WO2018097603A2 - Middle east respiratory syndrome coronavirus s protein immunogenic composition and method for preparing same - Google Patents

Middle east respiratory syndrome coronavirus s protein immunogenic composition and method for preparing same Download PDF

Info

Publication number
WO2018097603A2
WO2018097603A2 PCT/KR2017/013365 KR2017013365W WO2018097603A2 WO 2018097603 A2 WO2018097603 A2 WO 2018097603A2 KR 2017013365 W KR2017013365 W KR 2017013365W WO 2018097603 A2 WO2018097603 A2 WO 2018097603A2
Authority
WO
WIPO (PCT)
Prior art keywords
mers
cov
protein
immunogen
cells
Prior art date
Application number
PCT/KR2017/013365
Other languages
French (fr)
Korean (ko)
Other versions
WO2018097603A3 (en
Inventor
김학
함동수
권태우
김창신
김훈
서기원
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Publication of WO2018097603A2 publication Critical patent/WO2018097603A2/en
Publication of WO2018097603A3 publication Critical patent/WO2018097603A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a MERS-CoV spike (S) immunogen and its modifications, preparations, or uses thereof comprising an immunogenic composition for treating and / or preventing a Middle East Respiratory Syndrome (MERS-CoV) infection.
  • S MERS-CoV spike
  • MERS-CoV Middle East Respiratory Syndrome
  • MERS Middle East Respiratory Syndrome
  • MERS-CoV Middle Respiratory Syndrome Coronavirus
  • RNA virus positive sense single strand RNA virus
  • gene human DPP4 (Dipeptidyl peptidase 4) receptors are known as major viral receptors.
  • MERS-CoV the gene of MERS-CoV is known to have high gene homology with Bat-CoV-HKU4 and Bat-CoV-HKU5, which are the coronaviruses of bats.
  • the discovery of neutralizing antibodies to MERS in Camel suggests that camels are a potential mediator of human transmission of MERS-CoV.
  • camels are a potential mediator of human transmission of MERS-CoV.
  • full-length gene sequencing of viruses isolated from severe camels and those isolated from MERS deaths have been in agreement, and significant evidence of MERS-CoV infection in humans came from camels.
  • MERS-CoV encodes four structural proteins, and the structural proteins are spike (S), membrane (M), envelope (E) and nucleocapsid (N).
  • S spike
  • M membrane
  • E envelope
  • N nucleocapsid
  • the S protein is a type I trans-membrane glycoprotein that exists on the surface of MERS-CoV. It forms an envelope and an anchor and is trimeric.
  • Figure 2 MERS-CoV S protein plays an important role in determining host range and tropism, like most coronaviruses.
  • the S protein of MERS-CoV consists of S1, the receptor binding region, and S2, the membrane fusion region.
  • the receptor binding domain (RBD) in the S1 sub-domain of MERS-CoV is dipeptidyl peptidase-4 (known as CD-26).
  • DPP4 is known to recognize and bind to receptors.
  • COV-NL63 and SARS-COV bind to angiotensin-converting enzyme 2 (ACE2), while Porcine respiratory coronavirus and some COVs are known to recognize aminopeptidase N (APN).
  • ACE2 angiotensin-converting enzyme 2
  • APIPN aminopeptidase N
  • HR domains of the S2 subdomain are involved in mediated fusion between the envelope of the virus and the cell membrane of the target cell. This spike protein is a major antigen of coronaviruses and is targeted for vaccines and therapeutics because it induces high immunogenicity.
  • the present invention to solve the above problems, to obtain a high MERS-CoV antigen production capacity (yield), to provide an immunogen composition having a high immunogenicity and a method for producing the same.
  • the present invention seeks to provide a MERS-CoV vaccine having a high antibody titer and a method for preparing the same.
  • the inventors of the present invention seek to reduce the time and cost required to obtain a virus by improving MERS-CoV antigen yield.
  • the present invention relates to a Middle East respiratory syndrome coronavirus (MERS-CoV) antigen, an immunogen composition comprising said immunogen, or a vaccine comprising said immunogen composition. More specifically, the present invention relates to a method for preparing and using a new MERS-CoV S protein expressing peptide or MERS-CoV antigen.
  • MERS-CoV Middle East respiratory syndrome coronavirus
  • the immunogen secured by the present invention allows false induction of the immune response that occurs when an animal or human is actually infected with MERS-CoV.
  • the present invention may induce and maintain such a false immune response and thus may neutralize MERS-CoV in the body when MERS-CoV is actually infected.
  • the present invention provides a suitable method for culturing and purifying the MERS-CoV S immunogen.
  • MERS-CoV S immunogens produced by the culture and purification methods described herein can expect higher yields than the methods produced in media.
  • the MERS-CoV S immunogen produced by the culture and purification methods presented herein provides high immunogenicity.
  • the term “immunogen” refers to any substance that induces immunogenicity, including the term “antigen”, means any substance that enters the body and induces an immune response.
  • the term “immunogen” includes a protein or a large protein molecule composed of proteins or forms in which the protein is dissolved to form a fragment. Giant protein refers to a large number of protein sequences and protein assemblies, including polymeric immunogens and VLPs. Immunogenic induction here means both cellular and humoral immunity.
  • the term “immunogen” includes, for example, all and part of foreign material that has penetrated into the body, and cellular immune induction by an immunogen may mean antigen specific antibody production. Antigen-specific antibodies include neutralizing antibodies that defend and neutralize re-penetrating foreign substances.
  • fragment may be used in the same sense as fragments, fragments, etc., and may be used to include a form in which a portion of the protein is separated from the MERS-CoV S protein without losing immunogenic function. have. For example, when crushing and cleavage of the MERS-CoV S protein is induced by centrifugation in the process of separating from the cell membrane, the fragment of the MERS-CoV S protein of the present invention, unless the immunogenicity is lost, the present invention May be included in the MERS-CoV immunogen.
  • vaccine refers to a combination of derived antigenic determinants used to induce the formation or immunity of antibodies against dead or weakened pathogens or pathogens. Vaccines are provided to provide immunity against MERS caused by the MERS CoV virus.
  • the term “vaccine” also refers to an immunogen suspension or solution that is administered to a vertebrate to produce protective immunity, i.e., immunity that reduces the severity of the disease associated with the infection.
  • the term “comprising” means that the content and content together.
  • the term “comprising” also means the content and the addition or inclusion of the content. It should be noted, however, that the term “comprising” may be used independently and in its own right.
  • “About” includes all values that provide the same effect and result as reference values. However, “about” gives meaning only for reference values.
  • the range included by the term “about” may vary depending on the range or characteristics of the content (reference value) in which the term is included. Thus, depending on the content, “about” may mean, for example, less than ⁇ 15%, ⁇ 10%, ⁇ 5%, ⁇ 4%, ⁇ 3%, ⁇ 2%, ⁇ 1%, or less than 1%. Can be.
  • an "effective amount” is generally a MERS-CoV S protein or its sufficient to induce immunity and to prevent and / or alleviate a viral infection or to reduce at least one symptom of an infection and / or to increase the effect of an immunogen.
  • an effective amount may refer to an amount of MERS-CoV S protein or fragment thereof or aggregate of MERS-CoV S protein sufficient to delay or minimize the onset of infection.
  • An effective amount may refer to the amount of MERS-CoV S protein or fragment thereof or aggregate of MERS-CoV S protein that provides a therapeutic benefit in the treatment or management of an infection.
  • the effective amount may be an amount sufficient to enhance the subject's (eg, human) own immune response against subsequent exposure to the virus.
  • the level of immunity can be observed, for example, by plaque neutralization, complement fixation, enzyme-linked immunoadhesion or microneutralization assays, eg, by measuring the amount of neutralizing secretion and / or serum antibodies.
  • an "effective amount" is one that prevents a disease or reduces the severity of symptoms.
  • baculovirus refers to a virus that infects insect cells.
  • baculovirus refers to alfalfa looper (or night moth known as Autographa californica-moth included in Noctuidae) nucleopolyhedrovirus strains (NPV strains) and modified viral strains.
  • NPV strains nucleopolyhedrovirus strains
  • the baculovirus as used herein also includes Bombyx mori (silk moth belonging to the silkworm moth-Bombycidae) nuclear polyhedron virus strain (NPV) and modified viruses.
  • the MERS-CoV S recombinant baculovirus is constructed using homologous recombination.
  • the resulting homologous recombinant baculovirus can produce recombinant MERS-CoV S foreign protein upon infection with the appropriate cell (eg insect cell line).
  • Recombinant MERS-CoV S protein is overexpressed by polyhedrin promoter.
  • the present invention provides a MERS-CoV S immunogenic composition comprising any one or more polypeptides selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8.
  • the immunogenic composition comprises any MERS-CoV protein, including, but not limited to, spike (S) protein or fragment thereof of MERS-CoV or a spike protein combination of MERS-CoV. can do.
  • MERS-CoV protein including, but not limited to, spike (S) protein or fragment thereof of MERS-CoV or a spike protein combination of MERS-CoV. can do.
  • the MERS-COV S gene is GenBank accession No. Or derived from the strains KF186567 (Al-Hasa_1_2013) and KT029139 (MERS-COV / KOR / KNIH / 002_05_2015).
  • DNA sequence of the gene can be optimized codon to facilitate expression in insect cells, Seq ID NO: 1 (Al-Hasa_1_2013, gene sequence), Seq ID NO: 2 (Al-Hasa_1_2013, amino acid sequence), Seq ID NO: 3 (KOR / KNIH / 002_05_2015, gene sequence), and Seq ID NO: 4 (KOR / KNIH / 002_05_2015, amino acid sequence).
  • Seq ID. MERS-CoV S protein was made to be secreted into the culture. No: 5, Seq ID. No: 6, Seq ID. No: 7, and / or Seq ID.
  • the gene sequence and amino acid sequence of the MERS-CoV S partial protein of No: 8 can be provided.
  • the present invention provides a variant of the MERS-CoV protein.
  • modifications of the amino acid sequence referred to in SEQ ID NO: of the present invention may comprise a change in the amino acid sequence of the constituent protein.
  • the term "variant" in the context of a polypeptide refers to an amino acid sequence that has been changed by one or more amino acids in reference to a reference sequence. Variants may have “conservative” changes, and substituted amino acids have similar structural or chemical properties, eg, replacement of leucine by isoleucine.
  • the variant may have a “non conservative” change, eg, replacement of glycine by tryptophan.
  • Similar micro modifications may also include amino acid deletions or insertions or both. Determination of which amino acid residues can be substituted, inserted or deleted without removing biological or immunological activity can be made using computer programs well known in the art, such as DNASTAR software.
  • the nucleic acids and polypeptides included in the MERS-CoV immunogenic composition of the present invention may be at least 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to the sequences shown in the sequence listing.
  • the inventors of the present invention provide a MERS-CoV immunogenic composition, in particular using all or part of the gene sequence numbers 1, 3, 5, 7 and / or amino acid sequence numbers 2, 4, 6, 8 of the MERS-CoV S moiety. .
  • the inventors of the present invention provide particularly excellent antibody titers using the nucleic acids and / or polypeptides of SEQ ID NO: 2, 4, 6, 8, preferably the polypeptides of SEQ ID NO: 2 and / or 4, and improve immunogen yield. It provides an immunogenic composition that brings.
  • MERS-CoV prevention vaccine comprising any one of the MERS-CoV S polypeptide, selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8.
  • the vaccine may further comprise an adjuvant or an immune enhancer.
  • the immunogenic composition of the present invention includes any pharmaceutical substance that does not itself cause an immune response harmful to the vertebrate receiving the composition, and may be administered without excessive toxicity with the MERS-CoV S polypeptide.
  • Pharmaceutically acceptable carriers including suitable diluents or excipients.
  • the term "pharmaceutically acceptable” means to be listed in the US Pharmacopoeia, European Pharmacopoeia, or Vertebrate and more specifically other commonly recognized Pharmacopoeia for use in humans.
  • MERS CoV S immunogens of the invention are administered in an effective amount or amount (as defined above) sufficient to stimulate an immune response against one or more strains of MERS CoV virus.
  • Such compositions can be used as vaccines and / or immunogen compositions for inducing a protective immune response in vertebrates.
  • the composition may contain other MERS-CoV S proteins or fragments thereof.
  • the concentration of immunogen is at least about 10 ⁇ g / mL, about 20 ⁇ g / mL, about 30 ⁇ g / mL, about 40 ⁇ g / mL, about 50 ⁇ g / mL, about 60 ⁇ g / mL, About 100 ⁇ g / mL, about 200 ⁇ g / mL, or about 500 ⁇ g / mL.
  • the concentration of the immunogen is about 10 ⁇ g / mL to about 1 mg / mL, or about 20 ⁇ g / mL to about 500 ⁇ g / mL, or about 30 ⁇ g / mL to about 100 ⁇ g / mL or about 30 ⁇ g / mL To about 50 ⁇ g / mL.
  • the concentration of immunogen may be comprised between 10 ⁇ g / mL and 200 ⁇ g / mL.
  • the pharmaceutical formulations disclosed herein comprise a MERS-CoV protein, primarily a spike protein; And pharmaceutically acceptable carriers or excipients.
  • the pharmaceutical formulation comprises a purified, high affinity antibody produced in an animal to which the immunogen has been administered.
  • Pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, sterile isotonic aqueous buffers, and combinations thereof.
  • Pharmaceutically acceptable carriers, diluents and other excipients are provided in Remington's Pharmaceutical Sciences (Mack Pub. Co. N. J. current edition).
  • the formulation should be suitable for the mode of administration.
  • the formulation is suitable for administration to humans, preferably sterile, non-particulate and / or not pyrogenic.
  • the composition may contain small amounts of wetting or emulsifying agents or pH buffers.
  • the composition may be in solid form, such as a lyophilized powder suitable for recombination, liquid solutions, suspensions, emulsions, tablets, pills, capsules, sustained release preparations or powders.
  • Oral formulations may include standard carriers such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate and the like.
  • the present invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the components of an immunogenic vaccine formulation.
  • the kit comprises two containers, one containing a MERS CoV immunogen and the other containing an adjuvant.
  • the formulation may be packaged in a sealed container such as an ampoule or sachette indicating the amount of the composition.
  • the composition is supplied as a liquid, and in another embodiment, it is supplied as a dry sterile lyophilized powder or water removal concentrate in a sealed container, for example to administer to a subject in water or saline. Can be reconstituted to an appropriate concentration.
  • the composition is preferably about 1 ⁇ g, about 5 ⁇ g, about 10 ⁇ g, about 20 ⁇ g, about 25 ⁇ g, about 30 ⁇ g, about 50 ⁇ g, about 100 ⁇ g, about 125 ⁇ g, about 150 ⁇ g, or It is supplied as a dry sterile lyophilized powder in a container hermetically sealed at a unit dose of about 200 ⁇ g.
  • the unit dose of the composition is about 1 ⁇ g (eg, about 0.08 ⁇ g, about 0.04 ⁇ g, about 0.2 ⁇ g, about 0.4 ⁇ g, about 0.8 ⁇ g, about 0.5 ⁇ g or less, about 0.25 ⁇ g or less, or about 0.1 ⁇ g or less).
  • MERS-CoV protein immunogenic composition is supplied in liquid form to a sealed container representing the amount and concentration of the MERS-CoV protein composition.
  • the liquid form of the immunogen composition of the present invention is at least about 50 ⁇ g / ml, more preferably at least about 100 ⁇ g / ml, at least about 200 ⁇ g / ml, at least 500 ⁇ g / ml, or at least 1 mg / ml It is supplied to a sealed container.
  • the vaccine or immunogen composition of the invention can be administered to an animal to induce an immune response against MERS-CoV.
  • the animal is susceptible to MERS-CoV infection.
  • the animal is a human.
  • administration of the immunogen induces substantial immunity against at least one MERS-CoV strain, isolate, clade and / or species.
  • administration of the immunogen induces substantial immunity against at least two MERS-CoV strains, isolates, clades and / or species.
  • the dosage can be adjusted within this range based on, for example, age, physical condition, weight, age, food, time of administration and other clinical factors.
  • the present invention encompasses a method of formulating a vaccine or immunogen composition that induces substantial immunity against an infection or at least one symptom thereof in a subject, comprising adding an effective amount of an immunogen to said formulation.
  • Stimulation of substantial immunity by a single dose is preferred, but to achieve the desired effect, additional doses may be administered via the same or different routes. In newborns and infants, for example, multiple doses may be necessary to elicit sufficient levels of immunity. Dosing can be continued at intervals throughout childhood, if necessary to maintain a sufficient level of protection against infection.
  • a method of inducing substantial immunity against a viral infection or at least one symptom thereof in a subject comprises administering at least one effective amount of MERS CoV Spike protein or fragment or aggregate thereof.
  • compositions are administered intramuscularly, intravenously, subcutaneously, orally or intradermally.
  • the composition may be administered, for example, by infusion or bolus injection, by absorption through the epithelium or inside the mucosa (eg, oral mucosa, colon, conjunctiva, nasopharynx, central pharynx, vagina, urinary tract, bladder, intestinal mucosa, etc.).
  • administration via the nasal or other mucosal route can induce an antibody or other immune response substantially higher than other routes of administration.
  • the nasal or other mucosal route of administration of the immunogenic composition and / or vaccine can induce an antibody or other immune response that will induce cross protection against other strains of the virus.
  • Administration can be systemic or local.
  • Prophylactic vaccine formulations are administered systemically by subcutaneous or intramuscular injection or needleless injection devices using needles and injections.
  • the vaccine formulation is administered nasal by drops into the upper airway, large particle aerosols (greater than about 10 microns) or spraying.
  • the vaccine and / or immunogenic agent is administered in a manner that targets mucosal tissue to elicit an immune response at the site of immunization.
  • mucosal tissue such as gut associated lymphoid tissue (GALT)
  • GALT gut associated lymphoid tissue
  • Other mucosal tissues may also be targeted, such as nasopharyngeal lymphoid tissue (NALT) and bronchial-associated lymphoid tissue (BALT).
  • Vaccines and / or immunogenic agents may be administered according to a dosing regime such as administering the original vaccine composition followed by augmentation of administration.
  • the second dose of the composition is administered at any time between two weeks and one year after the initial administration, preferably about 1, about 2, about 3, about 4, about 5 to about 6 months.
  • the third dose may be administered about 3 months to about 2 years or more, preferably about 4, about 5, or about 6 months or about 7 months to about 1 year after the second dose and the first dose.
  • the third dose can be administered orally after the second dose when the subject's serum and / or urine or mucosal secretions are absent or a small amount of specific immunoglobulin is detected.
  • the second dose is administered about 1 month after the first dose and the third dose is administered about 6 months after the first dose. In another embodiment, the second dose is administered about 6 months after the first administration.
  • an immunogen comprising a MERS-CoV protein can be administered as part of a combination therapy.
  • the MERS-CoV protein or fragment thereof or aggregate thereof may be formulated with other immunogenic compositions and / or antiviral agents. Dosages of pharmaceutical agents may be administered first in an effective dose to elicit a prophylactic or therapeutic immune response, for example, by measuring the serum titer of virus specific immunoglobulins or by measuring the inhibition rate of antibodies in serum samples or urine samples or mucosal secretions.
  • antigen adjuvant affects the way antigens are present. For example, the immune response increases when protein antigens are submerged by alum. Emulsification of the antigen extends the antigen presentation period.
  • Antigen adjuvant may be included. Suitable adjuvant agents include those described in Vogel et al., "A Compendium of Vaccine Adjuvants and Excipients (2nd Edition), incorporated by reference in its entirety for all purposes. Other exemplary, adjuvant agents are complete Freund's adjuvant. (Nonspecific stimulants of immune response containing dead Mycobacterium tuberculosis), incomplete Freund's adjuvant and aluminum hydroxide adjuvant.
  • antigen adjuvant include GMCSP, BCG, aluminum hydroxide, thur-MDP and nor- MDP compounds such as MDP, CGP (MTP-PE), Lipid A, Montanide ISA 206 and Monophosphoryl Lipid A (MPL) Bacteria, MPL, Trehalose Dimycolate (TDM) and (CWS) RIBIs containing three components extracted from the cell wall backbone (CWS) in a 2% squalene / twin 80 emulsion are contemplated, MF-59, Novasome®, MHC antigens may also be used.
  • GMCSP GMCSP
  • BCG aluminum hydroxide
  • thur-MDP and nor- MDP compounds such as MDP, CGP (MTP-PE), Lipid A, Montanide ISA 206 and Monophosphoryl Lipid A (MPL) Bacteria, MPL, Trehalose Dimycolate (TDM) and (CWS) RIBIs containing three components extracted from the cell wall backbone (C
  • the adjuvant is a paucilamellar lipid vesicle with two to ten bilayers arranged in a substantially spherical sheath form separated by an aqueous layer surrounding the large amorphous central cavity from which the lipid bilayer has been removed.
  • Pausilamela lipid vesicles can play a role in stimulating the immune response in many ways, such as nonspecific stimulants, carriers for antigens, carriers of other adjuvants, and combinations thereof.
  • the antigen When prepared by mixing antigens, the antigen acts as a nonspecific immune enhancer, leaving the antigen extracellular to the vesicle, by encapsulating the antigen in the central cavity of the vesicle, the vesicle acts as an immune enhancer and a carrier for the antigen.
  • the vesicles are made predominantly of non-phospholipid vesicles.
  • a basom. NOVA ® is a cotton pouch sila melanoma non-phospholipid vesicles of about 100nm to about 500nm. These include Brij 72, cholesterol, oleic acid and squalene. Novasome has proven to be an effective adjuvant for antigens (see US Pat. Nos.
  • the adjuvant effect is achieved by the use of a substance such as alum and is used in a solution of about 0.05 to about 0.1% in phosphate buffered saline.
  • the immunogen can be prepared from a premix with sugar's synthetic polymer (Carbopol®) used in about 0.25% solution.
  • Some antigen adjuvant such as certain organic molecules obtained from bacteria act on the host rather than the antigen. Examples are muramyl dipeptides (N-acetylmuramil-L-alanyl-D-isoglutamine [MDP]), bacterial peptidoglycan.
  • hemocyanin and hemoerythrin can be used. Although mollusc gates and arthropod hemocyanin and hemoerythrin can be used, hemocyanin from keyhole limpet (KLH) is preferred in certain embodiments.
  • KLH keyhole limpet
  • Various polysaccharide antigen adjuvant can be used. For example, the use of pneumococcal polysaccharide antigen adjuvant for antibody response in mice is disclosed (Yin et al, 1989). Doses that do not generate optimal response or that do not cause inhibition should be used as directed (Yin et al, 1989). Polyamine variants of polysaccharides are particularly preferred, such as chitin and chitosan, including deacetylated chitin.
  • the muramyl dipeptide lipophilic disaccharide-tripeptide derivatives disclosed for use in artificial liposomes were formed from phosphatidyl choline and phosphatidyl glycerol.
  • suitable antigen adjuvant include surface active agents that are bipolar such as saponins and derivatives such as QS21 (Cambridge Biotech). Saponin-based antigen adjuvant includes those containing substrate A and substrate C alone and in combination.
  • Nonionic block copolymer surfactants (Rabinovich et al, 1994) can be used. Oligonucleotides are another useful group of antigen adjuvant (Yamamoto et al, 1988). Another group of adjuvant agents are detoxified endotoxins, such as purified detoxified endotoxins of US Pat. No. 4,866,034. These purified detoxified endotoxins are effective in eliciting adjuvant responses in vertebrates. Of course, the detoxified endotoxin can be combined with other antigen adjuvant to prepare multi-antigen adjuvant formulations. For example, the combination of detoxified endotoxin and trehalose dimycolate is described in US Pat. Particularly contemplated, as disclosed in 4,435,386.
  • Alkyl lysophospholipids ALP
  • BCG BCG
  • antigen adjuvant capable of conjugation with vaccines, including biotin (including biotinylated derivatives).
  • biotin including biotinylated derivatives.
  • Particular antigen adjuvant that particularly considers use is teichoic acid derived from Gram cells. This includes lipoteichoic acid (LTA), ribitol teichoic acid (RTA) and glycerol teichoic acid (GTA). Active forms of such synthetic counterparts may also be used (Takada et al, 1995).
  • antigen adjuvant that is not commonly used in humans can still be used in other vertebrates, for example, when generating antibodies or subsequently obtaining active T cells. Toxicity or other adverse effects that may arise from cells, such as those that may occur using antigen adjuvant or non-irradiated tumor cells, are irrelevant to this environment.
  • Other methods of inducing an immune response can be completed by formulating an immunogen of the present invention with an "immune enhancer". These are the body's own chemical messengers (cytokines) to increase the response of the immune system.
  • Immune enhancers are various cytokines with immunostimulatory activity, immune enhancing activity and inflammation-inducing activity such as interleukin (e.g., IL-1, IL-2, IL-3, IL-4, IL-12, IL-13). Caine, lymphokine and chemokine; Growth factors (eg granulocyte-macrophage (GM) -colony stimulating factor (CSF)); and other immune stimuli such as macrophage inflammatory factors, Flt3 ligands, B7.1, B7.2, etc.
  • GM granulocyte-macrophage
  • CSF colony stimulating factor
  • Molecules including but not limited to, immune stimulatory molecules may be administered as the immunogen to the same agent or may be administered separately
  • the protein or expression vector encoding the protein may be administered to produce an immunostimulatory effect.
  • the alum ranges from about 80 ⁇ g to about 120 ⁇ g or about 100 ⁇ g to about 120 ⁇ g Saponin-based antigen adjuvant may be present in a range with the following lower limits: about 0.2 ⁇ g, about 0.4 ⁇ g, about 0.6 ⁇ g, about 0.8 ⁇ g, about 1 ⁇ g, about 2 ⁇ g, about 3 ⁇ g, about 4 ⁇ g, about 5 ⁇ g, about 6 ⁇ g, about 7 ⁇ g, about 9 ⁇
  • the saponin-based antigen adjuvant is about 5 ⁇ g to about 20 ⁇ g or about 1 ⁇ g to about 10 ⁇ g.
  • Such dosages are particularly appropriate in mice and can be adjusted for human use based on a normal mouse weight of 20 g versus a human weight of about 60 kg.
  • MERS-CoV S protein fragments or aggregates thereof, more preferably MERS-CoV S immunity comprising any one or more polypeptides selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8
  • a method of inducing prophylactic immunity against MERS-CoV infection comprising administering a native composition or a vaccine comprising the same.
  • introducing one or more MERS-COV S protein gene selected from the group consisting of SEQ ID NO: 1, 3, 5 and 7 to prepare a recombinant viral vector
  • a method for producing a MERS-COV S protein antigen comprising the step of inoculating a recombinant virus vector into a host cell to culture the host cell to obtain a culture in which the MERS-COV S protein antigen is expressed.
  • the method may further comprise purifying the expressed MERS-COV S protein or fragment thereof.
  • the recombinant viral vector can be, for example, a phage, plasmid, virus or retroviral vector, preferably a viral vector can be used.
  • the vector is a recombinant baculovirus vector.
  • Constructs and / or vectors encoding genes should be operably linked to appropriate promoters, such as the AcMNPV polyhedrin promoter (or other baculovirus), the Faji Lambda PL promoter, the E. coli lac, phoA, and tac promoters. Preferably overexpressed by a polyhedrin promoter.
  • the expression constructs will further comprise ribosome binding sites for translation, at sites for transcription initiation, termination and transcribed regions.
  • the coding portion of the transcripts expressed by the constructs will preferably initially comprise a translation initiation codon and a termination codon suitably located at the end of the polypeptide to be translated.
  • Expression vectors will preferably comprise at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance gene for eukaryotic cell culture and tetracycline, kanamicin, or impicillin resistance gene for E. coli and other bacterial cultures. .
  • Baculoviridae eg, Autographa californica nucleopolyhedrovirus
  • Adenoviridae eg, canine adenovirus
  • Hepadnavirus family Hepadnaviridae (e.g., Avi hepadna virus)
  • Vacciniaviridae e.g., modified vaccinia Ankara virus
  • Parvoviridae e.g. Autono
  • Preference is given to any one or more viral vectors selected from the group consisting of mus parvovirus (Autonomous Parvovirus).
  • the baculovirus may be selected from: Autographa californica nuclear polyhedral disease virus strains or modified virus strains thereof; Or Bombyx mori nuclear polyhedral disease virus strains or modified strains thereof.
  • Bacterial vectors can also be used. Exemplary bacterial vectors include pQE70, pQE60 and pQE-9, p BlueScript vectors, phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5.
  • pFastBac1 pWINEO pSV2CAT, pOG44, pXTl, pSG, pSVK3, pBPV, pMSG, pSVL and the like are preferred.
  • Eukaryotic host cells can include yeasts, insects, birds, plants, nymphs (or nematodes) and mammalian host cells.
  • Non-limiting examples of insect cells are, for example, Spodoptera frugiperda (Sf) cells such as Sf9, Sf21, Trichoplusiani cells such as high five cells, and Drosophila S2 cells.
  • Sf Spodoptera frugiperda
  • fungal (including yeast) host cells include S. cerevisiae, Kluyveromyces lactis (K. lactis), C. albicans and C.
  • mammalian cells include 293 cell line (human embryonic kidney lineage), CHO cell line (Chinese hamster ovary cell lineage), Vero cell line (African green monkey lineage), MRC cell line (human lung fibroblast cell lineage), and MDCK cell Madin-darby canine kidney cell lineage cells.
  • Xenopus laevis oocytes or other cells from amphibian origin may also be used.
  • Prokaryotic host cells include bacterial cells such as, for example, E. coli, B. subtilis, and mycobacteria.
  • MERS-CoV S proteins, fragments or combinations thereof, which act primarily as MERS-CoV immunogens, are produced from recombinant cell lines that are processed to produce proteins when the host cells grow in cell culture.
  • the cells are infected with the recombinant baculovirus vector at the most efficient multiplicity of infection.
  • the most efficient multiplicity of infection is preferably between 0.001 and 5.0 MOI, more preferably between 0.002 and 4.0 MOI, between 0.003 and 3.0 MOI, between 0.004 and 2.0 MOI, even more preferably between 0.005 and 1.0 MOI, most preferably between 0.01 and 0.8 MOI. Can be.
  • the infection of the recombinant baculovirus can occur effectively when the cells are in the early-log phase of growth and in the 1.0E5-7.0E6 cell / ml concentration, preferably in the range of 5.00E5-1.50E6 cells / ml concentration.
  • Harvesting the cells after infecting the recombinant baculovirus preferably means that the viability of the cells is at least 1%, at most 99%, preferably at 50-98.9%, preferably at 60-98.5%, more preferably at 75-90%. Harvesting at 98% is effective.
  • Infectious conditions of the recombinant baculovirus can minimize the cleavage of the target protein by proteases flowing out of the cells in the killing step.
  • the use of less virus inoculum can improve the yield of the culture.
  • the method for preparing a MERS-CoV S protein immunogen of the present invention may further comprise a step for isolation of the protein.
  • 'mers of cells containing the MERS-CoV antigen' means a plasma membrane, rough ER, smooth ER, Golgi and the like.
  • the culture can be centrifuged to improve production yield by using precipitated Sf9 cells other than the medium. That is, without using the culture medium containing the culture as it is, the step of removing the supernatant after centrifugation, can lead to an increase in protein production.
  • step (c) is carried out at a rate of 1000 to 20000xg, preferably at a rate of 1500 to 15000xg, more preferably at a rate of 2000 to 10000xg, most preferably at 3000 to 8000xg for 1-30 minutes.
  • a rate of 1000 to 20000xg preferably at a rate of 1500 to 15000xg, more preferably at a rate of 2000 to 10000xg, most preferably at 3000 to 8000xg for 1-30 minutes.
  • a rate of 1000 to 20000xg preferably at a rate of 1500 to 15000xg, more preferably at a rate of 2000 to 10000xg, most preferably at 3000 to 8000xg for 1-30 minutes.
  • Sequential centrifugation of step (e) may be performed through at least two steps.
  • the cell lysate can be centrifuged at a rate of 500 to 20,000 ⁇ g for 1-30 minutes to remove settled precipitates and take supernatant including cell membranes.
  • the centrifugation of step (i) of (e) is at a speed of 700 to 18,000xg, preferably at a rate of 1,000 to 15,000xg, more preferably at a speed of 1,500 to 10,000xg, most preferably 2,000 to 7,000 This can be done for 1-30 minutes at xg.
  • step (ii) the supernatant of step (i) was ultracentrifuged at 4-10 ° C. at 10,000 to 400,000 ⁇ g for 60-420 minutes to obtain a precipitate, and the supernatant was removed to remove MERS-CoV S protein or fragment thereof. Only components of these contained cells can be taken.
  • the centrifugation of step (ii) of (e) is at a rate of 10,000 to 400,000xg, preferably at a rate of 20,000 to 350,000xg, more preferably at a rate of 35,000 to 300,000xg, most preferably 50,000 to 250,000 60-420 minutes at xg.
  • step (f) may be performed through at least two steps.
  • step (I) MERS-CoV S protein by adding an extraction buffer from the components of the cell containing the MERS-CoV antigen consisting of the MERS-CoV S protein or fragments thereof obtained after completion of forward dimensional separation in step (e) Extract only the part that contains a fragment of it,
  • step (ii) the contents secured by the extraction of (i) were ultracentrifuged at 5,000 to 300,000 ⁇ g at 4-10 ° C. to discard the supernatant to ensure only precipitate.
  • the centrifugation of step (ii) of (f) is at a rate of 7,000 to 200,000xg, preferably at a rate of 10,000 to 250,000xg, more preferably at a rate of 15,000 to 200,000xg, most preferably of 30,000 to 150,000 It can be done in xg.
  • the antigen production method may further comprise the step of purifying the MERS-COV antigen consisting of (g) MERS-CoV S protein or fragments thereof. Purifying the antigen may include at least two purification steps.
  • the purification is carried out by (i) cation exchange chromatography (anion exchange chromatography),
  • the purification method using the chromatography may use a method commonly used in the industry to purify a protein.
  • a method commonly used in the industry to purify a protein.
  • 1 Robert K. Scopes, Protein Purification: Principles and Practice, 1993, Springer Science & Business Media
  • the present invention provides a MERS-CoV antigen composition having high production capacity (yield) and a method for preparing the same.
  • the MERS-CoV vaccine of the present invention provides high antibody titers.
  • the present invention can improve the yield of the antigen produced by the MERS-CoV virus, it is possible to optimize the process efficiency by minimizing the amount of virus inoculum.
  • the present invention can save the time and cost required to obtain the MERS-CoV antigen.
  • S1 and S2 mean S1 and S2 sub-domains, respectively.
  • RBD means receptor binding domain and TM means trans-membrane domain.
  • Figure 3 is a WB result used in the first purification and confirmation of MERS-CoV S by Anion exchange chromatography.
  • Anion exchange chromatography used here is TMAE.
  • Figure 4 shows the results of performing UD / DF with a filter membrane after performing the secondary purification using affinity chromatography.
  • Affinity chromatography here is Lentil Lectin resin chromatography.
  • FIGS. 7A and 7B are diagrams illustrating an animal experiment schedule.
  • the animal used here is mouse.
  • Injection means the administration of the MERS-CoV S antigen.
  • the antigen administered may include an immune enhancer. Where W represents one week.
  • Figure 8 is a graph of the results of the measurement of total antibody titers to determine the mouse immunogenic induction of MERS-COV S antigen according to the presence and dosage of aluminum-based adjuvant.
  • Total antibody titer is the value confirmed by ELISA analysis.
  • GMT Geometric Mean Titer.
  • "2.5ug + Adjuvant”, “8ug + Adjuvant”, and “25ug + Adjuvant” are substances which adsorb 2.5 ug, 8 ug, and 25 ug of MERS-COV S antigen to the aluminum adjuvant, respectively.
  • PBS + Adjuvant is a material obtained by mixing aluminum adjuvant with sterile phosphate buffer saline.
  • Figure 9 is a graph of the results of the measurement of total antibody titers to determine the mouse immunogenic induction of MERS-CoV S antigen according to the number of administration and the blood collection time. Total antibody titer is the value confirmed by ELISA analysis.
  • GMT Geometric Mean Titer.
  • PBS + Adjuvant is a material obtained by mixing aluminum adjuvant with sterile phosphate buffer saline.
  • 1st boosting herein means a second administration after the first MERS-CoV S antigen.
  • secondnd boosting here means a third dose.
  • Week 2 herein means blood collection two weeks after administration.
  • “Week 4” herein means blood collection 4 weeks after administration.
  • Figure 10 is a graph of the results of the antigen-RBD immunospecific IgG antibody titer measurement experiment to confirm that the antibody induced after administration of the expressed / purified immunogen in this example shows immunogenicity.
  • the antigen-RBD immunospecific IgG antibody titer is a value identified through a specific antibody sandwich ELISA method.
  • the specific antibody is a 1E9 monoclonal antibody that specifically binds to RBD.
  • 8ug + Adjuvant are substances that adsorb 8ug of MERS-CoV S antigen to aluminum adjuvant.
  • PBS + Adjuvant is a material obtained by mixing aluminum adjuvant with sterile phosphate buffer saline.
  • Example One MERS - CoV S gene introduction recombination baculovirus production
  • MERS-CoV S protein recombinant baculovirus (AcMNPV) and then inoculated into insect cell, Sf9.
  • Sf9 insect cells are cultured in sterile 125ml / 250ml / 500ml / 1L spinner flasks or 5L / 50L / 100L bioreactor.
  • the medium used for culturing in this example uses serum-free insect cell specialized medium without serum.
  • the serum-free insect cell specialized medium may include Insect Express (Lonza).
  • the MERS-CoV S recombinant baculovirus for MERS-CoV S production is inoculated between 0.01-0.8 MOI (Multiplicity Of Infection), where the concentration of Sf9 insect cells is 5.00E5-1.50, where the growth phase is the initial phase of the exponential phase. Use concentration of E6.
  • the MERS-CoV S recombinant baculovirus used in this example is harvested at 60-90 hours post inoculation, with viability of 75-98%.
  • the reason for inoculating low growth cells into low growth cells and harvesting at relatively high viability in this example is to minimize target protein cleavage by proteases exiting the killing cells and reduce the amount of virus inoculum used. This is to minimize.
  • the polypeptide immunogen of SEQ ID NO: 4 is obtained by the following method.
  • the Sf9 insect cells obtained after recombinant baculovirus inoculation in Example 1 are centrifuged at 3000-8000xg for 1-30 minutes to separate the cell sedimentation layer and the media supernatant. Remove the separated media supernatant and secure the precipitated cells. Precipitated Sf9 cells are dissolved by adding lysis buffer.
  • the lysis buffer contains a suitable buffer and salt, and the pH is between 6.5 and 8.5.
  • the lysed lysate is subjected to sequential centrifugation to separate the cell membrane containing the MERS-CoV S protein.
  • the sequential centrifugation method is as follows.
  • the dissolved and crushed cell lysate is centrifuged at 2000-7000xg for 1-30 minutes to remove precipitates and take the supernatant.
  • the sediment contains nuclei, some mitochondria, lysosomes, peroxisomes, and the supernatant contains residual lysosomes and peroxisomes, mitochondria and cytosolic proteins, microsomes, ER, Golgi, and cell membranes.
  • the supernatant is again ultracentrifuged at 50,000 ° C. to 50,000-250,000 ⁇ g for 60-420 minutes at 4 ° C. to take the precipitate and remove the supernatant.
  • Extraction buffers contain appropriate buffers, non-ionic detergents and salts, and have a pH between 6.5 and 8.5.
  • Extraction stock containing MERS-CoV S protein is subjected to the first purification by anion exchange chromatography.
  • primary purification was performed using TMAE chromatography and AKTA explorer (HPLC, BD).
  • TMAE used Fractogel TMAE Hicap (M) resin (Merck), and loaded with the extracted crude sample at a pressure not exceeding 0.3 megapascals (MPa).
  • the sample was loaded and washed with a loading buffer, and the solution was irradiated with 7 CV by the illution buffer.
  • the loading buffer and the elution buffer include Tris, Triton X-100, NaCl, etc., and the pH is between 7.0-8.5.
  • FIG. 3 Secondary purification of the purified crude solution subjected to primary purification by glucose affinity chromatography.
  • the second tablet was made of lentil lectin resin (lentil lectin sepharose 4B), and loading and reduction were performed at a pressure of less than 0.3 megapascals (MPa).
  • the loading buffer contains Tris, NaCl, CaCl 2, tween80, MnCl 2, and the pH is between 7.0-8.5.
  • Illution buffer is composed of borate, methyl mannoside, methyl glucoside, and the pH is between 5.0-6.5.
  • the stock solution is filtered and concentrated by ultrafiltration and diafiltration using a filter membrane.
  • FIG. 4 The Zeta-average value measured by DLS of the finally filtered and concentrated antigen is 20-100 nm (FIG. 5), and the antigen is observed using an electron microscope.
  • Figure 6 The Zeta-average value measured by DLS of the finally filtered and concentrated antigen is 20-100 nm (FIG
  • the protein is diluted with 2xSDS sample buffer containing ⁇ ME (beta-mercaptoethanol) in each purification process, filled with 15-20 ⁇ l of each well of SDS-gel, followed by electrophoresis. Total proteins were stained by In addition, SDS-gel was transferred to the membrane and further analyzed by WB (Western blot) using an anti-single or complex MERS-COV S specific antibody. WB incubated the protein-transferred membrane with buffer solution (PBS) containing 5% skim milk (Sigma) at 4 ° C for 4 to 24 hours, washed with buffer, and diluted 1: 2000 after MERS-COV S specificity. The antibody is added and incubated at 4 ° C. for 4-24 hours.
  • PBS buffer solution
  • skim milk Sigma
  • mice Animal experiments using mice were performed with the antigens secured in this example.
  • the mouse used in the experiment can be used by itself as the antigen used in animal experiments, and may be used with an immune enhancer such as an aluminum adjuvant.
  • the adjuvant may include, for example, aluminum or calcium salts, specifically inorganic salts such as hydroxide, phosphoric acid, calcium phosphate and the like.
  • the adjuvant of the aluminum (Aluminum or Alum) family is the most commonly used adjuvant in human vaccines, so the adjuvant has proven its stability and effectiveness to be used as a standard for developing and evaluating new adjuvants. to be.
  • the most commonly used alum adjuvant is aluminum hydroxide (Al (OH) 3) and aluminum phosphate (AlPO4).
  • Al (OH) 3 aluminum hydroxide
  • AlPO4 aluminum phosphate
  • the two alum adjuvant have different physical and adjuvant properties.
  • aluminum hydroxide is the most widely used in the aluminum adsorption vaccine, in this example, aluminum hydroxide was used as an immune enhancer, where aluminum hydroxide was used at a level of 180 ug / 1 dose.
  • the concentrations of MERS-CoV S antigen administered were 2.5 ug / ml, 8 ug / ml, 25 ug / ml, and the number of administrations was differently applied to the two-dose group and the three-dose group. It was.
  • the administration schedule was performed by two administrations after two weeks of first administration and three administrations after two weeks of two administrations. Administration group only). (FIG. 7A, FIG. 7B)
  • the MERS-CoV S antigen obtained in this example was confirmed to be immunogenic induction effect depending on the presence or absence of aluminum hydroxide adjuvant, dosage, frequency of administration, and blood collection time. Confirmation of the immunogenicity induced in this example was carried out through the measurement of total antibody and neutralizing antibody.
  • the total antibody titer to confirm antigen-specific IgG antibody titers was performed using the ELISA method.
  • MERS-CoV S antigen was coated on a 96-well plate by 100ng per well and incubated overnight at 4 ° C. After incubation, the plate was washed three times with 0.1% tween20 buffer solution, incubated with 5% skim milk buffer solution for 4 hours, and washed again with 0.1 tween20 buffer solution three times.
  • the obtained mouse blood is centrifuged to obtain a serum sample, and the prepared serum sample is diluted to an initial concentration of 1/20 and then serially diluted four times to make a final concentration of 1/36980 times.
  • Diluted serum samples were incubated at room temperature for 2 hours at 100 ⁇ l each in a washed 96-well plate, and washed three times with a buffer solution containing 0.1% tween20.
  • HRP mustard peroxidase
  • Goat anti-mouse IgG antibody Invitrogen, US
  • TMB substrate 3,3A, 5,5A-tetramethylbenzidine substrate (TMB substrate, KPL) was added to each well of the washed plate and reacted with HRP for 10 minutes, and then TMB stop solution (KPL) was added to stop the reaction. .
  • the absorbance 450 nm value for each well was measured using a Microtiter plate reader (Molecular Devices), and the total antibody titer measured in this example was confirmed that the expressed / purified MERS-COV S antigen induces high immunogenicity. (FIG. 8A, FIG. 9)
  • the antigen-RBD immunospecific IgG antibody titer was used to confirm that the MERS-COV S immunogen expressed / purified exactly contains a receptor binding domain (RBD) that is known to bind to the cell's DPP4 receptor and cause a neutralizing immune response.
  • RBD receptor binding domain
  • 100 ng of 1E9 RBD specific antibody that specifically binds to the MERS-CoV S RBD portion of the 96-well plate was coated and incubated overnight at 4. After incubation, the plate was washed three times with 0.1% tween20 buffer solution, incubated with 5% skim milk buffer solution for 4 hours, and washed again with 0.1 tween20 buffer solution three times.
  • MERS-COV S antigen was added to a plate coated with 1E9 RBD specific antibody (Xian-Chun Tang et al. PNAS 2014; 111: E2018-E2026) at 100ng / well, followed by incubation at room temperature for 2 hours, and 0.1% tween20. Wash three times with the included buffer solution.
  • the prepared serum samples are diluted to the initial concentration of 1/20 and then serially diluted 4 times to make the final concentration 1/36980 times. Diluted serum samples were incubated at room temperature for 2 hours at 100 ⁇ l each in a washed 96-well plate, and washed three times with a buffer solution containing 0.1% tween20.
  • HRP mustard peroxidase
  • Goat anti-mouse IgG antibody Invitrogen, US
  • 100 ⁇ l of mustard peroxidase (HRP) -binding Goat anti-mouse IgG antibody (Invitrogen, US) diluted 1: 3000 was added to the washed plate, incubated at room temperature for 2 hours, and buffered with 0.1% tween20. Wash three times with solution. 3,3A, 5,5A-tetramethylbenzidine substrate (TMB substrate, KPL) was added to each well of the washed plate and reacted with HRP for 10 times. Then, TMB stop solution (KPL) was added to stop the reaction. .
  • HRP mustard peroxidase
  • KPL 5,5A-tetramethylbenzidine substrate
  • the present invention can be used as a MERS-CoV vaccine having a high antibody titer.
  • the present invention provides a MERS-CoV vaccine with reduced time and cost required for antigen acquisition.

Abstract

The present invention provides a MERS-CoV S immunogenic composition comprising at least one polypeptide selected from a group consisting of SEQ ID NOs: 2, 4, 6 and 8, and a method for preparing the same. The immunogenic composition prepared by the method of the present invention can be expected to have a high yield and can provide a composition for superior prevention of MERS-CoV.

Description

중동호흡기증후군 코로나바이러스 S 단백질 면역원 조성물 및 이의 제작 방법 Middle East Respiratory Syndrome Coronavirus S Protein Immunogen Composition and Method of Making the Same
본 출원은 2016년 11월 23일에 출원된 한국출원 제10-2016-0156610호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2016-0156610, filed November 23, 2016, and all the contents disclosed in the specification and drawings of the application are incorporated in this application.
본 발명은 중동호흡기증후군(MERS-CoV) 감염증을 치료 및/또는 예방하기 위한 면역유발 조성물을 포함하는 MERS-CoV 스파이크(spike, S) 면역원 및 이의 변형, 제조, 또는 사용에 관한 것이다. The present invention relates to a MERS-CoV spike (S) immunogen and its modifications, preparations, or uses thereof comprising an immunogenic composition for treating and / or preventing a Middle East Respiratory Syndrome (MERS-CoV) infection.
2012년 9월 중동 지역을 중심으로 처음 발생한 중동기증후군(Middle East Respiratory Syndrome, MERS)은 급성폐렴, 급성 신부전증 등의 중증 급성 호흡기 증후군을 일으킨다. 2012년 이후부터 2016년 9월까지 전 세계 27개국에서 확인된 MERS laboratory-confirmed case는 (WHO기준) 1800건이었으며 이 중 최소 640명이 사망하여 치사율이 약 36%에 이르는 중증 전염성 질환이다. MERS의 임상적 증상은 발열을 동반한 호흡기 증상이 주로 나타나며, 설사와 구토 등을 동반하기도 한다. MERS의 주요 취약 대상은 50대 이상의 기저 질환 및 면역 질환 등을 앓고 있는 노약자 및 면역 기능 저하자 이며, 림프구 및 혈소판 감소를 보이며 급성 신부전증이 나타나는 사례도 있다. 2015년 한국에서 대유행 하였으며, 이때 사람 간의 2차 감염의 사례로 인해 대유행(out-break)이 발생하였다. The Middle East Respiratory Syndrome (MERS), which first occurred in the Middle East in September 2012, causes severe acute respiratory syndrome such as acute pneumonia and acute renal failure. There were 1,800 MERS laboratory-confirmed cases (WHO standards) in 27 countries around the world since 2012 to September 2016, of which at least 640 people died, resulting in a severe infectious disease with an estimated 36% mortality. The clinical symptoms of MERS are respiratory symptoms with fever, and diarrhea and vomiting. The main subjects of MERS are the elderly and over 50 patients with underlying diseases and immune disorders, including lymphocytes and platelets, and acute renal failure. It was a pandemic in Korea in 2015, when an out-break occurred due to a second case of human infection.
MERS의 원인 병원체는 2012년 최초로 네덜란드의 Erasmus University Medical center Rotterdam에 의해 코로나바이러스 계열로 확인되었으며, 국제 바이러스 분류 위원회(ICTV)에 의해 2013년 5월 "중동호흡기증후군 코로나바이러스(MERS-Coronavirus)"로 명명 되었다. (도 1) 중동호흡기증후군 코로나바이러스(MERS-CoV)는 베타 코로나바이러스에 속하며, 양성의 단일가닥 RNA 바이러스(positive sense single strand RNA virus)로 바이러스의 게놈(genome)은 30kb정도의 크기를 가지고 있고 10개의 단백질을 암호화(coding) 하고 있다. 현재까지 사람 간 감염 및 전파 경로에 대한 명확한 규명은 이루어지지 않았으나, 사람의 DPP4(Dipeptidyl peptidase 4) 수용체가 주요 바이러스 리셉터 (receptor)로 알려져 있다. 또한 MERS-CoV의 유전자는 박쥐의 코로나바이러스인 Bat-CoV-HKU4와 Bat-CoV-HKU5와 유전자 상동성이 높은 것으로 알려져 있어 박쥐에서 유래된 것으로 추정되고 있으며, 중동지역에 서식하는 단봉낙타의 혈청에서 MERS의 중화항체가 발견됨에 따라 낙타가 사람에 MERS-CoV를 전파하는 유력한 매개 감염원으로 추정 하고 있다. 최근 중증의 낙타에서 분리된 바이러스와 MERS 사망자에서 분리된 바이러스의 전장 유전자 염기서열 분석 결과가 일치하며 낙타를 통해 MERS-CoV가 사람에게 감염되었다는 중요한 증거가 밝혀졌다. The causative agent of MERS was first identified as the coronavirus family by Erasmus University Medical Center Rotterdam, the Netherlands in 2012, and as "MERS-Coronavirus" by the International Virus Classification Committee (ICTV) in May 2013. Unnamed: I was named. (Figure 1) Middle Respiratory Syndrome Coronavirus (MERS-CoV) belongs to beta coronavirus, positive sense single strand RNA virus (positive sense single strand RNA virus) virus genome (genome) has a size of about 30kb It encodes ten proteins. To date, no clear identification of human liver infection and propagation pathways has been made, but human DPP4 (Dipeptidyl peptidase 4) receptors are known as major viral receptors. In addition, the gene of MERS-CoV is known to have high gene homology with Bat-CoV-HKU4 and Bat-CoV-HKU5, which are the coronaviruses of bats. The discovery of neutralizing antibodies to MERS in Camel suggests that camels are a potential mediator of human transmission of MERS-CoV. Recently, full-length gene sequencing of viruses isolated from severe camels and those isolated from MERS deaths have been in agreement, and significant evidence of MERS-CoV infection in humans came from camels.
MERS-CoV 는 4개의 구조 단백질을 암호화 하고 있으며, 구조단백질은 spike(S), membrane (M), envelope (E), nucleocapsid (N)이다. 이중 S 단백질은 type I trans-membrane glycoprotein으로 MERS-CoV의 표면에 존재하는데, envelope과 anchor를 형성하며 trimeric 형태로 구성되어 있다. (도 2) MERS-CoV S 단백질은 대부분의 coronavirus가 그렇듯이, host range와 tropism을 결정하는데 중요한 역할을 한다. MERS-CoV 의 S단백질은 receptor binding 부분인 S1과 membrane fusion 부분인 S2로 구성되어 있으며, MERS-CoV 의 S1 sub-domain에 있는 receptor binding domain (RBD)는 CD-26 이라고 알려진 dipeptidyl peptidase-4 (DPP4) receptor를 인지하고 binding을 하는 것으로 알려져 있다. 반면 COV-NL63과 SARS-COV는 Angiotensin-converting enzyme 2 (ACE2)와 binding 하며, Porcine respiratory coronavirus 와 몇몇 COV는 aminopeptidase N (APN)을 인지하는 것으로 알려져 있다. S2 subdomain의 HR domain들은 virus의 envelope와 target 세포의 세포막과의 mediated fusion에 관여되어 있다. 이 spike protein은 코로나바이러스의 주요 항원으로, 높은 면역원성을 유도하기 때문에 백신이나 치료제의 대상이다. MERS-CoV encodes four structural proteins, and the structural proteins are spike (S), membrane (M), envelope (E) and nucleocapsid (N). The S protein is a type I trans-membrane glycoprotein that exists on the surface of MERS-CoV. It forms an envelope and an anchor and is trimeric. (Figure 2) MERS-CoV S protein plays an important role in determining host range and tropism, like most coronaviruses. The S protein of MERS-CoV consists of S1, the receptor binding region, and S2, the membrane fusion region.The receptor binding domain (RBD) in the S1 sub-domain of MERS-CoV is dipeptidyl peptidase-4 (known as CD-26). DPP4) is known to recognize and bind to receptors. COV-NL63 and SARS-COV bind to angiotensin-converting enzyme 2 (ACE2), while Porcine respiratory coronavirus and some COVs are known to recognize aminopeptidase N (APN). HR domains of the S2 subdomain are involved in mediated fusion between the envelope of the virus and the cell membrane of the target cell. This spike protein is a major antigen of coronaviruses and is targeted for vaccines and therapeutics because it induces high immunogenicity.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 높은 MERS-CoV 항원 생산능력(수율)을 얻어, 높은 면역원성을 갖는 면역원 조성물 및 이의 제조방법을 제공하고자 한다. The present invention to solve the above problems, to obtain a high MERS-CoV antigen production capacity (yield), to provide an immunogen composition having a high immunogenicity and a method for producing the same.
본 발명은 높은 항체가를 갖는 MERS-CoV 백신 및 이의 제조방법을 제공하고자 한다. The present invention seeks to provide a MERS-CoV vaccine having a high antibody titer and a method for preparing the same.
본 발명의 발명자들은 MERS-CoV 항원 수율의 향상을 통해, 바이러스 수득에까지 필요한 시간 및 비용을 절감시키고자 한다. The inventors of the present invention seek to reduce the time and cost required to obtain a virus by improving MERS-CoV antigen yield.
기술의 개요Overview of the technology
본 발명은 중동 호흡기 증후군 코로나바이러스 (MERS-CoV) 항원, 상기 면역원을 포함하는 면역원 조성물, 또는 상기 면역원 조성물을 포함하는 백신에 관한 것이다. 보다 구체적으로 기술하자면, 본 발명은 새로운 MERS-CoV S 단백질 발현 펩타이드 또는 MERS-CoV 항원을 제조하여 사용하는 방법에 대한 것이다. The present invention relates to a Middle East respiratory syndrome coronavirus (MERS-CoV) antigen, an immunogen composition comprising said immunogen, or a vaccine comprising said immunogen composition. More specifically, the present invention relates to a method for preparing and using a new MERS-CoV S protein expressing peptide or MERS-CoV antigen.
본 발명으로 확보된 면역원은 동물 또는 사람이 실제 MERS-CoV에 감염되었을 때 나타나는 면역 반응을 거짓 유도 하게 한다. 또한, 본 발명은 이런 거짓 면역 반응이 유도되고, 유지 됨으로써 실제 MERS-CoV가 감염 되었을 때 MERS-CoV를 체내에서 중화하는 역할을 할 수 있다. The immunogen secured by the present invention allows false induction of the immune response that occurs when an animal or human is actually infected with MERS-CoV. In addition, the present invention may induce and maintain such a false immune response and thus may neutralize MERS-CoV in the body when MERS-CoV is actually infected.
본 발명은 MERS-CoV S 면역원을 배양하고 정제 하는 적절한 방법을 제시한다. 본 발명에 기술된 배양 및 정제 방법으로 생산되는 MERS-CoV S 면역원은 media에서 생산되는 방법 보다 더 높은 수율을 기대할 수 있다. 또한, 본 발명에 제시된 배양 및 정제 방법으로 생산된 MERS-CoV S 면역원은 높은 면역원성을 제공한다. The present invention provides a suitable method for culturing and purifying the MERS-CoV S immunogen. MERS-CoV S immunogens produced by the culture and purification methods described herein can expect higher yields than the methods produced in media. In addition, the MERS-CoV S immunogen produced by the culture and purification methods presented herein provides high immunogenicity.
본 원에 기재되어 있는 각각의 저널 논문, 특허, 특허 출원, 공개공보 등은 전체 내용 혹은 부분 내용을 참조하였으며, 해당 내용이 언급된 것 또한 본 원에 포함된다는 것이 이해되어야 한다. Each of the journal articles, patents, patent applications, publications, etc., described herein, are referenced in their entirety or in part, and it is to be understood that such references are also incorporated herein.
정의Justice
본 원에 사용한 용어 "면역원(immunogen)"은 면역원성을 유발 하는 모든 물질을 의미하며, 용어 "항원"을 포함하여, 체내에 들어와서 면역 반응을 유발하는 모든 물질을 의미한다. 용어 "면역원"은 단백질 또는 단백질이 모여 구성된 거대 단백질 분자 또는 상기 단백질이 용해되어 단편을 이루는 형태를 포함한다. 거대 단백질은 다수의 단백질 배열 및 단백질 집합을 의미하며, 폴리머 면역원 및 VLP가 포함되어 있다. 여기서 면역원성 유발은 세포성 면역 및 체액성 면역 모두를 의미한다. 용어 "면역원"은, 예를 들어 체내에 침투한 외부물질 전체 및 일부가 포함되며, 면역원에 의한 세포성 면역 유도는 항원 특이 항체 생성을 의미할 수도 있다. 항원 특이 항체 중에는 재 침투한 외부물질을 방어하고 중화 작용을 하는 중화 항체가 포함되어 있다. As used herein, the term "immunogen" refers to any substance that induces immunogenicity, including the term "antigen", means any substance that enters the body and induces an immune response. The term “immunogen” includes a protein or a large protein molecule composed of proteins or forms in which the protein is dissolved to form a fragment. Giant protein refers to a large number of protein sequences and protein assemblies, including polymeric immunogens and VLPs. Immunogenic induction here means both cellular and humoral immunity. The term “immunogen” includes, for example, all and part of foreign material that has penetrated into the body, and cellular immune induction by an immunogen may mean antigen specific antibody production. Antigen-specific antibodies include neutralizing antibodies that defend and neutralize re-penetrating foreign substances.
본 발명에 사용된 용어 "단편(fragment)"은 조각, 절편 등과 같은 의미로 사용될 수 있으며, 단백질의 일부가 면역원성 기능을 상실하지 않고 MERS-CoV S 단백질로부터 분리된 형태를 포함하는 것으로 사용될 수 있다. 예를 들어, 세포막으로부터 분리되는 과정에서 원심분리에 의해 MERS-CoV S 단백질의 파쇄, 절단이 유발되는 경우, 면역원성을 상실하지 않는 한, 본 발명의 MERS-CoV S 단백질의 단편으로, 본 발명의 MERS-CoV 면역원에 포함될 수 있다. As used herein, the term "fragment" may be used in the same sense as fragments, fragments, etc., and may be used to include a form in which a portion of the protein is separated from the MERS-CoV S protein without losing immunogenic function. have. For example, when crushing and cleavage of the MERS-CoV S protein is induced by centrifugation in the process of separating from the cell membrane, the fragment of the MERS-CoV S protein of the present invention, unless the immunogenicity is lost, the present invention May be included in the MERS-CoV immunogen.
본 발명에 사용된 용어 "백신"은 죽거나 약해진 병원체 또는 병원체에 대항하여 항체의 형성 또는 면역성을 유도하는데 사용된 유래 항원 결정부위의 조합제를 의미한다. 백신은 MERS CoV 바이러스에 의해 유발된 MERS에 대해 면역을 제공하도록 제공된다. 또한, 용어 "백신"은 척추동물에 투여되어 보호 면역성, 즉 감염과 관련된 질환의 심각성을 감소시키는 면역성을 발생시키는 면역원 현탁액 또는 용액을 의미한다.The term "vaccine" as used herein refers to a combination of derived antigenic determinants used to induce the formation or immunity of antibodies against dead or weakened pathogens or pathogens. Vaccines are provided to provide immunity against MERS caused by the MERS CoV virus. The term "vaccine" also refers to an immunogen suspension or solution that is administered to a vertebrate to produce protective immunity, i.e., immunity that reduces the severity of the disease associated with the infection.
본 원에 표현되어 있는 "포함"은 이라는 용어는, 해당 내용 및 내용물이 함께 있음을 의미한다. 용어 "포함"은 내용 및 내용물의 첨가 또는 함유를 의미하기도 한다. 하지만, 용어 "포함"은 해당 내용 및 내용물이 독립적, 단독적으로도 사용될 수 있다는 사실에 유의해야 한다.As used herein, the term "comprising" means that the content and content together. The term "comprising" also means the content and the addition or inclusion of the content. It should be noted, however, that the term "comprising" may be used independently and in its own right.
"약"은 참조 값으로서 동일한 효과 및 결과를 제공하는 값들이 모두 포함된다. 하지만, "약"은 참조 값에 대해서만 의미를 부여한다. 또한, 용어 "약"에 의해 포함된 범위는 용어가 포함되는 내용(참조 값)의 범위나 특성에 따라 변할 수 있다. 따라서, 내용에 따라, "약"은, 예를 들어, ±15%, ±10%, ±5%, ±4%, ±3%, ±2%, ±1%, 또는 1% 미만을 의미할 수 있다."About" includes all values that provide the same effect and result as reference values. However, "about" gives meaning only for reference values. In addition, the range included by the term "about" may vary depending on the range or characteristics of the content (reference value) in which the term is included. Thus, depending on the content, "about" may mean, for example, less than ± 15%, ± 10%, ± 5%, ± 4%, ± 3%, ± 2%, ± 1%, or less than 1%. Can be.
본 원에 기재된 모든 수치 범위는 수치 범위 값 내에 있는 모든 수치 값을 포함 하고 있다. 예를 들어 "1000-3000"의 수치 범위는 1000 이상 3000 이하의 수치를 모두 포함하고 있음을 이해 해야 한다. 또한, 본 원에 기재되어 있는 모든 수치는 독립적 수치 범위로 인정 될 수도 있으며, 각 수치 값 간의 연결-복합적인 범위들로도 인정 될 수 있다.All numerical ranges described herein include all numerical values within the numerical range values. For example, it should be understood that the numerical range "1000-3000" includes all values between 1000 and 3000. In addition, all numerical values set forth herein may be regarded as independent numerical ranges, and may also be regarded as linkage-complex ranges between respective numerical values.
본 발명에 사용된 "유효량"은 일반적으로 면역성을 유도하고, 바이러스 감염을 예방 및/또는 완화 또는 감염의 적어도 하나의 증상을 감소 및/또는 면역원의 효과를 증가시키는데 충분한 MERS-CoV S 단백질 또는 이의 단편 또는 MERS-CoV S 단백질의 집합체의 양을 의미한다. 유효량은 감염의 개시를 지연 또는 최소화하는데 충분한 MERS-CoV S 단백질 또는 이의 단편 또는 MERS-CoV S 단백질의 집합체의 양을 의미할 수 있다. 유효량은 감염의 치료 또는 관리에 치료 이익을 제공하는 MERS-CoV S 단백질 또는 이의 단편 또는 MERS-CoV S 단백질의 집합체의 양을 의미할 수 있다. 유효량은 바이러스에 대한 후속 노출에 대항하여 피험자(예를 들어, 인간) 자신의 면역 반응을 강화시키는데 충분한 양일 수 있다. 면역성 의 수준은, 예를 들어, 플라크 중화, 보체 고정, 효소-연결 면역부착 또는 미세중화 분석법에 의해, 예를 들어, 분비 및/또는 혈청 항체를 중화하는 양을 측정함으로써 관찰될 수 있다. 백신의 경우에, "유효량"은 질환을 예방하거나 증상의 심각성을 감소시키는 것이다.As used herein, an "effective amount" is generally a MERS-CoV S protein or its sufficient to induce immunity and to prevent and / or alleviate a viral infection or to reduce at least one symptom of an infection and / or to increase the effect of an immunogen. Refers to the amount of fragment or aggregate of MERS-CoV S protein. An effective amount may refer to an amount of MERS-CoV S protein or fragment thereof or aggregate of MERS-CoV S protein sufficient to delay or minimize the onset of infection. An effective amount may refer to the amount of MERS-CoV S protein or fragment thereof or aggregate of MERS-CoV S protein that provides a therapeutic benefit in the treatment or management of an infection. The effective amount may be an amount sufficient to enhance the subject's (eg, human) own immune response against subsequent exposure to the virus. The level of immunity can be observed, for example, by plaque neutralization, complement fixation, enzyme-linked immunoadhesion or microneutralization assays, eg, by measuring the amount of neutralizing secretion and / or serum antibodies. In the case of a vaccine, an "effective amount" is one that prevents a disease or reduces the severity of symptoms.
본원에서 사용된 baculovirus (배큘로바이러스)는 곤충세포에 감염을 일으키는 바이러스를 의미한다. 본원에 사용된 baculovirus는 alfalfa looper (또는 Autographa californica라고 알려진 밤나방과-Noctuidae에 포함된 나방) 핵다각체병 바이러스 주 (nucleopolyhedrovirus strains; NPV strains) 및 변형된 바이러스 주들을 의미한다. 또한, 본원에서 사용된 baculovirus는 Bombyx mori (누에나방과-Bombycidae에 속해있는 누에나방) 핵다각체병 바이러스 주 (NPV) 및 변형된 바이러스도 포함됨을 유의해야 한다. As used herein, baculovirus refers to a virus that infects insect cells. As used herein, baculovirus refers to alfalfa looper (or night moth known as Autographa californica-moth included in Noctuidae) nucleopolyhedrovirus strains (NPV strains) and modified viral strains. It should also be noted that the baculovirus as used herein also includes Bombyx mori (silk moth belonging to the silkworm moth-Bombycidae) nuclear polyhedron virus strain (NPV) and modified viruses.
본원에서 사용된 MERS-CoV S 재조합 baculovirus는 상동적 재조합을 이용하여 제작 된다. 생성된 상동적 재조합 baculovirus는 적정한 세포에 감염될 시 (예를 들어 곤충세포계열) 재조합된 MERS-CoV S 외래 단백질을 생산 할 수 있다. 재조합된 MERS-CoV S 단백질은 폴리헤드린 (polyhedrin) 프로모터에 의해 과 발현 된다.As used herein, the MERS-CoV S recombinant baculovirus is constructed using homologous recombination. The resulting homologous recombinant baculovirus can produce recombinant MERS-CoV S foreign protein upon infection with the appropriate cell (eg insect cell line). Recombinant MERS-CoV S protein is overexpressed by polyhedrin promoter.
MERS-CoV 면역원MERS-CoV immunogen
본 발명은 서열번호 2, 4, 6 및 8로 이루어진 군에서 선택된, 어느 하나 이상의 폴리펩타이드를 포함하는 MERS-CoV S 면역원성 조성물을 제공한다. The present invention provides a MERS-CoV S immunogenic composition comprising any one or more polypeptides selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8.
본 발명의 일 실시예에서, 상기 면역원성 조성물은 MERS-CoV의 스파이크(S) 단백질 또는 이의 단편 또는 상기 MERS-CoV의 스파이크 단백질 조합체를 포함하나, 이에 제한되지 않는 임의의 MERS-CoV 단백질을 포함할 수 있다. In one embodiment of the invention, the immunogenic composition comprises any MERS-CoV protein, including, but not limited to, spike (S) protein or fragment thereof of MERS-CoV or a spike protein combination of MERS-CoV. can do.
상기 MERS-COV S 유전자는 GenBank accession No. KF186567 (Al-Hasa_1_2013) 및 KT029139 (MERS-COV/KOR/KNIH/002_05_2015) 균주로부터 얻어지거나 유래할 수 있다. 해당 유전자의 DNA 서열은 곤충 세포에서 발현이 용이하도록 codon이 최적화 될 수 있으며, Seq ID NO:1 (Al-Hasa_1_2013, 유전자 서열), Seq ID NO:2 (Al-Hasa_1_2013, 아미노산 서열), Seq ID NO:3 (KOR/KNIH/002_05_2015, 유전자 서열), 및 Seq ID NO:4 (KOR/KNIH/002_05_2015, 아미노산 서열)로 얻을 수 있다. The MERS-COV S gene is GenBank accession No. Or derived from the strains KF186567 (Al-Hasa_1_2013) and KT029139 (MERS-COV / KOR / KNIH / 002_05_2015). DNA sequence of the gene can be optimized codon to facilitate expression in insect cells, Seq ID NO: 1 (Al-Hasa_1_2013, gene sequence), Seq ID NO: 2 (Al-Hasa_1_2013, amino acid sequence), Seq ID NO: 3 (KOR / KNIH / 002_05_2015, gene sequence), and Seq ID NO: 4 (KOR / KNIH / 002_05_2015, amino acid sequence).
또한, MERS-CoV S 단백질이 배양액으로 분비되게 만들어진 Seq ID. No: 5, Seq ID. No: 6, Seq ID. No: 7, 및/또는 Seq ID. No: 8의 MERS-CoV S 부분 단백질의 유전자 서열 및 아미노산 서열을 제공할 수 있다. In addition, Seq ID. MERS-CoV S protein was made to be secreted into the culture. No: 5, Seq ID. No: 6, Seq ID. No: 7, and / or Seq ID. The gene sequence and amino acid sequence of the MERS-CoV S partial protein of No: 8 can be provided.
본 발명은 MERS-CoV 단백질의 변형물을 제공한다. 구체적으로, 본 발명의 서열번호로 언급된 아미노산 서열의 변형물은 구성 단백질의 아미노산 서열에 변화를 포함할 수 있다. 폴리펩타이드와 관련하여 "변형물"이란 용어는 참조 서열과 관련하여 하나 이상의 아미노산에 의해 변화된 아미노산 서열을 의미한다. 변형물은 "보존성" 변화를 가질 수 있으며, 치환 아미노산은 유사한 구조적 또는 화학적 특성, 예를 들어, 아이소루신에 의한 루신의 대체를 가진다. 선택적으로, 변형물은 "비 보존성" 변화를 가질 수 있으며, 예를 들어, 트립토판에 의한 글리신의 대체를 가질 수 있다. 유사한 미세 변형은 또한 아미노산 결실 또는 삽입 또는 둘 다를 포함할 수 있다. 어느 아미노산 잔기가 생물학적 또는 면역학적 활성을 제거하지 않고 치환, 삽입 또는 결실될 수 있는지를 결정하는데는 당업계에 주지된 컴퓨터 프로그램, 예를 들어, DNASTAR 소프트웨어를 사용하여 결정할 수 있다.The present invention provides a variant of the MERS-CoV protein. In particular, modifications of the amino acid sequence referred to in SEQ ID NO: of the present invention may comprise a change in the amino acid sequence of the constituent protein. The term "variant" in the context of a polypeptide refers to an amino acid sequence that has been changed by one or more amino acids in reference to a reference sequence. Variants may have “conservative” changes, and substituted amino acids have similar structural or chemical properties, eg, replacement of leucine by isoleucine. Optionally, the variant may have a “non conservative” change, eg, replacement of glycine by tryptophan. Similar micro modifications may also include amino acid deletions or insertions or both. Determination of which amino acid residues can be substituted, inserted or deleted without removing biological or immunological activity can be made using computer programs well known in the art, such as DNASTAR software.
본 발명의 MERS-CoV 면역원성 조성물에 포함되는 핵산 및 폴리펩타이드는 서열목록에 도시된 서열과 적어도 85%, 90%, 95%, 96%, 97%, 98% 또는 99% 동일할 수 있다.The nucleic acids and polypeptides included in the MERS-CoV immunogenic composition of the present invention may be at least 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to the sequences shown in the sequence listing.
본 발명의 발명자들은 특히 MERS-CoV S 부분의 전체 혹은 일부 유전자 서열번호 1, 3, 5, 7 및/또는 아미노산 서열번호 2, 4, 6, 8을 이용한, MERS-CoV 면역원성 조성물을 제공한다. 본 발명의 발명자들은 상기 서열번호 2, 4, 6, 8의 핵산 및/또는 폴리펩타이드, 바람직하게 서열번호 2 및/또는 4 의 폴리펩타이드를 이용하여 특히 우수한 항체가를 제공하고, 면역원 수율의 향상을 가져오는 면역원성 조성물을 제공한다. The inventors of the present invention provide a MERS-CoV immunogenic composition, in particular using all or part of the gene sequence numbers 1, 3, 5, 7 and / or amino acid sequence numbers 2, 4, 6, 8 of the MERS-CoV S moiety. . The inventors of the present invention provide particularly excellent antibody titers using the nucleic acids and / or polypeptides of SEQ ID NO: 2, 4, 6, 8, preferably the polypeptides of SEQ ID NO: 2 and / or 4, and improve immunogen yield. It provides an immunogenic composition that brings.
약학적 또는 백신 제제 및 투여Pharmaceutical or Vaccine Preparations and Administration
본 발명의 일 실시예는 서열번호 2, 4, 6 및 8로 이루어진 군에서 선택된, 어느 하나의 MERS-CoV S 폴리펩타이드가 포함된 MERS-CoV 예방 백신을 제공한다. One embodiment of the present invention provides a MERS-CoV prevention vaccine comprising any one of the MERS-CoV S polypeptide, selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8.
상기 백신은 보조제 또는 면역 증강제가 더 포함될 수 있다. The vaccine may further comprise an adjuvant or an immune enhancer.
본 발명의 면역원성 조성물은 이 조성물을 투여받는 척추동물에 해로운 면역 반응을 자체로 유발하지 않는 임의의 약학적 물질을 포함하고, MERS-CoV S 폴리펩타이드와 함께 과도한 독성 없이 투여될 수 있는 임의의 적절한 희석제 또는 부형제를 포함하는 약학적으로 허용가능한 운반자를 포함한다. 본 발명에서 사용된 대로, "약학적으로 허용가능한"이란 용어는 미국 약전, 유럽 약전 또는 척추동물 및 더욱 구체적으로 인간에 사용하기 위한 다른 일반적으로 인식된 약전에 나열되는 것을 의미한다. 본 발명의 MERS CoV S 면역원은 MERS CoV 바이러스의 하나 이상의 균주에 대항하여 면역 반응을 자극하는데 충분한 유효량 또는 양(위에서 정의함)으로 투여된다. 이런 조성물은 척추동물에서 보호성 면역반응을 유도하기 위한 백신 및/또는 면역원 조성물로서 사용될 수 있다. 조성물은 다른 MERS-CoV S 단백질 또는 이의 단편을 함유할 수 있다. The immunogenic composition of the present invention includes any pharmaceutical substance that does not itself cause an immune response harmful to the vertebrate receiving the composition, and may be administered without excessive toxicity with the MERS-CoV S polypeptide. Pharmaceutically acceptable carriers including suitable diluents or excipients. As used herein, the term "pharmaceutically acceptable" means to be listed in the US Pharmacopoeia, European Pharmacopoeia, or Vertebrate and more specifically other commonly recognized Pharmacopoeia for use in humans. MERS CoV S immunogens of the invention are administered in an effective amount or amount (as defined above) sufficient to stimulate an immune response against one or more strains of MERS CoV virus. Such compositions can be used as vaccines and / or immunogen compositions for inducing a protective immune response in vertebrates. The composition may contain other MERS-CoV S proteins or fragments thereof.
한 비-제한적인 실시태양에서, 면역원의 농도는 적어도 약 10㎍/mL, 약 20㎍/mL, 약 30㎍/mL, 약 40㎍/mL, 약 50㎍/mL, 약 60㎍/mL, 약 100㎍/mL, 약 200㎍/mL, 또는 약 500㎍/mL이다. 특정 양태에서, 면역원의 농도는 약 10㎍/mL 내지 약 1mg/mL, 또는 약 20㎍/mL 내지 약 500㎍/mL, 또는 약 30㎍/mL 내지 약 100㎍/mL 또는 약 30㎍/mL 내지 약 50㎍/mL이다. 다른 실시태양에서 면역원의 농도는 10㎍/mL 내지 200㎍/mL 포함될 수 있다. In one non-limiting embodiment, the concentration of immunogen is at least about 10 μg / mL, about 20 μg / mL, about 30 μg / mL, about 40 μg / mL, about 50 μg / mL, about 60 μg / mL, About 100 μg / mL, about 200 μg / mL, or about 500 μg / mL. In certain embodiments, the concentration of the immunogen is about 10 μg / mL to about 1 mg / mL, or about 20 μg / mL to about 500 μg / mL, or about 30 μg / mL to about 100 μg / mL or about 30 μg / mL To about 50 μg / mL. In other embodiments the concentration of immunogen may be comprised between 10 μg / mL and 200 μg / mL.
한 실시태양에서, 본 발명에 개시된 약학적 제제는 MERS-CoV 단백질, 주로 스파이크 단백질; 및 약학적으로 허용 가능한 담체 또는 부형제를 포함할 수 있다.In one embodiment, the pharmaceutical formulations disclosed herein comprise a MERS-CoV protein, primarily a spike protein; And pharmaceutically acceptable carriers or excipients.
다른 실시태양에서, 약학적 제제는 면역원이 투여된 동물에서 생산된 정제된, 고 친화력 항체를 포함한다. 약학적으로 허용가능한 담체들은 식염수, 버퍼 식염수, 덱스트로스, 물, 글리세롤, 살균 등장성 수성 버퍼 및 이의 조합을 포함하나 이에 한정되지 않는다. 약학적으로 허용가능한 담체들, 희석제들 및 다른 부형제들은 Remington's Pharmaceutical Sciences(Mack Pub. Co. N.J. current edition)에 제공된다. 상기 제제는 투여 방식에 적합해야 한다. 바람직한 실시태양에서, 상기 제제는 인간에 대한 투여에 적합한데, 바람직하게는 살균되고, 미립자가 아니고 및/또는 발열성이 아니다. 원한다면, 상기 조성물은 소량의 습윤제 또는 유화제 또는 pH 완충제를 함유할 수 있다. 상기 조성물은 재조합에 적합한 동결건조 분말과 같은 고체 형태, 액체 용액, 서스펜션, 에멀션, 정제, 알약, 캡슐, 서방성 제제 또는 분말일 수 있다. 경구 제제는 만니톨, 락토오스, 전분, 스테아르산 마그네슘, 사카린 나트륨, 셀룰로오스, 탄산마그네슘 등과 같은 표준 담체들을 포함할 수 있다. 또한 본 발명은 면역원성 백신 제제들의 성분들의 하나 이상으로 채워진 하나 이상의 용기를 포함하는 약학적 팩 또는 키트를 제공한다. 바람직한 실시태양에서, 상기 키트는 2개의 용기를 포함하며, 하나는 MERS CoV 면역원을 포함하고, 다른 하나는 항원 보강제를 포함한다. 의약 또는 생물학적 제품의 제조, 사용 또는 판매를 규율하는 정부 기관에 의해 처방된 형태의 공지는 이런 용기(들)에 결합될 수 있고, 상기 공지는 인간 투여를 위한 제조, 사용 또는 판매의 기관에 의해 승인을 나타낸다. 제제는 조성물의 양을 나타내는 앰플(ampoule) 또는 사체트(sachette)와 같은 밀봉된 용기에 포장될 수 있다. 한 실시태양에서, 조성물은 액체로 공급되고, 다른 실시태양에서는, 밀봉된 용기에 있는 건조 살균된 동결건조 분말 또는 물 제거 농축물로 공급되며, 예를 들어, 물 또는 식염수로 피험자에게 투여하기 위해 적절한 농도로 재구성될 수 있다. 바람직하게는, 조성물은 바람직하게는 약 1㎍, 약 5㎍, 약 10㎍, 약 20㎍, 약 25㎍, 약 30㎍, 약 50㎍, 약 100㎍, 약 125㎍, 약 150㎍, 또는 약 200㎍의 단위 복용량에 기밀한 용기에서 건조 살균 동결건조 분말로서 공급된다. 선택적으로, 조성물의 단위 복용량은 약 1㎍(예를 들어, 약 0.08㎍, 약 0.04㎍, 약 0.2㎍, 약 0.4㎍, 약 0.8㎍, 약 0.5㎍ 이하, 약 0.25㎍ 이하 또는 약 0.1㎍ 이하) 또는 약 125㎍ 초과(예를 들 어, 약 150㎍ 이상, 약 250㎍ 이상 또는 약 500㎍ 이상)이다. 이런 복용량은 전체 MERS-CoV 단백질(예를 들어, 스파이크 단백질 또는 이의 단편)의 ㎍로서 측정될 수 있다. 본 발명의 면역원은 동결건조 분말로 재구성된 후 약 12시간 내에, 바람직하게는 약 6시간 내에, 약 5시간 내에, 약 3시간 내에, 또는 약 1시간 내에 투여되어야 한다. 다른 실시태양에서, MERS-CoV 단백질 면역원성 조성물은 MERS-CoV 단백질 조성물의 양과 농도를 나타내는 밀봉된 용기에 액체 형태로 공급된다. 바람직하게는, 본 발명의 면역원 조성물의 액체 형태는 적어도 약 50㎍/ml, 더욱 바람직하게는 적어도 약 100㎍ /ml, 적어도 약 200㎍/ml, 적어도 500㎍/ml, 또는 적어도 1mg/ml로 밀봉된 용기에 공급된다. In another embodiment, the pharmaceutical formulation comprises a purified, high affinity antibody produced in an animal to which the immunogen has been administered. Pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, sterile isotonic aqueous buffers, and combinations thereof. Pharmaceutically acceptable carriers, diluents and other excipients are provided in Remington's Pharmaceutical Sciences (Mack Pub. Co. N. J. current edition). The formulation should be suitable for the mode of administration. In a preferred embodiment, the formulation is suitable for administration to humans, preferably sterile, non-particulate and / or not pyrogenic. If desired, the composition may contain small amounts of wetting or emulsifying agents or pH buffers. The composition may be in solid form, such as a lyophilized powder suitable for recombination, liquid solutions, suspensions, emulsions, tablets, pills, capsules, sustained release preparations or powders. Oral formulations may include standard carriers such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate and the like. The present invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the components of an immunogenic vaccine formulation. In a preferred embodiment, the kit comprises two containers, one containing a MERS CoV immunogen and the other containing an adjuvant. Notices in the form prescribed by government agencies governing the manufacture, use, or sale of a medicinal or biological product may be incorporated in such container (s), which notices may be made by an agency of manufacture, use, or sale for human administration. Indicates approval. The formulation may be packaged in a sealed container such as an ampoule or sachette indicating the amount of the composition. In one embodiment, the composition is supplied as a liquid, and in another embodiment, it is supplied as a dry sterile lyophilized powder or water removal concentrate in a sealed container, for example to administer to a subject in water or saline. Can be reconstituted to an appropriate concentration. Preferably, the composition is preferably about 1 μg, about 5 μg, about 10 μg, about 20 μg, about 25 μg, about 30 μg, about 50 μg, about 100 μg, about 125 μg, about 150 μg, or It is supplied as a dry sterile lyophilized powder in a container hermetically sealed at a unit dose of about 200 μg. Optionally, the unit dose of the composition is about 1 μg (eg, about 0.08 μg, about 0.04 μg, about 0.2 μg, about 0.4 μg, about 0.8 μg, about 0.5 μg or less, about 0.25 μg or less, or about 0.1 μg or less). ) Or greater than about 125 μg (eg, at least about 150 μg, at least about 250 μg, or at least about 500 μg). Such dosage can be measured as μg of total MERS-CoV protein (eg, spike protein or fragment thereof). The immunogen of the invention should be administered within about 12 hours, preferably within about 6 hours, within about 5 hours, within about 3 hours, or within about 1 hour after reconstitution of the lyophilized powder. In another embodiment, the MERS-CoV protein immunogenic composition is supplied in liquid form to a sealed container representing the amount and concentration of the MERS-CoV protein composition. Preferably, the liquid form of the immunogen composition of the present invention is at least about 50 μg / ml, more preferably at least about 100 μg / ml, at least about 200 μg / ml, at least 500 μg / ml, or at least 1 mg / ml It is supplied to a sealed container.
본 발명의 백신 또는 면역원 조성물은 MERS-CoV에 대항하여 면역 반응을 유도하도록 동물에게 투여될 수 있다. 한 실시태양에서, 동물은 MERS-CoV 감염에 취약하다. 한 실시태양에서, 동물은 인간이다. 바람직하게는, 면역원의 투여는 적어도 하나의 MERS-CoV 균주, 분리물, 클레이드 및/또는 종에 대항하여 실질적 면역성을 유도한다. 한 실시태양에서, 면역원의 투여는 적어도 2개 이상의 MERS-CoV 균주, 분리물, 클레이드 및/또는 종에 대항하여 실질적 면역성을 유도한다. 통상적으로, 복용량은, 예를 들어, 나이, 신체 조건, 체중, 나이, 식품, 투여 시간 및 다른 임상적 인자를 기초로 이 범위 내에서 조절될 수 있다. 따라서, 본 발명은 유효량의 면역원을 상기 제제에 첨가하는 단계를 포함하여, 피험자의 감염 또는 이의 적어도 하나의 증상에 대해 실질적 면역성을 유발하는 백신 또는 면역원 조성물을 제제화하는 방법을 포함한다. 1회 복용량에 의한 실질적 면역성의 자극이 바람직하지만, 원하는 효과를 얻기 위해서, 동일하거나 다른 경로를 통해 추가 복용량이 투여될 수 있다. 신생아 및 유아에서, 예를 들어, 충분한 수준의 면역을 유발하기 위해 복 수의 투여가 필요할 수 있다. 투여는 감염에 대항하는 충분한 수준의 보호를 유지하기 위해 필요한 경우, 유년 시기에 걸쳐 간격을 주고 계속될 수 있다. 이와 유사하게, 예를 들어, 보건 요원, 어린이집 교사, 어린이들의 가족 구성원, 노인 및 손상된 심폐소생 기능을 가진 개인들과 같이 반복되거나 심각한 인플루엔자 감염에 특히 영향받기 쉬운 어른들은 보호 면역 반응을 일으키고 및/또는 유지하기 위해 다수의 면역이 필요할 수 있다. 유도된 면역성의 수준은 보호의 원하는 수준을 유발하고 유지하기 위해 필요한 것과 같이, 예들 들어, 중화 분비선 및 혈청 항체 및 조절된 복용량 또는 반복된 백신 접종의 양을 측정함으로써 관찰될 수 있다. 따라서, 한 실시태양에서, 피험자에서 바이러스 감염 또는 이의 적어도 하나의 증상에 대해 실질적 면역성을 유도하는 방법은 적어도 1회 유효량의 MERS CoV 스파이크 단백질 또는 이의 단편 또는 집합체를 투여하는 단계를 포함한다. 백신 및/또는 면역원 제제를 투여하는 방법은 비경구 투여(예를 들어, 내피, 근육내, 정맥 및 피하), 경막외 및 점막(예를 들어, 비강 및 경구 또는 폐 경로 또는 좌약)을 포함하나 이에 한정되지 않는다. 특정 실시태양에서, 상기 조성물은 근육내, 정맥, 피하, 경구 또는 피내로 투여된다. 상기 조성물은, 예를 들어, 주입 또는 일시 주사, 상피 또는 점막 안쪽(예를 들어, 구강 점막, 결장, 결막, 비인 강, 인두중앙부, 질, 요로, 방광, 장 점막 등)을 통한 흡수에 의해 임의의 편리한 경로에 의해 투여될 수 있고 다른 생물학적으로 활성인 물질과 함께 투여될 수 있다. 일부 실시태양에서, 비강 또는 다른 점막 경로를 통한 투여는 다른 투여 경로보다 실질적으로 높은 항체 또는 다른 면역 반응을 유도할 수 있다. 다른 실시태양에서, 면역원성 조성물 및/또는 백신의 투여의 비강 또는 다른 점막 경로는 바이러스의 다른 균주들에 대항하여 교차 보호를 유도할 항체 또는 다른 면역 반응을 유도할 수 있다. 투여는 전신 또는 국부적 일 수 있다. 예방 백신 제제는 바늘 및 주사를 사용하여 피하 또는 근육내 주사 또는 바늘 없는 주사 장치에 의 해 전신으로 투여된다. 선택적으로, 백신 제제는 상기도 속으로의 방울, 큰 입자 에어로졸(약 10 마이크론보다 큼) 또는 분사에 의해 비강으로 투여된다. 전달의 상기 경로 중 임의의 것은 면역 반응을 일으키는 반면에, 비강 투여는 바이러스의 침투 위치에서 점막 면역성을 유발하는 증가된 효과를 제공한다. 또 다른 실시태양에서, 백신 및/또는 면역원성 제제는 면역화의 부위에 면역 반응을 유발하도록 점막 조직을 표적으로 하는 방식으로 투여된다. 예를 들어, 장 관련 림프양 조직(gut associated lymphoid tissue)(GALT)과 같은 점막 조직은 특정 표적화 특성들을 가진 면역원 보강제를 함유하는 조성물의 경구 투여를 사용함으로써 면역화를 위한 표적이 될 수 있다. 비인두 림프양 조직(nasopharyngeal lymphoid tissue(NALT)) 및 기관지 관련 림프 양 조직(bronchial-associated lymphoid tissue(BALT))과 같은 다른 점막 조직도 표적이 될 수 있다. 백신 및/또는 면역원성 제제는 최초 백신 조성물을 투여하고 뒤이어 투여를 강화하는 것과 같은 복용 계획에 따라 투여될 수 있다. 특정한 실시태양에서, 조성물의 두 번째 복용은 최초 투여 후 2주 내지 1년 중 어느 때, 바람 직하게는 약 1, 약 2, 약 3, 약 4, 약 5 내지 약 6개월에 투여된다. 또한, 세 번째 복용은 두 번째 복용 후 및 최초 투여 후 약 3개월 내지 약 2년 이상, 바람직하게는 약 4, 약 5, 또는 약 6개월 또는 약 7개월 내지 약 1년 에 투여될 수 있다. 세 번째 복용은 두 번째 복용 후 피험자의 혈청 및/또는 소변 또는 점막 분비물에 특정 면역글로블린이 없거나 적은 양의 특정 면역글로블린이 탐지될 때 경구로 투여될 수 있다. 바람직한 실시태양에서, 제 2 복용은 제 1 투여 후 약 1달에 투여되고 세 번째 복용은 제 1 투여 후 약 6개월에 투여된다. 다른 실시태양에서, 제 2 복용은 제 1 투여 후 약 6개월에 투여된다. 다른 실시태양에서, MERS-CoV 단백질을 포함하는 면역원은 조합 치료의 일부로서 투여될 수 있다. 예를 들어, MERS-CoV 단백질 또는 이의 단편 또는 이의 집합체는 다른 면역원성 조성물 및/또는 항바이러스제로 제제화될 수 있다. 약학적 제제의 복용량은, 예를 들어, 바이러스 특이적 면역글로블린의 혈청 역가를 측정하거나 혈청 샘플 또는 소변 샘플 또는 점막 분비물에서 항체들의 억제 비율을 측정함으로써 예방 또는 치료 면역 반응을 유발하는데 효과적인 복용량을 먼저 확인함으로써 당업자가 쉽게 결정할 수 있다. 또한, 인간 임상 연구들은 당업자에 의해 인간에 대한 바람직한 유효량을 결정하는데 수행될 수 있다. 이런 임상 연구들은 일상적이고 당업계에 주지되어 있다. 사용될 정확한 복용량은 투여 경로에 의존할 것이다. 유효량은 생체 외 또는 동물 검사 시스템으로부터 유도된 복용량-반응 곡선으로부터 추정될 수 있다. 당업계에 주지된 것과 같이, 특정 조성물의 면역성은 항원 보강제로 알려진, 면역 반응의 비특이적 자극제를 사용함으로써 향상될 수 있다. 항원 보강제는 알려지지 않은 면역원들에 대항하는 면역의 일반적인 증가를 실험적으로 향상시키기 위해 사용되었다(예를 들어, 미국특허 No. 4,877,611). 면역화 프로토콜은 수년 동안 반응들을 자극하는 항원 보강제를 사용하였고, 항원 보강제는 당업자에게 주지되어 있다. 일부 항원 보강제는 항원들이 존재하는 방식에 영향을 준다. 예를 들어, 면역 반응은 단백질 항원들이 명반에 의해 침지될 때 증가한다. 항원의 에멀션화는 항원 제공 기간을 연장한다. 항원 보강제가 포함될 수 있다. 적절한 항원 보강제는 모든 목적을 위해 전문이 참조로 포함된 보겔 등.,"A Compendium of Vaccine Adjuvants and Excipients (2 nd Edition)에 기 술된 것들을 포함한다. 다른 예시적인, 항원 보강제는 완전한 프로인트 항원 보강제(죽은 마이코박테리아 결핵균(Mycobacterium tuberculosis)을 함유하는 면역 반응의 비특이적 자극제), 불완전 프로인트 항원 보강제 및 수산화알루미늄 항원 보강제를 포함한다. 다른 항원 보강제들은 GMCSP, BCG, 수산화알루미늄, thur-MDP 및 nor-MDP와 같은 MDP 화합물, CGP (MTP-PE), 지질 A, 몬타니드 ISA 206 및 모노포스포릴 지질 A(MPL)를 포함한다. 박테리아, MPL, 트 레할로스 다이마이콜레이트(TDM) 및(CWS) 2% 스쿠알렌/트윈 80 에멀션 속의 세포벽 골격(CWS)으로부터 추출된 3 개 구성요소를 함유하는 RIBI가 고려된다. MF-59, 노바솜 ®, MHC 항원도 사용될 수 있다. 한 실시태양에서, 항원 보강제는 지질 이중층이 제거된 큰 비결정 중앙 공동을 둘러싸는 수성층에 의해 분리된 실질적으로 구형 덮개 형태로 배열된 2개 내지 10개 이중층을 가진 파우실라멜라 지질소포(paucilamellar lipid vesicle)이다. 파우실라멜라 지질소포는 비특이적 자극제, 항원에 대한 운반자, 다른 항원 보강제의 운반자 및 이의 조합과 같은 여러 방식으로 면역 반응을 자극하는 역할을 할 수 있다. 파우실라멜라 지질소포는 백신이 미리형성된 소포를 가진 항원을 혼합하여 제조될 때, 비특이적 면역 증강제로 작용하여 항원은 소포에 대해 세포 외에 남게 된다. 소포의 중앙 공동 내의 항원을 캡슐화함으로써 소포는 면역 증강제 및 항원을 위한 운반자로 작용한다. 다른 실시태양에서, 소포는 비 인지질 소포로 주로 제조된다. 다른 실시태양에서, 소포는 노바솜이다. 노바솜 ®은 약 100nm 내지 약 500nm의 파우실라멜라 비 인지질 소포이다. 이들은 Brij 72, 콜레스테 롤, 올레산 및 스쿠알렌을 포함한다. 노바솜은 항원을 위한 효과적인 항원 보강제로 증명되었다(모든 목적을 위 해 전문이 참조로 본 발명에 포함된 미국특허 5,629,021, 6,387,373 및 4,911,928 참조). 한 태양에서, 항원 보강제 효과는 명반과 같은 물질의 사용에 의해 성취되고, 인산염 버퍼 식염수 속에 약 0.05 내지 약 0.1% 용액으로 사용된다. 선택적으로, 면역원은 약 0.25% 용액으로 사용된 설탕의 합성 고분자(카보폴®)과의 선혼합물로 제조될 수 있다. 일부 항원 보강제, 예를 들어, 박테리아로부터 얻은 특정 유기 분자는 항원보다 숙주에 작용한다. 예는 뮤라밀 다이펩티드(N-아세틸무라밀-L-알라닐-D-아이소글루타민[MDP]), 박테리아 펩티도글리칸이다. 다른 실시예에서, 헤모시아닌 및 헤모에리트린이 사용될 수 있다. 비록 연체동물문 및 절 지동물 헤모시아닌 및 헤모에리트린이 사용될 수 있지만, 열쇠구멍(keyhole limpet)(KLH)으로부터의 헤모시아닌은 특정 실시예에서 바람직하다. 다양한 폴리사카라이드 항원 보강제가 사용될 수 있다. 예를 들어, 생쥐의 항체 반응에 대한 폐렴구균성 폴리사 카라이드 항원 보강제의 용도는 개시되어 있다(Yin et al, 1989). 최적 반응을 일으키거나 억제를 일으키지 않는 복용량은 지시한 대로 사용되어야 한다(Yin et al, 1989). 폴리사카라이드의 폴리아민 변형체들은 특히 바람 직하고, 탈아세틸화된 키틴을 포함하는 키틴 및 키토산과 같다. 다른 실시예에서, 인공 리포솜에서의 용도에 대해 개시된 무라밀 다이펩타이드 친유성 다이사카라이드-트라이펩티드 유도체는 포스파티딜 콜린(phosphatidyl choline) 및 포스파티딜 글리세롤(phosphatidyl glycerol)로부터 형성되었다. 다른 적절한 항원 보강제는 양극성인 표면 활성제, 예를 들어, 사포닌 및 QS21(캠브리지 바이오텍)와 같은 유도 체를 포함한다. 사포닌-기반 항원 보강제는 기질 A 및 기질 C을 단독으로 및 조합으로 함유하는 것들을 포함한다.The vaccine or immunogen composition of the invention can be administered to an animal to induce an immune response against MERS-CoV. In one embodiment, the animal is susceptible to MERS-CoV infection. In one embodiment, the animal is a human. Preferably, administration of the immunogen induces substantial immunity against at least one MERS-CoV strain, isolate, clade and / or species. In one embodiment, administration of the immunogen induces substantial immunity against at least two MERS-CoV strains, isolates, clades and / or species. Typically, the dosage can be adjusted within this range based on, for example, age, physical condition, weight, age, food, time of administration and other clinical factors. Accordingly, the present invention encompasses a method of formulating a vaccine or immunogen composition that induces substantial immunity against an infection or at least one symptom thereof in a subject, comprising adding an effective amount of an immunogen to said formulation. Stimulation of substantial immunity by a single dose is preferred, but to achieve the desired effect, additional doses may be administered via the same or different routes. In newborns and infants, for example, multiple doses may be necessary to elicit sufficient levels of immunity. Dosing can be continued at intervals throughout childhood, if necessary to maintain a sufficient level of protection against infection. Similarly, adults who are particularly susceptible to repeated or severe influenza infections, such as, for example, health workers, daycare teachers, family members of children, elderly people and individuals with impaired cardiopulmonary resuscitation, develop protective immune responses and / or Or multiple immunity may be required to maintain. The level of immunity induced can be observed by measuring, for example, neutralizing gland and serum antibodies and the amount of controlled dose or repeated vaccination as needed to elicit and maintain the desired level of protection. Thus, in one embodiment, a method of inducing substantial immunity against a viral infection or at least one symptom thereof in a subject comprises administering at least one effective amount of MERS CoV Spike protein or fragment or aggregate thereof. Methods of administering vaccines and / or immunogen preparations include parenteral administration (eg, endothelial, intramuscular, intravenous and subcutaneous), epidural and mucosal (eg nasal and oral or pulmonary routes or suppositories) It is not limited to this. In certain embodiments, the composition is administered intramuscularly, intravenously, subcutaneously, orally or intradermally. The composition may be administered, for example, by infusion or bolus injection, by absorption through the epithelium or inside the mucosa (eg, oral mucosa, colon, conjunctiva, nasopharynx, central pharynx, vagina, urinary tract, bladder, intestinal mucosa, etc.). It may be administered by any convenient route and may be administered with other biologically active substances. In some embodiments, administration via the nasal or other mucosal route can induce an antibody or other immune response substantially higher than other routes of administration. In other embodiments, the nasal or other mucosal route of administration of the immunogenic composition and / or vaccine can induce an antibody or other immune response that will induce cross protection against other strains of the virus. Administration can be systemic or local. Prophylactic vaccine formulations are administered systemically by subcutaneous or intramuscular injection or needleless injection devices using needles and injections. Optionally, the vaccine formulation is administered nasal by drops into the upper airway, large particle aerosols (greater than about 10 microns) or spraying. Any of these pathways of delivery give rise to an immune response, whereas nasal administration provides an increased effect of inducing mucosal immunity at the site of infiltration of the virus. In another embodiment, the vaccine and / or immunogenic agent is administered in a manner that targets mucosal tissue to elicit an immune response at the site of immunization. For example, mucosal tissue, such as gut associated lymphoid tissue (GALT), can be targeted for immunization by using oral administration of a composition containing an immunogen adjuvant with specific targeting properties. Other mucosal tissues may also be targeted, such as nasopharyngeal lymphoid tissue (NALT) and bronchial-associated lymphoid tissue (BALT). Vaccines and / or immunogenic agents may be administered according to a dosing regime such as administering the original vaccine composition followed by augmentation of administration. In certain embodiments, the second dose of the composition is administered at any time between two weeks and one year after the initial administration, preferably about 1, about 2, about 3, about 4, about 5 to about 6 months. In addition, the third dose may be administered about 3 months to about 2 years or more, preferably about 4, about 5, or about 6 months or about 7 months to about 1 year after the second dose and the first dose. The third dose can be administered orally after the second dose when the subject's serum and / or urine or mucosal secretions are absent or a small amount of specific immunoglobulin is detected. In a preferred embodiment, the second dose is administered about 1 month after the first dose and the third dose is administered about 6 months after the first dose. In another embodiment, the second dose is administered about 6 months after the first administration. In other embodiments, an immunogen comprising a MERS-CoV protein can be administered as part of a combination therapy. For example, the MERS-CoV protein or fragment thereof or aggregate thereof may be formulated with other immunogenic compositions and / or antiviral agents. Dosages of pharmaceutical agents may be administered first in an effective dose to elicit a prophylactic or therapeutic immune response, for example, by measuring the serum titer of virus specific immunoglobulins or by measuring the inhibition rate of antibodies in serum samples or urine samples or mucosal secretions. It can be easily determined by one skilled in the art by confirming. In addition, human clinical studies can be conducted by those skilled in the art to determine the desired effective amount for a human. Such clinical studies are routine and well known in the art. The exact dosage to be used will depend on the route of administration. Effective amounts can be estimated from dose-response curves derived from ex vivo or animal testing systems. As is well known in the art, the immunity of certain compositions can be enhanced by using nonspecific stimulants of the immune response, known as adjuvant. Antigen adjuvant was used to experimentally enhance the general increase in immunity against unknown immunogens (eg US Pat. No. 4,877,611). Immunization protocols have used adjuvant for stimulating reactions for many years, which are well known to those skilled in the art. Some antigen adjuvant affects the way antigens are present. For example, the immune response increases when protein antigens are submerged by alum. Emulsification of the antigen extends the antigen presentation period. Antigen adjuvant may be included. Suitable adjuvant agents include those described in Vogel et al., "A Compendium of Vaccine Adjuvants and Excipients (2nd Edition), incorporated by reference in its entirety for all purposes. Other exemplary, adjuvant agents are complete Freund's adjuvant. (Nonspecific stimulants of immune response containing dead Mycobacterium tuberculosis), incomplete Freund's adjuvant and aluminum hydroxide adjuvant. Other antigen adjuvant include GMCSP, BCG, aluminum hydroxide, thur-MDP and nor- MDP compounds such as MDP, CGP (MTP-PE), Lipid A, Montanide ISA 206 and Monophosphoryl Lipid A (MPL) Bacteria, MPL, Trehalose Dimycolate (TDM) and (CWS) RIBIs containing three components extracted from the cell wall backbone (CWS) in a 2% squalene / twin 80 emulsion are contemplated, MF-59, Novasome®, MHC antigens may also be used. In an embodiment, the adjuvant is a paucilamellar lipid vesicle with two to ten bilayers arranged in a substantially spherical sheath form separated by an aqueous layer surrounding the large amorphous central cavity from which the lipid bilayer has been removed. Pausilamela lipid vesicles can play a role in stimulating the immune response in many ways, such as nonspecific stimulants, carriers for antigens, carriers of other adjuvants, and combinations thereof. When prepared by mixing antigens, the antigen acts as a nonspecific immune enhancer, leaving the antigen extracellular to the vesicle, by encapsulating the antigen in the central cavity of the vesicle, the vesicle acts as an immune enhancer and a carrier for the antigen. In an embodiment, the vesicles are made predominantly of non-phospholipid vesicles. A basom. NOVA ® is a cotton pouch sila melanoma non-phospholipid vesicles of about 100nm to about 500nm. These include Brij 72, cholesterol, oleic acid and squalene. Novasome has proven to be an effective adjuvant for antigens (see US Pat. Nos. 5,629,021, 6,387,373 and 4,911,928, incorporated herein by reference in their entirety for all purposes). In one embodiment, the adjuvant effect is achieved by the use of a substance such as alum and is used in a solution of about 0.05 to about 0.1% in phosphate buffered saline. Optionally, the immunogen can be prepared from a premix with sugar's synthetic polymer (Carbopol®) used in about 0.25% solution. Some antigen adjuvant such as certain organic molecules obtained from bacteria act on the host rather than the antigen. Examples are muramyl dipeptides (N-acetylmuramil-L-alanyl-D-isoglutamine [MDP]), bacterial peptidoglycan. In other embodiments, hemocyanin and hemoerythrin can be used. Although mollusc gates and arthropod hemocyanin and hemoerythrin can be used, hemocyanin from keyhole limpet (KLH) is preferred in certain embodiments. Various polysaccharide antigen adjuvant can be used. For example, the use of pneumococcal polysaccharide antigen adjuvant for antibody response in mice is disclosed (Yin et al, 1989). Doses that do not generate optimal response or that do not cause inhibition should be used as directed (Yin et al, 1989). Polyamine variants of polysaccharides are particularly preferred, such as chitin and chitosan, including deacetylated chitin. In another embodiment, the muramyl dipeptide lipophilic disaccharide-tripeptide derivatives disclosed for use in artificial liposomes were formed from phosphatidyl choline and phosphatidyl glycerol. Other suitable antigen adjuvant include surface active agents that are bipolar such as saponins and derivatives such as QS21 (Cambridge Biotech). Saponin-based antigen adjuvant includes those containing substrate A and substrate C alone and in combination.
비이온성 블럭 공중합체 계면활성제(Rabinovich et al, 1994)가 사용될 수 있다. 올리고뉴클레오티드는 항원 보강제의 다른 유용한 그룹이다(Yamamoto et al, 1988). 다른 그룹의 항원 보강제는 미국특허 제4,866,034호의 정제된 해독된 엔도톡신과 같은 해독된 엔도톡신이다. 이런 정제 해독된 엔도톡신은 척추 동물에서 항원 보강제 반응을 일으키는데 효과적이다. 물론, 해독된 엔도톡신은 다가-항원 보강제 제제를 제조하기 위해 다른 항원 보강제와 결합할 수 있다. 예를 들어, 해독된 엔도톡신과 트레할로스 다이마이콜레이트의 결합은 미국특허 No. 4,435,386에 개시된 것과 같이, 특히 고려된다. 해독된 엔도톡신과 트레할로스 다이마이콜레이트 및 엔도톡신 당지질의 결합도 고려되고(미국특허 제4,505,899호), 해독 된 엔도톡신과 세포벽 골격(CWS) 또는 CWS 및 트레할로스 다이마이콜레이트의 결합은 미국특허 No. 4,436,727, 4,436,728 및 4,505,900에 개시된 것과 같이 고려된다. 해독된 엔도톡신 없이, CWS와 트레할로스 다이마이콜레 이트의 결합도 미국특허 No. 4,520,019에 개시된 것과 같이 효과적인 것으로 생각된다. 알킬 리소인지질(ALP); BCG; 및 비오틴(비오티닐화된 유도체 포함)을 포함하는 백신 과 접합할 수 있는 다른 종류의 항원 보강제를 더 고려할 수 있다. 사용을 특히 고려하는 소정의 항원 보강제는 그람 세포로부터 유래하는 테이코산(teichoic acid)이다. 이것은 리포테이코산(LTA), 리비톨 테이코산(RTA) 및 글리세롤 테이 코산(GTA)을 포함한다. 이런 합성 대응체의 활성 형태가 또한 사용될 수 있다(Takada et al, 1995).Nonionic block copolymer surfactants (Rabinovich et al, 1994) can be used. Oligonucleotides are another useful group of antigen adjuvant (Yamamoto et al, 1988). Another group of adjuvant agents are detoxified endotoxins, such as purified detoxified endotoxins of US Pat. No. 4,866,034. These purified detoxified endotoxins are effective in eliciting adjuvant responses in vertebrates. Of course, the detoxified endotoxin can be combined with other antigen adjuvant to prepare multi-antigen adjuvant formulations. For example, the combination of detoxified endotoxin and trehalose dimycolate is described in US Pat. Particularly contemplated, as disclosed in 4,435,386. The binding of detoxified endotoxin with trehalose dimycolate and endotoxin glycolipid is also contemplated (US Pat. No. 4,505,899), and the binding of detoxified endotoxin with cell wall backbone (CWS) or CWS and trehalose dimycolate is described in US Pat. Are considered as disclosed in 4,436,727, 4,436,728 and 4,505,900. Without detoxified endotoxin, the binding of CWS to trehalose dimycolate is also described in US Pat. It is believed to be effective as disclosed in 4,520,019. Alkyl lysophospholipids (ALP); BCG; And other kinds of antigen adjuvant capable of conjugation with vaccines, including biotin (including biotinylated derivatives). Particular antigen adjuvant that particularly considers use is teichoic acid derived from Gram cells. This includes lipoteichoic acid (LTA), ribitol teichoic acid (RTA) and glycerol teichoic acid (GTA). Active forms of such synthetic counterparts may also be used (Takada et al, 1995).
인간에서 통상적으로 사용되지 않는 다양한 항원 보강제는 예를 들어, 항체를 생성하거나 뒤이어 활성 T 세포를 얻기 원하는 경우에, 다른 척추동물에서 여전히 사용될 수 있다. 항원 보강제 또는 예를 들어, 방사선 조사되지 않은 종양 세포를 사용하여 발생할 수 있는 것과 같은 세포로부터 발생할 수 있는 독성 또는 다른 역효과는 이런 환경과 무관하다. 면역 반응을 유도하는 다른 방법은 "면역 증강제"와 함께 본 발명의 면역원을 제제화함으로써 완성될 수 있다. 이들은 면역 시스템의 반응을 증가시키기 위한 신체 자신의 화학적 메신저(사이토카인)이다. 면역 증강제들은 인터루킨 (예를 들어, IL-1, IL-2, IL-3, IL-4, IL-12, IL-13)과 같은 면역 자극 활성, 면역 증강 활성 및 염증 유발 활성을 가진 다양한 사이토카인, 림포카인 및 케모카인; 성장 인자(예를 들어, 과립구 대식세포 콜로니 자극인자 (granulocyte-macrophage(GM)-colony stimulating factor(CSF)); 및 대식세포 염증 인자, Flt3 리간드, B7.1, B7.2 등과 같은 다른 면역자극분자를 포함하나 이에 제한되지 않는다. 면역 자극 분자들은 면역원으로서 동일한 제제에 투여될 수 있거나 개별적으로 투여될 수 있다. 단백질 또는 단백질을 암호화하는 발현 벡터는 면역자극 효과를 일으키기 위해 투여될 수 있다. 명반은 다음 하한을 가진 범위로 존재할 수 있다: 약 0.2㎍, 약 0.4㎍, 약 0.6㎍, 약 0.8㎍, 약 1㎍, 약 2㎍, 약 3㎍, 약 4㎍, 약 5㎍, 약 6㎍, 약 7㎍, 약 9㎍, 약 10㎍, 약 15㎍, 약 20㎍, 약 25㎍, 약 30㎍, 약 35㎍, 약 40㎍, 약 45㎍, 약 50㎍, 약 60㎍, 약 70㎍, 약 80㎍, 약 90㎍, 약 100㎍, 약 110㎍, 약 120㎍, 약 130㎍, 약 140㎍, 또는 약 150㎍. 명반은 다음 상한을 가진 범위로 존재할 수 있다: 약 10㎍, 약 15㎍, 약 20㎍, 약 25 ㎍, 약 30㎍, 약 35㎍, 약 40㎍, 약 45㎍, 약 50㎍, 약 60㎍, 약 70㎍, 약 80㎍, 약 90㎍, 약 100㎍, 약 110㎍, 약 120㎍, 약 130㎍, 약 140㎍, 약 150㎍ 또는 약 200㎍. 특정 양태에서, 명반 범위는 약 80㎍ 내지 약 120㎍ 또는 약 100㎍ 내지 약 120㎍이다. 사포닌-기반 항원 보강제는 다음 하한을 가진 범위로 존재할 수 있다: 약 0.2㎍, 약 0.4㎍, 약 0.6㎍, 약 0.8㎍, 약 1㎍, 약 2㎍, 약 3㎍, 약 4㎍, 약 5㎍, 약 6㎍, 약 7㎍, 약 9㎍, 약 10㎍, 약 15㎍, 약 20㎍, 약 25 ㎍, 약 30㎍. 사포닌-기반 항원 보강제는 다음 상한을 가진 범위로 존재할 수 있다: 약 10㎍, 약 15㎍, 약 20㎍, 약 25㎍, 약 30㎍, 약 35㎍, 약 40㎍, 약 45㎍, 약 50㎍, 약 60㎍, 약 70㎍, 약 80㎍, 약 90㎍, 약 100 ㎍, 약 110㎍, 약 120㎍, 약 130㎍, 약 140㎍, 약 150㎍ 또는 약 200㎍. 특정 양태에서, 사포닌-기반 항원 보강제는 약 5㎍ 내지 약 20㎍ 또는 약 1㎍ 내지 약 10㎍이다. 이런 복용량은 생쥐에서 특히 적절하며 20g의 통상적인 생쥐 체중 대 약 60kg의 인간 체중을 기반으로 인간 사용에 대해 조절될 수 있다. Various antigen adjuvant that is not commonly used in humans can still be used in other vertebrates, for example, when generating antibodies or subsequently obtaining active T cells. Toxicity or other adverse effects that may arise from cells, such as those that may occur using antigen adjuvant or non-irradiated tumor cells, are irrelevant to this environment. Other methods of inducing an immune response can be completed by formulating an immunogen of the present invention with an "immune enhancer". These are the body's own chemical messengers (cytokines) to increase the response of the immune system. Immune enhancers are various cytokines with immunostimulatory activity, immune enhancing activity and inflammation-inducing activity such as interleukin (e.g., IL-1, IL-2, IL-3, IL-4, IL-12, IL-13). Caine, lymphokine and chemokine; Growth factors (eg granulocyte-macrophage (GM) -colony stimulating factor (CSF)); and other immune stimuli such as macrophage inflammatory factors, Flt3 ligands, B7.1, B7.2, etc. Molecules, including but not limited to, immune stimulatory molecules may be administered as the immunogen to the same agent or may be administered separately The protein or expression vector encoding the protein may be administered to produce an immunostimulatory effect. May be present in a range with the following lower limits: about 0.2 μg, about 0.4 μg, about 0.6 μg, about 0.8 μg, about 1 μg, about 2 μg, about 3 μg, about 4 μg, about 5 μg, about 6 μg , About 7 μg, about 9 μg, about 10 μg, about 15 μg, about 20 μg, about 25 μg, about 30 μg, about 35 μg, about 40 μg, about 45 μg, about 50 μg, about 60 μg, about 70 μg, about 80 μg, about 90 μg, about 100 μg, about 110 μg, about 120 μg, about 130 μg, about 140 μg, or about 150 μg. Can be: about 10 μg, about 15 μg, about 20 μg, about 25 μg, about 30 μg, about 35 μg, about 40 μg, about 45 μg, about 50 μg, about 60 μg, about 70 μg, about 80 Μg, about 90 μg, about 100 μg, about 110 μg, about 120 μg, about 130 μg, about 140 μg, about 150 μg or about 200 μg.In certain embodiments, the alum ranges from about 80 μg to about 120 μg or about 100 μg to about 120 μg Saponin-based antigen adjuvant may be present in a range with the following lower limits: about 0.2 μg, about 0.4 μg, about 0.6 μg, about 0.8 μg, about 1 μg, about 2 μg, about 3 Μg, about 4 μg, about 5 μg, about 6 μg, about 7 μg, about 9 μg, about 10 μg, about 15 μg, about 20 μg, about 25 μg, about 30 μg.Saponin-based antigen adjuvant May be present in the range of: about 10 μg, about 15 μg, about 20 μg, about 25 μg, about 30 μg, about 35 μg, about 40 μg, about 45 μg, about 50 μg, about 60 μg, about 70 Μg, about 80 μg, about 90 μg, about 100 μg, about 110 μg, about 120 μg, about 130 μg, about 140 μg, about 150 μg or about 200 μg. In certain embodiments, the saponin-based antigen adjuvant is about 5 μg to about 20 μg or about 1 μg to about 10 μg. Such dosages are particularly appropriate in mice and can be adjusted for human use based on a normal mouse weight of 20 g versus a human weight of about 60 kg.
본 발명의 일 실시 태양에서, MERS-CoV S 단백질, 이의 단편, 또는 집합체, 더 바람직하게 서열번호 2, 4, 6 및 8로 이루어진 군에서 선택된 어느 하나이상의 폴리펩타이드가 포함된 MERS-CoV S 면역원성 조성물 또는 이를 포함하는 백신을 투여하는 것을 포함하는, MERS-CoV 감염에 대한 예방 면역을 유도하는 방법을 제공한다. In one embodiment of the present invention, MERS-CoV S protein, fragments or aggregates thereof, more preferably MERS-CoV S immunity comprising any one or more polypeptides selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8 Provided is a method of inducing prophylactic immunity against MERS-CoV infection comprising administering a native composition or a vaccine comprising the same.
MERS-CoV S 단백질 면역원 제조MERS-CoV S Protein Immunogen Preparation
MERS-CoV S 유전자 도입 재조합 baculovirus의 생산Production of Recombinant baculovirus Introduced with MERS-CoV S Gene
본 발명의 일 실시예에서, (a) 서열번호 1, 3, 5 및 7로 이루어진 군에서 선택된 어느 하나 이상의 MERS-COV S 단백질 유전자를 도입하여 재조합 바이러스 벡터를 제작하는 단계, 및 (b) 상기 재조합 바이러스 벡터를 숙주 세포에 접종시켜 상기 숙주 세포를 배양하여 MERS-COV S 단백질 항원이 발현되는 배양물을 얻는 단계를 포함하는 MERS-COV S 단백질 항원을 제조하는 방법을 제공한다. In one embodiment of the present invention, (a) introducing one or more MERS-COV S protein gene selected from the group consisting of SEQ ID NO: 1, 3, 5 and 7 to prepare a recombinant viral vector, and (b) the Provided is a method for producing a MERS-COV S protein antigen comprising the step of inoculating a recombinant virus vector into a host cell to culture the host cell to obtain a culture in which the MERS-COV S protein antigen is expressed.
상기 방법은 발현된 MERS-COV S 단백질 또는 이의 단편을 정제하는 단계를 더 포함할 수 있다. The method may further comprise purifying the expressed MERS-COV S protein or fragment thereof.
상기 재조합 바이러스 벡터는 예를 들어, 파아지, 플라스미드, 바이러스 또는 레트로바이러스 벡터일 수 있으며, 바람직하게 바이러스 벡터를 사용할 수 있다. The recombinant viral vector can be, for example, a phage, plasmid, virus or retroviral vector, preferably a viral vector can be used.
일 실시태양에서, 벡터는 재조합 바큘로바이러스 벡터이다. 유전자를 암호화하는 구조체 및/또는 벡터는 AcMNPV 폴리헤드린 프로모터(또는 다른 바큘로바이러스), 파이지 람바다 PL 프로모터, E.coli lac, phoA 및 tac 프로모터와 같은 적절한 프로모터에 작동가능하게 연결되어야 하며, 바람직하게는 폴리헤드린 (polyhedrin) 프로모터에 의해 과 발현 될 수 있다. In one embodiment, the vector is a recombinant baculovirus vector. Constructs and / or vectors encoding genes should be operably linked to appropriate promoters, such as the AcMNPV polyhedrin promoter (or other baculovirus), the Faji Lambda PL promoter, the E. coli lac, phoA, and tac promoters. Preferably overexpressed by a polyhedrin promoter.
발현 구조체들은 전사 개시, 종결을 위한 부위 및 전사된 영역에, 번역을 위한 리보솜 결합 부위를 더 포함할 것이다. 구조체들에 의해 발현된 전사체들의 암호 부분은 초기에 번역 개시 코돈 및 번역될 폴리펩타이드의 단부에 적절하게 위치한 종결 코돈을 포함하는 것이 바람직할 것이다. 발현 벡터들은 적어도 하나의 선택가능한 마커를 포함하는 것이 바람직할 것이다. 이런 마커들은 다이하이드로 폴레이트 환원효소, G418 또는 진핵세포 배양을 위한 네오미신 저항 유전자(neomycin resistance gene) 및 E.coli 및 다른 박테리아 배양을 위한 테트라사이클린, 카나미신, 또는 임피실린 저항 유전자를 포함한다. 벡터들 중에서 배큘로바이러스과(Baculoviridae, 예를 들어, 오토그라파 캘리포니카 뉴클레오폴리헤드로 바이러스-Autographa californica nucleopolyhedrovirus), 아데노바이러스과(Adenoviridae, 예를 들어, 카닌 아데노 바이러스-canine adenovirus), 헤파드나바이러스과(Hepadnaviridae, 예를 들어, 아비 헤파드나 바이러스-avihepadnavirus), 백시니아바이러스과(Vacciniaviridae, 예를 들어, 변형 백시니아 안카라 바이러스-modified vaccinia Ankara virus), 및 파보바이러스과(Parvoviridae, 예를 들어, 오토노머스 파보바이러스- Autonomous Parvovirus)로 이루어진 군에서 선택된 어느 하나 이상의 바이러스 벡터가 바람직하다. 상기 배큘로바이러스는 오토그라파 캘리포니카(Autographa californica) 핵다각체 병 바이러스 주 또는 그 변형된 바이러스 주; 또는 몸빅스 모리(Bombyx mori) 핵다각체 병 바이러스 주 또는 그 변형된 바이러스 주를 포함할 수 있다. 박테리아 벡터가 또한 사용될 수 있다. 예시적 박테리아 벡터는 pQE70, pQE60 및 pQE-9, p블루스크립트 벡터, 파아지스크립트 벡터, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5를 포함한다. 진핵 벡터들 중에서 pFastBac1 pWINEO, pSV2CAT, pOG44, pXTl, pSG, pSVK3, pBPV, pMSG, 및 pSVL 등이 바람직하다. The expression constructs will further comprise ribosome binding sites for translation, at sites for transcription initiation, termination and transcribed regions. The coding portion of the transcripts expressed by the constructs will preferably initially comprise a translation initiation codon and a termination codon suitably located at the end of the polypeptide to be translated. Expression vectors will preferably comprise at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance gene for eukaryotic cell culture and tetracycline, kanamicin, or impicillin resistance gene for E. coli and other bacterial cultures. . Among the vectors, Baculoviridae (eg, Autographa californica nucleopolyhedrovirus), Adenoviridae (eg, canine adenovirus), Hepadnavirus family (Hepadnaviridae (e.g., Avi hepadna virus), Vacciniaviridae (e.g., modified vaccinia Ankara virus), and Parvoviridae (e.g. Autono) Preference is given to any one or more viral vectors selected from the group consisting of mus parvovirus (Autonomous Parvovirus). The baculovirus may be selected from: Autographa californica nuclear polyhedral disease virus strains or modified virus strains thereof; Or Bombyx mori nuclear polyhedral disease virus strains or modified strains thereof. Bacterial vectors can also be used. Exemplary bacterial vectors include pQE70, pQE60 and pQE-9, p BlueScript vectors, phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5. Among the eukaryotic vectors, pFastBac1 pWINEO, pSV2CAT, pOG44, pXTl, pSG, pSVK3, pBPV, pMSG, pSVL and the like are preferred.
상기한 것과 같은 재조합 벡터는 형질감염, 감염 또는 형질전환하는데 사용될 수 있고 진핵 세포 및/또는 원핵 세포에서 단백질을 발현시킬 수 있다. 진핵 숙주 세포들은 효모, 곤충, 조류, 식물, 꼬마선충(또는 선충) 및 포유류 숙주 세포를 포함할 수 있다. 곤충 세포의 비제한적인 예는 예를 들어, Sf9, Sf21과 같은 Spodoptera frugiperda (Sf) 세포, 하이 파이브 세포와 같은 Trichoplusiani 세포 및 Drosophila S2 세포들이다. 곰팡이(효모 포함) 숙주 세포들의 예는 S. cerevisiae, Kluyveromyces lactis(K. lactis), C. albicans 및 C. glabrata, Aspergillus nidulans, Schizosaccharomyces pombe(S. pombe), Pichia pastoris, 및 Yarrowia lipolytica를 포함하는 칸디다균의 종들이다. 포유류 세포들의 예는 293세포 계열(human embryonic kidney lineage), CHO세포 계열 (Chinese hamster ovary cell lineage), Vero세포 계열 (African green monkey lineage), MRC세포 계열 (human lung fibroblast cell lineage), 및 MDCK 세포 계열 (madin-darby canine kidney cell lineage)세포들이다. 아프리카발톱개구리(Xenopus laevis oocyte) 또는 양서류 출처의 다른 세포들도 사용될 수 있다. 원핵 숙주 세포들은, 예를 들어, 대장균(E. coli), 바실러스 서브틸리스(B. subtilis) 및 마이코박테리아와 같은 박테리아 세포를 포함한다. Recombinant vectors such as those described above can be used for transfection, infection or transformation and can express proteins in eukaryotic and / or prokaryotic cells. Eukaryotic host cells can include yeasts, insects, birds, plants, nymphs (or nematodes) and mammalian host cells. Non-limiting examples of insect cells are, for example, Spodoptera frugiperda (Sf) cells such as Sf9, Sf21, Trichoplusiani cells such as high five cells, and Drosophila S2 cells. Examples of fungal (including yeast) host cells include S. cerevisiae, Kluyveromyces lactis (K. lactis), C. albicans and C. glabrata, Aspergillus nidulans, Schizosaccharomyces pombe (S. pombe), Pichia pastoris, and Yarrowia lipolytica Candida species. Examples of mammalian cells include 293 cell line (human embryonic kidney lineage), CHO cell line (Chinese hamster ovary cell lineage), Vero cell line (African green monkey lineage), MRC cell line (human lung fibroblast cell lineage), and MDCK cell Madin-darby canine kidney cell lineage cells. Xenopus laevis oocytes or other cells from amphibian origin may also be used. Prokaryotic host cells include bacterial cells such as, for example, E. coli, B. subtilis, and mycobacteria.
MERS-CoV S 단백질, 이의 단편 또는 조합체의 발현, 분리Expression, isolation of MERS-CoV S protein, fragments or combinations thereof
주로 MERS-CoV 면역원으로 작용하는 MERS- CoV S 단백질, 이의 단편 또는 조합체는 상기 숙주 세포들이 세포 배양액에서 성장할 때 단백질을 생성하기 위해 가공된 재조합 세포주로부터 생산된다. MERS-CoV S proteins, fragments or combinations thereof, which act primarily as MERS-CoV immunogens, are produced from recombinant cell lines that are processed to produce proteins when the host cells grow in cell culture.
상기 세포들은 가장 효율적인 감염 다중도에서 재조합 배큘로바이러스 벡터로 감염된다. 상기 가장 효율적인 감염 다중도는 바람직하게, 0.001 내지 5.0 MOI, 더 바람직하게 0.002 내지 4.0 MOI, 0.003 내지 3.0 MOI, 0.004 내지 2.0 MOI, 더욱 더 바람직하게 0.005내지 1.0 MOI, 가장 바람직하게 0.01 내지 0.8 MOI 일 수 있다. The cells are infected with the recombinant baculovirus vector at the most efficient multiplicity of infection. The most efficient multiplicity of infection is preferably between 0.001 and 5.0 MOI, more preferably between 0.002 and 4.0 MOI, between 0.003 and 3.0 MOI, between 0.004 and 2.0 MOI, even more preferably between 0.005 and 1.0 MOI, most preferably between 0.01 and 0.8 MOI. Can be.
상기 재조합 배큘로바이러스의 감염은 세포들이 성장의 초기-로그 단계에 있고 1.0E5-7.0E6 cell/ml 농도, 바람직하게 5.00E5-1.50E6 cells/ml 농도 범위에 있을 때 효과적으로 일어날 수 있다. The infection of the recombinant baculovirus can occur effectively when the cells are in the early-log phase of growth and in the 1.0E5-7.0E6 cell / ml concentration, preferably in the range of 5.00E5-1.50E6 cells / ml concentration.
상기 재조합 배큘로바이러스를 감염시킨 후 세포를 수확하는 것은 바람직하게 세포들의 생존율(viability)은 1% 이상, 99% 이하, 바람직하게 50 내지 98.9%, 바람직하게 60 내지 98.5%, 더 바람직하게 75 내지 98%인 상태에서 수확하는 것이 효과적이다.Harvesting the cells after infecting the recombinant baculovirus preferably means that the viability of the cells is at least 1%, at most 99%, preferably at 50-98.9%, preferably at 60-98.5%, more preferably at 75-90%. Harvesting at 98% is effective.
상기 재조합 배큘로바이러스의 감염 조건은 사멸 단계의 세포에서 유출되는 protease들에 의한 타겟 단백질 절단을 최소화할 수 있다. 또한 바이러스 접종물을 적게 사용하더라도 배양물의 수율을 향상시킬 수 있다. Infectious conditions of the recombinant baculovirus can minimize the cleavage of the target protein by proteases flowing out of the cells in the killing step. In addition, the use of less virus inoculum can improve the yield of the culture.
본 발명의 MERS-CoV S 단백질 면역원을 제조하는 방법은 단백질의 분리를 위한 단계를 더 포함할 수 있다. The method for preparing a MERS-CoV S protein immunogen of the present invention may further comprise a step for isolation of the protein.
구체적으로 (C) 상기 배양물을 3000 내지 8000xg 에서 1-30분간 원심분리하여 상청액과 세포를 분리하여 침강된 Sf9 세포를 얻는 단계, (d) 상기 침강된 Sf9 세포를 pH 6.5-8.5의 용해 버퍼로 세포 용해(cell lysis)하여 용해액을 얻는 단계; 및 (e) 상기 용해액을 순차 원심분리하여 상기 용해액의 상청액을 제거하여 MERS-CoV S 단백질 또는 이의 단편으로 이루어진 MERS-CoV 항원이 포함된 세포의 구성요소만을 얻는 단계 (f) 상기 MERS-CoV 항원이 포함된 세포 구성요소에서 MERS-CoV이 포함된 항원이 포함된 부분만을 선택적으로 추출하는 단계를 포함할 수 있다. Specifically (C) separating the supernatant and cells by centrifuging the culture at 3000 to 8000xg for 1-30 minutes to obtain precipitated Sf9 cells, (d) lysing the precipitated Sf9 cells at pH 6.5-8.5 Cell lysis to obtain a lysate; And (e) centrifuging the lysate to remove the supernatant of the lysate to obtain only components of cells comprising the MERS-CoV antigen consisting of MERS-CoV S protein or fragments thereof. (F) The MERS- And selectively extracting only a portion of the cell component including the CoV antigen including the antigen including the MERS-CoV.
상기 (e)에 언급된 'MERS-CoV 항원이 포함된 세포의 구성요소'로는 plasma membrane, rough ER, smooth ER, Golgi 등을 의미한다.As mentioned above (e) 'mers of cells containing the MERS-CoV antigen' means a plasma membrane, rough ER, smooth ER, Golgi and the like.
상기 배양물을 원심분리하여, 배지를 제외한 침강된 Sf9 세포를 이용함으로써, 생산 수율을 향상시킬 수 있다. 즉, 배양물을 포함하는 배지를 그대로 이용하지 않고, 원심분리 후에 상청액을 제거하는 단계를 거치게 되어, 단백질 생산량의 증가를 가져올 수 있다. The culture can be centrifuged to improve production yield by using precipitated Sf9 cells other than the medium. That is, without using the culture medium containing the culture as it is, the step of removing the supernatant after centrifugation, can lead to an increase in protein production.
바람직하게 상기 (c) 단계의 원심분리는 1000 내지 20000xg의 속도로, 바람직하게 1500 내지 15000xg의 속도로, 더 바람직하게 2000 내지 10000xg의 속도로, 가장 바람직하게 3000 내지 8000xg에서 1-30분간 실시할 수 있다.Preferably the centrifugation of step (c) is carried out at a rate of 1000 to 20000xg, preferably at a rate of 1500 to 15000xg, more preferably at a rate of 2000 to 10000xg, most preferably at 3000 to 8000xg for 1-30 minutes. Can be.
상기 (e) 단계의 순차 원심분리는 적어도 2단계를 거쳐 수행될 수 있다. Sequential centrifugation of step (e) may be performed through at least two steps.
1차 원심분리에서, (i) 상기 세포 용해액을 500 내지 20,000xg의 속도로 1-30분 원심분리하여, 침강된 침전물을 제거하고 세포막을 포함하는 상청액을 취할 수 있다. 바람직하게 상기 (e)의 (i) 단계의 원심분리는 700 내지 18,000xg의 속도로, 바람직하게 1,000 내지 15,000xg의 속도로, 더 바람직하게 1,500 내지 10,000xg의 속도로, 가장 바람직하게 2,000 내지 7,000xg에서 1-30분간 실시할 수 있다.In the first centrifugation, (i) the cell lysate can be centrifuged at a rate of 500 to 20,000 × g for 1-30 minutes to remove settled precipitates and take supernatant including cell membranes. Preferably the centrifugation of step (i) of (e) is at a speed of 700 to 18,000xg, preferably at a rate of 1,000 to 15,000xg, more preferably at a speed of 1,500 to 10,000xg, most preferably 2,000 to 7,000 This can be done for 1-30 minutes at xg.
2차 원심분리에서, (ii) 상기 (i) 단계의 상청액을 4-10℃에서 10,000 내지 400,000xg로 60-420분간 초원심분리하여 침전물을 취하고 상청액을 제거하여 MERS-CoV S 단백질 또는 이의 단편이 포함된 세포의 구성요소만을 취할 수 있다. 바람직하게 상기 (e)의 (ii) 단계의 원심분리는 10,000 내지 400,000xg의 속도로, 바람직하게 20,000 내지 350,000xg의 속도로, 더 바람직하게 35,000 내지 300,000xg의 속도로, 가장 바람직하게 50,000 내지 250,000xg에서 60-420분간 실시할 수 있다.In the second centrifugation, (ii) the supernatant of step (i) was ultracentrifuged at 4-10 ° C. at 10,000 to 400,000 × g for 60-420 minutes to obtain a precipitate, and the supernatant was removed to remove MERS-CoV S protein or fragment thereof. Only components of these contained cells can be taken. Preferably the centrifugation of step (ii) of (e) is at a rate of 10,000 to 400,000xg, preferably at a rate of 20,000 to 350,000xg, more preferably at a rate of 35,000 to 300,000xg, most preferably 50,000 to 250,000 60-420 minutes at xg.
상기 (f) 단계의 추출 과정은 적어도 2단계를 거쳐 수행될 수 있다. The extraction process of step (f) may be performed through at least two steps.
상기 (e) 과정에서 순차원심 분리를 끝낸 후 확보된 MERS-CoV S 단백질 또는 이의 단편으로 이루어진 MERS-CoV 항원이 포함된 세포의 구성요소로부터 (i) 추출 버퍼를 첨가하여 MERS-CoV S 단백질 또는 이의 단편이 포함된 부분만 추출하며,(I) MERS-CoV S protein by adding an extraction buffer from the components of the cell containing the MERS-CoV antigen consisting of the MERS-CoV S protein or fragments thereof obtained after completion of forward dimensional separation in step (e) Extract only the part that contains a fragment of it,
(ii) 상기 (i)의 추출로 확보된 내용물을 4-10℃에서 5,000 내지 300,000xg 로 초원심분리하여 상청액을 버리고 침전물만 확보한다. 바람직하게 상기 (f)의 (ii) 단계의 원심분리는 7,000 내지 200,000xg의 속도로, 바람직하게 10,000 내지 250,000xg의 속도로, 더 바람직하게 15,000 내지 200,000xg의 속도로, 가장 바람직하게 30,000 내지 150,000xg에서 실시할 수 있다. (ii) the contents secured by the extraction of (i) were ultracentrifuged at 5,000 to 300,000 × g at 4-10 ° C. to discard the supernatant to ensure only precipitate. Preferably the centrifugation of step (ii) of (f) is at a rate of 7,000 to 200,000xg, preferably at a rate of 10,000 to 250,000xg, more preferably at a rate of 15,000 to 200,000xg, most preferably of 30,000 to 150,000 It can be done in xg.
상기 항원 제조 방법은 (g) MERS-CoV S 단백질 또는 이의 단편으로 이루어진 MERS-COV 항원을 정제하는 단계를 더 포함할 수 있다. 상기 항원을 정제하는 단계는 적어도 2 단계의 정제 과정을 포함할 수 있다. The antigen production method may further comprise the step of purifying the MERS-COV antigen consisting of (g) MERS-CoV S protein or fragments thereof. Purifying the antigen may include at least two purification steps.
상기 정제는 (i) 양이온 교환 크로마토그래피법(anion exchange chromatography)으로 정제를 실시하며,The purification is carried out by (i) cation exchange chromatography (anion exchange chromatography),
(ii) 글루코스 친화 크로마토그래피법(glucose affinity chromatography)으로 정제를 실시할 수 있다. (ii) Purification can be carried out by glucose affinity chromatography.
상기 크로마토그래피를 이용한 정제방법은 업계에서 통상적으로 단백질을 정제하는데 이용하는 방법을 이용할 수 있다. 예를 들어, 1: Robert K. Scopes, Protein Purification : Principles and Practice, 1993, Springer Science & Business Media , 또는 2: Coelho, L. C. B. B. et al., Protein Purification (Edited by Rizwan Ahmad) : chapter 3 affinity chromatography, 2012, Intech, DOI: 10.5772/1287를 이용할 수 있다. The purification method using the chromatography may use a method commonly used in the industry to purify a protein. For example, 1: Robert K. Scopes, Protein Purification: Principles and Practice, 1993, Springer Science & Business Media, or 2: Coelho, LCBB et al., Protein Purification (Edited by Rizwan Ahmad): chapter 3 affinity chromatography, 2012, Intech, DOI: 10.5772 / 1287 is available.
본 발명은 높은 생산능력(수율)을 갖는 MERS-CoV 항원 조성물 및 이의 제조방법을 제공한다. The present invention provides a MERS-CoV antigen composition having high production capacity (yield) and a method for preparing the same.
본 발명의 MERS-CoV 백신은 높은 항체가를 제공한다. The MERS-CoV vaccine of the present invention provides high antibody titers.
본 발명은 MERS-CoV 바이러스가 생산하는 항원의 수율을 향상시키고, 바이러스 접종물의 양을 최소화하여 프로세스상 효율을 최적화할 수 있다. The present invention can improve the yield of the antigen produced by the MERS-CoV virus, it is possible to optimize the process efficiency by minimizing the amount of virus inoculum.
본 발명은 MERS-CoV 항원 수득에 필요한 시간 및 비용을 절감할 수 있다.The present invention can save the time and cost required to obtain the MERS-CoV antigen.
도 1은 MERS-CoV의 바이러스학적 상세 분류내용이다. 1 is a detailed virological classification of MERS-CoV.
도 2는 MERS-CoV S 단백질을 암호화 하고 있는 유전자를 도식화 한 그림이다. 여기에서 SP는 signal peptide를 의미한다. 여기서 S1, S2는 각각 S1, S2 sub-domain을 의미한다. 또한, RBD는 receptor binding domain을 의미하고 TM은 trans-membrane domain을 의미한다.2 is a diagram illustrating a gene encoding the MERS-CoV S protein. Where SP stands for signal peptide. Here, S1 and S2 mean S1 and S2 sub-domains, respectively. In addition, RBD means receptor binding domain and TM means trans-membrane domain.
도 3은 Anion exchange chromatography 법으로 MERS-CoV S를 1차 정제하고 확인하는 데 사용한 WB 결과이다. 여기서 사용한 Anion exchange chromatography는 TMAE 이다. Figure 3 is a WB result used in the first purification and confirmation of MERS-CoV S by Anion exchange chromatography. Anion exchange chromatography used here is TMAE.
도 4는 Affinity chromatography법을 사용하여 2차 정제를 수행 한 후 filter membrane으로 UD/DF를 수행 한 결과 이다. 여기서 Affinity chromatography 법은 Lentil Lectin resin chromatography 법이다. Figure 4 shows the results of performing UD / DF with a filter membrane after performing the secondary purification using affinity chromatography. Affinity chromatography here is Lentil Lectin resin chromatography.
도 5는 정제된 MERS-CoV S 항원의 DLS 제타 평균 (Zeta-average) 값이다. 5 is the DLS Zeta-average value of purified MERS-CoV S antigen.
도 6은 정제된 MERS-CoV S 항원의 투과 전자 현미경(transmission electron microscopy) 사진이다. 6 is a transmission electron microscopy photograph of the purified MERS-CoV S antigen.
도 7a 및 7b는 동물 실험 일정을 도식화 한 그림이다. 여기서 사용한 동물은 mouse 이다. 여기서 injection은 MERS-CoV S 항원의 투여를 의미한다. 이때 투여되는 항원에는 면역 증강제가 포함될 수 있다. 여기서 W는 한 주(week)를 나타낸다. 7A and 7B are diagrams illustrating an animal experiment schedule. The animal used here is mouse. Injection means the administration of the MERS-CoV S antigen. The antigen administered may include an immune enhancer. Where W represents one week.
도 8은 알루미늄(Aluminum) 계열 어쥬번트의 유무 및 투여량에 따른 MERS-COV S 항원의 마우스 면역원성 유도를 알아보기 위한 총항체 역가 측정 실험 결과 그래프이다. 여기서 총항체 역가는 일라이쟈 (ELISA)분석을 통해 확인 된 값이다. 여기서 GMT는 Geometric Mean Titer (기하평균 값)이다. 여기서 "2.5ug+Adjuvant", "8ug+Adjuvant" 및 "25ug+Adjuvant" 는 MERS-COV S 항원 2.5ug, 8ug, 25ug을 각각 알루미늄 어쥬번트에 흡착한 물질들이다. 여기서 "PBS+Adjuvant"는 멸균된 포스페이트 버퍼 셀라인 (phosphate buffer saline)에 알루미늄 어쥬번트를 혼합한 물질이다. Figure 8 is a graph of the results of the measurement of total antibody titers to determine the mouse immunogenic induction of MERS-COV S antigen according to the presence and dosage of aluminum-based adjuvant. Total antibody titer is the value confirmed by ELISA analysis. Where GMT is Geometric Mean Titer. Here, "2.5ug + Adjuvant", "8ug + Adjuvant", and "25ug + Adjuvant" are substances which adsorb 2.5 ug, 8 ug, and 25 ug of MERS-COV S antigen to the aluminum adjuvant, respectively. Here, "PBS + Adjuvant" is a material obtained by mixing aluminum adjuvant with sterile phosphate buffer saline.
도 9는 투여 횟수 및 채혈시기에 따른 MERS-CoV S 항원의 마우스 면역원성 유도를 알아보기 위한 총항체 역가 측정 실험 결과 그래프이다. 여기서 총항체 역가는 일라이쟈 (ELISA)분석을 통해 확인 된 값이다. 여기서 GMT는 Geometric Mean Titer (기하평균 값)이다. 여기서 "2.5ug+Adjuvant" 과 "8ug+Adjuvant" 는 MERS-CoV S 항원 2.5ug 와 8ug을 각각 알루미늄 어쥬번트에 흡착한 물질들 이다. 여기서 "PBS+Adjuvant"는 멸균된 포스페이트 버퍼 셀라인 (phosphate buffer saline)에 알루미늄 어쥬번트를 혼합한 물질이다. 여기서 "1st boosting" 는 첫 번째 MERS-CoV S 항원을 투여 후 두 번째 투여를 의미한다. 여기서 "2nd boosting"은 세 번째 투여를 의미한다. 여기서 "2주차"는 투여 후 2주 후 채혈을 의미한다. 여기서 "4주차"는 투여 후 4주 후 채혈을 의미한다. Figure 9 is a graph of the results of the measurement of total antibody titers to determine the mouse immunogenic induction of MERS-CoV S antigen according to the number of administration and the blood collection time. Total antibody titer is the value confirmed by ELISA analysis. Where GMT is Geometric Mean Titer. "2.5ug + Adjuvant" and "8ug + Adjuvant" are the substances which adsorbed 2.5ug and 8ug of MERS-CoV S antigen to the aluminum adjuvant, respectively. Here, "PBS + Adjuvant" is a material obtained by mixing aluminum adjuvant with sterile phosphate buffer saline. "1st boosting" herein means a second administration after the first MERS-CoV S antigen. "2nd boosting" here means a third dose. "Week 2" herein means blood collection two weeks after administration. “Week 4” herein means blood collection 4 weeks after administration.
도 10은 본 예시에서 발현/정제된 면역원을 투여 후 유도된 항체가 면역원성을 나타내는 것을 확인하기 위한 항원-RBD 면역 특이적 IgG항체역가 측정 실험 결과 그래프이다. 여기서 항원-RBD 면역 특이적 IgG항체역가는 특이적 항체 샌드위치 일라이쟈 (specific antibody sandwich ELISA)법을 통해 확인 된 값이다. 여기서 특이적 항체는 RBD와 특이적으로 결합하는 1E9 단클론 항체이다. "8ug+Adjuvant"는 MERS-CoV S 항원 8ug을 알루미늄 어쥬번트에 흡착한 물질들 이다. 여기서 "PBS+Adjuvant"는 멸균된 포스페이트 버퍼 셀라인 (phosphate buffer saline)에 알루미늄 어쥬번트를 혼합한 물질이다.Figure 10 is a graph of the results of the antigen-RBD immunospecific IgG antibody titer measurement experiment to confirm that the antibody induced after administration of the expressed / purified immunogen in this example shows immunogenicity. The antigen-RBD immunospecific IgG antibody titer is a value identified through a specific antibody sandwich ELISA method. Wherein the specific antibody is a 1E9 monoclonal antibody that specifically binds to RBD. "8ug + Adjuvant" are substances that adsorb 8ug of MERS-CoV S antigen to aluminum adjuvant. Here, "PBS + Adjuvant" is a material obtained by mixing aluminum adjuvant with sterile phosphate buffer saline.
도 11 내지 도 18은 본 발명의 MERS-CoV S 유전자 및 폴리펩타이드 서열을 나타낸다.11-18 show the MERS-CoV S gene and polypeptide sequences of the present invention.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples and the like will be described in detail to help understand the present invention. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
실시예Example 1.  One. MERSMERS -- CoVCoV S 유전자 도입 재조합  S gene introduction recombination baculovirus의baculovirus 생산 production
Accession No. KF186567 (Al-Hasa_1_2013) MERS-CoV S 단백질의 코돈을 최적화시켜 얻어진 항원을 준비하였다. 기술된 MERS-CoV S 유전자는 cloning을 거쳐 MERS-CoV S 단백질 재조합 baculovirus (AcMNPV)를 만든 후 곤충세포, Sf9에 접종한다.Accession No. The antigen obtained by optimizing the codon of KF186567 (Al-Hasa_1_2013) MERS-CoV S protein was prepared. The MERS-CoV S gene described is cloned to make MERS-CoV S protein recombinant baculovirus (AcMNPV) and then inoculated into insect cell, Sf9.
Sf9 곤충세포의 평소 세포 농도는 3.00E6/ml을 넘지 않아야 한다. Sf9 곤충세포는 멸균된 125ml / 250ml / 500ml / 1L spinner flask 또는 5L / 50L /100L bioreactor 에서 배양을 한다. 본 예시에서 배양에 사용한 배지는 혈청이 함유되지 않은 무혈청 곤충 세포 특화 배지를 사용한다. 여기서 무혈청 곤충 세포 특화 배지는 Insect Express (Lonza) 등이 포함 될 수 있다. 본 예시에서 MERS-CoV S 생산을 위한 MERS-CoV S 재조합 baculovirus는 0.01-0.8 MOI (Multiplicity Of Infection) 사이로 접종을 하고 이때 Sf9 곤충세포의 농도는 성장 단계가 exponential phase의 초기단계인 5.00E5-1.50E6의 농도를 사용한다. 본 예시에서 사용한 MERS-CoV S 재조합 baculovirus는 접종 후 60-90시간이 되었을 때 harvest를 하며, 이때 viability는 75-98% 사이에 있어야 한다. 본 예시에서 낮은 성장단계의 세포에 낮은 농도의 바이러스를 접종하고 비교적 높은 viability에서 harvest하는 이유는, 사멸 단계의 세포에서 유출되는 protease 들에 의한 타겟 단백질 절단을 최소화하고, 사용되는 바이러스 접종물의 양을 최소화하기 위함이다.The usual cell concentration of Sf9 insect cells should not exceed 3.00E6 / ml. Sf9 insect cells are cultured in sterile 125ml / 250ml / 500ml / 1L spinner flasks or 5L / 50L / 100L bioreactor. The medium used for culturing in this example uses serum-free insect cell specialized medium without serum. Here, the serum-free insect cell specialized medium may include Insect Express (Lonza). In this example, the MERS-CoV S recombinant baculovirus for MERS-CoV S production is inoculated between 0.01-0.8 MOI (Multiplicity Of Infection), where the concentration of Sf9 insect cells is 5.00E5-1.50, where the growth phase is the initial phase of the exponential phase. Use concentration of E6. The MERS-CoV S recombinant baculovirus used in this example is harvested at 60-90 hours post inoculation, with viability of 75-98%. The reason for inoculating low growth cells into low growth cells and harvesting at relatively high viability in this example is to minimize target protein cleavage by proteases exiting the killing cells and reduce the amount of virus inoculum used. This is to minimize.
실시예Example 2.  2. MERSMERS -- CoVCoV S 항원의 발현, 정제, 분석 Expression, Purification and Analysis of S Antigens
서열번호 4의 폴리펩타이드 면역원은 다음과 같은 방법으로 얻는다. The polypeptide immunogen of SEQ ID NO: 4 is obtained by the following method.
먼저 실시예 1에서 재조합 baculovirus 접종 후 확보된 Sf9 곤충세포를 3000-8000xg에서 1-30분간 원심 하여 cell 침강층과 media 상청액을 분리한다. 분리된 media 상청액은 제거하고, 침강된 cell을 확보한다. 침강된 Sf9 cell은 용해 버퍼를 첨가하여 용해 시킨다. 용해 버퍼는 적절한 버퍼와 salt등이 포함되어 있으며, pH는 6.5-8.5 사이에 있다. First, the Sf9 insect cells obtained after recombinant baculovirus inoculation in Example 1 are centrifuged at 3000-8000xg for 1-30 minutes to separate the cell sedimentation layer and the media supernatant. Remove the separated media supernatant and secure the precipitated cells. Precipitated Sf9 cells are dissolved by adding lysis buffer. The lysis buffer contains a suitable buffer and salt, and the pH is between 6.5 and 8.5.
용해된 용해액을 순차 원심분리 방법 (differential centrifugation)을 실시하여 MERS-CoV S 단백질이 포함된 세포막을 분리한다. 본 예시에서 순차 원심분리 방법은 다음과 같다. 용해 및 파쇄 된 cell lysate를 2000-7000xg에서 1-30분 원심하여, 침강된 침전물을 제거하고 상청액을 취한다. 침전물에는 nuclei, 일부 mitochondria, lysosome, peroxisome등이 포함되어 있고, 상청액에는 잔여 lysosome과 peroxisome, mitochondria 및 cytosolic proteins, microsomes, ER, Golgi, 세포막이 포함되어 있다. 상청액을 다시 4℃에서 50,000-250,000xg로 60-420분간 초원심하여 침전물을 취하고 상청액을 제거한다. The lysed lysate is subjected to sequential centrifugation to separate the cell membrane containing the MERS-CoV S protein. In this example, the sequential centrifugation method is as follows. The dissolved and crushed cell lysate is centrifuged at 2000-7000xg for 1-30 minutes to remove precipitates and take the supernatant. The sediment contains nuclei, some mitochondria, lysosomes, peroxisomes, and the supernatant contains residual lysosomes and peroxisomes, mitochondria and cytosolic proteins, microsomes, ER, Golgi, and cell membranes. The supernatant is again ultracentrifuged at 50,000 ° C. to 50,000-250,000 × g for 60-420 minutes at 4 ° C. to take the precipitate and remove the supernatant.
분리된 세포막을 추출 버퍼를 첨가하여 세포막을 분쇄하고 초원심 분리기를 이용하여 30,000-150,000xg 에서 원심 하여, MERS-CoV S 단백질이 포함된 원액을 추출한다. 추출 버퍼는 적절한 버퍼와 non-ionic detergent, salt 등이 포함되어 있으며, pH는 6.5-8.5 사이에 있다. The separated cell membrane was added to the extraction buffer to crush the cell membrane and centrifuged at 30,000-150,000 × g using an ultracentrifuge to extract the stock solution containing the MERS-CoV S protein. Extraction buffers contain appropriate buffers, non-ionic detergents and salts, and have a pH between 6.5 and 8.5.
MERS-CoV S 단백질이 포함된 추출 원액은 anion exchange chromatography법으로 1차 정제를 실시한다. 본 원에서는 TMAE chromatography를 이용하고, AKTA explorer (HPLC, BD)를 사용하여 1차 정제를 실시하였다. 본 예시에서 TMAE는 Fractogel TMAE Hicap(M) resin (Merck)을 사용하였고, pressure가 0.3 메가파스칼 (MPa)을 넘지 않는 범위에서 추출된 원액시료를 로딩하였다. 시료는 로딩한 후 로딩 버퍼로 washing 해주고, 일루션 버퍼로 7CV 만큼 일루션 하였다. 로딩 버퍼 (loading buffer)와 일루션 버퍼(elution buffer)는 Tris, Triton X-100, NaCl 등이 포함되어 있으며, pH는 7.0-8.5 사이에 있다. (도 3) 1차 정제를 실시한 정제 원액을 glucose affinity chromatography법으로 2차 정제를 한다. 본 예시에서 2차 정제는 lentil lectin resin (lentil lectin sepharose 4B)을 사용하였으며, 로딩과 일루션은 0.3 메가파스칼(MPa) 미만의 압력으로 실시한다. 로딩 버퍼는 Tris, NaCl, CaCl2, tween80, MnCl2 등이 포함되어 있으며, pH는 7.0-8.5 사이에 있다. 일루션 버퍼는 borate, methyl mannoside, methyl glucoside등으로 구성되어 있고, pH는 5.0-6.5 사이에 있다. 2차 정제가 끝난 원액은 filter membrane을 이용하여 원액을 ultrafiltration 및 diafiltration으로 여과 및 농축 한다. (도 4) 최종적으로 여과 농축된 항원을 DLS로 측정한 Zeta-average 값은 20-100nm 이며 (도 5), 전자 현미경을 이용하여 항원을 관찰 한다. (도 6)Extraction stock containing MERS-CoV S protein is subjected to the first purification by anion exchange chromatography. In the present application, primary purification was performed using TMAE chromatography and AKTA explorer (HPLC, BD). In this example, TMAE used Fractogel TMAE Hicap (M) resin (Merck), and loaded with the extracted crude sample at a pressure not exceeding 0.3 megapascals (MPa). The sample was loaded and washed with a loading buffer, and the solution was irradiated with 7 CV by the illution buffer. The loading buffer and the elution buffer include Tris, Triton X-100, NaCl, etc., and the pH is between 7.0-8.5. (Figure 3) Secondary purification of the purified crude solution subjected to primary purification by glucose affinity chromatography. In this example, the second tablet was made of lentil lectin resin (lentil lectin sepharose 4B), and loading and reduction were performed at a pressure of less than 0.3 megapascals (MPa). The loading buffer contains Tris, NaCl, CaCl 2, tween80, MnCl 2, and the pH is between 7.0-8.5. Illution buffer is composed of borate, methyl mannoside, methyl glucoside, and the pH is between 5.0-6.5. After the second purification, the stock solution is filtered and concentrated by ultrafiltration and diafiltration using a filter membrane. (FIG. 4) The Zeta-average value measured by DLS of the finally filtered and concentrated antigen is 20-100 nm (FIG. 5), and the antigen is observed using an electron microscope. (Figure 6)
본 예시에서 단백질은 각 정제과정의 동일한 부피의 샘플을 βME(베타-머캡토에탄올)을 포함하는 2xSDS 샘플 버퍼로 희석하여 SDS-gel 의 각 well 당 15-20㎕ 채운 후 전기영동 하여 쿠마시 염색법에 의해 전체 단백질들을 염색하였다. 또한, SDS-gel을 membrane에 transfer 하여 항-단일 혹은 복합 MERS-COV S 특이 항체를 이용하여 WB (웨스턴 블랏)법으로 추가 분석하였다. WB은 단백질이 전이된 membrane을 5% skim milk(Sigma)가 포함된 완충용액(PBS)으로 4℃에서 4-24시간 동안 인큐베이션 하고 완충용액으로 세척 후 1:2000으로 희석한 MERS-COV S 특이 항체를 첨가하여 4℃에서 4-24시간 동안 인큐베이션 한다. 인큐베이션 후 0.1% tween20이 포함된 완충용액으로 3회 세척하고, 1:5000으로 희석된 겨자무과산화효소(HRP) 결합 Goat anti-rabbit IgG 항체(Invitrogen, US)을 첨가하고 상온에서 1-2시간 동안 인큐베이션 한다. 인큐베이션이 끝난 membrane은 0.1% tween20이 포함된 완충용액으로 3회 세척하고 ECL detection reagent (Amersham) 으로 발색하여 film으로 찍어 현상한다.In this example, the protein is diluted with 2xSDS sample buffer containing βME (beta-mercaptoethanol) in each purification process, filled with 15-20 μl of each well of SDS-gel, followed by electrophoresis. Total proteins were stained by In addition, SDS-gel was transferred to the membrane and further analyzed by WB (Western blot) using an anti-single or complex MERS-COV S specific antibody. WB incubated the protein-transferred membrane with buffer solution (PBS) containing 5% skim milk (Sigma) at 4 ° C for 4 to 24 hours, washed with buffer, and diluted 1: 2000 after MERS-COV S specificity. The antibody is added and incubated at 4 ° C. for 4-24 hours. After incubation, washed three times with a buffer solution containing 0.1% tween20, added mustard peroxidase (HRP) binding Goat anti-rabbit IgG antibody (Invitrogen, US) diluted 1: 5000, and at room temperature for 1-2 hours. Incubate during. After incubation, the membrane is washed three times with 0.1% tween20 buffer solution, developed with ECL detection reagent (Amersham), and photographed by film.
실시예Example 3.  3. MERSMERS -- CoVCoV S 항원을 이용한 동물 투여/면역 유도  Animal Administration / Immune Induction with S Antigen
본 예시에서 확보된 항원으로 mouse를 이용한 동물실험을 수행하였다. 실험에 사용한 mouse는 동물실험에 사용된 항원은 그 자체로도 사용을 할 수 있으며, 면역 증강제-예를 들어 알루미늄 어쥬번트와 함께 사용할 수도 있다. 어쥬번트는 예를 들어 알루미늄 또는 칼슘 염, 자세하게는 수산화, 인산, 인산 칼슘등의 무기 염을 포함할 수 있다. Animal experiments using mice were performed with the antigens secured in this example. The mouse used in the experiment can be used by itself as the antigen used in animal experiments, and may be used with an immune enhancer such as an aluminum adjuvant. The adjuvant may include, for example, aluminum or calcium salts, specifically inorganic salts such as hydroxide, phosphoric acid, calcium phosphate and the like.
알루미늄 (Aluminum 또는 Alum) 계열의 어쥬번트는 현재 사람을 대상으로 하는 백신에서 가장 보편적으로 사용하는 어쥬번트이기 때문에 새로운 어쥬번트를 개발하고 평가하는데 필요한 standard로 사용할 정도로 안정성과 효과가 입증 되어 있는 어쥬번트이다. Alum 어쥬번트 중 대표적으로 사용 하는 것이 aluminum hydroxide(Al(OH)3)와 aluminum phosphate(AlPO4)이며, 이 두 alum 어쥬번트는 각각 상이한 물리적 특성과 어쥬번트 특성을 나타낸다. 특히 aluminum hydroxide가 aluminum 흡착 백신에서 가장 널리 사용하고 있고, 본 예시에서 aluminum hydroxide를 면역 증강제로 사용하였으며, 이때 aluminum hydroxide는 180ug/1회 투여 의 수준으로 사용하였다..The adjuvant of the aluminum (Aluminum or Alum) family is the most commonly used adjuvant in human vaccines, so the adjuvant has proven its stability and effectiveness to be used as a standard for developing and evaluating new adjuvants. to be. The most commonly used alum adjuvant is aluminum hydroxide (Al (OH) 3) and aluminum phosphate (AlPO4). The two alum adjuvant have different physical and adjuvant properties. In particular, aluminum hydroxide is the most widely used in the aluminum adsorption vaccine, in this example, aluminum hydroxide was used as an immune enhancer, where aluminum hydroxide was used at a level of 180 ug / 1 dose.
본 예시에서 투여하는 MERS-CoV S 항원의 농도는 2.5ug/ml, 8ug/ml, 25ug/ml의 각기 다른 농도를 투여하였고, 투여 횟수는 2회 투여 하는 그룹과 3회 투여하는 그룹으로 다르게 적용하였다. 본 예시에서의 투여 일정은 최초 투여 2주 후 2회 투여, 2회 투여 2주후 3회 투여하여 진행 하였으며, 채혈은 최초 투여 후 2주, 3주, 4주, 6주, 8주 (3회 투여군만) 간격으로 실시 하였다. (도 7a, 도 7b)In this example, the concentrations of MERS-CoV S antigen administered were 2.5 ug / ml, 8 ug / ml, 25 ug / ml, and the number of administrations was differently applied to the two-dose group and the three-dose group. It was. In this example, the administration schedule was performed by two administrations after two weeks of first administration and three administrations after two weeks of two administrations. Administration group only). (FIG. 7A, FIG. 7B)
실시예Example 4.  4. MERSMERS -- CoVCoV S 항원을 투여한 동물의 면역원성 확인  Identification of immunogenicity in animals administered S antigen
본 예시에서 확보된 MERS-CoV S 항원은 aluminum hydroxide 어쥬번트 사용유무, 투여양, 투여횟수, 채혈 시기에 따른 면역원성 유도 효과를 확인 하였다. 본 예시에서 유도된 면역원성의 확인은 총항체가 측정과 중화항체 측정을 통해 실시하였다.The MERS-CoV S antigen obtained in this example was confirmed to be immunogenic induction effect depending on the presence or absence of aluminum hydroxide adjuvant, dosage, frequency of administration, and blood collection time. Confirmation of the immunogenicity induced in this example was carried out through the measurement of total antibody and neutralizing antibody.
본 예시에서 항원-특이적 IgG항체역가를 확인하기 위한 총항체가 측정은 ELISA법을 사용하여 수행하였다. 96-well plate에 MERS-CoV S 항원을 well 당 100ng씩 coating 하고 4℃에서 밤새 인큐베이션 하였다. 인큐베이션이 끝난 plate는 0.1% tween20이 포함된 완충용액으로 3회 세척한 후 5% skim milk가 포함된 완충용액으로 4시간 동안 인큐베이션 하고 0.1 tween20이 포함된 완충용액으로 다시 3회 세척한다. 확보된 mouse 혈액은 원심하여 혈청 샘플을 확보하고, 준비된 혈청 샘플을 최초 농도 1/20으로 희석한 후 4배씩 연속 희석을 수행하여 마지막 농도를 1/36980배로 만든다. 희석된 혈청 샘플들을 세척이 끝난 96-well plate에 100㎕씩 넣어준 상온에서 2시간 인큐베이션 하고, 0.1% tween20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate에 1:3000으로 희석된 겨자무과산화효소(HRP) 결합 Goat anti-mouse IgG 항체(Invitrogen, US)를 well당 100㎕ 넣은 후 상온에서 2시간 인큐베이션 하고 0.1% tween20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate의 각 well에 3,3A,5,5A-테트라메틸벤지딘 섭스트레이트(TMB substrate, KPL)를 첨가하여 HRP와 10분간 반응 시킨 후, TMB stop solution (KPL)을 넣어 반응을 중지 시켰다. 각 웰에 대한 흡광도 450nm값을 Microtiter plate reader (Molecular Devices) 를 사용하여 측정하였고, 본 예시에서 측정된 총 항체가는 발현/정제 된 MERS-COV S 항원이 면역원성을 높게 유도함을 확인하였다. (도 8a, 도 9)In this example, the total antibody titer to confirm antigen-specific IgG antibody titers was performed using the ELISA method. MERS-CoV S antigen was coated on a 96-well plate by 100ng per well and incubated overnight at 4 ° C. After incubation, the plate was washed three times with 0.1% tween20 buffer solution, incubated with 5% skim milk buffer solution for 4 hours, and washed again with 0.1 tween20 buffer solution three times. The obtained mouse blood is centrifuged to obtain a serum sample, and the prepared serum sample is diluted to an initial concentration of 1/20 and then serially diluted four times to make a final concentration of 1/36980 times. Diluted serum samples were incubated at room temperature for 2 hours at 100 µl each in a washed 96-well plate, and washed three times with a buffer solution containing 0.1% tween20. 100 μl of mustard peroxidase (HRP) -binding Goat anti-mouse IgG antibody (Invitrogen, US) diluted 1: 3000 was added to the washed plate, incubated at room temperature for 2 hours, and buffered with 0.1% tween20. Wash three times with solution. 3,3A, 5,5A-tetramethylbenzidine substrate (TMB substrate, KPL) was added to each well of the washed plate and reacted with HRP for 10 minutes, and then TMB stop solution (KPL) was added to stop the reaction. . The absorbance 450 nm value for each well was measured using a Microtiter plate reader (Molecular Devices), and the total antibody titer measured in this example was confirmed that the expressed / purified MERS-COV S antigen induces high immunogenicity. (FIG. 8A, FIG. 9)
본 예시에서 발현/정제된 MERS-COV S 면역원이 세포의 DPP4 receptor와 binding 하여 중화 면역반응을 일으키는 것으로 알려진 RBD(receptor binding domain)를 정확히 포함하는 것을 확인 하기 위해 항원-RBD 면역 특이적 IgG항체역가를 specific antibody sandwich ELISA법으로 측정하였다. 96-well plate에 MERS-CoV S RBD 부분에 특이적으로 결합하는 1E9 RBD specific 항체을 well 당 100ng씩 coating 하고 4에서 밤새 인큐베이션 하였다. 인큐베이션이 끝난 plate는 0.1% tween20이 포함된 완충용액으로 3회 세척한 후 5% skim milk가 포함된 완충용액으로 4시간 동안 인큐베이션 하고 0.1 tween20이 포함된 완충용액으로 다시 3회 세척한다. 이후 MERS-COV S 항원을 well당 100ng씩 1E9 RBD specific 항체가 (Xian-Chun Tang et al. PNAS 2014;111:E2018-E2026) coating된 plate에 넣어 준 후 상온에서 2시간 인큐베이션 하고, 0.1% tween20이 포함된 완충용액으로 3회 세척한다. 준비된 혈청 샘플을 최초 농도 1/20으로 희석한 후 4배씩 연속 희석을 수행하여 마지막 농도를 1/36980배로 만든다. 희석된 혈청 샘플들을 세척이 끝난 96-well plate에 100㎕씩 넣어준 상온에서 2시간 인큐베이션 하고, 0.1% tween20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate에 1:3000으로 희석된 겨자무과산화효소(HRP) 결합 Goat anti-mouse IgG 항체(Invitrogen, US)를 well당 100㎕ 넣은 후 상온에서 2시간 인큐베이션 하고 0.1% tween20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate의 각 well에 3,3A,5,5A-테트라메틸벤지딘 섭스트레이트(TMB substrate, KPL)를 첨가하여 HRP와 10뷴건 반응 시킨 후, TMB stop solution (KPL)을 넣어 반응을 중지 시켰다. 각 웰에 대한 흡광도 450nm값을 Microtiter plate reader (Molecular Devices) 를 사용하여 측정하였고, 본 예시에서 측정된 항원-RBD 면역 특이적 IgG항체역가는 발현/정제 된 MERS-COV S 면역원이 면역에 특이적 작용하는 RBD부분을 효과적으로 표지하고 면역원 투여시 효과적으로 RBD부분에 대한 항체를 유도함을 반증하는 결과이다. (도 10) In this example, the antigen-RBD immunospecific IgG antibody titer was used to confirm that the MERS-COV S immunogen expressed / purified exactly contains a receptor binding domain (RBD) that is known to bind to the cell's DPP4 receptor and cause a neutralizing immune response. Was measured by a specific antibody sandwich ELISA method. 100 ng of 1E9 RBD specific antibody that specifically binds to the MERS-CoV S RBD portion of the 96-well plate was coated and incubated overnight at 4. After incubation, the plate was washed three times with 0.1% tween20 buffer solution, incubated with 5% skim milk buffer solution for 4 hours, and washed again with 0.1 tween20 buffer solution three times. Subsequently, MERS-COV S antigen was added to a plate coated with 1E9 RBD specific antibody (Xian-Chun Tang et al. PNAS 2014; 111: E2018-E2026) at 100ng / well, followed by incubation at room temperature for 2 hours, and 0.1% tween20. Wash three times with the included buffer solution. The prepared serum samples are diluted to the initial concentration of 1/20 and then serially diluted 4 times to make the final concentration 1/36980 times. Diluted serum samples were incubated at room temperature for 2 hours at 100 µl each in a washed 96-well plate, and washed three times with a buffer solution containing 0.1% tween20. 100 μl of mustard peroxidase (HRP) -binding Goat anti-mouse IgG antibody (Invitrogen, US) diluted 1: 3000 was added to the washed plate, incubated at room temperature for 2 hours, and buffered with 0.1% tween20. Wash three times with solution. 3,3A, 5,5A-tetramethylbenzidine substrate (TMB substrate, KPL) was added to each well of the washed plate and reacted with HRP for 10 times. Then, TMB stop solution (KPL) was added to stop the reaction. . The absorbance 450 nm values for each well were measured using a Microtiter plate reader (Molecular Devices), and the antigen-RBD immunospecific IgG antibody titers measured in this example were expressed / purified by the MERS-COV S immunogen. This results in an effective labeling of the functioning RBD moiety and induction of antibodies to the RBD moiety upon administration of an immunogen. (Figure 10)
서열번호 2의 폴리펩타이드 항원을 이용한 면역 유도 반응에서 유사한 결과를 얻을 수 있었다.Similar results were obtained in an immune induction reaction using the polypeptide antigen of SEQ ID NO: 2.
본 발명은 높은 항체가를 갖는 MERS-CoV 백신으로 이용될 수 있다. The present invention can be used as a MERS-CoV vaccine having a high antibody titer.
본 발명은 항원 수득에 필요한 시간 및 비용이 절감된 MERS-CoV 백신을 제공한다. The present invention provides a MERS-CoV vaccine with reduced time and cost required for antigen acquisition.

Claims (34)

  1. 서열번호 2, 4, 6 및 8로 이루어진 군에서 선택된, 어느 하나 이상의 폴리펩타이드를 포함하는 MERS-CoV S 면역원성 조성물. MERS-CoV S immunogenic composition comprising any one or more polypeptides selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8.
  2. 제1항에 있어서, 상기 면역원성 조성물은 서열번호 2 또는 4의 폴리펩타이드를 포함하는 것을 특징으로 하는 MERS-CoV S 면역원성 조성물. The MERS-CoV S immunogenic composition of claim 1, wherein the immunogenic composition comprises a polypeptide of SEQ ID NO: 2 or 4. 3.
  3. 서열번호 2, 4, 6 및 8로 이루어진 군에서 선택된, 어느 하나의 MERS-CoV S 폴리펩타이드를 포함하는 면역원성 조성물을 포함하는, MERS-CoV 예방 백신.A MERS-CoV preventive vaccine comprising an immunogenic composition comprising any one of the MERS-CoV S polypeptides, selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8.
  4. 제3항에 있어서, 상기 백신은 보조제 또는 면역 증강제가 더 포함된 것을 특징으로 하는, MERS-CoV 예방 백신.The vaccine for preventing MERS-CoV according to claim 3, wherein the vaccine further comprises an adjuvant or an immune enhancer.
  5. 서열번호 2, 4, 6 및 8로 이루어진 군에서 선택된 어느 하나이상의 폴리펩타이드를 포함하는 MERS-CoV S 면역원성 조성물 또는 이를 포함하는 백신을 투여하는 것을 포함하는, MERS-CoV 감염에 대한 예방 면역을 유도하는 방법. Preventing prophylactic immunity against MERS-CoV infection, comprising administering a MERS-CoV S immunogenic composition comprising at least one polypeptide selected from the group consisting of SEQ ID NOs: 2, 4, 6 and 8 or a vaccine comprising the same How to induce.
  6. (a) 서열번호 1, 3, 5 및 7로 이루어진 군에서 선택된 어느 하나 이상의 MERS-CoV S 단백질 유전자를 도입하여 재조합 바이러스 벡터를 제작하는 단계; 및(a) preparing a recombinant viral vector by introducing any one or more MERS-CoV S protein genes selected from the group consisting of SEQ ID NOs: 1, 3, 5, and 7; And
    (b) 상기 재조합 바이러스 벡터를 숙주 세포에 접종시켜 숙주 세포를 배양하여 MERS-CoV S 단백질 면역원이 발현되는 배양물을 얻는 단계를 (b) inoculating the recombinant viral vector into a host cell to culture the host cell to obtain a culture in which the MERS-CoV S protein immunogen is expressed.
    포함하는 MERS-CoV S 단백질 면역원을 제조하는 방법.Method for producing a MERS-CoV S protein immunogen comprising.
  7. 제6항에 있어서, 상기 방법은 발현된 MERS-CoV S 단백질 또는 이의 단편을 정제하는 단계를 더 포함하는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 6, wherein the method further comprises purifying the expressed MERS-CoV S protein or fragment thereof.
  8. 제6항에 있어서, 상기 재조합 바이러스 벡터는 배큘로바이러스과(Baculoviridae) 아데노바이러스과(Adenoviridae), 헤파드나바이러스과(Hepadnaviridae), 백시니아바이러스과(Vacciniaviridae), 및 파보바이러스과(Parvoviridae)로 이루어진 군에서 선택된 어느 하나 이상의 바이러스 벡터인 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 6, wherein the recombinant viral vector is any one selected from the group consisting of Baculoviridae, Adenoviridae, Hepadnaviridae, Vacciniaviridae, and Parvooviridae. Method of producing a MERS-CoV S protein immunogen, characterized in that the above viral vector.
  9. 제8항에 있어서, 상기 재조합 바이러스 벡터는 배큘로바이러스 벡터인 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법.10. The method of claim 8, wherein said recombinant viral vector is a baculovirus vector.
  10. 제9항에 있어서, 상기 배큘로바이러스는 오토그라파 캘리포니카(Autographa californica) 핵다각체 병 바이러스 주 또는 그 변형된 바이러스 주; 또는10. The method of claim 9, wherein the baculovirus comprises: Autographa californica nuclear polyhedral disease virus strains or modified virus strains thereof; or
    몸빅스 모리(Bombyx mori) 핵다각체 병 바이러스 주 또는 그 변형된 바이러스 주를 포함하는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. A method for producing a MERS-CoV S protein immunogen, comprising Bombyx mori nuclear polyhedral disease virus strain or modified virus strain thereof.
  11. 제6항에 있어서, 상기 숙주 세포는 대장균(E. coli), 바실러스 서브틸리스(B. subtilis) 및 마이코박테리아로 이루어진 군에서 선택된 어느 하나의 원핵 숙주 세포; The method of claim 6, wherein the host cell is E. coli , Bacillus subtilis (B. subtilis ) and one of the prokaryotic host cells selected from the group consisting of mycobacteria;
    293세포 계열(human embryonic kidney lineage), CHO세포 계열 (Chinese hamster ovary cell lineage), Vero세포 계열 (African green monkey lineage), MRC세포 계열 (human lung fibroblast cell lineage), 및 MDCK 세포 계열 (madin-darby canine kidney cell lineage)로 이루어진 군에서 선택된 어느 하나의 포유류 숙주 세포; 및Human embryonic kidney lineage, Chinese hamster ovary cell lineage, African green monkey lineage, Vero cell line, human lung fibroblast cell lineage, and MDCK cell line (madin-darby) any one mammalian host cell selected from the group consisting of canine kidney cell lineage; And
    Sf9, Sf21세포, 및 하이 파이브(High-Five) 세포로 이루어진 군에서 선택된 어느 하나의 곤충 숙주 세포 중에서 선택된 어느 하나 이상인 것을 특징으로 하는, MERS-CoV S 단백질 면역원을 제조하는 방법. Sf9, Sf21 cells, and high-five (High-Five) cells, characterized in that any one or more selected from the group of insect host cells selected from the group consisting of, MERS-CoV S protein immunogen production method.
  12. 제6항에 있어서, The method of claim 6,
    상기 (a) 단계는 서열번호 1, 3, 5 및 7로 이루어진 군에서 선택된 어느 하나 이상의 MERS-CoV S 단백질 유전자를 도입하여 재조합 배큘로바이러스 벡터를 제작하는 단계이며, Step (a) is a step of preparing a recombinant baculovirus vector by introducing at least one MERS-CoV S protein gene selected from the group consisting of SEQ ID NOs: 1, 3, 5, and 7,
    상기 (b) 단계는 상기 재조합 배큘로바이러스 벡터를 0.001 내지 5 MOI로 5.00E5-1.50E6 농도의 Sf9 곤충세포에 감염시키는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The step (b) is a method for producing a MERS-CoV S protein immunogen, characterized in that the recombinant baculovirus vector infects Sf9 insect cells at a concentration of 5.00E5-1.50E6 at 0.001 to 5 MOI.
  13. 제12항에 있어서, 상기 재조합 배큘로바이러스 벡터는 0.002 내지 4.0 MOI로 Sf9 곤충세포에 감염되는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 12, wherein the recombinant baculovirus vector is infected with Sf9 insect cells at 0.002 to 4.0 MOI.
  14. 제12항에 있어서, 상기 재조합 배큘로바이러스 벡터는 0.003 내지 3.0 MOI로 Sf9 곤충세포에 감염되는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 12, wherein the recombinant baculovirus vector is infected with Sf9 insect cells at 0.003 to 3.0 MOI.
  15. 제12항에 있어서, 상기 재조합 배큘로바이러스 벡터는 0.004 내지 2.0 MOI 로 Sf9 곤충세포에 감염되는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 12, wherein the recombinant baculovirus vector is infected with Sf9 insect cells at 0.004 to 2.0 MOI.
  16. 제12항에 있어서, 상기 재조합 배큘로바이러스 벡터는 0.005내지 1.0 MOI 로 Sf9 곤충세포에 감염되는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 12, wherein the recombinant baculovirus vector is infected with Sf9 insect cells at 0.005 to 1.0 MOI.
  17. 제12항에 있어서, 상기 재조합 배큘로바이러스 벡터는 0.01 내지 0.8 MOI 로 Sf9 곤충세포에 감염되는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 12, wherein the recombinant baculovirus vector is infected with Sf9 insect cells at 0.01 to 0.8 MOI.
  18. 제12항에 있어서, 상기 MERS-CoV S 단백질 항원은 Sf9 세포의 생존율이 1내지 99%인 상태에서 수득되는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. The method of claim 12, wherein the MERS-CoV S protein antigen is obtained in a state in which the survival rate of Sf9 cells is 1 to 99%.
  19. 제18항에 있어서, 상기 MERS-CoV S 단백질 항원은 Sf9 세포의 생존율이 75내지 98%인 상태에서 수득되는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. 19. The method of claim 18, wherein the MERS-CoV S protein antigen is obtained in a state where the survival rate of Sf9 cells is 75 to 98%.
  20. 제12항에 있어서, 상기 면역원 제조 방법은The method of claim 12, wherein the immunogen manufacturing method
    (c) 상기 배양물을 1,000 내지 20,000xg에서 1-30분간 원심분리하여 상청액과 세포를 분리하여 침강된 Sf9 세포를 얻는 단계;(c) centrifuging the culture at 1,000 to 20,000 × g for 1-30 minutes to separate supernatant and cells to obtain precipitated Sf9 cells;
    (d) 상기 침강된 Sf9 세포를 pH 6.5-8.5의 용해 버퍼로 세포 용해(cell lysis)하여 용해액을 얻는 단계; (d) cell lysis of the precipitated Sf9 cells with a lysis buffer at pH 6.5-8.5 to obtain a lysate;
    (e) 상기 용해액을 순차 원심분리하여 상기 용해액의 상청액을 제거하여 MERS-CoV S 단백질 또는 이의 단편이 포함된 세포의 구성요소만을 얻는 단계; 및 (e) centrifuging the lysate sequentially to remove the supernatant of the lysate to obtain only components of cells containing MERS-CoV S protein or fragments thereof; And
    (f) 상기 MERS-CoV 항원이 포함된 세포 구성요소에서 MERS-CoV이 포함된 항원 이 포함된 부분만을 선택적으로 추출하는 단계를 포함하는, MERS-CoV S 단백질 면역원을 제조하는 방법. (f) selectively extracting only a portion of the cell component including the MERS-CoV antigen-containing antigen containing MERS-CoV, MERS-CoV S protein immunogen.
  21. 제20항에 있어서,The method of claim 20,
    상기 (c)단계는 상기 배양물을 1,500 내지 15,000xg의 속도로 원심분리하는 것을 특징으로 하는, MERS-CoV S 단백질 면역원을 제조하는 방법. Step (c) is characterized in that the culture is centrifuged at a rate of 1,500 to 15,000xg, MERS-CoV S protein immunogen production method.
  22. 제20항에 있어서,The method of claim 20,
    상기 (c)단계는 상기 배양물을 2,000 내지 10,000xg 의 속도로 원심분리하는 것을 특징으로 하는, MERS-CoV S 단백질 면역원을 제조하는 방법. Step (c) is characterized in that the culture is centrifuged at a rate of 2,000 to 10,000xg, MERS-CoV S protein immunogen production method.
  23. 제20항에 있어서,The method of claim 20,
    상기 (c)단계는 상기 배양물을 3,000 내지 8,000xg 의 속도로 원심분리하는 것을 특징으로 하는, MERS-CoV S 단백질 면역원을 제조하는 방법. Step (c) is characterized in that the culture is centrifuged at a rate of 3,000 to 8,000xg, MERS-CoV S protein immunogen production method.
  24. 제20항에 있어서, 상기 (e) 단계의 순차 원심분리는 The method of claim 20, wherein the step (e) sequential centrifugation
    (i) 상기 용해액을 500 내지 20,000xg 에서 1-30분 원심분리하여, 침강된 침전물을 제거하고 세포막을 포함하는 상청액을 취하는 단계; 및(i) centrifuging the lysate at 500-20,000 × g for 1-30 minutes to remove precipitates and take supernatant including cell membranes; And
    (ii) 상기 (i) 단계의 상청액을 4-10℃에서 50,000-250,000xg로 60-420분간 초원심분리하여 침전물을 취하고 상청액을 제거하여 MERS-CoV S 단백질 또는 이의 단편이 포함된 세포의 구성요소만을 취하는 단계를 포함하는, MERS-CoV S 단백질 항원을 제조하는 방법. (ii) the supernatant of step (i) was ultracentrifuged at 50,000-250,000 × g for 60-420 minutes at 4-10 ° C. to obtain a precipitate, and the supernatant was removed to form a cell containing MERS-CoV S protein or fragment thereof. A method of making a MERS-CoV S protein antigen, comprising taking only urea.
  25. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 순차 원심분리의 (i) 단계는 상기 용해액을 500 내지 20000xg에서 1-30분 원심분리하여, 침강된 침전물을 제거하고 세포막을 포함하는 상청액을 취하는 단계인 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (i) of the sequential centrifugation of step (e) is a step of centrifuging the lysate at 500 to 20000xg for 1-30 minutes to remove precipitates and take supernatant including cell membranes. Method for preparing a MERS-CoV S protein immunogen.
  26. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 순차 원심분리의 (i) 단계는 상기 용해액을 1,000 내지 15,000xg 에서 1-30분 원심분리하여, 침강된 침전물을 제거하고 세포막을 포함하는 상청액을 취하는 단계인 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (i) of the sequential centrifugation of step (e) is a step of centrifuging the lysate at 1,000 to 15,000 × g for 1-30 minutes to remove precipitates and take supernatant including cell membranes. To prepare a MERS-CoV S protein immunogen.
  27. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 순차 원심분리의 (i) 단계는 상기 용해액을 1,500 내지 10,000xg 에서 1-30분 원심분리하여, 침강된 침전물을 제거하고 세포막을 포함하는 상청액을 취하는 단계인 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (i) of the sequential centrifugation of step (e) is a step of centrifuging the lysate at 1,500 to 10,000xg for 1-30 minutes to remove precipitates and take supernatant including cell membranes. To prepare a MERS-CoV S protein immunogen.
  28. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 순차 원심분리의 (i) 단계는 상기 용해액을 2,000 내지 7,000xg 에서 1-30분 원심분리하여, 침강된 침전물을 제거하고 세포막을 포함하는 상청액을 취하는 단계인 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (i) of the sequential centrifugation of step (e) is a step of centrifuging the lysate at 2,000 to 7,000xg for 1-30 minutes to remove precipitates and take supernatant including cell membranes. To prepare a MERS-CoV S protein immunogen.
  29. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 (ii) 단계는 (i) 단계의 상청액을 10,000 내지 400,000xg의 속도로 초원심분리하여 침전물을 취하는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (e) of step (e) is a method for producing a MERS-CoV S protein immunogen, characterized in that the supernatant of step (i) is ultracentrifuged at a rate of 10,000 to 400,000xg to take a precipitate.
  30. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 (ii) 단계는 (i) 단계의 상청액을 20,000 내지 350,000xg의 속도로 초원심분리하여 침전물을 취하는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (ii) of step (e) is a method for producing a MERS-CoV S protein immunogen, characterized in that the supernatant of step (i) is ultracentrifuged at a rate of 20,000 to 350,000xg to take a precipitate.
  31. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 (ii) 단계는 (i) 단계의 상청액을 35,000 내지 300,000xg의 속도로 초원심분리하여 침전물을 취하는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (ii) of step (e) is a method for producing a MERS-CoV S protein immunogen, characterized in that the supernatant of step (i) is ultracentrifuged at a rate of 35,000 to 300,000xg to take a precipitate.
  32. 제24항에 있어서,The method of claim 24,
    상기 (e)단계의 (ii) 단계는 (i) 단계의 상청액을 50,000 내지 250,000xg의 속도로 초원심분리하여 침전물을 취하는 것을 특징으로 하는 MERS-CoV S 단백질 면역원을 제조하는 방법. Step (ii) of step (e) is the method of producing a MERS-CoV S protein immunogen, characterized in that the supernatant of step (i) is ultracentrifuged at a rate of 50,000 to 250,000xg to take a precipitate.
  33. 제20항에 있어서, 상기 (f) 단계의 추출 과정은 The method of claim 20, wherein the extracting of the step (f)
    (i) 상기 순차원심 분리를 끝낸 후 확보된 MERS-CoV S 단백질 또는 이의 단편으로 이루어진 MERS-CoV 항원이 포함된 세포의 구성요소로부터 추출 버퍼를 첨가하여 MERS-CoV S 단백질 또는 이의 단편이 포함된 부분을 선택적으로 추출하는 단계;(i) adding MERS-CoV S protein or fragment thereof by adding an extraction buffer from a cell component comprising a MERS-CoV antigen obtained from the obtained MERS-CoV S protein or fragment thereof Selectively extracting portions;
    (ii) 상기 (i)의 추출로 확보된 내용물을 4-10℃에서 5,000 내지 300,000xg 로 초원심분리하여 상청액을 버리고 침전물만 확보하는 단계를 포함하는, MERS-CoV S 단백질 면역원을 제조하는 방법. (ii) preparing the MERS-CoV S protein immunogen, comprising the step of discarding the supernatant by ultracentrifuging the contents obtained by the extraction of (i) at 5,000 to 300,000 × g at 4-10 ° C. .
  34. 제20항에 있어서, 상기 면역원 제조 방법은 The method of claim 20, wherein the immunogen manufacturing method
    (g) MERS-CoV S 단백질 또는 이의 단편으로 이루어진 MERS-CoV 항원을 정제하는 단계를 더 포함하며,(g) purifying the MERS-CoV antigen consisting of the MERS-CoV S protein or fragment thereof,
    상기 정제는 (i) 양이온 교환 크로마토그래피법으로 1차 정제를 실시하며,The purification is performed by (i) primary purification by cation exchange chromatography,
    (ii) 글루코스 친화 크로마토그래피법으로 2차 정제를 실시하는 것을 특징으로 하는, MERS-CoV S 단백질 면역원을 제조하는 방법. (ii) A method for producing a MERS-CoV S protein immunogen, characterized in that secondary purification is performed by glucose affinity chromatography.
PCT/KR2017/013365 2016-11-23 2017-11-22 Middle east respiratory syndrome coronavirus s protein immunogenic composition and method for preparing same WO2018097603A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0156610 2016-11-23
KR20160156610 2016-11-23

Publications (2)

Publication Number Publication Date
WO2018097603A2 true WO2018097603A2 (en) 2018-05-31
WO2018097603A3 WO2018097603A3 (en) 2019-01-24

Family

ID=62195284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013365 WO2018097603A2 (en) 2016-11-23 2017-11-22 Middle east respiratory syndrome coronavirus s protein immunogenic composition and method for preparing same

Country Status (2)

Country Link
KR (1) KR20180058206A (en)
WO (1) WO2018097603A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021178442A1 (en) * 2020-03-02 2021-09-10 Cel-Sci Corporation Novel peptides for vaccination and treatment of 2019-ncov infections

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601258B1 (en) * 2020-02-25 2023-11-13 (주)지뉴인텍 Recombinant adenovirus vaccine for corona virus disease 19 and combination therapy using the same
KR102647829B1 (en) * 2020-04-22 2024-03-14 포항공과대학교 산학협력단 Production method for trimeric spike protein of Corona-19 virus in plants and its use for vaccination
EP4212544A1 (en) * 2020-09-07 2023-07-19 GI Cell, Inc. Coronavirus-derived receptor binding domain variant with reduced ace2 binding capacity, and vaccine composition comprising same
KR20230158245A (en) 2022-05-11 2023-11-20 국방과학연구소 DNA fragments for COVID-19 gene vaccine and composition for gene vaccine including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9889194B2 (en) * 2013-03-01 2018-02-13 New York Blood Center, Inc. Immunogenic composition for MERS coronavirus infection
JP6643239B2 (en) * 2013-09-19 2020-02-12 ノババックス,インコーポレイテッド Immunogenic middle east respiratory syndrome coronavirus (MERS-CoV) compositions and methods
WO2015057942A1 (en) * 2013-10-18 2015-04-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies against the middle east respiratory syndrome coronavirus (mers-cov) and engineered bispecific fusions with inhibitory peptides
IL305392A (en) * 2013-11-29 2023-10-01 Inovio Pharmaceuticals Inc Mers-cov vaccine
JO3701B1 (en) * 2014-05-23 2021-01-31 Regeneron Pharma Human antibodies to middle east respiratory syndrome – coronavirus spike protein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021178442A1 (en) * 2020-03-02 2021-09-10 Cel-Sci Corporation Novel peptides for vaccination and treatment of 2019-ncov infections

Also Published As

Publication number Publication date
KR20180058206A (en) 2018-05-31
WO2018097603A3 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2018097603A2 (en) Middle east respiratory syndrome coronavirus s protein immunogenic composition and method for preparing same
KR101684447B1 (en) Novel immunoadjuvant flagellin-based compounds and use thereof
KR101793161B1 (en) Virus-like particles comprising composite capsid amino acid sequences for enhanced cross reactivity
KR102399854B1 (en) Immunogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Compositions and Methods
JPH04501058A (en) Paramyxovirus fusion protein, method for producing the protein using a recombinant baculovirus expression vector, vaccine containing the protein, and use thereof
KR20110112328A (en) Modified rsv f proteins and methods of their use
EA018084B1 (en) Virosome-like vesicles comprising gp41-derived antigens and use thereof
CN113683704A (en) Varicella-zoster virus r-gE fusion protein, recombinant varicella-zoster vaccine, and preparation method and application thereof
US20170304428A1 (en) Compositions and Methods for Increasing Immunogenicity of Glycoprotein Vaccines
JP2023523423A (en) Vaccine against SARS-CoV-2 and its preparation
WO2021210984A1 (en) Coronavirus vaccine
WO2023017945A1 (en) Formulation of corona virus vaccine
WO2022086143A1 (en) Pharmaceutical composition for covid-19 vaccine or treatment using exosome
CN113896773B (en) Recombinant FCV antigen and feline calicivirus genetic engineering subunit vaccine
WO2012053856A2 (en) Respiratory syncytial virus vaccine composition and method for preparing same
WO2022163902A1 (en) Vaccine composition for preventing human infectious sars coronavirus and alleviating infection symptoms
WO2005016247A2 (en) Dna sequences, peptides, antibodies and vaccines for prevention and treatment of sars
JP2759036B2 (en) Vaccines against herpes simplex virus infection
WO2024080637A1 (en) Virus-like particle combination vaccine comprising influenza a virus antigen protein ha, na or m2e5x
WO2022053016A1 (en) Method for improving immunogenicity by using glyco-coronavirus rbd antigen conjugate
US20230285542A1 (en) Coronavirus Vaccine
KR101302245B1 (en) Novel supplemented influenza vaccine having broad cross protective activity
WO2023060483A1 (en) Polypeptide-rbd immunoconjugate and use thereof
KR20190038358A (en) Modified soluble RSV F protein antigen
KR100421945B1 (en) Recombinant adenovirus(ad/hcv/e3) containing structure protein core gene, and surface glycoproteins e1 and e2 genes of hepatitis c virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873251

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873251

Country of ref document: EP

Kind code of ref document: A2