WO2011004982A2 - Safe operation system and safe operation method for equipment for supplying concrete - Google Patents

Safe operation system and safe operation method for equipment for supplying concrete Download PDF

Info

Publication number
WO2011004982A2
WO2011004982A2 PCT/KR2010/004245 KR2010004245W WO2011004982A2 WO 2011004982 A2 WO2011004982 A2 WO 2011004982A2 KR 2010004245 W KR2010004245 W KR 2010004245W WO 2011004982 A2 WO2011004982 A2 WO 2011004982A2
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
pressure
supply pipe
normal operating
concrete supply
Prior art date
Application number
PCT/KR2010/004245
Other languages
French (fr)
Korean (ko)
Other versions
WO2011004982A3 (en
Inventor
김상민
조석희
김진우
최태일
조광범
이정철
Original Assignee
현대건설주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090062572A external-priority patent/KR101092055B1/en
Priority claimed from KR1020090066878A external-priority patent/KR101089917B1/en
Priority claimed from KR1020090066879A external-priority patent/KR20110009469A/en
Application filed by 현대건설주식회사 filed Critical 현대건설주식회사
Publication of WO2011004982A2 publication Critical patent/WO2011004982A2/en
Publication of WO2011004982A3 publication Critical patent/WO2011004982A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/32Conveying concrete, e.g. for distributing same at building sites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck

Definitions

  • the present invention relates to a safe operation system and a safe operation method of a concrete supply facility, and more particularly, to quickly and accurately determine the blocked position of the concrete supply pipe in the concrete supply facility used to supply concrete to a high-rise building, and furthermore, the pressure
  • the present invention relates to a safe operation system and a safe operation method of a concrete supply facility that can prevent or reduce damage caused by an elevation.
  • concrete is used for the construction of various structures such as buildings, and when constructing a high-rise building, the concrete is transported to a high place by using a concrete pump car and a concrete supply pipe, which are concrete supply facilities.
  • a concrete pump car and a concrete supply pipe, which are concrete supply facilities.
  • the pressure in the supply pipe is very high to supply concrete to the high-rise building.
  • the present invention not only quickly and accurately grasps the position of the blockage of the concrete supply pipe, but also predicts and examines the blockage in the supply pipe in advance, thereby preventing or reducing damage caused by the pressure increase in the concrete supply pipe, and preventing air delay. It is an object of the present invention to provide a safe operation system and a safe operation method of a concrete supply facility.
  • the present invention provides a safe driving device of a concrete supply facility having a concrete pump and a concrete supply pipe connected to the concrete pump and supplying concrete discharged from the concrete pump to a high-rise building, wherein the longitudinal direction of the concrete supply pipe is A plurality of pressure sensors which are installed to be spaced apart from each other and store internal pressures of the supply pipe at a corresponding position, and store normal operating pressure range information or normal operating pressure change rate information at a position where the pressure sensors are installed; After starting the concrete pump, the internal pressures detected by the pressure sensors are compared with the normal operating pressure range information of the memory unit, so that one or a plurality of the detected internal pressures are equal to the internal pressure or the internal pressure.
  • the rate of change is outside the normal operating pressure range
  • the present invention is a safe operation method of a concrete supply equipment having a supply pipe for supplying the concrete discharged from the concrete pump discharged from the concrete pump to a high-rise building, the longitudinal direction of the concrete supply pipe Sensing internal pressures at a corresponding position from a plurality of pressure sensors spaced apart from each other along and after starting the concrete pump, one or more of the detected internal pressures are out of a normal operating pressure range, or If it is lowered below the operating pressure change rate range, it is determined that the interior of the concrete supply pipe is blocked, and the step of stopping the operation of the concrete pump.
  • the present invention performs a driving simulation experiment by horizontally simulating the concrete supply equipment including the concrete pump and the concrete supply pipe on the ground, and the normal operating pressure range corresponding to the pressure sensors from the driving simulation experiment Or deriving the normal operating pressure change rate range.
  • the internal pressure or the rate of change of the internal pressure is monitored in real time by pressure sensors installed in the concrete supply pipe, it is possible to quickly and accurately grasp the blockage and the location of the blockage of the concrete supply pipe, as well as the blockage in advance. It can be predicted and reviewed to prevent or reduce the damage caused by the pressure increase in the concrete supply pipe, to manage the air stably, and to replace only the concrete supply pipe in the occluded part, thus requiring unnecessary recovery cost. Can be reduced.
  • FIG. 1 is a block diagram showing a control flow of a safe operation system of a concrete supply facility according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a safe driving system of the concrete supply facility of FIG. 1.
  • FIG. 3 is a flowchart illustrating a method of safely operating a concrete supply facility using the safe driving system of the concrete supply facility in FIG. 1.
  • FIG. 4 is a schematic diagram illustrating a driving simulation test apparatus for deriving a normal operating pressure range and a normal operating pressure change rate range for safely operating the concrete supply facility of FIG. 3.
  • 5 and 6 are graphs showing the behavior of the normal operating pressure range and the abnormal operating pressure derived from the driving simulation test apparatus shown in FIG. 4, and the behavior of the normal operating pressure change rate range and the abnormal operating pressure change rate.
  • FIG. 7 is a cross-sectional view showing a pressure sensor protection device installed in the supply pipe of FIG.
  • FIG. 8 is a perspective view showing a pressure sensor protection unit installed in the supply pipe of FIG.
  • FIG. 9 is a cross-sectional view in which the elastic member and the support member are installed in FIG. 8.
  • 10 and 11 are plan views illustrating embodiments of the supporting member of FIG. 9.
  • FIG. 12 is a cross-sectional view illustrating an example in which the supporting member of FIG. 9 is fixed to the connection pipe.
  • FIG. 13 is a cross-sectional view of concrete passing through the supply pipe of FIG. 8.
  • FIG. 14 is a cross-sectional view illustrating an example in which the supply pipe of FIG. 8 is cleaned.
  • a safe driving system 100 of a concrete supply facility may include a concrete pump 140 and the concrete pump ( As a safety driving system 100 having a concrete supply pipe 180 connected to the 140 to supply the concrete discharged from the concrete pump 140 to the high-rise building 10, a plurality of pressure sensors (111, 112, 113, 114, 115, 116), The memory unit 130, the control unit 120, the display unit 150, and the alarm unit 160 are included.
  • the concrete supply pipe 180 is installed in a vertical direction along the side of the high-rise building 10 under construction. One end of the concrete supply pipe 180 is connected to the concrete pump 140, the other end is connected to the supply nozzle 182.
  • the concrete supply pipe 180 serves to supply concrete discharged from the concrete pump 140 to a specific location of the high-rise building 10.
  • the concrete pump 140 performs a function of discharging concrete
  • the suction side is connected to the concrete storage unit 170, such as ready concrete.
  • the concrete supply pipe 180 some sections are formed of a transparent material so that the worker can grasp the concrete flow state inside.
  • the concrete supply pipe 180 may have a structure including a plurality of pipes and flanges extending by combining the pipes, but is not limited thereto and may have various structures.
  • the plurality of pressure sensors 111, 112, 113, 114, 115, and 116 may include first, second, third, fourth, fifth, and sixth pressure sensors, and may be installed to be spaced apart from each other along a longitudinal direction of the concrete supply pipe 180. The internal pressures of the concrete supply pipe 180 are sensed.
  • the first, second, third, fourth, fifth, and sixth pressure sensors 111, 112, 113, 114, 115, and 116 may be installed at equal intervals, and relatively weak or curved portions or adjacent portions of the concrete supply pipe 180 may be adjacent to each other.
  • the front and rear parts may be installed, but the present invention is not limited thereto.
  • the pressure sensors 111, 112, 113, 114, 115, and 116 are provided with one sensor 111, 112, 113, 114, 115, and 116 in each floor from the second floor to the rooftop for the six-story building 10 in the present embodiment, this is one embodiment.
  • the number of the lengths 180 may vary depending on the amount of concrete discharged.
  • the pressure sensors 111, 112, 113, 114, 115, and 116 are wireless pressure sensors applied to sense the internal pressure of the supply pipe 180 at an installation position, and wirelessly transmit the information to the controller 120.
  • the pressure sensors (111, 112, 113, 114, 115, 116) are installed for each section of the supply pipe 180, it is possible to quickly and accurately grasp the blockage occurring in a section of the supply pipe 180, and thus supply pipe 180 Before the breakage of the supply pipe 180, appropriate measures such as replacement and repair can be taken in advance to prevent safety accidents and prevent air delay.
  • appropriate measures such as replacement and repair can be taken in advance to prevent safety accidents and prevent air delay.
  • the supply pipe 180 is replaced with a plurality of pipes and flanges can be made by a method of connecting the new pipe and loosening the flange to which the blocked pipe is connected.
  • the safe driving system 100 includes temperature sensors 117 and 118, respectively, at the front and rear ends of the supply pipe 180.
  • the memory unit 130 stores the normal operating pressure range information or the normal operating pressure change rate information at the position where the pressure sensors 111, 112, 113, 114, 115, and 116 are installed.
  • the method for deriving the normal operating pressure range information or the normal operating pressure change rate information may be variously selected.
  • the normal operating pressure range is determined as the maximum pressure or the maximum pressure change rate corresponding to each of the pressure sensors 111, 112, 113, 114, 115, and 116, which will be described later.
  • the controller 120 after starting the concrete pump 140, internal pressures detected by the pressure sensors 111, 112, 113, 114, 115, and 116 and the normal operating pressure range information or the normal operating pressure change rate of the memory 130. By comparing them based on the information, the operation of the concrete pump 140 is controlled, and the various embodiments of the control method are as follows.
  • the controller 120 After the start of the concrete pump 140, one or more of the internal pressure detected by the pressure sensors 111, 112, 113, 114, 115, 116 is the internal pressure or the rate of change of the internal pressure is the normal operating pressure range If out of or outside the normal operating pressure change rate range, it is determined that the inside of the concrete supply pipe 180 is blocked to stop the operation of the concrete pump 140.
  • the control unit 120 is one or more of the internal pressure detected by the pressure sensors 111, 112, 113, 114, 115, 116 when the rate of change of the internal pressure is lower than the normal operating pressure change rate range of the concrete supply pipe 180 It is determined that the inside of the blockage is stopped the operation of the concrete pump 140. In this case, the controller determines that the concrete supply pipe 180 is blocked before the portion where the specific pressure sensor is lowered below the normal operating pressure change rate range.
  • the controller 120 may include a pressure sensor installed at the foremost of the pressure sensors in which the rate of change of the internal pressure or the internal pressure of the plurality of pressure sensors 111, 112, 113, 114, 115, and 116 is lower than the normal operating pressure range or the normal operating pressure change rate range.
  • control unit 120 if the rate of change of the pressure detected from the pressure sensor (111, 112, 113, 114, 115, 116) is greater than the set value after the concrete pump 140 is started to reach the normal operating state, the concrete supply equipment is the normal It may be determined that the driving range is out of range.
  • the control unit 120 the change rate of the internal pressure or the internal pressure of the first, second, third, fourth, fifth, sixth pressure sensors 111, 112, 113, 114, 115, 116 at a specific time is less than the normal operating pressure range or the normal operating pressure change rate
  • the pressure sensors (hereinafter referred to as "pressure reducing pressure sensors") lowered to the pressure sensor, and the pressure sensor installed at the foremost of the pressure reducing pressure sensors and the pressure sensor installed at the rear of the pressure reducing pressure sensors. It is determined that the concrete pipe 180 is blocked. Here, the foremost means the position closest to the concrete pump 140.
  • control unit 120 transmits the information on the operation stop or the internal pressure state and the position of each of the supply pipe 180, the concrete pump 140 to the worker as an image through the display unit 150. do.
  • control unit 120 also provides the voice information using the alarm unit 160 to stop the operation of the concrete pump 140 or the internal pressure state and position of each supply pipe 180.
  • the display unit 150 and the alarm unit 160 are known devices of a monitor, a warning lamp, and an alarm sound connected to the control unit 120, and a detailed description thereof will be omitted.
  • a logger 135 that records wireless data from the pressure sensors 111, 112, 113, 114, 115 and 116 and the temperature sensors 117 and 118 and outputs the wireless data to the controller 120.
  • Reference numerals 136a, 136b, and 136c denote gateways, respectively.
  • a driving simulation test is performed to derive a normal operating pressure range and a normal operating pressure change rate range (step S10).
  • the concrete pump 140 is connected to the concrete storage device 190.
  • the concrete pump 140 has the same specifications as actually used to actually supply concrete to the high-rise building 10a.
  • the concrete supply pipe 180a connects the concrete pump 140 and the concrete storage device 190 with pipes having a hydrodynamically similar structure.
  • the length of the pipe (180a) is made longer than the length of the concrete supply pipe (180).
  • a total of 14 pressure sensors are installed to be spaced apart from the concrete pump 140 and the pipe 180a.
  • Concrete stored in the concrete storage device 170 is passed through the pipe (180a) by the concrete pump 140, the concrete placing boom (CPB; concrete placing boom; 142) in the concrete placing position (10a) Is installed.
  • FIG. 5 and 6 are graphs illustrating a change rate of the internal pressure sensed by the pressure sensors and the internal pressure sensed by the pressure sensors after the operation of the concrete pump 140 starts and stabilizes.
  • a total of four pressure sensors will be described.
  • FIG. 5 pressure graphs f1, f2, f3, f4 measured from after the concrete pump 140 has reached a normal operating state are shown.
  • FIG. 6 shows pressure change rate graphs g1, g2, g3, and g4 measured after the concrete pump 140 reaches a normal operating state.
  • the internal pressure and the internal pressure change rate are within the normal operating pressure range until the time t1.
  • the absolute value increases while the pressure change rates g1 and g2 of the first pressure sensor P1 and the second pressure sensor P2 have positive values.
  • the absolute value increases while the pressure change rates g3 and g4 of the third pressure sensor P3 and the fourth pressure sensor P4 have a negative value. From this, the rate of change of the internal pressure of the first, second, third and fourth pressure sensors P1, P2, P3 and P4 is also out of the normal operating pressure range.
  • a blockage occurs between a portion that rises and falls on the basis of the internal pressure of the pipe 180a, or a portion that has risen based on the internal pressure change rate of the pipe 180a (has a positive value). It can be assumed that there is a blockage between the and falling portions (having a negative value).
  • the maximum pressure may be used as a reference for the abnormal operating pressure state due to the blockage inside the pipe 180a.
  • the maximum rate of change of pressure may be used as a reference for the abnormal operating pressure state.
  • the controller 120 stores the normal operating pressure information and the abnormal operating pressure information derived by the driving simulation test in the memory unit 130.
  • the driving simulation test is performed for each floor, respectively.
  • step S20 After the driving simulation test to derive the normal operating pressure range and the normal operating pressure change rate range, when the field installation work of the safety driving system 100 is completed, the concrete pump 140 is started, and the pressure The internal pressures and the internal pressure change rate detected at the corresponding positions from the sensors 111, 112, 113, 114, 115, and 116 are received in real time on a set time unit (step S20).
  • the controller 120 determines whether the internal pressures and the internal pressure change rates are outside the normal operating pressure range and the normal operating pressure change rate range (S30).
  • the mechanism for finding the position occluded in the concrete supply pipe 180 is similar to the mechanism for finding the blocked position in the pipe described above, a detailed description thereof will be omitted.
  • step S40 the operation of the concrete pump 140 is stopped (step S40), and reports it to the situation room (step S45).
  • the internal pressure increases when a part of the inside of the concrete supply pipe 180 is blocked. If the concrete pump 140 continues to operate even in the above state, the internal pressure rapidly rises, and the pipe This is because it may cause damage to the supply pipe 180, such as damage to the connection portion of the flange.
  • the concrete supply pipe 180 is very long in length
  • the concrete supply pipe 180 is a structure fixed to the frame 30 is installed on the side of the building 10 under construction Since the repair work is very difficult at the time of the occurrence of the damage, and the construction is inevitably interrupted at the time of the repair work, the construction period is increased and the construction cost is increased.
  • step S60 the cause and location of the blockage of the supply pipe 180 is grasped (step S60). Then replace the corresponding pipe (S70) to carry out the repair work, and when the repair work is completed, re-concrete concrete (S80).
  • the control unit 120 when looking at the situation or condition that the control unit 120 determines that the interior of the concrete supply pipe 180 is blocked, the control unit 120 is out of the normal operating pressure range of the concrete supply pipe 180. Or, it may be determined that the concrete supply pipe 180 is blocked before the specific pressure sensor (111, 112, 113, 114, 115, 116) is lowered below the normal operating pressure change rate range, or the interior of the plurality of pressure sensors (111, 112, 113, 114, 115, 116) Internal pressure or internal pressure among the pressure sensors 111, 112, 113, 114, 115, and 116 installed at the foremost of the pressure sensors 111, 112, 113, 114, 115, and 116 whose pressure or internal pressure change rate is lower than the normal operating pressure range or the normal operating pressure change rate.
  • Rate of change of pressure is within normal operating pressure range or normal operating pressure Of the pressure sensor (111112113114115116) goes beyond the range rate between the pressure sensor (111112113114115116) provided at the rearmost it can be determined that there is the concrete supply pipe 180 is closed.
  • the control unit 120 after the concrete pump 140 is started to reach the normal operating state, if the rate of change of the pressure detected from the pressure sensor (111, 112, 113, 114, 115, 116) is greater than the set value, the concrete supply equipment is the If it is out of the normal operating range it is determined that the concrete supply pipe 180 is blocked.
  • control unit 120 informs the operator in response to the stop situation by using the display unit 150 as a voice such as an image of an monitor or an alarm and a warning lamp (S50). That is, the controller 120 compares the internal pressures and the internal pressure change rate from the pressure sensors 111, 112, 113, 114, 115, and 116 with the normal operating pressure information and the normal operating pressure change rate information stored in the memory 130 to determine the degree of occlusion. By determining, grasping information about the blockage in the concrete supply pipe 180 and its position, and using the display unit 150 to inform the operator of the blocked position information by video and audio, Enables quick and accurate response.
  • a voice such as an image of an monitor or an alarm and a warning lamp (S50). That is, the controller 120 compares the internal pressures and the internal pressure change rate from the pressure sensors 111, 112, 113, 114, 115, and 116 with the normal operating pressure information and the normal operating pressure change rate information stored in the memory 130 to determine the degree of occlusion.
  • the safe driving system 100 is connected in a vertical direction with respect to the longitudinal direction of the concrete supply pipe 180, and the pressure sensor 110 is coupled to a pressure state in the supply pipe 180. It is further provided with a pressure sensor protector 190 for transmitting to the pressure sensor 110 and protect the pressure sensor 1110.
  • the pressure sensor protection device 190 is in communication with the supply pipe 180 and the connection socket 191 to which the pressure sensor 110 is coupled, and the first fluid (filled) inside the connection socket 191 ( 193) and the second fluid 192 and the first and second fluids 193 and 192 are positioned horizontally inside the connection socket 191, respectively, and the outer side is connected to the connection socket 191.
  • first and the second fluid (193, 192) includes a protective tab (194) for moving in the vertical direction to protect the pressure sensor (110) according to the respective hydraulic pressure.
  • first fluid 193 is grease
  • second fluid 192 may be applied as silicon, but is not limited thereto.
  • connection socket 191 is coupled to each of the pressure sensor 110 and the supply pipe 180 by a screw coupling method, but is not limited thereto.
  • reference numeral 1 denotes concrete.
  • the safe driving system 100 in addition to the pressure sensor protection device 190 of the above-described structure further includes a pressure sensor protection unit 200 of another structure to protect the pressure sensor.
  • the pressure gauge protection unit 200 of the concrete supply pipe 180 includes a connection pipe 210 and a blocking network 220.
  • connection pipe 210 is connected perpendicular to the longitudinal direction of the supply pipe 180 for supplying concrete is in communication with the supply pipe 180.
  • the connection pipe 210 is coupled to the pressure sensor 110 for measuring the pressure of the supply pipe 180.
  • the blocking network 220 is disposed in the form of a mesh (mesh) inside the connection pipe 210, foreign matter (gravel, sand, etc.) in the concrete passing through the supply pipe 180 is the pressure sensor 110 Block it from entering the side.
  • the gravel, sand, etc. mixed in the concrete may be pushed into the connection pipe 210. If the size of the connection pipe 210 is small, the interior of the connection pipe 210 is completely blocked by the gravel, sand, etc., there is a problem that the measurement of the pressure sensor 110 becomes difficult at all. In addition, when the size of the connection pipe 210 is large, the gravel, sand, etc. are introduced into the connection pipe 210 and hit the pressure sensor 110, the pressure sensor 110 is damaged as the pressure sensor 110 ) Has to be replaced frequently.
  • the blocking network 220 may solve the problem that the pressure sensor 110 is damaged or broken by blocking foreign materials such as gravel and sand from passing through the connection pipe 210.
  • the blocking network 220 while increasing the size of the connection pipe 210 there is an effect to prevent the penetration of the foreign matter.
  • the blocking network 220 is disposed inside the connection pipe 210, and disposed in the position as far as possible from the pressure sensor 110, to effectively block the gravel, sand and the like in advance. To this end, the blocking network 220 is to be fixed inside the connection portion of the connection pipe 210 that is connected to the supply pipe 180, that is, the connection between the supply pipe 180 and the connection pipe 210.
  • the pressure gauge protection unit 200 of the concrete supply pipe includes an elastic member 230 and a support member 240.
  • the elastic member 230 elastically supports that the blocking net 220 is drawn into the connection pipe 210 to allow the blocking net 220 to protrude into the supply pipe 180. That is, the elastic member 230 allows the blocking network 220 to protrude to the inside of the supply pipe 180 in the normal state.
  • the elastic member 230 may be applied to a variety of known materials such as spring, rubber having an elastic restoring force.
  • the elastic state is changed to the elastic compression state.
  • the blocking network 220 is moved upwards according to the compression of the elastic member 230 is drawn into the connection pipe 210.
  • the blocking network 220 is manufactured to be able to move up and down according to the state of the elastic member 230.
  • the blocking network 220 may be manufactured to have a planar area larger than the cross-sectional area of the connection pipe 210 so that its outer edge is fixed along the inner circumference of the connection pipe 210.
  • the blocking network 220 may be implemented with an elastic material such as rubber.
  • the planar area of the shielding network 220 may be made of the same area as the cross-sectional area of the connection pipe 210 or a smaller plane or a slightly larger area.
  • the support member 240 is disposed across the inner side of the connection pipe 210 corresponding between the blocking network 220 and the pressure sensor 110.
  • the elastic member 230, one end and the other end has a form that is connected to the support member and the blocking network 220, respectively.
  • the support member 240 is formed in a frame or line shape so as to keep the inside of the supply pipe 180 and the connection pipe 210 communicating with each other. This is to ensure that there is no obstacle in measuring the pressure of the pressure sensor 110.
  • 10 is a plan view showing two embodiments of such a support member. Referring to FIG. 10, the support member 240 is disposed and fixed to cross in a straight line within the connection pipe 210. Referring to FIG. 11, two support members 240 are cross-shaped. It is arranged in a fixed arrangement. Here, the structure of Figure 11 than the structure of Figure 10, the support member 240 in the connection pipe 210 can be more firmly fixed.
  • the support member 240 may be fixed to the connection pipe 210 in various ways.
  • FIG. 12 is a cross-sectional view illustrating an example in which the supporting member 240 is fixed in the connection pipe 210. Referring to FIG. 12, as each end of the support member 240 is inserted into a seating groove 211 formed at an inner surface of the connection pipe 210, the support member 240 is connected to the connection pipe 210. It can be stably fixed to the inside of the. As another example, a hook portion (not shown) is formed on an inner surface of the connection pipe 210, and a hook portion (not shown) is caught at an end portion of the support member 240. ) May be fixed to the connection pipe 210.
  • the support member 240 may be used a variety of materials, such as metal, plastic that can stably fix the elastic member 230.
  • FIG. 13 is a cross-sectional view of concrete passing through the supply pipe of FIG. 8.
  • the elastic member 230 is compressed by the pressure of the concrete 1 so that the blocking network 220 connects the connection pipe.
  • the connection pipe 210 is not clogged or the pressure sensor 110 is damaged.
  • FIG. 14 is a cross-sectional view illustrating an example in which the supply pipe of FIG. 8 is cleaned.
  • the supply pipe 180 is cleaned as the interior passes through the cleaning means 40, such as a piston later.
  • the piston cleans the inside of the supply pipe 180 while passing through the supply pipe 180 by pneumatic pressure.
  • the blocking network 220 protruding into the supply pipe 180 contacts the surface of the cleaning means 40.
  • the blocking network 220 is cleaned together when the supply pipe 180 is cleaned. That is, the blocking network 220 is protruded into the supply pipe 180 by the elasticity of the elastic member 230, so that when the cleaning means 40 passes, the cleaning means 40 with the cleaning means 40 The contact force is improved, and thus the blocking network 220 is cleaned neatly.
  • the present invention can be used in concrete supply facilities for constructing high-rise buildings using concrete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

The present invention provides a safe operation system for equipment for supplying concrete, comprising: a plurality of pressure sensors spaced apart from each other along the lengthwise direction of a concrete supply pipe to sense the internal pressures of the supply pipe at the respective locations of the sensors; a memory unit, which stores normal operation pressure range information or normal operation pressure variation information at the respective locations of the sensors; and a control unit which compares the internal pressures sensed by the pressure sensors and the normal operation pressure range information stored in the memory unit after starting the operation of the concrete pump, which determines whether or not the interior of the concrete supply pipe is clogged, and which stops the operation of the concrete pump when one or more internal pressures sensed by the pressure sensors or a variation in one or more internal pressures exceed a normal operation pressure range or are lowered to a level below a normal operation pressure variation range. As the internal pressures or internal pressure variation of the concrete supply pipe are monitored on a real-time basis by the pressure sensors arranged on the concrete supply pipe, clogging or clogged points of the concrete supply pipe can be detected in a quick and accurate manner, and the clogging of the pipe can be estimated and examined in advance, thereby preventing or reducing the breakage of the pipe caused by a rise in pressure in the concrete supply pipe, and stably controlling air. In addition, the present invention enables the clogged concrete supply pipe to be replaced alone, thereby reducing repair costs.

Description

콘크리트 공급 설비의 안전 운전 시스템 및 안전 운전 방법 Safe operation system and safe operation method of concrete supply equipment
본 발명은 콘크리트 공급 설비의 안전 운전 시스템 및 안전 운전 방법에 관한 것으로서, 보다 상세하게는 고층 건물로 콘크리트를 공급하는데 이용되는 콘크리트 공급 설비에서 콘크리트 공급 배관의 막힘 위치를 신속하고 정확하게 파악하고, 나아가 압력 상승에 의한 손상을 방지 또는 감소시킬 수 있는 콘크리트 공급 설비의 안전 운전 시스템 및 안전 운전 방법에 관한 것이다.The present invention relates to a safe operation system and a safe operation method of a concrete supply facility, and more particularly, to quickly and accurately determine the blocked position of the concrete supply pipe in the concrete supply facility used to supply concrete to a high-rise building, and furthermore, the pressure The present invention relates to a safe operation system and a safe operation method of a concrete supply facility that can prevent or reduce damage caused by an elevation.
일반적으로 건물 등의 각종 구조물의 축조에는 콘크리트가 사용되며, 고층 건물의 시공 시에는, 콘크리트 공급 설비인 콘크리트 펌프카와 콘크리트 공급배관을 사용하여 콘크리트를 높은 곳까지 이송한다. 상기한 콘크리트 공급 설비는, 건물의 높이가 매우 높은 초고층 건물을 시공할 경우, 초고층으로 콘크리트를 공급하기 위하여 상기 공급배관 내의 압력이 매우 높게 운전된다.In general, concrete is used for the construction of various structures such as buildings, and when constructing a high-rise building, the concrete is transported to a high place by using a concrete pump car and a concrete supply pipe, which are concrete supply facilities. In the above concrete supply facility, when constructing a high-rise building having a very high building height, the pressure in the supply pipe is very high to supply concrete to the high-rise building.
그런데, 종래의 콘크리트 공급 설비는, 공급배관 내부로 콘크리트가 유동하는 것인 만큼 콘크리트 잔존물이 공급배관 내에서 굳거나, 이물질 등이 투입되어 상기 공급배관이 폐색되는 경우가 발생되는데, 이러한 경우 상기 공급배관의 압력이 증가하면서 상기 공급배관이나, 상기 공급배관을 연결하는 연결부(예, 플렌지 등) 등에 파손이 발생하여, 안전사고 발생 및 공사 중단, 나아가 재시공을 해야 하는 경우가 발생하는 문제점이 있었다. By the way, in the conventional concrete supply equipment, as the concrete flows into the supply pipe, the concrete residues harden in the supply pipe, or foreign substances are injected to block the supply pipe. As the pressure of the pipe increases, damage occurs in the supply pipe, a connection part (for example, a flange, etc.) connecting the supply pipe, and there is a problem that a safety accident occurs, construction stops, and further reconstruction occurs.
또한, 종래의 콘크리트 공급 설비는, 공급배관의 폐색현상이 발생하여도, 상기 공급배관의 길이가 매우 길뿐만 아니라, 작업자가 상기 공급배관의 내부를 확인하기가 매우 어렵기 때문에, 작업자가 상가 공급배관의 어느 부분이 막혀 있는지 여부를 정확하게 판단하기가 어려운 문제점이 있었다.In addition, in the conventional concrete supply equipment, even if a blockage of the supply pipe occurs, the length of the supply pipe is very long, and it is very difficult for the operator to check the inside of the supply pipe, so that the worker supplies the mall. It was difficult to determine exactly which part of the pipe was blocked.
본 발명은, 콘크리트 공급 배관의 막힘 위치를 신속하고 정확하게 파악할 뿐만 아니라, 상기 공급 배관 내의 폐색을 미리 예측, 검토하여 콘크리트 공급 배관 내의 압력 상승에 의한 파손을 방지 또는 감소시킬 수 있으며, 공기지연을 방지할 수 있는 콘크리트 공급 설비의 안전 운전 시스템 및 안전 운전 방법을 제공하는데 목적이 있다.The present invention not only quickly and accurately grasps the position of the blockage of the concrete supply pipe, but also predicts and examines the blockage in the supply pipe in advance, thereby preventing or reducing damage caused by the pressure increase in the concrete supply pipe, and preventing air delay. It is an object of the present invention to provide a safe operation system and a safe operation method of a concrete supply facility.
본 발명은, 콘크리트 펌프 및, 상기 콘크리트 펌프에 연결되어 상기 콘크리트 펌프로부터 토출되는 콘크리트를 고층 건물로 공급하는 콘크리트 공급 배관을 구비하는 콘크리트 공급 설비의 안전 운전 장치로서, 상기 콘크리트 공급 배관의 길이 방향을 따라 서로 이격되게 설치되고, 해당 위치에서의 상기 공급 배관의 내부 압력들을 감지하는 복수 개의 압력 센서들, 상기 압력 센서들이 설치된 위치에서의 정상 운전 압력 범위 정보 또는 정상 운전 압력 변화율 정보를 저장하는 메모리부, 상기 콘크리트 펌프의 기동 후, 상기 압력 센서들에 의하여 감지된 내부 압력들과 상기 메모리부의 상기 정상 운전 압력 범위 정보를 비교하여, 상기 감지된 내부 압력들 중에서 하나 또는 복수 개가 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위를 벗어나거나 정상 운전 압력 변화율 범위 이하로 낮아지면, 상기 콘크리트 공급 배관의 내부가 막혀있다고 판단하여 상기 콘크리트 펌프의 운전을 정지시키는 제어부를 포함하는 콘크리트 공급 설비의 안전 운전 시스템을 제공한다.The present invention provides a safe driving device of a concrete supply facility having a concrete pump and a concrete supply pipe connected to the concrete pump and supplying concrete discharged from the concrete pump to a high-rise building, wherein the longitudinal direction of the concrete supply pipe is A plurality of pressure sensors which are installed to be spaced apart from each other and store internal pressures of the supply pipe at a corresponding position, and store normal operating pressure range information or normal operating pressure change rate information at a position where the pressure sensors are installed; After starting the concrete pump, the internal pressures detected by the pressure sensors are compared with the normal operating pressure range information of the memory unit, so that one or a plurality of the detected internal pressures are equal to the internal pressure or the internal pressure. The rate of change is outside the normal operating pressure range When it is lowered or below the normal operating pressure change rate range, it is determined that the interior of the concrete supply pipe is blocked to provide a safe operation system of a concrete supply facility including a control unit for stopping the operation of the concrete pump.
본 발명의 다른 측면에 의하면, 본 발명은 콘크리트 펌프에 연결되어 상기 콘크리트 펌프로부터 토출되는 콘크리트를 고층 건물로 공급하는 공급 배관을 구비하는 콘크리트 공급 설비의 안전 운전 방법으로서, 상기 콘크리트 공급 배관의 길이 방향을 따라 서로 이격되어 설치된 복수 개의 압력센서들로부터 해당 위치에서의 내부 압력들을 감지하는 단계 및 상기 콘크리트 펌프의 기동 후, 상기 감지된 내부 압력들 중에서 하나 또는 복수 개가 정상 운전 압력 범위를 벗어나거나, 정상 운전 압력 변화율 범위 이하로 낮아지면, 상기 콘크리트 공급 배관의 내부가 막혀있다고 판단하여 상기 콘크리트 펌프의 운전을 정지시키는 단계를 포함한다. 또한 본 발명은 상기 콘크리트 펌프와 상기 콘크리트 공급 배관을 포함하는 콘크리트 공급설비를 지상에 수평적으로 모사하여 운전 모사 실험을 수행하고, 상기 운전 모사 실험으로부터 상기 압력센서들에 대응되는 상기 정상 운전 압력 범위 또는 상기 정상 운전 압력 변화율 범위를 도출하는 단계를 더 포함한다. According to another aspect of the invention, the present invention is a safe operation method of a concrete supply equipment having a supply pipe for supplying the concrete discharged from the concrete pump discharged from the concrete pump to a high-rise building, the longitudinal direction of the concrete supply pipe Sensing internal pressures at a corresponding position from a plurality of pressure sensors spaced apart from each other along and after starting the concrete pump, one or more of the detected internal pressures are out of a normal operating pressure range, or If it is lowered below the operating pressure change rate range, it is determined that the interior of the concrete supply pipe is blocked, and the step of stopping the operation of the concrete pump. In another aspect, the present invention performs a driving simulation experiment by horizontally simulating the concrete supply equipment including the concrete pump and the concrete supply pipe on the ground, and the normal operating pressure range corresponding to the pressure sensors from the driving simulation experiment Or deriving the normal operating pressure change rate range.
따라서, 본 발명은, 콘크리트 공급 배관에 설치된 압력 센서들에 의하여 내부 압력 또는 내부 압력 변화율이 실시간으로 모니터링 되기 때문에, 콘크리트 공급 배관의 폐색과 폐색위치를 신속하고 정확하게 파악할 수 있을 뿐만 아니라, 폐색을 미리 예측, 검토할 수 있어, 콘크리트 공급 배관 내의 압력 상승에 의한 파손을 방지 또는 감소시킬 수 있고 공기를 안정적으로 관리할 수 있으며, 폐색된 부분의 콘크리트 공급배관만 교체 작업할 수 있기 때문에 불필요한 복구비용이 감소될 수 있다.Therefore, in the present invention, since the internal pressure or the rate of change of the internal pressure is monitored in real time by pressure sensors installed in the concrete supply pipe, it is possible to quickly and accurately grasp the blockage and the location of the blockage of the concrete supply pipe, as well as the blockage in advance. It can be predicted and reviewed to prevent or reduce the damage caused by the pressure increase in the concrete supply pipe, to manage the air stably, and to replace only the concrete supply pipe in the occluded part, thus requiring unnecessary recovery cost. Can be reduced.
도 1은 본 발명의 일 실시예에 따른 콘크리트 공급 설비의 안전 운전 시스템의 제어 흐름을 보여주는 블록도이다.1 is a block diagram showing a control flow of a safe operation system of a concrete supply facility according to an embodiment of the present invention.
도 2는 도 1의 콘크리트 공급 설비의 안전 운전 시스템을 보여주는 개략적인 구성도이다. FIG. 2 is a schematic diagram illustrating a safe driving system of the concrete supply facility of FIG. 1.
도 3은 도 1에 콘크리트 공급 설비의 안전 운전 시스템을 이용하여, 콘크리트 공급 설비를 안전하게 운전하는 방법을 나타내는 흐름도이다.FIG. 3 is a flowchart illustrating a method of safely operating a concrete supply facility using the safe driving system of the concrete supply facility in FIG. 1.
도 4는 도 3의 콘크리트 공급 설비를 안전하게 운전하기 위한 정상 운전 압력 범위 및 정상 운전 압력 변화율 범위를 도출하기 위한 운전 모사 시험 장치를 보여주는 개략적인 구성도이다.FIG. 4 is a schematic diagram illustrating a driving simulation test apparatus for deriving a normal operating pressure range and a normal operating pressure change rate range for safely operating the concrete supply facility of FIG. 3.
도 5 및 도 6은 도 4에 도시된 운전 모사 시험 장치로부터 도출되는 정상 운전 압력 범위 및 비정상 운전 압력의 거동과, 정상 운전 압력 변화율 범위 및 비정상 운전 압력 변화율의 거동을 보여주는 그래프이다.5 and 6 are graphs showing the behavior of the normal operating pressure range and the abnormal operating pressure derived from the driving simulation test apparatus shown in FIG. 4, and the behavior of the normal operating pressure change rate range and the abnormal operating pressure change rate.
도 7은 도 2의 공급배관에 설치된 압력센서 보호장치를 나타내는 단면도이다. 7 is a cross-sectional view showing a pressure sensor protection device installed in the supply pipe of FIG.
도 8은 도 2의 공급배관에 설치된 압력센서 보호유닛을 나타내는사시도이다.8 is a perspective view showing a pressure sensor protection unit installed in the supply pipe of FIG.
도 9는 도 8에 탄성부재와 지지부재가 설치된 단면도이다.9 is a cross-sectional view in which the elastic member and the support member are installed in FIG. 8.
도 10 및 도 11은 도 9의 지지부재의 실시예를 나타내는 평면도이다.10 and 11 are plan views illustrating embodiments of the supporting member of FIG. 9.
도 12는 도 9의 지지부재가 상기 연결배관에 고정된 예를 나타내는 단면도이다.12 is a cross-sectional view illustrating an example in which the supporting member of FIG. 9 is fixed to the connection pipe.
도 13은 도 8의 공급배관에 콘크리트가 통과되는 경우의 단면도이다.FIG. 13 is a cross-sectional view of concrete passing through the supply pipe of FIG. 8.
도 14는 도 8의 공급배관이 청소되는 예를 나타내는 단면도이다.14 is a cross-sectional view illustrating an example in which the supply pipe of FIG. 8 is cleaned.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 콘크리트 공급 설비의 안전 운전 시스템(이하" 안전 운전 시스템"이라고 함;100)은, 콘크리트 펌프(140) 및, 상기 콘크리트 펌프(140)에 연결되어 상기 콘크리트 펌프(140)로부터 토출되는 콘크리트를 고층 건물(10)로 공급하는 콘크리트 공급 배관(180)을 구비하는 안전 운전 시스템(100)으로서, 복수 개의 압력 센서(111,112,113,114,115,116)들, 메모리부(130), 제어부(120), 디스플레이부(150) 및 알람부(160)를 포함한다. First, referring to FIGS. 1 and 2, a safe driving system (hereinafter referred to as a “safe driving system”) 100 of a concrete supply facility according to an embodiment of the present invention may include a concrete pump 140 and the concrete pump ( As a safety driving system 100 having a concrete supply pipe 180 connected to the 140 to supply the concrete discharged from the concrete pump 140 to the high-rise building 10, a plurality of pressure sensors (111, 112, 113, 114, 115, 116), The memory unit 130, the control unit 120, the display unit 150, and the alarm unit 160 are included.
상기 콘크리트 공급 배관(180)은, 공사 중인 고층 건물(10)의 측면을 따라 수직 방향으로 설치되어 있다. 상기 콘크리트 공급 배관(180)의 일 단부는 콘크리트 펌프(140)에 연결되고, 타 단부는 공급 노즐(182)에 연결되어 있다. 상기 콘크리트 공급 배관(180)은 상기 콘크리트 펌프(140)로부터 토출된 콘크리트를 상기 고층 건물(10)의 특정 위치로 공급하는 기능을 수행한다. 여기서, 상기 콘크리트 펌프(140)는 콘크리트를 토출하는 기능을 수행하며, 흡입측이 레미콘과 같은 콘크리트 저장부(170)에 연결되어 있다. 한편, 상기 콘크리트 공급 배관(180)은, 외부에서 작업자가 내부의 콘크리트 유동 상태를 파악할 수 있도록 일부구간이 투명한 재질로 형성되어 있다. 또한, 상기 콘크리트 공급 배관(180)은 복수 개의 배관들과, 상기 배관들을 결합하여 연장하는 플랜지들을 포함하는 구조로 할 수 있지만, 이에 한정되지 않고 다양한 구조를 가질 수 있다. The concrete supply pipe 180 is installed in a vertical direction along the side of the high-rise building 10 under construction. One end of the concrete supply pipe 180 is connected to the concrete pump 140, the other end is connected to the supply nozzle 182. The concrete supply pipe 180 serves to supply concrete discharged from the concrete pump 140 to a specific location of the high-rise building 10. Here, the concrete pump 140 performs a function of discharging concrete, the suction side is connected to the concrete storage unit 170, such as ready concrete. On the other hand, the concrete supply pipe 180, some sections are formed of a transparent material so that the worker can grasp the concrete flow state inside. In addition, the concrete supply pipe 180 may have a structure including a plurality of pipes and flanges extending by combining the pipes, but is not limited thereto and may have various structures.
상기 복수 개의 압력 센서(111,112,113,114,115,116)들은 제1,2,3,4,5,6압력 센서들로 구성되며, 상기 콘크리트 공급 배관(180)의 길이 방향을 따라 서로 이격되게 설치되어 설치 위치에서의 상기 콘크리트 공급 배관(180)의 내부 압력들을 감지한다. 상기 제1,2,3,4,5,6압력 센서(111,112,113,114,115,116)들은, 등 간격으로 설치될 수도 있으며, 상기 콘크리트 공급 배관(180)에서 상대적으로 강도가 취약한 부분 또는 굴곡진 부분 또는 배관끼리 인접한 전후 부분 등에 설치될 수도 있지만 이에 한정되지 않는다. 또한, 상기 압력 센서(111,112,113,114,115,116)들은 본 실시예에서 6층 건물(10)에 대하여 2층부터 옥상까지 각층 당 하나의 센서(111,112,113,114,115,116)로 총 6개를 구비하였지만, 이는 일 실시예로 상기 공급배관(180)의 길이 콘크리트 토출량 등에 따라 그 개수를 달리 할 수 있다. 그리고, 상기 압력 센서(111,112,113,114,115,116)들은 무선 압력 센서가 적용되어, 설치 위치에서 상기 공급 배관(180)의 내부 압력을 감지하여 그 정보를 상기 제어부(120)로 무선 송신한다. The plurality of pressure sensors 111, 112, 113, 114, 115, and 116 may include first, second, third, fourth, fifth, and sixth pressure sensors, and may be installed to be spaced apart from each other along a longitudinal direction of the concrete supply pipe 180. The internal pressures of the concrete supply pipe 180 are sensed. The first, second, third, fourth, fifth, and sixth pressure sensors 111, 112, 113, 114, 115, and 116 may be installed at equal intervals, and relatively weak or curved portions or adjacent portions of the concrete supply pipe 180 may be adjacent to each other. The front and rear parts may be installed, but the present invention is not limited thereto. In addition, although the pressure sensors 111, 112, 113, 114, 115, and 116 are provided with one sensor 111, 112, 113, 114, 115, and 116 in each floor from the second floor to the rooftop for the six-story building 10 in the present embodiment, this is one embodiment. The number of the lengths 180 may vary depending on the amount of concrete discharged. In addition, the pressure sensors 111, 112, 113, 114, 115, and 116 are wireless pressure sensors applied to sense the internal pressure of the supply pipe 180 at an installation position, and wirelessly transmit the information to the controller 120.
상기한 바와 같이, 상기 압력 센서(111,112,113,114,115,116)들은 상기 공급 배관(180)의 구간별로 설치되어, 상기 공급배관(180)의 일부구간에서 발생하는 폐색을 신속하고 정확하게 파악할 수 있고 이에 따라 공급배관(180)의 파손 전에 공급배관(180) 교체 및 보수 등 적절한 조치를 미리 취할 수 있기 때문에 안전사고예방 및 공기지연을 방지할 수 있다. 한편, 상기 공급배관(180)의 교체는 복수 개의 배관과 플렌지로 구성되어 있는 경우 막혀있는 배관이 연결되어 있는 플랜지를 풀고 새로운 배관을 연결하는 방법으로 할 수 있다. As described above, the pressure sensors (111, 112, 113, 114, 115, 116) are installed for each section of the supply pipe 180, it is possible to quickly and accurately grasp the blockage occurring in a section of the supply pipe 180, and thus supply pipe 180 Before the breakage of the supply pipe 180, appropriate measures such as replacement and repair can be taken in advance to prevent safety accidents and prevent air delay. On the other hand, when the supply pipe 180 is replaced with a plurality of pipes and flanges can be made by a method of connecting the new pipe and loosening the flange to which the blocked pipe is connected.
또한, 상기 안전 운전 시스템(100)은 상기 공급 배관(180)의 선단부와 말단부에 각각 온도센서(117,118)를 구비한다.In addition, the safe driving system 100 includes temperature sensors 117 and 118, respectively, at the front and rear ends of the supply pipe 180.
상기 메모리부(130)는, 상기 압력 센서(111,112,113,114,115,116)들이 설치된 위치에서의 정상 운전 압력 범위 정보 또는 정상 운전 압력 변화율 정보를 저장하는 역할을 한다. 여기서, 상기 정상 운전 압력 범위 정보 또는 정상 운전 압력 변화율 정보를 도출하는 방법은 다양하게 선택될 수 있다. 본 실시예에서는, 상기 정상 운전 압력 범위를, 상기 각 압력센서(111,112,113,114,115,116)에 대응되는 최대 압력 또는 최대 압력 변화율로 결정되며, 이에 대한 상세한 설명은 후술하기로 한다.The memory unit 130 stores the normal operating pressure range information or the normal operating pressure change rate information at the position where the pressure sensors 111, 112, 113, 114, 115, and 116 are installed. Here, the method for deriving the normal operating pressure range information or the normal operating pressure change rate information may be variously selected. In the present embodiment, the normal operating pressure range is determined as the maximum pressure or the maximum pressure change rate corresponding to each of the pressure sensors 111, 112, 113, 114, 115, and 116, which will be described later.
상기 제어부(120)는, 상기 콘크리트 펌프(140)의 기동 후, 상기 압력 센서(111,112,113,114,115,116)들에 의하여 감지된 내부 압력들과 상기 메모리부(130)의 상기 정상 운전 압력 범위 정보 또는 정상 운전 압력 변화율 정보를 근거로 이들을 비교하여, 상기 콘크리트 펌프(140)의 운전을 제어하며, 이러한 제어방법에 대한 다양한 실시예를 살펴보면 다음과 같다. The controller 120, after starting the concrete pump 140, internal pressures detected by the pressure sensors 111, 112, 113, 114, 115, and 116 and the normal operating pressure range information or the normal operating pressure change rate of the memory 130. By comparing them based on the information, the operation of the concrete pump 140 is controlled, and the various embodiments of the control method are as follows.
먼저, 상기 제어부(120)는, 상기 콘크리트 펌프(140)의 기동 후, 상기 압력센서(111,112,113,114,115,116)들에 의하여 감지된 내부 압력들 중에서 하나 또는 복수 개가 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위를 벗어나거나, 정상 운전 압력 변화율 범위를 벗어나면, 상기 콘크리트 공급 배관(180)의 내부가 막혀있다고 판단하여 상기 콘크리트 펌프(140)의 운전을 정지시킨다. 상세하게는, 상기 제어부(120)는 상기 압력센서(111,112,113,114,115,116)들에 의하여 감지된 내부 압력들 중에서 하나 또는 복수 개가 내부 압력의 변화율이 정상 운전 압력 변화율 범위 이하로 낮아지면 상기 콘크리트 공급 배관(180)의 내부가 막혀있다고 판단하여 상기 콘크리트 펌프(140)의 운전을 정지시킨다. 이때, 상기 제어부는, 상기 정상 운전 압력 변화율 범위 이하로 낮아지는 특정 압력센서가 설치된 부분의 이전에서 상기 콘크리트 공급 배관(180)이 막혀 있다고 판단한다. First, the controller 120, after the start of the concrete pump 140, one or more of the internal pressure detected by the pressure sensors 111, 112, 113, 114, 115, 116 is the internal pressure or the rate of change of the internal pressure is the normal operating pressure range If out of or outside the normal operating pressure change rate range, it is determined that the inside of the concrete supply pipe 180 is blocked to stop the operation of the concrete pump 140. Specifically, the control unit 120 is one or more of the internal pressure detected by the pressure sensors 111, 112, 113, 114, 115, 116 when the rate of change of the internal pressure is lower than the normal operating pressure change rate range of the concrete supply pipe 180 It is determined that the inside of the blockage is stopped the operation of the concrete pump 140. In this case, the controller determines that the concrete supply pipe 180 is blocked before the portion where the specific pressure sensor is lowered below the normal operating pressure change rate range.
또한, 상기 제어부(120)는, 상기 복수 개의 압력센서(111,112,113,114,115,116)들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 범위 이하로 낮아진 압력센서들 중 최전방에 설치된 압력센서와, 상기 복수 개의 압력센서(111,112,113,114,115,116)들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 범위 이상으로 높아진 압력센서들 중 최후방에 설치된 압력센서 사이에서 상기 콘크리트 공급 배관(180)이 막혀 있다고 판단한다.In addition, the controller 120 may include a pressure sensor installed at the foremost of the pressure sensors in which the rate of change of the internal pressure or the internal pressure of the plurality of pressure sensors 111, 112, 113, 114, 115, and 116 is lower than the normal operating pressure range or the normal operating pressure change rate range. Among the plurality of pressure sensors 111, 112, 113, 114, 115, and 116, the concrete supply pipe 180 between the pressure sensors installed at the rear of the pressure sensors whose internal pressure or the rate of change of the internal pressure is higher than the normal operating pressure range or the normal operating pressure change rate range. ) Is judged to be blocked.
또한 상기 제어부(120)는, 상기 콘크리트 펌프(140)가 기동되어 정상 운전 상태에 도달된 후, 상기 압력센서(111,112,113,114,115,116)로부터 감지된 압력의 변화율이 설정된 값보다 크면, 상기 콘크리트 공급 설비가 상기 정상 운전 범위를 벗어난 것으로 판단할 수 있다. In addition, the control unit 120, if the rate of change of the pressure detected from the pressure sensor (111, 112, 113, 114, 115, 116) is greater than the set value after the concrete pump 140 is started to reach the normal operating state, the concrete supply equipment is the normal It may be determined that the driving range is out of range.
또한, 상기 제어부(120)는, 특정 시간에서 상기 제1,2,3,4,5,6압력 센서(111,112,113,114,115,116)들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 이하로 낮아진 압력센서들(이하, "압력 감소 압력센서들"이라 함)을 파악하고, 이로부터 상기 압력 감소 압력센서들 중 최전방에 설치된 압력센서와 상기 압력 감소 압력센서들 중 최후방에 설치된 압력센서 사이에서 상기 콘크리트 배관(180)이 막혀 있다고 판단한다. 여기에서, 상기 최전방은 상기 콘크리트 펌프(140)와 가장 근접한 위치를 의미한다.In addition, the control unit 120, the change rate of the internal pressure or the internal pressure of the first, second, third, fourth, fifth, sixth pressure sensors 111, 112, 113, 114, 115, 116 at a specific time is less than the normal operating pressure range or the normal operating pressure change rate The pressure sensors (hereinafter referred to as "pressure reducing pressure sensors") lowered to the pressure sensor, and the pressure sensor installed at the foremost of the pressure reducing pressure sensors and the pressure sensor installed at the rear of the pressure reducing pressure sensors. It is determined that the concrete pipe 180 is blocked. Here, the foremost means the position closest to the concrete pump 140.
한편, 상기 제어부(120)는 상기한 콘크리트 펌프(140)의 운전 정지 또는 각 공급배관(180)에서의 내부 압력상태와 그 위치에 관한 정보를 상기 디스플레이부(150)를 통하여 작업자에게 화상으로 전달한다. 또한, 상기 제어부(120)는, 상기한 콘크리트 펌프(140)의 운전 정지 또는 각 공급배관(180)에서의 내부 압력상태와 그 위치에 관한 정보를 상기 알람부(160)를 이용하여 음성적으로도 알린다. 여기서, 상기 디스플레이부(150)와 상기 알람부(160)는, 상기 제어부(120)와 연결된 모니터, 경고등 및 경보음의 공지의 장치로서 이에 대한 상세한 설명은 생략하기로 한다. 한편, 도 2에서의 참조부호 135는, 상기 압력센서(111,112,113,114,115,116)들과 상기 온도센서(117,118)들로부터 무선 데이터를 기록하고 이를 상기 제어부(120)로 출력하는 로거(logger;135)를 나타내며, 또한 참조부호 136a,136b,136c는 각각 게이트웨이(gateway)를 나타낸다. On the other hand, the control unit 120 transmits the information on the operation stop or the internal pressure state and the position of each of the supply pipe 180, the concrete pump 140 to the worker as an image through the display unit 150. do. In addition, the control unit 120 also provides the voice information using the alarm unit 160 to stop the operation of the concrete pump 140 or the internal pressure state and position of each supply pipe 180. Inform. Here, the display unit 150 and the alarm unit 160 are known devices of a monitor, a warning lamp, and an alarm sound connected to the control unit 120, and a detailed description thereof will be omitted. Meanwhile, reference numeral 135 in FIG. 2 represents a logger 135 that records wireless data from the pressure sensors 111, 112, 113, 114, 115 and 116 and the temperature sensors 117 and 118 and outputs the wireless data to the controller 120. Reference numerals 136a, 136b, and 136c denote gateways, respectively.
이하에서는, 도 3을 참조하여, 상기 공급배관에서 폐색된 원인을 파악하고 그 위치를 찾아내는 방법에 대하여 상세하게 살펴본다.Hereinafter, referring to FIG. 3, the method of identifying the cause of the blockage in the supply pipe and finding the location thereof will be described in detail.
먼저, 운전 모사 시험을 하여 정상 운전 압력 범위 및 정상 운전 압력 변화율 범위를 도출한다(S10 단계).First, a driving simulation test is performed to derive a normal operating pressure range and a normal operating pressure change rate range (step S10).
도 4를 참조하면, 상기 운전 모사 시험을 위한 장치의 개략적인 구성도가 도시되어 있다. 상기 콘크리트 펌프(140)가 콘크리트 저장장치(190)에 연결된다. 상기 콘크리트 펌프(140)는 실제 상기 고층 건물(10a)에 콘크리트를 공급하는데 실제 이용되는 것과 동일한 사양을 가진다. 그리고, 상기 콘크리트 공급 배관(180a)은 유체 역학적으로 상사된 구조를 가지는 배관들이 상기 콘크리트 펌프(140)와 상기 콘크리트 저장장치(190)를 연결한다. 한편, 상기한 운전 모사 시험장치에서, 상기 공급 배관(180a)은 지상에 수평적으로 설치되어 있기 때문에, 중력의 영향이 실질적으로 없다. 따라서, 상기 배관(180a)의 길이가 상기 콘크리트 공급 배관(180)의 길이보다 길게 이루어져 있다. 4, there is shown a schematic diagram of an apparatus for the driving simulation test. The concrete pump 140 is connected to the concrete storage device 190. The concrete pump 140 has the same specifications as actually used to actually supply concrete to the high-rise building 10a. The concrete supply pipe 180a connects the concrete pump 140 and the concrete storage device 190 with pipes having a hydrodynamically similar structure. On the other hand, in the above-described driving simulation test apparatus, since the supply pipe 180a is horizontally installed on the ground, there is substantially no influence of gravity. Therefore, the length of the pipe (180a) is made longer than the length of the concrete supply pipe (180).
상기 압력 센서들은 상기 콘크리트 펌프(140)와, 상기 배관(180a)에 대하여 이격되도록 총 14개가 설치된다. 상기 콘크리트 저장장치(170)에 저장되어 있는 콘크리트는 상기 콘크리트 펌프(140)에 의하여 상기 배관(180a)을 거쳐, 씨피비장치(CPB; Concrete placing boom;142)에 의하여 콘크리트 타설 위치(10a)에 포설된다. A total of 14 pressure sensors are installed to be spaced apart from the concrete pump 140 and the pipe 180a. Concrete stored in the concrete storage device 170 is passed through the pipe (180a) by the concrete pump 140, the concrete placing boom (CPB; concrete placing boom; 142) in the concrete placing position (10a) Is installed.
도 5 및 도 6은 상기 콘크리트 펌프(140)의 운전이 시작되어 안정화된 후, 상기 압력 센서들에서 감지한 내부 압력과, 상기 압력 센서들에서 감지한 내부 압력의 변화율을 도시한 그래프로서, 그래프에서는 상기 압력 센서들을 총 4개로 하여 설명하기로 한다. 도 5에서는, 상기 콘크리트 펌프(140)가 정상 운전 상태에 도달된 이후로부터 측정된 압력 그래프들(f1, f2, f3, f4)을 보여준다. 또한, 도 6에서는 상기 콘크리트 펌프(140)가 정상 운전 상태에 도달된 이후로부터 측정된 압력 변화율 그래프들(g1, g2, g3, g4)을 보여준다. 도면을 참조하면, 시간이 t1일 때까지는 내부 압력 및 내부 압력 변화율이 정상 운전 압력 범위 내에 위치한다. 그런데, 시간이 t1을 지나면서, 상기 제2압력 센서(P1)와 상기 제3압력 센서(P3) 사이의 공급 배관의 내부에 막힘 현상이 발생되면, 상기 제1압력 센서(P1) 및 상기 제2압력 센서(P2)의 압력(f1, f2)이 급격하게 상승하고, 제3압력 센서(P3) 및 상기 제4압력 센서(P4)의 압력(f3, f4)은 급격하게 감소한다. 즉, 상기 제1,2,3,4압력 센서들(P1,P2,P3,P4)의 내부 압력이 모두 정상 운전 압력 범위에서 벗어나게 된다.5 and 6 are graphs illustrating a change rate of the internal pressure sensed by the pressure sensors and the internal pressure sensed by the pressure sensors after the operation of the concrete pump 140 starts and stabilizes. In the following description, a total of four pressure sensors will be described. In FIG. 5, pressure graphs f1, f2, f3, f4 measured from after the concrete pump 140 has reached a normal operating state are shown. In addition, FIG. 6 shows pressure change rate graphs g1, g2, g3, and g4 measured after the concrete pump 140 reaches a normal operating state. Referring to the figure, the internal pressure and the internal pressure change rate are within the normal operating pressure range until the time t1. By the way, when the time passes t1 and a clogging phenomenon occurs inside the supply pipe between the second pressure sensor P1 and the third pressure sensor P3, the first pressure sensor P1 and the first agent are blocked. The pressures f1 and f2 of the second pressure sensor P2 rise rapidly, and the pressures f3 and f4 of the third pressure sensor P3 and the fourth pressure sensor P4 decrease rapidly. That is, the internal pressures of the first, second, third and fourth pressure sensors P1, P2, P3 and P4 are all out of the normal operating pressure range.
또한, 도 6을 참조하면, 상기 제1압력 센서(P1) 및 상기 제2압력 센서(P2)의 압력 변화율(g1, g2)이 양(+)의 값을 가지면서 절대값이 증가하고, 상기 제3압력 센서(P3) 및 상기 제4압력 센서(P4)의 압력 변화율(g3, g4)이 음(-)의 값을 가지면서 절대값이 증가한다. 이로부터, 상기 제1,2,3,4압력 센서들(P1,P2,P3,P4)의 내부 압력 변화율도 모두 정상 운전 압력 범위에서 벗어나게 된다.6, the absolute value increases while the pressure change rates g1 and g2 of the first pressure sensor P1 and the second pressure sensor P2 have positive values. The absolute value increases while the pressure change rates g3 and g4 of the third pressure sensor P3 and the fourth pressure sensor P4 have a negative value. From this, the rate of change of the internal pressure of the first, second, third and fourth pressure sensors P1, P2, P3 and P4 is also out of the normal operating pressure range.
상기로부터, 시간이 t1일 때부터, 상기 배관(180a)의 내부에 막힘 현상이 발생한 것으로 추측될 수 있다. 상기 배관(180a)의 내부에 막힘 현상이 발생하면, 상기 콘크리트 펌프(140)로부터 토출되는 콘크리트가 순환되지 못하고, 상기 배관(180a) 내에 정체되면서 내부 압력이 급격하게 상승된다. 또한, 상기 배관(180a)에서 막힌 부분의 하류 부분에서는 콘크리트의 공급이 없기 때문에 내부 압력이 급격하게 하강한다. 따라서, 이러한 내부 압력의 변동 현상에 근거하여, 상기 제어부(120)는 상기 제2압력 센서(P2)와 상기 제3압력 센서(P3) 사이에서 상기 배관(180a)이 막혀 있다고 판단한다. 즉, 상기 배관(180a)의 내부 압력 기준으로 상승되는 부분과 하강되는 부분 사이에 막힘이 생기거나, 상기 배관(180a)의 내부 압력 변화율 기준으로 상승되는 부분(양(+)의 값을 가짐)과 하강되는 부분(음(-)의 값을 가짐) 사이에 막힘이 생기는 것으로 추정할 수 있다.From the above, since the time t1, it may be assumed that a blockage phenomenon occurred in the inside of the pipe (180a). When a blockage occurs in the pipe 180a, the concrete discharged from the concrete pump 140 may not be circulated, and the internal pressure is rapidly increased while stagnating in the pipe 180a. In addition, since there is no supply of concrete in the downstream portion of the blocked portion of the pipe 180a, the internal pressure drops rapidly. Therefore, based on the change in the internal pressure, the controller 120 determines that the pipe 180a is blocked between the second pressure sensor P2 and the third pressure sensor P3. That is, a blockage occurs between a portion that rises and falls on the basis of the internal pressure of the pipe 180a, or a portion that has risen based on the internal pressure change rate of the pipe 180a (has a positive value). It can be assumed that there is a blockage between the and falling portions (having a negative value).
따라서, 배관(180a) 내부의 막힘에 의한 비정상 운전 압력 상태의 기준으로서, 최대 압력이 이용될 수도 있다. 또한, 압력 변화율도 급격하게 증가하기 때문에, 최대 압력 변화율이 비정상 운전 압력 상태의 기준으로서 이용될 수도 있다. Therefore, the maximum pressure may be used as a reference for the abnormal operating pressure state due to the blockage inside the pipe 180a. In addition, since the rate of change of pressure also increases rapidly, the maximum rate of change of pressure may be used as a reference for the abnormal operating pressure state.
상기 제어부(120)는 운전 모사 시험에 의하여 도출된 정상 운전 압력 정보 및 비정상 운전 압력 정보를 상기 메모리부(130)에 저장한다. 특히, 고층 건물(10)의 경우, 각 층마다 콘크리트를 공급해야 하기 때문에, 상기 운전 모사 시험이 각 층에 대하여 각각 수행된다.The controller 120 stores the normal operating pressure information and the abnormal operating pressure information derived by the driving simulation test in the memory unit 130. In particular, in the case of the high-rise building 10, because the concrete must be supplied for each floor, the driving simulation test is performed for each floor, respectively.
상기한 작업을 실시하고, 운전 모사 시험에 의하여 각 정보를 도출한 후에는, 상기 콘크리트 펌프(140) 및 상기 압력 센서들을 상기 모사 장치로부터 분리한 후, 도 1 및 도 2에 도시된 바와 같이, 실제 공사 현장에 설치한다. 이로부터, 상기 안전 운전 시스템(100)의 현장 설치 작업이 완료된다.After performing the above operation and deriving each information by the driving simulation test, after separating the concrete pump 140 and the pressure sensors from the simulation apparatus, as shown in Figs. 1 and 2, Install at actual construction site. From this, the field installation work of the safe driving system 100 is completed.
상기한 바와 같이, 운전 모사 시험을 하여 정상 운전 압력 범위 및 정상 운전 압력 변화율 범위를 도출한 후 안전 운전 시스템(100)의 현장 설치 작업이 완료되면, 상기 콘크리트 펌프(140)를 기동하고, 상기 압력 센서(111,112,113,114,115,116)들로부터 해당 위치에서 감지된 내부 압력들 및 내부 압력 변화율을 실시간으로 설정 시간 단위로 수신한다(S20 단계). As described above, after the driving simulation test to derive the normal operating pressure range and the normal operating pressure change rate range, when the field installation work of the safety driving system 100 is completed, the concrete pump 140 is started, and the pressure The internal pressures and the internal pressure change rate detected at the corresponding positions from the sensors 111, 112, 113, 114, 115, and 116 are received in real time on a set time unit (step S20).
그런 다음, 제어부(120)에서 상기 내부 압력들 및 상기 내부 압력 변화율들이 정상 운전 압력 범위 및 정상 운전 압력 변화율 범위를 벗어나는지 여부를 판단한다(S30 단계). 여기서, 상기 콘크리트 공급 배관(180)에서 폐색된 위치를 찾아내는 메커니즘은, 전술한 상기 배관에서 막힘 위치를 찾아내는 메커니즘과 유사한 바, 상세한 설명은 생략한다.Then, the controller 120 determines whether the internal pressures and the internal pressure change rates are outside the normal operating pressure range and the normal operating pressure change rate range (S30). Here, the mechanism for finding the position occluded in the concrete supply pipe 180 is similar to the mechanism for finding the blocked position in the pipe described above, a detailed description thereof will be omitted.
이때, 만일 상기 내부 압력들이 정상 운전 압력 범위를 벗어나면, 상기 콘크리트 펌프(140)의 운전을 정지하고(S40 단계), 이를 상황실로 보고한다(S45단계). 이는, 상기 콘크리트 공급 배관(180) 내부의 일부가 막혀 있을 경우 내부 압력이 상승하는데, 만일 상기한 상태에서도 상기 콘크리트 펌프(140)의 구동이 계속되면, 상기 내부 압력이 급격하게 상승하고, 상기 배관과 상기 플랜지의 연결 부분이 파손되는 등 공급배관(180)의 파손을 초래할 수 있기 때문이다. 특히, 고층 건물의 공사인 경우에는, 상기 콘크리트 공급 배관(180)의 길이가 매우 길고, 상기 콘크리트 공급 배관(180)이 공사 중인 건물(10) 측면에 설치되는 프레임(30)에 고정되는 구조를 가지기 때문에, 상기 파손의 발생 시, 복구 작업이 매우 어렵고, 또한 상기 복구 작업 시, 공사가 중단될 수밖에 없기 때문에, 공사 기간이 늘어나고, 공사비용이 증가한다. At this time, if the internal pressures out of the normal operating pressure range, the operation of the concrete pump 140 is stopped (step S40), and reports it to the situation room (step S45). The internal pressure increases when a part of the inside of the concrete supply pipe 180 is blocked. If the concrete pump 140 continues to operate even in the above state, the internal pressure rapidly rises, and the pipe This is because it may cause damage to the supply pipe 180, such as damage to the connection portion of the flange. In particular, in the case of construction of high-rise building, the concrete supply pipe 180 is very long in length, the concrete supply pipe 180 is a structure fixed to the frame 30 is installed on the side of the building 10 under construction Since the repair work is very difficult at the time of the occurrence of the damage, and the construction is inevitably interrupted at the time of the repair work, the construction period is increased and the construction cost is increased.
하지만, 본 실시예에서는, 상기 콘크리트 공급 배관(180)의 내부 압력과 내부 압력 변화율을 실시간으로 모니터링하기 때문에, 상기한 콘크리트 공급 배관(180)의 파손 가능성을 크게 감소할 수 있다. However, in this embodiment, since the internal pressure and the internal pressure change rate of the concrete supply pipe 180 are monitored in real time, the possibility of breakage of the concrete supply pipe 180 can be greatly reduced.
상기한 바에 따라, 콘크리트 펌프(140)의 운전을 정지하고, 비정상 운전정보를 외부로 알린 후에는, 공급배관(180)의 폐색원인 및 위치를 파악한다(S60단계). 그런 다음 해당 배관을 교체하여(S70) 보수작업을 실시하고, 보수작업이 완료되면 콘크리트 타설을 재계한다(S80).As described above, after stopping the operation of the concrete pump 140, and informs the abnormal operation information to the outside, the cause and location of the blockage of the supply pipe 180 is grasped (step S60). Then replace the corresponding pipe (S70) to carry out the repair work, and when the repair work is completed, re-concrete concrete (S80).
한편, 상기 제어부(120)가 상기 콘크리트 공급 배관(180)의 내부가 막혀있다고 판단하는 상황 또는 조건에 대하여 살펴보면, 상기 제어부(120)는, 상기 콘크리트 공급 배관(180) 중 정상 운전 압력 범위를 벗어나거나, 정상 운전 압력 변화율 범위 이하로 낮아지는 특정 압력센서(111,112,113,114,115,116)가 설치된 부분의 이전에서 상기 콘크리트 공급 배관(180)이 막혀 있다고 판단할 수 있으며, 또는 상기 복수 개의 압력센서(111,112,113,114,115,116)들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 이하로 낮아진 압력센서(111,112,113,114,115,116)들 중 최전방에 설치된 압력센서(111,112,113,114,115,116)와, 상기 복수 개의 압력센서(111,112,113,114,115,116)들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 범위 이상으로 높아진 압력센서(111,112,113,114,115,116)들 중 최후방에 설치된 압력센서(111,112,113,114,115,116) 사이에서 상기 콘크리트 공급 배관(180)이 막혀 있다고 판단할 수 있다. 또한, 상기 제어부(120)는, 상기 콘크리트 펌프(140)가 기동되어 정상 운전 상태에 도달된 후, 상기 압력센서(111,112,113,114,115,116)로부터 감지된 압력의 변화율이 설정된 값보다 크면, 상기 콘크리트 공급 설비가 상기 정상 운전 범위를 벗어나면 콘크리트 공급 배관(180)이 막혀있다고 판단한다. On the other hand, when looking at the situation or condition that the control unit 120 determines that the interior of the concrete supply pipe 180 is blocked, the control unit 120 is out of the normal operating pressure range of the concrete supply pipe 180. Or, it may be determined that the concrete supply pipe 180 is blocked before the specific pressure sensor (111, 112, 113, 114, 115, 116) is lowered below the normal operating pressure change rate range, or the interior of the plurality of pressure sensors (111, 112, 113, 114, 115, 116) Internal pressure or internal pressure among the pressure sensors 111, 112, 113, 114, 115, and 116 installed at the foremost of the pressure sensors 111, 112, 113, 114, 115, and 116 whose pressure or internal pressure change rate is lower than the normal operating pressure range or the normal operating pressure change rate. Rate of change of pressure is within normal operating pressure range or normal operating pressure Of the pressure sensor (111112113114115116) goes beyond the range rate between the pressure sensor (111112113114115116) provided at the rearmost it can be determined that there is the concrete supply pipe 180 is closed. In addition, the control unit 120, after the concrete pump 140 is started to reach the normal operating state, if the rate of change of the pressure detected from the pressure sensor (111, 112, 113, 114, 115, 116) is greater than the set value, the concrete supply equipment is the If it is out of the normal operating range it is determined that the concrete supply pipe 180 is blocked.
그리고, 상기 제어부(120)는 상기 정지 상황에 대한 대응방안을 상기 디스플레이부(150)를 이용하여 작업자에게 모니터의 화상 또는 알람 및 경고등과 같이 음성적으로 알린다(S50). 즉, 상기 제어부(120)는, 상기 압력 센서(111,112,113,114,115,116)들로부터 내부 압력들 및 내부 압력 변화율과 상기 메모리부(130)에 저장된 정상 운전 압력 정보 및 정상 운전 압력 변화율 정보를 비교하여 폐색의 정도를 판단, 상기 콘크리크 공급 배관(180)에서의 폐색 및 그 위치에 대한 정보를 파악하고, 이러한 정보를 상기 디스플레이부(150)를 이용하여 영상 및 음성으로 작업자에게 상기 막힘 위치 정보를 알림으로써, 작업자의 신속하고 정확한 대응을 가능하게 한다.In addition, the control unit 120 informs the operator in response to the stop situation by using the display unit 150 as a voice such as an image of an monitor or an alarm and a warning lamp (S50). That is, the controller 120 compares the internal pressures and the internal pressure change rate from the pressure sensors 111, 112, 113, 114, 115, and 116 with the normal operating pressure information and the normal operating pressure change rate information stored in the memory 130 to determine the degree of occlusion. By determining, grasping information about the blockage in the concrete supply pipe 180 and its position, and using the display unit 150 to inform the operator of the blocked position information by video and audio, Enables quick and accurate response.
도 7을 참조하면, 상기 안전 운전 시스템(100)은, 상기 콘크리트 공급 배관(180)의 길이방향에 대하여 수직방향으로 연결되고 상기 압력 센서(110)가 결합되어 상기 공급 배관(180) 내의 압력상태를 상기 압력 센서(110)로 전달하고 상기 압력 센서(1110)를 보호하는 압력센서 보호장치(190)를 더 구비한다. 상기 압력센서 보호장치(190)는, 상기 공급배관(180)과 연통되며 상기 압력센서(110)가 결합되는 연결소켓(191)과, 상기 연결소켓(191)의 내측에 충진 되는 제1유체(193) 및 제2유체(192)와, 상기 연결소켓(191)의 내측에 수평방향으로 위치하여 상기 제1 및 제2유체(193,192)를 상하로 각각 분리하고 외측면이 상기 연결소켓(191)의 내측면에 대하여 슬라이딩 가능하게 접촉하여 상기 제1 및 제2유체(193,192)의 각각의 유압에 따라 상기 수직방향으로 이동하며 상기 압력센서(110)를 보호하는 보호탭(194)을 포함한다. 여기서, 상기 제1유체(193)는 그리스(grease)류이고, 상기 제2유체(192)는 실리콘(silicon)으로 적용할 수 있지만 이에 한정하지는 않는다. 한편, 상기 연결소켓(191)은 상기 압력센서(110)와 상기 공급배관(180) 각각에 대하여 나사결합방식으로 결합되어 있지만, 이에 한정하지는 않는다. 여기서, 미설명부호 1은 콘크리트를 말한다.Referring to FIG. 7, the safe driving system 100 is connected in a vertical direction with respect to the longitudinal direction of the concrete supply pipe 180, and the pressure sensor 110 is coupled to a pressure state in the supply pipe 180. It is further provided with a pressure sensor protector 190 for transmitting to the pressure sensor 110 and protect the pressure sensor 1110. The pressure sensor protection device 190 is in communication with the supply pipe 180 and the connection socket 191 to which the pressure sensor 110 is coupled, and the first fluid (filled) inside the connection socket 191 ( 193) and the second fluid 192 and the first and second fluids 193 and 192 are positioned horizontally inside the connection socket 191, respectively, and the outer side is connected to the connection socket 191. Sliding contact with the inner surface of the first and the second fluid (193, 192) includes a protective tab (194) for moving in the vertical direction to protect the pressure sensor (110) according to the respective hydraulic pressure. Here, the first fluid 193 is grease, and the second fluid 192 may be applied as silicon, but is not limited thereto. On the other hand, the connection socket 191 is coupled to each of the pressure sensor 110 and the supply pipe 180 by a screw coupling method, but is not limited thereto. Here, reference numeral 1 denotes concrete.
한편, 상기 안전 운전 시스템(100)은, 상기한 구조의 압력센서 보호장치(190) 외에도 상기 압력센서를 보호하기 위하여 다른 구조의 압력센서 보호유닛(200)을 더 구비한다. 이에 대하여, 도 8을 참조하여 상세히 살펴보면, 상기 콘크리트 공급배관(180)의 압력계 보호유닛(200)는, 연결배관(210) 및 차단망(220)을 포함한다. On the other hand, the safe driving system 100, in addition to the pressure sensor protection device 190 of the above-described structure further includes a pressure sensor protection unit 200 of another structure to protect the pressure sensor. In this regard, referring to FIG. 8, the pressure gauge protection unit 200 of the concrete supply pipe 180 includes a connection pipe 210 and a blocking network 220.
상기 연결배관(210)은, 콘크리트를 공급하는 공급배관(180)의 길이방향에 대해 수직으로 연결되어 상기 공급배관(180)과 연통된다. 이러한 연결배관(210)에는 상기 공급배관(180)의 압력 측정을 위한 압력센서(110)가 결합되어 있다.The connection pipe 210 is connected perpendicular to the longitudinal direction of the supply pipe 180 for supplying concrete is in communication with the supply pipe 180. The connection pipe 210 is coupled to the pressure sensor 110 for measuring the pressure of the supply pipe 180.
상기 차단망(220)은 상기 연결배관(210)의 내측에 메쉬(Mesh) 형태로 배치되어, 상기 공급배관(180)을 통과하는 콘크리트 내의 이물질(자갈, 모래 등)이 상기 압력센서(110) 측으로 유입되지 않도록 차단한다. The blocking network 220 is disposed in the form of a mesh (mesh) inside the connection pipe 210, foreign matter (gravel, sand, etc.) in the concrete passing through the supply pipe 180 is the pressure sensor 110 Block it from entering the side.
상기 콘크리트가 공급배관(180)을 통해 이송되는 과정에서, 상기 콘크리트에 섞여 있는 자갈, 모래 등이 연결배관(210) 내로 밀려 들어가는 문제가 발생될 수 있다. 연결배관(210)의 사이즈가 작은 경우에는 상기 자갈, 모래 등에 의해 연결배관(210)의 내부가 완전히 막히게 되고, 압력센서(110)의 측정이 전혀 곤란하게 되는 문제점이 있다. 또한, 연결배관(210)의 사이즈가 큰 경우에는 상기 자갈, 모래 등이 연결배관(210)의 내부로 유입되면서 상기 압력센서(110)에 부딪혀서 압력센서(110)가 손상됨에 따라 압력센서(110)를 자주 교체해 주어야 하는 문제점이 있다.In the process of conveying the concrete through the supply pipe 180, the gravel, sand, etc. mixed in the concrete may be pushed into the connection pipe 210. If the size of the connection pipe 210 is small, the interior of the connection pipe 210 is completely blocked by the gravel, sand, etc., there is a problem that the measurement of the pressure sensor 110 becomes difficult at all. In addition, when the size of the connection pipe 210 is large, the gravel, sand, etc. are introduced into the connection pipe 210 and hit the pressure sensor 110, the pressure sensor 110 is damaged as the pressure sensor 110 ) Has to be replaced frequently.
그러나, 상기 차단망(220)은 상기 자갈, 모래 등의 이물질이 상기 연결배관(210)의 내부로 통과되지 못하도록 차단함에 따라 상기 압력센서(110)가 손상되거나 파손되는 문제를 해결할 수 있다. 또한, 이러한 차단망(220)에 따르면, 상기 연결배관(210)의 크기를 증가시키면서도 상기 이물질의 침투를 방지할 수 있도록 하는 효과가 있다.However, the blocking network 220 may solve the problem that the pressure sensor 110 is damaged or broken by blocking foreign materials such as gravel and sand from passing through the connection pipe 210. In addition, according to such a blocking network 220, while increasing the size of the connection pipe 210 there is an effect to prevent the penetration of the foreign matter.
상기 차단망(220)은, 상기 연결배관(210)의 내측에 배치되되, 상기 압력센서(110)와 되도록 먼 위치에 배치되어, 상기 자갈, 모래 등을 사전에 효과적으로 차단하도록 한다. 이를 위해, 상기 차단망(220)은 상기 공급배관(180)과 연결되는 상기 연결배관(210)의 연결부 즉, 공급배관(180)과 연결배관(210) 간의 연결부 내측에 고정되도록 한다.The blocking network 220 is disposed inside the connection pipe 210, and disposed in the position as far as possible from the pressure sensor 110, to effectively block the gravel, sand and the like in advance. To this end, the blocking network 220 is to be fixed inside the connection portion of the connection pipe 210 that is connected to the supply pipe 180, that is, the connection between the supply pipe 180 and the connection pipe 210.
도 9는 도 8에 탄성부재와 지지부재가 설치된 단면도이다. 도 9를 참조하면, 상기 콘크리트 공급배관의 압력계 보호유닛(200)는, 탄성부재(230) 및 지지부재(240)를 구비한다.9 is a cross-sectional view in which the elastic member and the support member are installed in FIG. 8. Referring to FIG. 9, the pressure gauge protection unit 200 of the concrete supply pipe includes an elastic member 230 and a support member 240.
상기 탄성부재(230)는 상기 연결배관(210)의 내측으로 상기 차단망(220)이 인입되는 것을 탄성 지지하여, 상기 차단망(220)이 상기 공급배관(180)의 내측으로 돌출되도록 한다. 즉, 상기 탄성부재(230)는 정상 상태에서 상기 차단망(220)이 공급배관(180)의 내측으로 돌출되도록 한다. 이러한 탄성부재(230)는 탄성 복원력을 갖는 스프링, 고무 등의 공지된 다양한 재질이 적용될 수 있음은 물론이다.The elastic member 230 elastically supports that the blocking net 220 is drawn into the connection pipe 210 to allow the blocking net 220 to protrude into the supply pipe 180. That is, the elastic member 230 allows the blocking network 220 to protrude to the inside of the supply pipe 180 in the normal state. The elastic member 230 may be applied to a variety of known materials such as spring, rubber having an elastic restoring force.
여기서, 상기 탄성부재(230)의 하측에서 외력이 가해지는 경우(콘크리트가 밀려 올라오는 등의 상향 압력이 작용하는 경우), 상기 정상 상태에서 탄성 압축 상태로 변경된다. 이때, 차단망(220)은 탄성부재(230)의 압축에 따라 상방으로 이동되어 연결배관(210)의 내측으로 인입되게 된다.Here, when an external force is applied from the lower side of the elastic member 230 (when an upward pressure such as concrete is pushed up), the elastic state is changed to the elastic compression state. At this time, the blocking network 220 is moved upwards according to the compression of the elastic member 230 is drawn into the connection pipe 210.
즉, 이러한 차단망(220)은 탄성부재(230)의 상태에 따라 상하강 이동이 가능하도록 제작된다. 그 한 예로서 상기 차단망(220)은 상기 연결배관(210)의 단면적보다 큰 평면적을 갖도록 제작되어 그 외곽이 상기 연결배관(210)의 내주를 따라 고정되는 형태가 가능하다. 다른 예로서 상기 차단망(220)은 고무 등의 탄성 재질로 구현될 수 있다. 이러한 경우, 차단망(220)의 평면적은 상기 연결배관(210)의 단면적과 동일 평면적 또는 작은 평면적 혹은 약간 큰 면적으로 제작되어도 무관하다.That is, the blocking network 220 is manufactured to be able to move up and down according to the state of the elastic member 230. As an example, the blocking network 220 may be manufactured to have a planar area larger than the cross-sectional area of the connection pipe 210 so that its outer edge is fixed along the inner circumference of the connection pipe 210. As another example, the blocking network 220 may be implemented with an elastic material such as rubber. In this case, the planar area of the shielding network 220 may be made of the same area as the cross-sectional area of the connection pipe 210 or a smaller plane or a slightly larger area.
한편, 상기 지지부재(240)는 상기 차단망(220)과 상기 압력센서(110)의 사이에 해당되는 연결배관(210)의 내측을 가로질러 배치된다. 이때, 상기 탄성부재(230)는, 일단과 타단이 각각 상기 지지부재와 상기 차단망(220)에 연결되는 형태를 갖는다.On the other hand, the support member 240 is disposed across the inner side of the connection pipe 210 corresponding between the blocking network 220 and the pressure sensor 110. At this time, the elastic member 230, one end and the other end has a form that is connected to the support member and the blocking network 220, respectively.
상기 지지부재(240)는 상기 공급배관(180)과 연결배관(210)의 내부가 서로 연통되는 것을 유지하도록, 프레임(frame) 혹은 라인(Line) 형태로 형성된다. 이는 상기 압력센서(110)의 압력 측정에 장애가 없도록 하기 위함이다. 도 10는 이러한 지지부재의 두 가지 실시예를 나타내는 평면도이다. 도 10를 참조하면, 상기 지지부재(240)가 상기 연결배관(210) 내에서 일자 형태로 가로지르도록 배치되어 고정된 구성이고, 도 11을 참조하면, 2개의 지지부재(240)가 십자 형태로 교차 배열되어 고정된 구성이다. 여기서, 도 10의 구조보다 도 11의 구조가, 상기 연결배관(210) 내에서 상기 지지부재(240)가 더욱 튼튼하게 고정될 수 있다.The support member 240 is formed in a frame or line shape so as to keep the inside of the supply pipe 180 and the connection pipe 210 communicating with each other. This is to ensure that there is no obstacle in measuring the pressure of the pressure sensor 110. 10 is a plan view showing two embodiments of such a support member. Referring to FIG. 10, the support member 240 is disposed and fixed to cross in a straight line within the connection pipe 210. Referring to FIG. 11, two support members 240 are cross-shaped. It is arranged in a fixed arrangement. Here, the structure of Figure 11 than the structure of Figure 10, the support member 240 in the connection pipe 210 can be more firmly fixed.
상기 지지부재(240)는 상기 연결배관(210)에 다양한 방식으로 고정될 수 있다. 그 한 예로서, 도 12는 지지부재(240)가 상기 연결배관(210) 내에 고정된 예를 나타내는 단면도이다. 도 12를 참조하면, 상기 지지부재(240)의 각 단부가 상기 연결배관(210)의 내표면에 형성된 안착홈(211)에 각각 삽입됨에 따라, 상기 지지부재(240)가 연결배관(210)의 내측에 안정적으로 고정될 수 있다. 다른 예로서, 상기 연결배관(210)의 내표면에는 별도의 고리부(미도시)를 형성하고, 상기 지지부재(240)의 단부에는 상기 고리부(미도시)에 걸림되는 걸림부(미도시)를 형성하여 상기 연결배관(210)에 고정될 수 있다. 상기 지지부재(240)는 탄성부재(230)를 안정적으로 고정할 수 있는 금속, 플라스틱 등의 다양한 재질이 이용될 수 있다.The support member 240 may be fixed to the connection pipe 210 in various ways. As an example, FIG. 12 is a cross-sectional view illustrating an example in which the supporting member 240 is fixed in the connection pipe 210. Referring to FIG. 12, as each end of the support member 240 is inserted into a seating groove 211 formed at an inner surface of the connection pipe 210, the support member 240 is connected to the connection pipe 210. It can be stably fixed to the inside of the. As another example, a hook portion (not shown) is formed on an inner surface of the connection pipe 210, and a hook portion (not shown) is caught at an end portion of the support member 240. ) May be fixed to the connection pipe 210. The support member 240 may be used a variety of materials, such as metal, plastic that can stably fix the elastic member 230.
도 13은 도 8의 공급배관에 콘크리트가 통과되는 경우의 단면도이다. 도 13을 참조하면, 상기 콘크리트(1)가 상기 공급배관(180)을 통과하는 동안 상기 콘크리트(1)의 압력에 의해 상기 탄성부재(230)가 압축되면서 상기 차단망(220)이 상기 연결배관(210)의 내측으로 인입되도록 한다. 물론, 상기 차단망(220)이 연결배관(210)의 내측으로 인입되더라도 콘크리트 내의 이물질은 상기 차단망(220)에 의해 차단됨에 따라 연결배관(210)의 내측으로 유입되지 않는다. 따라서, 연결배관(210)이 가득히 막히거나 압력센서(110)가 손상되는 문제가 발생하지 않는다.FIG. 13 is a cross-sectional view of concrete passing through the supply pipe of FIG. 8. Referring to FIG. 13, while the concrete 1 passes through the supply pipe 180, the elastic member 230 is compressed by the pressure of the concrete 1 so that the blocking network 220 connects the connection pipe. To be drawn into the inside of 210. Of course, even if the blocking network 220 is introduced into the connection pipe 210, foreign matter in the concrete is not introduced into the connection pipe 210 as blocked by the blocking network 220. Therefore, the connection pipe 210 is not clogged or the pressure sensor 110 is damaged.
도 14는 도 8의 공급배관이 청소되는 예를 나타내는 단면도이다. 도 14를 참조하면, 상기 공급배관(180)은 추후 피스톤 등의 청소수단(40)을 통과시킴에 따라 내부가 청소된다. 예를 들면, 피스톤은 공압에 의해 상기 공급배관(180) 내를 통과하면서 공급배관(180)의 내부를 청소한다. 14 is a cross-sectional view illustrating an example in which the supply pipe of FIG. 8 is cleaned. Referring to Figure 14, the supply pipe 180 is cleaned as the interior passes through the cleaning means 40, such as a piston later. For example, the piston cleans the inside of the supply pipe 180 while passing through the supply pipe 180 by pneumatic pressure.
이때, 상기 청소수단(40)이 상기 공급배관(180)을 통과하는 동안, 상기 공급배관(180)의 내측으로 돌출되어 있는 상기 차단망(220)이 상기 청소수단(40)의 표면과 접촉되면서 상기 차단망(220)이 상기 공급배관(180)의 청소 시 함께 청소된다. 즉, 상기 탄성부재(230)의 탄성에 의해 상기 차단망(220)이 공급배관(180)의 내측으로 돌출되어 있어서, 상기 청소수단(40)이 통과될 때, 상기 청소수단(40) 과의 접촉력이 향상되고, 이에 따라 차단망(220)이 깔끔하게 청소되는 이점이 있다.In this case, while the cleaning means 40 passes through the supply pipe 180, the blocking network 220 protruding into the supply pipe 180 contacts the surface of the cleaning means 40. The blocking network 220 is cleaned together when the supply pipe 180 is cleaned. That is, the blocking network 220 is protruded into the supply pipe 180 by the elasticity of the elastic member 230, so that when the cleaning means 40 passes, the cleaning means 40 with the cleaning means 40 The contact force is improved, and thus the blocking network 220 is cleaned neatly.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명은 콘크리트를 사용하여 고층 건물을 시공하는 콘크리트 공급 설비에 이용될 수 있다. The present invention can be used in concrete supply facilities for constructing high-rise buildings using concrete.

Claims (20)

  1. 콘크리트 펌프 및, 상기 콘크리트 펌프에 연결되어 상기 콘크리트 펌프로부터 토출되는 콘크리트를 고층 건물로 공급하는 콘크리트 공급 배관을 구비하는 콘크리트 공급 설비의 안전 운전 시스템으로서,A safe driving system of a concrete supply facility having a concrete pump and a concrete supply pipe connected to the concrete pump and supplying concrete discharged from the concrete pump to a high-rise building,
    상기 콘크리트 공급 배관의 길이 방향을 따라 서로 이격되게 설치되고, 해당 위치에서의 상기 공급 배관의 내부 압력들을 감지하는 복수 개의 압력 센서들;A plurality of pressure sensors installed spaced apart from each other along the longitudinal direction of the concrete supply pipe and detecting internal pressures of the supply pipe at a corresponding position;
    상기 압력 센서들이 설치된 위치에서의 정상 운전 압력 범위 정보 또는 정상 운전 압력 변화율 정보를 저장하는 메모리부; 및A memory unit for storing normal operating pressure range information or normal operating pressure change rate information at a position where the pressure sensors are installed; And
    상기 콘크리트 펌프의 기동 후, 상기 압력 센서들에 의하여 감지된 내부 압력들과 상기 메모리부의 상기 정상 운전 압력 범위 정보 또는 상기 정상 운전 압력 변화율을 비교하여, 상기 감지된 내부 압력들 중에서 하나 또는 복수 개가 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위를 벗어나거나, 정상 운전 압력 변화율 범위를 벗어나면, 상기 콘크리트 공급 배관의 내부가 막혀있다고 판단하여 상기 콘크리트 펌프의 운전을 정지시키는 제어부를 포함하는 콘크리트 공급 설비의 안전 운전 시스템.After starting the concrete pump, one or more of the detected internal pressures are internal by comparing the internal pressures detected by the pressure sensors with the normal operating pressure range information or the normal operating pressure change rate of the memory unit. Concrete supply facility including a control unit for stopping the operation of the concrete pump is determined that the inside of the concrete supply pipe is blocked when the rate of change of the pressure or internal pressure is out of the normal operating pressure range, or outside the normal operating pressure change rate range Safe driving system.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 정상 운전 압력 범위는, 상기 각 압력센서에 대응되는 최대 압력으로 결정되는 콘크리트 공급 설비의 안전 운전 시스템.The normal operating pressure range, the safe driving system of the concrete supply facility is determined by the maximum pressure corresponding to each pressure sensor.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 콘크리트 공급 배관의 내부가 막혀있다고 판단하는 것은, It is determined that the inside of the concrete supply pipe is blocked,
    상기 콘크리트 공급 배관 중 정상 운전 압력 범위를 벗어나거나, 정상 운전 압력 변화율 범위 이하로 낮아지는 특정 압력센서가 설치된 부분의 이전에서 상기 콘크리트 공급 배관이 막혀 있다고 판단하는 콘크리트 공급 설비의 안전 운전 시스템.Safe operation system of the concrete supply pipe is determined that the concrete supply pipe is blocked in the transfer of the portion of the concrete supply pipe out of the normal operating pressure range, or a specific pressure sensor that is lowered below the normal operating pressure change rate range.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제어부는,The control unit,
    상기 복수 개의 압력센서들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 범위 이하로 낮아진 압력센서들 중 최전방에 설치된 압력센서와, 상기 복수 개의 압력센서들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 범위 이상으로 높아진 압력센서들 중 최후방에 설치된 압력센서 사이에서 상기 콘크리트 공급 배관이 막혀 있다고 판단하는 콘크리트 공급 설비의 안전 운전 시스템.A pressure sensor installed at the foremost of the pressure sensors in which the rate of change of the internal pressure or the internal pressure of the plurality of pressure sensors is lower than the normal operating pressure range or the normal operating pressure change rate range, and the internal pressure or the internal pressure of the plurality of pressure sensors. A safety operation system for a concrete supply facility, wherein the concrete supply pipe is determined to be blocked between the pressure sensors installed at the rear end of the pressure sensors whose pressure change rate is higher than the normal operating pressure range or the normal operating pressure change rate range.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제어부는,The control unit,
    상기 콘크리트 펌프가 기동되어 정상 운전 상태에 도달된 후, 상기 압력센서로부터 감지된 압력의 변화율이 설정된 값보다 크면, 상기 콘크리트 공급 설비가 상기 정상 운전 범위를 벗어난 것으로 판단하는 콘크리트 공급 설비의 안전 운전 시스템.After the concrete pump is started to reach the normal operation state, if the rate of change of the pressure detected from the pressure sensor is greater than the set value, the safety operation system of the concrete supply facility is determined to be out of the normal operation range .
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 콘크리트 공급 배관의 길이방향에 대하여 수직방향으로 연결되어 상기 공급배관과 연통되며 상기 압력센서가 결합되는 연결소켓과, 상기 연결소켓의 내측에 충진 되는 제1유체 및 제2유체와, 상기 연결소켓의 내측에 수평방향으로 위치하여 상기 제1 및 제2유체를 상하로 각각 분리하고 외측면이 상기 연결소켓의 내측면에 대하여 슬라이딩 가능하게 접촉하여 상기 제1 및 제2유체의 각각의 유압에 따라 상기 수직방향으로 이동하며 상기 압력센서를 보호하는 보호탭을 포함하는 압력센서 보호장치를 더 구비하는 콘크리트 공급 설비의 안전 운전 시스템. A connection socket connected in a vertical direction with respect to the longitudinal direction of the concrete supply pipe and in communication with the supply pipe, to which the pressure sensor is coupled, a first fluid and a second fluid filled inside the connection socket, and the connection socket Located in the horizontal direction in the horizontal direction to separate the first and the second fluid up and down respectively, the outer surface is slidably contacted with respect to the inner surface of the connecting socket in accordance with the respective hydraulic pressure of the first and second fluid And a pressure sensor protector including a protection tab to move in the vertical direction and to protect the pressure sensor.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 콘크리트 공급 배관은, The concrete supply pipe,
    외부에서 작업자가 내부의 콘크리트 유동 상태를 파악할 수 있도록 일부구간이 투명한 재질로 형성된 콘크리트 공급 설비의 안전 운전 시스템.Safe operation system of concrete supply facility, which is made of transparent material in some sections so that worker can grasp the concrete flow state from the outside.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 압력센서들 또는 상기 메모리부 또는 상기 제어부와 연결되어 상기 콘크리트 펌프의 운전 정지 또는 각 공급배관에서의 내부 압력상태와 그 위치에 관한 정보를 작업자에게 알리는 디스플레이부를 더 포함하는 콘크리트 공급 설비의 안전 운전 시스템.Safe operation of the concrete supply equipment further comprises a display unit connected to the pressure sensor or the memory unit or the control unit to inform the operator of the operation stop of the concrete pump or the internal pressure state and position of each supply pipe. system.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 콘크리트 공급배관의 길이방향에 대해 수직으로 연결되어 상기 공급배관과 연통되며, 상기 공급배관의 압력 측정을 위한 압력센서가 결합되는 연결배관; 및A connection pipe connected vertically with respect to the longitudinal direction of the concrete supply pipe to communicate with the supply pipe, and to which a pressure sensor for measuring the pressure of the supply pipe is coupled; And
    상기 연결배관의 내측에 배치되어, 상기 공급배관을 통과하는 콘크리트 내의 이물질이 상기 압력센서 측으로 유입되지 않도록 차단하는 차단망을 포함하는 압력센서 보호유닛을 더 구비하는 콘크리트 공급 설비의 안전 운전 시스템. And a pressure sensor protection unit disposed inside the connection pipe, the pressure sensor protection unit including a blocking network to block foreign matter in the concrete passing through the supply pipe from being introduced into the pressure sensor.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 차단망은,The blocking network,
    상기 연결배관의 내측에 배치되되, 상기 공급배관과 연결되는 상기 연결배관의 연결부 내측에 고정되는 콘크리트 공급 설비의 안전 운전 시스템. Is disposed inside the connection pipe, the safety driving system of the concrete supply equipment is fixed inside the connection portion of the connection pipe connected to the supply pipe.
  11. 청구항 9 또는 청구항 10에 있어서,The method according to claim 9 or 10,
    상기 연결배관의 내측으로 상기 차단망이 인입되는 것을 탄성 지지하여, 상기 차단망이 상기 공급배관의 내측으로 돌출되도록 하는 탄성부재를 더 포함하는 콘크리트 공급 설비의 안전 운전 시스템. And a resilient member for elastically supporting the blocking network being drawn into the connection pipe so that the blocking network protrudes into the supply pipe.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 콘크리트가 상기 공급배관을 통과하는 동안 상기 콘크리트의 압력에 의해 상기 탄성부재가 압축되면서 상기 차단망이 상기 연결배관의 내측으로 인입되도록 하는 콘크리트 공급 설비의 안전 운전 시스템. Safe operation system of the concrete supplying facility for the elastic network is compressed by the pressure of the concrete while the concrete passes through the supply pipe so that the blocking network is introduced into the connection pipe.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 공급배관의 내부를 청소하는 청소수단이 상기 공급배관을 통과하는 동안 상기 공급배관의 내측으로 돌출되어 있는 상기 차단망이 상기 청소수단의 표면과 접촉되면서 상기 차단망이 상기 공급배관의 청소 시 함께 청소되는 콘크리트 공급 설비의 안전 운전 시스템. While the cleaning means for cleaning the inside of the supply pipe passes through the supply pipe, the screening network protruding into the supply pipe is in contact with the surface of the cleaning means, and the screening network is used to clean the supply pipe. Safe driving system of the concrete supply plant to be cleaned.
  14. 청구항 11에 있어서,The method according to claim 11,
    상기 차단망과 상기 압력센서의 사이에 해당되는 상기 연결배관의 내측을 가로질러 배치되는 지지부재를 더 포함하고,Further comprising a support member disposed across the inner side of the connection pipe corresponding to the blocking network and the pressure sensor,
    상기 탄성부재는,The elastic member,
    일단과 타단이 각각 상기 지지부재와 상기 차단망에 연결되는 콘크리트 공급 설비의 안전 운전 시스템. One end and the other end of the safe operation system of the concrete supply equipment is connected to the support member and the blocking network respectively.
  15. 콘크리트 펌프에 연결되어 상기 콘크리트 펌프로부터 토출되는 콘크리트를 고층 건물로 공급하는 공급 배관을 구비하는 콘크리트 공급 설비의 안전 운전 방법으로서,A safe operation method of a concrete supply facility having a supply pipe connected to a concrete pump and supplying concrete discharged from the concrete pump to a high-rise building,
    상기 콘크리트 공급 배관의 길이 방향을 따라 서로 이격되어 설치된 복수 개의 압력센서들로부터 해당 위치에서의 내부 압력들을 감지하는 단계; 및Sensing internal pressures at a corresponding position from a plurality of pressure sensors installed spaced apart from each other along a longitudinal direction of the concrete supply pipe; And
    상기 콘크리트 펌프의 기동 후, 상기 감지된 내부 압력들 중에서 하나 또는 복수 개가 정상 운전 압력 범위를 벗어나거나, 정상 운전 압력 변화율 범위를 벗어나면, 상기 콘크리트 공급 배관의 내부가 막혀있다고 판단하여 상기 콘크리트 펌프의 운전을 정지시키는 단계를 포함하는 콘크리트 공급 설비의 안전 운전 방법.After the concrete pump is started, if one or more of the sensed internal pressures are out of the normal operating pressure range or out of the normal operating pressure change rate range, it is determined that the inside of the concrete supply pipe is blocked. Safe operation method of the concrete supply equipment comprising the step of stopping operation.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 콘크리트 펌프와 상기 콘크리트 공급 배관을 포함하는 콘크리트 공급설비를 지상에 수평적으로 모사하여 상기 콘크리트 공급 설비의 운전 모사 실험을 수행하고, 상기 운전 모사 실험으로부터 상기 압력센서들에 대응되는 상기 정상 운전 압력 범위 또는 상기 정상 운전 압력 변화율 범위를 도출하는 단계를 더 포함하는 콘크리트 공급 설비의 안전 운전 방법.A concrete supplying facility including the concrete pump and the concrete supply pipe is horizontally simulated to perform a driving simulation experiment of the concrete supplying facility, and the normal operating pressure corresponding to the pressure sensors from the driving simulation test. And deriving a range or the normal operating pressure change rate range.
  17. 청구항 15에 있어서,The method according to claim 15,
    상기 콘크리트 공급 배관의 내부가 막혀있다고 판단하는 것은, It is determined that the inside of the concrete supply pipe is blocked,
    상기 콘크리트 공급 배관 중 정상 운전 압력 범위를 벗어나거나, 정상 운전 압력 변화율 범위 이하로 낮아지는 특정 압력센서가 설치된 부분의 이전에서 상기 콘크리트 공급 배관이 막혀 있다고 판단하는 콘크리트 공급 설비의 안전 운전 방법.Safe operation method of the concrete supply pipe is determined that the concrete supply pipe is blocked before the portion of the concrete supply pipe outside the normal operating pressure range, or a specific pressure sensor is installed below the normal operating pressure change rate range.
  18. 청구항 11에 있어서,The method according to claim 11,
    상기 콘크리트 공급 배관의 내부가 막혀있다고 판단하는 것은, It is determined that the inside of the concrete supply pipe is blocked,
    상기 복수 개의 압력센서들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 이하로 낮아진 압력센서들 중 최전방에 설치된 압력센서와, 상기 복수 개의 압력센서들 중 내부 압력 또는 내부 압력의 변화율이 정상 운전 압력 범위 또는 정상 운전 압력 변화율 범위 이상으로 높아진 압력센서들 중 최후방에 설치된 압력센서 사이에서 상기 콘크리트 공급 배관이 막혀 있다고 판단하는 콘크리트 공급 설비의 안전 운전 방법.A pressure sensor installed at the foremost of the pressure sensors in which the rate of change of the internal pressure or the internal pressure of the plurality of pressure sensors is lowered below the normal operating pressure range or the normal operating pressure change rate, and the internal pressure or the internal pressure of the plurality of pressure sensors A method for safe operation of a concrete supply facility, wherein it is determined that the concrete supply pipe is blocked between the pressure sensors installed at the rear of the pressure sensors whose change rate is higher than the normal operating pressure range or the normal operating pressure change rate range.
  19. 청구항 15에 있어서,The method according to claim 15,
    상기 정상 운전 압력 범위는, 상기 각 압력센서에 대응되는 최대 압력으로 결정되는 콘크리트 공급 설비의 안전 운전 방법.The normal operating pressure range, the safe driving method of the concrete supply equipment is determined by the maximum pressure corresponding to each pressure sensor.
  20. 청구항 15에 있어서,The method according to claim 15,
    상기 콘크리트 펌프가 기동되어 정상 운전 상태에 도달된 후, 상기 압력센서로부터 감지된 압력의 변화율이 설정된 값보다 크면, 상기 콘크리트 공급 설비가 상기 정상 운전 범위를 벗어난 것으로 판단하는 콘크리트 공급 설비의 안전 운전 방법.After the concrete pump is started to reach the normal operating state, if the rate of change of the pressure detected from the pressure sensor is greater than the set value, it is determined that the concrete supply equipment is out of the normal operating range safe operation method of the concrete supply equipment .
PCT/KR2010/004245 2009-07-09 2010-06-30 Safe operation system and safe operation method for equipment for supplying concrete WO2011004982A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020090062572A KR101092055B1 (en) 2009-07-09 2009-07-09 Apparatus for protecting pressure gauge of concrete supply pipe
KR10-2009-0062572 2009-07-09
KR10-2009-0066879 2009-07-22
KR1020090066878A KR101089917B1 (en) 2009-07-22 2009-07-22 Apparatus for operating concrete supply facility safely and method for operating concrete supply facility safely
KR1020090066879A KR20110009469A (en) 2009-07-22 2009-07-22 Apparatus for seeking for clogging location in concrete supply pipe and method thereof
KR10-2009-0066878 2009-07-22

Publications (2)

Publication Number Publication Date
WO2011004982A2 true WO2011004982A2 (en) 2011-01-13
WO2011004982A3 WO2011004982A3 (en) 2011-04-07

Family

ID=43429646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004245 WO2011004982A2 (en) 2009-07-09 2010-06-30 Safe operation system and safe operation method for equipment for supplying concrete

Country Status (1)

Country Link
WO (1) WO2011004982A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108905A (en) * 2015-07-15 2015-12-02 贾金青 Construction technology of green concrete
CN109594781A (en) * 2018-12-12 2019-04-09 湖南易兴建筑有限公司 Running gate system
DE102018111120A1 (en) * 2018-05-09 2019-11-14 J. Wagner Gmbh Method for operating a conveying device and conveying device
CN114233599A (en) * 2021-11-25 2022-03-25 徐州徐工施维英机械有限公司 Concrete pumping machine and control method for preventing pipe blockage thereof
WO2022175232A1 (en) * 2021-02-16 2022-08-25 Putzmeister Engineering Gmbh Building material apparatus and use of at least one part sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910007367B1 (en) * 1988-12-23 1991-09-25 주식회사 표준개발 Safety device for transmission pipes
KR20020030053A (en) * 2002-03-08 2002-04-22 최성철 Concrete transport pipeline blow-out protection system in a pump car

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304198A (en) * 1995-05-12 1996-11-22 Bridgestone Corp Hose pressure detection device
JPH09249313A (en) * 1996-03-13 1997-09-22 Ishikawajima Constr Mach Co Discharge device of concrete remaining in transport pipe of concrete pump
JPH11343738A (en) * 1998-06-01 1999-12-14 Toda Constr Co Ltd Concrete pouring method and auxiliary device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910007367B1 (en) * 1988-12-23 1991-09-25 주식회사 표준개발 Safety device for transmission pipes
KR20020030053A (en) * 2002-03-08 2002-04-22 최성철 Concrete transport pipeline blow-out protection system in a pump car

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108905A (en) * 2015-07-15 2015-12-02 贾金青 Construction technology of green concrete
DE102018111120A1 (en) * 2018-05-09 2019-11-14 J. Wagner Gmbh Method for operating a conveying device and conveying device
US11897699B2 (en) 2018-05-09 2024-02-13 J. Wagner Gmbh Method for operating a delivery apparatus, and delivery apparatus
CN109594781A (en) * 2018-12-12 2019-04-09 湖南易兴建筑有限公司 Running gate system
CN109594781B (en) * 2018-12-12 2021-10-29 湖南易兴建筑有限公司 Pouring system
WO2022175232A1 (en) * 2021-02-16 2022-08-25 Putzmeister Engineering Gmbh Building material apparatus and use of at least one part sensor
CN114233599A (en) * 2021-11-25 2022-03-25 徐州徐工施维英机械有限公司 Concrete pumping machine and control method for preventing pipe blockage thereof
CN114233599B (en) * 2021-11-25 2023-12-12 徐州徐工施维英机械有限公司 Concrete pumping machine and control method of pre-blocking prevention pipe of concrete pumping machine

Also Published As

Publication number Publication date
WO2011004982A3 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2011004982A2 (en) Safe operation system and safe operation method for equipment for supplying concrete
WO2014133226A1 (en) Vibration isolation device, exchange method of vibration isolation structure part and load control method of vibration isolation structure part
WO2019045217A1 (en) Underground injection pressure-controlled grouting method
CN106017401A (en) Monitoring device and monitoring and judging method for obstruction of delivery pipe for superhighly pumping concrete
JP2007275479A (en) Discharge checking method for hydrant device
CN214702491U (en) Water weight
WO2016117746A1 (en) Gas leak shut-off device
KR101089917B1 (en) Apparatus for operating concrete supply facility safely and method for operating concrete supply facility safely
KR101375123B1 (en) Safety diagnosis system of underground cable
KR101928332B1 (en) Temporary Structure Failure Detection Monitoring Device
KR101522658B1 (en) A cleaning and check device of a underground facility
KR20110009469A (en) Apparatus for seeking for clogging location in concrete supply pipe and method thereof
KR20140108530A (en) Nuclear grade air accumulation, indication and venting device
KR20110019084A (en) System for feeding cable
WO2015119315A1 (en) Improved tank system
WO2022119020A1 (en) Stress detection method for work scaffold and work scaffold safety management system using same
WO2016017841A1 (en) Pipe lifespan management system associated with three dimensional displacement measurement apparatus
KR101151175B1 (en) A drain water filtering apparatus
CN114993378A (en) Method and device for monitoring blockage of pumping concrete conveying pipe
CN211752109U (en) Fire-fighting water network hydraulic pressure detection system for high-rise building
CN113123530B (en) Tracking monitoring and intelligent control method for sleeve combined grouting
WO2024071663A1 (en) Method for predictive maintenance of cylinder using differential pressure
WO2020009260A1 (en) Tap water pipe cleaning method
KR102177511B1 (en) apparatus for detecting leakage
JP6841639B2 (en) Tunnel emergency equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797256

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797256

Country of ref document: EP

Kind code of ref document: A2