell center axis ld. Therefore, the relationship between the angle α and the angle γ in FIG. 11A is preferably α ≠ γ. However, even if α = γ, it is possible to form the passage so that it is offset in either of the circumferential directions with respect to the central axis. That is, α ≠ γ is a necessary condition for offsetting in the circumferential direction with respect to the central axis. Moreover, it is preferable to form the position of the long axis direction of the channel | path 16 in the position near the said opening part 18 rather than the intermediate point of the square-shaped opening part 18 and the cell bending parts 31j and 31k.
 図10(iv)に示す、通路16の係止部18’j、18’kと、係止ホルダ(開口部を形成する支柱)の中央部の支柱の38’’j、38’’k(図9に示す円方形状開口部の方形部分)の長軸方向間隔は、接合したいコンポーネントステントの支柱の厚さに近いことが好ましい。このように構成することにより、一つのコンポーネントステントの半径方向に走行する支柱を、他のコンポーネントステントの受容部の係止ホルダ中に、長軸方向に対して固定することができる。 10 (iv), the locking portions 18′j and 18′k of the passage 16, and the 38 ″ j and 38 ″ k (38 ″ k) of the central column of the locking holder (the column forming the opening). It is preferable that the major axis direction interval of the square portion of the circular opening shown in FIG. 9 is close to the thickness of the struts of the component stent to be joined. By comprising in this way, the support | pillar which runs to the radial direction of one component stent can be fixed with respect to the longitudinal direction in the latching holder of the receiving part of another component stent.
 本発明における受容部または係止ホルダによる、半径方向に走行する支柱の、かかる固定メカニズムによれば、ステントを病変部に運搬する場合に、発生する長軸方向の(生体組織との摩擦)力に対して、ステントを長軸方向にずれることを防止できる。またセル中心軸ldに関して対向する開口部の支柱の間隔は、接合したいコンポーネントステントの支柱の幅に近いことが好ましい。図11(a)では、一定の太さの支柱で通路部を形成しているが、図11(b)に示すように、支柱の太さを局所的に変更することによって、通路部を形成し、角α、角β、角γ、角δの関係を保つことによって、同じ機能を奏することができる。さらにまた、図11(c)に示すように、支柱を枝分かれさせて通路部を形成しても同じ機能を発揮できることは、自明である。 According to the fixing mechanism of the strut running in the radial direction by the receiving portion or the locking holder in the present invention, a long-axis direction (friction with living tissue) force generated when the stent is transported to the lesioned part. On the other hand, the stent can be prevented from shifting in the long axis direction. Moreover, it is preferable that the space | interval of the support | pillar of the opening part which opposes regarding cell center axis | shaft ld is near the width | variety of the support | pillar of the component stent to join. In FIG. 11 (a), the passage portion is formed by a column having a constant thickness. However, as shown in FIG. 11 (b), the passage portion is formed by locally changing the thickness of the column. However, the same function can be achieved by maintaining the relationship of the angles α, β, γ, and δ. Furthermore, as shown in FIG. 11C, it is obvious that the same function can be exhibited even if the passage is formed by branching the support.
 係止ホルダにおける開口部18は、拡張時のひずみを低減して、別のコンポーネントステントの支柱を留めておくための空間を確保するために、その曲率半径を、受容部(または係止ホルダ)の形成されていないセルの屈曲部32j、32kよりも大きく形成することが好ましい。この開口部18が大きいほど、係止ホルダ(又は受容部)を含むステント製造時における組立工程での許容誤差が大きくなり、組立容易性や歩留まりが向上する。しかしながら、その曲率半径があまり大きすぎると、ステントのほかの構造部分であるセル形状やリンク形状の制約が大きくなるので好ましくない。 The opening 18 in the locking holder reduces its expansion strain and allows its radius of curvature to be received by the receiving portion (or locking holder) in order to secure space for holding another component stent strut. It is preferable to form the cell larger than the bent portions 32j and 32k of the cell in which no is formed. The larger the opening 18, the greater the tolerance in the assembly process when manufacturing the stent including the locking holder (or receiving part), and the ease of assembly and the yield are improved. However, if the radius of curvature is too large, restrictions on the cell shape and the link shape, which are other structural parts of the stent, are not preferable.
 本発明の目的の一つは、ステントを病変部に運搬する際に長軸方向に発生する生体組織との摩擦力による重ね合わせられたステントの脱落を防止することであるので、この開口部の形状は長軸方向には短く、円周方向には長い形状が好ましい。(これが、開口部18が円方形状のものが好ましい理由である。)このような形状にすることによって、開口部の中央部における曲率半径が大きくなり、拡張時のひずみ集中を低減できるという副次的効果も期待できる。また、開口部18は、ステントが拡張する際に、(受容部または係止ホルダが形成されていない)セルにおけるセル屈曲部32jおよび32kと、同じ役割を果たすので、セル中心軸ldに対して対称形状にすることが好ましく、これによって拡張時にねじれることを防止することができる。 One of the objects of the present invention is to prevent the overlapped stent from falling off due to frictional force with the living tissue generated in the longitudinal direction when the stent is transported to the lesion. The shape is preferably short in the long axis direction and long in the circumferential direction. (This is why it is preferable that the opening 18 has a circular shape.) By adopting such a shape, the radius of curvature at the center of the opening is increased, and strain concentration during expansion can be reduced. The following effects can also be expected. Also, the opening 18 plays the same role as the cell bent portions 32j and 32k in the cell (where no receiving portion or locking holder is formed) when the stent is expanded. A symmetrical shape is preferred, which can prevent twisting during expansion.
 以上より、図12(a)、図12(b)に示すように、受容部AP(フィメイル・コネクター)は、通路のオフセットの方向によって、2種類の形状が存在するが、この2種類の受容部は、APと、AP*(セル中心軸ldに対して鏡像の関係にあるAP)、であるように形成することが好ましいことが理解される。 From the above, as shown in FIGS. 12 (a) and 12 (b), the receiving portion AP (female connector) has two types of shapes depending on the direction of the channel offset. It is understood that the portion is preferably formed to be AP and AP * (AP having a mirror image relationship with respect to the cell center axis ld).
 本発明においては、このような形状の受容部APの形成されたセル2を、ステント端部に配置されているセルのうち、少なくとも2つ以上のセルと置き換えることが好ましい。この際、すべての受容部を同一種類の形状の受容部APに形成するのではなく、図13に示すように、少なくともその一つは、異なる形状の受容部AP*(すなわち、APの鏡像)に置き換えることが好ましい。  In the present invention, it is preferable to replace the cell 2 in which the receiving portion AP having such a shape is formed with at least two or more of the cells arranged at the end of the stent. At this time, not all the receiving parts are formed in the same type of receiving part AP, but at least one of the receiving parts AP * (that is, a mirror image of the AP) is different as shown in FIG. It is preferable to replace with.
(半径方向に走行する支柱)
 本発明において、受容部AP(又はAP*)の開口部に挿入されるコンポーネントステントの支柱は、以下に述べるような構成の支柱とすることによって、内層を形成するステントと外層を形成する2つのステントの結合力をより高めることが出来る。なお、本発明において、半径方向に走行する支柱RRSMを、その機能に着目して、「メイル・コネクター」(MC)ということがある。
 このような、メイル・コネクターMCは、リンク3の部分に構成することが好ましく、より好ましくは、そのリンク形状を、より確実に受容部との係合が行われるような形状に構成することが望ましい。
(Stands that run in the radial direction)
In the present invention, the struts of the component stent inserted into the opening of the receiving portion AP (or AP * ) are the struts having the configuration described below, whereby the stent forming the inner layer and the two struts forming the outer layer are formed. The binding force of the stent can be further increased. In the present invention, the strut RRSM that travels in the radial direction may be referred to as a “mail connector” (MC), focusing on its function.
Such a mail connector MC is preferably formed in the portion of the link 3, and more preferably, the link shape thereof is formed in such a shape that the engagement with the receiving portion is more reliably performed. desirable.
 基本的には、図14に示したように、支柱であるリンク部分3に、半径方向走行支柱RRSM(メイル・コネクターMC)としての機能を直列に連結して構成することが好ましい。すなわち、ステントの組立時に、受容部APの開口部18に(対応する)位置に、望ましくは、連結部14’を設け、これとリンク3を直列に接続して構成する。当該連結部14’は、最終的に半径方向走行支柱RRSMを構成するエレメントであり、メイル・コネクターを構成する部分でもある。 Basically, as shown in FIG. 14, it is preferable that the link portion 3 as a support is connected in series with a function as a radial traveling support RRSM (mail connector MC). That is, at the time of assembling the stent, preferably, a connecting portion 14 ′ is provided at a position (corresponding) to the opening 18 of the receiving portion AP, and this is connected to the link 3 in series. The connecting portion 14 ′ is an element that finally constitutes the radial traveling strut RRSM, and is also a portion that constitutes a mail connector.
 図14に示すように、メイル・コネクターMCの支柱、すなわち半径方向走行支柱RRSMは、隣接するセルのセル中心軸上に位置していて、すでに述べた同軸複層ステントの組み立て時には、メイル・コネクターの当該支柱は、これを半径方向に変形させることにより、当該半径方向変形部(radially-deformed portion/RDP)14’’が、リンク3と連結部14’の間に位置するようにする。また当該連結部14’は、別の半径方向変形部14’’’を介してセル2とつながっていることが理解される。  As shown in FIG. 14, the post of the mail connector MC, that is, the radial running post RRSM is located on the cell center axis of the adjacent cell, and when the coaxial multi-layer stent described above is assembled, the mail connector MC The post is deformed in the radial direction so that the radially deformed portion (RDP) 14 ″ is positioned between the link 3 and the connecting portion 14 ′. Further, it is understood that the connecting portion 14 ′ is connected to the cell 2 through another radial deformation portion 14 ″ ″.
 メイル・コネクターの支柱、すなわち半径方向走行支柱RRSMは、受容部の通路部の(円周方向)間隔よりも広くすることが好ましい。一般的には、セル部分2に比べると、リンク部分3は支柱幅が細いのが通例である。しかしながら、リンク部分に形成するメイル・コネクターについては、その支柱の一部またはすべてが、その他の通常のリンク部分3よりも、図に14’として示すように、支柱幅を広く形成することが好ましい。このように連結部は、その支柱幅が、他のリンク部分よりも広いことが好ましい。 The struts of the mail connector, that is, the radial traveling struts RRSM, are preferably wider than the interval (circumferential direction) of the passage portion of the receiving portion. In general, the link portion 3 is typically narrower than the cell portion 2. However, with respect to the mail connector formed in the link portion, it is preferable that a part or all of the struts be formed wider than the other ordinary link portions 3 as shown by 14 'in the figure. . Thus, as for a connection part, it is preferable that the support | pillar width is wider than another link part.
 図14において、点線Sで示した部分が通常のリンク部分3と同じ幅を示す。基本的には、メイル・コネクターの支柱としては、この点線Sで示したように、リンク部分3を長く(L)構成することが必須である。ただし、APとのより確実な係合を確保するためには、単にLのように長く構成するだけではなく、図14に示したような、幅広の構成とすることが好ましいのである。
 なお、半径方向に走行する支柱における、半径方向変形部14’’、14’’’は、そのメイル・コネクターを半径方向に変形させるときに、大きく曲がる。したがって、この部分は、連結部に比べると支柱幅は相対的に狭い方が好ましく、他のリンク3の支柱幅と同等にすることが好ましい。
In FIG. 14, the portion indicated by the dotted line S has the same width as the normal link portion 3. Basically, as shown in the dotted line S, it is essential to form the link portion 3 to be long (L) as the post of the mail connector. However, in order to ensure a more reliable engagement with the AP, it is preferable not only to make it as long as L but also to have a wide configuration as shown in FIG.
Note that the radially deforming portions 14 ″, 14 ′ ″ in the struts that run in the radial direction bend greatly when the mail connector is deformed in the radial direction. Therefore, it is preferable that this portion has a relatively narrow column width compared to the connecting portion, and it is preferable to make this column the same as the column width of the other link 3.
 すでに組み立て部において述べたように、2つのコンポーネントステントを接合するときは、メイル・コネクターの部分(図20図でいえば、ステントの左側端部または右側端部における支柱14A、14Bの部分)でステントの半径を変えて、支柱が半径方向に走向する(RRSM)ように構成している。 As already mentioned in the assembly section, when joining two component stents, at the part of the mail connector (in FIG. 20, the struts 14A, 14B at the left or right end of the stent) By changing the radius of the stent, the struts are configured to run radially (RRSM).
 また、図15に示すように、メイル・コネクターMCは、受容部APと同様に、ステントにおけるリンク3のいくつかと置き換えるようにして構成することが好ましい。
 上記したように、メイル・コネクターMCの、特に半径方向に走行する支柱を形成する部分Lは、他のリンクに比べて長くすることが好ましい。すなわち、接合するためにコンポーネントステントの一部の半径を変化させ、半径方向に走行する支柱を形成すると、容易に理解されるように、この場合のコンポーネントステントの長さは、このようなメイル・コネクターを備えないコンポーネントステントの長さに近づくので、コンポーネントステントを接合するときに、当該2つのコンポーネントステントの長さが等しくなることになり、望ましい。
Further, as shown in FIG. 15, the mail connector MC is preferably configured to be replaced with some of the links 3 in the stent, like the receiving portion AP.
As described above, the part L of the mail connector MC that forms the struts that run in the radial direction is preferably longer than the other links. That is, the length of the component stent in this case is such that the length of the component stent can be easily understood by changing the radius of part of the component stent for joining and forming struts that run in the radial direction. Since the length of the component stent without the connector is approached, it is desirable that the length of the two component stents be equal when the component stents are joined.
 従来型の単一層ステントは、セル2とリンク3から構成される。これに対して、本発明においては,図16に示すように、セル2とリンク3に加えて、メイル・コネクターMCおよび/またはフィメイル・コネクターFCが加えられたステントから構成される。このようなステントがコンポーネントステントであり、すでに述べたものにおいては、内層を形成するものがコンポーネントステントA、外層を構成するものがコンポーネントステントBであり、同軸二層ステントを形成するが、一般的には、コンポーネントステントA、コンポーネントステントB、コンポーネントステントC、・・・と同軸複層(同軸多層)ステントを形成する。 A conventional single-layer stent is composed of cells 2 and links 3. On the other hand, in the present invention, as shown in FIG. 16, in addition to the cell 2 and the link 3, it is composed of a stent to which a mail connector MC and / or a female connector FC is added. Such a stent is a component stent, and in the above-described one, the component stent A forms the inner layer and the component stent B forms the outer layer, and forms a coaxial bilayer stent. The component stent A, the component stent B, the component stent C,... Are formed as coaxial multilayer (coaxial multilayer) stents.
 このように複数のコンポーネントステントを、すでに組み立て部において述べたように、同軸的に積層することによって、本発明の同軸複層ステントは構成される。この場合、注意すべきは、1つのコンポーネントステントの支柱厚さは、単一層ステントの支柱厚さの1/2から1/4程度の厚さであることである。コンポーネントステントの半径方向剛性は、支柱厚さに大きな影響を受ける。したがって1つのコンポーネントステント単独では、単一層ステントの半径方向剛性には及ばない。このことは、コンポーネントステント単体では、治療器具としては不完全であることを示唆している。あくまで、本発明においては、複数のコンポーネントステントを同軸複層ステントとして組合せる(複合する)ことによって、強度的に、従来の単一層ステントと同等の半径方向剛性を発揮して治療器具として完成するのである。 The coaxial multi-layer stent of the present invention is configured by coaxially laminating a plurality of component stents as described above in the assembly section. In this case, it should be noted that the strut thickness of one component stent is about 1/2 to 1/4 of the strut thickness of a single layer stent. The radial stiffness of the component stent is greatly affected by the strut thickness. Thus, a single component stent alone does not reach the radial stiffness of a single layer stent. This suggests that the component stent alone is incomplete as a therapeutic device. In the present invention, by combining (combining) a plurality of component stents as coaxial multi-layer stents, the present invention provides a therapeutic instrument that exhibits strength in the radial direction equivalent to that of a conventional single-layer stent. It is.
 図22において示したように、二つのコンポーネントステントA、Bの交差過程が終了した時点で、最終的にメイル・コネクターMCの半径方向に走行する支柱RRSMは、通路部16を完全に通過してフィメイル・コネクター(AP)の開口部18に到達する。当該開口部に当該支柱が到達すると、通路部の隙間は元に戻る。そして、フィメイル・コネクターの通路部の係止部の支柱と、メイル・コネクターの連結部の支柱がお互いに噛み合って、当該支柱が再び通路を通過する(すなわち、逆走する。)ことを阻止する。図23は、このようにして、接合されたフィメイル・コネクター(すなわち受容部AP)とメイル・コネクター(の半径方向走行支柱14)の係止状態を3次元的に示す拡大図である。 As shown in FIG. 22, when the crossing process of the two component stents A and B is completed, the strut RRSM that finally travels in the radial direction of the mail connector MC passes through the passage portion 16 completely. The opening 18 of the female connector (AP) is reached. When the support column reaches the opening, the gap in the passage portion is restored. And the support | pillar of the latching | locking part of the channel | path part of a mail connector and the support | pillar of the connection part of a mail connector mutually mesh, and the said support | pillar is prevented from passing a channel | path again (namely, reverse running). . FIG. 23 is an enlarged view three-dimensionally showing how the female connector (that is, the receiving portion AP) and the male connector (radial travel strut 14 thereof) thus joined are locked.
 さらにこの状態を解析すると、図22および図23の状態において、外層を形成するコンポーネントステントBは、内層を構成するコンポーネントステントBの開口部によって、長軸方向と円周方向の位置が決まり、コンポーネントステントBの半径方向の位置は、コンポーネントステントAの支柱の半径位置によって決まる。これらの位置の公差は、開口部18の大きさや、メイル・コネクターの半径方向の変形量(すなわち、「段差」の大きさ)でコントロールできる。これらを小さくすれば公差が小さくなり、2つのコンポーネントステントの相対位置を厳密に決定できる。一方、これらを大きくすれば、2つのコンポーネントステントの相対位置の精度は低くなる。低い位置決め精度を保持することにより、2つのコンポーネントステントの支柱の相対運動が可能となる。 Further, when this state is analyzed, in the state of FIG. 22 and FIG. 23, the component stent B forming the outer layer is determined in the major axis direction and the circumferential direction by the openings of the component stent B constituting the inner layer. The radial position of the stent B is determined by the radial position of the struts of the component stent A. The tolerance of these positions can be controlled by the size of the opening 18 and the amount of deformation of the mail connector in the radial direction (that is, the size of the “step”). If these are reduced, the tolerance is reduced and the relative position of the two component stents can be determined precisely. On the other hand, if these are increased, the accuracy of the relative positions of the two component stents is lowered. Maintaining low positioning accuracy allows for relative movement of the two component stent struts.
 本発明における同軸複層ステントは、ある層の支柱の変形が他の層の支柱に干渉されないことによって、従来の単層ステントでは不可能な治療を可能にする。したがって低い位置決め精度が許容させることは、同軸複層ステントの特性をより強く奏することに貢献することになる。 The coaxial multi-layer stent of the present invention allows treatment impossible with a conventional single-layer stent by preventing deformation of one layer of struts from interfering with struts of other layers. Therefore, allowing low positioning accuracy contributes to stronger properties of the coaxial multilayer stent.
 コンポーネントステントを、係合して接合するための長軸方向のスライド量は、セルまたはフィメイル・コネクターの長軸長さとほぼ同等である。具体的には、1.0mm-2.5mm程度である。このスライド量は、特別な装置の支援がなくても手動で実現できるものである。図22や図23に示した状態が実現されていれば、コンポーネントステントを相対的に円周方向のどちらかの方向に移動させた時、図24に示したように、すべてのフィメイル・コネクター(AP)の通路部の出口部に、メイル・コネクターの支柱14が位置することは無いことに注意しなければならない。 ¡Sliding amount in the long axis direction for engaging and joining the component stent is almost equal to the long axis length of the cell or the female connector. Specifically, it is about 1.0 mm-2.5 mm. This slide amount can be realized manually without the assistance of a special device. If the state shown in FIG. 22 or FIG. 23 is realized, when the component stent is moved in either of the circumferential directions relatively, as shown in FIG. It should be noted that the mail connector post 14 is not located at the exit of the AP) passage.
 すなわち、少なくとも1つのフィメイル・コネクターでは、接合したコンポーネントステントの支柱は、出口部から(円周方向に関して)離れた位置に移動し、そして係止部に接触している。したがって、一度接合された2つのコンポーネントステントは、相対的に円周方向にずれた場合に接合が解除される可能性は低くなる。これは、本発明の同軸複層ステントを、血管内を運搬時に、生体組織との摩擦力などによって、そのコンポーネントステントが円周方向にずれた場合においても、当該コンポーネントステントが容易に脱落しないことを意味している。
 なお、本発明の複層ステントは、この位置で2つのコンポーネントステントは接合(係合)され、2つのコンポーネントステントから構成されているが、このとき、コンポーネントステント支柱の半径は、たとえば図22に示されているように、異なる4つの半径(Ra、Ra,df、Rb、Rb,df)が存在することが理解される。
That is, in at least one female connector, the struts of the joined component stent have moved away from the outlet (in the circumferential direction) and are in contact with the lock. Accordingly, the two component stents once joined are less likely to be released when they are relatively displaced in the circumferential direction. This is because, when the coaxial multi-layer stent of the present invention is transported in a blood vessel, even if the component stent is displaced in the circumferential direction due to a frictional force with a living tissue, the component stent does not easily fall off. Means.
The multi-layer stent of the present invention is composed of two component stents in which two component stents are joined (engaged) at this position. At this time, the radius of the component stent strut is, for example, as shown in FIG. As shown, there are four different radii (Ra, Ra, df, Rb, Rb, df).
(複層ステントの圧縮、及び有利な作用効果)
 実際の治療に適用する場合は、この連結された2つのコンポーネントステント(同軸複層ステント)を、バルーンカテーテル上に配置して、たとえば特許文献16に開示される装置を利用して、2つのコンポーネントステント(複層ステント)を半径方向に圧縮する。この力によって、2つのコンポーネントステント(複層ステント)は、バルーンカテーテル50上にマウントされる。図25は、このマウントされた状態を示すものである。
(Compression of multi-layer stent and advantageous effects)
When applied to actual treatment, the two component stents (coaxial multi-layer stent) connected to each other are placed on a balloon catheter, and the two components are utilized by utilizing the device disclosed in, for example, Patent Document 16. The stent (multi-layer stent) is compressed radially. This force causes the two component stents (multilayer stent) to be mounted on the balloon catheter 50. FIG. 25 shows the mounted state.
 図25を参照するに、本発明においては、このときコンポーネントステント(複層ステント)の支柱の半径は、Ra_mount、Rb_mountの2つになる。このようにコンポーネントステントの支柱(それはセルやリンクの一部分を構成している。)が、他方のコンポーネントステントの支柱をまたがって(交差して)いることにより、ステント座標系における半径方向の力が作用する場合に、2つのコンポーネントステントの支柱が分離しにくくなるという効果がある。 Referring to FIG. 25, in the present invention, the radius of the struts of the component stent (multi-layer stent) at this time becomes two, Ra_mount and Rb_mount. In this way, the component stent strut (which forms part of the cell or link) straddles (intersects) the other component stent strut, so that the radial force in the stent coordinate system is reduced. When acting, it has the effect that the struts of the two component stents are difficult to separate.
 病変部への運搬時などにおいて、この圧縮された複層ステントは、血管の屈曲部分を通過する必要がある。一般に、ステントは曲げられると、まっすぐな状態に戻ろうとする。この力は,ステント座標系で表現すると半径方向に発生し曲げられた際に、外側に位置する支柱は、互いに離れようとする。  ∙ When transported to a lesioned part, the compressed multilayer stent needs to pass through the bent part of the blood vessel. Generally, when a stent is bent, it tries to return to a straight state. When this force is expressed in the stent coordinate system in the radial direction and bent, the struts located on the outside try to separate from each other.
 この状態において、本発明の同軸複層ステントでは、内層のコンポーネントステントAに半径方向(r方向)の力が作用する場合は、外側に配置されているコンポーネントステントBの支柱によって、当該コンポーネントステントAの支柱が、コンポーネントステントBの支柱から離れることを防ぐように作用する。同様に、外層のコンポーネントステントBにr方向の力が作用する場合は、コンポーネントステントBよりも外側に配置されているコンポーネントステントAの支柱によって、コンポーネントステントBの支柱が、コンポーネントステントAの支柱から離れることを防ぐように作用する。 In this state, in the coaxial multilayer stent of the present invention, when a radial (r direction) force is applied to the inner component stent A, the component stent A is supported by the struts of the component stent B arranged on the outer side. Acts to prevent it from leaving the strut of the component stent B. Similarly, when a force in the r direction acts on the component stent B of the outer layer, the strut of the component stent A is separated from the strut of the component stent A by the strut of the component stent A arranged outside the component stent B. Acts to prevent separation.
 特許文献11の同軸ステントにおいては、互いのコンポーネントステントの支柱は、接合されているが半径方向に交差はしていない。したがって、半径方向の力が接合部の接合力を上回るとき、接合が解消されてしまう。すなわちこのとき、支柱は交差していないので、外側のコンポーネントステントの支柱が離れようとするのを防ぐことができない。 In the coaxial stent of Patent Document 11, the struts of the component stents of each other are joined but do not intersect in the radial direction. Therefore, when the radial force exceeds the bonding force of the bonding portion, bonding is canceled. That is, at this time, since the struts do not cross each other, the struts of the outer component stent cannot be prevented from being separated.
 これに対して、本発明における同軸複層ステントは、病変部への運搬時に、ステントの長軸方向や円周方向や半径方向に力が発生しても、上記したように、接合したコンポーネントステントが分離することは無い。しかも、このような2つの支柱の交差によると強固な連結を、すでに組み立ての項で詳細に説明したように、2つのコンポーネントステントを長軸方向から挿入し、交差するという単純な操作で実現している。また、製造者は,この単純な操作を、顕微鏡の支援なしに手動で容易に行うことができる。 On the other hand, the coaxial multi-layer stent according to the present invention is bonded to the component stent as described above even if a force is generated in the major axis direction, the circumferential direction, or the radial direction of the stent at the time of transportation to the lesioned part. Will not separate. Moreover, as described above in detail in the assembly section, a strong connection can be achieved by simply inserting the two component stents from the longitudinal direction and intersecting them, as described above in detail in the assembly section. ing. Also, the manufacturer can easily perform this simple operation manually without the assistance of a microscope.
 さらに特筆すべきは、このような単純化された組み立て手順は、手術室の中でも実現可能であり、単純化された組み立て手順のため、医師自身が、特別な訓練を受けなくても実現できることである。このように、医師は、手術室内において、患者の病状に適した(複数の)コンポーネントステントを随時選択し、それを短時間にかつ簡便性持って組み立てることができるという大きな利点を有することはいくら強調してもしすぎることはない。 It is also worth noting that such a simplified assembly procedure is feasible in the operating room, and because of the simplified assembly procedure, the physician himself can do so without special training. is there. In this way, the doctor has the great advantage of being able to select the component stent (s) suitable for the patient's medical condition at any time and to assemble it in a short time and with ease. There is nothing too much to emphasize.
(さらなる有利な効果、単層ステントとの比較)
 本発明の同軸複層ステントにはさらに従来の単一層ステントにはない利点を有する。図29に示すように、本発明におけるそれぞれのコンポーネントステントA、Bの網目は大きい。したがって本質的に、図2に示したような側枝の治療に利用できることが理解される。
(More advantageous effects, compared with single-layer stent)
The coaxial multilayer stent of the present invention has further advantages over conventional single layer stents. As shown in FIG. 29, the meshes of the component stents A and B in the present invention are large. Thus, it is essentially understood that it can be used to treat side branches as shown in FIG.
 すなわち、これらのコンポーネントステントA、Bを組合せる際に、2つのコンポーネントステントの網目の位置を、円周方向にスライドさせて接合することができる。図30(i)に示したように、組立後の複合ステントの網目は小さい。これは血管を均一に拡張できることを意味している。また、図30(ii)に示したように、2つのコンポーネントステントの中央部分は、互いに独立して変形できる。したがって側枝の血流を確保するために,組み合わされた複層ステントの側壁に大きな穴を開けることが出来る。 That is, when combining these component stents A and B, the positions of the meshes of the two component stents can be slid in the circumferential direction and joined. As shown in FIG. 30 (i), the mesh of the composite stent after assembly is small. This means that blood vessels can be expanded uniformly. In addition, as shown in FIG. 30 (ii), the central portions of the two component stents can be deformed independently of each other. Therefore, large holes can be drilled in the side walls of the combined multilayer stent to ensure side branch blood flow.
 これに対して、従来の単一層ステントでは、分岐部分の治療には網目の大きなオープンセル構造の(単一層)ステントを用いるのが普通であったが、オープンセル構造の(単一層)ステントは網目が大きく、血管を均一に拡張することは得意ではないという弱点を有していた。しかしながら、本発明の複合ステントでは、網目の大きさはクローズドセル構造と同様の網目の大きさであり、上記したように、図30(ii)に示すように、複合ステントの側壁に大きな穴を開けることが出来る。 In contrast, in conventional single-layer stents, it was common to use open-cell (single-layer) stents with a large mesh for the treatment of bifurcations. It has a weak point that it has a large mesh and is not good at expanding blood vessels uniformly. However, in the composite stent of the present invention, the mesh size is the same as that of the closed cell structure, and as described above, as shown in FIG. 30 (ii), a large hole is formed in the side wall of the composite stent. I can open it.
 さらにまた、フィメイル・コネクターとメイル・コネクターの間では、長軸方向および円周方向のどちらでも任意の位置での側壁に穴を開けることが出来る。したがって本発明の同軸複層ステントにおいては、病変部への留置位置を精密にコントロールしなくても側枝の治療が可能である。このように、特許文献3や特許文献4のように、留置位置を調べるためのデバイスは必要ないという利点を有する。 Furthermore, between the female connector and the male connector, it is possible to make a hole in the side wall at any position in both the long axis direction and the circumferential direction. Therefore, in the coaxial multilayer stent of the present invention, the side branch can be treated without precisely controlling the indwelling position in the lesion. Thus, there is an advantage that a device for examining the indwelling position is not required as in Patent Document 3 and Patent Document 4.
 このような利点は、単層ステントはもちろん、既に開示・提案されている多層構造のステントにはないことに注意しなければならない。この理由は、従来の複層ステントは、本質的に、各層の支柱は、交差しているのではなく、支柱同士の大部分が重なっており、かつ重なっている支柱同士がすべて接合されているためである。 It should be noted that such advantages do not exist in the multilayered stents already disclosed and proposed, as well as single-layered stents. The reason for this is that in the conventional multi-layered stent, the struts of each layer are not essentially intersecting, but most of the struts overlap each other, and all the overlapping struts are joined together. Because.
 これに対して、本発明の同軸複層ステントは、従来の複層ステントと同じく、支柱同士の大部分が重なっているが、その重なっている支柱同士の接合は行われない点が異なる。または各層の支柱が交差している場合も、その交差部分での接合は行われない。すでに組み立ての項において述べたように、ステント端部の特定の部位の、特定の支柱だけが接合されていることに特徴を有する。 In contrast, the coaxial multi-layer stent of the present invention differs from the conventional multi-layer stent in that most of the struts overlap each other, but the overlapping struts are not joined. Alternatively, even when the struts of each layer intersect, bonding at the intersecting portion is not performed. As already mentioned in the assembly section, it is characterized in that only specific struts of specific parts of the stent end are joined.
 かかる構成をとることにより、治療に使われるステントの(長軸方向における)中央部分における各層の支柱は、他の層の支柱に干渉されることなく変形が可能になるという大きな利点を有する。このような変形が可能であるため、通常のステントでは不可能な治療効果を発揮することができる。たとえば、上述のような分岐部での側枝治療において、通常のステントに比較して、ステント側壁での大きな穴を開けることを可能にする。
言い換えれば、本発明の同軸複層ステントは、重なっている部分に対して各層の支柱の自由度がきわめた高いので、単一層からなるステントや、従来の他の複層ステントでは実現できない治療機能を発現することができるのである。
This configuration has the great advantage that the struts of each layer in the central part (in the longitudinal direction) of the stent used for treatment can be deformed without being interfered with the struts of the other layers. Since such deformation is possible, a therapeutic effect that is impossible with a normal stent can be exhibited. For example, in the side branch treatment at the bifurcation as described above, it is possible to make a large hole on the side wall of the stent as compared with a normal stent.
In other words, the coaxial multi-layer stent of the present invention has a high degree of freedom in the struts of each layer with respect to the overlapping portion, so that a treatment function that cannot be realized by a single-layer stent or other conventional multi-layer stents Can be expressed.
 従来の複層ステントでは、特許文献11等に記載のごとく、支柱を溶接などで固着してそれぞれの層のコンポーネントステントを接合(溶接接合)している。これに対して、本発明の同軸複層ステントにおいては、係合によってそれぞれの層のコンポーネントステントを接合(係合接合)している。すでに説明したように、係合による接合では、支柱は連結された状態なので、溶接等により固着接合した複合ステントと比較すると、各層の支柱における変形の自由度はずっと大きい。より具体的に説明すると、固着した支柱においては、相対位置だけでなく、相対角度も拘束されるのに対して、本発明における連結した支柱においては、相対角度は拘束されないという大きな差異がある。したがって、本発明の同軸複層ステントの方が、支柱の変形自由度が大きいため、具体的には分岐部の治療において、必要に応じ、より大きな穴を側壁に空けることが可能になる。これは,治療の結果としておこる分岐血管の血流の阻害の影響を、さらに低減することに大きく貢献する。 In conventional multilayer stents, as described in Patent Document 11 and the like, struts are fixed by welding or the like, and component stents of respective layers are joined (welded). On the other hand, in the coaxial multilayer stent of the present invention, the component stents of the respective layers are joined (engagement joined) by engagement. As already described, since the struts are connected in joining by engagement, the degree of freedom of deformation in the struts of each layer is much greater than that of a composite stent that is firmly joined by welding or the like. More specifically, there is a great difference that the fixed struts are not only restricted in relative position but also the relative angle, whereas the connected struts in the present invention are not restricted in relative angle. Therefore, since the coaxial multilayer stent of the present invention has a greater degree of freedom of deformation of the struts, specifically, in the treatment of the bifurcation, a larger hole can be formed in the side wall as needed. This greatly contributes to further reducing the influence of the inhibition of the blood flow of the branched blood vessels as a result of the treatment.
(機械的特性及び特徴)
 図3は本発明の同軸複層ステントの一例を立体的な図として示すものであって、図3(i)は、外層を構成するコンポーネントステントBに、内層を構成するステントAを挿入して、積層ステントを構成する組み立て過程を示す説明図であり、図3(ii)は、構成した多層ステントの一部の拡大図である。
 このステントの場合、各コンポーネントステントは、一般のステント(単層ステント)に比較して、円周方向のリンク数は半分で、かつ、その支柱厚さは半分であるようなコンポーネントステントからなる。以下、このようなコンポーネントステントからなる同軸複層ステントの機械的特性について考察を行う。
(Mechanical properties and characteristics)
FIG. 3 shows an example of a coaxial multilayer stent of the present invention as a three-dimensional view. FIG. 3 (i) shows a case where the stent A constituting the inner layer is inserted into the component stent B constituting the outer layer. FIG. 3 is an explanatory view showing an assembling process constituting a laminated stent, and FIG. 3 (ii) is an enlarged view of a part of the constructed multilayer stent.
In the case of this stent, each component stent is composed of component stents having half the number of links in the circumferential direction and half the strut thickness as compared with a general stent (single-layer stent). In the following, the mechanical properties of the coaxial multilayer stent composed of such component stents will be considered.
 まず、ステントに必要な機械的特性のひとつは、柔軟性である。
ステントの柔軟性は、曲げ剛性によって評価できる。小さい曲げ剛性は、柔軟性が高いことを意味する。このような曲げ剛性は曲げ試験によって測定できる。
 本発明者らは、図26に示すような2つの同じステント形状で厚さtが異なるステントの曲げ剛性を測定した。すなわち、厚さが0.100mmのステント(図26(i))と厚さtが0.080mmのステント(図26(ii))の曲げ剛性を測定した。この結果、厚さt=0.100mmのステントでは、曲げ剛性が67.0 Nmm2であり、厚さt=2,0.08mmのステントでは、曲げ剛性は21.6Nmm2であった。この結果は、ステントの厚さが薄いほど、ステントの曲げ剛性を低減させることができ、柔軟性を向上させることを示している。
First, one of the mechanical properties required for a stent is flexibility.
Stent flexibility can be evaluated by bending stiffness. Small bending stiffness means high flexibility. Such bending stiffness can be measured by a bending test.
The present inventors measured the bending rigidity of stents having two same stent shapes and different thicknesses t as shown in FIG. That is, the bending stiffness of a stent having a thickness of 0.100 mm (FIG. 26 (i)) and a stent having a thickness t of 0.080 mm (FIG. 26 (ii)) was measured. As a result, the bending rigidity of the stent having a thickness t = 0.100 mm was 67.0 Nmm2, and the bending rigidity of the stent having a thickness t = 2,0.08 mm was 21.6 Nmm2. This result shows that the thinner the stent is, the more the bending rigidity of the stent can be reduced and the flexibility is improved.
 また、円周方向のリンクの数nもステントの柔軟性に影響を及ぼす。図27に示すような2つのステントの曲げ剛性を測定した.リンク数nが8個のステント(図27(ii))は曲げ剛性が80.9Nmm2、リンク数nが6個のステント(図27(i))は43.6Nmm2であった。この結果は、リンク数nが少ないステントほど、柔軟性が高いことを示している。ここで、リンク数が少ないステントとは、網目が大きいステントであることを意味する。
以上の結果から、厚さが薄く、円周方向のリンク数が少ないステントは、優れた柔軟性をもつことが示された。
Also, the number n of links in the circumferential direction affects the flexibility of the stent. The bending stiffness of two stents as shown in FIG. 27 was measured. The stent with 8 links n (FIG. 27 (ii)) had a flexural rigidity of 80.9 Nmm2, and the stent with 6 links n (FIG. 27 (i)) had 43.6 Nmm2. This result shows that a stent having a smaller number of links n has higher flexibility. Here, a stent having a small number of links means a stent having a large mesh.
From the above results, it was shown that a stent having a small thickness and a small number of links in the circumferential direction has excellent flexibility.
 本発明の同軸複層ステントは、かかる厚みtとリンク数nの結果をふまえて、薄い支柱をもつ2つのコンポーネントステントA、Bをベースとし、そのメイル・コネクターとフィメイル・コネクターを連結して作製する。組み立て方はすでに詳細に述べたとおりである。 Based on the results of the thickness t and the number of links n, the coaxial multi-layered stent of the present invention is made by connecting two male and female stents A and B having thin struts and connecting the male connector and the female connector. To do. The assembly method has already been described in detail.
 それぞれのコンポーネントステントは網目が大きい、すなわち、リンク数が少ないコンポーネントステントである。したがって組み立てられた本発明の同軸複層ステントにおいて、そのリンク数(内層と外層のリンク数の合計)は、従来の単一層ステントのそれと同等であるが、そのリンク支柱の厚さtは薄い。したがって柔軟性は、単一層ステントのそれより優れていることは明らかである。 Each component stent has a large mesh, that is, a component stent with a small number of links. Therefore, in the assembled coaxial multilayer stent of the present invention, the number of links (the total number of links of the inner layer and the outer layer) is equal to that of the conventional single layer stent, but the thickness t of the link strut is thin. Thus, it is clear that the flexibility is superior to that of single layer stents.
(半径方向剛性の数値解析)
 本発明の同軸複層ステントの半径方向剛性を数値解析によって調べた。セルの形状が同一である単一層ステント(支柱厚さ:0.070mm)と、同軸複層ステント(支柱厚さ:0.035mmのコンポーネントステントを2つ組合せたもの)に、血管壁を模擬した弾性チューブを介して0.5atmの圧力pを加えた。それぞれのステントは、半径約1.5mmに拡張した後で圧力を加えた。圧力を加えた後の半径は、単一層ステントにおいては、1.50mm(加圧前p0では1.56mm)であり、同軸複層ステントは1.47mm(加圧前p0では1.59mm)であった。
(Numerical analysis of radial stiffness)
The radial stiffness of the coaxial multilayer stent of the present invention was examined by numerical analysis. An elastic tube simulating a vascular wall with a single-layer stent (strut thickness: 0.070 mm) and a coaxial multi-layer stent (combination of two component stents with strut thickness: 0.035 mm) with the same cell shape A pressure p of 0.5 atm was applied via Each stent was pressurized after expanding to a radius of about 1.5 mm. Radius after the addition of pressure, in a single layer stent, a 1.50 mm (in pre-compression p 0 1.56 mm), a coaxial multilayer stent was 1.47 mm (the pre-compression p 0 1.59 mm) .
 この結果を図28に示す。(図において縦軸は、加圧前後の半径を示す。)加圧された後の半径の差異は2%であった。このことは、本発明の同軸複層ステントによって拡張された血管の半径は、単一層ステントによって拡張された血管の半径とほぼ同じ半径であることを示している。 The results are shown in FIG. (In the figure, the vertical axis indicates the radius before and after pressurization.) The difference in radius after pressurization was 2%. This indicates that the radius of the blood vessel expanded by the coaxial multilayer stent of the present invention is approximately the same radius as that of the blood vessel expanded by the single layer stent.
 本発明において、ステントを構成する材質は、それ自身公知のものでよく、特に限定するものではないが、基本的に塑性変形可能な金属材料であり、好ましくはSUS316L等のステンレス鋼であるが、その他、すでに述べたNi-Ti合金やCu-Al-Mn合金等の形状記憶合金、Cu-Zn合金、Ni-Al合金、チタン、チタン合金、タンタル、タンタル合金、プラチナ、プラチナ合金、タングステン、タングステン合金が目的に応じて適宜採用できる。 In the present invention, the material constituting the stent may be known per se and is not particularly limited, but is basically a metal material that can be plastically deformed, preferably stainless steel such as SUS316L, In addition, shape memory alloys such as Ni-Ti alloys and Cu-Al-Mn alloys already described, Cu-Zn alloys, Ni-Al alloys, titanium, titanium alloys, tantalum, tantalum alloys, platinum, platinum alloys, tungsten, tungsten Alloys can be appropriately employed depending on the purpose.
 これら金属基材からのステントへの加工は、一般的に公知の手段が採用され、当該金属基材のチューブやパイプ(略管状体)等からステントの拡張前の網目模様のパターンをレーザー等により切り抜いて作られる。また、当該金属材料の平板をレーザー加工して網目模様を形成し、引き続いて、これを丸めて管状にしてもよい。 For processing from these metal bases to stents, generally known means are employed, and a mesh pattern before the stent is expanded from a tube or pipe (substantially tubular body) of the metal base by a laser or the like. Cut out and made. Further, the flat plate of the metal material may be laser-processed to form a mesh pattern, which is subsequently rounded into a tubular shape.
 なお、本発明のステントのディメンションについて一言すれば、本発明のステントは非常に微細かつ複雑な構造物であって、ステントを構成する支柱は一般的には、支柱幅0.050mm-0.300mm、支柱厚さは0.050mm-0.300mm程度であり、直径は冠動脈用の場合、個人差もあるが1.0mm-1.5mm程度(拡張前)で長さは10.0mm-30.0mm程度である。一般的には上記したように、金属チューブ等からステントの拡張前の網目模様をレーザー等により切り抜いて作られる。 In addition, in terms of the dimensions of the stent of the present invention, the stent of the present invention is a very fine and complicated structure, and the struts constituting the stent are generally strut widths of 0.050 mm-0.300 mm, The strut thickness is about 0.050 mm-0.300 mm, and the diameter is about 1.0 mm-1.5 mm (before expansion) and the length is about 10.0 mm-30.0 mm for coronary arteries, although there are individual differences. Generally, as described above, a mesh pattern before expansion of a stent is cut out from a metal tube or the like with a laser or the like.
(薬剤溶出ステントとしての使用)
 上記詳細に説明した本発明の同軸複層ステントは、薬剤溶出型同軸複層ステントとして好適に使用することができる。この点については、すでに簡単に述べたが、ここでさらに詳細に説明する、
 すなわち、本発明の記載の同軸複層ステントにおいて、二つのコンポーネントステントAとBの層間の、本体部における空隙部Vab(図21-22参照。)は、血栓溶解剤等の薬剤の保持リザーバ(Drug Reserver,DR)を収容(accommodate)する部位として、好ましく使用することができるものである。
(Use as a drug-eluting stent)
The coaxial multilayer stent of the present invention described in detail above can be suitably used as a drug-eluting coaxial multilayer stent. This point has already been briefly described, but will be explained in more detail here.
That is, in the coaxial multi-layer stent according to the present invention, the gap Vab (see FIGS. 21-22) in the main body between the two component stents A and B is a reservoir for storing a drug such as a thrombolytic agent (see FIG. 21-22). Drug Reserver, DR) can be preferably used as a site for accommodating.
 そしてより、具体的には、本発明の同軸複層ステントにおいて、二つのコンポーネントステントAとBの層間の、本体部における空隙部Vabに、溶出させるべき薬剤を、薬剤保持リザーバとして収容した、薬剤溶出型同軸複層ステント(DE-CMLS)を形成することができる。 More specifically, in the coaxial multi-layer stent of the present invention, a drug containing a drug to be eluted as a drug holding reservoir in the void portion Vab in the main body between the two component stents A and B. An eluting coaxial multi-layer stent (DE-CMLS) can be formed.
(従来の薬剤溶出ステントの課題)
 従来、ステント治療を高める方法として、ステントに薬剤を付加、組合せる方法が知られている。すなわち、ステントを利用して、薬剤を病変部位に運搬して、薬剤の効果でステント治療目的の効果を高めるものである。
 従来技術、例えば特許文献8においては、ステントに薬剤を塗布等により適用することにより、ステントが血管内に留置された際に、治療効果が高まることが開示されている。しかして、特許文献8においては、ステント支柱に薬剤を混合した生分解性ポリマーを塗布することにより、薬剤をステントに固定している。このようなステントは、薬剤溶出ステント(Drug-Eluting Stent: DES)と呼ばれる。薬剤溶出ステントは、薬剤を塗布しておらず、薬剤を溶出しないステント(Bare Stent)に比べると、再狭窄率が大きく低下することが非特許文献2に示されている。このようにして、薬剤溶出ステントによって治療効果を高めることができるようになったので、従来は治療が困難と考えられた血管等再狭窄や閉塞及び分岐部分の細い血管治療への応用が期待されている。
(Problems of conventional drug-eluting stents)
Conventionally, a method of adding and combining drugs to a stent is known as a method for enhancing stent treatment. That is, using a stent, the drug is delivered to the lesion site, and the effect of the stent treatment is enhanced by the effect of the drug.
In the prior art, for example, Patent Document 8, it is disclosed that a therapeutic effect is enhanced when a stent is placed in a blood vessel by applying a drug to the stent by application or the like. Therefore, in Patent Document 8, the drug is fixed to the stent by applying a biodegradable polymer mixed with the drug to the stent strut. Such a stent is called a drug-eluting stent (DES). Non-patent document 2 shows that the rate of restenosis is significantly reduced in a drug-eluting stent compared to a stent (Bare Stent) in which no drug is applied and the drug is not eluted. In this way, the therapeutic effect can be enhanced by the drug-eluting stent, so that it is expected to be applied to the treatment of restenosis of blood vessels and the like, which are conventionally considered difficult to treat, and the treatment of blood vessels with narrow occlusions and branches. ing.
(i)しかしながら、まず、薬剤溶出ステントに利用するステントは、従来の単一層ステントであるため、上述の構造学的問題が残っている。
(ii)また薬剤溶出ステントの別の問題点として、基材であるステントへの薬剤の搭載方法がある。薬剤の搭載は、ステント支柱への塗布(コーティング)によって行われるので、薬剤の搭載量は、物理的にステント支柱の表面積によって制約されてしまう。したがって、制約された搭載量で治療効果を発揮する薬剤しか使用できないか、不十分な搭載量の薬剤により、治療をおこなわざるをえず、これは治療の選択肢を狭めている。(iii)また薬剤の徐放スピードは、薬剤の拡散に依存しているために、精密にその徐放スピードをコントロールできないという問題点がある。この場合、充分な薬剤をステントにコーティングするためには、ステント支柱の厚さ(0.070mm-0.100mmが一般的である。)に比較してコーティング皮膜の厚さを無視できない厚さにする必要がある(0.005mm-0.008mm)。そのため、コーティング皮膜を厚くすると、再狭窄率が増加する可能性が生ずる。
(I) However, since the stent used for the drug-eluting stent is a conventional single-layer stent, the above structural problem remains.
(Ii) Another problem of the drug eluting stent is a method of loading the drug on the stent as the base material. Since the loading of the drug is performed by application (coating) to the stent strut, the loading amount of the drug is physically limited by the surface area of the stent strut. Therefore, only drugs that exhibit a therapeutic effect with a limited loading amount can be used, or treatment must be performed with an insufficient amount of loading agent, which narrows treatment options. (Iii) Further, since the sustained release speed of the drug depends on the diffusion of the drug, there is a problem that the sustained release speed cannot be precisely controlled. In this case, in order to coat a sufficient amount of drug on the stent, it is necessary to make the thickness of the coating film not negligible compared to the thickness of the stent strut (0.070 mm-0.100 mm is common). There is (0.005mm-0.008mm). Therefore, when the coating film is thickened, the restenosis rate may increase.
(iv)さらにまた、薬剤のコーティング被膜を無理に厚く形成すると、薬剤溶出ステントの運搬途中に、血管壁との接触によって当該コーティング皮膜の一部が脱落する可能性がある。ステントの拡張時に、支柱の一部が大きく変形すると、当該変形に、厚く形成したコーティング皮膜が追従できずにステントから剥離する可能性もある。また、コーティング皮膜とステントとの結合力が不適切な場合、血管壁に均一に薬剤を徐放出来ないという問題点もある。 (Iv) Furthermore, if the coating film of the drug is formed excessively thick, part of the coating film may fall off due to contact with the blood vessel wall during the transportation of the drug eluting stent. If a part of the strut is greatly deformed during the expansion of the stent, the coating film formed thickly may not follow the deformation and may peel from the stent. In addition, when the bonding force between the coating film and the stent is inappropriate, there is also a problem that the drug cannot be gradually released to the blood vessel wall uniformly.
 特許文献9においては、ステント支柱に薬剤を蓄える穴を多数空けてそこに薬剤を蓄える方法が開示されている。これは、薬剤の徐放スピードをコントロールすることによって治療効果を高めることを意図した技術である。また、この方法だと、コーティングと異なり薬剤が運搬途中で脱落する可能性はない、という利点がある。しかしながら、この方法においても、その搭載量は、ステント支柱の表面積によって制約されているという問題点は残っている。 Patent Document 9 discloses a method in which a number of holes for storing a drug are formed in a stent column and the drug is stored there. This is a technique intended to enhance the therapeutic effect by controlling the sustained release speed of the drug. In addition, this method has an advantage that, unlike the coating, there is no possibility of the drug falling off during transportation. However, this method still has the problem that the loading amount is limited by the surface area of the stent strut.
 特許文献10においては、生分解性ポリマーでステント自体を形成し、当該ポリマーに薬剤を予め混合しておくことにより、治療効果を高める方法が開示されている。この方法は特許文献8や特許文献9に比べれば、ステントの表面積ではなく、ステントの体積により薬剤の搭載量(当該ステントの体積中の含有量)が決定されるため、はるかに多くの薬剤を搭載できる。
しかしながら、生分解性ポリマーは、金属に比較すると、ヤング率などの材料物性が著しく劣り、当該ステントは、半径方向剛性が低下するという機械的な問題を伴う。非特許文献4においては、薬剤を予め混合した生分解性ポリマーによる、ステントの治療結果を開示している。この場合のも再狭窄率は、特許文献8のような方法で作られたステントに比べると劣る。
Patent Document 10 discloses a method for enhancing a therapeutic effect by forming a stent itself with a biodegradable polymer and mixing a drug with the polymer in advance. Compared with Patent Document 8 and Patent Document 9, this method determines the loading amount of drug (content in the volume of the stent) not by the surface area of the stent but by the volume of the stent. Can be installed.
However, biodegradable polymers are significantly inferior in material properties such as Young's modulus compared to metals, and the stent has a mechanical problem in that the radial rigidity is reduced. Non-Patent Document 4 discloses a treatment result of a stent using a biodegradable polymer in which a drug is premixed. Even in this case, the restenosis rate is inferior to that of a stent made by the method as described in Patent Document 8.
(薬剤リザーバ)
 本発明の同軸複層ステントにおいては、二つのコンポーネントステントAとBの層間の、本体部における空隙部Vabに、より具体的には、その支柱が交差する端部でなく、その中央の大部分を占める当該本体部においては、2つのステントの支柱は、分離した状態で配設されており、この部位が、空隙部Vabを形成しているので、当該空隙部Vabを利用して、これに溶出させるべき薬剤を、好ましくは薬剤リザーバ(Drug Rseaver,DR)として収容(accommodate)した、薬剤溶出型同軸複層ステント(DE-CMLS)を形成することができる。
(Drug reservoir)
In the coaxial multi-layer stent of the present invention, the gap Vab in the main body between the two component stents A and B, more specifically, most of the center, not the end where the struts intersect. In the main body portion that occupies, the struts of the two stents are arranged in a separated state, and this portion forms a void portion Vab. A drug-eluting coaxial multi-layer stent (DE-CMLS) can be formed in which the drug to be eluted is preferably accommodated as a drug reservoir (Drug Rseaver, DR).
 薬剤リザーバDRとは、溶出させるべき薬剤とポリマー(好ましくは、生体適合性を有するものが望ましい。)とを混合しこれを同軸複層ステントの空隙部の形態に適合するような形態にあらかじめ形成・加工したものである。たとえば、好ましくは、図31に示されているような、螺旋形状に加工したものである。 The drug reservoir DR is formed in advance so as to mix the drug to be eluted and the polymer (preferably, those having biocompatibility) and to match the shape of the cavity of the coaxial multilayer stent.・ Processed. For example, it is preferably processed into a spiral shape as shown in FIG.
 薬剤リザーバの製法としては、種々の方法がありうるが、一つは、薄膜をベースとする方法がある。これはまず、高温化し低粘度になった母材(ポリ乳酸などの生分解性材料で薬剤が含有されているポリマー組成物)を平板の上に乗せ(平板上の母材は粘度が低いために流れ出る)温度が高いときに平板を高速回転させ、母材温度が低下すると薄く均一な膜を形成できる。これはスピンコート(又はダブルスピンコート)と呼ぶ方法で半導体分野では一般的に用いられている製法の一つである。 There are various methods for producing the drug reservoir, and one method is based on a thin film. This is because a base material (polymer composition containing a biodegradable material such as polylactic acid and containing a drug) placed on a flat plate (because the base material on the flat plate has low viscosity) When the temperature is high), the flat plate is rotated at a high speed, and when the base material temperature decreases, a thin and uniform film can be formed. This is a method called spin coating (or double spin coating) and is one of the manufacturing methods generally used in the semiconductor field.
 更に薬剤を含有した薄膜の生成では薄膜全体に薬剤が均等に分布されるように別の方法として平板を上から別の平板でおさえることにより間に挟まれた母材が薄く広がるのでこの方法を用いた薄膜を形成しても良い。 Furthermore, in the production of a thin film containing a drug, another method is used so that the drug is evenly distributed throughout the thin film. The used thin film may be formed.
 以上の方法により形成された薄膜を、一定の幅(0.05~1.0mm程度)で切り出す。なおその長さは、キャリアーとして使うステントの長さによって適宜決める。かくして幅と長さが決められた長方形状の薄膜を、同軸複層ステントのうち(中央部が)内側になるコンポーネントステントに対して、長軸方向に螺旋状になるように巻きつける。この場合、直接、コンポーネントステントに巻きつけても良いし、別途、コンポーネントステントと同じ程度の円形断面を有する棒に螺旋状に巻きつけて、螺旋形状にした後に、コンポーネントステントと組み合わせても良い. The thin film formed by the above method is cut out with a certain width (about 0.05 to 1.0 mm). The length is appropriately determined depending on the length of the stent used as the carrier. Thus, a rectangular thin film having a determined width and length is wound around the component stent (in the middle) of the coaxial multilayer stent so as to be spiral in the long axis direction. In this case, it may be directly wound around the component stent, or separately wound around a rod having the same circular cross section as that of the component stent, spirally formed, and then combined with the component stent.
 この他の方法としては、人の生体内産生物質(ヒアルロン酸、コラーゲン等の物質)自体、又は粘調度を高くするために増粘剤等を添加した高分子物質(好ましくは、生体適合性を有するものが望ましい。)を薄いシート状に加工したものに薬剤等を含有させ同軸複層ステント間に挟み込む手法によってもよい。
 さらには、ポリマー等(好ましくは、生体適合性を有するものが望ましい。)に薬剤等を含有させてシート状に加工するが、当該シートの一面にはマイクロ針を形成させこれが血管内壁に直接挿入し、シート本体に含有されている薬剤等が、ちょうど注射器の機能と同様にマイクロ針から血管壁内へ注入される形状を作成するようにすることもできる。
Other methods include substances produced in human bodies (substances such as hyaluronic acid and collagen) themselves, or polymeric substances to which a thickener is added to increase the viscosity (preferably biocompatible). It is also possible to use a technique in which a drug or the like is contained in a thin sheet processed and sandwiched between coaxial multilayer stents.
Furthermore, a polymer or the like (preferably biocompatible material is desirable) is processed into a sheet shape by containing a drug or the like, but a microneedle is formed on one surface of the sheet and this is directly inserted into the inner wall of the blood vessel. However, it is also possible to create a shape in which the drug contained in the sheet main body is injected into the blood vessel wall from the micro needle just like the function of the syringe.
 薬剤リザーバとしては、一般的にステントの拡張時に変形抵抗にならないようなもので、かつ、縮経状態では半径方向に二重に重ならないような形状が好ましいのである。
 このような形状としては、基本的には円筒形状であっても、円周方向や長軸方向に複数の切り込みが入っていて、拡張時にそこから亀裂が進行することにより、拡張時の変形抵抗を下げることのできる形状が好ましい。すなわち、拡張時には、当該薬剤リザーバには複数の穴や切れ目が開口している状態となる。したがって、上記した螺旋形状も好ましい形状の一つであるといえる。
As the drug reservoir, it is generally preferable that the drug reservoir does not become a deformation resistance when the stent is expanded, and does not overlap in the radial direction in the contracted state.
As such a shape, even if it is basically a cylindrical shape, a plurality of incisions are made in the circumferential direction and the long axis direction, and cracks progress from there in the expansion direction. A shape that can lower the thickness is preferable. That is, at the time of expansion, a plurality of holes and cuts are opened in the drug reservoir. Therefore, it can be said that the above-described spiral shape is one of preferable shapes.
 なお、注意的にいえば、この薬剤リザーバは、(ステント中を流れる血液について)当該ステントの側壁から十分な血液を、積極的にリークさせるための構造であり、その作用から従来から公知のステントグラフトとは根本的に異なることである。ステントグラフトは、一種の人工血管であり、ステントの側壁を通して血液を外にリークさせてはならないものであるからである。 Note that this drug reservoir is a structure for actively leaking sufficient blood from the side wall of the stent (for blood flowing in the stent). Is fundamentally different. This is because the stent graft is a kind of artificial blood vessel and blood should not leak through the side wall of the stent.
 本発明の薬剤リザーバにおける薬剤を例示すれば、例えば、抗凝血剤、抗血栓剤、抗血小板剤、サイトカイン類、ステロイドおよび非ステロイド類、抗生物質,、抗がん剤、抗コレステロール剤、抗免疫剤、抗アレルギー剤、再生医療分野における再生促進又は抑制因子物質、細胞内物質、細胞外マトリックス、遺伝子治療分野における細胞増殖又は抑制因子あるいは遺伝子等の薬剤、遺伝因子または遺伝子、インヒビター又は以上の薬剤等の誘導体、類似体、代謝産物、副産物等、あるいは以上の薬剤等の配合物、更に動物モデルにおける脈管内膜の過形成の程度を効果的に減少することを示す物質であるヘパリンおよびヘパリン・フラグメント、コルヒチンタクソール、アンギオテンシン変換酵素(ACE)阻害薬、アンギオペプチン、シクロスポリンA、ヤギ-抗ラビットPDGF抗体、テルビナフィン、トラピジル、トラニラスト、インターフェロン- ガンマ、ラパマイシン、ステロイド、電離放射線、融合毒素、アンチセンス・オリゴヌクレオチドおよび遺伝子ベクターを含む。また生体外での平滑筋細胞における抗増殖性作用を有する物質であるヘパリンおよびヘパリン接合体、タクソール、トラニラスト(tranilast)、コルヒチン、ACE阻害薬、融合毒素(fusiontoxins)、アンチセンス・オリゴヌクレオチド、ラパマイシンおよび電離放射線を含む物質から選択される。 Examples of drugs in the drug reservoir of the present invention include, for example, anticoagulants, antithrombotic agents, antiplatelet agents, cytokines, steroids and nonsteroids, antibiotics, anticancer agents, anticholesterol agents, anticholesterol agents, Immunity agent, antiallergic agent, regeneration promoting or inhibiting factor substance in the field of regenerative medicine, intracellular substance, extracellular matrix, drug such as cell growth or inhibiting factor or gene in the field of gene therapy, genetic factor or gene, inhibitor or more Derivatives such as drugs, analogs, metabolites, by-products, etc., or combinations of these drugs and the like, heparin which is a substance that effectively reduces the degree of intimal hyperplasia in animal models and Heparin fragment, colchicine taxol, angiotensin converting enzyme (ACE) inhibitor, angiopeptin, chic Includes rosporin A, goat-anti-rabbit PDGF antibody, terbinafine, trapidil, tranilast, interferon- gamma, rapamycin, steroids, ionizing radiation, fusion toxins, antisense oligonucleotides and gene vectors. Heparin and heparin conjugates that have antiproliferative effects on smooth muscle cells in vitro, taxol, tranilast, colchicine, ACE inhibitors, fusiontoxins, antisense oligonucleotides, rapamycin And a substance containing ionizing radiation.
 これらの薬剤は、DRとして上記のような形態に成形されたポリマー中に分散されて保持され、生体内でその外表面が血流に接触することにより、拡散、溶解その他の物質移動機構により、当該リザーバ表面から徐々に放出(リリース)され、当該ステント近傍の血栓等の生成を抑制したりその他の所望の作用効果を奏するように働くものである。 These drugs are dispersed and held in the polymer molded in the above-mentioned form as DR, and when the outer surface comes into contact with the bloodstream in the living body, diffusion, dissolution, and other mass transfer mechanisms, It is gradually released (released) from the surface of the reservoir, and functions to suppress the formation of thrombus and the like in the vicinity of the stent and to exert other desired effects.
 薬剤と混合しリザーバを形成するポリマー(好ましくは、生体適合性を有するものが望ましい。)としては、同軸複層ステント内に収容された状態で、当該ステントが圧縮、拡張、または曲げ等の変形を受けたとき、当該変形に追従できる高分子材料(好ましくは、生体適合性を有するもの。)が好ましい。また、血液や生理食塩水に溶解しないポリマー(好ましくは、生体適合性を有するものが望ましい。)であり、かつ、血液の凝固を抑制し得る有効量の抗凝血薬剤等を、生体内において当該被覆層表面より徐々に溶出(徐放)することが可能なものであれば、特に限定されるものではない。 
 このようなポリマーとしては、例えば、ポリ酢酸ビニル、(メタ)アクリル酸エステル系重合体、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリ(エチレン-ビニルアルコール)共重合体、2-メタクリロイルオキシエチルホスホリルコリン(MPC)、(2-ヒドロキシエチル-メタクリレート)-スチレンブロック共重合体が好ましいものとして例示される。
As a polymer mixed with a drug to form a reservoir (preferably, a biocompatible polymer is desirable), the stent is compressed, expanded, bent or deformed while being accommodated in a coaxial multilayer stent. The polymer material (preferably having biocompatibility) that can follow the deformation when subjected to is preferable. In addition, an effective amount of an anticoagulant or the like that is a polymer that is not soluble in blood or physiological saline (preferably having biocompatibility is desirable) and that can inhibit blood coagulation is obtained in vivo. There is no particular limitation as long as it can be gradually eluted (slow release) from the surface of the coating layer.
Examples of such polymers include polyvinyl acetate, (meth) acrylic ester polymers, polyester elastomers, polyamide elastomers, polyurethane elastomers, poly (ethylene-vinyl alcohol) copolymers, and 2-methacryloyloxy. Ethyl phosphorylcholine (MPC), (2-hydroxyethyl-methacrylate) -styrene block copolymer is exemplified as a preferable one.
 また、ポリマーとしては、生分解性ポリマーがより好ましい。かかるポリマーとしては、通常DDSに使用される、PLA(ポリ乳酸)、PLGA(乳酸/グリコール酸共重合体)、PLGAC(乳酸/グリコール酸/ε-カプロラクトン共重合体)、また生体内産生物類のヒアルロン酸、コラーゲン、細胞外マトリックス等や無機物質(たとえば、マグネシウム、カルシウム等)が望ましいものとして挙げられる。 Further, as the polymer, a biodegradable polymer is more preferable. Such polymers include PLA (polylactic acid), PLGA (lactic acid / glycolic acid copolymer), PLGAC (lactic acid / glycolic acid / ε-caprolactone copolymer), and in-vivo products, which are usually used for DDS. Hyaluronic acid, collagen, extracellular matrix, etc. and inorganic substances (for example, magnesium, calcium, etc.) are desirable.
 本発明においては、二つのコンポーネントステントを組合せるときに、このあらかじめ形成した薬剤リザーバを、内側のコンポーネントステントAと外側のコンポーネントステントBで形成される空隙部Vab内に挟み込み、両コンポーネントステントで狭持する(図21-22を参照。)。薬剤リザーバDRは、例えば図31に示したように螺旋形状に形成されており、また、ステントの変形に追従できるポリマーで形成されているので、同軸複層ステントが拡張等するときには、容易にその変形(拡張)に追従できる。 In the present invention, when two component stents are combined, this pre-formed drug reservoir is sandwiched in a void Vab formed by the inner component stent A and the outer component stent B, and is narrowed by both component stents. (See Figures 21-22). For example, as shown in FIG. 31, the drug reservoir DR is formed in a spiral shape, and is formed of a polymer that can follow the deformation of the stent. Can follow deformation (expansion).
 本発明においては、同軸複層ステントの形状・構造と、薬剤リザーバは基本的に別のエレメントであり、互いに独立している。したがって、薬剤リザーバへの薬剤搭載量は、薬剤リザーバの形状・構造にのみ依存する。このように、薬剤リザーバの体積を大きくすれば、容易に、薬剤搭載量を増やすことが出来る。
 薬剤リザーバ中の薬剤の濃度は適宜選択することができ、例えば薬剤リザーバ中に(全質量基準)で、0.01-80質量%、好ましくは0.1-60質量%、さらに好ましくは1.0-50質量%程度である。
In the present invention, the shape and structure of the coaxial multilayer stent and the drug reservoir are basically separate elements and are independent of each other. Therefore, the amount of medicine loaded in the medicine reservoir depends only on the shape and structure of the medicine reservoir. Thus, if the volume of the medicine reservoir is increased, the amount of medicine loaded can be easily increased.
The concentration of the drug in the drug reservoir can be appropriately selected. For example, in the drug reservoir (based on the total mass), 0.01-80% by mass, preferably 0.1-60% by mass, more preferably 1. It is about 0-50% by mass.
 薬剤リザーバ(成形体)DRを形成する方法については、上記で詳述したが、これに限られるものではなく、例えば対象とするコンポーネントステントAとコンポーネントステントBで形成される空隙部Vabの形状に合わせて、金型を割型として準備し、当該割型中に、薬剤とポリマー(好ましくは、生体適合性を有するものが望ましい。)からなる樹脂組成物を、射出成形機にて溶融し、当該割型中に射出して硬化させ、または、当該組成物に少なくとも当該ポリマー(好ましくは、生体適合性を有するものが望ましい。)の溶媒を添加して、薬剤を含有する樹脂の溶液とし、これを上記割型中に流し込み、引き続き、溶媒を乾燥除去してもよい。薬剤と上記樹脂のモノマーを、重合開始剤等と共に割型に注入し、型中で重合させることもできる。 The method for forming the drug reservoir (molded body) DR has been described in detail above. However, the method is not limited to this. For example, the shape of the void Vab formed by the target component stent A and the component stent B is used. In addition, a mold is prepared as a split mold, and in the split mold, a resin composition composed of a drug and a polymer (preferably those having biocompatibility is desirable) is melted in an injection molding machine, It is injected into the mold and cured, or a solvent of at least the polymer (preferably biocompatible) is added to the composition to obtain a resin solution containing a drug, This may be poured into the split mold, and then the solvent may be removed by drying. The drug and the monomer of the resin can be injected into a split mold together with a polymerization initiator or the like, and polymerized in the mold.
 本発明の同軸複層ステントに収容される、薬剤リザーバについては、まず当該薬剤リザーバの体積が、ステントの構造的特徴に影響されない。したがって、ステントの構造とは独立して、薬剤リザーバの体積を増加させたり、減少させたりすることが可能である。例えば、オープンセル構造のコンポーネントステントを利用した同軸複層ステントに、大きな体積の薬剤リザーバを組合せることや、クローズドセル構造のコンポーネントステントからなる同軸複層ステントに、小さな体積の薬剤リザーバを組合せることも出来る。 For the drug reservoir housed in the coaxial multilayer stent of the present invention, the volume of the drug reservoir is not affected by the structural characteristics of the stent. Thus, the volume of the drug reservoir can be increased or decreased independently of the stent structure. For example, a large volume drug reservoir is combined with a coaxial multilayer stent using an open cell component stent, or a small volume drug reservoir is combined with a coaxial multilayer stent composed of a closed cell structure component stent. You can also
 本発明の薬剤リザーバは、また、2つコンポーネントステントA、Bからなる同軸複層ステントの空隙部Vabに収容、狭持状態で病変部に誘導される。したがって運搬途中で薬剤リザーバが血管壁などと接触して、その一部が脱落する可能性は低い。運搬中は、当該同軸複層ステントが狭持した薬剤リザーバを保護する。 The drug reservoir of the present invention is also housed in the void portion Vab of the coaxial multilayer stent composed of the two component stents A and B, and is guided to the lesioned portion in a sandwiched state. Therefore, it is unlikely that the drug reservoir comes into contact with the blood vessel wall or the like during transportation and a part of the drug reservoir falls off. During delivery, the coaxial multilayer stent protects the drug reservoir held by it.
 本発明は以下の産業上の利用可能性を有する。
 本発明の同軸複層ステントにおいては、これを溶接機などの専用の機械を用いることなく、そして精密な位置合わせを不要にして、当該同軸複層ステントを組み立てることが可能である。すなわち、複数の薄型ステント(コンポーネントステント)を、長軸方向に、手動で移動スライドさせるだけで係合を実現でき、本発明の同軸複層ステントを組み立てることができる。また長軸方向の、コンポーネントステントの移動量は、約1.0mm-2.5mm程度であるので、顕微鏡を用いなくても容易に組み立てが可能である。
The present invention has the following industrial applicability.
In the coaxial multilayer stent of the present invention, it is possible to assemble the coaxial multilayer stent without using a dedicated machine such as a welding machine and without requiring precise alignment. That is, engagement can be realized by simply moving and sliding a plurality of thin stents (component stents) in the long axis direction, and the coaxial multilayer stent of the present invention can be assembled. Further, since the moving amount of the component stent in the major axis direction is about 1.0 mm-2.5 mm, it can be easily assembled without using a microscope.
 ステントをバルーンにマウントして、病変部に運搬する途中で、重ね合わされた当該支柱を引き離そうとする力がしばしば作用するが、本発明の同軸複層ステントにおいては、内側のコンポーネントステントAと、外側のコンポーネントステントBのそれぞれにおいて半径方向に走行する支柱を形成し、これにより係合を行うという新規な係合メカニズムを有しているため、従来の同軸複層ステントにおける、もっとも大きな問題の一つであった運搬時の外側コンポーネントステントの脱落という問題が、本質的に解決される。 While the stent is mounted on the balloon and is transported to the lesion, a force for separating the superimposed struts often acts. In the coaxial multilayer stent of the present invention, the inner component stent A and the outer stent One of the biggest problems in the conventional coaxial multi-layer stent is that it has a new engagement mechanism that forms struts that run in the radial direction in each of the component stents B, and thereby performs engagement. The problem of falling out of the outer component stent during transportation is essentially solved.
 本発明の同軸複層ステントにおいては、重ね合わせる前のそれぞれのコンポーネントステントは、網目(セルとリンクから成る模様)が大きい。それぞれのステントは、その端部で支柱が接合されているが、それ以外の部分では互いのステント支柱の変形に影響しない。そのために、本発明の同軸複層ステントは、側面に大きな穴を開けることが可能であり、側枝を有する血管部分の治療に効果的に適用できる。 In the coaxial multilayer stent of the present invention, each component stent before overlapping has a large mesh (pattern composed of cells and links). Each stent has a strut joined at its end, but the other portions do not affect the deformation of the stent struts. Therefore, the coaxial multilayer stent of the present invention can make a large hole in the side surface and can be effectively applied to the treatment of a blood vessel portion having a side branch.
 本発明の同軸複層ステントにおいては、コンポーネントステント間に薬剤リザーバを好適に収納できる空間部を有し、薬剤溶出ステントを形成することができる。すなわち、本発明の薬剤溶出同軸複層ステントでは、薬剤は層間の空間部に収納されるので、その自由度は極めて大きく、長時間にわたる薬剤の溶出を可能にするものであり、その産業上の利用可能性は非常に大きい。 In the coaxial multilayer stent of the present invention, a drug eluting stent can be formed by having a space part that can suitably store a drug reservoir between component stents. That is, in the drug-eluting coaxial multi-layer stent of the present invention, since the drug is stored in the space between the layers, the degree of freedom is extremely large, and the drug can be eluted for a long time. The availability is very large.

Claims (13)

  1.  網目構造をなすように配置された複数の支柱(Supporting Strut Member (SSM or Just SM))からなる平面構造を円筒状に丸めて、中心に長軸を有する円筒体からなり、その円周長が縮小及び伸張が可能である二つのコンポーネントステント(A、B)(以下、CSA,CSBという場合がある。)を形成し、当該CSAを内層,CSBを外層として同軸に配設・構成した同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)であって、
     前記支柱は、その一部が屈曲部を有する複数のセルと、当該セルを長軸方向に連結する少なくとも一つのリンクより構成されるものであり、
    当該CSA,CSBは、それぞれ中央の大部分を占める本体部(Main Body Portion (MBP)と、当該本体部の両側(左右)の端部(LEP,REP)からなり、
    当該本体部の半径はそれぞれ、Ra, Rb (但し、Ra<Rb)であり、
    当該コンポーネントステント(A)(CSA)とコンポーネントステント(B)(CSB)は、当該CMLSの当該両端部のうち、少なくとも左側端部(LEP)において、当該コンポーネントステント(A)(CSA)の支柱(SSM)とコンポーネントステント(B)の支柱(CSB)の交差が行われるものであって、
    かつ、当該左端部(LEP)において、
    (i)当該コンポーネントステント(A)(CSA)の円筒体の半径(Ra,in)は本体部の半径Raと同一であり、かつ、その支柱には、他のコンポーネントステントの支柱を受け入れることができる受容部 (Accommodation Port or Portion(AP)) が形成されており、
    (ii)当該コンポーネントステント(B)(CSB)は、
    (ア)その本体部の半径(Rb)と同一の半径位置(Rb,in)に配置された支柱と、
    (イ)コンポーネントステント(A)の本体部半径(Ra)より小さな半径位置(Rb,df)に配置された支柱と、及び
    (ウ)当該二つの半径位置(Rb,in Rb,df)に配置された二つの支柱を、連結する当該円筒体の半径方向に走行または配設された支柱(Radially-running SM (RRSM),)を有し、
     当該コンポーネントステント(A)(CSA)を、当該コンポーネントステント(B)(CSB))に対して、当該コンポーネントステント(B)の前記円筒体の長軸方向に挿入し、コンポーネントステント(B)(CSB)の支柱(RRSM)を、コンポーネントステント(A)(CSA)の当該受容部(AP)に、これを半径方向に貫くように挿入して嵌め合わせて、当該二つのコンポーネントステント(A、B)を係合することを特徴とする同軸複層ステント。
    A planar structure consisting of multiple struts (Supporting Strut Members (SSM or Just SM)) arranged to form a mesh structure is rolled into a cylindrical shape, and consists of a cylindrical body with a long axis at the center. Two component stents (A, B) (hereinafter sometimes referred to as CSA and CSB) that can be reduced and expanded are formed, and the coaxial composite is constructed and configured coaxially with the CSA as the inner layer and the CSB as the outer layer. Coaxial Multi-Layered Stent (CMLS)
    The column is composed of a plurality of cells, each of which has a bent portion, and at least one link connecting the cells in the long axis direction.
    The CSA and CSB are each composed of a main body part (Main Body Portion (MBP) occupying most of the center and both side (left and right) ends (LEP, REP) of the main body part,
    The radii of the body portions are Ra and Rb (where Ra <Rb),
    The component stent (A) (CSA) and the component stent (B) (CSB) are the struts of the component stent (A) (CSA) at least at the left end (LEP) of the both ends of the CMLS. SSM) and strut (CSB) of component stent (B) are performed,
    And at the left end (LEP),
    (I) The radius (Ra, in) of the cylindrical body of the component stent (A) (CSA) is the same as the radius Ra of the main body portion, and the struts of other component stents can be received in the struts. A possible receiving part (Accommodation Port or Portion (AP)) is formed,
    (Ii) The component stent (B) (CSB) is
    (A) A support column arranged at the same radial position (Rb, in) as the radius (Rb) of the main body,
    (A) a strut disposed at a radius position (Rb, df) smaller than the main body radius (Ra) of the component stent (A); and
    (C) Two struts arranged at the two radial positions (Rb, in Rb, df), or struts (Radially-running SM (RRSM), )
    The component stent (A) (CSA) is inserted into the component stent (B) (CSB)) in the longitudinal direction of the cylindrical body of the component stent (B), and the component stent (B) (CSB) ) Of the two component stents (A, B) are inserted and fitted to the receiving part (AP) of the component stent (A) (CSA) in a radial direction. A coaxial multi-layer stent characterized by engaging.
  2.  網目構造をなすように配置された複数の支柱(Supporting Strut Member (SSM or Just SM))からなる平面構造を円筒状に丸めて、中心に長軸を有する円筒体からなり、その円周長が縮小及び伸張が可能である二つのコンポーネントステント(A、B)(以下、CSA,CSBという場合がある。)を形成し、当該CSAを内層,CSBを外層として同軸に配設・構成した同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)であって、
     前記支柱は、その一部が屈曲部を有する複数のセルと、当該セルを長軸方向に連結する少なくとも一つのリンクより構成されるものであり、
    当該CSA,CSBは、それぞれ中央の大部分を占める本体部(Main Body Portion (MBP)と、当該本体部の両側(左右)の端部(LEP,REP) からなり、
    当該本体部の半径はそれぞれ、Ra, Rb (但し、Ra<Rb)であり、
    当該コンポーネントステント(A)(CSA)とコンポーネントステント(B)(CSB)は、当該CMLSの当該右端部(REP)において、当該コンポーネントステント(A)(CSA)の支柱(SSM)とコンポーネントステント(B)の支柱(CSB)の交差が行われるものであって、
    かつ、当該右端部(REP)において、
    (i)当該コンポーネントステント(A)(CSA)は、
    (ア)その本体部の半径(Ra)と同一の半径位置(Ra,in)に配置された支柱と、
    (イ)コンポーネントステント(B)の本体部半径(Rb)より大きな半径位置(Ra,df)に配置された支柱と、及び
    (ウ)当該二つの半径位置(Ra,in Ra,df)に配置された二つの支柱を、連結する当該円筒体の半径方向に走行または配設された支柱(Radially-running SM (RRSM),)を有し、
    (ii)当該コンポーネントステント(B)(CSB)の円筒体の半径(Rb,in)は本体部の半径Rbと同一であり、かつ、その支柱には、他のコンポーネントステントの支柱を受け入れることができる受容部 (Accommodation Port or Portion(AP))が形成されており、
    当該コンポーネントステント(A)を、当該コンポーネントステント(B)(CSB)に対して、当該コンポーネントステント(B)の前記円筒体の長軸方向に挿入し、コンポーネントステント(A)(CSA)のRRSMを、コンポーネントステント(B)(CSB)の当該受容部に、これを半径方向に貫くように挿入して嵌め合わせて、当該二つのコンポーネントステント(A、B)を係合することを特徴とする同軸複層ステント。
    A planar structure consisting of multiple struts (Supporting Strut Members (SSM or Just SM)) arranged to form a mesh structure is rolled into a cylindrical shape, and consists of a cylindrical body with a long axis at the center. Two component stents (A, B) (hereinafter sometimes referred to as CSA and CSB) that can be reduced and expanded are formed, and the coaxial composite is constructed and configured coaxially with the CSA as the inner layer and the CSB as the outer layer. Coaxial Multi-Layered Stent (CMLS)
    The column is composed of a plurality of cells, each of which has a bent portion, and at least one link connecting the cells in the long axis direction.
    The CSA and CSB are each composed of a main body part (Main Body Portion (MBP) occupying most of the center and both side (left and right) ends (LEP, REP) of the main body part.
    The radii of the body portions are Ra and Rb (where Ra <Rb),
    The component stent (A) (CSA) and the component stent (B) (CSB) are arranged at the right end (REP) of the CMLS at the strut (SSM) and the component stent (B) of the component stent (A) (CSA). ) Struts (CSB) crossing,
    And at the right end (REP),
    (I) The component stent (A) (CSA) is
    (A) A support column arranged at the same radial position (Ra, in) as the radius (Ra) of the main body,
    (A) a strut disposed at a radial position (Ra, df) larger than the radius (Rb) of the main body of the component stent (B); and
    (C) Two struts arranged at the two radial positions (Ra, in Ra, df) are connected in a radial direction of the cylinder to be connected (Radially-running SM (RRSM), )
    (Ii) The radius (Rb, in) of the cylindrical body of the component stent (B) (CSB) is the same as the radius Rb of the main body, and the struts of the other component stents can be received in the struts. A possible receiving part (Accommodation Port or Portion (AP)) is formed,
    The component stent (A) is inserted into the major axis of the cylindrical body of the component stent (B) with respect to the component stent (B) (CSB), and the RRSM of the component stent (A) (CSA) is inserted. Coaxially characterized in that the two component stents (A, B) are engaged with each other by inserting and fitting the component stents (B) (CSB) so as to penetrate the radial direction. Multi-layer stent.
  3.  その左右の両端部において、当該コンポーネントステント(A)(CSA)の支柱(SSM)とコンポーネントステント(B)支柱(CSB)の交差がそれぞれ行われ、当該二つのコンポーネントステント(A、B)が係合されている同軸複層ステントであって、前記左端部(LEP)における係合が請求項1規定のごとく行われ、前記右端部(REP)における係合が請求項2規定のごとく行われていることを特徴とする同軸複層ステント。
    At the left and right ends, the strut (SSM) and the component stent (B) strut (CSB) of the component stent (A) (CSA) are respectively intersected, and the two component stents (A, B) are engaged. A coaxial multi-layered stent, wherein the engagement at the left end (LEP) is as defined in claim 1 and the engagement at the right end (REP) is as defined in claim 2 A coaxial multi-layer stent.
  4.  前記コンポーネントステント(A、)または(B)の支柱は、その一部が、前記円筒体の円周長を縮小及び伸張可能な屈曲部を有するセルを複数個上下方向に連結して、前記長軸を取り囲むように複数配列することにより構成されるリング状支柱(Ring-shaped SM)と、隣り合う当該リング状支柱を長軸方向に連結する少なくとも一つのリンクより構成されるものであることを特徴とする請求項1-3のいずれかに記載の同軸複層ステント。
    A part of the strut of the component stent (A,) or (B) is a part of which connects a plurality of cells having bent portions capable of reducing and extending the circumferential length of the cylindrical body in the vertical direction. A ring-shaped strut (Ring-shaped SM) configured by arranging a plurality of rings so as to surround the shaft, and at least one link connecting the adjacent ring-shaped struts in the longitudinal direction. The coaxial multilayer stent according to any one of claims 1-3.
  5.  前記コンポーネントステント(A)または(B)の受容部(AP)は、前記屈曲部を有するセルの一部として設けられており、前記左端部(LEP)及び/又は右端部(REP)の方向に一部が開放され、当該開放部が、支柱を導入する通路を画定(defining)していることを特徴とする請求項1-4のいずれかに記載の同軸複層ステント。
    The receiving portion (AP) of the component stent (A) or (B) is provided as a part of the cell having the bent portion, and is directed in the direction of the left end portion (LEP) and / or the right end portion (REP). The coaxial multilayer stent according to any one of claims 1 to 4, wherein a part thereof is opened and the opening defines a passage for introducing a strut.
  6.  前記コンポーネントステント(A)または(B)の受容部(AP)は、前記通路と、当該通路に連通する円方形状の開口部(Round-Rectangular Aperture)を有する係止ホルダ(Latch Holder)から成り、当該円方形状の開口部において、通路と反対位置に位置する当該開口部を形成する支柱の曲率半径は、前記セルの屈曲部の半径より長いものであり、また、当該ホルダに連通する通路の、当該通路を形成する2つの対向する支柱(SM)の間隔が、当該ホルダまたはセルの屈曲部を形成する支柱幅よりも狭いものであることを特徴とする請求項1-5のいずれかに記載の同軸複層ステント。
    The receiving portion (AP) of the component stent (A) or (B) includes the passage and a latch holder having a round-shaped aperture (Round-Rectangular Aperture) communicating with the passage. In the circular opening, the radius of curvature of the column that forms the opening located at a position opposite to the passage is longer than the radius of the bent portion of the cell, and the passage communicating with the holder The space between two opposing struts (SM) forming the passage is narrower than the strut width forming the bent portion of the holder or cell. The coaxial multi-layer stent as described.
  7.  前記コンポーネントステント(A)または(B)の受容部(AP)において、前記ホルダは、前記セル屈曲部を円周方向に結んだ直線の垂直二等分線に対して対称であるが、通路を形成する対向する支柱は,その垂直2等分線から円周方向にずれた位置に配置されていることを特徴とする請求項6に記載の同軸複層ステント。
    In the receiving portion (AP) of the component stent (A) or (B), the holder is symmetric with respect to a straight vertical bisector connecting the cell bent portions in the circumferential direction, The coaxial multi-layer stent according to claim 6, wherein the opposing struts to be formed are arranged at positions shifted in the circumferential direction from the perpendicular bisector.
  8.  前記コンポーネントステント(A)または(B)の受容部(AP)が屈曲部を有するセルの一部として設けられており、当該受容部(AP)は、少なくともその2つ以上が、少なくとも2つ以上のセルの一部としてそれぞれ設けられていることを特徴とする請求項1-6のいずれかに記載の同軸複層ステント。
    The receiving part (AP) of the component stent (A) or (B) is provided as a part of a cell having a bent part, and at least two of the receiving parts (AP) are at least two or more. The coaxial multilayer stent according to claim 1, wherein the coaxial multilayer stent is provided as a part of each cell.
  9.  前記コンポーネントステント(A)または(B)の受容部(AP)は、その少なくとも1つの受容部(AP)は、他の受容部(AP)とステント(A)または(B)の長軸に関して鏡像の関係であることを特徴とする請求項9に記載の同軸複層ステント。
    The receiving part (AP) of the component stent (A) or (B) has at least one receiving part (AP) mirrored with respect to the other receiving part (AP) and the long axis of the stent (A) or (B). The coaxial multilayer stent according to claim 9, wherein:
  10.  前記コンポーネントステント(A)または(B)の前記半径方向に走行するまたは配設された支柱(Radially-running SM (RRSM))Radially-disposed SM(RDSM), Radially-arranged SM (RASM)は、前記リンク部分の一部として設けられていることを特徴とする請求項1-9のいずれかに記載の同軸複層ステント。
    Radially-disposed SM (RDSM), Radially-arranged SM (RASM) of the component stent (A) or (B) that runs or is arranged radially (radially-running SM (RRSM)) The coaxial multilayer stent according to any one of claims 1 to 9, wherein the coaxial multilayer stent is provided as a part of a link portion.
  11.  前記コンポーネントステント(A)または(B)の前記リンク部分に設けられている前記半径方向に走行する支柱(Radially-running SM(RRSM)、)において、当該リンク部分の長軸方向の長さは、当該半径方向に走行する支柱(RRSM)が存在しない支柱のリンク部分の長軸方向の長さよりも、長いことを特徴とする請求項10に記載の同軸複層ステント。
    In the strut (Radially-running SM (RRSM)) provided in the link portion of the component stent (A) or (B), the length in the major axis direction of the link portion is: The coaxial multi-layer stent according to claim 10, wherein a length of the link portion of the strut where the strut (RRSM) traveling in the radial direction does not exist is longer than a length in a major axis direction.
  12.  請求項1-11のいずれかに記載の同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)において、前記二つのコンポーネントステント(A)と(B)(CSA、CSB)の層間の、本体部における空隙部は、薬剤リザーバ(Drug Reserver or Holder))を収容する部位として好ましく使用することができるものであること(Said space is favorably used for, or serves as, a DR) を特徴とする薬剤溶出型同軸多層ステント。
    12. A coaxial multi-layered stent (CMLS) according to any one of claims 1-11, wherein the body portion is between the two component stents (A) and (B) (CSA, CSB). The voids in the drug can be preferably used as a site that contains a drug reservoir (Drug Reserver or Holder) (Said space is favorably used for, or serves as, a DR) Type coaxial multilayer stent.
  13.  請求項1-11のいずれかに記載の同軸複層ステント(Coaxial Multi-Layered Stent)(CMLS)において、前記二つのコンポーネントステント(A)と(B)(CSA、CSB)の層間の、本体部における空隙部に、溶出させるべき薬剤を薬剤リザーバとして収容、又は保持(accommodate)してなることを特徴とする薬剤溶出型同軸複層ステント(DE-CMLS)。 12. A coaxial multi-layered stent (CMLS) according to any one of claims 1-11, wherein the body portion is located between the two component stents (A) and (B) (CSA, CSB). A drug-eluting coaxial multi-layer stent (DE-CMLS), in which a drug to be eluted is accommodated or held as a drug reservoir in the void portion in FIG.
PCT/JP2009/062955 2009-07-17 2009-07-17 Coaxial multi-layered stent WO2011007444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062955 WO2011007444A1 (en) 2009-07-17 2009-07-17 Coaxial multi-layered stent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062955 WO2011007444A1 (en) 2009-07-17 2009-07-17 Coaxial multi-layered stent

Publications (1)

Publication Number Publication Date
WO2011007444A1 true WO2011007444A1 (en) 2011-01-20

Family

ID=43449060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062955 WO2011007444A1 (en) 2009-07-17 2009-07-17 Coaxial multi-layered stent

Country Status (1)

Country Link
WO (1) WO2011007444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415925A (en) * 2011-09-15 2012-04-18 中国人民解放军第三军医大学第一附属医院 Medical cavity duct stent capable of storing medicines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507215A (en) * 1990-06-28 1993-10-21 シュナイダー・(ユーエスエイ)・インコーポレーテッド Fixation device in body cavity
JP2003533270A (en) * 2000-05-17 2003-11-11 ゲーバー,ベニー Selectively expandable and releasable stent
WO2007109621A2 (en) * 2006-03-20 2007-09-27 Xtent, Inc. Apparatus and methods for deployment of linked prosthetic segments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507215A (en) * 1990-06-28 1993-10-21 シュナイダー・(ユーエスエイ)・インコーポレーテッド Fixation device in body cavity
JP2003533270A (en) * 2000-05-17 2003-11-11 ゲーバー,ベニー Selectively expandable and releasable stent
WO2007109621A2 (en) * 2006-03-20 2007-09-27 Xtent, Inc. Apparatus and methods for deployment of linked prosthetic segments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415925A (en) * 2011-09-15 2012-04-18 中国人民解放军第三军医大学第一附属医院 Medical cavity duct stent capable of storing medicines

Similar Documents

Publication Publication Date Title
JP6793147B2 (en) Devices and methods for treating aneurysms
JP5001149B2 (en) Expandable medical device for delivery of beneficial drugs
US20190060094A1 (en) Endoluminal device for in vivo delivery of bioactive agents
US8715340B2 (en) Endovascular device with membrane
JP4976301B2 (en) Stepped balloon catheter for vascular branch treatment
US8262692B2 (en) Endovascular device
US7500986B2 (en) Expandable body having deployable microstructures and related methods
US8323333B2 (en) Fragile structure protective coating
US20050187609A1 (en) Devices and methods for treatment of stenotic regions
EP2939640A1 (en) Highly flexible stent
JP2008512211A (en) Device for in vivo delivery of bioactive agent and method for producing the same
US20090319026A1 (en) Composite Stent with Reservoirs for Drug Delivery and Methods of Manufacturing
JP2004515307A (en) Expandable stent with slide / fixed radius element
JP5752658B2 (en) Intraluminal medical device having axial flexibility that varies around
JP2006500996A (en) Apparatus and method for delivering mitomycin via an eluting biocompatible implantable medical device
WO2007103423A2 (en) Intravascular device with netting system
JP2014511247A (en) Low strain high strength stent
WO2010027363A1 (en) Endovascular device
EP3765106B1 (en) Bioabsorbable flow diverting scaffold
JP2018529394A (en) Bridge stent graft having combined balloon expandable stent and self-expandable stent and method of use thereof
WO2011007444A1 (en) Coaxial multi-layered stent
JP2005052419A (en) Stent
JP2005040219A (en) Stent
WO2012132753A1 (en) Stent and stent delivery system
US20080234808A1 (en) Releasable Polymer on Drug Elution Stent and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 26/04/2012)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09847342

Country of ref document: EP

Kind code of ref document: A1