WO2011003278A1 - X射线暗场成像系统和方法 - Google Patents

X射线暗场成像系统和方法 Download PDF

Info

Publication number
WO2011003278A1
WO2011003278A1 PCT/CN2010/001010 CN2010001010W WO2011003278A1 WO 2011003278 A1 WO2011003278 A1 WO 2011003278A1 CN 2010001010 W CN2010001010 W CN 2010001010W WO 2011003278 A1 WO2011003278 A1 WO 2011003278A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
light intensity
detector
intensity curve
rays
Prior art date
Application number
PCT/CN2010/001010
Other languages
English (en)
French (fr)
Inventor
黄志峰
陈志强
张丽
王振天
邢宇翔
赵自然
肖永顺
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to US13/147,952 priority Critical patent/US8515002B2/en
Priority to EP10796655.8A priority patent/EP2453226B1/en
Publication of WO2011003278A1 publication Critical patent/WO2011003278A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20075Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring interferences of X-rays, e.g. Borrmann effect
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/061Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements characterised by a multilayer structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • This invention relates to the field of X-ray imaging, and in particular to techniques for dark field imaging of objects using X-rays. Background technique
  • Dark field imaging is significantly different from Brightfield imaging.
  • Dark field imaging is a technique that images a substance using indirect light such as scattered light, diffracted light, refracted light, and fluorescence.
  • dark field imaging technology of visible light and electrons has been studied earlier, and it has been widely used in scientific research, industrial fields, medical fields, and biological fields.
  • traditional hard X-ray imaging techniques use direct X-rays to image objects, using brightfield imaging techniques.
  • dark field imaging due to the unique optical properties of hard X-rays, the required optical components are very difficult to fabricate, so dark field imaging of hard X-rays has been difficult to achieve better.
  • hard-field imaging technique of hard X-ray has unique advantages over bright-field imaging and phase contrast imaging in terms of material internal structure resolution and detection capabilities.
  • Hard X-ray dark field imaging technology images the internal structure of matter by the difference in the ability of the material to scatter X-rays. Since the scattering of hard X-rays is on the order of micrometers or even on the order of nanometers, hard X-ray darkfield imaging techniques can see the ultrastructure of the material inside which can not be resolved by hard X-ray brightfield imaging and phase contrast imaging.
  • raster imaging technology was developed to make hard X-ray darkfield imaging free from the constraints and dependence of synchronous radiation sources. Under the condition of a universal X-ray machine, hard X-ray dark field imaging of a large field of view is realized, which greatly reduces the application threshold of hard X-ray dark field imaging technology.
  • Pfe i ffer et al. of Switzerland implemented a hard X-ray dark field imaging of a large field of view (eg 64 mm X 64 mm) using a grating based on the Ta lbot-La interferometry on a general-purpose X-ray machine.
  • This grating-type hard X-ray dark field imaging technology can distinguish between plastic and rubber materials, as well as the ultra-fine structure of the bones and muscles of chicken wings. Since 2006, Huang Zhifeng and others from Tsinghua University have carried out research work on grating-based hard X-ray phase imaging technology based on general-purpose X-ray machine, and the application number issued in 2008 is 200810166472.
  • X-ray grating phase contrast imaging system and method a grating phase contrast imaging method based on projection method under incoherent conditions is proposed, and a grating phase contrast imaging experimental platform based on general X-ray machine is built. The entire contents of this patent application are incorporated herein by reference.
  • the present invention proposes an incoherent X-ray dark field imaging system and method.
  • the scattering information of the object is reflected by the contrast reduction of the displacement curve in the grating system, and the present invention derives the quantification between the second moment of the scattered ray distribution after passing through the substance and the contrast reduction of the displacement curve in the grating imaging system. Relationship, the scattering information of the object can be quantitatively reconstructed by the traditional linear CT reconstruction algorithm.
  • an X-ray imaging system for X-ray scattering imaging of an object, comprising: an X-ray source, first and second absorption gratings G1 and G2, an X-ray detector, In turn, in the direction of propagation of the X-rays;
  • the system also includes:
  • a data processor unit for processing data information
  • a controller for controlling operation of the X-ray source, the first and second absorption gratings G1 and G2, the X-ray detector, and the processor unit to implement the following process:
  • the X-ray source emits X-rays to the object to be measured; one of the two absorption gratings G1 and G2 performs a phase stepping motion in at least one of its period; at each phase step, the detector receives the X-rays And converted into an electrical signal; wherein, after at least one period of phase stepping, the intensity of the X-ray at each pixel on the detector is expressed as a light intensity curve; The intensity curve at the pixel point is compared with the light intensity curve in the absence of the detected object, and the contrast change of the light intensity curve is obtained; the scattering of each pixel on the detector is calculated from the change of the light intensity curve a second moment of the angular distribution; and a second moment of the distribution of the scattering angle results in a pixel value of the image of the detected object, thereby reconstructing an image of the detected object.
  • the system preferably further includes a rotating device for rotating the detected object relatively at an angle under control of the controller. Wherein, at each rotation angle, the above-described steps are repeated to obtain an X-ray scattering image at a plurality of angles.
  • a conventional linear CT image reconstruction algorithm such as a filtered back projection algorithm, an image of a detected object can be reconstructed.
  • the contrast of the light intensity curve is expressed as:
  • the sum represents a contrast between a light intensity curve of a point on the detector when the object is detected and a light intensity curve when the object is not detected
  • A is a period of the first absorption grating G1
  • CT image reconstruction algorithm utilizes a formula
  • an X-ray imaging method for imaging an object using an X-ray grating imaging system, wherein the X-ray grating imaging system comprises: an X-ray source, first and second absorption gratings G1, and A G2 X-ray detector, a controller and a data processing unit; wherein the method comprises the steps of:
  • Non-coherent grating dark field imaging systems can be applied to materials science, medical imaging such as breast tissue.
  • the principles disclosed herein are equally applicable to reconstruction problems in coherent grating dark field imaging methods.
  • Figure 1 is a schematic diagram of an incoherent X-ray raster imaging system.
  • Figure 2 is a schematic diagram of the principle of dark field imaging based on grating.
  • Fig. 3 shows a multi-information image extracted by a non-coherent raster imaging system, wherein Fig. 3a is an absorption image, Fig. 3b is a first-order phase information image, and Fig. 3c is a dark field information image.
  • FIG. 4 shows a CT reconstructed image of a non-coherent raster imaging system, wherein FIG. 4a is an absorption image, FIG. 4b is a first-order phase information image, and FIG. 4c is a dark field information image; wherein the reconstructed fault plane uses white lines in FIG. 3, respectively. Marked.
  • Fig. 5 is a view showing changes in X-ray intensity and contrast after X-rays are scattered by the object to be detected, and the figure is simulated data. detailed description
  • an X-ray grating dark field imaging system includes: an X-ray machine 3, an optional source grating G0, and two absorption gratings (i.e., first and second absorption gratings G1 and G2) in accordance with the principles of the present invention. ), and the detector composition, which in turn is located in the direction of propagation of the X-rays.
  • the X-ray machine is a general-purpose X-ray machine.
  • the period of the two absorption gratings is between 0.1 and 30 microns.
  • the grating uses heavy metals as the absorbing material. Taking gold (Au) as an example, the height of gold is determined by the energy of the X-rays used, between 10 and 100 microns. For example, for 20 keV X-rays, gold heights greater than 16 microns can block 90% of X-rays.
  • the detector may be a matrix detector, wherein each of the detector elements (pixels) can detect changes in the intensity of the X-rays incident on the unit.
  • an X-ray machine is used to emit an X-ray beam to an object to be detected.
  • an additional source grating e.g., a multi-slit collimator
  • the periods of the two absorption gratings G1, G2 are respectively set to A , /? 2 , which are sequentially located in parallel in the emission direction of the X-ray beam.
  • the detector is for receiving X-rays and converting the X-ray signals into electrical signals that can be digitally processed by photoelectric signal conversion techniques (eg, digital photography techniques).
  • the X-ray grating dark field imaging system should further include a data processing unit for calculating, from the electrical signal, a change in light intensity after the X-ray passes the detected object, and calculating the detection by the change of the light intensity.
  • system further includes a controller (not shown) for controlling the operation of the X-ray machine, the absorption grating, and the processor unit.
  • controller for controlling the operation of the X-ray machine, the absorption grating, and the processor unit.
  • the controller and the data processing unit may be integrated and implemented by a general purpose or special purpose processor.
  • the system further includes an imaging unit (not shown) that reconstructs and displays an image of the object based on the scattered information (scattering parameters, which may be embodied as pixel information of the detected object).
  • an imaging unit (not shown) that reconstructs and displays an image of the object based on the scattered information (scattering parameters, which may be embodied as pixel information of the detected object).
  • the X-ray beam emitted by a general-purpose X-ray machine may be a fan beam, a cone beam or a parallel beam.
  • Preferred in the present invention is a cone beam.
  • the periods of the two absorption gratings employed in the imaging system of the present invention are preferably in a geometrically proportional relationship, namely:
  • the distance of G1 is the distance between the two absorption gratings G1 and G2.
  • the intensity variation curve of the X-rays received at a certain point on the detector can be obtained.
  • the two absorption gratings (Gl, G2) are relatively stepped in motion: for example, the grating G1 is stationary, and the grating G2 is in the X direction (which is orthogonal to the direction of propagation of the X-rays) in the grating
  • the period of the period A is shifted by N (N>1) (the grating G2 can also be fixed, and the grating G 1 is stepped in the X direction).
  • the grating-based dark field imaging method according to the present invention broadens as the X-ray beam passes through the object due to scattering by the object.
  • An angular distribution function can be used to describe the X-ray scattering beam.
  • the resulting scattering causes a decrease in the contrast of the projected grating fringes. This drop can be used to measure the ability of the detected object to scatter X-rays, that is, dark field information.
  • an X-ray intensity curve at a point on the detector in the presence and absence of a skin detecting object can be obtained, as shown.
  • the light intensity curve of each point in the case where there is no detected sample can be predicted as background information, and the information can be pre-stored in the storage of the system, or can be automatically acquired when the device is started. It can be seen that after the X-ray is scattered by the detected object, the contrast of the light intensity curve at a certain point on the detector decreases to some extent. Thereby, the scattering information of the detected object can be indirectly measured by measuring the decrease in the contrast of the X-ray intensity curve.
  • the phase stepping method the measured sample intensity curve and the background light intensity curve of a certain pixel on the detector can be approximated by a cosine curve function, that is:
  • the contrast of the X-ray intensity curve at a pixel on the detector can be expressed as
  • the size of the detector pixels is much larger than the period of the grating strips, and multiple stripe periods are included within one detector. Since the scattering angle distribution cannot be resolved in less than one detector pixel size, we assume that the scattering angle distribution of the rays in each detector is the same, which can be expressed by a Gaussian function, and the second moment of the Gaussian function reflects X. The intensity of the beam broadening.
  • the inventors of the present application is derived under the conditions of grating dark field imaging technique based on projection, the second moment distribution of scattering angle ⁇ 2 (the second moment of the scattering angle distribution) and the quantitative relationship between the two light intensity contrast curves follows : ⁇
  • the scattering angle distribution second-order moment ⁇ 2 obtained by using the above formula (4) can be used to reconstruct an image of an object.
  • the X-ray scatter CT imaging process of the measured object includes: the object to be measured, such as a human body, n can be rotated relative to the imaging system, for example, 360 degrees.
  • the X-ray source emits X-rays to the object.
  • the two absorption gratings of the system perform a stepping motion of at least one cycle at a time.
  • the second-order moment ⁇ 2 of the scattering angle distribution at each pixel on the detector is obtained by comparing the change in contrast of the light intensity curve at each pixel of the detector. Then the object is rotated by an angle relatively, and the above-mentioned grating stepping motion is repeated to obtain the second-order moment ⁇ of the scattering angle distribution at each pixel point at the other angle. Repeating the above procedure, obtained at a plurality of angular scattering angle distribution second moment ⁇ 2, and CT reconstruction algorithm using the second moment of the distribution of scattering angle ⁇ 2 constructed as a CT image of the measured object.
  • Fig. 3a is an absorption image
  • Fig. 3b is a first-order phase information image
  • Fig. 3c is a dark field information image
  • Fig. 4a is an absorption image
  • Fig. 4b is a first-order phase information image
  • Fig. 4c is a dark field information image.
  • each of the figures in Fig. 4 is a cross-sectional view of the object to be measured shown in Fig. 3 along the indicated white line.
  • the scattering parameter f s generalized to describe characteristics of the sample material on the X-ray small angle scattering, which is similar to that used to describe the linear attenuation coefficient of X-ray attenuation properties of the material (including absorption and scattering) of. In this way, by comparing the decrease in the contrast of the light intensity curve at a certain pixel point of the detector, the scattering information of a corresponding point on the detected object can be indirectly obtained.
  • the relationship between the second-order distance ⁇ 2 of the scattering angle distribution and the generalized scattering parameter f s is known:
  • the proposed X-ray dark field imaging method of the present invention further improves the non-coherent grating imaging method so that it can perform absorption, phase contrast and dark field imaging methods on the same system. This greatly enriches the range of imaging technologies.
  • Grating dark field imaging based on incoherent X-ray sources can be applied to materials science, tissue imaging (eg, breast), and other fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

X射线暗场成像系统和方法 技术领域
本发明涉及 X射线成像领域,具体地涉及利用 X射线对物体进行暗场 成像的技术。 背景技术
在现有技术例如 CT的设备中 , 利用 X射线对物体进行扫描成像得到了 广^地应用。但是,传统的 X射线成像利用材料对 X射线的衰减特性来非破 坏性地检查物体的内部结构, 这属于 X射线的明场成像的技术。
在光学成像领域, 暗场(Dark f i eld )成像显著区别于明场(Br i ght f ie ld )成像。 暗场成像是利用非直射光(例如散射光、 衍射光、 折射光 和荧光等)对物质进行成像的技术。 其中, 可见光和电子的暗场成像技术 的研究较早, 其在科学研究、 工业领域、 医疗领域和生物领域等中得到广 泛地应用。 在硬 X射线成像领域, 传统硬 X射线成像技术使用直射 X射线对 物体进行成像, 即采用的是明场成像技术。 对于暗场成像, 由于硬 X射线 独特的光学性质, 所需的光学元件制作非常困难, 所以硬 X射线的暗场成 像一直难以较佳地实现。 20世纪九十年代, 随着第三代同步辐射源的发展 和精密的硬 X射线光学元件制作水平的提高,硬 X射线暗场成像技术的研究 得到了一定的发展, 但与同时期发展起来的硬 X射线相衬成像技术相比, 硬 X射线暗场成像由于信号量少、 探测比较困难、 成像时间长, 一直得不 到足够的重视。
然而, 硬 X射线的暗场成像技术在对物质内部 #t细结构分辨和探测能 力上相对于明场成像和相衬成像具有独到的优势。 硬 X射线暗场成像技术 通过物质对 X射线散射能力的差异来对物质内部结构进行成像。 由于硬 X 射线的散射在微米量级或甚至纳米量级尺度, 因而硬 X射线暗场成像技术 能够看到硬 X射线明场成像和相衬成像都无法分辨到的物质内部超微细结 构。
近年来, 有研究者提出将基于同步辐射光源的使用晶体的硬 X射线暗 场成像技术应用到软骨组织诊断、早期乳腺癌诊断成像上, 并取得了优于 硬 X射线明场成像的图像效果。 但是, 由于同步辐射装置体积庞大、 造价 昂贵、 视场小, 极大限制了硬 X射线暗场成像技术在医学临床和工业检测 上的广泛应用。
2008年, 开发出了光栅成像技术, 使得硬 X射线暗场成像摆脱了同步 辐射光源的束缚和依赖。 在通用 X光机的条件下, 实现了大视场的硬 X射线 暗场成像, 这极大降低了硬 X射线暗场成像技术的应用门槛。 2008年初, 瑞士的 Pfe i ffer等人在通用 X光机上使用光栅基于 Ta lbot- Lau干涉法实现 了大视场 (例如, 64mm X 64mm ) 的硬 X射线暗场成像。 这种光栅式的硬 X 射线暗场成像技术能够 4艮好地区分塑料和橡胶两种材料,还能观察到鸡翅 的骨头和肌肉组织中超微细的结构。 从 2006年开始, 清华大学的黄志峰等 人进行了基于通用 X光机的光栅式的硬 X射线相村成像技术的相关研究工 作, 并且在 2008年提出的申请号为 200810166472. 9、 名称为 "X射线光栅 相衬成像系统及方法,,的中国专利申请中提出了在非相干条件下的基于投 影方法的光栅相衬成像方法, 搭建了基于通用 X光机的光栅相衬成像实验 平台。 该专利申请的全部内容在此通过参照引入到本申请中。 发明内容
在已经提出的非相干 X射线光栅相衬成像方法的基础上, 基于非相干 X射线光栅成像技术, 本发明提出了非相干 X射线暗场成像系统和方法。
根据本发明, 通过光栅系统中位移曲线的对比度降低来反映物体的散 射信息,并且本发明导出了穿过物质后的散射射线分布的二阶矩与光栅成 像系统中位移曲线对比度降低之间的定量关系, 通过传统的线性 CT重建 算法可以定量重建物体的散射信息。
根据本发明的一个方面, 提出了一种 X射线成像系统, 用于对物体进 行 X射线散射成像, 其包括: X射线源、 第一和第二吸收光栅 G1和 G2、 X射线探测器, 其依次位于 X射线的传播方向上;
其中, 该系统还包括:
数据处理器单元, 用于进行数据信息的处理; 以及
控制器, 用于控制所述 X射线源、 第一和第二吸收光栅 G1和 G2、 X 射线探测器、 以及处理器单元的操作, 以实现下述过程:
X射线源向被测物体发射 X射线;所述两块吸收光栅 G1和 G2之一在 其至少一个周期范围内进行相位步进运动; 在每个相位步进步骤, 所述探 测器接收 X射线,并转化为电信号;其中,经过至少一个周期的相位步进, 探测器上每个像素点处的 X射线光强表示为一个光强曲线;将探测器上每 个像素点处的光强曲线与不存在被检测物体情况下的光强曲线相比较 ,得 到光强曲线的对比度变化; 由所述光强曲线的变化计算得出探测器上每个 像素的散射角分布的二阶矩;以及由所述散射角分布的二阶矩得出被检测 物体的图像的像素值, 由此重建被检测物体的图像。
另外, 所述系统优选地还包括一个旋转装置, 用于在所述控制器的控 制下, 使得被检测物体相对地旋转一个角度。 其中, 在每个旋转角度下, 重复以上所述各步骤, 从而得出多个角度下的 X射线散射图像。根据传统 的线性 CT图像重建算法, 例如滤波反投影算法, 即可以重建被检测物体 的图像。
具体地, 所述光强曲线的对比度表示为:
其中 皿和 分别表示光强曲线的最大和最小值。
以及,散射分布的二阶矩 σ2与所述光强曲线的对比度之间的定量关系
Figure imgf000005_0001
其中, 其中 和 分别表示探测器上某点在有被检测物体时的光强 曲线和无被检测物体时的光强曲线的对比度, A为第一吸收光栅 G 1的周 期, )为所述第一和第二吸收光栅之间的距离。
进一步地, CT图像重建算法利用了公式
其中 p„是物质密度, 是散射截面, ^是单个球形散射体对射线的 展宽宽度。可见广义的散射参数与物质密度 p„、散射截面 和单个球形散 射体对射线的展宽宽度 ^等几个物理量相关。 根据本发明的另一个方面, 提出了一种 X射线成像方法, 利用 X射线 光栅成像系统对物体进行成像, 其中该 X射线光栅成像系统包括: X射线 源、 第一和第二吸收光栅 G1和 G2 X射线探测器、 控制器和数据处理单 元; 其中, 该方法包括下述步骤:
向被测物体发射 X射线; 使得所述两块吸收光栅 G1和 G2之一在其至 少一个周期范围内进行相位步进运动; 在每个相位步进步骤, 探测器接收 X射线, 并转化为电信号; 其中, 经过至少一个周期的相位步进, 探测器 上每个像素点处的 X射线光强表示为一个光强曲线;将探测器上每个像素 点处的光强曲线与不存在皮检测物体情况下的光强曲线相比较,得到光强 曲线的对比度变化; 由所述光强曲线的变化计算得出探测器上每个像素的 散射角分布的二阶矩;以及由所述散射角分布的二阶矩得出被检测物体的 图像的像素值, 由此重建被检测物体的图像。
基于非相干的光栅暗场成像系统可以应用于材料科学, 组织(例如乳 腺)的医学成像等领域。 另夕卜, 本发明揭示的原理同样适用于相干的光栅 暗场成像方法中的重建问题。 附图说明
图 1为非相干 X射线光栅成像系统示意图。
图 2为基于光栅的暗场成像原理示意图。
图 3示出非相干光栅成像系统提取的多信息图像, 其中图 3a为吸收 图像, 图 3b为一阶相位信息图像, 图 3c为暗场信息图像。
图 4示出非相干光栅成像系统 CT重建图像, 其中图 4a为吸收图像, 图 4b为一阶相位信息图像, 图 4c为暗场信息图像; 其中重建的断层平面 在图 3中分别用白线标示。
图 5示出 X射线经过被检测物体散射后, X射线强度和对比度变化的 示意图,图中为模拟数据。 具体实施方式
参见图 1所示, 根据本发明的原理, X射线光栅暗场成像系统包括: X射线光机3、 可选的源光栅 G0、 两块吸收光栅(即第一和第二吸收光栅 G1和 G2 ) , 以及探测器组成, 其依次位于 X射线的传播方向上。 所述 X 射线光机为通用的 X射线光机。
优选地, 两个吸收光栅的周期在 0. 1 - 30微米之间。 所述光栅使用重 金属作为吸收材料, 以金( Au )为例, 金的高度由使用的 X射线的能量决 定, 在 10 - 100微米之间。 例如, 对 20keV的 X射线来说, 金的高度大于 16微米能阻挡 90 %的 X射线。
优选地, 所述探测器可以是矩阵探测器, 其中的每个探测元(像素) 可以检测射到该单元上的 X射线的强度变化。 具体地, X射线光机用于向被检测物体发射 X射线束。 在大焦点光源 情况下, X射线光机的前面可以添加一个附加的源光栅(例如, 多缝准 直器), 来产生一组小焦点线光源以向被检测物体发射 X射线束。 所述 两块吸收光栅 Gl、 G2的周期分别设定为 A、 /?2,其平行地依次位于 X射线 束的发射方向上。 所述探测器用于接收 X射线, 并通过光电信号转换技术 (例如,数字化摄影技术)将 X射线信号转换为可进行数字处理的电信号。
另外,所述 X射线光栅暗场成像系统还应包括数据处理单元, 用于从 所述电信号计算得出 X射线经过被检测物体后的光强变化,通过所述光强 变化计算出探测上每个探测像素点的光强对比度降低的信息,由此得出被 检测物体对 X射线的散射信息,以及利用所述散射信息计算出所述被检测 物体的像素信息。
进一步地, 系统还包括控制器(未示出), 用于控制所述 X射线光机、 吸收光栅以及处理器单元的操作。 优选地, 所述控制器和所述数据处理单 元可以集成为一体, 且由通用或专用处理器来实现。
进一步地, 系统还包括有成像单元(未示出), 根据所述的散射信息 (散射参数, 其可体现为被检测物体的像素信息)重建物体的图像并显示 出。
通用的 X射线光机发射的 X射线束可以是扇束、锥束或平行束。本发 明中优选地为锥束。 由此, 在本发明中成像系统所采用的两个吸收光栅的 周期优选地成几何比例关系, 即:
Figure imgf000007_0001
其中, 为射线源 (在存在源光栅的情况下为源光栅) 到第一光栅
G1的距离, 为两个吸收光栅 G1和 G2之间的距离。
通过两个吸收光栅的相对相位步进运动,可以得到探测器上某点接收 的 X射线的强度变化曲线。 对于如图所示的系统, 两个吸收光栅(Gl、 G2) 进行相对地步进运动: 例如, 光栅 G1 固定不动, 光栅 G2沿 X方向 (其与 X射线的传播方向正交)在光栅周期 A距离范围内平移 N ( N>1 )步(也可 以光栅 G2固定不动, 光栅 G 1沿 X方向步进) 。 光栅 G2每平移一步, 所 述的探测器采集一次图像; 在平移距离范围内采集 N张图像后, 可获得探 测器上每个像素(探测器的探测面上的每个点)在一个光栅周期内光强变 化曲线的分布情况。 如图 5所示, 该光强变化函数的形状类似于正弦或余 弦函数。
参见图 2所示, 根据本发明的基于光栅的暗场成像方法, 当 X射线束 穿过物体之后, 由于物体的散射作用而发生展宽。 可以用一个角分布函数 来描述 X射线散射束。 相比于没有被检测物体即样品的情况, 发生的散射 造成了投影光栅条紋的对比度的下降,这个下降可以用来衡量被检测物体 对 X射线的散射能力的大小, 也就是暗场信息。
通过第一或第二光栅 Gl、 G2的相对相位步进运动, 可以得到存在和 不存在皮检测物体情况下探测器上某点的 X射线光强曲线, 如图所示。 其 中 ,不存在被检测样品的情况下每个点的光强曲线作为背景信息可以预知 的,该信息可以预存在系统的存储中,或者临时可以设备启动时自动获取。 可以看到, X射线在经过被检测物体的散射后, 探测器上某点的光强曲线 的对比度存在一定程度的下降。 由此, 通过测量 X射线光强曲线的对比度 的降低即可以间接地测量被检测物体的散射信息。
进一步地,通过相位步进方法,测量出的探测器上某个像素的样品光 强曲线和背景光强曲线可用余弦曲线函数来近似地表示, 即:
I s(k) ¾ a s + b s cos(^Ax + φ s) (1)
I b (k) ^ ab + bb cos(A A + φ b ) (2)
其中, 和 分别表示相位步进方法中第 步某像素点所对应的 有被检测样品时的光强值和无样品时的光强值, Δ是步进长度, 位移曲线 间相位差为 = ( 3 - φ„)。
这样, 探测器上某像素点的 X射线强度曲线的对比度可以表示为
其中 和 分别表示光强曲线的最大和最小值。
在现有的成像系统中, 探测器像素的尺寸要远大于光栅条纹的周期, 在一个探测器范围内包含了多个条紋周期。由于小于一个探测器像素尺寸 内散射角分布不能被分辨,我们假设每个探测器内射线的散射角分布是一 样的, 均可以通过一个高斯函数来表示, 而高斯函数的二阶矩反映了 X射 线束展宽的强度。
本申请的发明人推导了基于投影的光栅暗场成像技术条件下 ,散射角 分布二阶距 σ2 ( the second moment of the scattering angle d i s t r i b u t i o n ) 与两条光强曲线的对比度之间的定量关系如下: σ
2 π 其中 和 分别表示探测器某像素点在有样品时的光强曲线和无样 品时的光强曲线的对比度, A为 G1的周期, ϋ为两块光栅之间的距离。
在本发明中,i利用上述公式(4 )得到的散射角分布二阶矩 σ2可以用 来重建物体的图像。 具体地, 被测物体的 X射线散射 CT成像过程包括: 被测对象例如人体, n相对于成像系统可以旋转, 例如 360度。 这样, 需要一个能够使得被检测物体相对于整个系统旋转地装置,其一般为机电 转动结构,且由控制器来控制。在每个角度下, X射线源向物体发射 X射线。 同时, 系统的两个吸收光栅完成一次至少一个周期的步进运动。 在这个过 程中, 通过比较探测器每个像素点处的光强曲线的对比度的变化, 得到探 测器上每个像素处的散射角分布的二阶矩 σ2。然后物体相对地旋转一个角 度, 重复上述的光栅步进运动, 得到该另一个角度下的每个像素点处散射 角分布的二阶矩^ 。 重复上述过程, 得到多个角度下的散射角分布二阶 矩 σ2 , 并利用 CT重建算法将所述散射角分布的二阶矩 σ2构建为被测物体 的 CT图像。
以上所描述的是被检测物体在 X射线照射下基于散射模拟所建立的 图像。 如图 3所示, 其中图 3a为吸收图像, 图 3b为一阶相位信息图像, 图 3c为暗场信息图像。 如图 4所示, 其中图 4a为吸收图像, 图 4b为一阶相位 信息图像, 图 4c为暗场信息图像。 其中, 图 4中的各图为图 3中所示被测对 象沿所示白线的截面图。
这里,使用广义散射参数 fs来描述样品物质对 X射线小角散射的特性, 其类似于使用线性衰减系数来描述物质对 X射线衰减 (包括吸收和散射作 用) 的特性。 这样, 通过比较探测器某像素点处光强曲线对比度的降低, 可以间接地得出被检测物体上某对应点的散射信息。 其中, 已知散射角分 布二阶距 σ 2与广义散射参数 fs的关系:
2 = f / (i)di = \ ρ ΛΙ )σ ΛΙ ) αι (5)
ί i 2 α ρ 其中 Ρ„是物质密度, 是散射截面, 是单个球形散射体对射线的 展宽宽度。可见广义的散射参数与物质密度 p„、散射截面 和单个球形散 射体对射线的展宽宽度 ^等几个物理量相关。 由此, 通过散射角分布的二阶矩 σ2所重建的图像反映出了广义散射参 数 的分布情况。这对于检测物体来说是非常有效的。例如图 3和图 4所示, 可以更加清晰地对比橡胶管和塑料管图像的不同之处。
尽管本发明基于非相关 X射线源进行的描述, 但实际上, 以上发明构 思和发明原理也同样适用于使用相干 X射线源的光栅暗场成像问题。
本发明的 X射线暗场成像方法的提出进一步完善了非相干光栅成像方 法, 使之可以在同一套系统上进行吸收, 相衬和暗场三种成像方式。 这大 大丰富了成像技术的选择范围。
基于非相干 X射线源的光栅暗场成像可以应用于材料科学, 组织(例 如乳腺) 的医学成像等领域。

Claims

权 利 要 求
1. 一种 X射线成像系统,用于对物体进行 X射线散射成像,其包括: X射线源、 第一和第二吸收光栅 G1和 G2、 X射线探测器, 其依次位 于 X射线的传播方向上;
其中, 该系统还包括:
数据处理器单元, 用于进行数据信息的处理; 以及
控制器, 用于控制所述 X射线源、 第一和第二吸收光栅 G1和 G2、 X 射线探测器、 以及处理器单元的操作, 以实现下述过程:
X射线源向被测物体发射 X射线;
所述两块吸收光栅 G1和 G2之一在其至少一个周期范围内进行相位步 进运动;
在每个相位步进步骤, 所述探测器接收 X射线, 并转化为电信号; 其 中, 经过至少一个周期的相位步进, 探测器上每个像素点处的 X射线光强 表示为一个光强曲线;
将探测器上每个像素点处的光强曲线与不存在被检测物体情况下的 光强曲线相比较, 得到光强曲线的对比度变化;
由所述光强曲线的变化计算得出探测器上每个像素的散射角分布的 二阶矩; 以及
由所述散射角分布的二阶矩得出被检测物体的图像的像素值, 由此重 建被检测物体的图像。
2. 根据权利要求 1的系统, 其中, 所述 X射线源为小焦点源; 或者, 在其为大焦点光源的情况下, 所述系统进一步包括一个源光栅, 用于将所 述 X射线光机发射的 X射线分成一系列小焦点的 X射线束。
3. 根据权利要求 1的系统, 其中所述 X射线源、 第一和第二吸收光 栅 G1和 G2、 X射线探测器相互之间具有下述的关系:
P x = L
p 2 ~ L + D
其中, 和 P2分别为第一和第二吸收光栅 Gl、 G2的周期, L为 X射 线源与第一光栅 G1之间的距离, D为第一和第二光栅之间的距离。
4. 根据权利要求 1的系统, 其中所述系统还包括一个旋转装置, 在 所述控制器的控制下, 用于使得被检测物体相对地旋转一个角度。
5. 根据权利要求 4 的系统, 其中, 在每个旋转角度下, 重复所述各 步骤, 从而得出多个角度下的 X射线散射分布的二阶矩, 然后根据 CT图 像重建算法来重建被检测物体的图像,
其中所述重建算法利用了下述的公式:
σ 2 = j fAndi
其中 为广义散射参数。
6. 根据权利要求 1 的系统, 其中所述探测器上某像素点在有被检测 物体时的光强曲线和无被检测物体时的光强曲线分别表示为:
I s(k) « a s + b s co s(A: Δχ: + φ s)
J b (k) ^ ab + bb cos( x + ύ )
其中, Δ是步进长度, 两个光强曲线间相位差为 Δ -Α), 表示第 k步进。
7. 根据权利要求 6的系统, 其中, 所述光强曲线的对比度表示为:
其中 和 分别表示光强曲线的最大和最小值。
8. 根据权利要求 7的系统, 其中, 散射角分布的二阶矩和所述光强 曲线的对比度之间的定量数量关系为:
Figure imgf000012_0001
其中, 其中 和 分别表示探测器上某点在有被检测物体时的光强 曲线和无被检测物体时的光强曲线的对比度, A为第一吸收光栅 G1的周 期, β为所述第一和第二吸收光栅之间的距离。
9. 根据权利要求 1 的系统, 其中, 所述系统还包括成像单元, 用于 显示被检测物体的图像。
10. 根据权利要求 1的系统, 其中所述 X射线为非相干的 X射线。
11. 根据权利要求 1的系统, 其中所述数据处理器单元和所述控制器 集成在一起, 由通用或专用处理器来实现。
12.一种 X射线成像方法,利用 X射线光栅成像系统对物体进行成像, 其中该 X射线光栅成像系统包括: X射线源、 第一和第二吸收光栅 G1和 G2 X射线探测器、 控制器和数据处理单元; 其中, 该方法包括下述步骤:
向被测物体发射 X射线;
使得所述两块吸收光栅 G1和 G2之一在其至少一个周期范围内进行相 位步进运动 ^
在每个相位步进步骤, 探测器接收 X射线, 并转化为电信号; 其中, 经过至少一个周期的相位步进,探测器上每个像素点处的 X射线光强表示 为一个光强曲线;
将探测器上每个像素点处的光强曲线与不存在被检测物体情况下的 光强曲线相比较, 得到光强曲线的对比度变化;
由所述光强曲线的变化计算得出探测器上每个像素的散射角分布的 二阶矩; 以及
由所述散射角分布的二阶矩得出被检测物体的图像的像素值,由此重 建被检测物体的图像。
1 3.根据权利要求 1 2的方法, 包括
旋转被检测物体, 在每个旋转角度下, 重复所述各步骤, 得出多个角 度下的 X射线散射分布的二阶矩, 然后根据 CT图像重建算法来重建被检 测物体的图像,
其中重建算法利用了下述的公式:
σ 2 = fs {l ) dl
其中, 为广义散射参数。
14.根据权利要求 12的方法, 其中所述 X射线为非相干的 X射线。
PCT/CN2010/001010 2009-07-07 2010-07-06 X射线暗场成像系统和方法 WO2011003278A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/147,952 US8515002B2 (en) 2009-07-07 2010-07-06 X-ray dark-field imaging system and method
EP10796655.8A EP2453226B1 (en) 2009-07-07 2010-07-06 X-ray dark-field imaging system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100886628A CN101943668B (zh) 2009-07-07 2009-07-07 X射线暗场成像系统和方法
CN200910088662.8 2009-07-07

Publications (1)

Publication Number Publication Date
WO2011003278A1 true WO2011003278A1 (zh) 2011-01-13

Family

ID=43428751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001010 WO2011003278A1 (zh) 2009-07-07 2010-07-06 X射线暗场成像系统和方法

Country Status (5)

Country Link
US (1) US8515002B2 (zh)
EP (1) EP2453226B1 (zh)
CN (1) CN101943668B (zh)
PL (1) PL2453226T3 (zh)
WO (1) WO2011003278A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866195A (zh) * 2021-11-23 2021-12-31 合肥工业大学 一种x射线光栅干涉仪成像的多衬度信号提取方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1879020A1 (en) * 2006-07-12 2008-01-16 Paul Scherrer Institut X-ray interferometer for phase contrast imaging
CN102221565B (zh) 2010-04-19 2013-06-12 清华大学 X射线源光栅步进成像系统与成像方法
DE102010027596B4 (de) * 2010-07-19 2015-04-23 Siemens Aktiengesellschaft Verwendung eines Gitters in einem Phasenkontrast-Röntgensystem und Phasenkontrast-Röntgensystem
JP2012095865A (ja) * 2010-11-02 2012-05-24 Fujifilm Corp 放射線撮影装置、放射線撮影システム
JP5150711B2 (ja) * 2010-12-07 2013-02-27 富士フイルム株式会社 放射線撮影装置及び放射線撮影システム
EP2822468B1 (en) * 2012-03-05 2017-11-01 University Of Rochester Methods and apparatus for differential phase-contrast cone-beam ct and hybrid cone-beam ct
CN103365067B (zh) * 2012-04-01 2016-12-28 中国科学院高能物理研究所 可实现三维动态观测的光栅剪切成像装置和方法
WO2013171657A1 (en) * 2012-05-14 2013-11-21 Koninklijke Philips N.V. Dark field computed tomography imaging
JP6250658B2 (ja) * 2012-06-27 2017-12-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 暗視野イメージング
JP6383355B2 (ja) * 2012-06-27 2018-08-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 画像診断システム及び作動方法
US9357975B2 (en) 2013-12-30 2016-06-07 Carestream Health, Inc. Large FOV phase contrast imaging based on detuned configuration including acquisition and reconstruction techniques
US9494534B2 (en) 2012-12-21 2016-11-15 Carestream Health, Inc. Material differentiation with phase contrast imaging
US9001967B2 (en) * 2012-12-28 2015-04-07 Carestream Health, Inc. Spectral grating-based differential phase contrast system for medical radiographic imaging
US10578563B2 (en) 2012-12-21 2020-03-03 Carestream Health, Inc. Phase contrast imaging computed tomography scanner
US10096098B2 (en) 2013-12-30 2018-10-09 Carestream Health, Inc. Phase retrieval from differential phase contrast imaging
US9907524B2 (en) 2012-12-21 2018-03-06 Carestream Health, Inc. Material decomposition technique using x-ray phase contrast imaging system
US9724063B2 (en) 2012-12-21 2017-08-08 Carestream Health, Inc. Surrogate phantom for differential phase contrast imaging
US9700267B2 (en) 2012-12-21 2017-07-11 Carestream Health, Inc. Method and apparatus for fabrication and tuning of grating-based differential phase contrast imaging system
US9217719B2 (en) * 2013-01-10 2015-12-22 Novaray Medical, Inc. Method and apparatus for improved sampling resolution in X-ray imaging systems
GB201311091D0 (en) * 2013-06-21 2013-08-07 Ucl Business Plc X-Ray imaging
WO2015122542A1 (en) * 2014-02-14 2015-08-20 Canon Kabushiki Kaisha X-ray talbot interferometer and x-ray talbot interferometer system
JP2015166676A (ja) * 2014-03-03 2015-09-24 キヤノン株式会社 X線撮像システム
DE102014203811B4 (de) 2014-03-03 2019-07-11 Siemens Healthcare Gmbh Ergänzungssystem zur interferometrischen Röntgenbildgebung und projektive Röntgenvorrichtung
JP6637485B2 (ja) 2014-08-13 2020-01-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. トモグラフィにおける暗視野イメージング
CN106456083B (zh) 2014-10-13 2018-06-08 皇家飞利浦有限公司 用于对可移动对象进行相位衬度和/或暗场成像的光栅设备
CN105628718A (zh) 2014-11-04 2016-06-01 同方威视技术股份有限公司 多能谱x射线光栅成像系统与成像方法
CN105606633B (zh) 2014-11-04 2019-03-19 清华大学 X射线相衬成像系统与成像方法
JP6451400B2 (ja) * 2015-02-26 2019-01-16 コニカミノルタ株式会社 画像処理システム及び画像処理装置
CN106153646B (zh) * 2015-04-08 2022-06-24 清华大学 X射线成像系统和方法
CN108366773B (zh) 2015-09-16 2022-06-17 皇家飞利浦有限公司 暗场增强虚拟x射线结肠镜检查
JP6613988B2 (ja) * 2016-03-30 2019-12-04 コニカミノルタ株式会社 放射線撮影システム
CN105852895B (zh) * 2016-04-29 2018-07-31 合肥工业大学 单次曝光的硬x射线光栅干涉仪的信息提取方法
CN107481914B (zh) * 2016-06-08 2023-06-06 清华大学 一种透射型低能量电子显微系统
CN107473179B (zh) * 2016-06-08 2019-04-23 清华大学 一种表征二维纳米材料的方法
EP3258253A1 (en) * 2016-06-13 2017-12-20 Technische Universität München X-ray tensor tomography system
CN110049725B (zh) * 2016-11-22 2023-03-28 株式会社岛津制作所 X射线相位成像装置
US10923243B2 (en) * 2016-12-15 2021-02-16 Koninklijke Philips N.V. Grating structure for x-ray imaging
JP6673188B2 (ja) * 2016-12-26 2020-03-25 株式会社島津製作所 X線位相撮影装置
JP6753342B2 (ja) * 2017-03-15 2020-09-09 株式会社島津製作所 放射線格子検出器およびx線検査装置
JP6844461B2 (ja) * 2017-07-20 2021-03-17 株式会社島津製作所 X線位相イメージング装置および情報取得手法
EP3435325A1 (en) 2017-07-26 2019-01-30 Koninklijke Philips N.V. Scatter correction for dark field imaging
JP6943090B2 (ja) * 2017-09-05 2021-09-29 株式会社島津製作所 X線イメージング装置
CN107607560B (zh) * 2017-09-22 2021-06-25 上海联影医疗科技股份有限公司 一种光学相位衬度成像系统、方法及计算机可读媒质
JP6743983B2 (ja) * 2017-10-31 2020-08-19 株式会社島津製作所 X線位相差撮像システム
EP3494885A1 (en) * 2017-12-07 2019-06-12 Koninklijke Philips N.V. Apparatus for presentation of dark field x-ray image information
EP3496109A1 (en) * 2017-12-08 2019-06-12 Koninklijke Philips N.V. Oscillatory dark-field imaging
CN108169258A (zh) * 2017-12-14 2018-06-15 上海海洋大学 一种用于含骨鱼肉片的检测器移动型检测设备及方法
WO2019142451A1 (ja) * 2018-01-19 2019-07-25 株式会社島津製作所 X線イメージング装置
CN108680589B (zh) * 2018-05-31 2021-07-16 北京航空航天大学 基于横向错位光栅的三维锥束计算机层析成像方法及装置
CN112189134B (zh) * 2018-06-15 2023-09-19 株式会社岛津制作所 X射线成像装置
EP3603515A1 (en) * 2018-08-01 2020-02-05 Koninklijke Philips N.V. Apparatus for generating x-ray imaging data
CN113171116A (zh) * 2021-01-18 2021-07-27 深圳市第二人民医院(深圳市转化医学研究院) 一种用于检测软组织异物的多模态x射线成像设备及其方法
CN115412689B (zh) * 2022-07-26 2023-04-25 瀚湄信息科技(上海)有限公司 一种基于动态标定的暗场噪音处理方法、装置和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201191275Y (zh) * 2007-11-23 2009-02-04 同方威视技术股份有限公司 一种x射线光栅相衬成像系统
WO2009076700A1 (en) * 2007-12-14 2009-06-25 Commonwealth Scientific And Industrial Research Organisation Phase-contrast imaging method and apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046757B1 (en) * 2005-04-18 2006-05-16 Siemens Medical Solutions Usa, Inc. X-ray scatter elimination by frequency shifting
CN101013613B (zh) * 2006-02-01 2011-10-19 西门子公司 X射线设备的焦点-检测器装置的x射线光学透射光栅
EP1879020A1 (en) * 2006-07-12 2008-01-16 Paul Scherrer Institut X-ray interferometer for phase contrast imaging
DE102008048683A1 (de) * 2008-09-24 2010-04-08 Siemens Aktiengesellschaft Verfahren zur Bestimmung von Phase und/oder Amplitude zwischen interferierenden benachbarten Röntgenstrahlen in einem Detektorpixel bei einem Talbot-Interferometer
JP5174180B2 (ja) * 2008-10-29 2013-04-03 キヤノン株式会社 X線撮像装置およびx線撮像方法
US7949095B2 (en) * 2009-03-02 2011-05-24 University Of Rochester Methods and apparatus for differential phase-contrast fan beam CT, cone-beam CT and hybrid cone-beam CT
JP2010236986A (ja) * 2009-03-31 2010-10-21 Fujifilm Corp 放射線位相画像撮影装置
JP2010253194A (ja) * 2009-04-28 2010-11-11 Fujifilm Corp 放射線位相画像撮影装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201191275Y (zh) * 2007-11-23 2009-02-04 同方威视技术股份有限公司 一种x射线光栅相衬成像系统
WO2009076700A1 (en) * 2007-12-14 2009-06-25 Commonwealth Scientific And Industrial Research Organisation Phase-contrast imaging method and apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. PFEIFFER ET AL.: "HARD-X-RAY DARK-FIELD IMAGING USING A GRATING INTERFEROMETER", NATURE MATERIALS, vol. 7, February 2008 (2008-02-01), pages 134 - 137, XP055003146 *
See also references of EP2453226A4
ZF HUANG ET AL.: "STUDY FOR HARD-X-RAY GRATING DARK-FIELD IMAGING technique BASED ON GENERAL X-RAY MACHINE SOURCE", NATIONAL RADIATION DIGITAL IMAGING AND CT NEW TECHNOLOGY, June 2009 (2009-06-01), pages 91 - 95, XP008149915 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866195A (zh) * 2021-11-23 2021-12-31 合肥工业大学 一种x射线光栅干涉仪成像的多衬度信号提取方法
CN113866195B (zh) * 2021-11-23 2023-07-18 合肥工业大学 一种x射线光栅干涉仪成像的多衬度信号提取方法

Also Published As

Publication number Publication date
US20110293064A1 (en) 2011-12-01
US8515002B2 (en) 2013-08-20
CN101943668B (zh) 2013-03-27
PL2453226T3 (pl) 2017-06-30
EP2453226B1 (en) 2016-10-26
CN101943668A (zh) 2011-01-12
EP2453226A1 (en) 2012-05-16
EP2453226A4 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2011003278A1 (zh) X射线暗场成像系统和方法
WO2016070739A1 (zh) 多能谱x射线光栅成像系统与成像方法
WO2016070771A1 (zh) X射线相衬成像系统与成像方法
US9134259B2 (en) X-ray source grating stepping imaging system and image method
JP5606455B2 (ja) 逆投影のためのイメージング装置及びその作動方法
EP2850595B1 (en) Dark field computed tomography imaging
US20170035378A1 (en) Material differentiation with phase contrast imaging
Jensen et al. Directional x-ray dark-field imaging of strongly ordered systems
Zhu et al. Cone beam micro-CT system for small animal imaging and performance evaluation
Li et al. Full-field fan-beam x-ray fluorescence computed tomography with a conventional x-ray tube and photon-counting detectors for fast nanoparticle bioimaging
EP3383273B1 (en) Apparatus for x-ray imaging an object
Fu et al. Helical differential X-ray phase-contrast computed tomography
US11234663B2 (en) Apparatus for generating multi energy data from phase contrast imaging data
JP6148415B1 (ja) コンピュータ断層撮影(ct)ハイブリッドデータ収集
Thüring et al. Compact hard x-ray grating interferometry for table top phase contrast micro CT
CN109709127A (zh) 低散射x射线荧光ct成像方法
JP2008519975A (ja) エネルギー分解コンピュータ断層撮影
Li et al. Detection performance study for cone-beam differential phase contrast CT
Haeusele et al. Robust Sample Information Retrieval in Dark-Field Computed Tomography with a Vibrating Talbot-Lau Interferometer
Zdora et al. Principles and State of the Art of X-ray Speckle-Based Imaging
Nakamura et al. Reconstruction technique of fluorescent X-ray computed tomography using sheet beam
Guibin High-Resolution Multi-Contrast Tomography with an X-ray Micro Array Anode Structured Target Source
Nakamura et al. Attenuation Correction in Fluorescent X-Ray Computed Tomography using Synchrotron Incident Sheet-Beam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147952

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010796655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010796655

Country of ref document: EP