WO2011002468A1 - Paramètres de traitement pour l'exploitation d'un four à induction à canal - Google Patents

Paramètres de traitement pour l'exploitation d'un four à induction à canal Download PDF

Info

Publication number
WO2011002468A1
WO2011002468A1 PCT/US2009/049584 US2009049584W WO2011002468A1 WO 2011002468 A1 WO2011002468 A1 WO 2011002468A1 US 2009049584 W US2009049584 W US 2009049584W WO 2011002468 A1 WO2011002468 A1 WO 2011002468A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
induction furnace
molten metal
waste material
slag
Prior art date
Application number
PCT/US2009/049584
Other languages
English (en)
Inventor
James E. Bratina
Thomas Edward Roberts
Original Assignee
Heritage Environmental Services, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heritage Environmental Services, Llc filed Critical Heritage Environmental Services, Llc
Priority to PCT/US2009/049584 priority Critical patent/WO2011002468A1/fr
Publication of WO2011002468A1 publication Critical patent/WO2011002468A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • F27B14/065Channel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/02Crucible or pot furnaces with tilting or rocking arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/003Extraction of waste gases, collection of fumes and hoods used therefor of waste gases emanating from an electric arc furnace

Definitions

  • the present invention relates to the methods for processing various materials to retain one or more product(s) from such materials. More particularly, the present invention relates to a manner of operating an induction furnace during the processing of various materials, including metal and non-metal wastes.
  • EAF electric arc furnace
  • BOF basic oxygen furnace
  • EAF dust and BOF sludge/dust contain significant quantities of iron that make these materials valuable for use directly in steel making processes as a substitute for other iron containing materials such as scrap steel, hot metal, sinter dust, and other iron oxides present at steel making facilities.
  • EAF dust also contains significant quantities of zinc which makes it valuable as a feed for zinc manufacturing processes.
  • BOF sludge/dust contains smaller quantities of zinc, but the zinc present can be recovered for reuse as a zinc product.
  • EAF dust is also subject to stabilization processes followed by landfill disposal.
  • a small quantity of BOF sludge/dust is returned to the BOF steel making process in some locations and some is recycled in other manners, but a large volume is disposed as a waste material in landfills.
  • Such processes include thermal processes, hydrometallurgical processes or combinations thereof. In most cases, these processes were not successful because they are expensive to build, expensive to operate and/or they cannot be used to process all of the EAF dust and BOF sludge/dust material, so that waste material remains that still must be disposed of in landfills.
  • U.S. Patent No. 6,136,059 to Zoppi discloses the use of an induction furnace for the sole purpose of processing EAF dust. That is, the only feed into the induction furnace after providing a "heel" for the required oxidation and reduction reactions is a half charge of cast iron which is not replenished, but rather to which pellets of EAF dust is added together with coal and small amounts of slagging agents.
  • Zoppi mentions that induction furnaces of the prior art are generally only used as a smelting means in secondary steel and non-ferrous metals processing.
  • U. S. Patent No. 6,831,939 to Bratina and Fehsenfeld discloses an expansion of the Zoppi patent that involves operating an induction furnace to both produce hot metal and a pig iron product and to process iron and volatile metal containing materials to recover iron value and concentrate metals which are volatile at the operating temperature of the induction furnace.
  • the process relies upon mixing feeding both metal oxides and reduction material into the induction furnace. The efficiency of the process is limited by the induction furnace that is used.
  • U.S. Patent Application Publication No. 2007/0062330 to Bratina et al. is directed to methods and processes of configuring and operating an induction furnace to process waste materials while producing metal products and recovering iron and volatile metals in a manner that is energy efficient and provides improved separation of volatile metals and improved control of slag viscosity.
  • U.S. Patent Application Publication No. 2007/0157761 to Bratina is directed to a method for the production of an iron product from ore containing iron which involves the use of an induction furnace.
  • the present invention is based upon tests that were conducted using a channel induction furnace similar to that disclosed in U.S. Patent Application Publication No. 2007/0062330 to Bratina et al. During the course of such tests a number of new unexpected discoveries were realized.
  • the present invention is directed to a manner of operating an induction furnace during the processing of various waste materials, including metal and non-metal wastes.
  • the present invention provides a method of processing at least one of a molten metal product, a vapor phase metal product and a slag product from at least one waste material which comprises:
  • the present invention further provides a method of processing at least one of a molten metal product, a vapor phase metal product and a slag product from at least one waste material which comprises:
  • the present invention also provides a method of processing at least one of a molten metal product, a vapor phase metal product and a slag product from at least one waste material which comprises:
  • Figure 1 depicts a prior art system that uses an induction furnace to both produce hot metal (or pig iron) and to recover iron value from iron and volatile metal containing materials, including EAF dust, while concentrating volatile metals such as zinc, lead, cadmium, etc.
  • Figure 2 is a front view of a channel induction furnace used according to one embodiment of the present invention.
  • Figure 3 is a top view of the channel induction furnace of Fig. 2.
  • Figure 4 is a side view of Hie channel induction furnace of Fig. 2.
  • Figure 5 is a schematic drawing of the channel induction furnace of Figs. 2-4 which is provided to illustrate how the process of the present invention works according to one embodiment
  • Figure 6 is a schematic illustration of how feed materials react in the channel induction furnace according to the present invention.
  • the present invention is generally directed to methods and apparatus that involve the use of an induction furnace for processing various metal and/or non-metal waste materials while producing one or more products
  • Reference herein to waste and waste materials is not intended to limit the present invention which is capable of processing a variety of materials that contain various volatile metals, non-volatile metals, and non-metal components, including, ores, scrap materials, stock materials, machining wastes, industrial wastes, etc.
  • the present invention involves a method of configuring and operating an induction furnace for the processing various metal and/or non-metal waste materials while one or more products in a manner that is energy efficient and provides improved separation of components from the metal and non-metal waste materials
  • the configuration of the induction furnace used according to the present invention allows for: 1) controlling the gas temperature in the headspace of the furnace by controlling the flow of excess air into the furnace; 2) controlling the combustion of carbon monoxide in the gas headspace to provide additional heat in the headspace while allowing the gas headspace to remain in a reducing state to prevent volatile metals such as zinc from being oxidized; 3) controlling the chemistry of slag formed in the process with additions of slagging agents (which can be waste materials) to product a fluid slag material that can be easily removed from the furnace and used commercially, for example as a slag conditioner for the steel making industry, an aggregate for forming pavements, a construction article such as pavers or blocks, etc.; 4) providing a feed location at the opposite end of the gas and slag removal locations to allow for a plug flow type reactor that provides an extended reaction time for the process, allowing for more complete separation of the various feed materials in the process; and 5) providing a channel type induction furnace that allows a more energy efficient furnace to be
  • the improved energy and separation efficiency of the present invention serves to provide for a system that will be capable of processing a wide variety of feed materials, including waste materials, in a more cost effective manner than previous processes.
  • the apparatus used in the present invention includes a channel type induction furnace as its main component that has an inductor at the bottom or other suitable lower portion of the furnace body.
  • This feature allows the furnace to be designed in a more energy efficient manner by incorporating a thicker layer of refractory in the main body (drum portion) of the furnace. This thicker refractor also provides for longer period of time between the need for refractory replacement. While the use of an induction furnace of this type is not unique per se, the use of such an induction furnace for processing various metal and non-metal materials and producing one or more products according to the present invention is unique as evidenced by the specific features and operating methods described herein.
  • the use of a channel type induction furnace also allows additional improvements to be made in the form of energy efficiency.
  • the body of the furnace is a horizontal drum that can be enclosed to thereby allow the flow of air into the process to be restricted and controlled.
  • the restriction of air flow into the drum limits the quantity of air that is heated in the furnace and removed by the gas control system on the furnace, thus reducing the heat lose to the air that is normal for typical induction furnace operation.
  • the amount of air that enters the furnace can be controlled so as to burn a portion of the carbon monoxide generated by feed materials added into the furnace and/or to combust materials such as organic materials or components.
  • the burning of carbon monoxide in the headspace of the furnace and/or organics can provide additional heat in the gas headspace of the furnace thereby allowing the furnace to operate with a higher temperature in the headspaced than is normal for operation.
  • the high temperature of the gas headspace achieved by the process of the present invention which can range from about 1,300 0 C to about 1,500 0 C, eliminates or greatly reduces heat loss from the surface of the furnace bath and thereby allows the slag on the surface of the bath to be maintained at a higher temperature.
  • the flow of air into the furnace can also be controlled as desired to limit the air to a level at which carbon monoxide formed as a result of the metal oxidation reduction process in the system will not be completely oxidized.
  • By keeping excess carbon monoxide in the gas headspace of the furnace the system will be operated in a reducing mode until the gases exit the furnace.
  • volatile metals released from the feed materials such as zinc, lead and cadmium (in the vapor form) are prevented from being oxidized in the furnace before they are removed. This manner of operating limits oxidized volatile metals from being deposited in the slag leaving the furnace. As a result, a cleaner slag is maintained during the process.
  • the present invention provides for the ability to make a higher quality fluid slag that is easier to remove from the induction furnace process. This is accomplished in at least three ways.
  • the air flow into the furnace can be controlled according to the present invention to produce a higher temperature gas headspace.
  • This higher temperature in the gas headspace heats the upper surface of the slag layer.
  • the higher temperature in the gas headspace which is not provided by typical operation of an induction furnace, prevents and can actually reverse normal loss of heat from the slag surface thereby, in either event, providing a higher temperature for the slag layer.
  • the fluidity of the slag is increased as compared to the manner in which an induction furnace is typically operated.
  • the chemistry of the slag layer can be adjusted to provide a more fluid slag and to provide a slag product that has various uses such as a slag conditioner for the steel making industry, an aggregate for forming pavements, a construction article such as pavers or blocks, etc. This is accomplished by adding silica, lime or some other material or known slagging agent to improve the fluidity and quality of the slag.
  • the induction furnace used according to the present invention is provided with a feed at one end of the furnace and slag/gas removal at the opposite end.
  • This arrangement provides a reaction zone that provides an increase process retention time.
  • This increase in retention time is provided by plug flow movement of the slag on the surface of the iron bath from the feed point to the slag discharge point.
  • the retention time provides more time for volatile metals to react and leave the slag surface before the slag is removed from the furnace.
  • the removed slag therefore has a lower concentration of volatile metals and the proper chemistry for value as an aggregate for road construction applications.
  • Figure 1 depicts a prior art system that uses an induction furnace to both produce hot metal (or pig iron) and to recover iron value from iron and volatile metal containing materials, including EAF dust while concentrating volatile metals such as zinc, lead, cadmium, etc.
  • the system depicted in Fig. 1 includes a channel induction furnace 1 inside of which a charge 2 of molten material such as molten iron is depicted as only partially filling the induction furnace 1.
  • the portion or area of charge 2 at and near the upper surface of the charge 2 is relatively calm due to the use of an induction furnace which includes an inductor located at or near the bottom of the furnace through which movement of the molten bath is limited so as not to create turbulent conditions at or near the surface of the charge 2.
  • the portion or area of charge 2 at and near the upper surface of the charge 2 can thus be controlled to flow or move through the induction furnace by adding feed materials through an inlet on one side or end of the furnace and removing slag through an outlet on an opposite side or end of the furnace.
  • This manner of feeding materials into the furnace and removing slag from the furnace allows for a plug flow type reactor that provides an extended reaction time for the process as mentioned above
  • the channel induction furnace 1 is coupled to a hood 3 through which gases and vapors in the headspace of the channel induction furnace 1 are removed.
  • the hood 3 can be coupled by an air passage 4 to a cyclone 5 in which the coarsest and heaviest components are removed and collected at 6. Complete dust removal takes place in bag house 7 which is upstream of chimney 8. Components removed at bag house 7 are collected at 9.
  • Figure 2 is a front view of a channel induction furnace used according to one embodiment of the present invention.
  • Figure 3 is a top view of the channel induction furnace of Fig. 3.
  • Figure 4 is a side view of the channel induction furnace of Fig. 2.
  • the channel induction furnace 1 in Figs. 2-4 is configured to operate in a continuous fashion to process feed materials while producing various products from materials fed into the furnace. It is also possible to operate the furnace in a batch or semi-continuous batch manner.
  • the channel induction furnace 1 is configured to remove slag in a continuous manner and is configured to have a gas outlet 10 that can be coupled to a hood 4 shown in Fig. 1. It is also possible to remove the slag in a batch or semi-continuous batch manner.
  • the channel induction furnace 1 generally includes a drum- or cylindrical-shaped chamber 11 that is surrounded and defined by a refractory material 12 that is provided as a liner.
  • a refractory material 12 that is provided as a liner.
  • An inductor 13 of conventional design is provided at a bottom portion of the drum-shaped chamber 11 and used to maintain the molten bath in the channel induction furnace 1. It is also possible to use the inductor 13 to form an initial molten bath in the channel induction furnace 1; however, it is generally more efficient to form the initial molten bath in some other manner and use the inductor 13 to maintain the molten bath.
  • an inlet 14 for feeding materials into the channel induction furnace 1 is provided near one side or end and an outlet 10 for removal of gases is provided at an opposite side or end as shown.
  • the channel induction furnace 1 can also be provided with an access port 15 that is generally closed during operation.
  • the access port 15 is shown as being centrally located at the top of the channel induction furnace 1.
  • a slag discharge 16 is provided at a side or end of the channel induction furnace 1 that is opposite of inlet 14 and at a height that is suitable for controlling a slag layer that forms on a molten bath within the channel induction furnace 1.
  • the slag discharge 16 comprises a trough or channel structure that extends from the side of the channel induction furnace 1 and is in fluid communication with the drum- or cylindrical-shaped chamber 11.
  • the slag discharge 16 can be provided with a gate or movable dam that can be used to control slag discharge.
  • the channel induction furnace 1 is also provided with a spout 17 in the front of the furnace 1 through which molten metal from the molten bath can be removed from the drum- or cylindrical-shaped chamber 11.
  • the channel induction furnace 1 is provided with a mechanism generally identified by reference number 18 which is used to rotate the drum- or cylindrical-shaped chamber 11 about its central axis in a known manner so that molten metal in the molten bath can flow out through the spout 17.
  • FIG. 5 is a schematic drawing of the channel induction furnace of Figs. 2-4 which is provided to illustrate how the process of the present invention works according to one embodiment.
  • the inductor 13 is located at the bottom of the channel induction furnace 1 where it is in communication with the drum- or cylindrical-shaped chamber 11 discussed above.
  • a feed stream 19 enters the channel induction furnace 1 through inlet 14 provided in the top of the furnace 1 near one side or end.
  • Slag conditioning material such as silica, lime, etc. can also be added to the process through inlet 14 which is at the opposite side or end of the drum- or cylindrical-shaped chamber 11 than the slag discharge 16.
  • the temperature of the feed materials increases due to the operating temperatures of the channel induction furnace and contact and exposure to the hot slag, heated gas headspace and molten charge.
  • Metals and metal components that have a high density pass through the slag layer 21 and into the underlying molten bath 22 in the bottom portion of the channel induction furnace 1.
  • the inductor 13 provides energy for the molten metal bath 22 from electrical power to keep the bath 22 at a desired operating temperature.
  • the molten material of the bath 22 is removed from the channel induction furnace 1 through a spout 17 at the front of the furnace 1.
  • Slag which has a lower density than the liquid molten bath material will float on the surface of the molten bath 22 and flow toward the slag discharge 16 at the opposite side or end of the channel induction furnace 1 from the inlet 14.
  • the slag will be kept fluid by a combination of high temperature in the gas headspace 20 and slag conditioning additives that improve the slag viscosity as discussed above.
  • the slag can be removed continuously or semi-continuously as desired by the system operation.
  • the travel time from the addition of new feed material to the discharge of its slag components can be adjusted by changing the depth or thickness of the slag layer 16 in the channel induction furnace 1 or changing the surface area of the liquid levels in the furnace through equipment design changes.
  • Gases produced from the process will be a combination of carbon monoxide, carbon dioxide, volatile metal vapors and combustion products of organic materials, depending on what types of materials are fed into the system.
  • Some air can be added to the system with the feed material stream inlet 14 and at the slag discharge 16. The oxygen in this added air can burn a portion of the carbon monoxide within the gas headspace 20 to add additional heat to the gas headspace 20 area. If too much air is added or allowed to enter at these or other points, all of the carbon monoxide present in the gas headspace 20 can be burnt followed by the burning or oxidation of a portion of any metal vapors.
  • metal vapors are allowed to burn or oxidize they will form metal oxides that could condense in the channel induction furnace 1 and into the slag layer 21. This undesired burning or oxidation of metal vapors would result in a lower percentage of volatile metal recovery and an increase in unwanted materials in the slag layer.
  • the present invention according involves operating the system with control of the air entering the furnace in order to provide the proper gas headspace 20 operating temperature and limit oxygen entering the gas headspace 20.
  • the gas stream 23 exiting the channel induction furnace 1 can be reacted with air as it leaves the furnace 1 to oxidize any volatile metals so that they can be collected in the manner taught by U. S. Patent No. 6,136,059 to Zoppi and U. S. Patent No. 6,831 ,939 to Bratina and Fehsenfeld. These collected volatile metal materials can be subsequently processed to recover the volatile metals according to conventional processes.
  • the slag layer 21 can be removed and consequently reduced in thickness until the surface of the underlying molten metal bath 22 approaches the height of the slag discharge 16, before which the drum- or cylindrical-shaped chamber 11 can be rotated about its central axis so that molten metal in the bath 22 can flow out through the spout 17.
  • Table 1 is a list of various materials that can be fed into the system according to the present invention.
  • Batteries include: NiCd, Alkal ne, Lt um on, Zn/Fe.
  • Table 1 is a non-exhaustive list of various materials, many of which are considered waste materials from the standpoint that prior to the present invention it was either not believed that any useful product(s) could be obtained from these materials or there was no efficient process for recovering products from these materials.
  • the overall concept of the present invention is to use a waste material as a feed stream and produce therefrom at least one and preferably two or more useful products. These products can be recovered from the channel induction furnace as a released vapor that is subsequently collected and/or a slag product and/or a molten product that is obtained from the molten bath in the induction furnace.
  • FIG. 6 is a schematic illustration of how feed materials react in the channel induction furnace.
  • a mass of feed material identified by reference numeral 24 represents a briquette, or pelletized or accumulated volume or mass of loose feed material that contains volatile metal oxides and non-volatile metal oxides.
  • the mass of feed material 24 floats on or in slag layer 21 so that a significant portion of the surface area of the mass of feed material 22 is exposed to the slag in the slag layer 21.
  • the volatile metal oxides in the feed material are represented by zinc oxide (ZnO), it being understood that other volatile metals could be included such as cadmium, lead, and other metals that will enter the vapor phase at the operating conditions of the channel induction furnace.
  • ZnO zinc oxide
  • the non- volatile metal oxides are represented by iron oxide (Fe 2 Oa), it being understood that the feed materials could contain other non- volatile metal oxides which can be reduced into elemental metals which are in the liquid phase at the operating conditions of the channel induction furnace. It is further noted that the feed materials typically contain other components which produce the slag and can include for example non-metallic components and compounds such as calcium silicates, silica, alumina, calcia, magnesium, etc. For simplicity, these material components that form the slag are not shown in Fig. 6.
  • the molten bath 22 contains carbon as a reductant.
  • the carbon in the molten bath 22 reacts both with the volatile metal oxides in the feed materials and reacts with the non-volatile metal oxides in the feed materials.
  • the zinc oxide reacts with carbon from the molten bath 22 as follows:
  • the elemental zinc (Zn) produced by the carbon reduction of zinc oxide forms in the vapor phase and passes through or leaves the slag layer 21 and enters the headspace 20 of the channel induction furnace for collection and processing as discussed herein.
  • the carbon monoxide forms as a gas and passes through or leaves the slag layer 21 and enters the headspace 20 of the channel induction furnace.
  • iron oxide Fe 2 Os
  • the iron oxide reacts with carbon from the molten bath 22 as follow:
  • the elemental iron (Fe) produced by the carbon reduction of iron oxide forms in the liquid phase and passes through or leaves the slag layer 21 and enters the molten bath 22 beneath the slag layer 21.
  • the carbon monoxide forms as a gas and passes through or leaves the slag layer 21 and enters the headspace 20 of the channel induction furnace.
  • the reaction zone for each mass of feed material is located substantially in the slag layer.
  • the discrete masses or volumes of the feed materials break up and/or dissolve so that by the time they flow from the inlet 8 of the channel induction furnace to the slag discharge 16 with the moving slag layer they are completely reacted and converted into elemental volatile metals that leave through the headspace 20 via vapor phase and/or elemental non- volatile metals that enter the molten bath in the liquid phase and/or non-metallic components that become part of the slag layer.
  • the reaction or residence time of the discrete masses or volumes of the feed materials through the channel induction furnace 1 can accordingly be controlled by removal of the slag through the slag discharge.
  • the chemistry and fluidity of the slag layer can be controlled as desired by adding appropriate agents to the slag and carbon, which is depleted from the molten bath as the reactions proceed, can be replenished by adding reductants together with the feed materials or otherwise into the molten bath independently of the feed materials.
  • the control of the temperature in the headspace of the induction furnace was determined to be an important process parameter of the present invention.
  • the headspace must be kept sufficiently hot to keep the slag fluid
  • the heat for the headspace is provided by allowing a limited amount of air into the furnace. This air exothermically reacts with carbon monoxide that is formed during the reduction of metal oxides.
  • the amount of air that is allowed to enter the headspace can be controlled by pulling a slight vacuum in the exhaust hood that is over the gas outlet of the induction furnace. By creating a slight negative pressure in the headspace with the vacuum, a controlled amount of air can enter the furnace through feed ports, observation ports, outlets and other openings in the furnace. As discussed above, the quantity of air must be controlled to only burn a portion of the carbon monoxide produced from the reduction of metal oxides.
  • the temperature in the furnace headspace could become too high and/or a portion of any released volatile metals such as zinc could be burn and form metal oxides which could fall back into the slag layer or deposit on the internal surfaces of the furnace, hood, etc.
  • the results would include a reduction in the recovery of volatile metals, contamination of the slag with volatile metal oxides and fouling of the apparatus/system.
  • oxygen could be fed into the channel induction furnace through one or more inlets dedicated to such oxygen feeding. Such inlet(s) could be coupled directed to a source of oxygen (O 2 ).
  • the temperature and chemistry of the molten bath can be controlled for more efficient operation of the process.
  • Iron saturated with carbon approximately 4.5 wt.% carbon
  • an iron bath with 3 wt.% carbon As the carbon concentration in the iron bath continues to be reduced (due to carbon reacting with metal oxides in the feed materials) the fluidity in the bath will continue to drop.
  • the only way to maintain a fluid iron bath is to increase the temperature of the bath or increase the carbon concentration of the bath. Increasing the temperature of the bath leads to problem because at higher temperatures there is more wear and degradation on the refractory lining of the furnace walls and the inductor.

Abstract

L'invention concerne un procédé d'exploitation d'un four à induction à canal pour transformer un matériau de charge et obtenir à partir de celui-ci un produit métallique en fusion, un produit métallique en phase vapeur et/ou un produit de scories. Le procédé consiste à appliquer un vide contrôlé sur l'espace de tête du four à induction à canal afin de réguler la quantité d'air ambiant qui pénètre dans le four ou à ajouter de l'oxygène dans le four à induction à canal. Le procédé consiste également à réguler la concentration de carbone dans le bain de fusion du four à induction à canal afin de réguler la fluidité du bain.
PCT/US2009/049584 2009-07-02 2009-07-02 Paramètres de traitement pour l'exploitation d'un four à induction à canal WO2011002468A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2009/049584 WO2011002468A1 (fr) 2009-07-02 2009-07-02 Paramètres de traitement pour l'exploitation d'un four à induction à canal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/049584 WO2011002468A1 (fr) 2009-07-02 2009-07-02 Paramètres de traitement pour l'exploitation d'un four à induction à canal

Publications (1)

Publication Number Publication Date
WO2011002468A1 true WO2011002468A1 (fr) 2011-01-06

Family

ID=43411330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/049584 WO2011002468A1 (fr) 2009-07-02 2009-07-02 Paramètres de traitement pour l'exploitation d'un four à induction à canal

Country Status (1)

Country Link
WO (1) WO2011002468A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081922A (ja) * 1996-09-05 1998-03-31 Nkk Corp 廃棄物の焼却残渣の溶融方法
US20040261577A1 (en) * 2003-06-27 2004-12-30 Bratina James E. Mechanical separation of volatile metals at high temperatures
US20070062330A1 (en) * 2005-04-01 2007-03-22 Bratina James E Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
WO2009043961A1 (fr) * 2007-10-04 2009-04-09 Consejo Superior De Investigaciones Científicas Four à induction modifié et procédé permettant d'éliminer des résidus sidérurgiques contenant du zinc et de récupérer leurs métaux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081922A (ja) * 1996-09-05 1998-03-31 Nkk Corp 廃棄物の焼却残渣の溶融方法
US20040261577A1 (en) * 2003-06-27 2004-12-30 Bratina James E. Mechanical separation of volatile metals at high temperatures
US20070062330A1 (en) * 2005-04-01 2007-03-22 Bratina James E Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
WO2009043961A1 (fr) * 2007-10-04 2009-04-09 Consejo Superior De Investigaciones Científicas Four à induction modifié et procédé permettant d'éliminer des résidus sidérurgiques contenant du zinc et de récupérer leurs métaux

Similar Documents

Publication Publication Date Title
AU2006232236B2 (en) Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
CA2636155C (fr) Utilisation d'un four a induction pour la fabrication de fer a partir de minerai
CN104105802B (zh) 贱金属回收
EP0441052A1 (fr) Procédé de récupération de zinc à partir de déchets zincifères
US7740681B2 (en) Reductant addition in a channel induction furnace
US7776126B2 (en) Processing parameters for operation of a channel induction furnace
US7785389B2 (en) Feed material composition and handling in a channel induction furnace
US7727302B2 (en) Slag control in a channel induction furnace
CH691685A5 (it) Procedimento di riduzione delle polveri di acciaieria elettrica ed impianto per attuarlo.
US7776127B2 (en) Use of a channel induction furnace to process at least one of a molten metal product, a vapor phase metal product and a slag product from a variety of feed materials
JP2005126732A (ja) 金属酸化物含有物質の溶融還元方法および溶融還元装置
WO2011002465A1 (fr) Utilisation d'un four à induction en canal pour traiter un produit métallique fondu, un produit métallique en phase vapeur et/ou un produit de scorie à partir de différents matériaux d'alimentation
WO2011002468A1 (fr) Paramètres de traitement pour l'exploitation d'un four à induction à canal
CA3159911A1 (fr) Four de volatilisation induite par plasma ameliore
US6245123B1 (en) Method of melting oxidic slags and combustion residues
WO2011002466A1 (fr) Ajout d’un réducteur dans un four à induction à canal
WO2011002467A1 (fr) Maîtrise des scories dans un four à induction à canal
CN104379780A (zh) 矿渣的火冶处理
RU2182184C1 (ru) Способы переработки железосодержащих материалов
Passant et al. UK fine particulate emissions from industrial processes
JPH07207313A (ja) 錫めっき鋼板スクラップの溶解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846952

Country of ref document: EP

Kind code of ref document: A1