WO2011000428A1 - Convertisseur de puissance à sortie de tension à plusieurs niveaux et compensateur d'harmoniques - Google Patents

Convertisseur de puissance à sortie de tension à plusieurs niveaux et compensateur d'harmoniques Download PDF

Info

Publication number
WO2011000428A1
WO2011000428A1 PCT/EP2009/058362 EP2009058362W WO2011000428A1 WO 2011000428 A1 WO2011000428 A1 WO 2011000428A1 EP 2009058362 W EP2009058362 W EP 2009058362W WO 2011000428 A1 WO2011000428 A1 WO 2011000428A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonics
phase
terminal
level voltage
voltage
Prior art date
Application number
PCT/EP2009/058362
Other languages
English (en)
Inventor
Lars-Erik Juhlin
Hans Peter Nee
Lennart HÄRNEFORS
Björn Jacobsson
Original Assignee
Abb Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Technology Ag filed Critical Abb Technology Ag
Priority to JP2012516524A priority Critical patent/JP5511947B2/ja
Priority to EP09780106A priority patent/EP2449668A1/fr
Priority to CN2009801602157A priority patent/CN102474201A/zh
Priority to PCT/EP2009/058362 priority patent/WO2011000428A1/fr
Priority to KR1020117031671A priority patent/KR101292991B1/ko
Publication of WO2011000428A1 publication Critical patent/WO2011000428A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the invention is related to a power converter with multi-level voltage output, called a multi-level converter, which is adapted to convert a DC voltage into an AC voltage and vice versa.
  • the multi-level converter comprises a first control unit and at least one phase leg between a first DC terminal and a second DC terminal, where the phase leg comprises a first voltage source between the first DC terminal and a first AC terminal and a second voltage source between the first AC terminal and the second DC terminal and where the first control unit controls the first and second voltage sources.
  • multi-level converters are known to be used in order to reduce harmonic distortion in the output of voltage source converters.
  • a multi-level converter is a converter with power semiconductor switches in each phase leg which are switched in such a way that the output voltage - or, in case of a multi-phase converter, the output voltages - can assume several discrete levels, as can be seen for example in
  • each of the first and second voltage sources comprises at least a first and a second submodule in series-connection, where each submodule comprises two power electronic switches connected in parallel with a capacitor in form of a half-bridge.
  • a multi-level converter according to DE10103031 which in addition comprises at least one inductor in each phase leg.
  • Converter regulating means which normally control the multi-level converter via the power electronic switches regulate in addition a circulating current flowing through the phase legs.
  • the circulating current is the current which closes between the phase legs but does not enter the AC grid through the AC terminal.
  • the device for converting a DC voltage into an AC voltage and vice versa as described above comprises according to the invention at least one coupling inductor, which is coupled in series with the at least one phase leg, an actively controlled harmonics compensator, which is connected to the at least one coupling inductor, and a second control unit, which is adapted to control the output of the harmonics compensator so as to reduce harmonics in a circulating current flowing through the at least one phase leg
  • the invention is based on the recognition of the fact that the desired manner in which the circulating currents should best be regulated is to reduce the harmonics which occur at specific frequencies in the circulating current, rather than to reduce the circulating currents in general.
  • 2008/067785 A1 helps to obtain a general current limitation in the converter circuit but does nothing to avoid the distinctive harmonics as such.
  • the control of the harmonics compensator is arranged so that harmonics in the circulating current at twice the fundamental frequency of the AC voltage are reduced.
  • Fig. 1 shows a multi-level converter topology as is known from the art
  • Fig. 2 shows the setup of the voltage sources in the phase legs of the converter of Fig. 1 as known from the art
  • Fig. 3 shows two different embodiments of the submodules in the converter of
  • Fig. 4 shows one phase leg of a multi-level converter with a harmonics
  • Fig. 5, 6, 7 each show a three-phase multi-level converter according to different embodiments of the invention with phase inductors in series with each phase leg,
  • Figs. 8a, b shows an embodiment of the harmonics compensator with a current-stiff power converter
  • Fig. 9 shows a three-phase multi-level converter according to a further embodiment
  • Figs. 10a,b shows an embodiment of the harmonics compensator with a voltage-stiff power converter
  • Fig. 11 shows a three-phase multi-level converter according to a further embodiment
  • phase inductors connected to the AC terminals.
  • the multi-level power converter for converting a DC voltage into an AC voltage and vice versa can contain either a single phase leg or multiple phase legs, depending on how many phases the AC voltage has.
  • Fig. 1 shows a three-phase converter known in the art.
  • the three phase legs 1 , 2 and 3 of the device of Fig. 1 each comprise two so-called arms in series-connection: a positive, upper arm which is connected between a first DC terminal 4 at a positive voltage level and one of three AC terminal 6, 7 or 8, respectively, and a negative, lower arm, which is connected between a second DC terminal 5 at zero or a negative voltage level and one of the three AC terminals 6, 7 or 8, respectively.
  • the midpoint or connection point between the first and second phase inductors of each phase leg is each connected to one of the AC terminals 6, 7 or 8, respectively. All the phase legs are connected in parallel to each other and to the two DC terminals 4 and 5.
  • each voltage source is made up of a series connected string of submodules 15, where at least two submodules 15 are comprised in one such string.
  • the submodules have the form of commutation cells, each cell comprising two valves and a large DC capacitor holding a direct voltage.
  • the valves are equipped with a power electronic switch 16 with turn-off capability and a free-wheeling diode in anti-parallel connection to the switch.
  • the corresponding submodule can assume one of two switching states, where in state one zero voltage or in state two the capacitor voltage is applied to the output. Any combination of these or refined submodules is possible within each voltage source 15, For the application of the invention it is only essential that the submodules each can generate a step of the multiple discrete levels the output voltage of the converter.
  • the converter of Figs. 1 to 3 is additionally equipped with an actively controlled harmonics compensator 21 in each phase leg, as is depicted in Fig. 4 for phase leg 1.
  • the harmonics compensator 21 comprises a power electronic converter 22 and a second control unit 23 to control the power electronic converter 22.
  • the power electronic converter 22 is connected to a coupling inductor 18.
  • the term "connected” stands expressly for "galvanically coupled”.
  • the coupling inductor 18 is coupled via coupling means 19 to the first inductor 9 and via coupling means 20 to the second inductor 10.
  • the AC terminal 6 is symmetrically connected to the coupling inductor 18 so that equally big parts of the coupling inductor 18 become part of the positive and negative phase arms, respectively.
  • the coupling means 19 and 20 can be galvanic and/or magnetic, where a magnetic coupling could be realized via air or via a magnetic material between the coupling inductor and the respective first or second phase inductors, such as iron.
  • This voltage is controllable, as is known from the art, by appropriately controlling the switching of the submodules 15. Accordingly, the voltage u vc can be made to follow a reference u" f , but in addition the voltage u vc also contains a parasitic term ⁇ u vc as Analysis of the real frequency dependent behaviour of the system, a model of which is described by equations (2) and (3), shows that the parasitic term ⁇ u vc consists of the following three harmonic components:
  • the first component Since the first component has the biggest amplitude of the three components, this component would result in harmonics of the circulating current with the highest peaks. Accordingly, in order to reduce the losses resulting from these peaks, it is desirable to reduce the first component.
  • control unit 23 controls the power electronic converter 22 so that a desired current flow i m through the coupling inductor
  • the desired current flow i m is determined by the control unit 23 by taking into account the kind of coupling between the coupling inductor 18 and the phase leg in order to generate a desired compensating current in the phase leg, and here in particular in the first and second phase inductors so that the harmonics in the circulating current i c at twice the fundamental frequency of the AC voltage U f are reduced.
  • the harmonics compensator 21 takes care of the harmonics in the circulating current i c , the voltage rating of the power semiconductor switches 16 can thereby be reduced, which results in a decrease of the overall costs for the power converter shown in Fig. 1. This, of course, has to be offset against the additional costs induced by the introduction of the harmonics compensator.
  • Figs. 5, 6, 7, 9 and 1 1 embodiments of a three-phase multi-level converter are shown, where in each embodiment the coupling inductors 18 are galvanically coupled to their respective phase leg.
  • the placement of the phase inductors 9, 10, 32, respectively, as well as the way the harmonics compensator 21 is connected to the corresponding coupling inductor 18 vary, however.
  • the converter shown in Fig. 5 is built of three phase legs according to Fig. 4.
  • the converter of Fig. 6 shows a delta-connection of the three first phase inductors 9 of the three positive phase arms as well as a similar delta-connection of the three second phase inductors 10 of the three negative phase arms.
  • the midpoint of the delta-connected first and second phase inductors 9 and 10, respectively, is connected to the corresponding first or second DC terminal 4 or 5.
  • Each phase inductor 9 or 10 may comprise just one inductor element or a series connection of two or more inductor elements.
  • Fig. 7 the first and second phase inductors are replaced for each phase by one AC phase inductor 32.
  • the AC phase inductor 32 is moved from the phase legs to the three corresponding AC phases, where it is connected in series to the AC terminals 6, 7 and 8, respectively.
  • Figs. 8a and 8b show an embodiment of the harmonics compensators 21 of Figs. 5, 6 and 7.
  • the harmonics compensator 21 shown in Fig. 8a, which is connected in parallel with the corresponding coupling inductor 18, comprises an AC/DC power electronic converter 22 which is controlled by a second control unit 23 as described above.
  • the second control unit 23 is integrated in the harmonics compensator 21.
  • the power electronic converter 22 is arranged in form of a current-stiff power converter, where a DC current is injected into the converter via a DC current source formed by a DC voltage source 36 and an auxiliary inductor 34 connected in series with the DC voltage source 36.
  • a DC current is injected into the converter via a DC current source formed by a DC voltage source 36 and an auxiliary inductor 34 connected in series with the DC voltage source 36.
  • An example for how the AC/DC power electronic converter 22 may be arranged is shown in principle and schematically in Fig. 8b, where the AC/DC power electronic converter 22 is a 3-level converter with ideal power electronic change-over switches 38, where the switching of the change-over switches 38 is controlled by the second control unit 23.
  • Fig. 9 shows an embodiment of the three-phase multi-level converter with the same arrangement of the phase inductors 32 as in Fig. 7.
  • each phase leg comprises only one coupling inductor 18 and one corresponding harmonics compensator 21 , and the two are arranged in series with each other and in series with the second voltage source Uvni in the corresponding negative phase arm.
  • the coupling inductors 18 and the harmonics compensators 21 could as well be placed in series with the corresponding positive phase arm.
  • Fig. 11 differs from Fig. 9 in that it depicts a symmetrical arrangement of a coupling inductor 18 and a corresponding, series-connected harmonics compensator 21 in each phase arm of the three phase legs.
  • An embodiment of the harmonics compensators 21 of Figs. 9 and 11 is shown in Figs. 10a and 10b.
  • the harmonics compensator 21 which is connected in series with the corresponding coupling inductor 18 comprises again an AC/DC power electronic converter 22 and a second control unit 23 to control the power electronic converter 22 in a way described above.
  • the power electronic converter 22 is arranged as a voltage-stiff converter being supplied by a DC voltage source 36.
  • FIG. 10b An example for how the AC/DC power electronic converter 22 may be arranged is shown in principle and schematically in Fig. 10b, where the AC/DC power electronic converter 22 is a 3-level converter with ideal power electronic change-over switches 38, where the switching of the change-over switches 38 is controlled by the second control unit 23.
  • the harmonics compensators 21 of Fig. 9 and 11 could also be arranged as current-stiff converters according to Figs. 8a and 8b.
  • the three harmonics compensators 21 of the positive and/or negative phase arms, respectively, are all connected in wye-connection to the same potential. This makes it possible in an alternative embodiment to combine the power electronic converters of the three harmonics compensators 21 to a three-phase power electronics converter which is controlled by a single second control unit.

Abstract

L'invention concerne un convertisseur de tension à plusieurs niveaux pour convertir une tension CC en tension CA et vice versa, comprenant une première unité de commande (30) et au moins une branche de phase (1) entre une première borne CC (4) et une deuxième borne CC (5), la ou les branches de phase (1) comprenant une première source de tension (Uvp1) entre la première borne CC (4) et une première borne CA (6) et une deuxième source de tension (Uvn1) entre la première borne CA (6) et la deuxième borne CC (5) et la première unité de commande (30) commandant la première et la deuxième source de tension (Uvp1, Uvn1). Le convertisseur comprend également au moins un inducteur de couplage (18) couplé en série avec la ou les branches de phase (1), un compensateur d'harmoniques commandé de façon active (21) étant raccordé au ou aux inducteurs de couplage (18), et une deuxième unité de commande (23) étant adaptée pour commander la sortie du compensateur d'harmoniques (21) de façon à réduire les harmoniques dans un courant circulant (ic) s'écoulant à travers la ou les branches de phase (1).
PCT/EP2009/058362 2009-07-02 2009-07-02 Convertisseur de puissance à sortie de tension à plusieurs niveaux et compensateur d'harmoniques WO2011000428A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012516524A JP5511947B2 (ja) 2009-07-02 2009-07-02 マルチレベル電圧出力および高調波補償器を備える電力変換器
EP09780106A EP2449668A1 (fr) 2009-07-02 2009-07-02 Convertisseur de puissance à sortie de tension à plusieurs niveaux et compensateur d'harmoniques
CN2009801602157A CN102474201A (zh) 2009-07-02 2009-07-02 具有多电平电压输出和谐波补偿器的功率转换器
PCT/EP2009/058362 WO2011000428A1 (fr) 2009-07-02 2009-07-02 Convertisseur de puissance à sortie de tension à plusieurs niveaux et compensateur d'harmoniques
KR1020117031671A KR101292991B1 (ko) 2009-07-02 2009-07-02 멀티레벨 전압 출력 및 고조파 보상기를 갖는 전력 변환기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/058362 WO2011000428A1 (fr) 2009-07-02 2009-07-02 Convertisseur de puissance à sortie de tension à plusieurs niveaux et compensateur d'harmoniques

Publications (1)

Publication Number Publication Date
WO2011000428A1 true WO2011000428A1 (fr) 2011-01-06

Family

ID=42562628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/058362 WO2011000428A1 (fr) 2009-07-02 2009-07-02 Convertisseur de puissance à sortie de tension à plusieurs niveaux et compensateur d'harmoniques

Country Status (5)

Country Link
EP (1) EP2449668A1 (fr)
JP (1) JP5511947B2 (fr)
KR (1) KR101292991B1 (fr)
CN (1) CN102474201A (fr)
WO (1) WO2011000428A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2600510A1 (fr) * 2011-11-30 2013-06-05 ABB Technology AG Chauffage d'un convertisseur avec courants de circulation
CN103199725A (zh) * 2013-04-27 2013-07-10 东南大学 一种基于并联谐振的mmc环流抑制策略
WO2013174420A1 (fr) 2012-05-22 2013-11-28 Abb Research Ltd Injection de courant dans un onduleur à deux niveaux connecté en cascade
JP2015511113A (ja) * 2012-03-23 2015-04-13 ティーキュー−システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気回路およびその駆動方法
US20160308458A1 (en) * 2013-12-24 2016-10-20 Mitsubishi Electric Corporation Power conversion device
DE102015220527A1 (de) * 2015-10-21 2017-04-27 Siemens Aktiengesellschaft Modul für einen Umrichter und Verfahren zur Beherrschung von Fehlerströmen in einem Umrichter
EP3046247A4 (fr) * 2013-09-10 2017-06-14 National Institute of Advanced Industrial Science and Technology Circuit et dispositif de conversion de puissance
US9780685B2 (en) * 2012-07-11 2017-10-03 Mitsubishi Electric Corporation Electrical power converter with a converter cell series unit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087450A (ko) * 2012-12-31 2014-07-09 주식회사 효성 고장전류 감소기능을 가지는 컨버터
CN103219875B (zh) * 2013-04-27 2016-02-03 东南大学 一种基于互补耦合谐振的mmc环流抑制技术
WO2016017517A1 (fr) * 2014-08-01 2016-02-04 三菱電機株式会社 Dispositif de conversion de puissance
EP3352361B1 (fr) 2015-09-17 2019-11-27 Mitsubishi Electric Corporation Dispositif de conversion d'énergie
US10205402B2 (en) 2015-09-17 2019-02-12 Mitsubishi Electric Corporation Power conversion device for converting power between a DC circuit and an AC circuit by performing a non-linear operation
WO2017046908A1 (fr) 2015-09-17 2017-03-23 三菱電機株式会社 Dispositif de conversion de puissance
CN107070258B (zh) * 2017-05-22 2019-04-30 上海交通大学 一种单相多电平电流源变流器及变流器的控制方法
CN113037118B (zh) * 2021-03-04 2022-08-19 北京润科通用技术有限公司 一种多桥臂并联均流电路及其控制方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154756A (en) 1979-05-21 1980-12-02 Hitachi Ltd Water-cooled thyristor bulb
WO2000065890A1 (fr) 1999-04-27 2000-11-02 Abb Ab Dispositif pour appareils electriques possedant un systeme de refroidissement et procede pour eviter des pertes de milieu de refroidissement
WO2002063758A1 (fr) * 2001-02-07 2002-08-15 Abb Ab Dispositif convertisseur et procede de commande de celui-ci
US20020162673A1 (en) 2001-05-03 2002-11-07 Cook Derrick E. Use of doped synthetic polymer materials for packaging of power electric assemblies for a liquid cooled module
WO2007033852A2 (fr) * 2005-09-21 2007-03-29 Siemens Aktiengesellschaft Procede pour commander un convertisseur de courant polyphase au moyen d'accumulateurs d'energie repartis
WO2007149023A1 (fr) 2006-06-22 2007-12-27 Abb Technology Ltd. Refroidissement et blindage d'un convertisseur à haute tension
WO2008067785A1 (fr) * 2006-12-08 2008-06-12 Siemens Aktiengesellschaft Dispositif pour transformer un courant électrique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024069A1 (fr) * 1994-03-02 1995-09-08 Kabushiki Kaisha Yaskawa Denki Convertisseur de courant a couplage multiple et son systeme de regulation
JPH08242594A (ja) * 1995-03-02 1996-09-17 Toshiba Corp 電力変換装置
JPH09233839A (ja) * 1996-02-22 1997-09-05 Nissin Electric Co Ltd インバータ制御方法
JPH1032931A (ja) * 1996-07-12 1998-02-03 Toshiba Corp 高調波抑制装置の制御装置
JPH11136945A (ja) * 1997-10-31 1999-05-21 Hitachi Ltd 変圧器およびその運用方法
CA2622057C (fr) 2005-09-09 2017-01-17 Siemens Aktiengesellschaft Dispositif de transmission d'energie electrique
JP4811917B2 (ja) * 2005-12-27 2011-11-09 三菱電機株式会社 電力変換装置
CN102280898B (zh) * 2006-06-30 2014-11-12 Abb技术有限公司 控制高压直流系统中的电压源变换器的方法和变换器站

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154756A (en) 1979-05-21 1980-12-02 Hitachi Ltd Water-cooled thyristor bulb
WO2000065890A1 (fr) 1999-04-27 2000-11-02 Abb Ab Dispositif pour appareils electriques possedant un systeme de refroidissement et procede pour eviter des pertes de milieu de refroidissement
WO2002063758A1 (fr) * 2001-02-07 2002-08-15 Abb Ab Dispositif convertisseur et procede de commande de celui-ci
US20020162673A1 (en) 2001-05-03 2002-11-07 Cook Derrick E. Use of doped synthetic polymer materials for packaging of power electric assemblies for a liquid cooled module
WO2007033852A2 (fr) * 2005-09-21 2007-03-29 Siemens Aktiengesellschaft Procede pour commander un convertisseur de courant polyphase au moyen d'accumulateurs d'energie repartis
WO2007149023A1 (fr) 2006-06-22 2007-12-27 Abb Technology Ltd. Refroidissement et blindage d'un convertisseur à haute tension
WO2008067785A1 (fr) * 2006-12-08 2008-06-12 Siemens Aktiengesellschaft Dispositif pour transformer un courant électrique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUOZ J A ET AL: "A modular approach for integrating harmonic cancellation in a multi-cell based UPQC", INDUSTRIAL ELECTRONICS, 2008. IECON 2008. 34TH ANNUAL CONFERENCE OF IEEE, IEEE, PISCATAWAY, NJ, USA, 10 November 2008 (2008-11-10), pages 3178 - 3183, XP031410935, ISBN: 978-1-4244-1767-4 *
SILVA, C.; KOURO, S.; SOTO, J.; LEZANA, P.: "Control of an hybrid multilevel inverter for current waveform improvement", PROCEEDINGS IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2008. ISIE 2008, 30 June 2008 (2008-06-30) - 2 July 2008 (2008-07-02), pages 2329 - 2335, XP002597665, ISBN: 978-1-4244-1665-3, DOI: 10.1109/ISIE.2008.4677279 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2600510A1 (fr) * 2011-11-30 2013-06-05 ABB Technology AG Chauffage d'un convertisseur avec courants de circulation
JP2015511113A (ja) * 2012-03-23 2015-04-13 ティーキュー−システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気回路およびその駆動方法
WO2013174420A1 (fr) 2012-05-22 2013-11-28 Abb Research Ltd Injection de courant dans un onduleur à deux niveaux connecté en cascade
US9780685B2 (en) * 2012-07-11 2017-10-03 Mitsubishi Electric Corporation Electrical power converter with a converter cell series unit
CN103199725A (zh) * 2013-04-27 2013-07-10 东南大学 一种基于并联谐振的mmc环流抑制策略
EP3046247A4 (fr) * 2013-09-10 2017-06-14 National Institute of Advanced Industrial Science and Technology Circuit et dispositif de conversion de puissance
US9774241B2 (en) 2013-09-10 2017-09-26 National Institute Of Advanced Industrial Science And Technology Power conversion circuit and device
US20160308458A1 (en) * 2013-12-24 2016-10-20 Mitsubishi Electric Corporation Power conversion device
DE102015220527A1 (de) * 2015-10-21 2017-04-27 Siemens Aktiengesellschaft Modul für einen Umrichter und Verfahren zur Beherrschung von Fehlerströmen in einem Umrichter

Also Published As

Publication number Publication date
CN102474201A (zh) 2012-05-23
KR101292991B1 (ko) 2013-08-02
KR20120016669A (ko) 2012-02-24
EP2449668A1 (fr) 2012-05-09
JP5511947B2 (ja) 2014-06-04
JP2012531878A (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
KR101292991B1 (ko) 멀티레벨 전압 출력 및 고조파 보상기를 갖는 전력 변환기
Li et al. Integration of an active filter and a single-phase AC/DC converter with reduced capacitance requirement and component count
Yang et al. Power decoupling control for capacitance reduction in cascaded-H-bridge-converter-based regenerative motor drive systems
JP5189105B2 (ja) 電流変換装置
US10224830B2 (en) System and method for controlling a back-to-back three-level converter with voltage ripple compensation
Iman-Eini et al. A modular strategy for control and voltage balancing of cascaded H-bridge rectifiers
Norrga et al. The polyphase cascaded-cell DC/DC converter
US8665617B2 (en) Plant for transmitting electric power
US10243370B2 (en) System and method for integrating energy storage into modular power converter
US9431918B2 (en) Grounding scheme for modular embedded multilevel converter
US20140049998A1 (en) DC to AC Power Converter
US8553435B2 (en) Power converter with multi-level voltage output and harmonics filter
Perera et al. Multiport converter with independent control of AC and DC power flows for bipolar DC distribution
Iman-Eini et al. A power electronic based transformer for feeding sensitive loads
da Costa et al. Single-phase AC–DC–AC three-level three-leg converter with reduced switch count
US8564981B2 (en) Modular multi-level power converter with second and third order harmonics reduction filter
Udovichenko AC voltage regulators with high frequency transformer review
Damodaran et al. A common ground four quadrant buck converter for dc-ac conversion
Udovichenko et al. AC voltage regulators review
Farivar et al. Load adaptive cascaded H-bridge low capacitance statcom with modular capacitors
EP3297149B1 (fr) Ensemble convertisseurs connectés en parallèle
Orfanoudakis et al. An Extended Boost Three-Phase Transformerless PV Inverter for Common-Mode Leakage Current Reduction
Mannen et al. Phase-Lagging Operation in a Buck-Type Current Unfolding Converter with Discontinuous Conduction Mode
Younis Sviluppo di convertitori modulari multilivello ad alta efficienza per fonti rinnovabili
Alam Design, Analysis and Control of Power Converters for Solid-State Transformer Applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160215.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09780106

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009780106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012516524

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117031671

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE