WO2011006703A1 - Commutateur électronique - Google Patents

Commutateur électronique Download PDF

Info

Publication number
WO2011006703A1
WO2011006703A1 PCT/EP2010/057054 EP2010057054W WO2011006703A1 WO 2011006703 A1 WO2011006703 A1 WO 2011006703A1 EP 2010057054 W EP2010057054 W EP 2010057054W WO 2011006703 A1 WO2011006703 A1 WO 2011006703A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
load
transistor
current
power loss
Prior art date
Application number
PCT/EP2010/057054
Other languages
German (de)
English (en)
Inventor
Thomas Walker
Matthias Renner
Marcel Rudolph
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2011006703A1 publication Critical patent/WO2011006703A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0826Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/602Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors in integrated circuits

Definitions

  • the invention relates to an electronic switch.
  • the invention relates to an electronic switch integrated with a control logic for switching an electrical load.
  • the Switch open, and the current flow through the load and interrupted by the switch. If the electronic switch cools down far enough, it can be closed again and a current flow through the load can be made possible. It has been shown that frequent thermal aging causes electronic components to age prematurely, which can affect their performance and service life. It is therefore an object of the invention to provide an electronic switch, which is robust compared to a switch-on variable electrical loads.
  • an electronic switch is configured such that a power dissipation of a transistor through which a load current flows is determined, and depending on the power loss with respect to a predetermined threshold value, the load current is limited to one of two different values.
  • Such an electronic switch may have a life which is independent of any short circuits at an output of the switch. As a result, the average life of the electronic switch can be increased, which can result in cost advantages. Further, an average and / or maximum power dissipation of the electronic switch can be reduced, which may reduce a required chip area and the electronic switch can be particularly well integrated with other electronic components without negatively affecting the other components.
  • Figure 1 is a block diagram of an electronic switch
  • FIG. 2 shows illustrative structures of a high-side switch and a
  • Figure 3 is a block diagram of a two-stage high-side switch according to Figures 1 and 2;
  • Figure 4 shows exemplary waveforms of currents of an electronic switch of Figure 3 in comparison to an electronic switch according to the prior art.
  • an electronic switch 100 comprises a control input 1 10, a transistor 120, a limiter 130, power determining means 140 and an output 150. Further, the electronic switch 100 is connected to an electrical supply voltage see.
  • the transistor 120 In response to a control signal applied to the control input 1 10, the transistor 120 is turned on to allow a current flow at the output 150 by a load L (not shown).
  • a transistor 120 are particularly well suited bipolar transistors, since they have characteristics that allow precise control of a current flowing through the transistor 120 current. In principle, other transistor types, for example FET or IGBT, are also possible.
  • Power determining means 140 are connected to the transistor 120.
  • Power determining means 140 may include, for example, a voltmeter that determines a voltage that drops across those terminals of transistor 120 between which flows a load current provided by output 150 of the load. Other ways of determining a power dissipation of the transistor 120 are also possible, for example by means of inductive current measurement or thermal monitoring.
  • the limiter 130 drives the transistor 120 such that the load current described above is limited.
  • the limitation is thus dependent on the power that is converted by the transistor 120 into heat.
  • the power loss of the transistor 120 is dependent on its internal resistance, which can be influenced by the limiter 130, and the magnitude of the load current, which depending on the load L, in particular immediately after a switch-on, may be time-dependent.
  • FIG. 2 shows alternatives of the wiring of the transistor 120 of the electronic switch 100 from FIG. 1 in a circuit as a high-side switch (also: “high-side switch", HSS, left) and low-side switch (also: " Low-side switch ", LSS, right).
  • Last L at ground potential, and the other is connected to the output 150 of the electronic switch 100.
  • the transistor 120 When the electronic switch 100 is turned on, the transistor 120 is driven so as to apply a positive supply voltage + U b to the output 150 so that the load current from the terminal + U b can flow through the transistor 120, the output 150 and the load L. (considered technical direction of current).
  • one terminal of the load L is connected to the positive supply voltage + U b and the other to the output 150 of the electronic switch 100.
  • the transistor 120 is driven such that the output 150 is connected to ground potential.
  • the load current of + U b through the load L, the output 150 and the transistor 120 can flow to ground.
  • the output 150 is high impedance when the electronic switch 100 is turned off and the transistor 120 is not driven.
  • the output 150 is high-impedance and there is no significant load current I L.
  • FIG. 3 shows a more detailed block diagram 300 of a high-side switch on the basis of the electronic switch 100 from FIG. 1.
  • a corresponding low-side switch results from corresponding, mentioned above with reference to Figure 2 interconnection.
  • the load L is modeled by a capacitor C and a resistor R, receives a high inrush current (due to the capacitor C) and a constant continuous current (due to the resistor R).
  • the resistor RT models an internal resistance between an emitter and a collector of the transistor 120 and is comprised by the transistor 120.
  • a latch comprises an operational amplifier OV3, a constant voltage source U4 and a gate G1.
  • a short-circuit monitor comprises a signal output 310, a timer 320, a switch S3, a constant voltage source U1, an operational amplifier OV4 and a gate G2.
  • the switch S1 If the control signal at the control input 1 10 "low”, the switch S1 is open and a base of the transistor 120 connected to no potential, so that the transistor 120 blocks and no current flows between its emitter and its collector Output 150 in a high-resistance state and a load current I L is 0. However, the control signal at the control input 1 10 "high”, the switch S1 is closed, so that in any case the predetermined by the constant current source Iu current through the base of the transistor 120 to flow can, whereby the transistor 120 turns on so far, that the load current I L is limited to a first value.
  • the operational amplifier OV1 determines a voltage difference U3 between the emitter and the collector of the transistor 120 (the corresponding feedback resistances). stands at OV1 are not shown).
  • the operational amplifier OV2 compares this voltage difference U3 with the constant voltage U2 and switches its output to "high" if and only if the voltage difference U3 is less than U.sub.2, thereby closing the switch S2 so that the base of the transistor 120 additionally switches off the constant current source ⁇ L2 flowing current can flow, and the load current I L is limited to a second value which is greater than the first value.
  • the load current I L available at the output 150 is initially limited to a first value with the described circuit during a switch-on operation until the power loss of the transistor 120 has fallen below the predetermined value expressed by U2 and only then is a second, higher load current I L , the maximum permanent from the electronic switch
  • the latching device ensures that the transistor 120 is driven only when a sufficiently high input voltage + U b is present, by comparing the input voltage + U b with the constant voltage U4, and in the case when + U b is less than U4 is, the output of the operational amplifier OV3 is set to "low", so that the output of the gate G1 is independent of the control input 1 10 applied control signal "low” and the switch S1 is not closed.
  • Another embodiment of the electronic switch 100 relates to the generation of a short-circuit signal. As soon as the two switches S1 and S2 are closed, that is to say the maximum permanently deliverable load current I L is available at the output, the gate G2 triggers the timer 320 by means of its output. After a predetermined time has elapsed, the timer 320 closes the switch
  • the operational amplifier OV4 compares the voltage applied to the output 150 with the constant voltage U1. If U1 is greater than the output voltage at the output 150, the operational amplifier OV4 supplies a "high” value to the signal output 310 in order to signal the presence of a short circuit Set “low” to turn off the electronic switch 100.
  • the electronic switch 100 can alternatively or additionally be combined with a conventional thermal fuse of the prior art (not shown).
  • FIG. 4 shows a diagram 400 of two time profiles 410 and 420 of load currents.
  • the curve 410 corresponds to a load current flowing at an output of a high-side switch of the prior art during the course
  • 420 corresponds to the course of the load current I L at the high-side switch of Figures 1 and 3.
  • I L1 denotes a first value to which the load current I L can be limited
  • l ⁇ _ 2 describes a second, larger value to which the load current I L can be limited.
  • the curves 410 and 420 assume a load whose internal resistance is low immediately after a switch-on process and increases with time, similar to the load in the illustration of FIG. 3. In the case of the load current curve 410 of the high-side switch of the prior art flows immediately after switching on at the time t 0, the maximum permissible current I L2 .
  • the trace 420 of the load current I L of the load current L available at the output 150 of the electronic switch 100 of FIG. 3 begins at a value I L1 that is less than the value ⁇ L2 .
  • the curve 420 begins to sink below the limit Iu.
  • the power loss of the transistor 120 of the electronic switch 100 in FIGS. 1 and 3 has fallen below the predetermined value, so that the maximum current intensity I L2 at the output 150 is enabled.
  • the internal resistance of the load L is already so great that the load current profile 420 increases abruptly, but does not reach the value ⁇ L2 .
  • the curve 420 decreases asymptotically from the time X 2 to the time t 3 , and from the time t 3 corresponds to the value of the curve 410.

Abstract

L'invention concerne un commutateur électronique (100) pour la commutation d'une charge électrique, comprenant une entrée de commande (110) pour la réception d'un signal de commande, un transistor (120) pour la commande d'un courant de charge circulant à travers la charge, en fonction du signal de commande, un moyen de détermination de puissance (140) pour la détermination d'une puissance dissipée du transistor (120) et un limiteur (130) pour la commande du transistor (120), de telle façon que le courant de charge circulant à travers la charge soit limité à une première valeur maximale positive, dans le cas où la puissance dissipée est inférieure à une valeur prédéterminée, et sinon, soit limité à une seconde valeur maximale positive.
PCT/EP2010/057054 2009-07-17 2010-05-21 Commutateur électronique WO2011006703A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910027814 DE102009027814A1 (de) 2009-07-17 2009-07-17 Elektronischer Schalter
DE102009027814.1 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011006703A1 true WO2011006703A1 (fr) 2011-01-20

Family

ID=42556837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/057054 WO2011006703A1 (fr) 2009-07-17 2010-05-21 Commutateur électronique

Country Status (2)

Country Link
DE (1) DE102009027814A1 (fr)
WO (1) WO2011006703A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017109684B4 (de) * 2017-05-05 2019-03-21 Lisa Dräxlmaier GmbH Spannungsmessvorrichtung, verfahren und herstellverfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355341A (en) * 1980-06-30 1982-10-19 Rca Corporation Power protection circuit for transistors
EP1229234A1 (fr) * 2001-02-01 2002-08-07 STMicroelectronics S.r.l. Circuit intégré et méthode de coupure thermique programmée de courant pour dispositifs de puissance
US20080030174A1 (en) * 2006-08-01 2008-02-07 Kenichi Niiyama Load driving circuit and protection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355341A (en) * 1980-06-30 1982-10-19 Rca Corporation Power protection circuit for transistors
EP1229234A1 (fr) * 2001-02-01 2002-08-07 STMicroelectronics S.r.l. Circuit intégré et méthode de coupure thermique programmée de courant pour dispositifs de puissance
US20080030174A1 (en) * 2006-08-01 2008-02-07 Kenichi Niiyama Load driving circuit and protection method

Also Published As

Publication number Publication date
DE102009027814A1 (de) 2011-01-20

Similar Documents

Publication Publication Date Title
DE102012217709B4 (de) Detektion des nulldurchgangs des laststroms in einer halbleitervorrichtung
DE10334832A1 (de) Steuerkreis zum Ansteuern eines Leistungshalbleiterbauelements
DE102012216558A1 (de) Verfahren zum ansteuern eines elektronischen schalters und elektronische schaltung mit einem elektronischen schalter
DE102015104568A1 (de) Leistungsschaltervorrichtung
DE102015120166B3 (de) Steuereinrichtung für einen Leistungshalbleiterschalter
DE102019119975B3 (de) Intelligenter elektronischer schalter
DE102008055696A1 (de) Elektronische Schaltungseinrichtung zur Erfassung eines Detektionselementstroms und/oder einer Temperatur in diesem Detektionselement
EP2342824B1 (fr) Circuit en demi-pont protégé contre les courts-circuits avec commutateurs semiconducteurs
DE102016206588A1 (de) Synchron-Tiefsetzsteller mit Schutz vor Kurzschluss zu einer Spannungsquelle
WO2017084962A1 (fr) Commande sécurisée d'un consommateur
DE102019121795A1 (de) Intelligenter elektronischer schalter
DE102018117528A1 (de) Entladeschaltungen zum Entladen von induktiven Elementen mit Temperaturschutz
DE102014219130A1 (de) Diagnoseschaltung und Verfahren zum Betreiben einer Diagnoseschaltung
EP0817380B1 (fr) Dispositif de commutation d'un consommateur inductif
DE102010063744A1 (de) Schaltungsanordnung und Verfahren zur Anlaufstrombegrenzung bei einem Starter
WO2011006703A1 (fr) Commutateur électronique
DE102009007818A1 (de) Schaltungsanordnung mit einer Schaltbrücke aus NMOS-Transistoren und mit einer Verpolschutzeinrichtung
WO2018041971A1 (fr) Commande d'un interrupteur semi-conducteur dans un mode de commutation
DE102017208187A1 (de) Elektronisches Modul sowie Kraftfahrzeug und Verfahren zum Begrenzen eines Eingangsstroms während eines Einschaltvorgangs des Moduls
EP2020748A2 (fr) Commutation de clampage active pour un commutateur semi-conducteur de puissance
EP3312993B1 (fr) Dispositif de commutation permettant la commande d'un circuit à semiconducteur pouvant être amorcé
WO2015062902A1 (fr) Circuit de protection contre des surtensions pour un semi-conducteur de puissance et procédé de protection d'un semi-conducteur de puissance contre des surtensions
DE3524998A1 (de) Spannungsgesteuerter hochgeschwindigkeits-schutzschalter
EP1627143A1 (fr) Etage pilote destine a une electrovanne
DE102005030539A1 (de) Schutzschaltung und Verfahren zur Überwachung der Temperatur eines Vorwiderstands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720159

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10720159

Country of ref document: EP

Kind code of ref document: A1