WO2011000273A1 - 芯片预加重和均衡参数的动态调整方法及装置 - Google Patents

芯片预加重和均衡参数的动态调整方法及装置 Download PDF

Info

Publication number
WO2011000273A1
WO2011000273A1 PCT/CN2010/074158 CN2010074158W WO2011000273A1 WO 2011000273 A1 WO2011000273 A1 WO 2011000273A1 CN 2010074158 W CN2010074158 W CN 2010074158W WO 2011000273 A1 WO2011000273 A1 WO 2011000273A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
transmission line
length
mapping relationship
type
Prior art date
Application number
PCT/CN2010/074158
Other languages
English (en)
French (fr)
Inventor
马娟娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to BRPI1010205A priority Critical patent/BRPI1010205A8/pt
Priority to RU2011152510/07A priority patent/RU2506700C2/ru
Publication of WO2011000273A1 publication Critical patent/WO2011000273A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication

Definitions

  • the present invention relates to the field of optical transmission technologies, and in particular, to a method and apparatus for dynamically adjusting chip pre-emphasis and equalization parameters in an optical transmission device.
  • the backplane of the optical transmission device is inserted with a main control board and a plurality of boards of different types of chips.
  • the main control board manages all the boards on the backplane.
  • the message signals between the board chips are transmitted through the transmission line, and the total length of the transmission lines between the boards is accumulated by both the backplane transmission line and the single board transmission line. Due to signal attenuation and distortion caused by transmission line impedance and intersymbol interference, the message signal will have some distortion during transmission.
  • a pre-emphasis and equalization technique was introduced.
  • the pre-emphasis technique refers to pre-compensating the signal at the transmitting end according to the attenuation curve, so that the receiving end can obtain an ideal message signal.
  • Equalization refers to the equalization of channel characteristics, that is, the equalizer at the receiving end produces characteristics opposite to the channel characteristics, which are used to reduce or eliminate inter-symbol interference caused by the time-varying multipath propagation characteristics of the channel. Therefore, we adjust the amplitude and ratio of the pre-emphasis at the transmitting end, and adjust the equalization according to the equalization parameter to the received message signal at the receiving end.
  • the board position, board type, or board chip type are dynamically adjusted.
  • the total length of the transmission line changes with this dynamic adjustment.
  • the amplitude of the chip pre-emphasis and equalization adjustment also needs to be based on this. Change with dynamic adjustment.
  • the main control board dynamically adjusts the chip pre-emphasis and equalization parameters according to the dynamic adjustment and notifies the board in time to enable the board to adjust the message signal according to the adjusted parameters. solution. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a dynamic adjustment method for chip pre-emphasis and equalization parameters, and a corresponding dynamic adjustment device, so that the main control board can dynamically adjust the chip pre-emphasis and equalization parameters and notify each board in time. Ensure that the board can enter the message according to the adjusted parameters. Line adjustment, thereby improving the quality of message signal transmission.
  • the present invention uses the following solutions:
  • a method for dynamic adjustment of chip pre-emphasis and equalization parameters in an optical transmission device includes a backplane, a main control board inserted on the backplane, and various types of boards, and the method includes:
  • the element mapping relationship table includes at least a mapping relationship between a transmission line number of the slot on the backplane and a transmission line number of the backplane, and transmission line information of the boards of the types; and the optical transmission device
  • the board information is adjusted, the total length of the transmission line between the connected boards is recalculated according to the adjusted board information and the element mapping relationship table; and according to the total length of the transmission line and the connected list
  • the chip type of the board recalculates the pre-emphasis and equalization parameter values and delivers them to the boards.
  • the board information includes a board type, a chip type, and a board position of the board.
  • the entry of the element mapping relationship table includes: a board position of the board, a board type of the board, a chip type of the board, a transmission line number of the board, a transmission line length of the board, and a back The transmission line number of the board, the length of the transmission line of the backplane, the board position of the board 2, the board type of the board 2, the chip type of the board 2, the transmission line number of the board 2, and the transmission line length of the board 2.
  • the step of recalculating the total length of the transmission line between the connected boards according to the adjusted board information and the element mapping relationship table includes:
  • the element mapping relationship table is searched according to the board type, the chip type, and the board position of the adjusted board, and the transmission line length and the single board of the board 1 are obtained.
  • the length of the transmission line of the board 1 and the length of the transmission line of the corresponding board are calculated.
  • the element mapping relationship table includes a mapping table 1 and a mapping table 2;
  • the entry of the mapping table 1 includes: a board position of the board, a transmission line number of the board, a transmission line number of the back board, a transmission line length of the back board, a board position of the board 2, and a transmission line of the board 2
  • the entry of the mapping table includes: a board type, a board chip type, a transmission line number of the board, and a transmission line length of the board.
  • the step of recalculating the total length of the transmission line between the connected boards according to the adjusted board information and the element mapping relationship table includes:
  • the mapping table 1 is searched according to the position of the board of the adjusted board 1 to obtain the transmission line number 2 and the board of the board 2 connected to the board. a transmission line number one and a corresponding backplane transmission line are long;
  • the mapping table 2 is searched according to the board type and the chip type of the single board/board 2, and the transmission line length of the single board/board 2 when the transmission line number is one/two is obtained;
  • a dynamic adjustment device for chip pre-emphasis and equalization parameters comprising: a mapping relationship establishing module, an adjustment information acquiring module and a parameter calculating module;
  • the mapping relationship establishing module is configured to: configure an element mapping relationship table
  • the adjustment information acquisition module is configured to: when the card information on the optical transmission device is adjusted, obtain the adjusted card information and notify the parameter calculation module;
  • the parameter calculation module is configured to: recalculate the total length of the transmission line between the connected boards according to the adjusted board information and the element mapping relationship table; and further, according to the total length of the transmission line and the chip of the board
  • the type recalculates the pre-emphasis and equalization parameter values and notifies them to the main control board, which is sent to each board.
  • the entry of the element mapping relationship table includes: a board position of the board, a board type of the board, a chip type of the board, a transmission line number of the board, a transmission line length of the board, and a back The transmission line number of the board, the length of the transmission line of the backplane, the board position of the board 2, the board type of the board 2, the chip type of the board 2, the transmission line number of the board 2, and the transmission line length of the board 2.
  • the element mapping relationship table includes a mapping table 1 and a mapping table 2;
  • the entries of the mapping table include: a board type, a board chip type, a transmission line number of the board, and a transmission line length of the board;
  • the entry of the mapping table 2 includes: a board position of the board, a transmission line number of the board, a transmission line number of the back board, a transmission line length of the back board, a board position of the board 2, and a transmission line of the board 2 number.
  • the invention has the following beneficial effects:
  • the main control board can dynamically adjust the chip pre-emphasis and equalization parameters and notify each board in time to ensure that each board can adjust the message signal according to the adjusted pre-emphasis and equalization parameters, thereby improving the message signal.
  • Transmission quality BRIEF abstract
  • FIG. 1 is a flow chart of a dynamic adjustment method of the present invention
  • FIG. 2 is a flow chart of a method for dynamically adjusting pre-emphasis and equalization parameters in the first embodiment
  • Embodiment 3 is a schematic structural diagram of an optical transmission device in Embodiment 2;
  • the dynamic adjustment device for chip pre-emphasis and equalization parameters proposed by the invention comprises:
  • mapping relationship establishing module configured to configure an element mapping relationship table
  • the adjustment information acquisition module is configured to obtain the adjusted card information and notify the parameter calculation module when the card information on the optical transmission device is adjusted;
  • a parameter calculation module configured to recalculate the total length of the transmission line between the connected boards according to the adjusted board information and the element mapping relationship table; and recalculate the pre-calculation according to the total length of the transmission line and the chip type of the board
  • the value of the parameter is added and equalized and sent to the main control board, which is sent to each board.
  • the dynamic adjustment method of the device comprises the following steps:
  • Step 101 Establish an element mapping relationship table.
  • the board position, board type, or board chip type may change dynamically, you must use a method to determine other changes related to this change caused by dynamic changes.
  • the pre-emphasis and equalization parameters can be calculated according to this fixed relationship during the calculation, so the present invention uses the mapping relationship table to implement such a one-to-one correspondence.
  • an element mapping relationship table including all elements can be directly established, as shown in Table 1 below.
  • the entries include: the board position of the board 1 , the board type of the board 1 , the chip type of the board 1 , the transmission line number of the board 1 , the transmission line length of the board 1 , the transmission line number of the back board, and the back board The length of the transmission line, the position of the board of the board 2, the board type of the board 2, the chip type of the board 2, the transmission line number of the board 2, and the transmission line length of the board 2.
  • the element mapping relationship table shown in Table 1 can be divided into the following mapping table 1 (as shown in Table 2).
  • the mapping table 2 (as shown in Table 3);
  • the mapping table 1 entries include: the board position of the board 1, the transmission line number of the board 1, the backplane transmission line number, the backplane transmission line length, and the insertion of the board 2
  • the entries in the mapping table 2 include: the board type, the board chip type, the transmission line number of the board, and the transmission line length of the board.
  • the mapping table associated with the element is found. Item, the transmission line length of the adjusted board (hereinafter referred to as the board 1), and the board 1
  • the transmission line length of the other connected boards hereinafter referred to as the single board 2 and the transmission line length of the corresponding backplane.
  • Step 103 Calculate the total length of the current transmission line according to the following formula:
  • the total length of the transmission line the length of the transmission line of the board 1 + the length of the transmission line of the board 2 and the length of the transmission line of the back board; and according to the total length of the transmission line and the board 1 / board 2
  • the value of the pre-emphasis and equalization parameters of the board 1 and the board 2 are recalculated and sent to the board 1/board 2.
  • the specific implementation is as follows (the pre-emphasis and equalization parameter values are determined by the chip type of the board and the total length of the transmission line.
  • the pre-emphasis corresponding to each chip type of the chip type is determined by the designer when the total length of the transmission line is in different ranges.
  • the value of the equalization parameter is determined according to the current total length of the transmission line and the chip type of the board in the specific implementation:
  • Total length of transmission line length of transmission line of single board 1 length of transmission line of backplane + length of transmission line of single board 2;
  • /* PI/P2 indicates the pre-emphasis parameters of the board 1/board 2
  • Bl/B2 indicates the equalization parameters of the board 1/board 2
  • X/Y indicates the range of the total length of the transmission line
  • A/B indicates the board 1 / Chip type of the board 2
  • the following AXP1 indicates the pre-emphasis parameter value of the board 1 of the chip type A when the total length of the transmission line is in the area X, other similar */
  • the single chip 1 chip pre-emphasis parameter AXP1;
  • the optical transmission device includes only the single board 1 and the board 2 connected thereto.
  • the board type of the board 1 in the slot 1 is TYPE1, and the chip type is A.
  • the board type of the slot 2 on the backplane is TYPE2, and the chip type is B).
  • Step 201 Establish a mapping table 1 and a mapping table 2 by using a mapping relationship establishing module.
  • Table 1 above shows the final mapping relationship established by the main control board according to Table 2 and Table 3 after the optical transmission equipment is running.
  • an optical transmission device there are dozens of slots on the backplane for inserting dozens of different types of boards.
  • Each board has at least 64 transmission lines, and the length of the same transmission line number of different types of boards is not It must be the same, so only the total length of the final transmission line can be obtained according to Table 1.
  • the connection line number of the slot on the backplane and the transmission line number of the backplane are fixed, it is not practical to save the various plug-in schemes of all the slots in the manner of Table 1, which is not only complicated, but also The search efficiency is very low.
  • the first embodiment establishes a mapping table 1 (ie, a mapping table of the transmission line number of the slot on the backplane and the transmission line number of the backplane) and the mapping table 2 (ie, Table 3: light).
  • the transmission line information configuration file of each chip type supported by the transmission device, and the two mapping tables are stored in the specified directory in the optical transmission device.
  • Step 202 When the device is running for the first time, the boards in slots 1 and 2 report their slot numbers, board types, and chip types to the adjustment information acquisition module. According to reservations.
  • Step 203 The parameter calculation module reads the mapping table 1 and searches the mapping table 1 according to the board position information reported by the board in the slot 1 (that is, the board 1), and obtains the information about the board transmission line that is connected to the slot 1 (Transmission line number of the board 2 in the slot 2), the transmission line information of the backplane (that is, the transmission line number of the backplane and the corresponding transmission line length), and the transmission line information of the board 1 in the slot 1 (that is, the transmission line of the board 1) number). Assume that the transmission line number of the board 1 in slot 1 is 20, and the transmission line number of board 2 in slot 2 is 20.
  • Step 204 The parameter calculation module reads the mapping table 2, and searches the mapping table 2 according to the board type and the chip type of the board 1/2, and obtains the board 1 with the board type being TYPE1, the chip type being A, and the transmission line number being 20.
  • the specific method of calculating the pre-emphasis and equalization parameter values is as follows:
  • Step 206 Determine whether the card information on the optical transmission device changes. If the change has not occurred, repeat this step; otherwise, perform step 207.
  • the adjusted card information is as follows: The board type of the card in the first slot is changed to TYPE3, and the chip type is changed to C. The board type of the board in slot 2 on the backplane becomes TYPE4 and the chip type is D.
  • Step 207 When the optical transmission device is running, the boards in slots 1 and 2 report their slot numbers, board types, and chip types to the adjustment information acquisition module, and the information acquisition module finds the type of the board and If the chip type is changed, the related information retained before is updated, and the parameter calculation module recalculates the parameters according to the updated information according to steps 203-205 and delivers the parameters.
  • the board inserted on the backplane of the optical transmission device only involves two types of service boards and cross boards.
  • the system structure is shown in Figure 3.
  • the service board and the cross board are connected as an example.
  • the total length of the transmission line is the length of the transmission line of the service board, the length of the transmission line of the backplane, and the length of the transmission line of the cross board. Therefore, all physical boards (backplane, service board, cross board) need to be established in advance when implementing the present invention.
  • the configuration file of the transmission line information as shown in FIG. 4, includes two parts of the information header and the information area. The length of the information header is fixed, and the length of the information area increases with the type of the board.
  • the information head is further subdivided into the following parts:
  • CRC (Cyclic Redundancy Check) check word The check content is all bytes after the CRC check word. The integrity of the file needs to be verified when reading this file. If the CRC check fails. An alarm is required to inform the user that the content of this file is corrupted and needs to be updated.
  • the file version number is used to indicate the version information of this file.
  • the backplane information area base address indicates the offset of the first address of the backplane information area in this file.
  • the number of physical versions of the backplane indicates the number of physical versions of the backplane. There may be multiple versions of the backplane.
  • the length of the backplane information area indicates the number of bytes occupied by the information area of the single backplane.
  • Service board information area base address Indicates the offset of the first address of the service board information area in the file;
  • Number of service board types Indicates the type of service board type Length of the service board information area: Indicates the number of bytes occupied by the information area of the single service board. The length of the service line is determined by the number of transmission lines of the service board.
  • the base address of the cross-board information area indicates the first address of the information area of the cross-board.
  • the information area of the above configuration file can be further divided into three parts: a backplane information area, a service board information area, and a cross-board information area.
  • the information area of the backplane can be further divided into: backboard version information, backplane slot number, transmission line number of the backplane, and transmission line length of the backplane.
  • Backplane version information Indicates the physical version number of the backplane in the system.
  • the slot number of the backplane indicates the slot number of the service board in the system. A system can usually insert many boards. For convenience, it is in a certain order.
  • the length of the transmission line of the backplane indicates the length of the PCB trace on the backplane.
  • the information area of the service board can be further divided into: the physical board name of the service board, the transmission line number of the service board, the chip type of the service board, and the transmission line length of the service board.
  • Name of the physical board of the service board Names and numbers are used to distinguish different physical boards.
  • the transmission line number of the service board On the hardware, the service board is connected to the backplane. Therefore, the service board is The number of the number and the backplane are - corresponding; the chip type of the service board: the service chip type of the service board, the driving capability of different chips, and the pre-emphasis and equalization parameters are also different.
  • the cross-board information area can be further divided into: physical board name of the cross-board, cross-board slot number, transmission line number of the cross-board, chip type of the cross-board, and transmission line length of the cross-board.
  • Name of the physical board on the cross-board There may be multiple types of cross-boards on the backplane. For convenience, name and number are unified.
  • Cross-board slot number There may be multiple cross-boards on the backplane.
  • the transmission line number of the cross-board a crossover There are many transmission lines on the board, which are connected to different service boards. For convenience, they are numbered uniformly.
  • the chip type of the cross board indicates the cross chip type of the cross board. In order to distinguish different cross chips, the number is unified; the cross board transmission line Length: Indicates the length of the PCB traces in the cross board.
  • each board reports its slot number, board type, and chip type.
  • the mapping relationship establishing module establishes an element mapping relationship table according to the information and the configuration file, including The slot number of the backplane, the transmission line number of the backplane, the length of the transmission line of the backplane, the transmission line number of the service board, the chip type of the service board, the transmission line length of the service board, the slot number of the cross board, and the transmission line number of the cross board.
  • the chip type of the cross board and the transmission line length of the cross board is the transmission line length of the cross board.
  • the parameter calculation module calculates the total length of the transmission line between the currently connected service board and the cross board according to the table, and then searches for the pre-emphasis and the equalization parameter according to the chip type of the current service board, the chip type of the cross board, and the total length of the transmission line.
  • the lookup table (as shown in Table 5, which is obtained by prior measurement or software analysis, the same as the prior art), obtains the pre-emphasis and equalization parameters of the cross-board, the pre-emphasis and equalization parameters of the service board, and then Send the parameters to the cross-board and service board through the main control board.
  • the parameter calculation module recalculates the pre-emphasis and equalization parameters of the adjusted board according to the above method and delivers the parameters through the main control board.
  • the main control board can dynamically adjust the chip pre-emphasis and equalization parameters and notify each board in time to ensure that each board can adjust the message signal according to the adjusted pre-emphasis and equalization parameters, thereby improving the message signal. Transmission quality.

Abstract

本发明公开了一种芯片预加重和均衡参数的动态调整方法及装置,所述装置包括:映射关系建立模块、调整信息获取模块和参数计算模块;所述动态调整方法为:由映射关系建立模块建立元素映射关系表;在光传输设备上的插板信息调整时,调整信息获取模块获取调整信息上报参数计算模块;参数计算模块先根据调整后的插板信息和元素映射关系表来重新计算相连接的单板间的传输线总长度,再根据传输线总长度和相连接的单板的芯片类型重新计算预加重和均衡参数值并将其通知主控板,由其下发至各单板。采用本发明,主控板能动态地调整预加重和均衡参数并及时通知各单板,保证各单板能根据调整后的预加重和均衡参数对消息信号进行调节,提高了消息信号传输质量。

Description

芯片预加重和均衡参数的动态调整方法及装置
技术领域
本发明涉及光传输技术领域, 尤其涉及一种光传输设备中动态调整芯片 预加重和均衡参数的方法及装置。
背景技术 光传输设备中的背板插有主控板和很多不同类型芯片的单板, 主控板管 理背板上的所有单板。 单板芯片之间的消息信号通过传输线进行传输, 单板 之间传输线的总长度由背板传输线和单板传输线两者累加得到。 由于传输线 阻抗和码间干扰引起的信号衰减与畸变, 消息信号在传输过程中会产生一定 的失真。 为解决这个问题, 引入了预加重和均衡技术。 预加重技术是指根据 衰减曲线事先在发送端对信号进行补偿, 这样接收端可以得到较理想的消息 信号。 均衡是指对信道特性的均衡, 即接收端的均衡器产生与信道特性相反 的特性, 用来减小或消除因信道的时变多径传播特性引起的码间干扰。 因此, 我们在发送端调节预加重的幅度和比值, 在接收端对收到的消息信号根据均 衡参数调节均衡。
在光传输设备中, 单板插板位置、单板类型或单板芯片类型会动态调整, 传输线的总长度随着这种动态调整而改变, 芯片预加重和均衡调整的幅度也 需要根据这种动态调整而改变。 然而, 针对主控板怎样根据这种动态调整而 动态调整芯片预加重和均衡参数并及时通知单板以使单板能够根据调整后的 参数去对消息信号进行调节的问题, 目前还没有相关的解决方案。 发明内容
本发明所要解决的技术问题是提供一种芯片预加重和均衡参数的动态调 整方法, 以及相应的动态调整装置, 实现主控板能够动态地调整芯片预加重 和均衡参数并及时通知各单板, 保证单板能根据调整后的参数对消息信号进 行调节, 从而提高消息信号传输质量。
为解决上述技术问题, 本发明釆用以下解决方案:
一种光传输设备中芯片预加重和均衡参数的动态调整方法, 所述光传输 设备包括背板、 插于背板上的主控板和各类单板, 所述方法包括:
建立元素映射关系表, 所述元素映射关系表至少包括所述背板上槽位的 传输线号和背板的传输线号的映射关系以及所述各类单板的传输线信息; 在所述光传输设备上的插板信息调整时, 根据调整后的插板信息和所述 元素映射关系表来重新计算相连接的单板间的传输线总长度; 再根据所述传 输线总长度和所述相连接的单板的芯片类型重新计算预加重和均衡参数值并 将其下发至各单板。
其中, 所述插板信息包括单板的板类型、 芯片类型和插板位置。
其中, 所述元素映射关系表的表项包括: 单板一的插板位置、 单板一的 板类型、 单板一的芯片类型、 单板一的传输线号、 单板一的传输线长、 背板 的传输线号、 背板的传输线长、 单板二的插板位置、 单板二的板类型、 单板 二的芯片类型、 单板二的传输线号以及单板二的传输线长。
其中, 所述根据调整后的插板信息和所述元素映射关系表来重新计算相 连接的单板间的传输线总长度的步骤包括:
当光传输设备上的插板信息调整时, 根据经调整后的单板一的板类型、 芯片类型和插板位置查找所述元素映射关系表,得到所述单板一的传输线长、 与单板一相连接的单板二的传输线长及对应的背板的传输线长, 然后通过以 下公式计算得到单板一与单板二间的传输线总长度:传输线总长度 =单板一的 传输线长 +单板二的传输线长 +背板的传输线长。
其中, 所述元素映射关系表包括映射表一和映射表二;
所述映射表一的表项包括: 单板一的插板位置、 单板一的传输线号、 背 板的传输线号、 背板的传输线长、 单板二的插板位置和单板二的传输线号; 所述映射表二的表项包括: 单板类型、 单板芯片类型、 单板的传输线号 和单板的传输线长。 其中, 所述根据调整后的插板信息和所述元素映射关系表来重新计算相 连接的单板间的传输线总长度的步骤包括:
当光传输设备上的插板信息调整时, 先根据经调整后的单板一的插板位 置查找所述映射表一, 得到与单板一相连接的单板二的传输线号二、 单板一 的传输线号一和对应的背板传输线长;
再根据所述单板一 /单板二的板类型和芯片类型查找所述映射表二, 得到 单板一 /单板二在使用传输线号一 /二时的传输线长;
然后, 通过以下公式计算得到单板一与单板二间的传输线总长度: 传输 线总长度=单板一的传输线长 +单板二的传输线长 +背板的传输线长。
一种芯片预加重和均衡参数的动态调整装置, 包括: 映射关系建立模块、 调整信息获取模块和参数计算模块;
所述映射关系建立模块设置为: 配置元素映射关系表;
所述调整信息获取模块设置为: 在光传输设备上的插板信息调整时, 获 取调整后的插板信息并将其通知参数计算模块;
所述参数计算模块设置为: 根据所述调整后的插板信息和元素映射关系 表来重新计算相连接的单板间的传输线总长度; 再根据所述传输线总长度和 所述单板的芯片类型重新计算预加重和均衡参数值并将其通知主控板, 由其 下发至各单板。
其中, 所述元素映射关系表的表项包括: 单板一的插板位置、 单板一的 板类型、 单板一的芯片类型、 单板一的传输线号、 单板一的传输线长、 背板 的传输线号、 背板的传输线长、 单板二的插板位置、 单板二的板类型、 单板 二的芯片类型、 单板二的传输线号和单板二的传输线长。
其中, 所述元素映射关系表包括映射表一和映射表二;
所述映射表一的表项包括: 单板类型、 单板芯片类型、 单板的传输线号 和单板的传输线长;
所述映射表二的表项包括: 单板一的插板位置、 单板一的传输线号、 背 板的传输线号、 背板的传输线长、 单板二的插板位置和单板二的传输线号。 本发明具有以下有益效果:
釆用本发明, 主控板能够动态地调整芯片预加重和均衡参数并及时通知 各单板, 保证各个单板能根据调整后的预加重和均衡参数对消息信号进行调 节, 从而提高了消息信号传输质量。 附图概述
图 1是本发明的动态调整方法流程;
图 2是实施例一中预加重和均衡参数的动态调整方法流程;
图 3是实施例二中光传输设备的结构示意图;
图 4是实施例二中所有物理板的传输线信息的配置文件示意图。 本发明的较佳实施方式
本发明所提出的芯片预加重和均衡参数的动态调整装置包括:
映射关系建立模块, 用于配置元素映射关系表;
调整信息获取模块, 用于在光传输设备上的插板信息调整时, 获取调整 后的插板信息并将其通知参数计算模块;
参数计算模块, 用于根据调整后的插板信息和元素映射关系表来重新计 算相连接的单板间的传输线总长度; 再根据所述传输线总长度和所述单板的 芯片类型重新计算预加重和均衡参数值并将其通知主控板, 由其下发至各单 板。
相应地, 该装置的动态调整方法包括以下步骤:
步骤 101、 建立元素映射关系表。
由于单板插板位置、 单板类型或单板芯片类型都有可能动态改变, 必须 釆用一种方法去确定这种因动态改变而导致的与此相关的其他改变, 这样才 能保证在进行参数计算时能够根据这种固定关系去计算预加重和均衡参数, 因此本发明釆用映射关系表来实现这种一一对应的关系。
本发明中, 可直接建立包含所有元素的元素映射关系表, 如下表 1所示, 其表项包括: 单板 1的插板位置、 单板 1的板类型、 单板 1的芯片类型、 单 板 1的传输线号、 单板 1的传输线长、 背板的传输线号、 背板的传输线长、 单板 2的插板位置、 单板 2的板类型、 单板 2的芯片类型、 单板 2的传输线 号、 单板 2的传输线长。
表 1
Figure imgf000007_0001
由于在表 1在实现起来比较庞大, 为了节省存储空间、 降低复杂度和之 后的查询时间, 可将该表 1 所示的元素映射关系表分为以下的映射表 1 (如 表 2所示 )和映射表 2 (如表 3所示 ); 映射表 1的表项包括: 单板 1的插板 位置、 单板 1的传输线号、 背板传输线号、 背板传输线长、 单板 2的插板位 置、 单板 2的传输线号; 映射表 2的表项包括: 单板类型、 单板芯片类型、 单板的传输线号、 单板的传输线长。
表 2
Figure imgf000007_0002
表 3
Figure imgf000007_0003
102、 当设备上的插板信息(如单板的板类型、 芯片类型、 插板位置)调 整时, 根据调整后的插板信息和上述元素映射关系表, 查找与之相关联的映 射关系表项, 得到经调整后的单板(以下称为单板 1 )的传输线长、 与单板 1 相连接的其他各单板(以下称为单板 2 ) 的传输线长以及对应的背板的传输 线长。
步骤 103、 按照以下公式计算当前传输线的总长度: 传输线总长度 =单板 1的传输线长 +单板 2的传输线长 +背板的传输线长; 再根据传输线总长度和 单板 1/单板 2的的芯片类型重新计算单板 1/单板 2的预加重和均衡参数值并 将其下发至单板 1/单板 2。 具体实现如下 (预加重和均衡参数值是由单板的 芯片类型和传输线总长度确定的, 通常由设计人员预设传输线总长度在不同 范围时各类芯片类型的单板分别对应的预加重和均衡参数值, 在具体实现时 直接根据当前的传输线总长度和单板的芯片类型来确定参数值 ) :
/* 根据元素映射关系表计算传输线总长度 */
传输线总长度 =单板 1的传输线长度 +背板的传输线长度 +单板 2的传输线 长度;
/* 判断两单板的芯片类型 */
If (单板 1芯片类型 == A && 单板 2芯片类型 == B )
/* 判断传输线的总长度, 该传输线总长度由元素映射关系表计算出来 */
/* PI/ P2表示单板 1/单板 2的预加重参数, Bl/ B2表示单板 1/单板 2的均衡参数, X/Y表示传输线总长度的范围, A/B表示单板 1/单板 2的芯片类型, 下述 AXP1即表 示传输线总长度在区域 X内时芯片类型为 A的单板 1的预加重参数值, 其它类似 */
If (传输线总长度在某区域 X内) 单板 1芯片预加重参数 = AXP1 ;
单板 1芯片均衡参数 = AXB 1;
单板 2芯片预加重参数 = BXP2;
单板 2芯片均衡参数 = BXB2;
If (传输线总长度在某区域 Y内) 单板 1芯片预加重参数 = AYP1 ;
单板 1芯片均衡参数 = AYB 1;
单板 2芯片预加重参数 = BYP2;
单板 2芯片均衡参数 = BYB2;
下面结合附图和实施例对本发明作进一步的详细说明:
实施例一
本实施例中, 以光传输设备上仅包括单板 1和与之相连接的单板 2 (在 调整前: 背板上 1号槽位单板 1的单板类型为 TYPE1 , 芯片类型为 A; 背板 上 2号槽位单板 2的单板类型为 TYPE2, 芯片类型为 B )为例来详细描述本 发明的实现方法, 如图 2所示, 包括以下步骤:
步骤 201 : 通过映射关系建立模块建立映射表 1和映射表 2。
上述表 1给出了光传输设备运行起来后, 主控板根据表 2和表 3建立的 最终映射关系。 在光传输设备中, 背板上有几十个槽位用来插几十块不同类 型的单板, 每个单板有至少 64根传输线, 而不同类型的单板的同一传输线号 的长度不一定相同, 因此只有根据表 1才能获得最终的传输线的总长度。 尽 管背板上槽位的传输线号和背板的传输线号的连接方式是固定的, 但是要将 所有槽位的各种插板方案按照表 1的方式保存起来应用还是不现实, 不仅复 杂, 而且查找效率很低。
因此, 在光传输设备运行之前, 本实施例首先建立映射表 1 (即表 2: 背 板上槽位的传输线号和背板的传输线号的映射表)和映射表 2 (即表 3: 光传 输设备支持的各种芯片类型单板的传输线信息配置文件) , 并将这两个映射 表存放于光传输设备中指定的目录下。
步骤 202: 设备第一次运行时, 1号和 2号槽位的单板上报它们各自的槽 位号、 单板类型和芯片类型给调整信息获取模块, 调整信息获取模块将此数 据保留。
步骤 203: 参数计算模块读取映射表 1 , 根据 1号槽位单板 (即单板 1 ) 上报的插板位置信息查找映射表 1 , 得到所有和 1 号槽位有连接的单板传输 线信息 (即 2号槽位单板 2的传输线号) 、 背板的传输线信息 (即背板的传 输线号及对应的传输线长) 、 1号槽位单板 1的传输线信息 (即单板 1的传 输线号)。假设此处得到的 1号槽位单板 1的传输线号为 20, 2号槽位单板 2 的传输线号也为 20。
步骤 204: 参数计算模块读取映射表 2, 根据单板 1/2的板类型和芯片类 型查找映射表 2, 得到在板类型为 TYPE1、 芯片类型为 A、 传输线号为 20的 单板 1 的传输线长, 以及板类型为 TYPE2、 芯片类型为 B、 传输线号为 20 的单板 2的传输线长。
此时, 参数计算模块最终根据映射表 1、 映射表 2 以及当前的插板信息 所获得的信息可归纳为表 4:
表 4
Figure imgf000010_0001
步骤 205: 参数计算模块根据当前所获得的单板 1 的传输线长、 单板 2 的传输线长、 背板的传输线长计算单板 1与单板 2间的传输线总长度(本实 施例中, 此时的传输线总长度 = 30+40+50=120 ) ; 再根据该传输线总长度以 及单板 1/2的芯片类型计算单板 1/2的预加重和均衡参数值,并将其通过主控 板下发给单板 1/2。 且计算预加重和均衡参数值的具体方法如下:
If (单板 1芯片类型 == A && 单板 2芯片类型 == B )
If(50<传输线总长度 <150) 单板 1芯片预加重参数 = 50;
单板 1芯片均衡参数 = 50;
单板 2芯片预加重参数 = 60;
单板 2芯片均衡参数 = 60;
步骤 206 :判断光传输设备上的插板信息是否发生改变,若未发生改变, 则重复执行本步骤; 否则, 执行步骤 207; 本实施例中, 调整后的插板信息 以下为例: 背板上 1号槽位单板 1的单板类型变为 TYPE3 , 芯片类型变为 C; 背板上 2号槽位单板 2的单板类型变为 TYPE4, 芯片类型为 D。
步骤 207: 当光传输设备运行起来时, 1号和 2号槽位的单板上报它们各 自的槽位号、 单板类型和芯片类型给调整信息获取模块, 调整信息获取模块 发现单板类型和芯片类型有改动, 便更新之前保留的相关信息, 并由参数计 算模块根据更新后的信息, 按照步骤 203-205来重新计算参数并下发。
实施例二
本实施例中, 光传输设备的背板上插有的单板仅涉及业务板和交叉板两 种类型, 系统结构如图 3所示 (以业务板和交叉板连接为例, 此时两板间的 传输线总长度为业务板的传输线长度、 背板的传输线长度、 交叉板的传输线 长度的总和) , 则在实现本发明时需预先建立包含所有物理板 (背板、 业务 板、 交叉板)的传输线信息的配置文件, 如图 4所示, 该文件包括信息头和信 息区两部分, 信息头的长度是固定的, 信息区的长度随着单板类型的增加而 增力口。
其中, 信息头进一步细分为以下几部分:
CRC ( Cyclic Redundancy Check )校验字: 校验内容为该 CRC校验字以 后的所有字节。 在读取本文件时需要校验该文件的完整性, CRC校验失败则 需要告警, 告知用户本文件的内容被破坏, 需要更新; 文件版本号: 用于表 示本文件的版本信息; 背板信息区基地址: 表示背板信息区的首地址在本文 件中的偏移量; 背板物理版本数量: 表示背板物理版本的个数, 可能存在多 个版本的背板; 背板信息区长度: 表示单块背板信息区所占的字节数, 根据 槽位个数和每个槽位的传输线条数来确定其大小; 业务板信息区基地址: 表 示业务板信息区的首地址在该文件中的偏移量; 业务板类型数量: 表示业务 板类型的种类; 业务板信息区长度: 表示单块业务板信息区所占的字节数, 由业务板的传输线的数量来确定其长度大小; 交叉板信息区基地址: 表示交 叉板信息区的首地址在该文件中的偏移量; 交叉板类型数量: 表示交叉板类 型的种类; 交叉板信息区长度: 表示单块交叉板信息区所占的字节数, 由交 叉板的传输线的数量来确定其长度大小。
上述配置文件的信息区又可分为三大部分: 背板信息区、 业务板信息区 和交叉板信息区。
背板信息区可进一步划分为: 背板版本信息、 背板槽位号、 背板的传输 线号和背板的传输线长度。 背板版本信息: 表示系统中背板的物理版本号; 背板槽位号: 表示系统中业务板的槽位号, 一个系统通常可以插很多单板, 为方便起见, 对其按照一定顺序进行了编号; 背板的传输线号: 每个槽位有 多条传输线, 为方便起见, 按照顺序进行了编号; 背板的传输线长度: 表示 在背板上 PCB走线的长度。
业务板信息区可进一步划分为: 业务板的物理板名称、 业务板的传输线 号、 业务板的芯片类型和业务板的传输线长度。 业务板的物理板名称: 针对 不同的业务物理板统一进行了命名和编号以示区别; 业务板的传输线号: 在 硬件上业务板是和背板上是连接在一起的, 因此, 业务板的编号和背板的编 号是——对应的; 业务板的芯片类型: 业务板的业务芯片类型, 不同芯片的 驱动能力, 其预加重和均衡参数也不同, 为了区分不同的业务芯片, 需要对 其统一进行编号; 业务板的传输线长度; 表示在业务板内 PCB走线的长度。 交叉板信息区可进一步划分为: 交叉板的物理板名称、 交叉板槽位号、 交叉板的传输线号、 交叉板的芯片类型和交叉板的传输线长度。 交叉板的物 理板名称: 背板上可能会有多种类型的交叉板, 为了方便起见, 统一进行命 名和编号; 交叉板槽位号: 背板上可能有多块交叉板, 其插在不同槽位时, 因背板 PCB走线长度的差别, 其预加重和均衡参数会不完全相同, 因此需对 交叉板在背板上的槽位进行了统一编号; 交叉板的传输线号: 一块交叉板有 很多条传输线, 连接不同的业务板, 为方便起见, 统一进行编号; 交叉板的 芯片类型: 表示交叉板的交叉芯片型号, 为了区分不同的交叉芯片, 进行了 统一编号; 交叉板的传输线长度: 表示在交叉板内 PCB走线的长度。
光传输设备在第一次运行起来时, 各单板上报它们各自的槽位号、 单板 类型和芯片类型, 映射关系建立模块才艮据该信息和上述配置文件建立元素映 射关系表, 其中包括: 背板槽位号、 背板的传输线号、 背板的传输线长度、 业务板的传输线号、 业务板的芯片类型、 业务板的传输线长度、 交叉板的槽 位号、 交叉板的传输线号、 交叉板的芯片类型、 交叉板的传输线长度。 然后, 参数计算模块根据该该表来计算当前相互连接的业务板和交叉板间的传输线 总长度, 再根据当前业务板的芯片类型、 交叉板的芯片类型、 传输线总长度 查找预加重和均衡参数的查找表(如表 5所示, 该表格是事先经过实验测量 或者软件分析而得到, 与现有技术相同), 获得交叉板的预加重和均衡参数、 业务板的预加重和均衡参数, 之后将参数通过主控板分别下发给交叉板和业 务板。
表 5 交叉板的物理板名称及芯片类型
传输线
预加重参数 均衡参数
总长度 cm
<30 0X25 0X0
>=30且<50 0X3E 0X0
>=50且<70 0X3C 0X0
>=70且<90 0X3A 0X1
>=90且<110 0X38 0X1
>=110 0X37 0X1
业务板的物理板名称及芯片类型
传输线
预加重参数 均衡参数
总长度 cm
<30 0X20 0X4
>=30且<50 0X24 0X4
>=50且<70 0X26 0X4
>=70且<90 0X06 0X2
>=90且<110 0X07 0X2
>=110 0X07 0X2 当设备上的插板信息(如单板的板类型、 芯片类型、 插板位置)调整时, 根据调整后的插板信息和上述元素映射关系表, 查找与之相关联的映射关系 表项, 参数计算模块照上述方法重新计算经调整的单板的预加重和均衡参数 并通过主控板下发。
以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
釆用本发明, 主控板能够动态地调整芯片预加重和均衡参数并及时通知 各单板, 保证各个单板能根据调整后的预加重和均衡参数对消息信号进行调 节, 从而提高了消息信号传输质量。

Claims

权 利 要 求 书
1、一种光传输设备中芯片预加重和均衡参数的动态调整方法, 所述光传 输设备包括背板、 插于背板上的主控板和各类单板, 该方法包括:
建立元素映射关系表, 所述元素映射关系表至少包括所述背板上槽位的 传输线号和背板的传输线号的映射关系以及所述各类单板的传输线信息; 在所述光传输设备上的插板信息调整时, 根据调整后的插板信息和所述 元素映射关系表来重新计算相连接的单板间的传输线总长度; 以及
根据所述传输线总长度和所述相连接的单板的芯片类型重新计算预加重 和均衡参数值并将其下发至各单板。
2、 如权利要求 1所述的动态调整方法, 其中, 所述插板信息包括单板的 板类型、 芯片类型和插板位置。
3、 如权利要求 2所述的动态调整方法, 其中, 所述元素映射关系表的表 项包括: 单板一的插板位置、 单板一的板类型、 单板一的芯片类型、 单板一 的传输线号、 单板一的传输线长、 背板的传输线号、 背板的传输线长、 单板 二的插板位置、 单板二的板类型、 单板二的芯片类型、 单板二的传输线号以 及单板二的传输线长。
4、 如权利要求 3所述的动态调整方法, 其中, 所述根据调整后的插板信 息和所述元素映射关系表来重新计算相连接的单板间的传输线总长度的步骤 包括:
当光传输设备上的插板信息调整时, 根据经调整后的单板一的板类型、 芯片类型和插板位置查找所述元素映射关系表,得到所述单板一的传输线长、 与单板一相连接的单板二的传输线长及对应的背板的传输线长, 然后通过以 下公式计算得到单板一与单板二间的传输线总长度:传输线总长度 =单板一的 传输线长 +单板二的传输线长 +背板的传输线长。
5、 如权利要求 2所述的动态调整方法, 其中, 所述元素映射关系表包括 映射表一和映射表二;
所述映射表一的表项包括: 单板一的插板位置、 单板一的传输线号、 背 板的传输线号、 背板的传输线长、 单板二的插板位置和单板二的传输线号; 所述映射表二的表项包括: 单板类型、 单板芯片类型、 单板的传输线号 和单板的传输线长。
6、 如权利要求 5所述的动态调整方法, 其中, 所述根据调整后的插板信 息和所述元素映射关系表来重新计算相连接的单板间的传输线总长度的步骤 包括:
当光传输设备上的插板信息调整时, 先根据经调整后的单板一的插板位 置查找所述映射表一, 得到与单板一相连接的单板二的传输线号二、 单板一 的传输线号一和对应的背板传输线长;
再根据所述单板一 /单板二的板类型和芯片类型查找所述映射表二, 得到 单板一 /单板二在使用传输线号一 /二时的传输线长;
然后, 通过以下公式计算得到单板一与单板二间的传输线总长度: 传输 线总长度=单板一的传输线长 +单板二的传输线长 +背板的传输线长。
7、 一种芯片预加重和均衡参数的动态调整装置, 该装置包括: 映射关系 建立模块、 调整信息获取模块和参数计算模块;
所述映射关系建立模块设置为: 配置元素映射关系表;
所述调整信息获取模块设置为: 在光传输设备上的插板信息调整时, 获 取调整后的插板信息并将其通知参数计算模块;
所述参数计算模块设置为: 根据所述调整后的插板信息和元素映射关系 表来重新计算相连接的单板间的传输线总长度; 再根据所述传输线总长度和 所述单板的芯片类型重新计算预加重和均衡参数值并将其通知主控板, 由其 下发至各单板。
8、 如权利要求 7所述的动态调整装置, 其中, 所述元素映射关系表的表 项包括: 单板一的插板位置、 单板一的板类型、 单板一的芯片类型、 单板一 的传输线号、 单板一的传输线长、 背板的传输线号、 背板的传输线长、 单板 二的插板位置、 单板二的板类型、 单板二的芯片类型、 单板二的传输线号以 及单板二的传输线长。
9、 如权利要求 7所述的动态调整装置, 其中, 所述元素映射关系表包括 映射表一和映射表二;
所述映射表一的表项包括: 单板类型、 单板芯片类型、 单板的传输线号 和单板的传输线长;
所述映射表二的表项包括: 单板一的插板位置、 单板一的传输线号、 背 板的传输线号、 背板的传输线长、 单板二的插板位置和单板二的传输线号。
PCT/CN2010/074158 2009-07-02 2010-06-21 芯片预加重和均衡参数的动态调整方法及装置 WO2011000273A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI1010205A BRPI1010205A8 (pt) 2009-07-02 2010-06-21 método para ajustar dinamicamente os parâmetros de pré-enfâse e equalização de um chip em um dispositivo de transmissão ótica e dispositivo para ajustar dinamicamente os parâmetros de pré-enfâse e equalização de um chip
RU2011152510/07A RU2506700C2 (ru) 2009-07-02 2010-06-21 Способ и устройство для динамической корректировки параметров предыскажения и выравнивания микросхем

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101085006A CN101651491B (zh) 2009-07-02 2009-07-02 芯片预加重和均衡参数的动态调整方法及装置
CN200910108500.6 2009-07-02

Publications (1)

Publication Number Publication Date
WO2011000273A1 true WO2011000273A1 (zh) 2011-01-06

Family

ID=41673628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074158 WO2011000273A1 (zh) 2009-07-02 2010-06-21 芯片预加重和均衡参数的动态调整方法及装置

Country Status (5)

Country Link
KR (1) KR20120030531A (zh)
CN (1) CN101651491B (zh)
BR (1) BRPI1010205A8 (zh)
RU (1) RU2506700C2 (zh)
WO (1) WO2011000273A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651491B (zh) * 2009-07-02 2012-07-04 中兴通讯股份有限公司 芯片预加重和均衡参数的动态调整方法及装置
CN102662896B (zh) * 2012-03-30 2015-06-03 中兴通讯股份有限公司 自动调整预加重参数和/或均衡参数的方法及装置
CN106797357B (zh) * 2015-06-05 2019-10-01 华为技术有限公司 高速串行信号的处理方法和装置
CN109165046A (zh) * 2018-08-24 2019-01-08 郑州云海信息技术有限公司 一种板载sata参数优化方法及装置
CN109462436B (zh) * 2018-12-27 2021-02-09 新华三技术有限公司 测试板、信号传输方法及测试系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2932839Y (zh) * 2006-02-28 2007-08-08 北京索安视讯科技有限公司 基于双绞线传输的以太网长距离收发器
CN101067806A (zh) * 2006-05-04 2007-11-07 国际商业机器公司 用于串扰补偿的方法和电路
CN101651491A (zh) * 2009-07-02 2010-02-17 中兴通讯股份有限公司 芯片预加重和均衡参数的动态调整方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627857A (en) * 1995-09-15 1997-05-06 Qualcomm Incorporated Linearized digital automatic gain control
US7915954B2 (en) * 2004-01-16 2011-03-29 Qualcomm, Incorporated Amplifier predistortion and autocalibration method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2932839Y (zh) * 2006-02-28 2007-08-08 北京索安视讯科技有限公司 基于双绞线传输的以太网长距离收发器
CN101067806A (zh) * 2006-05-04 2007-11-07 国际商业机器公司 用于串扰补偿的方法和电路
CN101651491A (zh) * 2009-07-02 2010-02-17 中兴通讯股份有限公司 芯片预加重和均衡参数的动态调整方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAI, WANJIU: "Pre-emphasis and Equalization Technology Applied in Designing High-speed Backplane", ELECTRONIC ENGINEERING & PRODUCT WORLD, vol. 11, November 2008 (2008-11-01), pages 100 - 101 *

Also Published As

Publication number Publication date
RU2011152510A (ru) 2013-08-20
BRPI1010205A2 (pt) 2016-03-29
BRPI1010205A8 (pt) 2018-12-18
CN101651491A (zh) 2010-02-17
RU2506700C2 (ru) 2014-02-10
CN101651491B (zh) 2012-07-04
KR20120030531A (ko) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2011000273A1 (zh) 芯片预加重和均衡参数的动态调整方法及装置
US9742831B2 (en) Modular and scalable digital multimedia mixer
JP4880337B2 (ja) ネットワーク監視装置
US20140181140A1 (en) Terminal device based on content name, and method for routing based on content name
TWI224910B (en) System and method for testing the upstream channel of a cable network
JP2011521488A (ja) 適応リンクパートナ送信機を等化するための方法及び装置
US11137550B2 (en) Bypass switch for managing active ethernet cable
US9268813B2 (en) Terminal device based on content name, and method for routing based on content name
RU2009129442A (ru) Устройство связи, устройство ввода изображений, устройство вывода изображений, схема беспроводной связи, способ управления устройством связи и программа
JP2014523180A (ja) トラフィック生成能力をもつネットワークスイッチ
TW200830779A (en) Network connection fast recovery
JPWO2011083670A1 (ja) パケット整列装置、受信装置、及びパケット整列方法
WO2018113693A1 (zh) 局域网设备通信管理方法、系统及网关设备
TW201603503A (zh) 接收器、發射器及通信系統
JP2022509322A (ja) 基板、光モジュール、olt、および情報処理方法
US11683122B2 (en) Hybrid PHY with interleaved and non-interleaved RS-FEC and FEC mode determination during adaptive link training protocol
JP5682846B2 (ja) ネットワークシステム、パケット処理方法、及び記憶媒体
US10877233B1 (en) Active ethernet cable with preset pre-equalization
WO2016131404A1 (zh) 基于新型can帧进行通信的方法、装置及系统
WO2010111922A1 (zh) 一种获取视频传输管理服务器地址的方法和装置
CN101667991B (zh) 一种设置预加重和/或均衡参数的方法及装置
US11552873B2 (en) Debugging arrangement for active ethernet cable
US20190044855A1 (en) High density cabling and routing for switched network nodes
CN109413142B (zh) 一种Linux下的iSCSI虚拟代理实现方法
CN106797357B (zh) 高速串行信号的处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9891/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127000917

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011152510

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10793568

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010205

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010205

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111228