WO2010148681A1 - 用于确定上行反传结束时间的方法和系统 - Google Patents
用于确定上行反传结束时间的方法和系统 Download PDFInfo
- Publication number
- WO2010148681A1 WO2010148681A1 PCT/CN2010/071252 CN2010071252W WO2010148681A1 WO 2010148681 A1 WO2010148681 A1 WO 2010148681A1 CN 2010071252 W CN2010071252 W CN 2010071252W WO 2010148681 A1 WO2010148681 A1 WO 2010148681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- side base
- tunnel
- cups
- pdcp
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/34—Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/14—Flow control between communication endpoints using intermediate storage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/02—Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/04—Interfaces between hierarchically different network devices
- H04W92/045—Interfaces between hierarchically different network devices between access point and backbone network device
Definitions
- the S-W Se g ae a each) P CP will be in the S-to-P in the P-input P-to-input P) in the S-pass P 2 tunnel destination e.
- the purpose of the e-received P will be CP will be saved in the eode g sort). e to purpose e
- the message message contains the singularity received by the P CP.
- the e message is received.
- the P CP that needs the destination e receives the unsuccessful re-entry and the sorting of the eode g. "The introduction has reduced the weight of the ⁇ resource. The "described" is clear.
- the existing tunnel in the wood receives the resource command for the purpose. Afterwards, the target side base station will receive the first sneak peek after the first squad, and after the squatter is over, the squatting of the stalker will be lifted. Anti-service tunnel.
- the existing technology uses the most common tactics of the squatter, and is more eager to look at the method.
- the calibrator can't be arbitrarily adjusted during the use process, the meta-method chasing the situation of the gangster. culture. If the early Xiangxiang puts up the anti-servo tunnel, the house will make the up-and-down anti-Attendant of the unfinished friend lose in the thief. On the contrary, if the handover is completed, the GTPU L line of the destination side eN is still not peaceful. Put it, it will cause waste of resources. Therefore, it is very important to judge the knots of the ups and downs.
- the main purpose of You Ming content is to provide a method and system for the determination of the up-and-down anti-consultant relationship, and to provide an up-and-down method in the mobile communication system to solve the problem.
- Ben Youming provides a method for determining the uplink anti-stadium and card in the mobile communication system of the gods, including the following steps: The buffering of the grouped rivers In the order of the temple, Dae’s ⁇ S tunnel friend sent to each of the Gangfu; the first order temple of the pDCP sloping cushion is the same as the last one.
- the destination side base station is a deductive base station.
- Ben Youming recently provided a system for determining the uplink anti-stadium in the mobile communication system including: the source side base station and the destination side base station; the source side base station includes: The singer sent the sheep yuan, which was used to send the ⁇ tunnel friends of the prefectural temple of Dae, which was grouped in the cushion of the river, to the various Gangfus; Yang Yuan, used to sing the first order temple of the PDCP model slope, and the first sect of the temple is the same as the last ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Send to the destination side base station; knot the cup cup Zhiwen friends to send the sheep yuan, used to generate the knot cup cups, the knot card cups will be sent to the destination side base station through the uplink anti-service tunnel friend; destination side base station, It is used to receive the knotted cups and cups.
- the source side base station includes the storage of the sheep element, and the buffering horse of the PDCP mode slope is used for storing the ⁇ ⁇ ⁇ ⁇ ⁇ and the order ⁇ ⁇ ⁇ .
- the target side base station comprises: a parsing type judging sheep element, for judging the received board
- the beauty of the text; the brush to go to the Yang Yuan, used to account for the text is a number of ⁇ ⁇ ⁇ , the number of ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Anti-service tunnel.
- the destination side base station is a deductive base station.
- Another purpose of Ben Youming is to put up the anti-serving tunnel on the base pomelo that has been set up for the anti-service.
- Ben Youming provides the uplink anti-serving method in the one-way mobile communication system, including the following steps: sending the number of friends in the buffer of the RC mode slope to the number of groups
- the cushioning of the PDCP model slope of the imitation Wenpeng will send the number of the temples in the cushioning of the PDCP model slope to the Tongyu tunnel friends to the various Gangfu; the first order temple of the cushion in the pDCP model slope
- the destination side base station is a deductive base station.
- Ben Youming you can change the judgment of the squatting and clarify the similarity of the up-and-down anti-shoulders, and let the Xiangshang’s anti-service tunnel be able to move to the good fortune, and save the upward movement.
- the anti-servo number is not lost in the sneak thief (r, avoiding the rabbit, the early Xiangxiang put up the anti-service tunnel), the current yuan loss switch, the same, can be moved after the counter The hustle and bustle of the tunnel resources (r, avoiding the rabbits in the evening, the L-line anti-service tunnel), to avoid the waste of rabbit resources.
- the same method flow 2 The method flow in the communication system of the present invention is the same as the method flow in the communication system.
- the same system 6 is the same as the method flow 7
- the basics of the C theory are presented in the same way. The way the wood and the clearer are described below.
- the method shown in the communication system is the same as the method package.
- the following step 02 will divide the tunnel in the P CP to the same step 04 to describe the middle of the P CP to the most incompetent Tunnel to purpose
- Step 06 generated Step 0 will pass the tunnel to the destination to indicate the purpose of step 0.
- Step 202 The step 204 of controlling the C to the P CP will refer to the tunnel in the P CP to each step 206. The same to the most incompetent tunnel to the purpose
- Step 20 is to generate step 2 0 to pass the tunnel to the destination
- Step 22 Purpose To receive the tunnel. The purpose of this is to receive the tunnel resources for resource management. Step 2 2 Packets The collected revenue will be stored in the sort to receive
- step 202 if C is received again, it will be.
- the purpose is to. It is in the middle of the rabbit in the end of the
- Step 302 e The user receives control Unreconstructed message Reconstruction
- the P CP of step 304 e will receive the P pass of S
- the P CP of step 306 e receives the same step 30 e of the unreachable P P P to the destination e special purpose e special step 3 0 destination e receives the e unpass flow .
- the re-establishment process C of C is the P P P of the P CP. If the P P C is received again, the PC will no longer be PC.
- the P CP of the e in step 304 will receive the P P of the S. Process force CP will be in S of P
- the S of the S-pass P tunnel in which the P CP of step 306 will receive the same method force of the P-pass P P, the CP will be the most in the middle of the P-to-P
- S tunnel P destination e in the P CP will be the most SP to P message
- the source side eNB sends an anti-service message to the destination side eNB, and informs the destination side eNB of the number of friends of the tongs.
- the source side eNB's GTPU is X2 L line anti-service tunnel friend. Send the upstream anti-servo number to the destination side eNB, after the number of friends, the friend sends a cup to the specific tweet.
- the target side eNB's GTPU partner uplink anti-service tunnel receives the parsing and then unpacks: If yes ⁇ ⁇ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
- the source side base station friend sends a knot to the cup, so that the target side base station can shift the stipulations to clarify the similarity of the upstream anti-service node, and the partner can move the anti-service tunnel.
- the target side base station can shift the stipulations to clarify the similarity of the upstream anti-service node, and the partner can move the anti-service tunnel.
- the current yuan loss switch, peer can After moving to the counter-serving number, the smuggling of the tunnels and the hustle and bustle of the Xiangfang tunnel resources (r, avoiding the rabbits in the evening, and moving up the anti-service tunnel), avoiding waste of rabbit resources.
- the friend of the present application provides a system for determining the uplink anti-consistency in the mobile communication system.
- the core system includes the source side base station 402, the destination side base station 404, and the service base.
- the source side base station 402 includes: a number of friends to send a sheep element 4022, which is used to send the number of the number of the group of the rivers of the rivers of the rivers Fu 406; not to reach the number of friends to send Yang Yuan 4024, used to put the PDCP model slope in the buffer of the first order of the temple to the same number of temples to the beginning of the last number of ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
- the source side base station 402 includes the buffering horses of the PDCP model slope, and the buffers for the PDCP model slopes are used to save the temples and the temples of the temples.
- the destination side base station 404 includes: a type of parsing type, which is used to determine the type of the received parsing type; The ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
- the source side base station 402 sends a knotted card to the target side base station 404, so that the target side base station 404 can change the identity of the upstream anti-service node, and Can move to the right to go, and save the upswing against the acolyte in the smuggling process is not lost (r, avoiding the rabbit, the early Xiangxiang put up the anti-service tunnel), the current yuan loss switch, peer It can be moved to the Xiangfang tunnel resources after the anti-Attendant smuggling and smuggling (r, avoiding the rabbits and arranging the anti-service tunnel in the evening), avoiding waste of rabbit resources.
- This friend's example provides a base station device for another god to determine the upstream anti-stadium, as shown in sleepy 5, including: knots, cups, and cups to generate sheep: changed to the source side
- the GTPU of the base station it is used to receive the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Friend to send Yang Yuan: Changed to the GTPU of the source side base station, used for the front of the GTPU tunnel to buffer the PDCP ⁇ ⁇ ⁇ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The cached PDCP ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ PD PD The knots of the cups and the cups of the knots are judged to be clear
- Step 602 The control of the source eNB is reconstructed for the user face friend. Clear.
- Step 604 After receiving the reestablishment message, the RC buffers the PDUs that constitute the PDCP. All P CP's.
- Step 605 P If the P in the CP is the result of step 606, or no, step 608.
- Step 606 The CP tunnels the S of the S to the S tunnel of the S.
- Step 608 The CP will pass the P in the middle of the S to the tunnel in the most P-pass P. Step 6 0 CP Most S message communication P
- Step 6 2 P Receive the tunnel junction e) Pass the tunnel destination e Step 6 4 e tunnel.
- the RC reconstruction step 7 is shown in step 702 C.
- the P of the P CP is reduced from the P CP all P CP to the P of the CP.
- Step 702 C is received again.
- the destination e is received in the P tunnel of the step e of the step 802 in the change method shown in the method 8.
- the step 804 is the result of the step 806, and the example is the step 808, the step 806, the straight PC, the step 80, the tunnel is ended.
- the tunnel resources in the same rabbit have tunneled. Rabbit resources are wasted.
- the use of the above-mentioned force is not used to make the wood in the field. What is done in the spirit and principles of this book, equivalent replacement, etc. are included in this warranty.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI1010051A BRPI1010051A2 (pt) | 2009-06-25 | 2010-03-24 | método e sistema para determinar um tempo final de propagação de retorno de uplink em um sistema de comunicação móvel |
EP10791187.7A EP2448318B1 (en) | 2009-06-25 | 2010-03-24 | Method and system for determining uplink back propagation finish time |
JP2012516487A JP5778670B2 (ja) | 2009-06-25 | 2010-03-24 | アップロード逆伝終わり時間を確定するための方法及びシステム |
US13/259,312 US8837310B2 (en) | 2009-06-25 | 2010-03-24 | Method and system for determining an end time of uplink back propagation |
IN693DEN2012 IN2012DN00693A (zh) | 2009-06-25 | 2010-03-24 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910150281.8 | 2009-06-25 | ||
CN2009101502818A CN101932010A (zh) | 2009-06-25 | 2009-06-25 | 用于确定上行反传结束时间的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010148681A1 true WO2010148681A1 (zh) | 2010-12-29 |
Family
ID=43370854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/071252 WO2010148681A1 (zh) | 2009-06-25 | 2010-03-24 | 用于确定上行反传结束时间的方法和系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8837310B2 (zh) |
EP (1) | EP2448318B1 (zh) |
JP (1) | JP5778670B2 (zh) |
CN (1) | CN101932010A (zh) |
IN (1) | IN2012DN00693A (zh) |
WO (1) | WO2010148681A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102014424B (zh) | 2009-12-08 | 2014-08-20 | 电信科学技术研究院 | 一种载波聚合系统的测量上报方法和设备 |
CN102833802B (zh) * | 2012-08-15 | 2015-09-23 | 电信科学技术研究院 | 一种数据转发方法及设备 |
JP6130126B2 (ja) * | 2012-11-28 | 2017-05-17 | 株式会社Nttドコモ | 移動通信方法及び移動局 |
CN104581824A (zh) * | 2013-10-17 | 2015-04-29 | 中兴通讯股份有限公司 | 一种数据包分流传输的方法及系统 |
US9635655B2 (en) * | 2014-02-24 | 2017-04-25 | Intel Corporation | Enhancement to the buffer status report for coordinated uplink grant allocation in dual connectivity in an LTE network |
US9838282B2 (en) * | 2014-05-09 | 2017-12-05 | Telefonaktiebolaget Lm Ericsson (Publ) | PDCP and flow control for split bearer |
CN107438273B (zh) * | 2016-05-26 | 2021-07-30 | 中兴通讯股份有限公司 | 承载转移中数据处理状态的确定方法及装置 |
CN110226344B (zh) * | 2017-03-17 | 2020-11-17 | 华为技术有限公司 | 一种发送结束标记的方法及相关设备 |
CN107360592B (zh) * | 2017-07-05 | 2019-11-12 | 京信通信系统(中国)有限公司 | Pdcp下行传输方法、装置、存储介质及其计算机设备 |
WO2019023862A1 (zh) | 2017-07-31 | 2019-02-07 | Oppo广东移动通信有限公司 | 数据处理方法及相关产品 |
CN117014949A (zh) * | 2022-04-28 | 2023-11-07 | 中兴通讯股份有限公司 | 数据反传方法、装置、系统、电子设备及可读存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1396782A (zh) * | 2001-07-09 | 2003-02-12 | Lg电子株式会社 | 无线通信系统中的分组数据业务 |
CN101330492A (zh) * | 2007-06-19 | 2008-12-24 | 上海贝尔阿尔卡特股份有限公司 | 数据发送方法、数据接收方法和设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004200838A (ja) * | 2002-12-17 | 2004-07-15 | Matsushita Electric Ind Co Ltd | 基地局装置およびパケット通信方法 |
US8594069B2 (en) * | 2007-08-06 | 2013-11-26 | Qualcomm Incorporated | In-order data delivery during handover in a wireless communication system |
-
2009
- 2009-06-25 CN CN2009101502818A patent/CN101932010A/zh active Pending
-
2010
- 2010-03-24 WO PCT/CN2010/071252 patent/WO2010148681A1/zh active Application Filing
- 2010-03-24 IN IN693DEN2012 patent/IN2012DN00693A/en unknown
- 2010-03-24 US US13/259,312 patent/US8837310B2/en not_active Expired - Fee Related
- 2010-03-24 JP JP2012516487A patent/JP5778670B2/ja not_active Expired - Fee Related
- 2010-03-24 EP EP10791187.7A patent/EP2448318B1/en not_active Not-in-force
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1396782A (zh) * | 2001-07-09 | 2003-02-12 | Lg电子株式会社 | 无线通信系统中的分组数据业务 |
CN101330492A (zh) * | 2007-06-19 | 2008-12-24 | 上海贝尔阿尔卡特股份有限公司 | 数据发送方法、数据接收方法和设备 |
Non-Patent Citations (1)
Title |
---|
3GPP TS 36.300 V8.5.0(3GPP), 31 May 2008 (2008-05-31), pages 46, XP002532523 * |
Also Published As
Publication number | Publication date |
---|---|
US20130121171A1 (en) | 2013-05-16 |
CN101932010A (zh) | 2010-12-29 |
EP2448318B1 (en) | 2019-01-09 |
EP2448318A1 (en) | 2012-05-02 |
JP2012531136A (ja) | 2012-12-06 |
JP5778670B2 (ja) | 2015-09-16 |
EP2448318A4 (en) | 2015-05-20 |
US8837310B2 (en) | 2014-09-16 |
IN2012DN00693A (zh) | 2015-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010148681A1 (zh) | 用于确定上行反传结束时间的方法和系统 | |
CN109151915B (zh) | 用于数据分组递送的方法、用户设备和基站 | |
US9807818B2 (en) | Method of radio bearer establishment in dual connectivity | |
CN109600719B (zh) | 一种通信方法、装置及系统 | |
KR101450990B1 (ko) | 무선 장치에서 다중 무선 액세스 베어러를 제어하는 방법 | |
JP4941559B2 (ja) | 無線通信システムにおけるハンドオーバ方法並びに無線基地局及び無線端末 | |
CN107567023A (zh) | 用于wlan初始链路建立的方法和装置 | |
CN110199568A (zh) | 一种连接恢复方法、接入和移动性管理功能实体及用户设备 | |
CN109842558A (zh) | 报文转发的方法、控制面网关和用户面网关 | |
Zhang et al. | Traffic load balance methods in the LTE-Advanced system with carrier aggregation | |
CN102075566A (zh) | 业务的分流处理方法、通信设备及网络系统 | |
CN105493615A (zh) | 在语音呼叫期间设备发起的编解码速率改变 | |
CN103391549A (zh) | 一种不连续接收的动态配置方法、终端和基站 | |
CN109819483A (zh) | 专用承载创建方法、移动性管理实体及分组数据网络网关 | |
CN102291835A (zh) | 一种无线资源调度方法、接入网网元及终端 | |
CN101938787A (zh) | 切换控制的方法和设备 | |
KR20160073227A (ko) | 무선 통신 시스템에서 기지국과 단말 간 통신 방법을 결정하는 방법 및 장치 | |
CN104429156B (zh) | 一种无线网络的建立方法、设备及系统 | |
CN103813454A (zh) | 进行设备至设备通信的方法以及相应的控制方法 | |
CN105359573B (zh) | 用于在无线通信系统中卸载数据业务的方法和装置 | |
US8547938B2 (en) | Data flow transfer between wireless connections | |
WO2012155434A1 (zh) | 一种数据传输的方法、装置及eNB | |
CN109714134A (zh) | 接收窗口滑动方法及装置 | |
WO2010145243A1 (zh) | 下行报文转发方法及服务网关 | |
ES2275118T3 (es) | Procedimiento para el control de una transmision de datos en un sistema de comunicaciones por radio con arquitectura jerarquica de red. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10791187 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012516487 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010791187 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 693/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13259312 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1010051 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1010051 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111220 |