WO2011004429A1 - Method for refining crude terephthalic acid - Google Patents

Method for refining crude terephthalic acid Download PDF

Info

Publication number
WO2011004429A1
WO2011004429A1 PCT/JP2009/003153 JP2009003153W WO2011004429A1 WO 2011004429 A1 WO2011004429 A1 WO 2011004429A1 JP 2009003153 W JP2009003153 W JP 2009003153W WO 2011004429 A1 WO2011004429 A1 WO 2011004429A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalic acid
hydrogen
reaction
aqueous solution
catalyst layer
Prior art date
Application number
PCT/JP2009/003153
Other languages
French (fr)
Japanese (ja)
Inventor
原徳明
豊嶋弘幸
山▲崎▼初太郎
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to CN200980160295.6A priority Critical patent/CN102548947B/en
Priority to PCT/JP2009/003153 priority patent/WO2011004429A1/en
Publication of WO2011004429A1 publication Critical patent/WO2011004429A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification

Definitions

  • the present invention relates to a method for producing reproducible and stable purified terephthalic acid by a stable hydrogenation reaction when crude terephthalic acid is brought into contact with a noble metal-supported activated carbon catalyst as an aqueous solution and hydrorefined.
  • it relates to the production of purified terephthalic acid with stable quality by supplying the optimum amount of hydrogen necessary for the purification reaction in a hydrogenation reactor at a stable rate.
  • hydrogenation conditions for economically producing purified terephthalic acid of stable quality with a hydrogen partial pressure following the supply amount of the refined raw material are set.
  • Crude terephthalic acid produced by liquid phase oxidation using p-xylene as a starting material in an acetic acid solvent in the presence of an oxidation catalyst with an oxygen-containing gas is a reaction intermediate 4-carboxybenzaldehyde (4-CBA).
  • coloring side reaction products are contained in trace amounts, so after dissolving in water at high temperature and high pressure to form an aqueous solution, dissolve the hydrogen gas in a hydrogen gas atmosphere, Hydrogenation reaction is carried out by contact. Then, after the impurities in the solution are converted or decomposed into a substance soluble in water, the aqueous reaction solution is cooled to produce crystals of terephthalic acid, and after solid-liquid separation, the impurities are collected.
  • Reduced purified terephthalic acid is produced industrially.
  • the purified terephthalic acid has been produced industrially on a large scale as a raw material for the production of polyethylene terephthalate (PET) as a polyester for a fiber or a container for a film or a container, as demand and applications expand.
  • PET polyethylene terephthalate
  • the quality of the purified terephthalic acid produced will deviate from the target quality, which requires pressure equipment that exceeds the setting. Equipment modifications may be required.
  • the specific conditions for the hydrogenation reaction of crude terephthalic acid which stably produces the target quality, have not been clarified against fluctuations in the amount of raw material supplied to the hydrogenation reactor.
  • the hydrogenation reactor for purifying crude terephthalic acid is a gas-liquid reaction on a catalyst layer packed with a noble metal-supported activated carbon catalyst, it passes through the catalyst layer as seen in the proposal below. This is thought to be the result of conducting a search for hydrorefining reaction conditions without clarifying the fluid flow state.
  • a method for purifying crude terephthalic acid is a method in which an aqueous solution of crude terephthalic acid is about 10 ° F.
  • the hydrorefining reaction is carried out by allowing the aqueous solution to pass through the catalyst layer together with hydrogen gas at a pressure at which the aqueous solution maintains the liquid phase.
  • the hydrorefining reaction is preferably a refining reaction in which the aqueous solution drops a catalyst layer in a hydrogen gas continuous atmosphere (Trickle), and the hydrotreating time of the aqueous solution in the catalyst layer (Hydrogenation treatment time) ) Or space velocity is about 0.001 to 10 hours, preferably 0.01 to 2 hours.
  • the hydrogen partial pressure in the gas atmosphere is 14.7 to 150 psi or more.
  • Patent Document 2 US Pat. No. 4,405,809
  • the conditions of the reaction in hydrorefining are almost the same as the above proposal, but the dissolved hydrogen in the crude terephthalic acid aqueous solution is about 10 to 75% dissolved hydrogen with respect to saturation.
  • Hydrogen gas is supplied so as to maintain the concentration, and the purification reaction is performed by a liquid single-phase flow (liquid continuous phase) method in which a gas phase (gas atmosphere phase) does not exist and the catalyst layer is filled with the aqueous solution.
  • the amount of hydrogen gas used is reduced, and purified terephthalic acid having a reduced ⁇ Y value (an index of the amount of carbon (black) particles in the purified terephthalic acid) is obtained.
  • ⁇ Y value an index of the amount of carbon (black) particles in the purified terephthalic acid
  • Patent Document 3 US Pat. No. 6,407,286
  • impurities 4-CBA, colored by-products, etc.
  • more hydrogen is used than required, specifically one of the stoichiometrically required amounts of 4-CBA dissolved in crude terephthalic acid aqueous solution to p-toluic acid. It is said that up to 7 moles of hydrogen will be used.
  • the stoichiometric amount required to hydrogenate 4-CBA to p-toluic acid is 2 molar times that of 4-CBA, so to purify an aqueous solution of crude terephthalic acid, This is equivalent to using 3 to 9 mole times.
  • Patent Document 3 (US Pat. No. 6,407,286) proposes a method for recovering and reusing hydrogen discharged as a surplus after the purification reaction.
  • Patent Document 4 (U.S. Pat. No. 4,626,598) in which influential factors for the hydrorefining reaction were examined in detail, the color level of the purified terephthalic acid (Color scale “ It is proposed to measure the b-value ”) and adjust the hydrogen concentration (hydrogen gas flow rate, hydrogen partial pressure) of the aqueous reaction solution in order to maintain the color level.
  • a feedback control method is used in which conditions are controlled based on monitoring results such as levels.
  • the quality of the purified terephthalic acid cannot be guaranteed against the change in production volume (mainly increased production) in the existing equipment and the reaction conditions of the hydrorefining reactor in the new production facility. This could result in non-standard manufacturing.
  • the current situation is that excessive conditions are set for safety setting, and there are excessive facilities.
  • the present inventors based this hydrorefining reaction on the basis of a catalytic reaction between a gas phase and a liquid phase via a solid catalyst, and the reaction by the Langmuir-Hinshelwood mechanism proceeds. Assuming that the reaction substrate (4-CBA) and hydrogen are each adsorbed and activated on the catalyst and react, the dynamic conditions such as the flow and reactivity of the aqueous raw material solution are assumed. I realized that there was not enough knowledge about.
  • the hydrogenation time or space velocity of the reaction solution is about 0.001 to 10 hours. It is said that the contact reaction in the solid catalyst is preferably carried out between about 0.01 to 2 hours, and the apparent residence time in the relationship between the reaction liquid supply amount (volume) and the catalyst capacity, that is, space time (space This is because it is only prescribed by (speed).
  • the space velocity (Space velocity hr -1 ) in the catalyst layer (contact) reaction is obtained by dividing the reaction solution supply rate (m 3 / hr) by the catalyst layer capacity (m 3 ) as one index.
  • the reciprocal space time (Space time hr) is treated as an apparent processing time.
  • the setting of the hydrotreatment time (apparent residence time) in the catalytic reaction of about 0.001 to 10 hours, preferably about 0.01 to 2 hours is about 0.1 to 1000 (hr ⁇ 1 ), preferably in a wide range corresponding to about 0.5 to 100 (hr ⁇ 1 ).
  • the flow velocity which is an index of the reaction liquid flow as an influencing factor for diffusing in the liquid on the catalyst surface.
  • the economic production of the purified terephthalic acid having a stable reactivity and quality can be guaranteed.
  • the present inventors have realized that this was not the case. Based on the assumed reaction mechanism of the hydrorefining reaction, the present inventors consider that the reaction substrate (4-CBA) and hydrogen are directly influencing the diffusion process of diffusion, adsorption, reaction, and desorption on the catalyst surface. The goal is to find the stricter hydrogenation reaction conditions corresponding to fluctuations in the feed rate and other conditions in the purification reaction of crude terephthalic acid, taking the liquid flow rate as one of the reaction conditions.
  • the present invention provides a method for purifying crude terephthalic acid, which enables economical production of purified terephthalic acid having stable and reproducible reactivity and quality.
  • the inventors of the present hydrogenation reaction which is a contact reaction between a gas phase and a liquid phase that have a complicated flow, have the reaction aqueous solution up to the catalyst layer as a reaction method in which the flow of the reaction aqueous solution is reproducibly and most stable.
  • the hydrogen-containing gas phase is filled on the surfaces of the aqueous solution, and the reaction aqueous solution in which hydrogen is dissolved (absorbed) from the gas-liquid interface (liquid surface) continuously flows down in the catalyst layer to advance the purification reaction.
  • the method is limited to
  • a crude terephthalic acid aqueous solution and hydrogen gas are continuously supplied from the upper part of the reactor, and supplied to the upper part of the catalyst layer.
  • a liquid surface of the aqueous solution and a hydrogen-containing gas phase part (gas phase part) are formed on the upper part of the liquid surface.
  • the inventors of the present invention achieve the object of the present invention by pursuing the influence of the relationship between the flow rate of the catalyst layer of the aqueous reaction solution (the apparent superficial velocity of the reactor) and the hydrogen partial pressure on the purification reaction according to the above reaction method. I decided to find out the conditions.
  • the present inventors measured the terephthalic acid concentration of the reaction aqueous solution (terephthalic acid aqueous solution) and the vapor pressure (water vapor pressure) at each (reaction) temperature, which are the key to accurate measurement of the hydrogen partial pressure in the purification reaction. It was.
  • the hydrogen partial pressure in the hydrorefining reaction can be obtained as a pressure difference between the reactor pressure (reaction pressure) at each reactor temperature (reaction temperature) and the vapor pressure (Table 1) of the aqueous reaction solution (terephthalic acid aqueous solution). .
  • the reactor pressure at each reaction temperature consists of the sum of the vapor pressure and hydrogen partial pressure of the aqueous solution without using Raoult's law because the vapor pressure of the aqueous solution and the vapor pressure of hydrogen gas are far apart. ing.
  • the inventors measured the vapor pressure of the crude aqueous terephthalic acid solution by changing the amount of dissolved terephthalic acid (concentrations: 23.1 wt%, 27.0 wt%, 30.0 wt%). The measurement results are as shown in Table 1.
  • the vapor pressure of the crude terephthalic acid aqueous solution is lower than the vapor pressure of water due to the effect of increasing the boiling point by dissolution of terephthalic acid, and decreases as the amount of terephthalic acid dissolved increases.
  • terephthalic acid did not reach full dissolution up to 285 ° C like an aqueous solution with a terephthalic acid concentration of 30 wt%, the vapor pressure was measured by partial dissolution.
  • the present inventors regard the flow of the supplied crude terephthalic acid aqueous solution on the catalyst layer as the diffusion factor in the flow of dissolved hydrogen and the reaction substrate over the catalyst surface as the apparent linear velocity (reactor superficial velocity) of the reactor.
  • the purification effect by the measured hydrogen partial pressure and reactor superficial velocity was analyzed.
  • the hydrogen supply amount that is, the hydrogen absorption amount in this reaction method was measured and confirmed.
  • m / hr, 44.4m / hr) and hydrogen partial pressure (10.3Kg / cm 2 , 10.9Kg / cm 2 ) were made the same (closer), and the hydrogen gas absorption and purification effect could be reproduced. .
  • FIG. 2 is a plot of the 4-CBA content in the purified terephthalic acid according to the example in relation to the partial pressure of hydrogen (H2PP) with the superficial velocity (LV) as a parameter.
  • the 4-CBA content of the purified terephthalic acid in the comparative example in which the 4-CBA content is out of product specifications was plotted as 27 ppm.
  • reaction liquid continuous flow method in which the gas phase part is held on the upper part of the catalyst layer
  • the present inventors have developed a gas phase on each surface of the reaction aqueous solution. It was confirmed that the amount of hydrogen gas absorbed and the reaction rate of hydrogenation were balanced by the partial pressure of hydrogen and the flow rate of the reaction aqueous solution (superficial velocity), and a stable purification effect was exhibited.
  • the hydrogen partial pressure (H2PP) in the upper gas phase is based on the above relational expression (1) corresponding to the flow velocity (superficial velocity LV) at which the crude aqueous terephthalic acid solution flows down the catalyst layer of the hydrogenation reactor. It has been found that there is a correlation in which a stable quality of purified terephthalic acid (4-CBA content approximately 15 ppm) can be obtained by maintaining the partial pressure (Claim 3).
  • H2.PP hydrogen partial pressure in the hydrogen-containing gas phase part
  • H2.PP - 0.0020 ⁇ ( LV) 2 + 0.569 ⁇ (LV) -1.93
  • Hydrogen gas absorption by hydrogenation reaction increases (hydrogen / 4-CBA molar ratio about 9) and 4-CBA content in purified terephthalic acid tends to decrease (about 10ppm). If the partial pressure of (3) is exceeded (region E in Fig. 3), it is suggested that the hydrogen partial pressure produced by purified terephthalic acid with a low 4-CBA content but excessive quality is maintained. It was done.
  • the hydrogen partial pressure (H2.PP) in the hydrogen-containing gas phase part is in the range between the relational expression (2) and the relational expression (3) with respect to the superficial velocity (LV) under the flow of the crude aqueous terephthalic acid solution (in FIG. 3).
  • a method for purifying crude terephthalic acid in which hydrogenation reaction is carried out while maintaining the hydrogen partial pressure in region C) can be a preferred method (claim 2). That is, the range is expressed as a relational expression as follows.
  • the hydrogen partial pressure that produces a stable and reproducible quality of purified terephthalic acid is ⁇ 25% of the relational expression (1) above with the flow rate (superficial velocity LV) of the catalyst layer of crude terephthalic acid. It is preferable to perform the hydrorefining by setting the hydrogen partial pressure (H2PP) within the range (region B in FIG. 3) (Claim 3). That is, the range is expressed as a relational expression as follows.
  • the present invention in the production of purified terephthalic acid by hydrorefining method of a crude aqueous terephthalic acid solution, the above relational expressions (1), (2) and (3) with the flow-down superficial velocity (LV) of the reaction aqueous solution, the quality can be stabilized in response to changes in various reaction conditions.
  • the purified terephthalic acid thus produced can be produced, and it contributes to economical production without causing excessive hydrogenation reaction with excess hydrogen without producing a product having a non-standard property.
  • purification process of the crude terephthalic acid of this invention embodiment The figure which shows the relationship between 4-CBA content in refined terephthalic acid, and hydrogen partial pressure (H2PP) by using the superficial velocity (LV) as a parameter according to Examples.
  • the 4-CBA content of the purified terephthalic acid in the comparative example in which the 4-CBA content is out of product specifications was plotted as 27 ppm.
  • the hydrogen partial pressure (H2.PP) was determined by distinguishing differences such as hydrogenation reactor, hydrogen gas absorption (hydrogen (H2) / 4-CBA molar ratio) and terephthalic acid concentration. Plotted in relation to superficial velocity (LV).
  • the supply ratio of crude terephthalic acid and water supplied to the slurry preparation tank A is usually adjusted to a slurry of 23 to 30% by weight or 26 to 29% by weight in terms of terephthalic acid concentration, and then using a high pressure pump
  • the prepared slurry is supplied to the heater C and the dissolution tank D at a pressure exceeding the hydrogenation reactor pressure (55 to 100 kg / cm 2 G).
  • the slurry is heated to a set temperature of 275 to 300 ° C. by the heater C, and then stays in the dissolution tank D to form an aqueous solution in which the entire amount of crude terephthalic acid is dissolved.
  • the slurry is supplied to the hydrogenation reactor F.
  • high-pressure hydrogen gas wetted with the aqueous solution and high-pressure (high-temperature) steam is supplied to the upper part of the catalyst layer F1, respectively, and is controlled and maintained at a predetermined reactor pressure and reaction temperature.
  • a gas phase-liquid separation phase of upper and lower phases of a gas phase portion J containing hydrogen gas and a liquid phase portion by the reaction aqueous solution is formed.
  • the level of the aqueous solution at the upper and lower gas-liquid separation interface at the upper part of the catalyst layer is controlled and maintained (LIC), and the supply equivalent amount of the reaction aqueous solution flows down in the catalyst layer and dissolves in the presence of the catalyst ( Absorption)
  • LIC level of the aqueous solution at the upper and lower gas-liquid separation interface at the upper part of the catalyst layer
  • Absorption the supply equivalent amount of the reaction aqueous solution flows down in the catalyst layer and dissolves in the presence of the catalyst
  • the reaction pressure is kept at a set pressure of about 30 to 55 kg / cm 2 G, and the reaction aqueous solution at high temperature (275 to 300 ° C.) and high pressure (55 to 100 kgg.cm 2 G) is flushed ( (Relief pressure) and cooling, some crystals are precipitated, producing a purified terephthalic acid slurry at about 230-270 ° C.
  • the reaction temperature when flowing down the catalyst layer is a temperature exceeding the temperature at which the terephthalic acid crystals of the supplied crude terephthalic acid slurry are completely dissolved (the temperature at which crystals are precipitated in the supplied crude terephthalic acid aqueous solution).
  • the reaction is carried out at a temperature exceeding the respective dissolution temperature (about 275 to 300 ° C.) with respect to a reaction aqueous solution having a crude terephthalic acid concentration of 23 to 30% by weight.
  • Patent Document 1 US Pat. No. 3,639,465) states that the purification reaction is performed at a temperature of about 10 ° F. (about 5.6 ° C.) exceeding the temperature of the terephthalic acid crystal precipitation point.
  • the pressure of the reactor F is the above-mentioned relational expression between the vapor pressure of the aqueous terephthalic acid solution (Table 1) corresponding to the terephthalic acid concentration and temperature of the aqueous reaction solution (Table 1) 1), the hydrogen partial pressure (H2.PP) obtained from (2) and (3), and the hydrogen partial pressure (H2PP) obtained from the relational expression (2), or the relational expressions (2) and (3)
  • the hydrogenation reaction is carried out with the pressure obtained by adding the hydrogen partial pressure in the pressure range (C in FIG. 3) between the hydrogen partial pressures (H2.PP) obtained from (1).
  • Hydrogenation that sets the pressure obtained by adding the hydrogen partial pressure in the range of about ⁇ 25% of the hydrogen partial pressure (H2PP) obtained from the relational expression (1) (B in FIG. 3) to the vapor pressure of the reaction aqueous solution.
  • the reaction is a more preferred purification reaction. Therefore, it is usually carried out at a pressure of about 55-100 kg / cm 2 G.
  • FIG. 3 shows the difference between hydrogen partial pressure (H2.PP) and hydrogenation reactor, hydrogen gas absorption (hydrogen / 4-CBA molar ratio) and terephthalic acid concentration, etc. It is the figure plotted in relation to the superficial velocity (LV), and at the same time, the approximate relationship line where the 4-CBA content is the same and the relationship were expressed by a formula.
  • the relational expression is as follows.
  • (H2.PP) -0.000688 x (LV) 2 +0.374 x (LV)-1.85 (4) Relational expressions corresponding to the approximate relation lines in FIG. 3 are indicated by (1) to (4). Regions partitioned by the relationship lines are indicated by (A) to (F), (A) is a region below Equation (3), and (B) is Equations (2) and (4) centering on Equation 1. (C) is a region surrounded by equations (2) and (3), (D) is a region above equation (2), (E) is a region above equation (3), and (F) is an equation (2) The following areas are shown.
  • the catalyst used for filling the hydrogenation reactor F is a catalyst of an activated carbon carrier supporting a Group VIII noble metal such as palladium, platinum or ruthenium, and a palladium-supported activated carbon catalyst is most commonly used. Yes.
  • the amount of each precious metal supported is in the range of 0.1 to 3% by weight, but an active catalyst supporting 0.5% by weight of palladium is usually used.
  • the dimensions of the hydrogenation reactor used in this embodiment are shown in FIG. Although schematically shown in the hydrogenation reactor F, there is no particular limitation as long as the hydrogen-containing gas phase portion J and the reaction aqueous solution can be stably formed and held on the upper part of the catalyst layer.
  • the crystallization slurry extracted from the first crystallization tank G is flash-cooled through a plurality of crystallization tanks (not shown) whose pressure is lowered stepwise, and then about 2 to 5 kg / cm 2. Flush into the final crystallization vessel H held in G to obtain a purified terephthalic acid crystallization slurry at a temperature of about 130-160 ° C.
  • the crystallization slurry in the final crystallization tank H is separated and washed with a solid-liquid separator I while maintaining the temperature, and a wet cake of purified terephthalic acid is recovered.
  • the collected wet cake is dried by a dryer (not shown) to obtain a product of purified terephthalic acid.
  • the purified terephthalic acid cake which is not washed in the solid-liquid separator I and is recovered only by solid-liquid separation of the crystallization slurry in the final crystallization tank H, is heated with high-temperature (about 100 to 160 ° C.) water. After re-slurry, a method of solid-liquid separation using a solid-liquid separator again and recovery with a wet cake of purified terephthalic acid is also carried out, followed by drying to obtain a product of purified terephthalic acid.
  • FIG. 1 a system diagram of the process of FIG. 1 of a purified terephthalic acid production apparatus in which the above crude terephthalic acid is dissolved in water and hydrorefined is used.
  • the outline and reaction conditions in the hydrogenation reactor are specifically described in each example.
  • Example 1 A hydrogenation catalyst (0.5 wt% Pd-supported activated carbon) was added to the hydrogenation reactor F (Fig. 1, hydrogenation reactor F schematic diagram) consisting of a cylindrical part with an inner diameter of 740 mm ⁇ and a length of 7,000 mm and upper and lower mirror parts (hemisphere). Catalyst) A hydrogenation reactor packed with 2.56 m 3 , the catalyst layer packed to a height of about 5,710 mm (about 1,290 mm from the top end of the cylinder), and fixed on the catalyst layer with a 20-mesh metal mesh catalyst holder Using.
  • Fig. 1 hydrogenation reactor F schematic diagram
  • Catalyst A hydrogenation reactor packed with 2.56 m 3 , the catalyst layer packed to a height of about 5,710 mm (about 1,290 mm from the top end of the cylinder), and fixed on the catalyst layer with a 20-mesh metal mesh catalyst holder Using.
  • crude terephthalic acid (4-CBA content 2800 ppm) is supplied from a powder supply hopper B to a slurry preparation tank A from a line 1 to prepare a slurry having a terephthalic acid concentration of 26% by weight.
  • the prepared slurry is supplied to the heater C through the line 3 at a rate of 14,500 kg / hr with a high-pressure pump, heated to about 283 ° C., and supplied to the hydrogenation reactor F through the dissolution tank D and the line 4.
  • the aqueous solution obtained by heating and dissolving crude terephthalic acid is dispersedly supplied onto a liquid surface held at a position of about 650 mm on the catalyst layer through a branched porous supply pipe attached to the upper part of the reactor F.
  • high-pressure hydrogen about 120 kg / cm 2 G
  • the pressure is controlled from the top of reactor F to a reactor pressure of about 73 kg / cm 2 G (PIC Pressure regulator) to replenish dissolved (absorbed) hydrogen gas.
  • the supplied aqueous solution flows downward in the catalyst layer by liquid level control (LIC liquid level controller), and after catalytic hydrogenation with dissolved hydrogen from the liquid level, the first crystal is formed from the bottom of the reactor F. Extracted into the analysis tank G. A cylindrical liquid collection part with a 0.8 mm mesh is attached to the lower part of the catalyst layer, and the hydrotreating liquid is drawn through the liquid collection part.
  • the temperature TI temperature indicator
  • the reactor pressure is maintained at 73.2 kg / cm 2 G.
  • the vapor pressure of the 26 wt% aqueous terephthalic acid solution is 62.9 kg / cm 2 G (282 ° C.), and the hydrogen partial pressure is 10.3 kg / cm 2 .
  • the average amount of hydrogen supplied (absorbed) during the reaction was 8.2 Nm 3 / hr.
  • the hydrogen absorption amount is calculated as a ratio to the 4-CBA supply amount (hydrogen / 4-CBA ratio), it is 5.2 (molar ratio).
  • the supply amount of the crude terephthalic acid aqueous solution was hydrotreated at an apparent superficial velocity (LV) of 41.1 m / hr.
  • the hydrotreated aqueous solution is flushed through line 9 to the first crystallization tank G of high pressure (about 48 kg / cm 2 G), and then sequentially flushed using a plurality of crystallization tanks (not shown) in series. After that, it is produced as a purified terephthalic acid slurry cooled to about 150 ° C. in the final crystallization tank H.
  • the produced slurry is separated and washed by the solid-liquid separator I via the line 13 to collect a wet cake of purified terephthalic acid crystals. By drying the cake with a drier (not shown), purified terephthalic acid is recovered and produced.
  • the 4-CBA content of the purified terephthalic acid crystals recovered during that period was about 15 ppm, and the p-toluic acid content was about 125 ppm.
  • Example 2 Using an apparatus system (schematic diagram FIG. 1) similar to that of Example 1 equipped with a hydrogenation reactor having an inner diameter of 3,900 mm ⁇ , a length of 14,000 mm, and a mirror part (hemisphere) at the top and bottom, it is described below. Under the same conditions and the same conditions and methods as in Example 1, crude terephthalic acid was dissolved in water and subjected to a hydrorefining reaction to produce purified terephthalic acid. The hydrogenation reactor F was filled with 159 m 3 of a hydrogenation catalyst (the same catalyst as in Example 1), and the cylinder portion was filled with a catalyst layer height of about 12,000 mm.
  • a hydrogenation catalyst the same catalyst as in Example 1
  • a slurry of crude terephthalic acid (4-CBA content 2700ppm) and pure water with a terephthalic acid concentration of 26.5% by weight was prepared, and the prepared slurry was supplied at a rate of 435ton / hr with a high-pressure pump.
  • the hydrogenation reactor F is supplied in the same manner as in 1.
  • the reaction liquid is extracted from the lower part of the catalyst layer, and from the upper part of the reactor.
  • Hydrogen gas supply by pressure control was performed in the same manner as in Example 1.
  • the temperature of the hydrogenation reactor F (TI temperature indicator) was controlled to 282 ° C.
  • the pressure was controlled to 73.6 kg / cm 2 G
  • the hydrogen gas supply (absorption) amount was 239 Nm 3 / hr.
  • the hydrogen partial pressure at this time was 10.8 kg / cm 2 (aqueous solution vapor pressure 62.8 kg / cm 2 G), and the amount of hydrogen absorbed with respect to 4-CBA supply was 5.1 (molar ratio).
  • the apparent velocity (Linear velocity LV) in supplying the crude aqueous terephthalic acid solution was 44.4 m / hr.
  • the recovered purified terephthalic acid crystal had a 4-CBA content of about 15 ppm and a p-toluic acid of about 125 ppm.
  • Table 2 summarizes the reaction conditions of Examples 1 and 2 and the properties of purified terephthalic acid.
  • Examples 3, 4, 5, 6 Using the same apparatus as in Example 1, a slurry of crude terephthalic acid (4-CBA content 2800 ppm) prepared in slurry preparation tank A to a concentration of 26% by weight was passed through line 3 with a high-pressure pump, and 25,000 kg / hr. 35,000 kg / hr, 41,000 kg / hr and 7,500 kg / hr were supplied to the heater C, and a hydrogenation reaction was carried out in the same manner as in Example 1 to produce purified terephthalic acid.
  • the reactor temperature was maintained at 282 ° C and the reactor pressure was maintained at 79.8Kg / cm 2 G, 85.8Kg / cm 2 G, 88.8Kg / cm 2 G and 67.3Kg / cm 2 G, respectively. Went.
  • the hydrogen absorption was 5.2 (molar ratio) with respect to the supplied 4-CBA, and all the purified terephthalic acid crystals produced had a 4-CBA content of about 15 ppm and a p-toluic acid content of about 125 ppm.
  • the calculated hydrogen partial pressure and apparent superficial velocity are 16.9 kg / cm 2 , 22.9 kg / cm 2 , 25.9 kg / cm 2 , 4.4 kg / cm 2 , and 70.9 m / mm, as shown in Table 3.
  • Example 1 Comparative Example 1 Using the same apparatus as in Example 1, a prepared slurry having a terephthalic acid concentration of 26% by weight was fed at a rate of 14,500 kg / hr, the reactor pressure was maintained at 69.3 Kg / cm 2 G, and the temperature was maintained at 282 ° C. Purified terephthalic acid was produced in the same manner as in Example 1. Hydrogen gas supply (absorption) amounted to 3.1 Nm 3 / hr.
  • the 4-CBA content in the purified terephthalic acid crystal started to rise about 15 hours after setting the reactor pressure at 69.3 Kg / cm 2 G, and after 25 hours it exceeded 25 ppm, and the 4-CBA content was Production of purified terephthalic acid outside the product standards.
  • the hydrogen partial pressure at that time is 6.4 kg / cm2, the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 1.9, and the superficial velocity is 41.1 m / hr, as shown in Table 3. Therefore, by reducing the reactor pressure in Example 1 (73.2 ⁇ 69.3 Kg / cm 2 G), the hydrogen partial pressure is reduced (10.3 ⁇ 6.4 Kg / cm 2 ) and the hydrogen gas absorption is reduced. It was found that the 4-CBA content of the acid was out of specification (4-CBA specification 25 ppm).
  • Example 2 (Comparative Example 2) Using the same apparatus as in Example 1, a prepared slurry having a terephthalic acid concentration of 26% by weight was fed at a rate of 35,000 kg / hr, the reactor pressure was maintained at 74.9 Kg / cm 2 G, and the temperature was maintained at 282 ° C. Purified terephthalic acid was produced in the same manner as in Example 1. Hydrogen gas supply (absorption) amounted to 7.1 Nm 3 / hr.
  • the 4-CBA content in the purified terephthalic acid crystal started to rise about 15 hours after setting the reactor pressure to 74.9 Kg / cm 2 G, and after 25 hours it exceeded 25 ppm, and the 4-CBA content was Production of purified terephthalic acid outside the product standards.
  • the hydrogen partial pressure at that time is 12.0 kg / cm2
  • the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 1.9
  • the superficial velocity is 99.3 m / hr.
  • Examples 7, 8, and 11 Using the same apparatus as in Example 1, as shown in Table 4, the supply of 26% by weight of the adjusted slurry was supplied at the same rate of 14,500 kg / hr as in Example 1, and the reactor pressure was 75.0 kg / cm, respectively.
  • Purified terephthalic acid was produced in the same manner as in Example 1 while maintaining 2 G, 70.6 Kg / cm 2 G and 81.0 Kg / cm 2 G. Hydrogen gas supply (absorption) amount became respectively 9.1Nm 3 /hr,4.8Nm 3 / hr and 14.0 nm 3 / hr.
  • the hydrogen partial pressures at that time are 12.1 kg / cm 2 , 7.7 kg / cm 2 , 18.1 kg / cm 2 , and the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 5.7, 3.0, and 8.9, respectively. All superficial velocities are 41.1m / hr. Therefore, in the same slurry supply amount (including Example 1), the reactor pressure fluctuation (hydrogen partial pressure fluctuation) directly corresponds to the hydrogen gas supply (absorption) amount, which also affects the purification effect. I found out. It was suggested that Example 11 supplied (absorbed) excess hydrogen in the production of purified terephthalic acid.
  • Example 9 (Examples 9 and 10) Using the same apparatus as in Example 1, as shown in Table 5, the 26% by weight of the prepared slurry was the same rate of 25,000 kg / hr as in Example 3 (the apparent superficial velocity was 70.9 m / hr), and the reactor pressure was maintained at 91.4 Kg / cm 2 G and 75.1 Kg / cm 2 G, respectively, and purified terephthalic acid was produced in the same manner as in Example 3. As a result, it was possible to produce purified terephthalic acid products with 4-CBA content of 10 ppm and 20 ppm, respectively, and p-toluic acid content of 125 ppm.
  • the hydrogen partial pressures at that time are 28.5 kg / cm 2 and 12.2 kg / cm 2 , hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 8.8, 3.1, space velocity and superficial velocity are shown in Table 5. As shown.
  • the reactor pressure fluctuation directly corresponds to the hydrogen gas supply (absorption) amount, which also affects the purification effect.
  • Example 3 (Comparative Example 3) Using the same apparatus as in Example 1, 26 wt% of the prepared slurry was supplied at the same rate of 25,000 kg / hr as in Example 3 (apparent superficial velocity was 70.9 m / hr as in Example 3). Purified terephthalic acid was produced in the same manner as in Example 3 while maintaining the reactor pressure at 72.3 kg / cm 2 G. Hydrogen gas supply (absorption) amount became 5.3 nm 3 / hr. As a result, after setting the reactor pressure to 72.3 Kg / cm2G, about 20 hours later, the 4-CBA content exceeded 25 ppm, and the production of purified terephthalic acid with a 4-CBA content outside the product standard was achieved. The hydrogen partial pressure at that time was 9.4 kg / cm 2 , the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) was 2.0, the space velocity and the superficial velocity were as shown in Table 5.
  • Example 4 (Comparative Example 4) Using the same apparatus as in Example 1, 26% by weight of the prepared slurry was fed at the same rate of 41,000 kg / hr as in Example 5 (the apparent superficial velocity was 116 m / hr as in Example 5), and the reaction Purified terephthalic acid was produced in the same manner as in Example 5 while maintaining the vessel pressure at 77.0 kg / cm 2 G. Hydrogen gas supply (absorption) amounted to 8.7 Nm 3 / hr. As a result, after about 20 hours after setting the reactor pressure to 77.0 kg / cm 2 G, the 4-CBA content exceeded 25 ppm, and the production of purified terephthalic acid with a 4-CBA content outside the product standard was achieved. The hydrogen partial pressure at that time was 14.1 kg / cm 2 , the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) was 2.0, the space velocity and the superficial velocity were as shown in Table 5.
  • Example 12 Using the same apparatus as in Example 1, as shown in Table 6, a slurry having a crude terephthalic acid (4-CBA content 2,800 ppm) concentration of 29 wt% was prepared in a slurry preparation tank A, and the prepared slurry was 14,500 kg / hr.
  • the hydrogenation reaction was carried out in the same manner as in Example 1 while maintaining the reactor pressure at 76.4 Kg / cm 2 G and the reactor temperature at 287 ° C. Manufactured.
  • the apparent superficial velocity of the slurry supply at that time is 41.1m / hr, the hydrogen gas supply (absorption) amount was 9.0 nm 3 / hr.
  • the vapor pressure of 29 wt% terephthalic acid solution is 66.9Kg / cm 2 G (287 °C ), hydrogen partial pressure becomes 9.5 kg / cm 2.
  • the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) at that time is calculated as 5.1, and the space velocity and superficial velocity are as shown in Table 6. Therefore, it was found that the same purified terephthalic acid as in Example 1 can be produced by responding to changes in the terephthalic acid concentration and the reactor temperature with the reactor pressure (hydrogen partial pressure).
  • Example 13 Comparative Example 5
  • Example 13 Comparative Example 5
  • the reactor pressure was maintained at 67.7 Kg / cm 2 G and 68.8 Kg / cm 2 G, and a hydrogenation reaction was performed in the same manner as in Example 2 to produce purified terephthalic acid.
  • the hydrogenation reaction temperature was maintained at 282 ° C.
  • the vapor pressure of 26.5 wt% of terephthalic acid solution was 62.8Kg / cm 2 G (282 °C ), hydrogen partial pressure, respectively 4.9 kg / cm 2 and 6.0 kg / cm 2, and the hydrogen gas supply (absorption) amount 124Nm 3 / hr and 54 Nm 3 / hr.
  • Example 13 the 4-CBA content was 15 ppm, but in Comparative Example 5, the 4-CBA content exceeded 25 ppm after about 20 hours after setting the reactor pressure to 68.8 kg / cm 2 G.
  • the production of purified terephthalic acid with a 4-CBA content outside the product standards was achieved.
  • the apparent superficial velocity at that time is 22.4 m / hr and 44.4 m / hr, the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 5.2 and 1.2, and the others are as shown in Table 6.
  • Comparative Example 5 responded to the increase in the slurry supply amount (220 ⁇ 435 ton / hr) without increasing the reactor pressure to 73.6 Kg / cm 2 G (Example 2 reactor pressure). Due to the lack of absorption (124 ⁇ 54Nm 3 / hr), the production of purified terephthalic acid out of product specifications was made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

With current methods for manufacturing refined terephthalic acid by means of a hydrogenation reaction of a crude terephthalic acid aqueous solution by means of a precious-metal-supporting activated carbon catalyst, excessive condition settings and extra equipment are used for setting safely in order to ensure quality when setting the hydrogenation reaction conditions based on an increase in production, new equipment or other variations in the amount of production. Disclosed is a method for refining crude terephthalic acid having more economical reaction conditions and stable quality with good reproducibility. With the method for refining crude terephthalic acid, crude terephthalic acid is dissolved in water to form an aqueous solution that is then supplied together with hydrogen gas to the top of an activated carbon catalyst layer. Said aqueous reaction solution is supplied until it rises above the catalyst layer, and by means of a type of reaction vessel that forms/retains a hydrogen-containing gas phase portion above the surface of said aqueous solution, said aqueous solution dissolves (absorbs) hydrogen contained in the upper gas phase portion from the gas-liquid interface, after which the hydrogenation reaction occurs while said solution flows down through the catalyst layer. In addition, the hydrogenation reaction occurs while the hydrogen partial pressure of the gas phase portion at the upper part of the catalyst layer is maintained, based on its relationship with the downward superficial velocity of the respective reaction liquid, in a partial pressure range that is calculated based on the correlation of the hydrogen partial pressure (H2.PP) with the downward superficial velocity (LV), and with the superficial velocity of said aqueous reaction solution that flows down through the catalyst layer introduced as a determining condition.

Description

粗製テレフタル酸の精製方法Method for purifying crude terephthalic acid
 本発明は粗製テレフタル酸を水溶液として貴金属担持活性炭触媒と接触させて水素化精製する際に、安定した水素化反応により、再現よく安定した品質の精製テレフタル酸を製造する方法に関する。特に水素化反応器において精製反応に必要な最適水素量を安定した速度で供給して、品質の安定した精製テレフタル酸の製造に関するもので、精製テレフタル酸の製造おける増産・減産ならびに反応器の新設に対応して、精製原料の供給量に追従した水素分圧をもって安定した品質の精製テレフタル酸を経済的に製造する水素化条件を設定する方法である。 The present invention relates to a method for producing reproducible and stable purified terephthalic acid by a stable hydrogenation reaction when crude terephthalic acid is brought into contact with a noble metal-supported activated carbon catalyst as an aqueous solution and hydrorefined. In particular, it relates to the production of purified terephthalic acid with stable quality by supplying the optimum amount of hydrogen necessary for the purification reaction in a hydrogenation reactor at a stable rate. In response to the above, hydrogenation conditions for economically producing purified terephthalic acid of stable quality with a hydrogen partial pressure following the supply amount of the refined raw material are set.
 p-キシレンを出発原料として酢酸溶媒中に酸化触媒の存在下、酸素含有ガスを用いて液相酸化することにより製造される粗製テレフタル酸は、反応中間体である4-カルボキシベンズアルデヒド(4-CBA)および着色性の副反応生成物などの不純物が微量含有されるため、高温・高圧下に水に溶解して水溶液としたのち、水素ガス雰囲気中水素ガスを溶解して、貴金属担持活性炭触媒と接触させて水素化反応する。そして、該溶液中の不純物を水に溶解性のある物質への転換あるいは分解したのち、該反応水溶液を冷却してテレフタル酸の結晶を生成し、固液分離したのち回収し、不純物含有量の低減された精製テレフタル酸(粉体)が工業的に製造されている。
そして、該精製テレフタル酸はポリエチレンテレフタレート(PET)製造の原料として、繊維用を筆頭に、フィルム用あるいは容器用のポリエステルとして需要および用途の拡大とともに工業的に大規模に製造されてきた。
そのため、精製テレフタル酸製造装置での増産ならびに新規製造設備での製造にあたって、製造される精製テレフタル酸の品質が目標品質を外れるなどにより、設定を超える圧力設備を必要とすることなどから、それらの設備改造が必要となることがある。また同時に、水素化反応器への原料供給量の変動に対して、目標品質を安定して製造する粗製テレフタル酸の水素化反応の具体性のある条件が明確になっていなかった。
それは、粗製テレフタル酸を精製する水素化反応器は貴金属担持活性炭触媒が充填された触媒層上での気液反応であるにも拘らず、下記の提案にも見られるように、触媒層を通る流体の流動状態を明確にせず水素化精製反応の条件探索を行ってきた結果であると考えられる。
Crude terephthalic acid produced by liquid phase oxidation using p-xylene as a starting material in an acetic acid solvent in the presence of an oxidation catalyst with an oxygen-containing gas is a reaction intermediate 4-carboxybenzaldehyde (4-CBA). ) And coloring side reaction products are contained in trace amounts, so after dissolving in water at high temperature and high pressure to form an aqueous solution, dissolve the hydrogen gas in a hydrogen gas atmosphere, Hydrogenation reaction is carried out by contact. Then, after the impurities in the solution are converted or decomposed into a substance soluble in water, the aqueous reaction solution is cooled to produce crystals of terephthalic acid, and after solid-liquid separation, the impurities are collected. Reduced purified terephthalic acid (powder) is produced industrially.
The purified terephthalic acid has been produced industrially on a large scale as a raw material for the production of polyethylene terephthalate (PET) as a polyester for a fiber or a container for a film or a container, as demand and applications expand.
For this reason, in order to increase production at refined terephthalic acid production equipment and production at new production facilities, the quality of the purified terephthalic acid produced will deviate from the target quality, which requires pressure equipment that exceeds the setting. Equipment modifications may be required. At the same time, the specific conditions for the hydrogenation reaction of crude terephthalic acid, which stably produces the target quality, have not been clarified against fluctuations in the amount of raw material supplied to the hydrogenation reactor.
Although the hydrogenation reactor for purifying crude terephthalic acid is a gas-liquid reaction on a catalyst layer packed with a noble metal-supported activated carbon catalyst, it passes through the catalyst layer as seen in the proposal below. This is thought to be the result of conducting a search for hydrorefining reaction conditions without clarifying the fluid flow state.
 因みに、触媒層を用いる気液接触反応には、反応気体の流動雰囲気(気体連続相)中の触媒層を反応液体が液滴として流下する(Trickling)方式および反応液体の流動(液体連続相)中にある触媒層を反応気体が気泡として通過する(Bubbling)方式あるいは反応気体と反応液体を強制的に供給し、触媒層中を混相流となって流動させる方式などがある。
粗製テレフタル酸の精製法は、特許文献1(アメリカ特許第3,639,465号)によれば、粗製テレフタル酸の水溶液を、該水溶液が結晶を最初に析出する温度より約10°F超える温度(約440°~575°F)そして該水溶液が液相を保持する圧力において、水素ガスとともに触媒層を通過せしめ、水素化精製反応が行われるとしている。
Incidentally, in gas-liquid contact reactions using a catalyst layer, the reaction liquid flows down as droplets (Trickling) in the reaction gas flow atmosphere (gas continuous phase) and the reaction liquid flow (liquid continuous phase). There are a system in which the reaction gas passes through the catalyst layer as a bubble (Bubbling), or a system in which the reaction gas and the reaction liquid are forcibly supplied to flow in the catalyst layer in a mixed phase flow.
According to Patent Document 1 (US Pat. No. 3,639,465), a method for purifying crude terephthalic acid is a method in which an aqueous solution of crude terephthalic acid is about 10 ° F. above the temperature at which the aqueous solution first precipitates crystals (about 440 ° It is said that the hydrorefining reaction is carried out by allowing the aqueous solution to pass through the catalyst layer together with hydrogen gas at a pressure at which the aqueous solution maintains the liquid phase.
 そしてその水素化精製反応は該水溶液が水素ガス連続雰囲気中の触媒層を滴下(Trickle)する方式による精製反応が好ましいとされ、該触媒層内での該水溶液の水素化処理時間(Hydrogenation treating time)あるいは空間速度(Space velocity)は約0.001~10時間、好ましくは0.01~2時間とされている。また該ガス雰囲気中の水素分圧は14.7~150psiあるいはそれ以上の分圧とされる。 The hydrorefining reaction is preferably a refining reaction in which the aqueous solution drops a catalyst layer in a hydrogen gas continuous atmosphere (Trickle), and the hydrotreating time of the aqueous solution in the catalyst layer (Hydrogenation treatment time) ) Or space velocity is about 0.001 to 10 hours, preferably 0.01 to 2 hours. The hydrogen partial pressure in the gas atmosphere is 14.7 to 150 psi or more.
 一方、特許文献2(アメリカ特許4,405,809号)では水素化精製における反応の条件は上記提案とほぼ同一であるが、粗製テレフタル酸水溶液への溶解水素は飽和に対して約10~75%の溶解水素濃度を保つように水素ガスが供給され、ガス相(ガス雰囲気相)の存在しない、触媒層を該水溶液で充満した液体単相流動(液体連続相)方式によって精製反応を行うとしている。 On the other hand, in Patent Document 2 (US Pat. No. 4,405,809), the conditions of the reaction in hydrorefining are almost the same as the above proposal, but the dissolved hydrogen in the crude terephthalic acid aqueous solution is about 10 to 75% dissolved hydrogen with respect to saturation. Hydrogen gas is supplied so as to maintain the concentration, and the purification reaction is performed by a liquid single-phase flow (liquid continuous phase) method in which a gas phase (gas atmosphere phase) does not exist and the catalyst layer is filled with the aqueous solution.
 その反応形式によれば水素ガス使用量の低減が図られ、ΔY値(精製テレフタル酸中の炭素(黒色)粒子の存在量の指標)の低減された精製テレフタル酸が得られるとしている。
しかし、該発明者らも述べているように、粗製テレフタル酸水溶液における溶解水素の飽和量は温度、圧力(水素分圧)およびテレフタル酸濃度によって変わり反応の条件として測定の困難な因子である。
According to the reaction mode, the amount of hydrogen gas used is reduced, and purified terephthalic acid having a reduced ΔY value (an index of the amount of carbon (black) particles in the purified terephthalic acid) is obtained.
However, as the inventors have stated, the saturation amount of dissolved hydrogen in the crude terephthalic acid aqueous solution varies depending on the temperature, pressure (hydrogen partial pressure) and terephthalic acid concentration, and is a difficult factor to measure as the reaction conditions.
 また、本精製プロセスにおける水素ガス使用量については、特許文献3(アメリカ特許第6,407,286号)に、反応水溶液に溶解している不純物(4-CBA、着色副生物など)の水素化(還元)に必要な量を超える量の水素が使用されるとし、具体的には、粗製テレフタル酸水溶液中に溶解している4-CBAをp-トルイル酸に還元する化学量論的に必要な量の1~7モル倍の量の水素が使用されるとしている。 The amount of hydrogen gas used in this purification process is described in Patent Document 3 (US Pat. No. 6,407,286) in the hydrogenation (reduction) of impurities (4-CBA, colored by-products, etc.) dissolved in the reaction aqueous solution. Suppose that more hydrogen is used than required, specifically one of the stoichiometrically required amounts of 4-CBA dissolved in crude terephthalic acid aqueous solution to p-toluic acid. It is said that up to 7 moles of hydrogen will be used.
 従って、4-CBAがp-トルイル酸に還元される反応は下記の通りとなり、 Therefore, the reaction in which 4-CBA is reduced to p-toluic acid is as follows:
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
4-CBAをp-トルイル酸に水素化するに必要な化学量論量は4-CBAの2モル倍であるため、粗製テレフタル酸の水溶液を精製処理するには、存在する4-CBAに対して3~9モル倍を使用することに相当する。 The stoichiometric amount required to hydrogenate 4-CBA to p-toluic acid is 2 molar times that of 4-CBA, so to purify an aqueous solution of crude terephthalic acid, This is equivalent to using 3 to 9 mole times.
 そのため、上記特許文献3(アメリカ特許第6,407,286号)は精製反応後の余剰となって排出される水素を回収・再使用する方法を提案したものである。更に、水素化精製反応に対する影響因子をより詳細に検討を加えた、特許文献4(アメリカ特許第4,626,598号)において、供給反応水溶液の色相の変動に対して精製テレフタル酸の色水準(Color scale“b-value”)を測定して、色水準を維持するために反応水溶液の水素濃度(水素ガス流量、水素分圧)を調節することを提案している。 Therefore, Patent Document 3 (US Pat. No. 6,407,286) proposes a method for recovering and reusing hydrogen discharged as a surplus after the purification reaction. Furthermore, in Patent Document 4 (U.S. Pat. No. 4,626,598) in which influential factors for the hydrorefining reaction were examined in detail, the color level of the purified terephthalic acid (Color scale “ It is proposed to measure the b-value ") and adjust the hydrogen concentration (hydrogen gas flow rate, hydrogen partial pressure) of the aqueous reaction solution in order to maintain the color level.
 それは触媒が充填され水素化反応器に粗製テレフタル酸水溶液が充満した液体単相の反応方式(Hydraulically full reactor)では供給する水素ガス流量を調節することによって、また、該反応器中に粗製テレフタル酸水溶液が充満していない反応形式では水素ガス分圧を調節することによって精製テレフタル酸結晶の色水準を所定値(predetermined color scale)にすることを提案したものである。即ち、色水準b-valueにおける変化に対して水素分圧を調整する、精製結果に対して行うとしている方法である。 In a liquid single-phase reaction system in which a hydrogenation reactor is filled with a crude terephthalic acid aqueous solution (Hydraulically full reactor), the hydrogen gas flow rate is adjusted, and the crude terephthalic acid is fed into the reactor. In the reaction mode in which the aqueous solution is not filled, it is proposed to adjust the color level of the purified terephthalic acid crystal to a predetermined value (predetermined color scale) by adjusting the hydrogen gas partial pressure. In other words, this is a method of adjusting the hydrogen partial pressure with respect to the change in the color level b-value and performing the purification result.
 以上のように粗製テレフタル酸の水素化精製反応では、反応の条件となる温度、圧力、水素/4-CBAモル比、そして水素化処理時間(Space velocity)などの条件範囲が提案されているか、また安定した品質の精製テレフタル酸の製造に対応するための反応条件の制御を提案したものである。 As described above, in the hydrorefining reaction of crude terephthalic acid, a range of conditions such as temperature, pressure, hydrogen / 4-CBA molar ratio, and hydrotreating time (Space velocity) as the reaction conditions have been proposed, It also proposes the control of reaction conditions to support the production of stable quality purified terephthalic acid.
米国特許第3,639,465号明細書U.S. Pat.No. 3,639,465 米国特許第4,405,809号明細書U.S. Pat.No. 4,405,809 米国特許第6,407,286号明細書U.S. Pat.No. 6,407,286 米国特許第4,626,598号明細書U.S. Pat.No. 4,626,598
 しかしながら、それらの条件設定の範囲だけでは原料粗製テレフタル酸供給量の増量などに対応して、品質の安定した精製テレフタル酸を経済的に製造するに充分とは言えず、また精製テレフタル酸の色水準などの監視結果により条件を制御するフィードバック制御の方法が取られている。 However, it cannot be said that the range of these setting conditions alone is sufficient to economically produce purified terephthalic acid with stable quality in response to an increase in the supply of raw terephthalic acid, and the color of purified terephthalic acid. A feedback control method is used in which conditions are controlled based on monitoring results such as levels.
 そのため、現有装置における生産量の変化(主に増産)に、また新規増産設備における水素化精製反応器の反応条件の設定に対して、精製テレフタル酸の品質の保証することができないか、また製品規格外の製造に結果することがあった。安全設定のためには過剰な条件設定となり、過剰設備となっているのが現状である。 Therefore, the quality of the purified terephthalic acid cannot be guaranteed against the change in production volume (mainly increased production) in the existing equipment and the reaction conditions of the hydrorefining reactor in the new production facility. This could result in non-standard manufacturing. The current situation is that excessive conditions are set for safety setting, and there are excessive facilities.
 上記のような状況において、本発明者らは、本水素化精製反応を固体触媒を介した気相-液相間の接触反応の基本に立ち、反応機構としてLangmuir-Hinshelwood機構での反応が進行していると想定し、反応基質(4-CBA)と水素のそれぞれが触媒上に吸着・活性化して反応する機構であるとするならば、原料水溶液の流動と反応性と言った動的条件に対する知見が充分でないことに気付いた。 Under the circumstances as described above, the present inventors based this hydrorefining reaction on the basis of a catalytic reaction between a gas phase and a liquid phase via a solid catalyst, and the reaction by the Langmuir-Hinshelwood mechanism proceeds. Assuming that the reaction substrate (4-CBA) and hydrogen are each adsorbed and activated on the catalyst and react, the dynamic conditions such as the flow and reactivity of the aqueous raw material solution are assumed. I realized that there was not enough knowledge about.
 即ち、従来の反応条件では、水素は反応水溶液中に溶解・拡散して触媒に到達することになるため、水素ガスの溶解推進力となる水素分圧は反応因子の一つとして捉えられているが、溶液中での拡散に影響を与える反応水溶液の触媒上流動について全く捉えていない。同様に溶液中の反応基質(4-CBA)の拡散・吸着そして反応生成物の脱離・拡散への影響因子としての溶液の触媒上流動についても全く知見が見られない。 That is, under the conventional reaction conditions, hydrogen dissolves and diffuses in the reaction aqueous solution and reaches the catalyst, so the hydrogen partial pressure that is the driving force for dissolving hydrogen gas is regarded as one of the reaction factors. However, it does not capture the flow of the reaction aqueous solution on the catalyst which affects the diffusion in the solution. Similarly, there is no knowledge about the diffusion and adsorption of the reaction substrate (4-CBA) in the solution and the flow of the solution on the catalyst as an influence factor on the desorption and diffusion of the reaction product.
 それは液滴下方式(Trickling reactor 気体連続相)あるいは液充満方式(Hydraulically full reactor 液体連続相)のいずれの反応方式とも限定せずに、反応液の水素化処理時間あるいは空間速度を約0.001~10時間、好ましくは約0.01~2時間の間で行われるとされているのみで、固体触媒における接触反応を反応液供給量(容積)と触媒容量との関係における見かけ滞留時間、即ち、空間時間(空間速度)で規定しているに過ぎないからである。 It is not limited to either the drop-down method (Trickling reactor gas continuous phase) or the liquid filling method (Hydraulically full reactor liquid continuous phase), and the hydrogenation time or space velocity of the reaction solution is about 0.001 to 10 hours. It is said that the contact reaction in the solid catalyst is preferably carried out between about 0.01 to 2 hours, and the apparent residence time in the relationship between the reaction liquid supply amount (volume) and the catalyst capacity, that is, space time (space This is because it is only prescribed by (speed).
 一般に触媒層(接触)反応における空間速度(Space velocity hr-1)とは反応液供給量(m3/hr)を触媒層容量(m3)で除した関係を一つの指標として捉えたもので、その逆数の空間時間(Space time hr)を見かけの処理時間として取り扱われている。 Generally, the space velocity (Space velocity hr -1 ) in the catalyst layer (contact) reaction is obtained by dividing the reaction solution supply rate (m 3 / hr) by the catalyst layer capacity (m 3 ) as one index. The reciprocal space time (Space time hr) is treated as an apparent processing time.
 そこで、該接触反応における水素化処理時間(見かけ滞留時間)の約0.001~10時間、好ましくは約0.01~2時間の前記設定は、空間速度(Space velocity)に換算すると約0.1~1000 (hr-1)、好ましくは約0.5~100(hr-1)に相当する広範な範囲となる。そのため触媒表面上の液中を拡散する影響因子としての反応液流動の指標となる流速については全く触れられていない。 Therefore, the setting of the hydrotreatment time (apparent residence time) in the catalytic reaction of about 0.001 to 10 hours, preferably about 0.01 to 2 hours is about 0.1 to 1000 (hr − 1 ), preferably in a wide range corresponding to about 0.5 to 100 (hr −1 ). For this reason, no mention is made of the flow velocity which is an index of the reaction liquid flow as an influencing factor for diffusing in the liquid on the catalyst surface.
 因みに、同一の空間速度(同一の空間時間)においても、上記のような異なる反応方式は勿論、反応器の断面(直径)によって反応液の触媒層内流速ならびに触媒表面上の流動が大きく異なる。 Incidentally, even in the same space velocity (same space time), the flow rate of the reaction liquid in the catalyst layer and the flow on the catalyst surface greatly differ depending on the cross section (diameter) of the reactor as well as the above different reaction methods.
 そのため、本発明の課題とする増産あるいは新規生産において反応液流動の再現を考慮することがなければ、再現よく、安定した反応性と品質を持った精製テレフタル酸の経済的生産を保証するに至っていなかったことに、本発明者らは気付いた。本発明者らは、想定した水素化精製反応の反応機構から、反応基質(4-CBA)と水素の触媒表面への拡散、吸着、反応、脱離の拡散過程に直接の影響因子と考える反応液の液流速を反応条件の一つに捉え、粗製テレフタル酸の精製反応において原料供給量などの条件変動に対応した、より厳密な水素化反応の条件を見出すことを目標とする。 Therefore, unless reproducibility of the flow of the reaction liquid is taken into consideration in the production increase or the new production which is the subject of the present invention, the economic production of the purified terephthalic acid having a stable reactivity and quality can be guaranteed. The present inventors have realized that this was not the case. Based on the assumed reaction mechanism of the hydrorefining reaction, the present inventors consider that the reaction substrate (4-CBA) and hydrogen are directly influencing the diffusion process of diffusion, adsorption, reaction, and desorption on the catalyst surface. The goal is to find the stricter hydrogenation reaction conditions corresponding to fluctuations in the feed rate and other conditions in the purification reaction of crude terephthalic acid, taking the liquid flow rate as one of the reaction conditions.
 本発明は、再現よく安定した反応性と品質を持った精製テレフタル酸の経済的生産が行なえる、粗製テレフタル酸の精製方法を提供するものである。 The present invention provides a method for purifying crude terephthalic acid, which enables economical production of purified terephthalic acid having stable and reproducible reactivity and quality.
 そのため本発明者らは、複雑な流動をする気相―液相間の接触反応である本水素化反応において、反応水溶液の流動が再現よく最も安定する反応方式として、触媒層上まで反応水溶液で満たし、該水溶液々面上に水素含有気相部を保持し、該気液界面(液面)から水素を溶解(吸収)した該反応水溶液が触媒層内を連続流下して、精製反応を進行させる方式に限定した。 For this reason, the inventors of the present hydrogenation reaction, which is a contact reaction between a gas phase and a liquid phase that have a complicated flow, have the reaction aqueous solution up to the catalyst layer as a reaction method in which the flow of the reaction aqueous solution is reproducibly and most stable. The hydrogen-containing gas phase is filled on the surfaces of the aqueous solution, and the reaction aqueous solution in which hydrogen is dissolved (absorbed) from the gas-liquid interface (liquid surface) continuously flows down in the catalyst layer to advance the purification reaction. The method is limited to
 そして、粗製テレフタル酸水溶液と水素ガスをそれぞれ反応器上部から連続的に供給し、触媒層上部に供給該水溶液の液面とその液面上部に水素含有気相部(気相部)を形成・保持させることによって、該水溶液の安定した供給により触媒層流下速度の安定を確保し、水素分圧に対応した水素が液面から定常的溶解(吸収)をすることになり、より安定した精製反応が進行することになる。 Then, a crude terephthalic acid aqueous solution and hydrogen gas are continuously supplied from the upper part of the reactor, and supplied to the upper part of the catalyst layer. A liquid surface of the aqueous solution and a hydrogen-containing gas phase part (gas phase part) are formed on the upper part of the liquid surface. By maintaining the solution, the stable supply of the aqueous solution ensures the stable flow rate of the catalyst layer, and the hydrogen corresponding to the hydrogen partial pressure is dissolved (absorbed) from the liquid surface constantly, resulting in a more stable purification reaction. Will progress.
 本発明者らは、前記反応方式による反応水溶液の触媒層流下速度(反応器の見かけ空塔速度)と水素分圧の関係が精製反応に与える影響について追求することによって、本発明目標を達成する条件を見出すことにした。 The inventors of the present invention achieve the object of the present invention by pursuing the influence of the relationship between the flow rate of the catalyst layer of the aqueous reaction solution (the apparent superficial velocity of the reactor) and the hydrogen partial pressure on the purification reaction according to the above reaction method. I decided to find out the conditions.
 先ず、本発明者らは精製反応における水素分圧の正確な測定の鍵となる、反応水溶液(テレフタル酸水溶液)のテレフタル酸濃度と各(反応)温度における蒸気圧(水蒸気圧)の測定を行った。 First, the present inventors measured the terephthalic acid concentration of the reaction aqueous solution (terephthalic acid aqueous solution) and the vapor pressure (water vapor pressure) at each (reaction) temperature, which are the key to accurate measurement of the hydrogen partial pressure in the purification reaction. It was.
 水素化精製反応における水素分圧は、各反応器温度(反応温度)における反応器圧力(反応圧力)と反応水溶液(テレフタル酸水溶液)の蒸気圧(表1)との圧力差として求めることができる。 The hydrogen partial pressure in the hydrorefining reaction can be obtained as a pressure difference between the reactor pressure (reaction pressure) at each reactor temperature (reaction temperature) and the vapor pressure (Table 1) of the aqueous reaction solution (terephthalic acid aqueous solution). .
 それは各反応温度における反応器圧力は、該反応水溶液の蒸気圧と水素ガスの蒸気圧は大きく離れているため、Raoultの法則を用いることなく、該水溶液の蒸気圧と水素分圧の和から成り立っている。 The reactor pressure at each reaction temperature consists of the sum of the vapor pressure and hydrogen partial pressure of the aqueous solution without using Raoult's law because the vapor pressure of the aqueous solution and the vapor pressure of hydrogen gas are far apart. ing.
 そのため本発明者らは、溶解テレフタル酸量(濃度  23.1wt%、 27.0wt%、 30.0wt%)を変えて粗製テレフタル酸水溶液の蒸気圧の測定を行った。その測定結果は表1の通りとなる。 Therefore, the inventors measured the vapor pressure of the crude aqueous terephthalic acid solution by changing the amount of dissolved terephthalic acid (concentrations: 23.1 wt%, 27.0 wt%, 30.0 wt%). The measurement results are as shown in Table 1.
 なお、粗製テレフタル酸水溶液の蒸気圧はテレフタル酸の溶解による沸点上昇効果により、水の蒸気圧より低下し、テレフタル酸溶解量の増加に伴って低下する。しかし、テレフタル酸濃度30wt%水溶液のように285℃までテレフタル酸は全溶解に達しないため、部分溶解での蒸気圧測定となった。 Note that the vapor pressure of the crude terephthalic acid aqueous solution is lower than the vapor pressure of water due to the effect of increasing the boiling point by dissolution of terephthalic acid, and decreases as the amount of terephthalic acid dissolved increases. However, since terephthalic acid did not reach full dissolution up to 285 ° C like an aqueous solution with a terephthalic acid concentration of 30 wt%, the vapor pressure was measured by partial dissolution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本設定では水素ガスは不活性ガス(N2)などで希釈することなく純水素で供給することを前提としたが、N2ガスなどでガス希釈することになれば、反応圧力と該水溶液の蒸気圧との圧力差がガス圧力となり、ガス圧力と該ガス中の水素ガス割合との積として水素分圧を求めることができる。 In this setting, it was assumed that the hydrogen gas was supplied with pure hydrogen without being diluted with an inert gas (N 2 ), but if the gas was diluted with N 2 gas, the reaction pressure and the vapor of the aqueous solution The pressure difference from the pressure becomes the gas pressure, and the hydrogen partial pressure can be obtained as the product of the gas pressure and the hydrogen gas ratio in the gas.
 次いで本発明者らは、溶解水素および反応基質の触媒表面上流れにおける拡散因子として、供給された粗製テレフタル酸水溶液の触媒層上流動を反応器の見かけ線速度(反応器空塔速度)として捉え、上記計測された水素分圧と反応器空塔速度とによる精製効果について解析した。同時に水素供給量、即ち本反応方式では水素吸収量の実測・確認を行った。 Next, the present inventors regard the flow of the supplied crude terephthalic acid aqueous solution on the catalyst layer as the diffusion factor in the flow of dissolved hydrogen and the reaction substrate over the catalyst surface as the apparent linear velocity (reactor superficial velocity) of the reactor. The purification effect by the measured hydrogen partial pressure and reactor superficial velocity was analyzed. At the same time, the hydrogen supply amount, that is, the hydrogen absorption amount in this reaction method was measured and confirmed.
 その結果、精製テレフタル酸の生産規模の異なる設備における粗製テレフタル酸水溶液供給量(スラリー供給量)の大きく異なる水素化精製反応(実施例1,2)においても、反応器空塔速度(LV=41.1m/hr、44.4m/hr)および水素分圧(10.3Kg/cm2、10.9Kg/cm2)を同一(近づける)にすることによって、水素ガス吸収量および精製効果を再現することができた。 As a result, the reactor superficial velocity (LV = 41.1) was also obtained in hydrorefining reactions (Examples 1 and 2) with greatly different crude terephthalic acid aqueous solution supply amounts (slurry supply amounts) in facilities with different production scales of purified terephthalic acid. m / hr, 44.4m / hr) and hydrogen partial pressure (10.3Kg / cm 2 , 10.9Kg / cm 2 ) were made the same (closer), and the hydrogen gas absorption and purification effect could be reproduced. .
 また、粗製テレフタル酸水溶液供給量(スラリー供給量)の変化に対応して、即ち、反応器空塔速度に対応して、水素分圧を変化させることによって、水素ガス吸収量および精製効果を維持または再現することができた(図2参照)。図2は実施例による精製テレフタル酸中の4-CBA含有量を、空塔速度(LV)をパラメーターとして、水素分圧(H2PP)との関係においてプロットしたものである。なお、比較例にある4-CBA含有量が製品規格外となる精製テレフタル酸の4-CBA含有量を27ppmとしてプロットした。 Also, the hydrogen gas absorption amount and the purification effect are maintained by changing the hydrogen partial pressure in response to the change in the supply amount (slurry supply amount) of the crude terephthalic acid aqueous solution, that is, in response to the reactor superficial velocity. Or could be reproduced (see FIG. 2). FIG. 2 is a plot of the 4-CBA content in the purified terephthalic acid according to the example in relation to the partial pressure of hydrogen (H2PP) with the superficial velocity (LV) as a parameter. In addition, the 4-CBA content of the purified terephthalic acid in the comparative example in which the 4-CBA content is out of product specifications was plotted as 27 ppm.
 上記のような反応方式(触媒層上部に気相部を保持した反応液連続流下方式)による精製テレフタル酸の製造を実施した結果を踏まえ、本発明者らは、反応水溶液々面上の気相部の水素分圧と反応水溶液流下速度(空塔速度)による水素ガスの吸収量と水素化の反応速度がバランスし、安定的精製効果を現出していることが確認できた。 Based on the results of the production of purified terephthalic acid by the reaction method as described above (reaction liquid continuous flow method in which the gas phase part is held on the upper part of the catalyst layer), the present inventors have developed a gas phase on each surface of the reaction aqueous solution. It was confirmed that the amount of hydrogen gas absorbed and the reaction rate of hydrogenation were balanced by the partial pressure of hydrogen and the flow rate of the reaction aqueous solution (superficial velocity), and a stable purification effect was exhibited.
 そのため本発明者らは、粗製テレフタル酸水溶液の精製反応について、反応水溶液の空塔速度(LV)および水素分圧(H2.PP)を反応因子と捉えて実施した実施例の結果を、水素化反応器、水素ガス吸収量(水素/4-CBAモル比)およびテレフタル酸濃度などの違いを区別して、水素分圧(H2.PP)を空塔速度(LV)で整理プロットしたのが図3に示す通りとなった。その結果、粗製テレフタル酸水溶液の精製反応において下記のように反応水溶液の触媒層流下の空塔速度(LV)と水素分圧(H2.PP)の関係式の得ることができた。 For this reason, the present inventors conducted a hydrogenation reaction on the results of the purification of a crude aqueous terephthalic acid solution, taking the superficial velocity (LV) and hydrogen partial pressure (H2.PP) of the reaction aqueous solution as reaction factors. Figure 3 shows the partial pressure plot of hydrogen partial pressure (H2.PP) at superficial velocity (LV), distinguishing differences in reactor, hydrogen gas absorption (hydrogen / 4-CBA molar ratio) and terephthalic acid concentration. It became as shown in. As a result, in the purification reaction of the crude aqueous terephthalic acid solution, a relational expression between the superficial velocity (LV) and the hydrogen partial pressure (H2.PP) under the catalyst laminar flow of the reaction aqueous solution was obtained as follows.
 そして、粗製テレフタル酸水溶液を貴金属担持の活性炭触媒を充填した水素化反応器を通して水素化精製する方法において、
触媒層上まで粗製テレフタル酸水溶液で満たし、該水溶液々面上部に水素含有気相部を保持し、
該気相部における水素分圧(H2.PP)を、該水溶液が触媒層を流下する空塔速度(LV)との下記関係式に保持して、
(H2PP)=-0.000550×(LV)2+0.299×(LV)-1.48  (1)
水素化反応を行うことが好ましい粗製テレフタル酸の精製であることを見出した。
And, in a method of hydrorefining a crude terephthalic acid aqueous solution through a hydrogenation reactor packed with a precious metal-supported activated carbon catalyst,
Fill the catalyst layer with a crude aqueous terephthalic acid solution, hold the hydrogen-containing gas phase part above the aqueous solution,
The hydrogen partial pressure (H2.PP) in the gas phase is maintained in the following relationship with the superficial velocity (LV) at which the aqueous solution flows down the catalyst layer:
(H2PP) = -0.000550 x (LV) 2 +0.299 x (LV)-1.48 (1)
It has been found that the hydrogenation reaction is preferably a purification of crude terephthalic acid.
 即ち、粗製テレフタル酸水溶液が水素化反応器の触媒層を流下する流下速度(空塔速度 LV)に対応して、上部気相部の水素分圧(H2PP)を上記関係式(1)に基く分圧を保持することによって、安定した品質の精製テレフタル酸(4-CBA含有量 約15ppm)が得られる相関関係があることを見出した(請求項3)。 That is, the hydrogen partial pressure (H2PP) in the upper gas phase is based on the above relational expression (1) corresponding to the flow velocity (superficial velocity LV) at which the crude aqueous terephthalic acid solution flows down the catalyst layer of the hydrogenation reactor. It has been found that there is a correlation in which a stable quality of purified terephthalic acid (4-CBA content approximately 15 ppm) can be obtained by maintaining the partial pressure (Claim 3).
 また、上部気相部の水素分圧(H2PP)を下記関係式(2)による分圧となれば、水素ガス吸収量が低下(水素/4-CBAモル比 約3)し、精製テレフタル酸の品質が低下(4-CBA含有量 約20ppm)することが示唆された。
(H2PP)=-0.000413×(LV)2+0.224×(LV)-1.11  (2)
そのため、上記関係式(2)に満たない(図3の領域F)水素分圧にて水素化反応を行うことによって製品規格外(4-CBA含有量 >25ppm 比較例1、2、3、4)の精製テレフタル酸が製造される可能性があるばかりか、精製反応に必要な水素を吸収することなく反応が進行するため、水素不足による新たな不純物の生成および触媒の劣化の可能性もあることが示唆された。これは、上記関係式(2)以上の水素分圧にて水素化反応を行うことによって、製品規格内の精製テレフタル酸が製造されることを示唆している(請求項1)。
Also, if the hydrogen partial pressure (H2PP) in the upper gas phase becomes the partial pressure according to the following relational expression (2), the hydrogen gas absorption amount will decrease (hydrogen / 4-CBA molar ratio about 3), and the purified terephthalic acid It was suggested that the quality deteriorated (4-CBA content about 20 ppm).
(H2PP) = -0.000413 x (LV) 2 +0.224 x (LV)-1.11 (2)
Therefore, by performing the hydrogenation reaction at a hydrogen partial pressure that does not satisfy the above relational expression (2) (region F in FIG. 3), non-product specification (4-CBA content> 25 ppm Comparative Examples 1, 2, 3, 4 ) Of purified terephthalic acid may be produced, and since the reaction proceeds without absorbing the hydrogen required for the purification reaction, there is a possibility of generation of new impurities and catalyst deterioration due to lack of hydrogen. It has been suggested. This suggests that purified terephthalic acid within the product specification is produced by performing the hydrogenation reaction at a hydrogen partial pressure equal to or higher than the relational expression (2) (claim 1).
 そして、水素含有気相部における水素分圧(H2.PP)を、粗製テレフタル酸水溶液流下の空塔速度(LV)との下記関係式(3)の分圧を保持し、
(H2.PP)=-0.0020×(LV)2+0.569×(LV)-1.93   (3)
水素化反応を行うことにより水素ガス吸収量が増加し(水素/4-CBAモル比 約9)、精製テレフタル酸中の4-CBA含有量が低下(約10ppm)する傾向にあり、該関係式(3)の分圧を超えて(図3の領域E)水素分圧を保持すると、4-CBA含有量が少ない、しかし過剰品質となる精製テレフタル酸の生成する水素分圧であることが示唆された。
And the hydrogen partial pressure (H2.PP) in the hydrogen-containing gas phase part is maintained at the partial pressure of the following relational expression (3) with the superficial velocity (LV) under the flow of the crude terephthalic acid aqueous solution,
(H2.PP) = - 0.0020 × ( LV) 2 + 0.569 × (LV) -1.93 (3)
Hydrogen gas absorption by hydrogenation reaction increases (hydrogen / 4-CBA molar ratio about 9) and 4-CBA content in purified terephthalic acid tends to decrease (about 10ppm). If the partial pressure of (3) is exceeded (region E in Fig. 3), it is suggested that the hydrogen partial pressure produced by purified terephthalic acid with a low 4-CBA content but excessive quality is maintained. It was done.
 そのため、上記関係式(3)の分圧を超えての水素分圧を保持し、水素化することは粗製テレフタル酸の精製には余分な水素を消費する水素化精製反応であることが分かる。そして、過剰水素による苛酷な水素化の要因となることも示唆された。これは、上記関係式(3)以下の水素分圧にて水素化反応を行うことによって、製品規格内の精製テレフタル酸が経済的に製造されることを示唆している(請求項2)。 Therefore, it can be seen that maintaining the hydrogen partial pressure exceeding the partial pressure of the above relational expression (3) and hydrogenating is a hydrorefining reaction that consumes excess hydrogen for the purification of crude terephthalic acid. It was also suggested that it would cause severe hydrogenation due to excess hydrogen. This suggests that purified terephthalic acid within the product specification can be produced economically by carrying out the hydrogenation reaction at a hydrogen partial pressure equal to or lower than the relational expression (3) (Claim 2).
 従って、水素含有気相部における水素分圧(H2.PP)を粗製テレフタル酸水溶液流下の空塔速度(LV)に対する上記関係式(2)および関係式(3)の間の範囲(図3の領域C)の水素分圧を保持して、水素化反応を行う粗製テレフタル酸の精製方法が好ましい方法とすることができる(請求項2)。すなわち、範囲を関係式で示すと下記の通りとなる。-0.0020×(LV)2+0.569×(LV)-1.93≧(H2.PP)≧-0.000413×(LV)2+0.224×(LV)-1.11
 一方、粗製テレフタル酸水溶液の水素化精製反応において、好ましい品質の精製テレフタル酸生成の限界(4-CBA含有量 約20ppm)とされる水素分圧(H2PP)の上記関係式(2)は、粗製テレフタル酸の精製に好ましい水素分圧(H2PP)とされる上記関係式(1)の分圧のほぼ-25%の関係に相当する。
Therefore, the hydrogen partial pressure (H2.PP) in the hydrogen-containing gas phase part is in the range between the relational expression (2) and the relational expression (3) with respect to the superficial velocity (LV) under the flow of the crude aqueous terephthalic acid solution (in FIG. 3). A method for purifying crude terephthalic acid in which hydrogenation reaction is carried out while maintaining the hydrogen partial pressure in region C) can be a preferred method (claim 2). That is, the range is expressed as a relational expression as follows. −0.0020 × (LV) 2 + 0.569 × (LV) −1.93 ≧ (H2.PP) ≧ −0.000413 × (LV) 2 + 0.224 × (LV) −1.11
On the other hand, in the hydrorefining reaction of a crude terephthalic acid aqueous solution, the above relational expression (2) of the hydrogen partial pressure (H2PP), which is considered to be the limit for producing a purified terephthalic acid with a preferable quality (4-CBA content about 20 ppm), This corresponds to a relationship of approximately −25% of the partial pressure in the above relational expression (1), which is a hydrogen partial pressure (H2PP) preferable for the purification of terephthalic acid.
 従って、精製テレフタル酸の安定した、再現のある品質を生成する水素分圧は、粗製テレフタル酸の触媒層の流下速度(空塔速度LV)との上記関係式(1)の±約25%の範囲(図3の領域B)の水素分圧(H2PP)に設定して水素化精製を行うことが好ましい方法となる(請求項3)。すなわち、範囲を関係式で示すと下記の通りとなる。
(-0.000550×(LV)2+0.299×(LV)-1.48)×0.75≦(H2.PP)≦
(-0.000550×(LV)2+0.299×(LV)-1.48)×1.25
なお、上記関係式(1)の+25%に相当する水素分圧(H2PP)は下記関係式(4)に相当するので、上記不等号式の右辺を下記関係式(4)に置換えても良い。
(H2PP)=-0.000688×(LV)2+0.374×(LV)-1.85  (4)
 従って、粗製テレフタル酸水溶液の接触水素化反応において、反応方式の限定(触媒層上まで粗製テレフタル酸水溶液で満たし、該水溶液々面上部に水素含有気相部とを保持し、該水溶液が触媒層を連続流下して水素化反応する方式)と、従来反応因子として捉えていなかった反応水溶液の触媒層流下の見かけの空塔速度を使用することにより、精製テレフタル酸の増産・減産などの生産量の変化に対応して、再現ある安定した反応条件を設定することができ、また余分な水素ガスを使用して過剰な水素化反応を起こすことのない粗製テレフタル酸水溶液の経済的精製反応条件を見出すことができた。
Therefore, the hydrogen partial pressure that produces a stable and reproducible quality of purified terephthalic acid is ± 25% of the relational expression (1) above with the flow rate (superficial velocity LV) of the catalyst layer of crude terephthalic acid. It is preferable to perform the hydrorefining by setting the hydrogen partial pressure (H2PP) within the range (region B in FIG. 3) (Claim 3). That is, the range is expressed as a relational expression as follows.
(−0.000550 × (LV) 2 + 0.299 × (LV) −1.48) × 0.75 ≦ (H2.PP) ≦
(−0.000550 × (LV) 2 + 0.299 × (LV) −1.48) × 1.25
Since the hydrogen partial pressure (H2PP) corresponding to + 25% of the relational expression (1) corresponds to the following relational expression (4), the right side of the inequality expression may be replaced with the following relational expression (4).
(H2PP) = − 0.000688 × (LV) 2 + 0.374 × (LV) −1.85 (4)
Therefore, in the catalytic hydrogenation reaction of a crude terephthalic acid aqueous solution, the reaction system is limited (filled with the crude terephthalic acid aqueous solution up to the catalyst layer, and the hydrogen-containing gas phase part is held on the upper surface of the aqueous solution. The production volume of refined terephthalic acid can be increased or decreased by using the continuous flow of hydrogen and the apparent vacancy rate under the catalyst layer flow of the reaction aqueous solution, which was not previously considered as a reaction factor. It is possible to set stable and reproducible reaction conditions in response to changes in the conditions, and economical purification reaction conditions for crude terephthalic acid aqueous solution that does not cause excessive hydrogenation reaction using excess hydrogen gas. I was able to find it.
 本発明によれば、粗製テレフタル酸水溶液の水素化精製法による精製テレフタル酸の製造において、反応水溶液の流下空塔速度(LV)との上記関係式(1)、(2)および(3)による水素分圧(H2.PP)、および上記関係式(2)、(3)の水素分圧(H2.PP)の範囲に設定することにより、各種反応条件の変動に対応して、品質の安定した精製テレフタル酸を製造することができ、特に規格外の性状の製品を製造することなく、余分な水素による過剰な水素化反応を起こすことのない経済的な製造に資することになる。 According to the present invention, in the production of purified terephthalic acid by hydrorefining method of a crude aqueous terephthalic acid solution, the above relational expressions (1), (2) and (3) with the flow-down superficial velocity (LV) of the reaction aqueous solution By setting the hydrogen partial pressure (H2.PP) and the range of the hydrogen partial pressure (H2.PP) in the above relational expressions (2) and (3), the quality can be stabilized in response to changes in various reaction conditions. The purified terephthalic acid thus produced can be produced, and it contributes to economical production without causing excessive hydrogenation reaction with excess hydrogen without producing a product having a non-standard property.
 そのため、精製量の増産ならびに新規設備設置などにあたっても、過剰な条件設定となることのない最適設備への改造・新設となる。そしてその後の製造においても、経済的生産に資することになる。 Therefore, even when increasing the amount of refining and installing new equipment, it will be modified or newly installed to the optimum equipment that does not set excessive conditions. In the subsequent manufacturing, it will contribute to economic production.
本発明実施態様の粗製テレフタル酸の精製プロセスの系統図。The systematic diagram of the refinement | purification process of the crude terephthalic acid of this invention embodiment. 実施例により、空塔速度(LV)をパラメーターとして、精製テレフタル酸中の4-CBA含有量と水素分圧(H2PP)との関係を示す図。なお、比較例にある4-CBA含有量が製品規格外となる精製テレフタル酸の4-CBA含有量を27ppmとしてプロットした。The figure which shows the relationship between 4-CBA content in refined terephthalic acid, and hydrogen partial pressure (H2PP) by using the superficial velocity (LV) as a parameter according to Examples. In addition, the 4-CBA content of the purified terephthalic acid in the comparative example in which the 4-CBA content is out of product specifications was plotted as 27 ppm. 実施例に行なった結果に基いて水素化反応器、水素ガス吸収量(水素(H2)/4-CBAモル比)およびテレフタル酸濃度などの違いを区別して、水素分圧(H2.PP)を空塔速度(LV)との関係においてプロットした図。Based on the results of the examples, the hydrogen partial pressure (H2.PP) was determined by distinguishing differences such as hydrogenation reactor, hydrogen gas absorption (hydrogen (H2) / 4-CBA molar ratio) and terephthalic acid concentration. Plotted in relation to superficial velocity (LV).
 本発明方法による好ましい粗製テレフタル酸の精製方法の実施形態について以下説明する。精製テレフタル酸を製造する原料としては、主に、p-キシレンを原料として、酢酸溶媒中コバルト、マンガンなどの触媒の存在下、酸素含有ガスで液相酸化して製造される粗製テレフタル酸が用いられ、4-CBAが約2,000~3,500ppmを含有する粗製テレフタル酸が使用される。 An embodiment of a preferred method for purifying crude terephthalic acid according to the method of the present invention will be described below. As raw materials for producing purified terephthalic acid, crude terephthalic acid produced by liquid-phase oxidation with oxygen-containing gas in the presence of catalysts such as cobalt and manganese in acetic acid solvent is mainly used. Crude terephthalic acid containing about 2,000-3,500 ppm of 4-CBA is used.
 そのような粗製テレフタル酸を高温・高圧の水に溶解し、水素化反応器により水素化精製反応を行い、精製テレフタル酸を製造するプロセスの流れは、図1プロセス系統図に示すとおりであり、それらの方法および条件の概略について以下に述べる。 The flow of the process of dissolving such crude terephthalic acid in high-temperature and high-pressure water, performing a hydrorefining reaction in a hydrogenation reactor, and producing purified terephthalic acid is as shown in FIG. An outline of these methods and conditions is described below.
 スラリー調製槽Aに供給される粗製テレフタル酸と水の供給割合は、テレフタル酸濃度で通常23~30重量%、あるいは26~29重量%のスラリーになるように調製され、次いで高圧ポンプを用いて、水素化反応器圧力(55~100Kg/cm2G)を超える圧力で、該調製スラリーを加熱器Cならびに溶解槽Dに供給される。該スラリーは、加熱器Cで275~300℃の設定温度になるよう加熱されたのち、溶解槽Dに滞留して粗製テレフタル酸全量を溶解した水溶液としたのち、水素化反応器Fに供給される。 The supply ratio of crude terephthalic acid and water supplied to the slurry preparation tank A is usually adjusted to a slurry of 23 to 30% by weight or 26 to 29% by weight in terms of terephthalic acid concentration, and then using a high pressure pump The prepared slurry is supplied to the heater C and the dissolution tank D at a pressure exceeding the hydrogenation reactor pressure (55 to 100 kg / cm 2 G). The slurry is heated to a set temperature of 275 to 300 ° C. by the heater C, and then stays in the dissolution tank D to form an aqueous solution in which the entire amount of crude terephthalic acid is dissolved. Then, the slurry is supplied to the hydrogenation reactor F. The
 水素化反応器Fでは、該水溶液と高圧(高温)水蒸気により湿潤された高圧水素ガスが、触媒層F1の上部にそれぞれ供給され、所定の反応器圧力および反応温度に制御・維持される。触媒層上部空間では水素ガスを含有した気相部Jと該反応水溶液による液相部の上下二相の気液分離相が形成される。 In the hydrogenation reactor F, high-pressure hydrogen gas wetted with the aqueous solution and high-pressure (high-temperature) steam is supplied to the upper part of the catalyst layer F1, respectively, and is controlled and maintained at a predetermined reactor pressure and reaction temperature. In the upper space of the catalyst layer, a gas phase-liquid separation phase of upper and lower phases of a gas phase portion J containing hydrogen gas and a liquid phase portion by the reaction aqueous solution is formed.
 なお、水素ガスは、その二相分離液面から気相部Jの水素分圧に対応して該反応水溶液へ溶解(吸収)するため、反応器圧力を維持制御(PIC)することにより、溶解(吸収)相当量の水素ガスが補充・供給されることになる。そのため、水素ガスの供給は、水素化反応器F上部の供給ライン6(図1のライン6)から直接なされ、反応器Fの気相部Jの圧力を維持することになるが、溶解槽Dおよびそれ以降の反応水溶液供給ライン4へ供給して、反応器圧力を維持することもできるが、反応器圧力に速い応答速度で、安定して供給する方法が良い。 Since hydrogen gas dissolves (absorbs) in the reaction aqueous solution from the two-phase separation liquid surface corresponding to the hydrogen partial pressure of the gas phase part J, it is dissolved by maintaining and controlling the reactor pressure (PIC). (Absorption) A considerable amount of hydrogen gas is replenished and supplied. Therefore, hydrogen gas is supplied directly from the supply line 6 (line 6 in FIG. 1) above the hydrogenation reactor F, and the pressure in the gas phase portion J of the reactor F is maintained. Although the reactor pressure can be maintained by supplying the reaction solution to the reaction aqueous solution supply line 4 and thereafter, a method of stably supplying the reactor pressure at a fast response speed is preferable.
 そして、触媒層上部の上下気液分離界面である該水溶液々面のレベルを制御保持(LIC)して、該反応水溶液の供給相当量が触媒層中を流下し、触媒の存在下に溶解(吸収)水素による水素化反応を行ったのち、触媒層下部からライン9を介して第1晶析槽Gに抜き出される。第1晶析槽Gでは、約30~55Kg/cm2Gの設定圧力に制御保持され、高温(275~300℃)・高圧(55~100Kgg.cm2G)の該反応水溶液は、フラッシュ(放圧)・冷却されて一部結晶が析出され、約230~270℃の精製テレフタル酸スラリーを生成することになる。 Then, the level of the aqueous solution at the upper and lower gas-liquid separation interface at the upper part of the catalyst layer is controlled and maintained (LIC), and the supply equivalent amount of the reaction aqueous solution flows down in the catalyst layer and dissolves in the presence of the catalyst ( Absorption) After performing a hydrogenation reaction with hydrogen, it is extracted from the lower part of the catalyst layer to the first crystallization tank G via the line 9. In the first crystallization tank G, the reaction pressure is kept at a set pressure of about 30 to 55 kg / cm 2 G, and the reaction aqueous solution at high temperature (275 to 300 ° C.) and high pressure (55 to 100 kgg.cm 2 G) is flushed ( (Relief pressure) and cooling, some crystals are precipitated, producing a purified terephthalic acid slurry at about 230-270 ° C.
 なお、触媒層を流下するときの反応温度は、供給された粗製テレフタル酸スラリーのテレフタル酸結晶が完全に溶解する温度(供給粗製テレフタル酸水溶液に結晶が析出する温度)を超えた温度で行うことが好ましく、粗製テレフタル酸濃度23~30重量%の反応水溶液に対して、それぞれの溶解温度を超えた温度(約275~300℃)で実施されることになる。例えば、特許文献1(アメリカ特許第3,639,465号)では、テレフタル酸結晶析出点の温度を超えた約10°F(約5.6℃)の温度で、精製反応が行われるとしている。 The reaction temperature when flowing down the catalyst layer is a temperature exceeding the temperature at which the terephthalic acid crystals of the supplied crude terephthalic acid slurry are completely dissolved (the temperature at which crystals are precipitated in the supplied crude terephthalic acid aqueous solution). Preferably, the reaction is carried out at a temperature exceeding the respective dissolution temperature (about 275 to 300 ° C.) with respect to a reaction aqueous solution having a crude terephthalic acid concentration of 23 to 30% by weight. For example, Patent Document 1 (US Pat. No. 3,639,465) states that the purification reaction is performed at a temperature of about 10 ° F. (about 5.6 ° C.) exceeding the temperature of the terephthalic acid crystal precipitation point.
 そして反応器Fの圧力は、該反応水溶液のテレフタル酸濃度および温度に対応したテレフタル酸水溶液の蒸気圧(表1)に、本発明による該水溶液流下空塔速度(LV)との前記関係式(1)、(2)および(3)から得られる水素分圧(H2.PP)、および前記関係式(2)から得られる水素分圧(H2PP)以上、または前記関係式(2)と(3)から得られる水素分圧(H2.PP)の間の圧力の範囲(図3のC)にある、水素分圧を加算した圧力を設定圧力として水素化反応が行われる。また、前記関係式(1)から得られる水素分圧(H2PP)の約±25%の範囲(図3のB)の水素分圧を、反応水溶液の蒸気圧に加算した圧力を設定する水素化反応は、さらに好ましい精製反応となる。そのため通常約55~100Kg/cm2Gの圧力で実施されることになる。 And the pressure of the reactor F is the above-mentioned relational expression between the vapor pressure of the aqueous terephthalic acid solution (Table 1) corresponding to the terephthalic acid concentration and temperature of the aqueous reaction solution (Table 1) 1), the hydrogen partial pressure (H2.PP) obtained from (2) and (3), and the hydrogen partial pressure (H2PP) obtained from the relational expression (2), or the relational expressions (2) and (3) The hydrogenation reaction is carried out with the pressure obtained by adding the hydrogen partial pressure in the pressure range (C in FIG. 3) between the hydrogen partial pressures (H2.PP) obtained from (1). Hydrogenation that sets the pressure obtained by adding the hydrogen partial pressure in the range of about ± 25% of the hydrogen partial pressure (H2PP) obtained from the relational expression (1) (B in FIG. 3) to the vapor pressure of the reaction aqueous solution. The reaction is a more preferred purification reaction. Therefore, it is usually carried out at a pressure of about 55-100 kg / cm 2 G.
 図3は、実施例の結果に基いて、水素化反応器、水素ガス吸収量(水素/4-CBA モル比)およびテレフタル酸濃度などの違いを区別して、水素分圧(H2.PP)と空塔速度(LV)との関係においてプロットした図であり、同時に4-CBA含有量の同一となる近似の関係ラインとその関係を式で表した。その関係式は下記の通りとなる。
4-CBA含有量 約15ppm 
(H2.PP)=-0.000550×(LV)2+0.299×(LV)-1.48   (1)
4-CBA含有量 約20ppm
(H2.PP)=-0.000413×(LV)2+0.224×(LV)-1.11   (2)
4-CBA含有量 約10ppm
(H2.PP)=-0.0020×(LV)2+0.569×(LV)-1.93     (3)
なお、上記関係式(2)は、上記関係式(1)の-25%の関係に相当し、上記関係式(1)の+25%相当の関係の水素分圧は下記関係式(4)となる。
(H2.PP)=-0.000688x(LV)2+0.374x(LV)-1.85     (4)
 図3の近似の関係ラインに対応する関係式を(1)~(4)で示している。また、関係ラインで仕切られる領域を(A)~(F)で示し、(A)は式(3)以下の領域、(B)は式1を中心とした式(2)と(4)で囲まれる領域、(C)は式(2)と(3)で囲まれる領域、(D)は式(2)以上の領域、(E)は式(3)以上の領域、(F)は式(2)以下の領域を示している。
FIG. 3 shows the difference between hydrogen partial pressure (H2.PP) and hydrogenation reactor, hydrogen gas absorption (hydrogen / 4-CBA molar ratio) and terephthalic acid concentration, etc. It is the figure plotted in relation to the superficial velocity (LV), and at the same time, the approximate relationship line where the 4-CBA content is the same and the relationship were expressed by a formula. The relational expression is as follows.
4-CBA content about 15ppm
(H2.PP) = - 0.000550 × ( LV) 2 + 0.299 × (LV) -1.48 (1)
4-CBA content about 20ppm
(H2.PP) = -0.000413 x (LV) 2 +0.224 x (LV)-1.11 (2)
4-CBA content about 10ppm
(H2.PP) = -0.0020 x (LV) 2 +0.569 x (LV)-1.93 (3)
The relational expression (2) corresponds to the relation of −25% of the relational expression (1), and the hydrogen partial pressure corresponding to + 25% of the relational expression (1) is the following relational expression (4). Become.
(H2.PP) = -0.000688 x (LV) 2 +0.374 x (LV)-1.85 (4)
Relational expressions corresponding to the approximate relation lines in FIG. 3 are indicated by (1) to (4). Regions partitioned by the relationship lines are indicated by (A) to (F), (A) is a region below Equation (3), and (B) is Equations (2) and (4) centering on Equation 1. (C) is a region surrounded by equations (2) and (3), (D) is a region above equation (2), (E) is a region above equation (3), and (F) is an equation (2) The following areas are shown.
 また、水素化反応器Fに充填使用される触媒は、パラジウム、白金、ルテニウムなどの第VIII族貴金属を担持した活性炭担体の触媒が用いられ、パラジウム担持の活性炭触媒が最も一般的に用いられている。それぞれの貴金属担持量は、0.1~3重量%の範囲で使用されるが、0.5重量%パラジウム担持の活性体触媒が通常使用される。なお、水素化反応器Fにおける触媒層F1、ならびに触媒層上部の上下二相分離相と反応水溶液々面レベルの概略について、本実施態様に用いられた水素化反応器の寸法を、図1の水素化反応器Fに略図で示したが、触媒層上部に水素含有気相部Jと反応水溶液々面が安定して形成・保持するように出来れば特に限定されない。 The catalyst used for filling the hydrogenation reactor F is a catalyst of an activated carbon carrier supporting a Group VIII noble metal such as palladium, platinum or ruthenium, and a palladium-supported activated carbon catalyst is most commonly used. Yes. The amount of each precious metal supported is in the range of 0.1 to 3% by weight, but an active catalyst supporting 0.5% by weight of palladium is usually used. In addition, about the catalyst layer F1 in the hydrogenation reactor F, and the upper and lower two-phase separated phases on the upper part of the catalyst layer and the reaction aqueous solution, the dimensions of the hydrogenation reactor used in this embodiment are shown in FIG. Although schematically shown in the hydrogenation reactor F, there is no particular limitation as long as the hydrogen-containing gas phase portion J and the reaction aqueous solution can be stably formed and held on the upper part of the catalyst layer.
 次いで、第1晶析槽Gから抜き出された晶析スラリーを、圧力を段階的に低下させる複数の晶析槽(図示せず)を経てフラッシュ冷却させたのち、約2~5Kg/cm2Gに保持された最終晶析槽Hにフラッシュさせ、約130~160℃の温度の精製テレフタル酸晶析スラリーを得る。 Next, the crystallization slurry extracted from the first crystallization tank G is flash-cooled through a plurality of crystallization tanks (not shown) whose pressure is lowered stepwise, and then about 2 to 5 kg / cm 2. Flush into the final crystallization vessel H held in G to obtain a purified terephthalic acid crystallization slurry at a temperature of about 130-160 ° C.
 なお、第1晶析槽Gを含めた複数の晶析槽を用いて段階的にフラッシュ冷却させる方法については、アメリカ特許第3,931,305号、特開平8-208561号、日本特許第3848372号、特開2006-96710号などに提案されている何れの方法を用いて実施することもできる。 As for the method of flash cooling stepwise using a plurality of crystallization tanks including the first crystallization tank G, US Pat. No. 3,931,305, Japanese Patent Laid-Open No. 8-208561, Japanese Patent No. 3848372, Japanese Patent Laid-Open No. Any method proposed in 2006-96710 can be used.
 最終晶析槽Hでの晶析スラリーは、該温度を維持したまま、固液分離機Iで分離および洗浄を行って、精製テレフタル酸の湿潤ケーキを回収する。回収された湿潤ケーキは、乾燥機(図示せず。)で乾燥されて精製テレフタル酸の製品となる。 The crystallization slurry in the final crystallization tank H is separated and washed with a solid-liquid separator I while maintaining the temperature, and a wet cake of purified terephthalic acid is recovered. The collected wet cake is dried by a dryer (not shown) to obtain a product of purified terephthalic acid.
 また、上記固液分離機Iにおいて洗浄を実施せず、最終晶析槽Hの晶析スラリーを固液分離のみによって回収された精製テレフタル酸ケーキは、高温(約100~160℃)の水で再スラリー化されたのち、再度、固液分離機を用いて固液分離されて、精製テレフタル酸の湿潤ケーキで回収される方法も行われ、乾燥して精製テレフタル酸の製品とされる。 In addition, the purified terephthalic acid cake, which is not washed in the solid-liquid separator I and is recovered only by solid-liquid separation of the crystallization slurry in the final crystallization tank H, is heated with high-temperature (about 100 to 160 ° C.) water. After re-slurry, a method of solid-liquid separation using a solid-liquid separator again and recovery with a wet cake of purified terephthalic acid is also carried out, followed by drying to obtain a product of purified terephthalic acid.
 本実施形態を詳述するため、以下、具体的実施例を記載して説明する。但し、本発明方法は下記記載の実施例に限定されるものではない。 In order to describe the present embodiment in detail, a specific example will be described and described below. However, the method of the present invention is not limited to the examples described below.
 以下、実施例の説明に当っては、上記の粗製テレフタル酸を水に溶解して水素化精製する精製テレフタル酸製造装置の図1のプロセスの系統図を用いる。なお、水素化反応器における概略および反応条件について夫々の実施例に具体的に記載される。 Hereinafter, in the description of the examples, a system diagram of the process of FIG. 1 of a purified terephthalic acid production apparatus in which the above crude terephthalic acid is dissolved in water and hydrorefined is used. The outline and reaction conditions in the hydrogenation reactor are specifically described in each example.
 (実施例1)
内径740mmφ、長さ7,000mmの円筒部と上下に鏡部(半球)からなる形状の水素化反応器F(図1、水素化反応器F 略図)に、水素化触媒(0.5重量%Pd担持活性炭触媒)2.56m3を充填し、触媒層は円筒部約5,710mm(円筒上端位置から約1,290mm)の高さまで充填し、触媒層上に20メッシュ金網の触媒押さえで固定した水素化反応器を用いた。
Example 1
A hydrogenation catalyst (0.5 wt% Pd-supported activated carbon) was added to the hydrogenation reactor F (Fig. 1, hydrogenation reactor F schematic diagram) consisting of a cylindrical part with an inner diameter of 740 mmφ and a length of 7,000 mm and upper and lower mirror parts (hemisphere). Catalyst) A hydrogenation reactor packed with 2.56 m 3 , the catalyst layer packed to a height of about 5,710 mm (about 1,290 mm from the top end of the cylinder), and fixed on the catalyst layer with a 20-mesh metal mesh catalyst holder Using.
 先ず、スラリー調製槽Aに粗製テレフタル酸(4-CBA含有量2800ppm)を粉体供給ホッパーBから、純水をライン1から供給し、テレフタル酸濃度26重量%のスラリーを調製する。調製されたスラリーは、高圧ポンプでライン3を通して14,500kg/hrの割合で加熱器Cに供給され、約283℃に加熱されて溶解槽Dおよびライン4を通して水素化反応器Fに供給される。 First, crude terephthalic acid (4-CBA content 2800 ppm) is supplied from a powder supply hopper B to a slurry preparation tank A from a line 1 to prepare a slurry having a terephthalic acid concentration of 26% by weight. The prepared slurry is supplied to the heater C through the line 3 at a rate of 14,500 kg / hr with a high-pressure pump, heated to about 283 ° C., and supplied to the hydrogenation reactor F through the dissolution tank D and the line 4.
 粗製テレフタル酸を加熱・溶解した水溶液は、反応器F上部に取り付けられた分岐多孔供給管を通して、触媒層上の約650mmの位置に保持された液面上に分散供給する。一方、水素ガスは、高圧水素(約120Kg/cm2G)をライン7から加熱・蒸気飽和器Eを通した後、反応器F上部から反応器圧力約73Kg/cm2Gに圧力制御(PIC圧力調節計)され、溶解(吸収)分の水素ガスが補充されるようにする。 The aqueous solution obtained by heating and dissolving crude terephthalic acid is dispersedly supplied onto a liquid surface held at a position of about 650 mm on the catalyst layer through a branched porous supply pipe attached to the upper part of the reactor F. On the other hand, for hydrogen gas, high-pressure hydrogen (about 120 kg / cm 2 G) is heated from line 7 through the steam saturator E, and then the pressure is controlled from the top of reactor F to a reactor pressure of about 73 kg / cm 2 G (PIC Pressure regulator) to replenish dissolved (absorbed) hydrogen gas.
 供給された水溶液は、液面制御(LIC液面調節計)により、触媒層中を下方向に流れ、液面からの溶解水素でもって接触水素化したのち、反応器Fの下部から第1晶析槽Gに抜き出される。触媒層下部には0.8mm目開き格子状の円筒型集液部が取り付けられ、水素化処理液はその集液部を通って抜き出す構造になっている。水素化反応器Fでは、温度(TI温度指示計)がほぼ282℃、反応器圧力が73.2Kg/cm2Gに保持されている。この時、26重量%のテレフタル酸水溶液の蒸気圧は、62.9Kg/cm2G(282℃)であり、水素分圧は、10.3Kg/cm2となる。また反応中の水素の供給量(吸収量)の平均は8.2Nm3/hrであった。 The supplied aqueous solution flows downward in the catalyst layer by liquid level control (LIC liquid level controller), and after catalytic hydrogenation with dissolved hydrogen from the liquid level, the first crystal is formed from the bottom of the reactor F. Extracted into the analysis tank G. A cylindrical liquid collection part with a 0.8 mm mesh is attached to the lower part of the catalyst layer, and the hydrotreating liquid is drawn through the liquid collection part. In the hydrogenation reactor F, the temperature (TI temperature indicator) is maintained at approximately 282 ° C., and the reactor pressure is maintained at 73.2 kg / cm 2 G. At this time, the vapor pressure of the 26 wt% aqueous terephthalic acid solution is 62.9 kg / cm 2 G (282 ° C.), and the hydrogen partial pressure is 10.3 kg / cm 2 . The average amount of hydrogen supplied (absorbed) during the reaction was 8.2 Nm 3 / hr.
 従って、水素吸収量を4-CBA供給量に対する割合(水素/4-CBA比)として計算すると、5.2(モル比)となる。また、水素化反応器Fでは、粗製テレフタル酸水溶液の供給量は、見かけ空塔速度(LV)41.1m/hrで水素化処理されたことになる。 Therefore, when the hydrogen absorption amount is calculated as a ratio to the 4-CBA supply amount (hydrogen / 4-CBA ratio), it is 5.2 (molar ratio). In the hydrogenation reactor F, the supply amount of the crude terephthalic acid aqueous solution was hydrotreated at an apparent superficial velocity (LV) of 41.1 m / hr.
 水素化処理された水溶液は、ライン9を通って高圧(約48Kg/cm2G)の第1晶析槽Gへフラッシュされ、次いで直列複数の晶析槽(図示せず)を用いて順次フラッシュしたのち、最終晶析槽Hで約150℃まで冷却された精製テレフタル酸スラリーとして生成される。生成スラリーは、ライン13を経て固液分離機Iで分離・洗浄され、精製テレフタル酸結晶の湿潤ケーキを回収する。該ケーキを乾燥機(図示せず)で乾燥することにより、精製テレフタル酸を回収・製造することになる。 The hydrotreated aqueous solution is flushed through line 9 to the first crystallization tank G of high pressure (about 48 kg / cm 2 G), and then sequentially flushed using a plurality of crystallization tanks (not shown) in series. After that, it is produced as a purified terephthalic acid slurry cooled to about 150 ° C. in the final crystallization tank H. The produced slurry is separated and washed by the solid-liquid separator I via the line 13 to collect a wet cake of purified terephthalic acid crystals. By drying the cake with a drier (not shown), purified terephthalic acid is recovered and produced.
 上記水素化処理条件で約24時間安定運転を行うと、その期間中に回収された精製テレフタル酸結晶の4-CBA含有量は約15ppm、p-トルイル酸含有量は約125ppmであった。 When the stable operation was carried out for about 24 hours under the above hydrotreatment conditions, the 4-CBA content of the purified terephthalic acid crystals recovered during that period was about 15 ppm, and the p-toluic acid content was about 125 ppm.
 (実施例2)
内径3,900mmφ、長さ14,000mm円筒部と上下に鏡部(半球)からなる形状の水素化反応器を備えた実施例1と同様の装置システム(概略図 図1)を用いて、下記に記載の条件および実施例1と同様の条件・方法により、粗製テレフタル酸を水に溶解して水素化精製反応を行い、精製テレフタル酸の製造を行った。水素化反応器Fには159m3の水素化触媒(実施例1と同じ触媒)を充填し、円筒部約12,000mmの触媒層高さの充填となった。粗製テレフタル酸(4-CBA含有量 2700ppm)と純水によるテレフタル酸濃度26.5重量%のスラリーを調製し、高圧ポンプにより調製スラリーを435ton/hrの割合で供給し、加熱・溶解した水溶液を実施例1と同様な方法で水素化反応器Fに供給する。
(Example 2)
Using an apparatus system (schematic diagram FIG. 1) similar to that of Example 1 equipped with a hydrogenation reactor having an inner diameter of 3,900 mmφ, a length of 14,000 mm, and a mirror part (hemisphere) at the top and bottom, it is described below. Under the same conditions and the same conditions and methods as in Example 1, crude terephthalic acid was dissolved in water and subjected to a hydrorefining reaction to produce purified terephthalic acid. The hydrogenation reactor F was filled with 159 m 3 of a hydrogenation catalyst (the same catalyst as in Example 1), and the cylinder portion was filled with a catalyst layer height of about 12,000 mm. A slurry of crude terephthalic acid (4-CBA content 2700ppm) and pure water with a terephthalic acid concentration of 26.5% by weight was prepared, and the prepared slurry was supplied at a rate of 435ton / hr with a high-pressure pump. The hydrogenation reactor F is supplied in the same manner as in 1.
 水素化反応器Fでは、触媒層上1,000mmの位置に反応液々面を保持する液面制御(LIC液面調節計)により、触媒層下部からの反応液の抜き出しと、反応器上部からの圧力制御(PIC圧力調節計)による水素ガスの補給においても実施例1と同様の方法で行った。水素化精製反応における水素化反応器Fの温度(TI温度指示計)は282℃、圧力は73.6Kg/cm2Gに制御され、水素ガス供給(吸収)量は239Nm3/hrとなった。 In the hydrogenation reactor F, with the liquid level control (LIC liquid level controller) that keeps the reaction liquid level at 1,000 mm above the catalyst layer, the reaction liquid is extracted from the lower part of the catalyst layer, and from the upper part of the reactor. Hydrogen gas supply by pressure control (PIC pressure controller) was performed in the same manner as in Example 1. In the hydrorefining reaction, the temperature of the hydrogenation reactor F (TI temperature indicator) was controlled to 282 ° C., the pressure was controlled to 73.6 kg / cm 2 G, and the hydrogen gas supply (absorption) amount was 239 Nm 3 / hr.
 この時の水素分圧は10.8Kg/cm2(水溶液蒸気圧 62.8Kg/cm2G)であり、4-CBA供給に対する水素吸収量は5.1(モル比)であった。また、粗製テレフタル酸水溶液の供給における見かけ空塔速度(Linear velocity LV)は44.4m/hrであった。その結果、回収された精製テレフタル酸結晶の4-CBA含有量が約15ppm、p-トルイル酸が約125ppmであった。なお、実施例1および2の反応条件および精製テレフタル酸の性状をまとめたのが表2である。 The hydrogen partial pressure at this time was 10.8 kg / cm 2 (aqueous solution vapor pressure 62.8 kg / cm 2 G), and the amount of hydrogen absorbed with respect to 4-CBA supply was 5.1 (molar ratio). The apparent velocity (Linear velocity LV) in supplying the crude aqueous terephthalic acid solution was 44.4 m / hr. As a result, the recovered purified terephthalic acid crystal had a 4-CBA content of about 15 ppm and a p-toluic acid of about 125 ppm. Table 2 summarizes the reaction conditions of Examples 1 and 2 and the properties of purified terephthalic acid.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 従って、水素化反応器および粗製テレフタル酸スラリーの供給量が大きく変わっても、また空間速度(SVhr-1)が代わっても、水溶液の見かけ空塔速度および水素分圧を同等にすることによって水素ガス吸収量(対4-CBAモル比)、精製テレフタル酸の性状も同等となることが確認できた。 Therefore, even if the feed rate of the hydrogenation reactor and the crude terephthalic acid slurry changes greatly, and the space velocity (SVhr −1 ) changes, the apparent superficial velocity and hydrogen partial pressure of the aqueous solution are made equal. It was confirmed that the amount of gas absorbed (vs. 4-CBA molar ratio) and the properties of purified terephthalic acid were equivalent.
 (実施例3、4、5、6)
実施例1と同じ装置を用いて、スラリー調製槽Aにおいて粗製テレフタル酸(4-CBA含有量 2800ppm)の濃度26重量%に調製された水スラリーを、高圧ポンプでライン3を通して、25,000kg/hr、35,000kg/hr、41,000kg/hrおよび7,500kg/hrの割合で加熱器Cに供給し、実施例1と同様の方法で水素化反応を行い、精製テレフタル酸の製造を行った。なお、反応器温度282℃を保持し、反応器圧力は夫々79.8Kg/cm2G、85.8Kg/cm2G、88.8Kg/cm2Gおよび67.3Kg/cm2Gを保持して水素化反応を行った。
(Examples 3, 4, 5, 6)
Using the same apparatus as in Example 1, a slurry of crude terephthalic acid (4-CBA content 2800 ppm) prepared in slurry preparation tank A to a concentration of 26% by weight was passed through line 3 with a high-pressure pump, and 25,000 kg / hr. 35,000 kg / hr, 41,000 kg / hr and 7,500 kg / hr were supplied to the heater C, and a hydrogenation reaction was carried out in the same manner as in Example 1 to produce purified terephthalic acid. The reactor temperature was maintained at 282 ° C and the reactor pressure was maintained at 79.8Kg / cm 2 G, 85.8Kg / cm 2 G, 88.8Kg / cm 2 G and 67.3Kg / cm 2 G, respectively. Went.
 その結果、水素吸収量は供給4-CBAに対する割合は夫々5.2(モル比 )であり、製造された精製テレフタル酸結晶はいずれみも4-CBA含有量約15ppm、p-トルイル酸含有量約125ppmであった。なお、算出される水素分圧および見かけ空塔速度は、表3に示すとおり、夫々16.9Kg/cm2、22.9Kg/cm2、25.9Kg/cm2、4.4Kg/cm2、および70.9m/hr、99.3m/hr、116m/hr、21.3m/hrとなる。従って、スラリー供給量の増加に対しても、反応器圧力を増加(水素分圧を増加)させて、水素ガス吸収量(水素(H2)/4-CBA モル比)を維持することが必要である。 As a result, the hydrogen absorption was 5.2 (molar ratio) with respect to the supplied 4-CBA, and all the purified terephthalic acid crystals produced had a 4-CBA content of about 15 ppm and a p-toluic acid content of about 125 ppm. Met. The calculated hydrogen partial pressure and apparent superficial velocity are 16.9 kg / cm 2 , 22.9 kg / cm 2 , 25.9 kg / cm 2 , 4.4 kg / cm 2 , and 70.9 m / mm, as shown in Table 3. hr, 99.3 m / hr, 116 m / hr, 21.3 m / hr. Therefore, it is necessary to maintain the hydrogen gas absorption amount (hydrogen (H2) / 4-CBA molar ratio) by increasing the reactor pressure (increasing hydrogen partial pressure) even when the slurry supply amount is increased. is there.
 (比較例1)
実施例1と同じ装置を用いて、テレフタル酸濃度26重量%の調製スラリーを14,500kg/hrの割合で供給し、反応器圧力を69.3Kg/cm2G、温度を282℃に保持して、実施例1と同様の方法で精製テレフタル酸の製造を行った。水素ガス供給(吸収)量は3.1Nm3/hrとなった。その結果、反応器圧力を69.3Kg/cm2Gと設定したのち約15時間後に精製テレフタル酸結晶中の4-CBA含有量は上昇し始め、20時間後に25ppmを越え、4-CBA含有量は製品規格外の精製テレフタル酸の製造となった。
(Comparative Example 1)
Using the same apparatus as in Example 1, a prepared slurry having a terephthalic acid concentration of 26% by weight was fed at a rate of 14,500 kg / hr, the reactor pressure was maintained at 69.3 Kg / cm 2 G, and the temperature was maintained at 282 ° C. Purified terephthalic acid was produced in the same manner as in Example 1. Hydrogen gas supply (absorption) amounted to 3.1 Nm 3 / hr. As a result, the 4-CBA content in the purified terephthalic acid crystal started to rise about 15 hours after setting the reactor pressure at 69.3 Kg / cm 2 G, and after 25 hours it exceeded 25 ppm, and the 4-CBA content was Production of purified terephthalic acid outside the product standards.
 なお、その時の水素分圧は6.4Kg/cm2、水素ガス吸収量(水素/4-CBAモル比)は1.9、空塔速度は41.1m/hrで表3に示すとおりとなる。従って、実施例1の反応器圧力を低下(73.2→69.3Kg/cm2G)させることにより、水素分圧が低下(10.3→6.4Kg/cm2)および水素ガス吸収量が低下し、精製テレフタル酸の4-CBA含有量が規格外(4-CBA規格 25ppm)となることがわかった。 The hydrogen partial pressure at that time is 6.4 kg / cm2, the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 1.9, and the superficial velocity is 41.1 m / hr, as shown in Table 3. Therefore, by reducing the reactor pressure in Example 1 (73.2 → 69.3 Kg / cm 2 G), the hydrogen partial pressure is reduced (10.3 → 6.4 Kg / cm 2 ) and the hydrogen gas absorption is reduced. It was found that the 4-CBA content of the acid was out of specification (4-CBA specification 25 ppm).
 (比較例2)
実施例1と同じ装置を用いて、テレフタル酸濃度26重量%の調製スラリーを35,000kg/hrの割合で供給し、反応器圧力を74.9Kg/cm2G、温度を282℃に保持して、実施例1と同様の方法で精製テレフタル酸の製造を行った。水素ガス供給(吸収)量は7.1Nm3/hrとなった。
その結果、反応器圧力を74.9Kg/cm2Gと設定したのち約15時間後に精製テレフタル酸結晶中の4-CBA含有量は上昇し始め、20時間後に25ppmを越え、4-CBA含有量は製品規格外の精製テレフタル酸の製造となった。なお、表3に示すとおり、その時の水素分圧は12.0Kg/cm2、水素ガス吸収量(水素/4-CBAモル比)は1.9、空塔速度は99.3m/hrとなる。従って、実施例1の反応器圧力より高い圧力(73.2→74.9Kg/cm2G)を保持しているに拘らず、スラリー供給量の増加(14.500→35,000kg/hr)により、精製テレフタル酸の4-CBA含有量が製品規格外となることがわかる。
(Comparative Example 2)
Using the same apparatus as in Example 1, a prepared slurry having a terephthalic acid concentration of 26% by weight was fed at a rate of 35,000 kg / hr, the reactor pressure was maintained at 74.9 Kg / cm 2 G, and the temperature was maintained at 282 ° C. Purified terephthalic acid was produced in the same manner as in Example 1. Hydrogen gas supply (absorption) amounted to 7.1 Nm 3 / hr.
As a result, the 4-CBA content in the purified terephthalic acid crystal started to rise about 15 hours after setting the reactor pressure to 74.9 Kg / cm 2 G, and after 25 hours it exceeded 25 ppm, and the 4-CBA content was Production of purified terephthalic acid outside the product standards. As shown in Table 3, the hydrogen partial pressure at that time is 12.0 kg / cm2, the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 1.9, and the superficial velocity is 99.3 m / hr. Therefore, despite the fact that the pressure (73.2 → 74.9 kg / cm 2 G) higher than the reactor pressure of Example 1 is maintained, the increase in the slurry feed rate (14.500 → 35,000 kg / hr) It can be seen that the 4-CBA content is out of product specifications.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例7、8、11)
実施例1と同じ装置を用いて、表4に示すとおり、26重量%の調整スラリーの供給を実施例1と同一の14,500kg/hrの割合で供給し、反応器圧力を夫々75.0Kg/cm2G、70.6Kg/cm2Gおよび81.0Kg/cm2Gに保持して、実施例1と同じ方法により精製テレフタル酸の製造を行った。水素ガス供給(吸収)量は夫々9.1Nm3/hr、4.8Nm3/hrおよび14.0Nm3/hrとなった。
その結果、4-CBA含有量は夫々約15ppm、約20ppmおよび約10ppm、p-トルイル酸含有量はいずれも約125ppmの精製テレフタル酸を製造することができた。
(Examples 7, 8, and 11)
Using the same apparatus as in Example 1, as shown in Table 4, the supply of 26% by weight of the adjusted slurry was supplied at the same rate of 14,500 kg / hr as in Example 1, and the reactor pressure was 75.0 kg / cm, respectively. Purified terephthalic acid was produced in the same manner as in Example 1 while maintaining 2 G, 70.6 Kg / cm 2 G and 81.0 Kg / cm 2 G. Hydrogen gas supply (absorption) amount became respectively 9.1Nm 3 /hr,4.8Nm 3 / hr and 14.0 nm 3 / hr.
As a result, it was possible to produce purified terephthalic acid having a 4-CBA content of about 15 ppm, about 20 ppm and about 10 ppm, and a p-toluic acid content of about 125 ppm.
 なお、その時の水素分圧は、夫々12.1Kg/cm2、7.7Kg/cm2、18.1Kg/cm2、水素ガス吸収量(水素/4-CBAモル比)は夫々5.7、3.0、8.9となり、空塔速度は全て41.1m/hrとなる。従って、同一のスラリー供給量(実施例1を含めて)において、反応器圧力の変動(水素分圧の変動)は水素ガス供給(吸収)量に直接対応しており、精製効果にも影響していることがわかった。そして精製テレフタル酸の製造において実施例11は過剰の水素を供給(吸収)していることが示唆された。 The hydrogen partial pressures at that time are 12.1 kg / cm 2 , 7.7 kg / cm 2 , 18.1 kg / cm 2 , and the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 5.7, 3.0, and 8.9, respectively. All superficial velocities are 41.1m / hr. Therefore, in the same slurry supply amount (including Example 1), the reactor pressure fluctuation (hydrogen partial pressure fluctuation) directly corresponds to the hydrogen gas supply (absorption) amount, which also affects the purification effect. I found out. It was suggested that Example 11 supplied (absorbed) excess hydrogen in the production of purified terephthalic acid.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例9、10)
実施例1と同じ装置を用いて、表5に示すとおり、26重量%の調製スラリーを実施例3と同一の25,000kg/hrの割合(見かけ空塔速度は実施例3と同一の70.9m/hr)で供給し、反応器圧力を夫々91.4Kg/cm2Gおよび75.1Kg/cm2Gに保持して、実施例3と同様の方法で精製テレフタル酸の製造を行った。その結果、4-CBA含有量は各々10ppmおよび20ppm、p-トルイル酸含有量はいずれも125ppmと精製テレフタル酸の規格内製品の製造をすることができた。なお、その時の水素分圧は28.5Kg/cm2、12.2Kg/cm2であり、水素ガス吸収量(水素/4-CBAモル比)は8.8、3.1、空間速度、空塔速度は表5に示すとおりとなる。
(Examples 9 and 10)
Using the same apparatus as in Example 1, as shown in Table 5, the 26% by weight of the prepared slurry was the same rate of 25,000 kg / hr as in Example 3 (the apparent superficial velocity was 70.9 m / hr), and the reactor pressure was maintained at 91.4 Kg / cm 2 G and 75.1 Kg / cm 2 G, respectively, and purified terephthalic acid was produced in the same manner as in Example 3. As a result, it was possible to produce purified terephthalic acid products with 4-CBA content of 10 ppm and 20 ppm, respectively, and p-toluic acid content of 125 ppm. The hydrogen partial pressures at that time are 28.5 kg / cm 2 and 12.2 kg / cm 2 , hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 8.8, 3.1, space velocity and superficial velocity are shown in Table 5. As shown.
 従って、同一のスラリー供給量(実施例3を含めて)において、反応器圧力の変動(水素分圧の変動)は水素ガス供給(吸収)量に直接対応しており、精製効果にも影響していることがわかる。そして精製テレフタル酸の製造において実施例9は過剰の水素を供給(吸収)していることが示唆された。 Therefore, in the same slurry supply amount (including Example 3), the reactor pressure fluctuation (hydrogen partial pressure fluctuation) directly corresponds to the hydrogen gas supply (absorption) amount, which also affects the purification effect. You can see that It was suggested that Example 9 supplied (absorbed) excess hydrogen in the production of purified terephthalic acid.
 (比較例3)
実施例1と同じ装置を用いて、26重量%の調製スラリーを実施例3と同一の25,000kg/hrの割合(見かけ空塔速度は実施例3と同一の70.9m/hr)で供給し、反応器圧力を72.3Kg/cm2Gに保持し、実施例3と同様の方法で精製テレフタル酸の製造を行った。水素ガス供給(吸収)量は5.3Nm3/hrとなった。その結果、反応器圧力を72.3Kg/cm2Gと設定したのち約20時間後に4-CBA含有量が25ppmを越え、4-CBA含有量が製品規格外の精製テレフタル酸の製造となった。なお、その時の水素分圧は9.4Kg/cm2であり、水素ガス吸収量(水素/4-CBAモル比)は2.0、空間速度、空塔速度は表5に示すとおりとなる。
(Comparative Example 3)
Using the same apparatus as in Example 1, 26 wt% of the prepared slurry was supplied at the same rate of 25,000 kg / hr as in Example 3 (apparent superficial velocity was 70.9 m / hr as in Example 3). Purified terephthalic acid was produced in the same manner as in Example 3 while maintaining the reactor pressure at 72.3 kg / cm 2 G. Hydrogen gas supply (absorption) amount became 5.3 nm 3 / hr. As a result, after setting the reactor pressure to 72.3 Kg / cm2G, about 20 hours later, the 4-CBA content exceeded 25 ppm, and the production of purified terephthalic acid with a 4-CBA content outside the product standard was achieved. The hydrogen partial pressure at that time was 9.4 kg / cm 2 , the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) was 2.0, the space velocity and the superficial velocity were as shown in Table 5.
 従って、実施例3の反応器圧力を低下(79.8→72.3Kg/cm2G)させることにより、水素分圧の低下(16.9→9.4Kg/cm2)および水素ガス供給(吸収)量が低下し、精製テレフタル酸の4-CBA含有量が製品規格外(4-CBA規格 25ppm)となることがわかった。 Therefore, by reducing the reactor pressure of Example 3 (79.8 → 72.3 kg / cm 2 G), the hydrogen partial pressure (16.9 → 9.4 kg / cm 2 ) and the hydrogen gas supply (absorption) amount are reduced. As a result, it was found that the 4-CBA content of purified terephthalic acid was out of the product standard (4-CBA standard 25 ppm).
 (比較例4)
実施例1と同じ装置を用いて、26重量%の調製スラリーを実施例5と同一の41,000kg/hrの割合(見かけ空塔速度は実施例5と同一の116m/hr)で供給し、反応器圧力を77.0Kg/cm2Gに保持して、実施例5と同様の方法で精製テレフタル酸の製造を行った。水素ガス供給(吸収)量は8.7Nm3/hrとなった。その結果、反応器圧力を77.0Kg/cm2Gとしたのち約20時間後に4-CBA含有量が25ppmを越え、4-CBA含有量が製品規格外の精製テレフタル酸の製造となった。なお、その時の水素分圧は14.1Kg/cm2であり、水素ガス吸収量(水素/4-CBA モル比)は2.0、空間速度、空塔速度は表5に示すとおりとなる。
(Comparative Example 4)
Using the same apparatus as in Example 1, 26% by weight of the prepared slurry was fed at the same rate of 41,000 kg / hr as in Example 5 (the apparent superficial velocity was 116 m / hr as in Example 5), and the reaction Purified terephthalic acid was produced in the same manner as in Example 5 while maintaining the vessel pressure at 77.0 kg / cm 2 G. Hydrogen gas supply (absorption) amounted to 8.7 Nm 3 / hr. As a result, after about 20 hours after setting the reactor pressure to 77.0 kg / cm 2 G, the 4-CBA content exceeded 25 ppm, and the production of purified terephthalic acid with a 4-CBA content outside the product standard was achieved. The hydrogen partial pressure at that time was 14.1 kg / cm 2 , the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) was 2.0, the space velocity and the superficial velocity were as shown in Table 5.
 従って、実施例5の反応器圧力を低下(88.8→77.0Kg/cm2G)させることにより、水素分圧が低下(25.9→14.1Kg/cm2)および水素ガス供給(吸収)量が低下し、精製テレフタル酸の4-CBA含有量が製品規格外(4-CBA規格 25ppm)となることがわかった。 Therefore, by reducing the reactor pressure in Example 5 (88.8 → 77.0 kg / cm 2 G), the hydrogen partial pressure is lowered (25.9 → 14.1 kg / cm 2 ) and the hydrogen gas supply (absorption) amount is reduced. As a result, it was found that the 4-CBA content of purified terephthalic acid was out of the product standard (4-CBA standard 25 ppm).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (実施例12)
実施例1と同じ装置を用いて、表6に示すとおり、スラリー調製槽Aで粗製テレフタル酸(4-CBA含有量 2,800ppm)濃度29重量%のスラリーを調製し、調製スラリーを14,500kg/hrの割合で加熱器Cに供給し、反応器圧力を76.4Kg/cm2G、反応器温度を287℃に保持して、実施例1と同様の方法で水素化反応を行い、精製テレフタル酸の製造を行った。その時のスラリー供給の見かけ空塔速度は41.1m/hrであり、水素ガス供給(吸収)量は9.0Nm3/hrであった。
(Example 12)
Using the same apparatus as in Example 1, as shown in Table 6, a slurry having a crude terephthalic acid (4-CBA content 2,800 ppm) concentration of 29 wt% was prepared in a slurry preparation tank A, and the prepared slurry was 14,500 kg / hr. The hydrogenation reaction was carried out in the same manner as in Example 1 while maintaining the reactor pressure at 76.4 Kg / cm 2 G and the reactor temperature at 287 ° C. Manufactured. The apparent superficial velocity of the slurry supply at that time is 41.1m / hr, the hydrogen gas supply (absorption) amount was 9.0 nm 3 / hr.
 29重量%テレフタル酸水溶液の蒸気圧は66.9Kg/cm2G(287℃)であり、水素分圧は9.5Kg/cm2となる。その結果、4-CBA含有量は約15ppm、p-トルイル酸含有量は約125ppmの精製テレフタル酸を製造することができた。なお、その時の水素ガス吸収量(水素/4-CBAモル比)は5.1と算出され、空間速度、空塔速度は表6に示すとおりとなる。従って、テレフタル酸濃度および反応器温度の変動に対しても、反応器圧力(水素分圧)で対応することにより、実施例1と同様の精製テレフタル酸が製造できることが分かった。 The vapor pressure of 29 wt% terephthalic acid solution is 66.9Kg / cm 2 G (287 ℃ ), hydrogen partial pressure becomes 9.5 kg / cm 2. As a result, it was possible to produce purified terephthalic acid having a 4-CBA content of about 15 ppm and a p-toluic acid content of about 125 ppm. The hydrogen gas absorption (hydrogen / 4-CBA molar ratio) at that time is calculated as 5.1, and the space velocity and superficial velocity are as shown in Table 6. Therefore, it was found that the same purified terephthalic acid as in Example 1 can be produced by responding to changes in the terephthalic acid concentration and the reactor temperature with the reactor pressure (hydrogen partial pressure).
 (実施例13、比較例5)
実施例2と同じ水素化精製装置を用いて、表6に示すとおり、粗製テレフタル酸(4-CBA含有量 2700ppm)の濃度26.5重量%の水スラリーを220,000kg/hrおよび435.000kg/hrの割合で供給し、反応器圧力を67.7Kg/cm2Gおよび68.8Kg/cm2Gに保持して、実施例2と同様の方法で水素化反応を行い、精製テレフタル酸の製造を行った。なお水素化反応の温度は何れも282℃に保持した。26.5重量%テレフタル酸水溶液の蒸気圧は62.8Kg/cm2G(282℃)であり、水素分圧は夫々4.9Kg/cm2および6.0Kg/cm2となり、水素ガス供給(吸収)量は124Nm/hrおよび54Nm/hrであった。
(Example 13, Comparative Example 5)
Using the same hydrorefining apparatus as in Example 2, as shown in Table 6, the ratio of crude terephthalic acid (4-CBA content 2700 ppm) concentration 26.5 wt% water slurry to 220,000 kg / hr and 435.000 kg / hr The reactor pressure was maintained at 67.7 Kg / cm 2 G and 68.8 Kg / cm 2 G, and a hydrogenation reaction was performed in the same manner as in Example 2 to produce purified terephthalic acid. The hydrogenation reaction temperature was maintained at 282 ° C. The vapor pressure of 26.5 wt% of terephthalic acid solution was 62.8Kg / cm 2 G (282 ℃ ), hydrogen partial pressure, respectively 4.9 kg / cm 2 and 6.0 kg / cm 2, and the hydrogen gas supply (absorption) amount 124Nm 3 / hr and 54 Nm 3 / hr.
 その結果、実施例13では4-CBA含有量は15ppmとなったが、比較例5では反応器圧力68.8Kg/cm2Gに設定したのち約20時間後に4-CBA含有量が25ppmを越え、4-CBA含有量が製品規格外の精製テレフタル酸の製造となった。なお、その時の見かけ空塔速度は22.4m/hr、44.4m/hrであり、水素ガス吸収量(水素/4-CBAモル比)は5.2、1.2で、その他は表6に示すとおりとなる。 As a result, in Example 13, the 4-CBA content was 15 ppm, but in Comparative Example 5, the 4-CBA content exceeded 25 ppm after about 20 hours after setting the reactor pressure to 68.8 kg / cm 2 G. The production of purified terephthalic acid with a 4-CBA content outside the product standards was achieved. The apparent superficial velocity at that time is 22.4 m / hr and 44.4 m / hr, the hydrogen gas absorption (hydrogen / 4-CBA molar ratio) is 5.2 and 1.2, and the others are as shown in Table 6.
 従って、比較例5はスラリー供給量の増量(220→435ton/hr)に対して反応器圧力を73.6Kg/cm2G(実施例2反応器圧力)まで昇圧することなく対応したが、水素ガス吸収量(124→54Nm3/hr)の不足によって、製品規格外の精製テレフタル酸の製造となった。 Therefore, Comparative Example 5 responded to the increase in the slurry supply amount (220 → 435 ton / hr) without increasing the reactor pressure to 73.6 Kg / cm 2 G (Example 2 reactor pressure). Due to the lack of absorption (124 → 54Nm 3 / hr), the production of purified terephthalic acid out of product specifications was made.
 A…スラリー調整層、B…粉体供給ホッパー、C…加熱器、D…溶解槽、E…加熱・蒸気飽和器、F…水素化反応器、F1…触媒層、G…第1晶析槽、H…最終晶析槽、I…固液分離器、J…気相部(水素含有気相部)、FIC…流量調節計、PIC…圧力調節計、LIC…液面調節計、FI…流量指示計、TI…温度指示計。 A ... Slurry adjustment layer, B ... Powder supply hopper, C ... Heater, D ... Dissolution tank, E ... Heating / steam saturator, F ... Hydrogenation reactor, F1 ... Catalyst layer, G ... First crystallization tank , H ... Final crystallization tank, I ... Solid-liquid separator, J ... Gas phase part (hydrogen-containing gas phase part), FIC ... Flow controller, PIC ... Pressure controller, LIC ... Liquid level controller, FI ... Flow rate Indicator, TI ... Temperature indicator.

Claims (5)

  1.  粗製テレフタル酸を水に溶解し、水溶液としたのち貴金属担持した活性炭触媒層を通して水素化精製する方法において、
     触媒層上まで粗製テレフタル酸水溶液で満たし、該水溶液々面上部に水素含有気相部を保持し、
     該気相部における水素分圧(H2.PP)を、該水溶液が触媒層を流下する空塔速度(LV)との下記関係式以上の分圧に保持して、該水溶液が触媒層を連続的に流下することにより水素化反応を行うことを特徴とする粗製テレフタル酸の精製方法。
    (H2.PP)=-0.000413×(LV)2+0.224×(LV)-1.11
    In a method in which crude terephthalic acid is dissolved in water to form an aqueous solution and then hydrorefined through an activated carbon catalyst layer supporting a noble metal,
    Fill the catalyst layer with the crude aqueous terephthalic acid solution, hold the hydrogen-containing gas phase part above the aqueous solution,
    The hydrogen partial pressure (H2.PP) in the gas phase is maintained at a partial pressure equal to or higher than the following relational expression with the superficial velocity (LV) at which the aqueous solution flows down the catalyst layer, and the aqueous solution continues the catalyst layer. A method for purifying crude terephthalic acid, characterized in that a hydrogenation reaction is carried out by flowing downward.
    (H2.PP) = -0.000413 x (LV) 2 +0.224 x (LV)-1.11
  2.  請求項1に記載の粗製テレフタル酸の精製方法において、触媒層上に粗製テレフタル酸水溶液々面を保持し、該液面上部の水素含有気相部における水素分圧(H2.PP)を、該水溶液の触媒層を流下する空塔速度(LV)との下記関係式以下の分圧に保持して、水素化反応を行うことを特徴とする粗製テレフタル酸の精製方法。
    (H2.PP)=-0.0020×(LV)2+0.569×(LV)-1.93
    2. The method for purifying crude terephthalic acid according to claim 1, wherein the surface of the crude terephthalic acid aqueous solution is held on the catalyst layer, and the hydrogen partial pressure (H2.PP) in the hydrogen-containing gas phase portion above the liquid surface is changed to A method for purifying crude terephthalic acid, wherein the hydrogenation reaction is carried out while maintaining a partial pressure equal to or less than the following relational expression with the superficial velocity (LV) flowing down the catalyst layer of the aqueous solution.
    (H2.PP) = -0.0020 x (LV) 2 +0.569 x (LV)-1.93
  3.  請求項1または2に記載の粗製テレフタル酸の精製方法において、触媒層上に粗製テレフタル酸水溶液々面を保持し、該液面上部の水素含有気相部における水素分圧(H2.PP)を、該水溶液の触媒層を流下する空塔速度(LV)との下記関係式の±約25%の分圧範囲に保持して、水素化反応を行うことを特徴とする粗製テレフタル酸の精製方法。
    (H2.PP)=-0.000550×(LV)2+0.299×(LV)-1.48
    3. The method for purifying crude terephthalic acid according to claim 1, wherein the surface of the crude terephthalic acid aqueous solution is held on the catalyst layer, and the hydrogen partial pressure (H2.PP) in the hydrogen-containing gas phase portion above the liquid surface is set. A method for purifying crude terephthalic acid, wherein the hydrogenation reaction is carried out while maintaining a partial pressure range of ± about 25% of the following relational expression with the superficial velocity (LV) flowing down the catalyst layer of the aqueous solution: .
    (H2.PP) = -0.000550 x (LV) 2 +0.299 x (LV)-1.48
  4.  請求項1~3の何れかに記載の粗製テレフタル酸の精製方法において、p-キシレンを原料として酢酸を溶媒として触媒の存在下、酸素含有ガスで液相酸化することにより製造される4-CBA含有量が2,000~3,500ppmの粗製テレフタル酸を用いて水素化反応を行うことを特徴とする粗製テレフタル酸の精製方法。 4. The method for purifying crude terephthalic acid according to claim 1, wherein 4-CBA is produced by liquid phase oxidation with oxygen-containing gas in the presence of a catalyst using p-xylene as a raw material and acetic acid as a solvent. A method for purifying crude terephthalic acid, comprising performing a hydrogenation reaction using crude terephthalic acid having a content of 2,000 to 3,500 ppm.
  5.  請求項1~4の何れかに記載の粗製テレフタル酸の精製方法において、テレフタル酸濃度23~30重量%、温度275~300℃の粗製テレフタル酸水溶液を触媒層を通して水素化反応を行うことを特徴とする粗製テレフタル酸の精製方法。 5. The method for purifying crude terephthalic acid according to claim 1, wherein a hydrogenation reaction is performed through a catalyst layer of a crude terephthalic acid aqueous solution having a terephthalic acid concentration of 23 to 30% by weight and a temperature of 275 to 300 ° C. A method for purifying crude terephthalic acid.
PCT/JP2009/003153 2009-07-07 2009-07-07 Method for refining crude terephthalic acid WO2011004429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980160295.6A CN102548947B (en) 2009-07-07 2009-07-07 The process for purification of crude terephthalic acid
PCT/JP2009/003153 WO2011004429A1 (en) 2009-07-07 2009-07-07 Method for refining crude terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003153 WO2011004429A1 (en) 2009-07-07 2009-07-07 Method for refining crude terephthalic acid

Publications (1)

Publication Number Publication Date
WO2011004429A1 true WO2011004429A1 (en) 2011-01-13

Family

ID=43428871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003153 WO2011004429A1 (en) 2009-07-07 2009-07-07 Method for refining crude terephthalic acid

Country Status (2)

Country Link
CN (1) CN102548947B (en)
WO (1) WO2011004429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774592A (en) * 2020-12-28 2021-05-11 南京延长反应技术研究院有限公司 Micro-interface reaction system and method for hydrofining of crude terephthalic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528335A (en) * 2001-12-20 2005-09-22 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Purification of crude acid mixture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458038C2 (en) * 2007-02-28 2012-08-10 Хитачи Плант Текнолоджиз, Лтд. Method of producing crude aromatic dicarboxylic acid for hydrogenation purification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528335A (en) * 2001-12-20 2005-09-22 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Purification of crude acid mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774592A (en) * 2020-12-28 2021-05-11 南京延长反应技术研究院有限公司 Micro-interface reaction system and method for hydrofining of crude terephthalic acid
CN112774592B (en) * 2020-12-28 2023-05-12 南京延长反应技术研究院有限公司 Micro-interface reaction system and method for hydrofining crude terephthalic acid

Also Published As

Publication number Publication date
CN102548947B (en) 2015-09-02
CN102548947A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CA2480597C (en) Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids
KR900006441B1 (en) Purification of crude terephthalic acid
JPH1025266A (en) Production of high-purity isophthalic acid
WO2015093849A1 (en) Hydrogenation method of phthalate compound
EP2748139B1 (en) Process for the hydrodechlorination of a liquid feed comprising dichloroacetic acid
JP4055913B2 (en) Method for producing high purity terephthalic acid
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
CN104661991A (en) Improving catalyst stability in carbonylation processes
WO2011004429A1 (en) Method for refining crude terephthalic acid
JP4048569B2 (en) Method for purifying terephthalic acid
KR100267897B1 (en) Process for producing highly pure terephthalic acid
RU2458038C2 (en) Method of producing crude aromatic dicarboxylic acid for hydrogenation purification
JP3269508B2 (en) Method for producing high-purity isophthalic acid
CN102892742B (en) Purification of carboxylic acids by catalytic hydrogenation
JP3232700B2 (en) Method for producing high-purity terephthalic acid
JP5642570B2 (en) Method for producing terephthalic acid
JPH08157415A (en) Production of high-purity terephthalic acid
JP2007070254A5 (en)
JP3959793B2 (en) Method for producing butanediol
JP3804150B2 (en) Method for producing high purity terephthalic acid
JP3348462B2 (en) Method for producing high-purity terephthalic acid
JP3201436B2 (en) Production method of high purity isophthalic acid
JPH0769975A (en) Production of high-purity terephthalic acid
JPH10330312A (en) Production of high-purity terephthalic acid
KR20120094100A (en) Method for producing n-propyl acetate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160295.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9922/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP