WO2010150982A2 - Recombinant hemagglutinin protein having superior biocompatibility for an influenza virus vaccine, and method for preparing biodegradable plga microspheres containing same - Google Patents

Recombinant hemagglutinin protein having superior biocompatibility for an influenza virus vaccine, and method for preparing biodegradable plga microspheres containing same Download PDF

Info

Publication number
WO2010150982A2
WO2010150982A2 PCT/KR2010/003291 KR2010003291W WO2010150982A2 WO 2010150982 A2 WO2010150982 A2 WO 2010150982A2 KR 2010003291 W KR2010003291 W KR 2010003291W WO 2010150982 A2 WO2010150982 A2 WO 2010150982A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
recombinant
influenza virus
plga
Prior art date
Application number
PCT/KR2010/003291
Other languages
French (fr)
Korean (ko)
Other versions
WO2010150982A3 (en
WO2010150982A9 (en
Inventor
김창섭
김상헌
장용
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090056025A external-priority patent/KR101034490B1/en
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Publication of WO2010150982A2 publication Critical patent/WO2010150982A2/en
Publication of WO2010150982A9 publication Critical patent/WO2010150982A9/en
Publication of WO2010150982A3 publication Critical patent/WO2010150982A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention provides a HA2 protein fragment with excellent biosafety and improved water solubility by removing the fusion peptide consisting of hydrophobic amino acid residues and the TMD site, thereby improving water solubility, and C30S to prevent inclusion body formation by intramolecular disulfide bond.
  • Influenza virus belongs to the Orthomyxoviridae family and has a genome of seven to eight single-stranded RNAs. Divided into A, B and C type according to the antigenic difference between the nucleoprotein and intercellular protein. Influenza virus A is divided into 15 types (H1-H15) and 9 types (N1-N9), respectively, according to the antigenic differences of the surface proteins hemagglutinin (HA) and neuraminidase (NA) in the virus envelope (Cross et al. 2001. EMBO J., 20: 4432-4442.
  • HA hemagglutinin
  • NA neuraminidase
  • the HA protein is expressed as a membrane glycoprotein as one polypeptide (precursor HA0), which is then divided into HA1 and HA2 by proteolytic cleavage, and in nature, a disulfide bond (the 30th amino acid residue of HA1, cysteine and HA2).
  • the first amino acid, between cysteines (Swelley et al. 2004. Biochemistry, 43: 5902-5911) (see (a) of FIG. 1).
  • a membrane fusion must occur between the viral envelope membrane and the host cell membrane.
  • This process involves HA2, a membrane protein with a transmembrane domain (TMD) at the C-terminus, which is composed of a fusion peptide consisting of hydrophobic amino acid residues at the N-terminus of HA2.
  • TMD transmembrane domain
  • the two membrane systems are known to fuse by acting to partially stir the cell membrane of the target cell, and so the HA2 protein is called a membrane fusion protein (Cross et al. 2001. EMBO J., 20: 4432- 4442).
  • PLGA poly (lactic-co-glycolic acid)
  • PLGA poly (lactic-co-glycolic acid)
  • biodegradable polymer nano- / particulates The technology for producing biodegradable polymer nano- / particulates has received much attention in recent years through research into not only vaccine preparation but also use as a delivery system and treatment of bioimmune diseases (Lemoine D, 1998, J Control Release. 54 ( 1): 15-27). Encapsulating antigenic proteins / peptides for the manufacture of viral vaccines is of interest for reports on the preparation of polymeric microparticles using biodegradable, biodegradable poly (lactic-co-glycolic acid) (PLGA). (Tamber et al., 2005, Adv Drug Deliv Rev. 57 (3): 357-76).
  • Encapsulation of cationic liposomes in consideration of DNA characteristics has been mainly used for the manufacture of DNA vaccines (vaccine), but recently, attempts to prepare PLGA or polycationic polymeric microparticles have been reported (Jilek et al., 2005, Adv). Drug Deliv Rev. 57 (3): 377-90).
  • W / O monolayer emulsion method microparticles have a high initial release rate and have the disadvantage of having a low drug duration and a delay occurring after a certain amount is released ( G Khang et al., 2004, Tissue Eng. Regen. Med., 1, 9).
  • the microparticles are mainly prepared by using W / O / W double emulsion method and solvent evaporation (KJ Cho, 2008, Tissue Eng Regen Med, 5, 172).
  • fine particles were prepared using the W / O / W double emulsion method.
  • this method has the disadvantage of being difficult to control and limited in inclusion drugs than monolayer emulsion particles (JT Ko et al., 2007, Key Eng Mater, 342, 513).
  • Vaccines against influenza viruses have traditionally been using inactivated viruses or HA and NA proteins extracted from virus particles, but contain viral lipids that have not been completely removed during purification. It is still a problem for the elderly in terms of safety.
  • IgA responses are not induced in nasal secretions that induce high serum IgG responses but become viral penetration pathways.
  • live attenuated viruses eg, temperature-sensitive
  • high dosages due to the possibility of being converted into active viruses and the induction of low antibody production It has been reported that there is a problem such as the need to administer or to inactivate the inactivated virus, and despite the many possibilities it is not practical yet.
  • influenza virus particles grown in egg were inactivated with an organic solvent, and then extracted and purified in the native HA protein.
  • the study used was to extract and purify HA proteins using a method similar to the process for preparing traditional inactivated viral vaccines (Lemoine D, 1998, J Control Release. 54 (1): 15-27; Hilbert et al. , Vaccine. 1999 17 (9-10): 1065-73).
  • Korean Patent Registration No. 10-0703571 discloses a peptide-based vaccine against influenza
  • Korean Patent Publication No. 2008-0093382 discloses a vaccine composition for preventing influenza, but the antigenic epitope for influenza virus vaccine of the present invention. It is different from recombinant HA (hemagglutinin) protein as an antigenic epitope.
  • Korean Patent Registration No. 10-0702523 discloses a method for producing an attenuated parainfluenza virus from a cloned nucleotide sequence
  • Korean Patent Publication No. 2009-0034297 discloses an antiviral agent and a vaccine against influenza.
  • it is different from PLGA microparticles containing a recombinant HA protein as a highly stable antigenic epitope of the present invention.
  • the present invention has been made in accordance with the above requirements, and in the present invention, a fusion peptide composed of hydrophobic amino acid residues present at the N-terminus (1 to 22 amino acid residues) and a transmembrane domain (TMD) present at the C-terminus are provided.
  • the modified HA2 protein expressed in E. coli removed by protein engineering method was used as an antigenic epitope for influenza virus vaccine in the present invention. This protein loses the membrane fusion function of the fusion peptide itself and can act as an antigenic epitope for novel influenza virus vaccines with excellent biosafety.
  • PLGA microparticles containing the modified HA1 and HA2 proteins prepared as described above were prepared using a W / O / W double emulsion microencapsulation method.
  • the fusion peptide composed of hydrophobic amino acid residues and the HA2 protein from which the TMD site was removed have an advantage in that water solubility is increased, so that microencapsulation with the hydrophilic HA1 protein can be performed relatively easily.
  • the optimum conditions of the W / O / W double emulsion microencapsulation method for preparing the polymer PLGA microparticles were investigated by controlling the emulsifier (PVA) content, solvent extraction method (stirring or evaporation), stirring speed during particle curing, and SEM (scanning). Electron microscopy) was used to verify the size, shape and degree of hole formation on the prepared particles.
  • PVA emulsifier
  • the PLGA particles prepared as described above can be stored as a lyophilized powder, which has the advantage that the long-term stability of the protein is increased rather than in solution.
  • PLGA microparticles containing modified HA1 and HA2 proteins together were verified through in vitro release experiments to have a good slow release that slowly releases antigenic epitopes in vivo .
  • the present invention provides a recombinant hemagglutinin (HA) protein as an antigenic epitope for influenza virus vaccines having high or low biosafety due to a lack or decrease in membrane fusion function.
  • HA hemagglutinin
  • the present invention also provides a method for producing PLGA [poly (lactic- co- glycolic acid)] microparticles containing the recombinant HA protein.
  • the present invention also provides PLGA microparticles for influenza virus vaccine prepared by the above method.
  • the production of a mutant HA2 protein as an antigenic epitope with excellent biosafety is possible, and (2) the development of an influenza virus vaccine having no toxicity and improved vaccine efficacy required for infants and the elderly. And (3) using protein engineering techniques to develop new forms of antigenic epitopes for influenza virus vaccines that can replace existing patented technologies, and (4) avian influenza virus, swine Flu, and HIV virus gp41 proteins. It can be used to develop related vaccines, (5) can be used as drug delivery system, and can be used for drug delivery treatment method using membrane fusion.
  • FIG. 1 is a schematic diagram (a) of HA (hemagglutinin) and a type (b) of a plasmid DNA construct including the HA2 gene used in the present invention.
  • FIG. 2 is a vector construct for recombinant HA1 and HA2 protein expression.
  • PLGA encapsulated particulate powders comprising HA protein.
  • Figure 6 is a quantitative curve of the protein using the Indirect ELISA method.
  • FIG. 7 shows the results of a test for HA (HA1 + HA2) antigen present in serum.
  • the present invention is to delete amino acid residues 1 to 16 of the HA1 protein consisting of the amino acid sequence of SEQ ID NO: 1, the 30th amino acid residue is substituted in the cysteine to serine;
  • the 137th amino acid residue of the HA2 protein consisting of the amino acid sequence of SEQ ID NO: 2 is substituted with serine in cysteine, and the codons of arginine corresponding to the 123rd, 124th and 127th amino acid residues are substituted with AGT to CGT, respectively.
  • HA hemagglutinin
  • the first amino acid residue of the HA2 protein may be substituted with glutamic acid or valine in glycine.
  • amino acid residues 1 to 22 corresponding to the fusion peptide of the HA2 protein may be deleted, and at the same time, correspond to the TMD (transmembrane domain) of the HA2 protein.
  • 186 th to 221 th amino acid residues may be deleted.
  • His7-tag and His6-tag may be attached to the C-terminus of the recombinant HA1 and HA2 proteins, respectively.
  • the present invention is deleted amino acid residues 1 to 16 of the HA1 protein consisting of the amino acid sequence of SEQ ID NO: 1, the 30th amino acid residue is substituted with a serine in cysteine;
  • the 137th amino acid residue of the HA2 protein consisting of the amino acid sequence of SEQ ID NO: 2 is substituted with serine in cysteine, and the codons of arginine corresponding to the 123rd, 124th and 127th amino acid residues are substituted with AGT to CGT, respectively.
  • Method for producing PLGA microparticles for influenza virus vaccine comprising the steps of microencapsulation of recombinant HA (hemagglutinin) protein as an antigenic epitope for influenza virus vaccines To provide.
  • the W / O / W double emulsion microencapsulation is
  • the PVA added in steps (a) and (c) is preferably 4.2% (w / v) and 0.6% (w / v), respectively.
  • the solvent removal process may be performed by stirring or evaporation.
  • the solvent removal process and the curing process may be performed by stirring at 90 ⁇ 110 rpm, preferably 100 rpm.
  • the method according to an embodiment of the present invention may further include a step of freezing the PLGA fine particles that have been cured after the step (d) using liquid nitrogen, and then lyophilizing.
  • the first amino acid residue of the HA2 protein may be substituted with glutamic acid or valine in glycine.
  • amino acid residues 1 to 22 corresponding to the fusion peptide of the HA2 protein may be deleted, and at the same time, 186 corresponding to the TMD (transmembrane domain) of the HA2 protein. 221 rd amino acid residues may be deleted.
  • the present invention also provides PLGA microparticles for influenza virus vaccines produced by the method of the present invention.
  • HA2 protein In the case of HA2 protein, three methods were used as follows to remove membrane fusion function.
  • the G1E HA2 and G1V HA2 mutant proteins were substituted with the first amino acid residues of which the membrane fusion function of the fusion peptide itself at the N-terminus of the HA2 protein was reduced. To prevent it.
  • the G1E HA2 and G1V HA2 mutant proteins mean that the first amino acid residue of the HA2 protein is substituted with glutamic acid and valine in glycine, respectively.
  • the HA2 (23-185) and HA2 (23-221) protein fragments were prepared by removing the fusion peptide itself consisting of 22 hydrophobic amino acid residues present at the N-terminus of the HA2 protein.
  • Three rare arginine codons contained in the HA2 protein were replaced with codons suitable for expression in E. coli (R123, R124, R127), and HA2, which can form an intermolecular disulfide bond with cysteine, the 30th amino acid residue of the HA1 protein Cysteine, the 137th amino acid residue of, was substituted with serine (C137S).
  • HA1 the N-terminal signal sequence was removed (HA1 (17-344)) and cysteine, the 30th amino acid residue of the HA1 protein, was substituted with serine to prevent inclusion body formation by intramolecular or intermolecular disulfide bonds. (C30S).
  • Purification conditions were established using Ni affinity chromatography by attaching His7-tag and His6-tag to the C-terminus of the recombinant HA1 and HA2 proteins, respectively.
  • the proteins bound to the beads were sufficiently washed with a washing buffer to which 20 mM and 50 mM imidazole were added, followed by step-wise elution.
  • HA1 protein cells were disrupted without adding EDTA, DTT, and ⁇ -mercaptoethanol.
  • the HA gene used in the present invention is derived from influenza virus type A X31 strain and is contained in plasmid pHA. It was expressed in E. coli strain Rosetta (DE3) pLysS (Novagen), which was inserted into the pET24b (+) vector to solve the rare codon problem of E. coli.
  • the DNA amplification apparatus used for the preparation of mutant DNA was a T-GRADIENT 48 model of Biometra.
  • mouse His Tag antibody the primary antibody used in the sustained release validation experiment, was purchased from ABGENT, and the goat HRP-conjugated anti-mouse IgG, the secondary antibody, was obtained from Molecular Probes.
  • Example 1 Preparation of d position mutant present at interface of coiled-coil HA2 trimer
  • All HA2 constructs used in the present invention were used by substituting three rare (R123, R124, R127) rare arginine codons (AGG) with codons (CGT) suitable for expression in E. coli.
  • ATCTCTTCAGCATTTTCACGCAGTTGACGACGTGTTTTTTCAAACAGCTTGT (SEQ ID NO: 4)
  • All site-directed mutagenesis performed in the present invention are QuickChange of Stratagene (USA)
  • the method was modified and performed using PCR (Biometra Tgradient Thermocycler).
  • Forward and reverse mutagenic primers (Bioneer, Korea) of 30 to 35 bp in length including the same position including the site to be mutated were used.
  • Excellent fidelity and fast synthesis rate (1kb / min) because the entire plasmid DNA must be replicated
  • Pfu Turbo PCR reactions were generally performed using DNA polymerase under the following conditions; 25 cycles (95 ° C. 45 sec; 55 ° C. 1 min; 68 ° C. 8 min).
  • agarose gel electrophoresis was performed to confirm the amplification of the linear plasmid-sized DNA band, followed by treatment with Dpn I restriction enzyme for about 3 hours, followed by parental extraction from E. coli DH5 ⁇ . DNA template was removed as much as possible. After transformation into E. coli DH5 ⁇ , plasmid DNA miniprep was carried out from 2 or 3 colonies to confirm that the desired position was modified through DNA sequencing (Solgent, Korea).
  • G1E HA2 mutant and G1V HA2 mutant which are considered to have excellent biosafety due to lack of infectivity, were prepared through site-directed mutagenesis for use as antigenic epitopes.
  • the two types of HA2 mutants have been reported to retain the ⁇ -helix propensity and form a coiled-coil HA2 trimer, but have little membrane fusion activity.
  • the plasmid DNA construct used as a template was HA2 (1-185) (B of Fig. 1 (b)).
  • HA2 genes (1 to 221) from the influenza virus type A X31 strain used in the present invention are located after the HA1 gene on the plasmid pHA.
  • the C-terminal TMD site is located in the virus envelope and the N-terminal fusion peptide site attacks the target cell membrane.
  • This type of structure may cause structural problems in which two sites are simultaneously placed on one membrane on the micelle structure or artificial membrane (vesicle, liposome) formed by using detergent during separation and purification. Intact HA2 protein expressed for the same reason is difficult to induce normal protein expression due to cytotoxicity caused by unstable cell membrane of the expression host cell.
  • HA2 (1-185), HA2 (23-221), or HA2 (23-185) from which the N-terminal fusion peptide site or the C-terminal TMD site are removed among the HA2 gene (1 to 221) sites are avoided.
  • a modified construct was prepared and inserted into pET24b (+) vector, an expression vector that can be purified using His-tag affinity chromatography.
  • plasmid DNA having HA2 (23-221) DNA fragments from which the fusion peptide (up to the 1st to 22nd amino acids), which is the membrane fusion active site of HA2, was removed (C of FIG. 1 (b)) was prepared.
  • the following two primers were used.
  • Pfu Turbo DNA polymerase was used to amplify only the HA2 (23-221) site through the following PCR reaction; 30 cycles (95 ° C. 45 sec; 53 ° C. 1 min; 68 ° C. 2 min).
  • HA2 (-FP) _NdeI_F CACTTCGTCATATGGGTTTCAGGCATCAAAATTCTG (SEQ ID NO: 5)
  • HA2_221_SalI_R CACTTCGTGTCGACAATGCAAATGTTGCACCTAATGT (SEQ ID NO: 6)
  • HA2 (23-221) plasmid DNA construct obtained by the above method is expressed in recombinant E. coli, intramolecular or intermolecular disulfide bonds are formed, which is likely to precipitate in the form of inclusion bodies in aggregated form. So we performed site-directed mutagenesis to replace the 137th cysteine with serine; 25 cycles (95 ° C. 45 sec; 53 ° C. 1 min; 68 ° C. 2 min). As a result, the HA2 (23-221) / C137S plasmid DNA construct was finally obtained.
  • the HA2 (23-221) plasmid DNA construct still retains the transmembrane domain (TMD), which has a hydrophobic nature at the C-terminus.
  • TMD transmembrane domain
  • micelle structure using a detergent such as Triton X-100 was used during the separation and purification process. Must be formed. Therefore, first of all, it was decided to prepare and use a plasmid DNA construct having only HA2 (23-185) DNA fragments in which TMD sites were removed together with fusion peptide sites (D in FIG. 1 (b)).
  • the HA2 (23-221) plasmid DNA construct was obtained under the same conditions as below.
  • Pfu Turbo DNA polymerase was used to amplify only the HA2 (23-185) / C137S site through the following PCR reaction; 30 cycles (95 ° C. 45 sec; 53 ° C. 1 min; 68 ° C. 2 min).
  • HA2 (-FP) _NdeI_F CACTTCGTCATATGGGTTTCAGGCATCAAAATTCTG (SEQ ID NO: 7)
  • HA2_185_SalI_R CACTTCGTGTCGACCCAGTCTTTGTATCCAGACTTCA (SEQ ID NO: 8)
  • the HA2 (23-185) / C137S DNA fragment was inserted into Nde I and Sal I sites of the pET-24b (+) vector in the same manner as when obtaining a plasmid DNA construct to obtain a desired form.
  • PCR was used to detect the remaining regions of the HA1 gene region, located in front of the HA2 gene on the plasmid pHA containing the HA gene from the influenza virus type A X31 strain, except for the signal sequence consisting of 16 amino acid residues located at the N-terminus. After replication, it was inserted into pET24b (+) vector, an expression vector that can be purified using His-tag affinity chromatography.
  • the plasmid pHA which contains the entire HA gene from the influenza virus type A X31 strain, was first used to remove Nde I sites in the HA1 gene DNA (without modification of amino acids) using the following two primers. directed mutagenesis was performed.
  • HA1_NdeIX-F GTAAACAAGATCACATA C GGAGCATGCCCCAAG (SEQ ID NO: 9)
  • HA1_NdeIX-R CTTGGGGCATGCTCCGTATGTGATCTTGTTTAC (SEQ ID NO: 10)
  • HA1_NdeI-F CGCTACTAGCATATGAAGACCATCATTGCTTTGA (SEQ ID NO: 11)
  • HA1_XhoI-R CGCGTGGTCTCGAGAGTTTGTTTCTCTGGTACATT (SEQ ID NO: 12)
  • HA1 (17-344) plasmid DNA construct After DNA sequencing of the obtained HA1 (17-344) plasmid DNA construct, it was confirmed that the 173rd amino acid residue was changed from serine to leucine as compared with the HA1 gene from the influenza virus type A X31 strain reported in the literature. Can.
  • cysteine the 30th amino acid residue, forms an intermolecular disulfide bond with C137 of HA2 protein in its native state (see FIG. 1A).
  • intramolecular or intermolecular disulfide bonds could be formed at this C30 site.
  • L173S mutation 25 cycles (95 ° C 45 sec; 55 ° C 1 min; 68 ° C 10 min)
  • E. coli strain Rosetta (DE3) pLysS (Novagen) was used as a host cell strain to solve the codon usage problem.
  • Optimal conditions for protein expression of HA2 (23-185) / C137S plasmid DNA construct (His6-tag) were determined as follows. After induction with 0.5 mM IPTG at an OD 600 value of 0.7, expression conditions were performed at 20 ° C. and 110 rpm for 6 hours, and purification conditions were established using Ni affinity chromatography. The proteins bound to the beads were washed sufficiently with a washing buffer containing 20 mM imidazole, followed by step-wise elution.
  • PET-24b (+) plasmid DNA with His6-attached HA1 (17-344) / C30S DNA construct was used as a template. As a result, it was confirmed that the cloned DNA band was visible in the sample without DMSO.
  • DNA sequencing and the plasmid mini-prep DNA with the identified DNA Dpn I after rough processing from four of the colonies were obtained by performing the transformation in E. coli DH5 ⁇ result, the construct Incidentally substituted with His7 and each His8 I got it.
  • HA1 constructs substituted with His7 and His8, respectively, were modified in E. coli strain Rosetta (DE3) pLysS by changing various conditions such as cell culture conditions, timing of induction, and expression time after induction. there was.
  • the His7 construct was used to induce 0.5 mM IPTG at 0.8 OD 600 and then incubated at 18 ° C. and 110 rpm for 8 hours.
  • the cells were disrupted without adding EDTA, DTT, and ⁇ -mercaptoethanol. After washing the beads sufficiently with the washing buffer containing 20 mM imidazole, 50 mM imidazole was added.
  • the partially purified protein was first purified using His-tag affinity chromatography using HPLC using a 5RPC column (FIG. 3). Sample volume is 200 ⁇ l, buffer A is distilled water + 0.1% TFA, buffer B is acetonitrile + 0.1% TFA and acetonitrile gradients are 37-47% and 40-52%.
  • fusion peptide consisting of hydrophobic amino acid residues and the TMD site are removed, resulting in loss of membrane fusion function, thereby replacing the amino acid with C30S to prevent formation of HA2 protein fragment with excellent biosecurity and enhanced water solubility and inclusion body by intramolecular disulfide bond.
  • PLGA microparticles for influenza virus vaccines containing a wild-type similar HA1 protein as an antigenic epitope were prepared using a W / O / W double emulsion microencapsulation method.
  • the molecular weight of HA1 (His7) protein is 37347.2 and for HA2 protein is 20173.4. Since the total protein mass at the time of encapsulation was 400 ⁇ g / mL, the mass ratio was 1.85: 1 in order to make the molar ratio of HA1 and HA2 1: 1. 1 mL of an aqueous phase containing HA protein combined with HA1 and HA2 and 2.8% (w / v) of polyvinylalcohol (PVA) was made (W 1 ).
  • PVA polyvinylalcohol
  • PLGA was dissolved in 6 mL of dichloromethane (methylene chloride) at 1.0% concentration (O), and then mixed with W 1 and O and emulsified by reacting 9,500 rpm 30 sec with a homogenizer (Ultra-Turrax, IKA) (W 1 / O). .
  • the product was added again to 54 mL of an aqueous solution containing 0.4% (w / v) of PVA, and the homogenizer was double-emulsified by stirring at 4,000 rpm for 30 sec (W 1 / O / W 2 ). The resulting product was then subjected to solvent extraction for 3 hours at 150 rpm.
  • the evaporation method was used instead of the stirrer to control the time when the dichloromethane, the organic solvent of the oil layer, was released under the condition that the PVA content was increased 1.5 times.
  • a rotary evaporator (BUCHI, rotavaper R-210) with a slight decompression was carried out at the same time the solvent removal and curing process at 50 rpm for 3 hours.
  • the other experimental method is the same as before. SEM images were taken to confirm the surface image of the fine particles obtained in the experiment. As a result, fine particles exhibiting a surface morphology with little pore were obtained (FIG. 5C).
  • microparticles have a problem that they can encapsulate the protein well, but the protein may not escape well in vivo. Therefore, the following experiment was carried out to make microparticles having a proper number and small pore.
  • the fourth experiment was carried out. The experiment was carried out by increasing the rotation speed from the existing 50 rpm to 100 rpm using an evaporator with a slight decompression. SEM pictures were taken to confirm the surface image of the obtained fine particles. As a result, it was observed that the particles exist in the form similar to the existing ones, and the particles together with the small pore exist together.
  • the composition and method of the reagents are the same as in the above experiment, and the solvent is removed by reducing the rotation speed to 100 rpm instead of 150 rpm, which was performed in the first experiment using a stirrer without decompression instead of the evaporator.
  • a fifth experiment was conducted, which performed solvent extraction and a curing process. As a result of the SEM photographs, fine particles having a suitable number and small pore size were obtained as compared with the existing results (FIG. 5D).
  • Example 7 in vitro Slow release verification experiment of HA protein through release experiment
  • PLGA microparticles containing modified HA1 and HA2 proteins together were verified through in vitro release experiments to have a good slow release that slowly releases antigenic epitopes in vivo .
  • HA1 and HA2 proteins were adjusted to a molar ratio of 1: 2, and verified using a 1X PBS (pH 7.4) solution containing a molar concentration of 0.21 nM, 0.56 nM, 0.84 nM, and 1.12 nM of HA1 and HA2 proteins, respectively.
  • a calibration curve was created. In the case of HA1, since partially purified protein was used, molarity was calculated in consideration of impurity. With 50 ⁇ l of each solution, the absorbance was measured using the indirect ELISA method described below to prepare a verification curve (FIG. 6).
  • 50 ⁇ l of the sample was put into a 96 well plate and coated by incubating with slight shaking at RT. After washing 3-5 times with 1X PBS (pH 7.4) containing 0.05% (v / v) Tween-20 and dried. 200 ⁇ l of 1 ⁇ PBS (pH 7.4) containing 1% (w / v) BSA was added and then blocked by incubation at 37 ° C. for 2 hours. After washing 3-5 times with PBST again, it was dried. 50 ⁇ l of His-tag antibody, which was diluted to 1: 5000, was added and incubated at 37 ° C. for 2 hours. Washing with PBST again three to five times and dried.
  • 50 ⁇ l of the secondary antibody HRP-conjugated anti-mouse IgG diluted 1: 5000 was added, and then incubated at 37 ° C. for 1 hour. Again washed with PBST 3-5 times and dried. 50 ⁇ l of TMB was added as a stop agent and allowed to stand at RT for 10 minutes. Then, 50 ⁇ l of 2 MH 2 SO 4 was added and allowed to stand at RT for 20 minutes. The absorbance was measured at 450 nm using an ELISA reader. The molar concentration of the protein released at was quantified.
  • the first group was inoculated with 15 ⁇ g PLGA encapsulation HA (HA1 + HA2) (in 200 ⁇ l solution), and the second group was inoculated with PLGA encapsulation HA (HA1 + HA2) 7.5 ⁇ g + Fluid HA 7.5 ⁇ g (in 200 ⁇ l solution) It was.
  • the third group was inoculated with 15 ⁇ g of Fluid HA (in 200 ⁇ l solution) at once, and the fourth group was inoculated with 7.5 ⁇ g of Fluid HA (in 200 ⁇ l solution) and boosted by inoculating the same amount after 4 weeks. Blood samples were taken for 12 weeks at two-week intervals to determine whether antibodies were present and antigens were present using ELISA for blood samples.
  • a blood sample was taken and the experiment was performed as follows. First, 100 ⁇ l of serum diluted 1: 500 was added to 96 wells and coated overnight at 4 ° C. (or 2 hours at room temp). After washing 3-5 times using PBT (PBS + Tween20) pH 7.2 buffer, 200 ⁇ l of a block agent diluted with BSA was added to TB buffer, and the block step was performed at RT for 1 hour. Washing was performed 5 times using a PBT buffer. The reaction was performed at 37 ° C. for 1 hour using a His-tag antibody diluted 1: 500 with a secondary antibody. Washing was performed 5 times using a PBT buffer.
  • PBT PBS + Tween20
  • Goat anti-mouse IgG HRP 1 5000 dilution to react for one hour after the semi-put 100 ⁇ l 37 °C incubator was stopped and the reaction put TMB 100 ⁇ l of 0.5N again while leaving H 2 SO 4 After adding 100 ⁇ l and reacting for a while, absorbance was measured using an ELISA (FIG. 7).
  • the antigen administered to the mouse exists in the blood.
  • the injected antigens are initially detected at high concentrations but are quickly lost, whereas in animal groups administered with antigens in the form of PGA microparticles, the duration of antigen presence is longer. It was confirmed that it is slowly released into the blood.
  • HA protein (HA1 + HA2) was diluted to a concentration of 200ng / ml, and 100 ⁇ l each of 96 wells was coated overnight at 4 ° C (or 2 hours at room temp). Washing was performed 3-5 times using PBT (PBS + Tween20) pH 7.2 buffer. After 200 ⁇ l of a block agent diluted with BSA in TB buffer, the block step was performed at RT for 1 hour, and then washed five times using PBT buffer. Here, the sera collected from the mouse was diluted 1:50, put into 96 wells, and reacted for one hour at 37 ° C incubator. After washing 5 times with PBT buffer, Goat anti-mouse IgG HRP was diluted 1: 5000 and put in 100 ⁇ l.
  • the reaction was performed at 37 ° C. incubator for 1 hour. In order to stop the reaction, 100 ⁇ l of TMB was added thereto, and the mixture was left for a while. Then, 100 ⁇ l of 0.5 N H 2 SO 4 was added, followed by brief reaction. For accurate data calculation, the measurement was carried out three times in the same manner as above (Fig. 8).
  • the antibody response to the HA antigen was confirmed, and the change in the antibody content of the vaccine containing the PLGA microparticles was observed to be small, which can be interpreted as an effect of the sustained release of the antigen.

Abstract

The present invention relates to a recombinant hemagglutinin protein serving as an antigenic epitope for an influenza virus vaccine, which lacks or has a low membrane fusion function, and thus has superior biocompatibility, to a method for preparing poly(lactic-co-glycolic acid) (PLGA) containing said recombinant hemagglutinin protein, and to PLGA microspheres prepared by the method.

Description

안전성이 뛰어난 인플루엔자 바이러스 백신용 재조합 헤마글루티닌 단백질 및 이를 함유하는 생분해성 PLGA 미립자의 제조 방법Highly Safe Recombinant Hemagglutinin Protein for Influenza Virus Vaccine and Production Method of Biodegradable PLAA Particles Containing the Same
본 발명은 소수성 아미노산 잔기들로 구성된 융합 펩티드 및 TMD 부위가 제거되어 막 융합 기능이 상실됨으로써 생체 안전성이 뛰어나면서 수용성이 향상된 HA2 단백질 단편과, intramolecular disulfide bond에 의한 inclusion body 형성을 방지하기 위하여 C30S로 아미노산이 치환되어 있는 wild-type과 유사한 HA1 단백질, 이를 항원성 에피토프로 함께 포함된 PLGA 미립자를 W/O/W 이중 에멀젼 방법을 이용하여 제조하는 방법 및 이와 같이 제조된 인플루엔자 바이러스 백신용 PLGA 미립자에 관한 것이다.The present invention provides a HA2 protein fragment with excellent biosafety and improved water solubility by removing the fusion peptide consisting of hydrophobic amino acid residues and the TMD site, thereby improving water solubility, and C30S to prevent inclusion body formation by intramolecular disulfide bond. HA-protein similar to wild-type with amino acid substitution, PLGA microparticles containing it as antigenic epitope, using W / O / W double emulsion method and PLGA microparticles for influenza virus vaccine It is about.
인플루엔자 바이러스 (influenza virus)는 Orthomyxoviridae 과에 속하는 바이러스로, single-stranded(-) RNA가 7 ~ 8개로 segmented되어 있는 게놈을 가진다. 핵단백질과 세포간질 단백질의 항원성 차이에 따라 크게 A, B 그리고 C형으로 나눈다. 인플루엔자 바이러스 A는 바이러스의 envelope에 있는 표면단백질인 hemagglutinin (HA)과 neuraminidase (NA)의 항원성 차이에 따라 각각 15가지 타입 (H1-H15) 그리고 9가지 타입 (N1-N9)으로 나뉜다 (Cross et al. 2001. EMBO J., 20: 4432-4442).Influenza virus belongs to the Orthomyxoviridae family and has a genome of seven to eight single-stranded RNAs. Divided into A, B and C type according to the antigenic difference between the nucleoprotein and intercellular protein. Influenza virus A is divided into 15 types (H1-H15) and 9 types (N1-N9), respectively, according to the antigenic differences of the surface proteins hemagglutinin (HA) and neuraminidase (NA) in the virus envelope (Cross et al. 2001. EMBO J., 20: 4432-4442.
HA 단백질은 막 당단백질로서 하나의 폴리펩티드 (전구체 HA0)로 발현된 후, proteolytic cleavage에 의해 HA1과 HA2로 나누어지게 되고 자연 상태에서는 하나의 disulfide bond (HA1의 30번째 아미노산 잔기인 시스테인과 HA2의 137번째 아미노산인 시스테인 간의)로 연결되어 있다 (Swelley et al. 2004. Biochemistry, 43: 5902-5911)(도 1의 (a) 참고).The HA protein is expressed as a membrane glycoprotein as one polypeptide (precursor HA0), which is then divided into HA1 and HA2 by proteolytic cleavage, and in nature, a disulfide bond (the 30th amino acid residue of HA1, cysteine and HA2). The first amino acid, between cysteines) (Swelley et al. 2004. Biochemistry, 43: 5902-5911) (see (a) of FIG. 1).
인플루엔자 바이러스가 숙주세포로 침입하기 위해서는 바이러스 envelope 막과 숙주세포 세포막 사이의 막 융합이 일어나야만 한다. 이 과정에는 C-말단에 존재하는 transmembrane domain (TMD)를 가지고 있는 막 단백질 (membrane protein)인 HA2가 관여하는데, HA2의 N-말단에 있는 소수성 아미노산 잔기들로 구성된 융합 펩티드 (fusion peptide)가 숙주세포 (target cell)의 세포막을 부분적으로 휘저어주는 역할을 함으로써 두 개의 막 계가 융합되는 것으로 알려져 있고, 그래서 HA2 단백질을 막 융합단백질이라고 부르고 있다 (Cross et al. 2001. EMBO J., 20: 4432-4442).For influenza virus to invade host cells, a membrane fusion must occur between the viral envelope membrane and the host cell membrane. This process involves HA2, a membrane protein with a transmembrane domain (TMD) at the C-terminus, which is composed of a fusion peptide consisting of hydrophobic amino acid residues at the N-terminus of HA2. The two membrane systems are known to fuse by acting to partially stir the cell membrane of the target cell, and so the HA2 protein is called a membrane fusion protein (Cross et al. 2001. EMBO J., 20: 4432- 4442).
PLGA[poly(lactic-co-glycolic acid)]는 생체 내에서 젖산과 글리콜산으로 분해되고 최종적으로 이산화탄소와 물로 배출되는 생분해성, 생체 적합성을 갖고 있으며 미국 식품의약품안전청에서 승인된 고분자물질이다 (G Khang et al., 2004, Tissue Eng. Regen. Med., 1, 9).PLGA [poly (lactic-co-glycolic acid)] is a biodegradable, biocompatible, biodegradable biodegradable lactic acid and glycolic acid and finally released to carbon dioxide and water. Khang et al., 2004, Tissue Eng. Regen. Med., 1, 9).
생분해성 고분자 나노-/미립자를 제조하는 기술은 백신 제조뿐만 아니라 전달 시스템으로의 이용, 생체면역 질병치료 등에 관한 연구를 통해 최근 들어 많은 관심을 받고 있다 (Lemoine D, 1998, J Control Release. 54(1):15-27). 바이러스 백신 제조용으로 항원성 단백질/펩티드를 캡슐화하는 경우는 FDA에서 생체 적합성을 검증받은 생분해성 poly(lactic-co-glycolic acid) (PLGA)를 이용한 고분자 미립자를 제조하는 방법에 대한 보고에 관심을 가지게 되었다 (Tamber et al., 2005, Adv Drug Deliv Rev. 57(3):357-76).The technology for producing biodegradable polymer nano- / particulates has received much attention in recent years through research into not only vaccine preparation but also use as a delivery system and treatment of bioimmune diseases (Lemoine D, 1998, J Control Release. 54 ( 1): 15-27). Encapsulating antigenic proteins / peptides for the manufacture of viral vaccines is of interest for reports on the preparation of polymeric microparticles using biodegradable, biodegradable poly (lactic-co-glycolic acid) (PLGA). (Tamber et al., 2005, Adv Drug Deliv Rev. 57 (3): 357-76).
DNA 백신 (vaccine)을 제조하는 연구에는 DNA의 특성을 고려한 cationic liposome으로 캡슐화하는 방법이 주로 이용되었으나, 최근에는 PLGA 또는 polycationic polymeric 미립자를 제조하는 시도가 보고되고 있다 (Jilek et al., 2005, Adv Drug Deliv Rev. 57(3):377-90).Encapsulation of cationic liposomes in consideration of DNA characteristics has been mainly used for the manufacture of DNA vaccines (vaccine), but recently, attempts to prepare PLGA or polycationic polymeric microparticles have been reported (Jilek et al., 2005, Adv). Drug Deliv Rev. 57 (3): 377-90).
약물을 전달하기 위한 방법으로서 W/O 단일층 에멀젼 (monolayer emulsion method) 미립자 (microparticle)는 높은 초기 방출율을 가지며 일정 양이 방출된 이후에 발생하는 지연시간과 낮은 약물 지속기간을 갖는 단점이 있다 (G Khang et al., 2004, Tissue Eng. Regen. Med., 1, 9).As a method for delivering drugs, W / O monolayer emulsion method microparticles have a high initial release rate and have the disadvantage of having a low drug duration and a delay occurring after a certain amount is released ( G Khang et al., 2004, Tissue Eng. Regen. Med., 1, 9).
또한 단백질 약물은 대부분 수용성이기 때문에 W/O/W 이중 에멀젼 (double emulsion method) 용매 증발법 (solvent evaporation)을 이용하여 주로 미립자를 제조한다 (KJ Cho, 2008, Tissue Eng Regen Med, 5, 172). 본 발명에서도 W/O/W 이중 에멀젼 방법을 이용하여 미립자를 제조하였다. 하지만 이 방법은 단일층 에멀젼 미립자보다 크기 조절이 어렵고 포접할 수 있는 약물이 제한된다는 단점을 가지고 있다 (JT Ko et al., 2007, Key Eng Mater, 342, 513).In addition, since most protein drugs are water-soluble, the microparticles are mainly prepared by using W / O / W double emulsion method and solvent evaporation (KJ Cho, 2008, Tissue Eng Regen Med, 5, 172). . In the present invention, fine particles were prepared using the W / O / W double emulsion method. However, this method has the disadvantage of being difficult to control and limited in inclusion drugs than monolayer emulsion particles (JT Ko et al., 2007, Key Eng Mater, 342, 513).
인플루엔자 바이러스에 대한 백신 (vaccine)의 제조는 전통적으로 불활성화된 바이러스를 사용하거나 바이러스 입자에서 추출한 HA과 NA 단백질을 사용하고 있으나, 정제 과정에서 완전히 제거되지 못한 viral lipid 등이 함유되어 있어 어린 유아와 노인들에게는 안전성 면에서 아직도 문제가 되고 있다. 또한, 높은 혈청 IgG 반응을 유도하지만 바이러스 침투경로가 되는 코의 분비물에서는 IgA 반응이 유도되지 못하고 있다. 최근에 살아있는 약독화된 (attenuated) 바이러스 (예를 들어, temperature-sensitive)를 백신으로 이용하기 위한 연구가 진행되고 있으나, 활성이 있는 바이러스로 변환될 수 있는 가능성, 낮은 항체 생성 유도로 인하여 높은 dosage로 투여해야 하거나 불활성화된 바이러스를 함께 투여해야 하는 등의 문제점이 있는 것으로 보고되고 있어, 많은 가능성에도 불구하고 아직은 실용화되지 못하고 있는 실정이다.Vaccines against influenza viruses have traditionally been using inactivated viruses or HA and NA proteins extracted from virus particles, but contain viral lipids that have not been completely removed during purification. It is still a problem for the elderly in terms of safety. In addition, IgA responses are not induced in nasal secretions that induce high serum IgG responses but become viral penetration pathways. Recently, studies have been conducted to use live attenuated viruses (eg, temperature-sensitive) as vaccines, but high dosages due to the possibility of being converted into active viruses and the induction of low antibody production It has been reported that there is a problem such as the need to administer or to inactivate the inactivated virus, and despite the many possibilities it is not practical yet.
HA 단백질을 함유하는 PLGA 고분자 나노-/미립자를 이용한 인플루엔자 바이러스 백신에 관한 2개의 연구 논문이 보고되었으나, egg에서 배양된 인플루엔자 바이러스 입자를 유기용매로 불활성화시킨 후 native 상태의 HA 단백질을 추출 정제하여 사용한 연구로서, 전통적인 불활성화된 바이러스 백신을 제조하는 공정과 유사한 방법을 사용하여 HA 단백질을 추출 정제하여 사용한 것이었다 (Lemoine D, 1998, J Control Release. 54(1):15-27; Hilbert et al., Vaccine. 1999 17(9-10):1065-73). 상기 방법들은 서로 성질이 다른 친수성 HA1과 소수성 HA2를 함께 포함하는 PLGA 고분자 나노-/미립자를 제조할 수 있음을 보여 주었으나, 바이러스 유래의 지질 등의 성분이 완전히 정제되지 못하고 섞여 들어가면서 독성 및 감염의 위험성을 가지고 있다.Two research papers on influenza virus vaccines using PLGA polymer nano- / particulates containing HA protein have been reported.However, influenza virus particles grown in egg were inactivated with an organic solvent, and then extracted and purified in the native HA protein. The study used was to extract and purify HA proteins using a method similar to the process for preparing traditional inactivated viral vaccines (Lemoine D, 1998, J Control Release. 54 (1): 15-27; Hilbert et al. , Vaccine. 1999 17 (9-10): 1065-73). Although the above methods have shown that PLGA polymer nano- / particulates containing hydrophilic HA1 and hydrophobic HA2 having different properties can be prepared, the components such as virus-derived lipids cannot be completely purified and mixed to prevent toxicity and infection. It has a risk.
한국특허등록 제10-0703571호에는 인플루엔자에 대한 펩티드-기초 백신이 개시되어 있으며, 한국특허공개 제2008-0093382호에는 독감 예방용 백신 조성물이 개시되어 있으나, 본 발명의 인플루엔자 바이러스 백신용 항원성 에피토프 (antigenic epitope)로서의 재조합 HA (hemagglutinin) 단백질과는 상이하다.Korean Patent Registration No. 10-0703571 discloses a peptide-based vaccine against influenza, and Korean Patent Publication No. 2008-0093382 discloses a vaccine composition for preventing influenza, but the antigenic epitope for influenza virus vaccine of the present invention. It is different from recombinant HA (hemagglutinin) protein as an antigenic epitope.
또한, 한국특허등록 제10-0702523호에는 클로닝된 뉴클레오타이드 서열로부터 약독화된 파라인플루엔자 바이러스를 제조하는 방법이 개시되어 있으며, 한국특허공개 제2009-0034297호에는 인플루엔자에 대한 항바이러스제 및 백신이 개시되어 있으나, 본 발명의 생체 안정성이 높은 항원성 에피토프로서의 재조합 HA 단백질을 함유하는 PLGA 미세입자와는 상이하다.In addition, Korean Patent Registration No. 10-0702523 discloses a method for producing an attenuated parainfluenza virus from a cloned nucleotide sequence, and Korean Patent Publication No. 2009-0034297 discloses an antiviral agent and a vaccine against influenza. However, it is different from PLGA microparticles containing a recombinant HA protein as a highly stable antigenic epitope of the present invention.
본 발명은 상기와 같은 요구에 의해 안출된 것으로서, 본 발명에서는 N-말단에 존재하는 소수성 아미노산 잔기들로 구성된 융합 펩티드 (1 ~ 22 아미노산 잔기) 및 C-말단에 존재하는 transmembrane domain (TMD)을 단백질공학적인 방법으로 제거하여 대장균에서 발현한 변형된 HA2 단백질을, 본 발명에서 인플루엔자 바이러스 백신용 항원성 에피토프로 사용하였다. 이 단백질은 융합 펩티드 자체가 가지는 막 융합 기능이 상실되어 생체 안전성이 뛰어난 새로운 인플루엔자 바이러스 백신용 항원성 에피토프로 작용할 수 있다. 또한, N-말단 신호 서열을 제거하고 (1 ~ 16 아미노산 잔기) intramolecular disulfide bond에 의한 inclusion body 형성을 방지하기 위하여 C30S로 아미노산이 치환된 후 대장균에서 발현된, wild-type과 유사한 HA1 단백질을 항원성 에피토프로 함께 사용하였다.The present invention has been made in accordance with the above requirements, and in the present invention, a fusion peptide composed of hydrophobic amino acid residues present at the N-terminus (1 to 22 amino acid residues) and a transmembrane domain (TMD) present at the C-terminus are provided. The modified HA2 protein expressed in E. coli removed by protein engineering method was used as an antigenic epitope for influenza virus vaccine in the present invention. This protein loses the membrane fusion function of the fusion peptide itself and can act as an antigenic epitope for novel influenza virus vaccines with excellent biosafety. In addition, to remove the N-terminal signal sequence (1-16 amino acid residues) and to prevent inclusion body formation by intramolecular disulfide bonds, a wild-type similar HA1 protein expressed in Escherichia coli after the amino acid is substituted with C30S antigen Used as a sex epitope.
상기와 같이 제조된 변형된 HA1과 HA2 단백질을 함께 포함하는 PLGA 미립자를 W/O/W 이중 에멀젼 미세캡슐화 방법을 이용하여 제조하였다. 소수성 아미노산 잔기들로 구성된 융합 펩티드 및 TMD 부위가 제거된 HA2 단백질은 수용성이 증가하여, 친수성 성질의 HA1 단백질과 함께 미세캡슐화가 비교적 용이하게 수행될 수 있는 장점도 있다.PLGA microparticles containing the modified HA1 and HA2 proteins prepared as described above were prepared using a W / O / W double emulsion microencapsulation method. The fusion peptide composed of hydrophobic amino acid residues and the HA2 protein from which the TMD site was removed have an advantage in that water solubility is increased, so that microencapsulation with the hydrophilic HA1 protein can be performed relatively easily.
고분자 PLGA 미립자를 제조하는 W/O/W 이중 에멀젼 미세캡슐화 방법의 최적 조건을 유화제 (PVA) 함량, 용매 추출 방법 (stirring 또는 evaporation), 입자 경화시 교반 속도 등을 조절하면서 탐색하였고, SEM (scanning electron microscopy)를 이용하여 제조된 미립자의 크기, 모양 및 표면의 구멍 형성 정도 등을 검증하였다.The optimum conditions of the W / O / W double emulsion microencapsulation method for preparing the polymer PLGA microparticles were investigated by controlling the emulsifier (PVA) content, solvent extraction method (stirring or evaporation), stirring speed during particle curing, and SEM (scanning). Electron microscopy) was used to verify the size, shape and degree of hole formation on the prepared particles.
또한 상기와 같이 제조된 PLGA 미립자는 동결건조한 분말로 보관할 수 있어, 용액 상에서 보다는 단백질의 장기간 안정성 (long-term stability)이 증가되는 장점을 가지게 된다. 변형된 HA1과 HA2 단백질을 함께 포함하는 PLGA 미립자가 생체 내에서 오랜 기간 항원성 에피토프를 서서히 방출하는 우수한 서방성 (slow release)을 가지는지 in vitro 방출 실험을 통하여 검증하였다.In addition, the PLGA particles prepared as described above can be stored as a lyophilized powder, which has the advantage that the long-term stability of the protein is increased rather than in solution. PLGA microparticles containing modified HA1 and HA2 proteins together were verified through in vitro release experiments to have a good slow release that slowly releases antigenic epitopes in vivo .
상기 과제를 해결하기 위해, 본 발명은 막 융합 (membrane fusion) 기능이 결여 또는 저하되어 생체 안전성이 뛰어난 인플루엔자 바이러스 백신용 항원성 에피토프 (antigenic epitope)로서의 재조합 HA (hemagglutinin) 단백질을 제공한다.In order to solve the above problems, the present invention provides a recombinant hemagglutinin (HA) protein as an antigenic epitope for influenza virus vaccines having high or low biosafety due to a lack or decrease in membrane fusion function.
또한, 본 발명은 상기 재조합 HA 단백질을 함유하는 PLGA [poly(lactic-co-glycolic acid)] 미립자를 제조하는 방법을 제공한다.The present invention also provides a method for producing PLGA [poly (lactic- co- glycolic acid)] microparticles containing the recombinant HA protein.
또한, 본 발명은 상기 방법에 의해 제조된 인플루엔자 바이러스 백신용 PLGA 미립자을 제공한다.The present invention also provides PLGA microparticles for influenza virus vaccine prepared by the above method.
본 발명에 따르면, (1) 생체 안전성이 뛰어난 항원성 에피토프로서의 mutant HA2 단백질의 제조가 가능하고, (2) 유아와 노인들에게 요구되는 독성이 없고 향상된 백신 효능을 갖는 인플루엔자 바이러스 백신의 개발이 가능하며, (3) 단백질 공학 기술을 이용하여 기존의 특허 기술을 대체할 수 있는 새로운 형태의 인플루엔자 바이러스 백신용 항원성 에피토프의 개발이 가능하며, (4) 조류독감 바이러스, 신종 Flu 및 HIV 바이러스 gp41 단백질 관련 백신 개발에 활용이 가능하며, (5) 약물 전달 시스템으로의 활용이 가능하며, 막 융합을 이용한 약물 전달 치료 방법에 활용이 가능하다.According to the present invention, (1) the production of a mutant HA2 protein as an antigenic epitope with excellent biosafety is possible, and (2) the development of an influenza virus vaccine having no toxicity and improved vaccine efficacy required for infants and the elderly. And (3) using protein engineering techniques to develop new forms of antigenic epitopes for influenza virus vaccines that can replace existing patented technologies, and (4) avian influenza virus, swine Flu, and HIV virus gp41 proteins. It can be used to develop related vaccines, (5) can be used as drug delivery system, and can be used for drug delivery treatment method using membrane fusion.
도 1은 HA (hemagglutinin)의 모식도(a)와 본 발명에서 사용한 HA2 유전자를 포함하는 플라스미드 DNA construct의 종류(b)이다.1 is a schematic diagram (a) of HA (hemagglutinin) and a type (b) of a plasmid DNA construct including the HA2 gene used in the present invention.
도 2는 재조합 HA1과 HA2 단백질 발현을 위한 벡터 construct이다.2 is a vector construct for recombinant HA1 and HA2 protein expression.
도 3은 HPLC를 이용하여 단백질을 정제한 결과이다.3 shows the result of protein purification using HPLC.
도 4는 미세캡슐화 과정을 나타낸다.4 shows the microencapsulation process.
도 5는 HA 단백질을 포함하는 PLGA 캡슐화된 미립자 분말들이다.5 are PLGA encapsulated particulate powders comprising HA protein.
도 6는 Indirect ELISA법을 이용한 단백질의 정량곡선이다.Figure 6 is a quantitative curve of the protein using the Indirect ELISA method.
도 7은 혈청에 존재하는 HA(HA1+HA2) 항원 확인 실험 결과이다.7 shows the results of a test for HA (HA1 + HA2) antigen present in serum.
도 8은 anti-HA (anit-HA1 + anti-HA2) 항체 생성 확인 실험 결과이다.8 shows the results of the anti-HA (anit-HA1 + anti-HA2) antibody production.
도 9는 항체(anti-HA1) 생성 확인 실험 결과이다.9 shows the results of antibody (anti-HA1) production confirmation experiment.
도 10은 항체(anti-HA2) 생성 확인 실험 결과이다.10 shows the results of antibody (anti-HA2) production confirmation experiment.
본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 HA1 단백질의 1 ~ 16번 아미노산 잔기들이 결실되고, 30번째 아미노산 잔기가 시스테인에서 세린으로 치환되고; 서열번호 2의 아미노산 서열로 이루어진 HA2 단백질의 137번째 아미노산 잔기가 시스테인에서 세린으로 치환되고, 123번째, 124번째 및 127번째 아미노산 잔기에 해당하는 알기닌의 코돈이 AGG에서 CGT으로 각각 치환된 것을 특징으로 하는 인플루엔자 바이러스 백신용 항원성 에피토프 (antigenic epitope)로서의 재조합 HA (hemagglutinin) 단백질을 제공한다.In order to achieve the object of the present invention, the present invention is to delete amino acid residues 1 to 16 of the HA1 protein consisting of the amino acid sequence of SEQ ID NO: 1, the 30th amino acid residue is substituted in the cysteine to serine; The 137th amino acid residue of the HA2 protein consisting of the amino acid sequence of SEQ ID NO: 2 is substituted with serine in cysteine, and the codons of arginine corresponding to the 123rd, 124th and 127th amino acid residues are substituted with AGT to CGT, respectively. To provide a recombinant hemagglutinin (HA) protein as an antigenic epitope for influenza virus vaccines.
본 발명의 일 구현예에 따른 재조합 HA 단백질에서, 상기 HA2 단백질의 1번째 아미노산 잔기는 글리신에서 글루탐산 또는 발린으로 치환될 수 있다.In a recombinant HA protein according to an embodiment of the present invention, the first amino acid residue of the HA2 protein may be substituted with glutamic acid or valine in glycine.
본 발명의 일 구현예에 따른 재조합 HA 단백질에서, 상기 HA2 단백질의 융합 펩티드(fusion peptide)에 해당하는 1 ~ 22번째 아미노산 잔기들이 결실될 수 있으며, 동시에 상기 HA2 단백질의 TMD (transmembrane domain)에 해당하는 186 ~ 221번째 아미노산 잔기들이 결실될 수 있다.In a recombinant HA protein according to an embodiment of the present invention, amino acid residues 1 to 22 corresponding to the fusion peptide of the HA2 protein may be deleted, and at the same time, correspond to the TMD (transmembrane domain) of the HA2 protein. 186 th to 221 th amino acid residues may be deleted.
본 발명의 일 구현예에 따른 재조합 HA 단백질에서, 상기 재조합 HA1 및 HA2 단백질의 C-말단에 각각 His7-tag 및 His6-tag이 부착될 수 있다.In the recombinant HA protein according to an embodiment of the present invention, His7-tag and His6-tag may be attached to the C-terminus of the recombinant HA1 and HA2 proteins, respectively.
또한, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 HA1 단백질의 1~16번 아미노산 잔기들이 결실되고, 30번째 아미노산 잔기가 시스테인에서 세린으로 치환되고; 서열번호 2의 아미노산 서열로 이루어진 HA2 단백질의 137번째 아미노산 잔기가 시스테인에서 세린으로 치환되고, 123번째, 124번째 및 127번째 아미노산 잔기에 해당하는 알기닌의 코돈이 AGG에서 CGT으로 각각 치환된 것을 특징으로 하는 인플루엔자 바이러스 백신용 항원성 에피토프 (antigenic epitope)로서의 재조합 HA (hemagglutinin) 단백질을 W/O/W 이중 에멀젼 미세캡슐화 (microencapsulation)시키는 단계를 포함하는 인플루엔자 바이러스 백신용 PLGA 미립자 (microparticle)를 제조하는 방법을 제공한다.In addition, the present invention is deleted amino acid residues 1 to 16 of the HA1 protein consisting of the amino acid sequence of SEQ ID NO: 1, the 30th amino acid residue is substituted with a serine in cysteine; The 137th amino acid residue of the HA2 protein consisting of the amino acid sequence of SEQ ID NO: 2 is substituted with serine in cysteine, and the codons of arginine corresponding to the 123rd, 124th and 127th amino acid residues are substituted with AGT to CGT, respectively. Method for producing PLGA microparticles for influenza virus vaccine comprising the steps of microencapsulation of recombinant HA (hemagglutinin) protein as an antigenic epitope for influenza virus vaccines To provide.
본 발명의 일 구현예에 따른 방법에서, 상기 W/O/W 이중 에멀젼 미세캡슐화는In the method according to an embodiment of the present invention, the W / O / W double emulsion microencapsulation is
(a) 상기 재조합 HA 단백질과 PVA (polyvinylalcohol) 4~5 %(w/v)를 포함하고 있는 수용액상 (aqueous phase)(W1)을 제조하는 단계;(a) preparing an aqueous phase (W 1 ) comprising the recombinant HA protein and 4-5% (w / v) of polyvinylalcohol (PVA);
(b) PLGA를 용매에 용해한 후 (O), W1 과 O를 혼합하고 교반기를 이용하여 에멀젼시켜 W1/O을 생성하는 단계;(b) dissolving PLGA in a solvent (O), mixing W 1 and O and emulsifying with a stirrer to produce W 1 / O;
(c) 상기 W1/O을 PVA 0.5 ~ 0.7 %(w/v)를 함유하고 있는 수용액상에 첨가하고 교반을 실시하여 이중 에멀젼 (double emulsion)시켜 W1/O/W2 를 생성하는 단계; 및(c) adding the W 1 / O to an aqueous solution containing 0.5 to 0.7% (w / v) of PVA and performing a double emulsion by stirring to produce W 1 / O / W 2 . ; And
(d) 상기 생성물에 대해 용매 제거 과정 (solvent extraction) 및 경화 (hardening) 과정을 거치는 단계를 포함할 수 있다.(d) subjecting the product to solvent extraction and hardening.
상기 (a) 및 (c) 단계에 첨가되는 PVA는 바람직하게는 각각 4.2 %(w/v) 및 0.6 %(w/v)이다.The PVA added in steps (a) and (c) is preferably 4.2% (w / v) and 0.6% (w / v), respectively.
본 발명의 일 구현예에 따른 방법에서, 상기 용매 제거 과정은 교반 (stirring) 또는 증발 (evaporation)에 의해 수행될 수 있다.In the method according to an embodiment of the present invention, the solvent removal process may be performed by stirring or evaporation.
본 발명의 일 구현예에 따른 방법에서, 상기 용매 제거 과정 및 경화 과정은 90 ~ 110 rpm, 바람직하게는 100 rpm의 교반에 의해 수행될 수 있다.In the method according to an embodiment of the present invention, the solvent removal process and the curing process may be performed by stirring at 90 ~ 110 rpm, preferably 100 rpm.
본 발명의 일 구현예에 따른 방법은 상기 (d) 단계 후에 경화 과정을 거친 PLGA 미립자를 액체 질소를 이용하여 급속 냉동을 시킨 후, 동결건조하는 단계를 추가로 포함할 수 있다.The method according to an embodiment of the present invention may further include a step of freezing the PLGA fine particles that have been cured after the step (d) using liquid nitrogen, and then lyophilizing.
본 발명의 일 구현예에 따른 방법에서, 상기 HA2 단백질의 1번째 아미노산 잔기는 글리신에서 글루탐산 또는 발린으로 치환될 수 있다.In a method according to an embodiment of the present invention, the first amino acid residue of the HA2 protein may be substituted with glutamic acid or valine in glycine.
본 발명의 일 구현예에 따른 방법에서, 상기 HA2 단백질의 융합 펩티드 (fusion peptide)에 해당하는 1 ~ 22번째 아미노산 잔기들이 결실될 수 있으며, 동시에 상기 HA2 단백질의 TMD (transmembrane domain)에 해당하는 186 ~ 221번째 아미노산 잔기들이 결실될 수 있다.In a method according to an embodiment of the present invention, amino acid residues 1 to 22 corresponding to the fusion peptide of the HA2 protein may be deleted, and at the same time, 186 corresponding to the TMD (transmembrane domain) of the HA2 protein. 221 rd amino acid residues may be deleted.
본 발명은 또한, 본 발명의 방법에 의해 제조된 인플루엔자 바이러스 백신용 PLGA 미립자를 제공한다.The present invention also provides PLGA microparticles for influenza virus vaccines produced by the method of the present invention.
이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
HA2 단백질의 경우 막 융합 기능을 제거하기 위하여 다음과 같이 세 가지 방법을 사용하였다.In the case of HA2 protein, three methods were used as follows to remove membrane fusion function.
첫째, HA2 단백질의 N-말단에 존재하는 융합 펩티드 자체의 막 융합 기능이 저하된 첫 번째 아미노산 잔기가 치환된 G1E HA2와 G1V HA2 mutant 단백질을 제조하여, coiled-coil HA2 trimer는 그대로 유지하면서 막 융합을 막을 수 있도록 하였다. 상기 G1E HA2와 G1V HA2 mutant 단백질은 HA2 단백질의 1번째 아미노산 잔기가 글리신에서 각각 글루탐산 및 발린으로 치환된 것을 의미한다.First, the G1E HA2 and G1V HA2 mutant proteins were substituted with the first amino acid residues of which the membrane fusion function of the fusion peptide itself at the N-terminus of the HA2 protein was reduced. To prevent it. The G1E HA2 and G1V HA2 mutant proteins mean that the first amino acid residue of the HA2 protein is substituted with glutamic acid and valine in glycine, respectively.
둘째, HA2 단백질의 N-말단에 존재하는 22개의 소수성 아미노산 잔기들로 구성된 융합 펩티드 자체를 제거하여 막 융합 활성을 없애준 HA2(23-185)와 HA2(23-221) 단백질 단편을 제조하였다. HA2 단백질에 포함된 3개의 rare 알기닌 (arginine) 코돈을 대장균에서 발현에 적합한 코돈으로 치환하였고 (R123, R124, R127), HA1 단백질의 30번째 아미노산 잔기인 시스테인과 intermolecular disulfide bond를 형성할 수 있는 HA2의 137번째 아미노산 잔기인 시스테인을 세린으로 치환하였다 (C137S).Second, the HA2 (23-185) and HA2 (23-221) protein fragments were prepared by removing the fusion peptide itself consisting of 22 hydrophobic amino acid residues present at the N-terminus of the HA2 protein. Three rare arginine codons contained in the HA2 protein were replaced with codons suitable for expression in E. coli (R123, R124, R127), and HA2, which can form an intermolecular disulfide bond with cysteine, the 30th amino acid residue of the HA1 protein Cysteine, the 137th amino acid residue of, was substituted with serine (C137S).
HA1 단백질의 경우, N-말단 신호 서열을 제거하고 (HA1(17-344)), intramolecular 또는 intermolecular disulfide bond에 의한 inclusion body 형성을 방지하기 위하여 HA1 단백질의 30번째 아미노산 잔기인 시스테인을 세린으로 치환하였다 (C30S).In the case of the HA1 protein, the N-terminal signal sequence was removed (HA1 (17-344)) and cysteine, the 30th amino acid residue of the HA1 protein, was substituted with serine to prevent inclusion body formation by intramolecular or intermolecular disulfide bonds. (C30S).
재조합 HA1 및 HA2 단백질의 대장균에서의 발현을 위하여, 숙주 세포 균주는 대장균 균주 Rosetta(DE3)pLysS (Novagen)을 사용하였고, O.D.600 = 0.8 시점에서 0.5 mM IPTG로 유도 후 18 ~ 20 ℃, 110 rpm에서 6 ~ 8시간 발현을 시켰다. 재조합 HA1 및 HA2 단백질의 C-말단에 각각 His7-tag과 His6-tag을 붙여주어 Ni 친화성 크로마토그래피를 이용하여 정제 조건을 확립하였다. 비드에 결합된 단백질을 20 mM과 50 mM 이미다졸이 첨가된 세정 버퍼로 충분히 세척한 후, step-wise 용출을 수행하였다. HA1 단백질의 경우 EDTA와 DTT 및 β-머캅토에탄올을 넣지 않고 세포를 파쇄하였다.For the expression of recombinant HA1 and HA2 proteins in E. coli, the host cell strain was E. coli strain Rosetta (DE3) pLysS (Novagen) and 18-20 ° C, 110 rpm after induction into 0.5 mM IPTG at OD 600 = 0.8. 6 to 8 hours in expression. Purification conditions were established using Ni affinity chromatography by attaching His7-tag and His6-tag to the C-terminus of the recombinant HA1 and HA2 proteins, respectively. The proteins bound to the beads were sufficiently washed with a washing buffer to which 20 mM and 50 mM imidazole were added, followed by step-wise elution. In the case of HA1 protein, cells were disrupted without adding EDTA, DTT, and β-mercaptoethanol.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
시약 및 기기Reagents and Instruments
본 발명에서 사용한 HA 유전자는 인플루엔자 바이러스 type A X31 균주 유래이고 플라스미드 pHA에 들어 있다. pET24b(+) 벡터에 삽입하여 대장균의 rare 코돈 문제를 해결한 대장균 균주 Rosetta(DE3)pLysS (Novagen)에서 발현시켰다. Mutant DNA 제조를 위해 사용된 DNA 증폭장치는 Biometra사의 T-GRADIENT 48 모델을 사용하였다.The HA gene used in the present invention is derived from influenza virus type A X31 strain and is contained in plasmid pHA. It was expressed in E. coli strain Rosetta (DE3) pLysS (Novagen), which was inserted into the pET24b (+) vector to solve the rare codon problem of E. coli. The DNA amplification apparatus used for the preparation of mutant DNA was a T-GRADIENT 48 model of Biometra.
Homogenizer (Ultra-Turrax, IKA)와 scanning electron microscopy (SEM; JEOL JSM-6390, Japan), evaporator (RUCHI, Rotavapor R-210)를 사용하여 실험을 진행하였다. PVA (폴리비닐알콜)와 디클로로메탄은 SIGMA-ALDRICH에서 구입하였으며 PLGA (RESOMER
Figure PCTKR2010003291-appb-I000001
RG 502H)는 Boehringer Ingelheim에서 구입하였다.
Experiments were performed using a homogenizer (Ultra-Turrax, IKA), scanning electron microscopy (SEM; JEOL JSM-6390, Japan), and an evaporator (RUCHI, Rotavapor R-210). PVA (polyvinyl alcohol) and dichloromethane were purchased from SIGMA-ALDRICH and PLGA (RESOMER)
Figure PCTKR2010003291-appb-I000001
                 RG 502H) was purchased from Boehringer Ingelheim.
서방성 검증 실험에서 사용한 일차 항체인 마우스 His Tag 항체는 ABGENT에서, 이차 항체인 염소 HRP-conjugated 항-마우스 IgG는 Molecular Probes에서 구입하였다.The mouse His Tag antibody, the primary antibody used in the sustained release validation experiment, was purchased from ABGENT, and the goat HRP-conjugated anti-mouse IgG, the secondary antibody, was obtained from Molecular Probes.
실시예 1: Coiled-coil HA2 trimer의 interface에 존재하는 d position mutant의 제조Example 1: Preparation of d position mutant present at interface of coiled-coil HA2 trimer
본 발명에서 사용한 모든 HA2 construct는 아래와 같은 프라이머를 이용하여 3개 (R123, R124, R127)의 rare 알기닌 코돈 (AGG)을 대장균에서 발현에 적합한 코돈 (CGT)으로 치환하여 사용하였다.All HA2 constructs used in the present invention were used by substituting three rare (R123, R124, R127) rare arginine codons (AGG) with codons (CGT) suitable for expression in E. coli.
HA-3R-FHA-3R-F
ACAAGCTGTTTGAAAAAACACGTCGTCAACTGCGTGAAAATGCTGAAGAGAT(서열번호 3)ACAAGCTGTTTGAAAAAACACGTCGTCAACTGCGTGAAAATGCTGAAGA G AT (SEQ ID NO: 3)
HA-3R-RHA-3R-R
ATCTCTTCAGCATTTTCACGCAGTTGACGACGTGTTTTTTCAAACAGCTTGT(서열번호 4)ATCTCTTCAGCATTTTCACGCAGTTGACGACGTGTTTTTTCAAACAGCTTGT (SEQ ID NO: 4)
본 발명에서 수행한 모든 site-directed mutagenesis는 Stratagene (USA)의 QuickChange
Figure PCTKR2010003291-appb-I000002
방법을 변형하여 PCR (Biometra Tgradient Thermocycler)을 이용하여 수행하였다. 돌연변이를 일으키고자 하는 자리를 가운데에 포함하고 있는 동일한 위치를 포함하는 30 ~ 35 bp 길이의 정방향 및 역방향 mutagenic 프라이머 (Bioneer, Korea)를 사용하였다. 플라스미드 DNA 전체를 복제해야 하기 때문에 fidelity가 우수하면서도 합성속도가 빠른 (1kb/min) Pfu Turbo
Figure PCTKR2010003291-appb-I000003
DNA polymerase를 사용하여 일반적으로 다음의 조건으로 PCR 반응을 수행하였다; 25 cycle (95℃ 45 sec; 55℃ 1 min; 68℃ 8 min).
All site-directed mutagenesis performed in the present invention are QuickChange of Stratagene (USA)
Figure PCTKR2010003291-appb-I000002
                 The method was modified and performed using PCR (Biometra Tgradient Thermocycler). Forward and reverse mutagenic primers (Bioneer, Korea) of 30 to 35 bp in length including the same position including the site to be mutated were used. Excellent fidelity and fast synthesis rate (1kb / min) because the entire plasmid DNA must be replicatedPfuTurbo
Figure PCTKR2010003291-appb-I000003
                 PCR reactions were generally performed using DNA polymerase under the following conditions; 25 cycles (95 ° C. 45 sec; 55 ° C. 1 min; 68 ° C. 8 min).
PCR 반응이 종결된 후에는 아가로스 겔 전기영동을 수행하여 linear한 형태의 플라스미드 크기의 DNA 밴드가 증폭되었는지를 확인한 후, Dpn I 제한효소를 3시간 정도 처리하여 E. coli DH5α에서 추출하여 사용한 parental DNA template를 최대한 제거하였다. E. coli DH5α에 형질전환을 시킨 후 2 ~ 3개 정도의 콜로니로부터 플라스미드 DNA miniprep을 하여 DNA sequencing (Solgent, Korea)을 통하여 원하는 위치가 변형된 것을 확인하였다.After the PCR reaction was terminated, agarose gel electrophoresis was performed to confirm the amplification of the linear plasmid-sized DNA band, followed by treatment with Dpn I restriction enzyme for about 3 hours, followed by parental extraction from E. coli DH5α. DNA template was removed as much as possible. After transformation into E. coli DH5α, plasmid DNA miniprep was carried out from 2 or 3 colonies to confirm that the desired position was modified through DNA sequencing (Solgent, Korea).
실시예 2: N-말단 아미노산 mutant HA2의 제조Example 2: Preparation of N-terminal amino acid mutant HA2
감염능력이 결여되어 생체 안전성이 뛰어날 것으로 판단되는 G1E HA2 mutant와 G1V HA2 mutant를 항원성 에피토프로 사용하기 위하여 site-directed mutagenesis를 통하여 각각 제조하였다. 위의 두 가지 종류의 HA2 mutant는 α-helix propensity가 그대로 유지되어 coiled-coil HA2 trimer를 형성할 수는 있지만 막 융합 활성은 거의 없는 것으로 보고된 바 있다. 이때 주형으로 사용한 플라스미드 DNA construct는 HA2(1-185)였다 (도 1(b)의 B).G1E HA2 mutant and G1V HA2 mutant, which are considered to have excellent biosafety due to lack of infectivity, were prepared through site-directed mutagenesis for use as antigenic epitopes. The two types of HA2 mutants have been reported to retain the α-helix propensity and form a coiled-coil HA2 trimer, but have little membrane fusion activity. At this time, the plasmid DNA construct used as a template was HA2 (1-185) (B of Fig. 1 (b)).
실시예 3: 융합 펩티드가 제거된 mutant HA2의 제조Example 3: Preparation of Mutant HA2 with Removed Fusion Peptides
본 발명에서 사용한 인플루엔자 바이러스 type A X31 균주 유래의 HA2 유전자 (1 ~ 221)는 플라스미드 pHA 상에 HA1 유전자 다음에 위치하고 있다. 자연 상태의 바이러스에서 만들어지는 온전한 HA2 단백질의 경우 C-말단 TMD 부위는 바이러스 envelope에 위치하고 N-말단 융합 펩티드 부위는 표적 세포막을 공격하게 된다. 이러한 형태는 분리정제 과정에서 detergent를 사용하여 형성되는 micelle 구조나 artificial membrane (vesicle, liposome) 위에서 두 부위가 하나의 막 상에 동시에 위치하게 되는 구조적인 문제점을 야기할 수가 있다. 같은 이유로 발현된 온전한 HA2 단백질이 발현 숙주세포의 세포막을 불안정하게 만들어 야기되는 세포독성으로 인하여 정상적인 단백질 발현을 유도하기가 어렵다고 판단된다.HA2 genes (1 to 221) from the influenza virus type A X31 strain used in the present invention are located after the HA1 gene on the plasmid pHA. In the case of intact HA2 proteins produced by natural viruses, the C-terminal TMD site is located in the virus envelope and the N-terminal fusion peptide site attacks the target cell membrane. This type of structure may cause structural problems in which two sites are simultaneously placed on one membrane on the micelle structure or artificial membrane (vesicle, liposome) formed by using detergent during separation and purification. Intact HA2 protein expressed for the same reason is difficult to induce normal protein expression due to cytotoxicity caused by unstable cell membrane of the expression host cell.
따라서, HA2 유전자 (1 ~ 221) 부위 중 N-말단 융합 펩티드 부위 또는 C-말단 TMD 부위를 제거한 HA2(1-185), HA2(23-221) 또는 HA2(23-185) 등 이러한 문제점을 피할 수 있는 변형된 construct를 제조하여, His-tag 친화성 크로마토그래피를 이용하여 정제할 수 있는 발현벡터인 pET24b(+) 벡터에 삽입하였다.Therefore, such problems as HA2 (1-185), HA2 (23-221), or HA2 (23-185) from which the N-terminal fusion peptide site or the C-terminal TMD site are removed among the HA2 gene (1 to 221) sites are avoided. A modified construct was prepared and inserted into pET24b (+) vector, an expression vector that can be purified using His-tag affinity chromatography.
먼저, HA2의 막 융합 활성부위인 융합 펩티드 (1 ~ 22번째 아미노산까지)가 제거된 HA2(23-221) DNA 단편을 가지는 플라스미드 DNA를 제조하였다 (도 1(b)의 C). 인플루엔자 바이러스 type A X31 균주 유래의 전체 HA 유전자를 가지고 있는 플라스미드 pHA를 주형으로 이용하여 아래의 2개의 프라이머를 사용하여, Pfu Turbo
Figure PCTKR2010003291-appb-I000004
DNA polymerase를 사용하여 다음과 같은 PCR 반응을 통하여, HA2(23-221) 부위만을 증폭하였다; 30 cycle (95℃ 45 sec; 53℃ 1 min; 68℃ 2 min).
First, plasmid DNA having HA2 (23-221) DNA fragments from which the fusion peptide (up to the 1st to 22nd amino acids), which is the membrane fusion active site of HA2, was removed (C of FIG. 1 (b)) was prepared. Using the plasmid pHA having the entire HA gene from the influenza virus type A X31 strain as a template, the following two primers were used.PfuTurbo
Figure PCTKR2010003291-appb-I000004
                 DNA polymerase was used to amplify only the HA2 (23-221) site through the following PCR reaction; 30 cycles (95 ° C. 45 sec; 53 ° C. 1 min; 68 ° C. 2 min).
HA2(-FP)_NdeI_F: CACTTCGTCATATGGGTTTCAGGCATCAAAATTCTG(서열번호 5)HA2 (-FP) _NdeI_F: CACTTCGTCATATGGGTTTCAGGCATCAAAATTCTG (SEQ ID NO: 5)
HA2_221_SalI_R: CACTTCGTGTCGACAATGCAAATGTTGCACCTAATGT(서열번호 6)HA2_221_SalI_R: CACTTCGTGTCGACAATGCAAATGTTGCACCTAATGT (SEQ ID NO: 6)
위에서 얻어진 HA2(23-221) DNA 단편을 Nde I과 Sal I으로 각각 double digestion 하고 Nde I과 Sal I으로 잘라놓은 pET-24b(+) 벡터에 라이게이션하여 DH5α에 형질전환을 실시하였다. 원하는 형태로 라이게이션이 이루어진 콜로니를 선별하기 위하여 mini-prep을 실시한 후 Nde I과 Sal I으로 double digestion을 하거나 콜로니 PCR을 실시하였다. 이렇게 선별한 플라스미드 DNA는 다시 DNA sequencing을 통하여 다시 확인하였다 (도 2).Each of the HA2 (23-221) DNA fragment obtained above with the Nde I and Sal I double digestion and ligated to pET-24b (+) vector with Nde I and Sal I cut sewn were transformed in DH5α. Mini-prep was performed to screen colonies that were ligated in the desired form, followed by double digestion with Nde I and Sal I or colony PCR. The plasmid DNA thus selected was again confirmed through DNA sequencing (FIG. 2).
위와 같은 방법으로 얻어진 HA2(23-221) 플라스미드 DNA construct를 재조합 대장균에서 발현할 경우, intramolecular 또는 intermolecular disulfide bond가 형성되어 aggregated form으로 inclusion body의 형태로 침전이 될 가능성이 많다. 그래서 여기에 137번째 시스테인을 세린으로 치환시키기 위한 site-directed mutagenesis를 실시하였다; 25 cycle (95℃ 45 sec; 53℃ 1 min; 68℃ 2 min). 결과적으로 HA2(23-221)/C137S 플라스미드 DNA construct를 최종적으로 확보하였다.When the HA2 (23-221) plasmid DNA construct obtained by the above method is expressed in recombinant E. coli, intramolecular or intermolecular disulfide bonds are formed, which is likely to precipitate in the form of inclusion bodies in aggregated form. So we performed site-directed mutagenesis to replace the 137th cysteine with serine; 25 cycles (95 ° C. 45 sec; 53 ° C. 1 min; 68 ° C. 2 min). As a result, the HA2 (23-221) / C137S plasmid DNA construct was finally obtained.
그러나, 위의 HA2(23-221) 플라스미드 DNA construct는 아직도 C-말단에 소수성 성질을 가지는 TMD (transmembrane domain)을 그대로 가지고 있기 때문에, 분리정제 과정에서 Triton X-100과 같은 detergent를 사용하여 micelle 구조가 형성되게 해야만 한다. 그래서 우선은 융합 펩티드 부위와 함께 TMD 부위도 함께 제거된 형태인 HA2(23-185) DNA 단편만을 가지는 플라스미드 DNA construct를 제조하여 사용하기로 결정하였다 (도 1(b)의 D).However, the HA2 (23-221) plasmid DNA construct still retains the transmembrane domain (TMD), which has a hydrophobic nature at the C-terminus. Thus, micelle structure using a detergent such as Triton X-100 was used during the separation and purification process. Must be formed. Therefore, first of all, it was decided to prepare and use a plasmid DNA construct having only HA2 (23-185) DNA fragments in which TMD sites were removed together with fusion peptide sites (D in FIG. 1 (b)).
pET24b(+) 벡터에 들어있는 HA2(1-185)/C137S construct를 주형으로 직접 이용하여, 아래의 2개의 프라이머를 사용하여, HA2(23-221) 플라스미드 DNA construct를 얻을 때와 같은 조건에서 아래의 2개의 프라이머를 사용하여, Pfu Turbo
Figure PCTKR2010003291-appb-I000005
DNA polymerase를 사용하여 다음과 같은 PCR 반응을 통하여, HA2(23-185)/C137S 부위만을 증폭하였다; 30 cycle (95℃ 45 sec; 53℃ 1 min; 68℃ 2 min).
Using the HA2 (1-185) / C137S construct in the pET24b (+) vector directly as a template, using the following two primers, the HA2 (23-221) plasmid DNA construct was obtained under the same conditions as below. Using 2 primers of,PfuTurbo
Figure PCTKR2010003291-appb-I000005
                 DNA polymerase was used to amplify only the HA2 (23-185) / C137S site through the following PCR reaction; 30 cycles (95 ° C. 45 sec; 53 ° C. 1 min; 68 ° C. 2 min).
HA2(-FP)_NdeI_F: CACTTCGTCATATGGGTTTCAGGCATCAAAATTCTG(서열번호 7)HA2 (-FP) _NdeI_F: CACTTCGTCATATGGGTTTCAGGCATCAAAATTCTG (SEQ ID NO: 7)
HA2_185_SalI_R: CACTTCGTGTCGACCCAGTCTTTGTATCCAGACTTCA(서열번호 8)HA2_185_SalI_R: CACTTCGTGTCGACCCAGTCTTTGTATCCAGACTTCA (SEQ ID NO: 8)
HA2(23-185)/C137S DNA 단편을 플라스미드 DNA construct를 얻을 때와 같은 방법으로 pET-24b(+) 벡터의 Nde I과 Sal I 자리에 삽입하여 원하는 형태를 확보하였다.The HA2 (23-185) / C137S DNA fragment was inserted into Nde I and Sal I sites of the pET-24b (+) vector in the same manner as when obtaining a plasmid DNA construct to obtain a desired form.
실시예 4: N-말단 신호 서열이 제거된 재조합 HA1의 제조Example 4: Preparation of recombinant HA1 from which the N-terminal signal sequence was removed
인플루엔자 바이러스 type A X31 균주 유래의 HA 유전자를 가지고 있는 플라스미드 pHA 상에 HA2 유전자 앞에 위치하고 있는 HA1 유전자 부위 중 N-말단에 존재하는 16개의 아미노산 잔기들로 구성된 신호 서열을 제외한 나머지 부위를 PCR을 이용하여 복제한 후 His-tag 친화성 크로마토그래피를 이용하여 정제할 수 있는 발현벡터인 pET24b(+) 벡터에 삽입하였다.PCR was used to detect the remaining regions of the HA1 gene region, located in front of the HA2 gene on the plasmid pHA containing the HA gene from the influenza virus type A X31 strain, except for the signal sequence consisting of 16 amino acid residues located at the N-terminus. After replication, it was inserted into pET24b (+) vector, an expression vector that can be purified using His-tag affinity chromatography.
먼저, 인플루엔자 바이러스 type A X31 균주 유래의 전체 HA 유전자를 가지고 있는 플라스미드 pHA에서 HA1 유전자 DNA 안에 존재하는 Nde I 자리를 먼저 없애주기 위하여 (아미노산의 변형은 없이) 아래의 2개의 프라이머를 사용하여 site-directed mutagenesis를 실시하였다.First, the plasmid pHA, which contains the entire HA gene from the influenza virus type A X31 strain, was first used to remove Nde I sites in the HA1 gene DNA (without modification of amino acids) using the following two primers. directed mutagenesis was performed.
HA1_NdeIX-F: GTAAACAAGATCACATACGGAGCATGCCCCAAG(서열번호 9)HA1_NdeIX-F: GTAAACAAGATCACATA C GGAGCATGCCCCAAG (SEQ ID NO: 9)
HA1_NdeIX-R: CTTGGGGCATGCTCCGTATGTGATCTTGTTTAC(서열번호 10)HA1_NdeIX-R: CTTGGGGCATGCTCCGTATGTGATCTTGTTTAC (SEQ ID NO: 10)
이렇게 HA1 유전자 DNA 안에 존재하는 Nde I 자리가 제거된 pHA를 주형으로 이용하고 아래의 2개의 프라이머를 사용하여, Pfu Turbo
Figure PCTKR2010003291-appb-I000006
DNA polymerase를 사용하여 다음과 같은 PCR 반응을 수행하여, HA1(17-344) 부위만을 증폭하였다; 30 cycle (95℃ 45 sec; 53℃ 1 min; 68℃ 2 min). HA2 DNA construct를 얻을 때와 같은 방법으로 pET-24b(+) 벡터의 Nde I과 Xho I 자리에 삽입하여 원하는 형태를 확보하였다.
Thus existing in the HA1 gene DNANde Using pHA without the I site as a template and using the two primers below,PfuTurbo
Figure PCTKR2010003291-appb-I000006
                 PCR amplification using the DNA polymerase was performed to amplify only the HA1 (17-344) site; 30 cycles (95 ° C. 45 sec; 53 ° C. 1 min; 68 ° C. 2 min). In the same way as for the HA2 DNA construct, the pET-24b (+) vectorNde I andXho Inserted in position I to secure the desired shape.
HA1_NdeI-F: CGCTACTAGCATATGAAGACCATCATTGCTTTGA(서열번호 11)HA1_NdeI-F: CGCTACTAGCATATGAAGACCATCATTGCTTTGA (SEQ ID NO: 11)
HA1_XhoI-R: CGCGTGGTCTCGAGAGTTTGTTTCTCTGGTACATT(서열번호 12)HA1_XhoI-R: CGCGTGGTCTCGAGAGTTTGTTTCTCTGGTACATT (SEQ ID NO: 12)
확보한 HA1(17-344) 플라스미드 DNA construct를 DNA sequencing을 한 후에 문헌에 보고된 인플루엔자 바이러스 type A X31 균주 유래의 HA1 유전자와 비교해 본 결과, 173번째 아미노산 잔기가 세린에서 루신으로 바뀌어져 있는 것을 확인할 수 있었다. 또한, 30번째 아미노산 잔기인 시스테인은 native 상태에서 HA2 단백질의 C137과 intermolecular disulfide bond를 형성하게 된다 (도 1의 (a) 참조). 그러나 재조합 HA1 유전자만을 대장균에서 발현할 경우, 이 C30 자리에 intramolecular 또는 intermolecular disulfide bond가 형성될 수 있어 aggregated form으로 inclusion body의 형태로 침전이 될 가능성이 많다고 판단할 수 있었다. 결국 HA1(17-344) 플라스미드 DNA construct에 C30S와 L173S의 double mutation을 도입하기 위해서 site-directed mutagenesis 과정을 순차적으로 다음과 같은 조건에서 수행하여 최종적으로 HA1(17-344)/C30S 플라스미드 DNA construct를 제조하였다.After DNA sequencing of the obtained HA1 (17-344) plasmid DNA construct, it was confirmed that the 173rd amino acid residue was changed from serine to leucine as compared with the HA1 gene from the influenza virus type A X31 strain reported in the literature. Could. In addition, cysteine, the 30th amino acid residue, forms an intermolecular disulfide bond with C137 of HA2 protein in its native state (see FIG. 1A). However, when only the recombinant HA1 gene was expressed in E. coli, intramolecular or intermolecular disulfide bonds could be formed at this C30 site. Finally, in order to introduce double mutations of C30S and L173S into HA1 (17-344) plasmid DNA construct, site-directed mutagenesis was performed sequentially under the following conditions, and finally HA1 (17-344) / C30S plasmid DNA construct was constructed. Prepared.
C30S mutation: 30 cycle (95℃ 45 sec; 55℃ 1 min; 68℃ 10 min)/2% DMSO 첨가C30S mutation: 30 cycles (95 ° C 45 sec; 55 ° C 1 min; 68 ° C 10 min) / 2% DMSO
L173S mutation: 25 cycle (95℃ 45 sec; 55℃ 1 min; 68℃ 10 min)L173S mutation: 25 cycles (95 ° C 45 sec; 55 ° C 1 min; 68 ° C 10 min)
실시예 5: 재조합 대장균에서의 발현 및 정제Example 5: Expression and Purification in Recombinant E. Coli
재조합 HA1 및 HA2 단백질의 대장균에서의 발현을 위하여, 숙주 세포 균주는 codon usage 문제를 해결할 수 있는 대장균 균주 Rosetta(DE3)pLysS (Novagen)을 사용하였다.For the expression of recombinant HA1 and HA2 proteins in E. coli, E. coli strain Rosetta (DE3) pLysS (Novagen) was used as a host cell strain to solve the codon usage problem.
가. HA2 단백질end. HA2 protein
HA2(23-185)/C137S 플라스미드 DNA construct (His6-tag)의 단백질 발현을 위한 최적 조건을 다음과 같이 결정하였다. O.D.600 값 0.7에서 0.5 mM IPTG로 유도 후 20 ℃, 110 rpm에서 6시간의 발현 조건으로 발현하고 Ni 친화성 크로마토그래피를 이용하여 정제 조건을 확립하였다. 비드에 결합된 단백질을 20 mM 이미다졸이 들어 있는 세정 버퍼로 충분히 세척한 후, step-wise 용출을 수행하였다.Optimal conditions for protein expression of HA2 (23-185) / C137S plasmid DNA construct (His6-tag) were determined as follows. After induction with 0.5 mM IPTG at an OD 600 value of 0.7, expression conditions were performed at 20 ° C. and 110 rpm for 6 hours, and purification conditions were established using Ni affinity chromatography. The proteins bound to the beads were washed sufficiently with a washing buffer containing 20 mM imidazole, followed by step-wise elution.
SDS-PAGE에서 확인한 결과, HA2의 경우는 많은 양이 발현되었고 impurity가 거의 없었다 (데이타 미제시).As confirmed by SDS-PAGE, HA2 was expressed in a large amount and there was little impurity (data not shown).
나. HA1 단백질I. HA1 protein
HA1(17-344)/C30S 플라스미드 DNA construct (His6-tag)를 HA2 단백질의 경우와 같은 조건으로 대장균에서 발현 및 정제를 시도하였으나, 발현 양도 적고 정제 후 impurity 밴드가 계속해서 많이 남아 있었다. 이러한 재조합 HA1의 발현과 정제의 문제를 해결하기 위하여, 우선 HA2 단백질의 경우와 같은 조건으로 대장균에서 발현을 시킨 후, EDTA와 DTT 및 β-머캅토에탄올을 넣지 않고 세포를 파쇄하여 HA1 단백질을 정제하였다. 이전의 정제 조건에서 발현과정에서 형성되었을 수 있는 intramolecular 또는 intermolecular disulfide bond를 환원시켜 주기 위해서 1 mM DTT를 넣고 세포를 파쇄하였으나, 오히려 첨가된 DTT가 발현된 HA1(17-344)/C30S(His6) 단백질이 Ni-NTA 아가로스 비드에 결합하는 것을 방해하여, 결과적으로 적은 양의 단백질만을 얻었던 것으로 판단되었다.Attempted expression and purification of the HA1 (17-344) / C30S plasmid DNA construct (His6-tag) in E. coli under the same conditions as the HA2 protein, but the expression amount was small and many impurity bands remained after purification. In order to solve the problem of expression and purification of recombinant HA1, first, the expression in E. coli under the same conditions as in the case of HA2 protein, and then purified HA1 protein by disrupting the cells without the addition of EDTA, DTT and β-mercaptoethanol It was. Cells were disrupted with 1 mM DTT to reduce intramolecular or intermolecular disulfide bonds that may have been formed during the previous purification conditions. However, HA1 (17-344) / C30S (His6) with added DTT was expressed. It was determined that the protein interfered with binding to Ni-NTA agarose beads, resulting in only a small amount of protein.
여기에 purity 개선을 위해 His-tag을 더 붙여 비드와의 결합력을 높이고 세정 작업을 두 배 이상으로 늘려 수행함으로써 불순물을 제거하려는 시도를 하였다. His6이 붙어있는 HA1(17-344)/C30S DNA construct를 가지는 pET-24b(+) 플라스미드 DNA를 주형으로 사용하여 HA1_His8_F와 HA1_His8_R 프라이머를 가지고 49℃, 30 cycle PCR 반응으로 site-directed mutagenesis를 수행한 결과, DMSO를 넣지 않은 샘플에서 복제된 DNA 밴드가 보이는 것을 확인할 수 있었다. 확인된 DNA를 가지고 Dpn I 처리를 거친 뒤 E. coli DH5α에 형질전환을 실시하여 얻은 콜로니 중 4개로부터 플라스미드 DNA mini-prep을 하여 DNA sequencing을 한 결과, 우연히도 His7과 His8으로 치환된 construct를 각각 얻게 되었다.In order to improve the purity, His-tag was added to increase the binding strength of the beads, and more than twice the cleaning was performed to remove impurities. PET-24b (+) plasmid DNA with His6-attached HA1 (17-344) / C30S DNA construct was used as a template. As a result, it was confirmed that the cloned DNA band was visible in the sample without DMSO. By the DNA sequencing and the plasmid mini-prep DNA with the identified DNA Dpn I after rough processing from four of the colonies were obtained by performing the transformation in E. coli DH5α result, the construct Incidentally substituted with His7 and each His8 I got it.
His7과 His8으로 치환된 HA1 construct를 각각 대장균 균주 Rosetta (DE3)pLysS에서 세포의 배양조건, 유도 시기, 유도 후 발현 시간 등 여러 가지 변수를 변경해 가면서 HA1 단백질 발현을 위한 최적 조건을 다음과 같이 구할 수 있었다. His7 construct를 사용하여, O.D.600 값 0.8에서 0.5 mM IPTG로 유도 후 18 ℃, 110 rpm에서 8시간 동안 배양하였다. 정제 과정에서도 EDTA와 DTT 및 β-머캅토에탄올을 넣지 않고 세포를 파쇄하여, 비드에 결합된 단백질을 20 mM 이미다졸이 들어 있는 세정 버퍼로 비드를 충분히 세척해 준 후, 50 mM 이미다졸이 들어 있는 세정 버퍼로도 두 차례 세정하여 각각 1 mL의 100 mM, 150 mM, 200 mM 이미다졸 버퍼로 순차적으로 용출을 실시한 결과 HA1 단백질의 발현 문제는 크게 개선되었으나, purity를 높이기 위해서는 추가적인 정제 과정이 필요한 것으로 판단된다.HA1 constructs substituted with His7 and His8, respectively, were modified in E. coli strain Rosetta (DE3) pLysS by changing various conditions such as cell culture conditions, timing of induction, and expression time after induction. there was. The His7 construct was used to induce 0.5 mM IPTG at 0.8 OD 600 and then incubated at 18 ° C. and 110 rpm for 8 hours. In the purification process, the cells were disrupted without adding EDTA, DTT, and β-mercaptoethanol. After washing the beads sufficiently with the washing buffer containing 20 mM imidazole, 50 mM imidazole was added. Two washes were performed with a washing buffer, which was sequentially eluted with 1 mL of 100 mM, 150 mM, and 200 mM imidazole buffers. As a result, the expression of HA1 protein was greatly improved, but additional purification was required to increase purity. It seems to be.
발현된 HA1 및 HA2 단백질의 고순도 정제를 위하여 His-tag affinity chromatography를 이용하여 1차로 부분 정제된 단백질을 5RPC 칼럼을 사용한 HPLC를 활용하여 고순도로 정제하였다 (도 3). 샘플 부피는 200㎕이고, 버퍼 A는 증류수 + 0.1% TFA, 버퍼 B는 아세토나이트릴 + 0.1% TFA이며, 아세토나이트릴 구배는 37-47% 및 40-52%이다.For high purity purification of the expressed HA1 and HA2 proteins, the partially purified protein was first purified using His-tag affinity chromatography using HPLC using a 5RPC column (FIG. 3). Sample volume is 200 μl, buffer A is distilled water + 0.1% TFA, buffer B is acetonitrile + 0.1% TFA and acetonitrile gradients are 37-47% and 40-52%.
실시예 6: 재조합 HA1과 HA2를 함유하는 PLGA 미립자의 제조Example 6: Preparation of PLGA Fine Particles Containing Recombinant HA1 and HA2
소수성 아미노산 잔기들로 구성된 융합 펩티드 및 TMD 부위가 제거되어 막 융합 기능이 상실됨으로써 생체 안전성이 뛰어나면서 수용성이 향상된 HA2 단백질 단편과, intramolecular disulfide bond에 의한 inclusion body 형성을 방지하기 위하여 C30S로 아미노산이 치환되어 있는 wild-type과 유사한 HA1 단백질을 항원성 에피토프로 함께 포함하는 인플루엔자 바이러스 백신용 PLGA 미립자를 W/O/W 이중 에멀젼 미세캡슐화 방법을 이용하여 제조하였다.The fusion peptide consisting of hydrophobic amino acid residues and the TMD site are removed, resulting in loss of membrane fusion function, thereby replacing the amino acid with C30S to prevent formation of HA2 protein fragment with excellent biosecurity and enhanced water solubility and inclusion body by intramolecular disulfide bond. PLGA microparticles for influenza virus vaccines containing a wild-type similar HA1 protein as an antigenic epitope were prepared using a W / O / W double emulsion microencapsulation method.
정제된 HA1과 HA2 단백질을 이중 에멀젼 (double emulsion) (W1/O/W2) 방법을 이용하여 PLGA로 캡슐화하는 실험을 다음과 같이 수행하였다 (도 4).The experiment of encapsulating purified HA1 and HA2 proteins in PLGA using the double emulsion (W 1 / O / W 2 ) method was performed as follows (FIG. 4).
HA1 (His7) 단백질의 분자량은 37347.2 이고 HA2 단백질의 경우는 20173.4 이다. 캡슐화 했을 때의 총 단백질 질량이 400 ㎍/mL 이므로, HA1 과 HA2 의 몰비를 1 : 1로 하기 위하여 질량비를 1.85 : 1 로 하여 함유시켰다. HA1 과 HA2를 합한 HA 단백질과 PVA (polyvinylalcohol) 2.8 %(w/v)를 포함하고 있는 수용액상 (aqueous phase) 1 mL를 만들었다 (W1). PLGA를 1.0 % 농도로 디클로로메탄 (methylene chloride) 6 mL에 녹인 후 (O), W1 과 O를 섞고 homogenizer (Ultra-Turrax, IKA)로 9,500 rpm 30 sec 반응시켜 에멀젼 시켰다 (W1/O). 위 생성물을 다시 PVA 0.4 %(w/v)를 함유하고 있는 수용액상 54 mL 에 넣고 homogenizer를 4,000 rpm에서 30 sec 간 교반을 실시하여 이중 에멀젼 시켰다 (W1/O/W2). 이렇게 얻어진 결과물은 다시 150 rpm 으로 3 시간 동안 용매 제거 (solvent extraction) 과정을 거쳤다. 이때에 오일상에 있던 디클로로메탄이 빠져나오면서 미립자에 작은 pore들이 생기면서 단단해지는 현상이 일어나게 된다. 생성된 미립자는 3차 증류수를 이용하여 세척 작업을 3회 실시하는 경화 (hardening) 과정을 거치면서 캡슐화되지 못한 HA 단백질과 미립자에서 빠져나온 용매를 함께 제거하였다. 이러한 방법으로 얻은 PLGA 미립자를 액체 질소를 이용하여 급속 냉동을 시킨 후, 감압 하에서 동결건조 (freeze drying)을 수행하여 수분을 증발시키고 PLGA에 캡슐화된 미립자를 얻을 수 있었다.The molecular weight of HA1 (His7) protein is 37347.2 and for HA2 protein is 20173.4. Since the total protein mass at the time of encapsulation was 400 µg / mL, the mass ratio was 1.85: 1 in order to make the molar ratio of HA1 and HA2 1: 1. 1 mL of an aqueous phase containing HA protein combined with HA1 and HA2 and 2.8% (w / v) of polyvinylalcohol (PVA) was made (W 1 ). PLGA was dissolved in 6 mL of dichloromethane (methylene chloride) at 1.0% concentration (O), and then mixed with W 1 and O and emulsified by reacting 9,500 rpm 30 sec with a homogenizer (Ultra-Turrax, IKA) (W 1 / O). . The product was added again to 54 mL of an aqueous solution containing 0.4% (w / v) of PVA, and the homogenizer was double-emulsified by stirring at 4,000 rpm for 30 sec (W 1 / O / W 2 ). The resulting product was then subjected to solvent extraction for 3 hours at 150 rpm. At this time, dichloromethane on the oil escapes, causing small pores in the fine particles to harden. The resulting fine particles were subjected to a hardening process of three washing operations using tertiary distilled water to remove the unencapsulated HA protein and the solvent from the fine particles. The PLGA fine particles obtained in this manner were rapidly frozen with liquid nitrogen, and then freeze dried under reduced pressure to evaporate moisture to obtain fine particles encapsulated in PLGA.
정확한 표면형상을 얻기 위해 SEM 촬영을 실시하였다. 동결건조된 미립자 샘플을 aluminum stub 위에 conductive carbon tape을 이용하여 고정하여, Auto Multi Coater를 이용하여 금 코팅을 진공상태에서 실시한 후, scanning electron microscopy (SEM; JEOL JSM-6390, Japan)를 사용하여 적정한 배율에서 미립자의 표면 모양 사진을 촬영하였다 (도 5의 A). SEM 촬영 결과, 미립자 표면에 많은 수와 큰 크기를 갖는 pore가 발견되었다. 큰 크기를 갖는 pore가 많을 경우 단백질의 캡슐화에 문제가 있을 것으로 보고 이를 개선하기 위한 실험을 실시하였다. 미세캡슐화 방법의 최적 조건을 유화제 (PVA) 함량, 용매 추출 방법 (stirring 또는 evaporation), 입자 경화시 교반 속도 등을 조절하면서 아래와 같이 탐색하였다.SEM imaging was performed to obtain an accurate surface shape. The lyophilized particulate sample was fixed on the aluminum stub using a conductive carbon tape, and the gold coating was carried out in a vacuum state using an Auto Multi Coater, followed by scanning electron microscopy (SEM; JEOL JSM-6390, Japan). The surface shape photograph of the microparticles | fine-particles was taken at the magnification (A of FIG. 5). As a result of SEM imaging, large numbers and large sizes of pores were found on the surface of the particles. If there are many pore with a large size, there is a problem in the encapsulation of the protein was tested to improve this. The optimum conditions of the microencapsulation method were explored as follows while controlling the emulsifier (PVA) content, solvent extraction method (stirring or evaporation), stirring speed during particle curing, and the like.
두 번째로 실시한 실험은 첫 번째 실험 대비 수용액상 (W1)과 수용액상 (W2)에 포함되어 있는 PVA 함량을 1.5배씩 늘려 각각의 함량을 4.2 %(w/v)와 0.6 %(w/v)로 바꾸어 실험을 진행하였다. 이렇게 얻어진 미립자의 표면 영상을 확인하기 위해 SEM 사진을 촬영하였다. SEM 촬영 결과 기존의 미립자에 비해 표면에 존재하는 pore의 개수와 크기가 줄어든 것을 확인할 수 있었으나 여전히 큰 pore가 존재함을 발견할 수 있었다 (도 5의 B).In the second experiment, the PVA content in the aqueous phase (W 1 ) and the aqueous phase (W 2 ) was increased by 1.5 times compared to the first experiment, and the contents were increased by 4.2% (w / v) and 0.6% (w / v) to experiment. SEM images were taken to confirm the surface image of the fine particles thus obtained. As a result of SEM imaging, it was found that the number and size of the pore present on the surface was reduced compared to the existing fine particles, but it was found that there was still a large pore (FIG. 5B).
세 번째로 PVA의 함량을 1.5배 증가시킨 조건에서 오일 층의 유기용매인 디클로로메탄이 빠져나오는 시간을 조절하기 위하여 교반기 대신 증발 (evaporation) 방법을 사용하였다. 약간의 감압을 가한 rotary evaporator (BUCHI, rotavaper R-210)를 이용하여 50 rpm으로 3시간 동안 용매제거 및 경화 과정을 동시에 수행하였다. 이외의 실험 방법은 전과 동일하다. 실험에서 얻어진 미립자의 표면 영상을 확인하기 위해 SEM 사진을 촬영하였다. 그 결과 pore가 거의 없는 표면 형태를 나타내는 미립자를 얻어낼 수 있었다 (도 5의 C).Third, the evaporation method was used instead of the stirrer to control the time when the dichloromethane, the organic solvent of the oil layer, was released under the condition that the PVA content was increased 1.5 times. Using a rotary evaporator (BUCHI, rotavaper R-210) with a slight decompression was carried out at the same time the solvent removal and curing process at 50 rpm for 3 hours. The other experimental method is the same as before. SEM images were taken to confirm the surface image of the fine particles obtained in the experiment. As a result, fine particles exhibiting a surface morphology with little pore were obtained (FIG. 5C).
하지만 이러한 형태의 미립자는 단백질을 잘 캡슐화할 수 있겠지만 생체 내 방출 시 단백질이 잘 빠져나오지 못할 수도 있다는 문제점을 가지고 있어, 적당한 수와 작은 크기의 pore를 가지는 미립자를 만들기 위하여 다음 실험을 진행하였다.However, these types of microparticles have a problem that they can encapsulate the protein well, but the protein may not escape well in vivo. Therefore, the following experiment was carried out to make microparticles having a proper number and small pore.
상기 실험의 용매 제거 및 경화 과정에서 너무 낮은 rpm으로 인해 유기용매가 제대로 빠져나오지 않았거나 많은 양의 용매가 한꺼번에 빠져나왔을 가능성을 가지고 있어, 다른 조건은 모두 전 실험과 동일하게 고정시키고 회전수만을 조절하여 네 번째 실험을 실시하였다. 약간의 감압을 가한 evaporator를 이용하여 기존 50 rpm에서 100 rpm으로 회전수를 증가하여 실험을 실시하였다. 얻어진 미립자의 표면 영상을 확인하기 위해 SEM 사진을 촬영하였다. 그 결과 기존의 미립자와 유사한 형태의 것들도 존재하고 작은 pore가 존재하는 미립자들이 함께 존재하는 것을 관찰할 수 있었다.During the solvent removal and hardening process of the experiment, too low rpm may cause the organic solvent not to come out properly or a large amount of the solvent may come out at once, so all other conditions are fixed in the same manner as in the previous experiment and only the rotation speed is controlled. The fourth experiment was carried out. The experiment was carried out by increasing the rotation speed from the existing 50 rpm to 100 rpm using an evaporator with a slight decompression. SEM pictures were taken to confirm the surface image of the obtained fine particles. As a result, it was observed that the particles exist in the form similar to the existing ones, and the particles together with the small pore exist together.
조금 더 나은 표면형태를 얻기 위해 시약의 조성과 방법은 위 실험과 동일한 조건으로 하고 evaporator 대신 감압이 없는 상태의 교반기를 이용하여 첫 실험에서 실시했던 150 rpm 대신 100 rpm으로 회전수를 줄여서 용매를 제거 (solvent extraction)하고 경화 과정을 수행하는 다섯 번째 실험을 수행하였다. SEM 사진을 촬영한 결과 기존 결과물들에 비해 적당한 수와 작은 pore 크기를 갖는 미립자를 얻을 수 있었다 (도 5의 D).In order to obtain a better surface shape, the composition and method of the reagents are the same as in the above experiment, and the solvent is removed by reducing the rotation speed to 100 rpm instead of 150 rpm, which was performed in the first experiment using a stirrer without decompression instead of the evaporator. A fifth experiment was conducted, which performed solvent extraction and a curing process. As a result of the SEM photographs, fine particles having a suitable number and small pore size were obtained as compared with the existing results (FIG. 5D).
실시예 7: Example 7: in vitroin vitro 방출 실험을 통한 HA 단백질의 서방성 (slow release) 검증 실험 Slow release verification experiment of HA protein through release experiment
변형된 HA1과 HA2 단백질을 함께 포함하는 PLGA 미립자가 생체 내에서 오랜 기간 동안 항원성 에피토프를 서서히 방출하는 우수한 서방성 (slow release)을 가지는 지를 in vitro 방출 실험을 통하여 검증하였다.PLGA microparticles containing modified HA1 and HA2 proteins together were verified through in vitro release experiments to have a good slow release that slowly releases antigenic epitopes in vivo .
먼저, HA1 단백질과 HA2 단백질을 몰비 1 : 2로 맞추어, 각각 0.28 nM, 0.56 nM, 0.84 nM, 1.12 nM의 HA1와 HA2 단백질을 합한 몰 농도를 포함하는 1X PBS (pH 7.4) 용액을 사용하여 검증 곡선 (calibration curve)을 작성하였다. HA1의 경우 부분 정제된 단백질을 사용하였기 때문에 impurity를 고려하여 몰농도를 계산하였다. 각각의 용액 50 ㎕를 가지고 아래와 같은 indirect ELISA법을 사용하여 흡광도를 측정하여 검증 곡선을 작성하였다 (도 6).First, HA1 and HA2 proteins were adjusted to a molar ratio of 1: 2, and verified using a 1X PBS (pH 7.4) solution containing a molar concentration of 0.21 nM, 0.56 nM, 0.84 nM, and 1.12 nM of HA1 and HA2 proteins, respectively. A calibration curve was created. In the case of HA1, since partially purified protein was used, molarity was calculated in consideration of impurity. With 50 μl of each solution, the absorbance was measured using the indirect ELISA method described below to prepare a verification curve (FIG. 6).
1X PBS (pH 7.4) 800 ㎕에 다섯 번째 실험에서 얻은 4 ㎎의 미립자를 분산 시킨 후 37 ℃ 진탕 배양기에서 250 rpm으로 교반하여 HA 단백질이 방출되도록 하였다. 일정시간마다 12,000 rpm에서 10분간 원심분리하여 상등액 150 ㎕ 씩 샘플링하였다. 각 샘플은 indirect ELISA법을 이용하여 blank 값을 빼서 아래와 같이 정량하였다.4 mg of the fine particles obtained in the fifth experiment were dispersed in 800 μl of 1 × PBS (pH 7.4), followed by stirring at 250 rpm in a shaking incubator at 37 ° C. to release the HA protein. Each constant time was centrifuged at 12,000 rpm for 10 minutes to sample 150 μl of the supernatant. Each sample was quantified as follows by subtracting the blank value using the indirect ELISA method.
96 웰 플레이트에 샘플 50 ㎕를 넣고 RT에서 약간의 shaking을 하면서 인큐베이션하여 코팅하였다. 0.05 %(v/v) Tween-20를 포함하는 1X PBS (pH 7.4)로 3 ~ 5회 washing을 실시한 후 건조시켰다. 1 %(w/v) BSA를 함유한 1X PBS (pH 7.4) 200 ㎕를 가한 후 37 ℃에서 2시간 인큐베이션을 실시하여 blocking 하였다. 다시 PBST로 3 ~ 5회 washing 한 후 건조시켰다. 1:5000으로 희석한 일차 항체인 His-tag 항체를 50 ㎕ 가하고 37 ℃에서 2시간 인큐베이션하였다. PBST로 다시 washing을 3 ~ 5회 실시한 후 건조시켰다. 1:5000으로 희석한 이차 항체 HRP-conjugated 항-마우스 IgG를 50 ㎕ 가한 후 37 ℃에서 1시간 동안 인큐베이션하였다. 다시 PBST로 3 ~ 5회 washing 하고 건조시켰다. Stop agent로 TMB를 50 ㎕ 가하고 RT에서 10분간 방치시킨 다음 2 M H2SO4 50 ㎕를 가하여 RT에서 20분간 방치시킨 후 ELISA reader를 이용하여 450 nm에서 흡광도를 측정하여, 검증 곡선을 이용하여 입자에서 방출된 단백질의 몰 농도를 정량하였다.50 μl of the sample was put into a 96 well plate and coated by incubating with slight shaking at RT. After washing 3-5 times with 1X PBS (pH 7.4) containing 0.05% (v / v) Tween-20 and dried. 200 μl of 1 × PBS (pH 7.4) containing 1% (w / v) BSA was added and then blocked by incubation at 37 ° C. for 2 hours. After washing 3-5 times with PBST again, it was dried. 50 μl of His-tag antibody, which was diluted to 1: 5000, was added and incubated at 37 ° C. for 2 hours. Washing with PBST again three to five times and dried. 50 μl of the secondary antibody HRP-conjugated anti-mouse IgG diluted 1: 5000 was added, and then incubated at 37 ° C. for 1 hour. Again washed with PBST 3-5 times and dried. 50 μl of TMB was added as a stop agent and allowed to stand at RT for 10 minutes. Then, 50 μl of 2 MH 2 SO 4 was added and allowed to stand at RT for 20 minutes. The absorbance was measured at 450 nm using an ELISA reader. The molar concentration of the protein released at was quantified.
60일 동안 실험을 수행한 결과, PLGA 미립자에 들어있는 HA1과 HA2 단백질이 30일 이상 서서히 방출되고 있음을 확인하였다.After 60 days of experiments, it was confirmed that the HA1 and HA2 proteins in the PLGA particles were slowly released for more than 30 days.
실시예 8: Mouse를 이용한 Example 8: Using Mouse in vivoin vivo 실험 Experiment
Mouse를 이용하여 항체 생성 여부를 알아보기 위한 실험을 충북대 실험동물연구지원센터(Laboratory Animal Research Center)에 의뢰하여 실시하였다. 실험에 사용된 모델 동물로서 mouse SPF/BALB/C(ORIENT BIO Inc.)를 이용하여 진행되었다. 10주령 암컷 30마리를 가지고 4개의 group으로 나누었다 (표 1).Experiments to determine whether antibodies were generated using a mouse were carried out by requesting the Laboratory Animal Research Center of Chungbuk National University. As a model animal used in the experiment, it was performed using mouse SPF / BALB / C (ORIENT BIO Inc.). Thirty 10-week old females were divided into four groups (Table 1).
표 1
투여방법 마리 수
Group 1 PLGA encapsulation (15 ㎍ HA in 200㎕ sol.) 10
Group 2 PLGA encapsulation + Fluid vaccine (7.5 ㎍ HA + 7.5㎍ Fluid HA in 200㎕ sol.) 10
Group 3 Fluid vaccine (15㎍ Fluid HA in 200㎕ sol.) 5
Group 4 Fluid vaccine (7.5㎍ Fluid HA in 200㎕ sol.) * 2회 5
Table 1
Dosing method head
Group
1 PLGA encapsulation (15 μg HA in 200 μl sol.) 10
Group 2 PLGA encapsulation + Fluid vaccine (7.5 μg HA + 7.5 μg Fluid HA in 200 μl sol.) 10
Group 3 Fluid vaccine (15㎍ Fluid HA in 200µl sol.) 5
Group 4 Fluid vaccine (7.5㎍ Fluid HA in 200µl sol.) * 2 times 5
첫 번째 group은 15㎍ PLGA encapsulation HA(HA1+HA2)(in 200㎕ solution)을 접종하고 두 번째 group은 PLGA encapsulation HA(HA1+HA2) 7.5㎍ + Fluid HA 7.5㎍(in 200㎕ solution)을 접종하였다. 세 번째 group은 Fluid HA 15㎍ (in 200㎕ solution)을 한꺼번에 접종하고 네 번째 group은 Fluid HA 7.5㎍ (in 200㎕ solution)을 접종하고 4주 후 동일 량을 추가 접종함으로써 boosting을 실시하였다. 2주 간격으로 12주 동안 혈액 샘플을 채취하여 혈액 샘플에 대해 ELISA를 이용하여 항체 생성 여부 및 항원 존재 여부를 확인하였다.The first group was inoculated with 15 µg PLGA encapsulation HA (HA1 + HA2) (in 200 µl solution), and the second group was inoculated with PLGA encapsulation HA (HA1 + HA2) 7.5 µg + Fluid HA 7.5 µg (in 200 µl solution) It was. The third group was inoculated with 15 μg of Fluid HA (in 200 μl solution) at once, and the fourth group was inoculated with 7.5 μg of Fluid HA (in 200 μl solution) and boosted by inoculating the same amount after 4 weeks. Blood samples were taken for 12 weeks at two-week intervals to determine whether antibodies were present and antigens were present using ELISA for blood samples.
실시예 9: ELISA를 이용한 항원 존재 여부 확인Example 9: Confirmation of Antigen Presence Using ELISA
주입한 항원이 mouse의 혈액 내에 존재하는 지를 검증하기 위하여 혈액 샘플을 채취하여 다음과 같이 실험을 진행하였다. 먼저 1:500으로 희석한 혈청을 96 well에 100㎕씩 넣고 4℃에서 밤새 (또는 room temp에서 2시간) coating을 실시하였다. PBT (PBS + Tween20) pH 7.2 버퍼를 이용하여 3-5회 washing을 실시한 후 BSA를 TB 버퍼에 희석한 block agent를 200㎕ 넣고 block step을 RT에서 1시간 동안 실시하였다. PBT 버퍼를 이용하여 5회 washing을 실시하였다. Secondary antibody로 1:500으로 희석한 His-tag antibody를 이용하여 37℃에서 한 시간 동안 반응시켰다. PBT 버퍼를 이용하여 5회 washing을 실시하였다. Goat anti-mouse IgG HRP를 1:5000으로 희석하여 100㎕를 넣어준 뒤 37℃ incubator에서 한 시간 동안 반응시키고 반응을 중단시키기 위해 TMB 100㎕를 넣고 잠시 방치한 후 다시 0.5N의 H2SO4 100㎕를 첨가한 뒤 잠시 반응하여 ELISA를 이용하여 흡광도를 측정하였다 (도 7).In order to verify whether the injected antigen is present in the blood of the mouse, a blood sample was taken and the experiment was performed as follows. First, 100 μl of serum diluted 1: 500 was added to 96 wells and coated overnight at 4 ° C. (or 2 hours at room temp). After washing 3-5 times using PBT (PBS + Tween20) pH 7.2 buffer, 200 μl of a block agent diluted with BSA was added to TB buffer, and the block step was performed at RT for 1 hour. Washing was performed 5 times using a PBT buffer. The reaction was performed at 37 ° C. for 1 hour using a His-tag antibody diluted 1: 500 with a secondary antibody. Washing was performed 5 times using a PBT buffer. Goat anti-mouse IgG HRP 1: 5000 dilution to react for one hour after the semi-put 100 37 ℃ incubator was stopped and the reaction put TMB 100㎕ of 0.5N again while leaving H 2 SO 4 After adding 100 μl and reacting for a while, absorbance was measured using an ELISA (FIG. 7).
측정 결과 mouse에 투여한 항원이 혈액 내에 존재하는 것을 확인하였다. 수용성 단백질을 항원으로 사용한 fluid vaccine의 경우는 주입한 항원이 초기에 높은 농도로 검출되나 빠른 시일 내에 소실되는 반면에, PGA 미립자 형태의 항원을 투여한 동물 군의 경우는 항원 존재 시간이 더 길며, 서서히 혈액 내로 방출되고 있음을 확인할 수 있었다.As a result, it was confirmed that the antigen administered to the mouse exists in the blood. In the case of fluid vaccines using water-soluble proteins as antigens, the injected antigens are initially detected at high concentrations but are quickly lost, whereas in animal groups administered with antigens in the form of PGA microparticles, the duration of antigen presence is longer. It was confirmed that it is slowly released into the blood.
실시예 10: ELISA를 이용한 항체 생성 여부 확인Example 10: Confirmation of Antibody Production by ELISA
HA 단백질(HA1 + HA2) 200ng/ml의 농도를 갖도록 희석하여 96 well에 100㎕씩 넣고 4℃에서 밤새 (또는 room temp에서 2시간) coating을 실시하였다. PBT (PBS + Tween20) pH 7.2 버퍼를 이용하여 3-5회 washing을 실시하였다. BSA를 TB 버퍼에 희석한 block agent를 200㎕ 넣고 block step을 RT에서 1시간 동안 실시한 후 PBT 버퍼를 이용하여 5회 washing을 실시하였다. 여기에 mouse에서 채취한 sera를 1:50으로 희석하여 96 well에 넣고 37℃ incubator에서 한 시간 동안 반응 시켰다. PBT 버퍼를 이용하여 5회 washing을 실시한 후 Goat anti-mouse IgG HRP를 1:5000으로 희석하여 100㎕를 넣어준 뒤 37℃ incubator에서 한 시간 동안 반응시켰다. 반응을 중단시키기 위해 TMB 100㎕를 넣고 잠시 방치한 후 다시 0.5N의 H2SO4 100㎕를 첨가한 뒤 잠시 반응하여 ELISA를 이용하여 흡광도를 측정하였다. 정밀한 데이터 산출을 위해 위와 동일한 방법으로 3회 실시하여 측정값을 구하였다 (도 8).HA protein (HA1 + HA2) was diluted to a concentration of 200ng / ml, and 100µl each of 96 wells was coated overnight at 4 ° C (or 2 hours at room temp). Washing was performed 3-5 times using PBT (PBS + Tween20) pH 7.2 buffer. After 200 μl of a block agent diluted with BSA in TB buffer, the block step was performed at RT for 1 hour, and then washed five times using PBT buffer. Here, the sera collected from the mouse was diluted 1:50, put into 96 wells, and reacted for one hour at 37 ° C incubator. After washing 5 times with PBT buffer, Goat anti-mouse IgG HRP was diluted 1: 5000 and put in 100 μl. The reaction was performed at 37 ° C. incubator for 1 hour. In order to stop the reaction, 100 μl of TMB was added thereto, and the mixture was left for a while. Then, 100 μl of 0.5 N H 2 SO 4 was added, followed by brief reaction. For accurate data calculation, the measurement was carried out three times in the same manner as above (Fig. 8).
측정 결과 HA 항원에 대한 항체 반응을 확인할 수 있었으며 PLGA 미립자를 포함하는 백신의 항체 함유량의 변화가 적은 것으로 관찰되며 이는 항원의 지속적인 방출에 의한 효과로 해석할 수 있다.As a result, the antibody response to the HA antigen was confirmed, and the change in the antibody content of the vaccine containing the PLGA microparticles was observed to be small, which can be interpreted as an effect of the sustained release of the antigen.
또한 HA1의 항체와 HA2 항체 생성을 개별적으로 확인하기 위하여 각각의 HA1과 HA2를 항원으로 하여 위와 동일한 방법으로 실험을 3회 반복하여 실시하였다 (도 9 및 도 10). 위 실험에서 각 그룹별 HA1 과 HA2의 그래프 모양이 유사한 것을 확인할 수 있다. 이는 항체 내에 HA1에 대한 항체와 HA2에 대한 항체가 모두 생성되어 존재하는 것을 의미한다. 또한 HA1 항체의 양과 HA2 항체의 양을 합하였을 때 HA1과 HA2의 항원을 따로 분리하지 않고 측정한 데이터 값과 유사함을 알 수 있었다.In addition, in order to separately confirm the production of HA1 antibody and HA2 antibody, the experiment was repeated three times in the same manner as above with each HA1 and HA2 antigen (FIGS. 9 and 10). In the above experiments, it can be seen that the graphs of HA1 and HA2 in each group are similar. This means that both antibodies against HA1 and antibodies against HA2 are generated and present in the antibody. In addition, when the amounts of the HA1 antibody and the amount of the HA2 antibody were summed, they were similar to the data values measured without separating the antigens of HA1 and HA2 separately.

Claims (10)

  1. 서열번호 1의 아미노산 서열로 이루어진 HA1 단백질의 1 ~ 16번 아미노산 잔기들이 결실되고, 30번째 아미노산 잔기가 시스테인에서 세린으로 치환되고; 서열번호 2의 아미노산 서열로 이루어진 HA2 단백질의 137번째 아미노산 잔기가 시스테인에서 세린으로 치환되고, 123번째, 124번째 및 127번째 아미노산 잔기에 해당하는 알기닌의 코돈이 AGG에서 CGT으로 각각 치환된 것을 특징으로 하는 인플루엔자 바이러스 백신용 항원성 에피토프 (antigenic epitope)로서의 재조합 HA (hemagglutinin) 단백질.The amino acid residues 1-16 of the HA1 protein consisting of the amino acid sequence of SEQ ID NO: 1 are deleted, and the 30th amino acid residue is substituted for cysteine with serine; The 137th amino acid residue of the HA2 protein consisting of the amino acid sequence of SEQ ID NO: 2 is substituted with serine in cysteine, and the codons of arginine corresponding to the 123rd, 124th and 127th amino acid residues are substituted with AGT to CGT, respectively. A recombinant HA (hemagglutinin) protein as an antigenic epitope for influenza virus vaccines.
  2. 제1항에 있어서, 상기 HA2 단백질의 1번째 아미노산 잔기가 글리신에서 글루탐산 또는 발린으로 치환된 것을 특징으로 하는 재조합 HA 단백질.The recombinant HA protein of claim 1, wherein the first amino acid residue of the HA2 protein is substituted with glutamic acid or valine in glycine.
  3. 제1항에 있어서, 상기 HA2 단백질의 융합 펩티드(fusion peptide)에 해당하는 1 ~ 22번째 아미노산 잔기들이 결실된 것을 특징으로 하는 재조합 HA 단백질.The recombinant HA protein according to claim 1, wherein the 1st to 22nd amino acid residues corresponding to the fusion peptide of the HA2 protein are deleted.
  4. 제3항에 있어서, 상기 HA2 단백질의 TMD (transmembrane domain)에 해당하는 186 ~ 221번째 아미노산 잔기들이 결실된 것을 특징으로 하는 재조합 HA 단백질.4. The recombinant HA protein of claim 3, wherein the 186-221 amino acid residues corresponding to the TMD (transmembrane domain) of the HA2 protein are deleted.
  5. 제1항에 있어서, 상기 재조합 HA1 및 HA2 단백질의 C-말단에 각각 His7-tag 및 His6-tag이 부착된 것을 특징으로 하는 재조합 HA (hemagglutinin) 단백질.The recombinant HA (hemagglutinin) protein according to claim 1, wherein His7-tag and His6-tag are attached to the C-terminus of the recombinant HA1 and HA2 proteins, respectively.
  6. 제1항 내지 제5항 중 어느 한 항에 따른 인플루엔자 바이러스 백신용 항원성 에피토프 (antigenic epitope)로서의 재조합 HA (hemagglutinin) 단백질을 W/O/W 이중 에멀젼 미세캡슐화 (microencapsulation)시키는 단계를 포함하는 인플루엔자 바이러스 백신용 PLGA 미립자 (microparticle)를 제조하는 방법.Influenza comprising a W / O / W double emulsion microencapsulation of a recombinant hemagglutinin protein as an antigenic epitope for influenza virus vaccines according to any one of claims 1 to 5 Method for producing PLGA microparticles for viral vaccines.
  7. 제6항에 있어서, 상기 W/O/W 이중 에멀젼 미세캡슐화는The method of claim 6 wherein the W / O / W double emulsion microencapsulation
    상기 재조합 HA 단백질과 PVA (polyvinylalcohol) 4~5 %(w/v)를 포함하고 있는 수용액상 (aqueous phase)(W1)을 제조하는 단계;Preparing an aqueous phase (W 1 ) containing the recombinant HA protein and 4-5% (w / v) of polyvinylalcohol (PVA);
    PLGA를 용매에 용해한 후 (O), W1 과 O를 혼합하고 교반기를 이용하여 에멀젼시켜 W1/O을 생성하는 단계;Dissolving PLGA in a solvent (O), mixing W 1 and O and emulsifying using a stirrer to produce W 1 / O;
    상기 W1/O을 PVA 0.5~0.7 %(w/v)를 함유하고 있는 수용액상에 첨가하고 교반을 실시하여 이중 에멀젼 (double emulsion)시켜 W1/O/W2 를 생성하는 단계; 및Adding W 1 / O to an aqueous solution containing 0.5 to 0.7% (w / v) of PVA and performing a double emulsion by stirring to produce W 1 / O / W 2 ; And
    상기 생성물에 대해 용매 제거 과정 및 경화 (hardening) 과정을 거치는 단계를 포함하는 것을 특징으로 하는 방법.And subjecting the product to a solvent removal process and a hardening process.
  8. 제7항에 있어서, 상기 용매 제거 과정은 교반 (stirring) 또는 증발 (evaporation)에 의해 수행되는 것을 특징으로 하는 방법.8. The method of claim 7, wherein the solvent removal process is performed by stirring or evaporation.
  9. 제7항에 있어서, 상기 용매 제거 과정 및 경화 과정은 90 ~ 110 rpm의 교반에 의해 수행되는 것을 특징으로 하는 방법.The method of claim 7, wherein the solvent removal process and the curing process are performed by stirring at 90 to 110 rpm.
  10. 제6항의 방법에 의해 제조된 인플루엔자 바이러스 백신용 PLGA 미립자.PLGA microparticles for influenza virus vaccine prepared by the method of claim 6.
PCT/KR2010/003291 2009-06-23 2010-05-25 Recombinant hemagglutinin protein having superior biocompatibility for an influenza virus vaccine, and method for preparing biodegradable plga microspheres containing same WO2010150982A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0056027 2009-06-23
KR1020090056025A KR101034490B1 (en) 2009-06-23 2009-06-23 Recombinant influenza virus hemagglutinin protein as antigenic epitope for vaccination with enhanced biosafety
KR20090056027 2009-06-23
KR10-2009-0056025 2009-06-23

Publications (3)

Publication Number Publication Date
WO2010150982A2 true WO2010150982A2 (en) 2010-12-29
WO2010150982A9 WO2010150982A9 (en) 2011-05-12
WO2010150982A3 WO2010150982A3 (en) 2011-06-30

Family

ID=43386993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003291 WO2010150982A2 (en) 2009-06-23 2010-05-25 Recombinant hemagglutinin protein having superior biocompatibility for an influenza virus vaccine, and method for preparing biodegradable plga microspheres containing same

Country Status (1)

Country Link
WO (1) WO2010150982A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151488A1 (en) * 2013-03-15 2014-09-25 Protein Sciences Corporation Improved stability and potency of hemagglutinin
US11738080B2 (en) 2017-08-21 2023-08-29 Dyadic International Inc. Production of flu vaccine in Myceliophthora thermophila

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366238A2 (en) * 1988-08-31 1990-05-02 Smithkline Beecham Corporation Influenza vaccinal polypeptides
US20060217338A1 (en) * 2005-02-24 2006-09-28 Shan Lu Influenza nucleic acids, polypeptides, and uses thereof
US20070059806A1 (en) * 2003-02-27 2007-03-15 Yeda Research And Development Co., Ltd. At The Weizmann Institute Of Science Nucleic acid molecules, polypeptides, antibodies and compositions containing same useful for treating and detecting influenza virus infection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366238A2 (en) * 1988-08-31 1990-05-02 Smithkline Beecham Corporation Influenza vaccinal polypeptides
US20070059806A1 (en) * 2003-02-27 2007-03-15 Yeda Research And Development Co., Ltd. At The Weizmann Institute Of Science Nucleic acid molecules, polypeptides, antibodies and compositions containing same useful for treating and detecting influenza virus infection
US20060217338A1 (en) * 2005-02-24 2006-09-28 Shan Lu Influenza nucleic acids, polypeptides, and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEMOINE D. ET AL.: 'Polymeric nanoparticles as delivery system for influenza virus glycoproteins' J CONTROL RELEASE vol. 54, no. 1, March 1998, pages 15 - 27 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151488A1 (en) * 2013-03-15 2014-09-25 Protein Sciences Corporation Improved stability and potency of hemagglutinin
US11738080B2 (en) 2017-08-21 2023-08-29 Dyadic International Inc. Production of flu vaccine in Myceliophthora thermophila

Also Published As

Publication number Publication date
WO2010150982A3 (en) 2011-06-30
WO2010150982A9 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
US20220119454A1 (en) Conformationally stabilized rsv pre-fusion f proteins
US11926649B2 (en) Conformationally stabilized RSV pre-fusion F proteins
US6558673B1 (en) Complexes of immunogens derived from RSV surface glycoprotein G covalently coupled to a support molecule
JP2008527009A (en) Compositions comprising pathogen-associated molecular patterns and antigens and their use to stimulate immune responses
JP2010508030A5 (en)
WO2018097603A2 (en) Middle east respiratory syndrome coronavirus s protein immunogenic composition and method for preparing same
CA2380833A1 (en) Proteins derived from white spot syndrome virus and uses thereof
TW201039842A (en) Method of producing virus-like particles of picornavirus using a small-ubiquitin-related fusion protein expression system
WO2010150982A2 (en) Recombinant hemagglutinin protein having superior biocompatibility for an influenza virus vaccine, and method for preparing biodegradable plga microspheres containing same
US20220175910A1 (en) Novel influenza antigens
AU2017298576B2 (en) Vaccine compositions for treatment of Zika virus
KR101145720B1 (en) Method for producing biodegradable PLGA microparticles comprising recombinant influenza virus hemagglutinin protein for vaccination with enhanced safety
TW200848093A (en) Novel vaccine composition for the treatment of respiratory infectious diseases
WO2022203358A1 (en) Attenuated reovirus-based vaccine composition and use thereof
CA2982796C (en) Vaccine compositions for treatment of zika virus
WO2021235503A1 (en) Conjugated protein monomer supporting coronavirus protein, aggregate of said monomers, and component vaccine comprising said aggregate as active component
HU196131B (en) Process for preparing polypeptide vaccine
WO2012053856A2 (en) Respiratory syncytial virus vaccine composition and method for preparing same
WO2022179318A1 (en) S protein r815 site-based coronavirus intervention method and product
CN114409802B (en) Avian influenza virus trimer subunit vaccine and application thereof
WO2023080718A1 (en) Vaccine composition for prevention or treatment of sars-coronavirus-2 infection
CN115850395A (en) Influenza virus universal nanoparticle vaccine and preparation method thereof
CN114634579A (en) Genetically engineered vaccine for resisting new coronavirus
JPWO2011062263A1 (en) Pharmaceutical composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792264

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792264

Country of ref document: EP

Kind code of ref document: A2