WO2010147543A1 - Device for the automatic operation of a manual gear box - Google Patents
Device for the automatic operation of a manual gear box Download PDFInfo
- Publication number
- WO2010147543A1 WO2010147543A1 PCT/SE2010/050664 SE2010050664W WO2010147543A1 WO 2010147543 A1 WO2010147543 A1 WO 2010147543A1 SE 2010050664 W SE2010050664 W SE 2010050664W WO 2010147543 A1 WO2010147543 A1 WO 2010147543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotary shaft
- operating device
- shift
- axially
- gearbox
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
- F16H61/32—Electric motors actuators or related electrical control means therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/08—Multiple final output mechanisms being moved by a single common final actuating mechanism
- F16H63/20—Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/30—Constructional features of the final output mechanisms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/08—Multiple final output mechanisms being moved by a single common final actuating mechanism
- F16H63/20—Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate
- F16H2063/208—Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate using two or more selecting fingers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/30—Constructional features of the final output mechanisms
- F16H63/3009—Constructional features of the final output mechanisms the final output mechanisms having elements remote from the gearbox
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20012—Multiple controlled elements
- Y10T74/20018—Transmission control
- Y10T74/2003—Electrical actuator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20012—Multiple controlled elements
- Y10T74/20018—Transmission control
- Y10T74/20177—Particular element [e.g., shift fork, template, etc.]
Definitions
- the present invention relates to an operating device for an automatically switched manual gearbox, said gearbox being provided with a movable engagement element for each gear and said operating device being provided with rotary shafts and pivotable shift finger means for movement of selected engagement elements.
- a commonly occurring configuration in automatically switched manual gearboxes is that respective gears are engaged or disengaged by moving an engagement element, usually in the form of a shaft.
- the engagement element has a notch or yoke-like shoulder acted upon by a shift finger which engages in the notch and pushes the engagement element in the respective direction for engagement or disengagement of the gear.
- the shift finger effects this movement by being pivoted about a rotary shaft.
- This entails the shift finger and the pivoting operating shaft being first moved axially so that the shift finger is located axially to the position for cooperation with the respective engagement shaft.
- the axial movement of the rotary shaft with the shift finger involves the application of a relatively large force, normally by use of pneumatic or hydraulic power means. Gear changing therefore tends to be cumbersome and imprecise.
- Gearboxes of this kind are described inter alia in US 20040154419, US 20020189388, US 2001037698 and FR 2860567.
- US20040154419A1 describes a mechanism for gearbox operation whereby a solenoid or an electric motor pivots a shaft and a pulling solenoid which can turn away the shift fingers, two or more fingers in a package, depending on which gear is to be engaged in the gearbox.
- the turning away is to prevent any double gear change, i.e. simultaneous engagement of two selector shafts.
- the turning away takes place axially along the selector shaft which transmits a pivoting movement and an axial movement.
- US20020189388A1 is a gear change mechanism based entirely on solenoids and only one shift finger and using solenoids to switch the shift finger to seven different positions. There are three solenoids to effect this switching.
- US2001037698 describes a shift finger which is pivoted by solenoids.
- FR 2860567 describes a number of shift fingers which can be engaged individually relative to one another, with a slide which prevents an incorrect gear from being engaged when the others are to be operated, a kind of locking slide.
- the object of the present invention is to propose an operating device of the kind here concerned whereby the disadvantages described above are eliminated, which device thus makes it possible for engagement and disengagement of a gear to take place more smoothly and simply than is possible in the state of the art.
- the shift finger means comprises a number of separate shift fingers, each of them associated with a specific engagement element and adapted to being separately pivotable independently of the other shift fingers.
- each shift finger eliminates the need to move any shift fingers axially in relation to engaging or disengaging a gear.
- the shift fingers and also the rotary shaft may thus be so arranged that they are not movable axially. This makes the gearbox easier to operate and results in greater precision.
- the force to be applied becomes smaller and the force required in the axial direction of the rotary shaft is reduced significantly or eliminated.
- the power equipment can therefore be simplified and configured without pneumatic means. Eliminating the need to be able to move the shift fingers axially also renders the configuration of the operating device simpler than known similar devices.
- the shift fingers are fitted axially after one another along a rotary shaft which is movable axially to assume various operating positions, in each of which the rotary shaft is connected to, for joint rotation with, only one of the shift fingers and is pivotable relative to the other shift fingers.
- the rotary shaft extends through a hole in each shift finger, each hole having at least one groove running axially through it, and the rotary shaft is provided with at least one radial protrusion for pivoting cooperation with respective grooves in at least one of the shift fingers depending on the operating position of the rotary shaft.
- each shift finger is provided with an indexing element which is urged towards the rotary shaft by a respective spring
- the rotary shaft is provided with a hollow adapted to being able to accommodate any of the indexing elements.
- the indexing element facilitates the axial positioning of the rotary shaft so that it reaches correct positions for pivoting of intended shift fingers.
- the spring will snap the indexing element into the hollow, thereby indicating correct axial position relative to the shift finger for effecting pivoting for gear change.
- the indexing element is pushed up out of the notch against the action of the spring and abuts against the periphery of the rotary shaft.
- the indexing element takes the form of a ball or is of spherical configuration on at least its side which faces towards the rotary shaft, and the hollow is of corresponding spherical shape. The snapping in and pushing out of the indexing element are thus facilitated.
- the shift fingers are fitted axially after one another along a rotary shaft package which comprises a number of coaxial rotary shafts which are pivotable relative to one another and are each connected to, for joint rotation with, a particular shift finger.
- each rotary shaft is provided with a radially protruding pivot element connected to, for joint rotation with, the rotary shaft, and these pivot elements are located axially after one another along the rotary shaft package.
- the pivot elements facilitate pivoting of the respective rotary shafts.
- the fact that they are axially separate also makes it easy to pivot only one of the rotary shafts.
- each pivot element takes the form of a radial pin.
- the device comprises a slide which is movable axially, pivotable on the rotary shaft package and provided with shoulder elements adapted to pivoting action upon selected pivot elements according to the axial position of the slide.
- the slide and the pivot elements constitute a simple, robust and reliable mechanism for engagement of gears.
- Gear selection is by moving the slide so that its shoulder elements come into position to act upon respective pivot elements.
- Relevant shift fingers can thereafter easily be pivoted via their associated rotary shafts by pivoting the slide.
- the slide takes the form of a cut cylinder supported on the outermost of the rotary shafts and has an opening running axially which comprises a first section with a smaller peripheral width and at least one second section with a larger peripheral width, smaller and larger peripheral width being defined by the difference in angular extent being at least twice as great as the angular movement of a shift finger which is required to engage or disengage a gear.
- the shoulder elements of a slide thus configured will be of very simple construction since the edges of the smaller section of the opening will themselves serve as shoulder elements.
- the greater width of the remainder of the opening makes it possible for the pivoting of the slide to take place without affecting the pivot elements of any of the other rotary shafts.
- the opening comprises two sections with the larger width, each situated axially on its respective side of the section with the smaller width.
- the smaller width corresponds to an angle within the range 5-10° and the larger width to an angle within the range 120-175°.
- the operating device comprises a solenoid or an electric motor adapted to pivoting the rotary shaft/one of the rotary shafts.
- the operating device invented makes it possible for only a relatively small amount of force to have to be applied to engage or disengage a gear.
- This embodiment takes advantage of the possibility of dispensing with pneumatic or hydraulic operation. The device thereby becomes particularly simple and reliable.
- the invention relates also to a gearbox provided with an operating device in accordance with the invention, particularly according to any of its preferred embodiments.
- the invention further relates to a motor vehicle provided with the invented gearbox.
- the invented gearbox and the invented motor vehicle afford advantages of similar kinds to the invented operating device and its preferred embodiments, which advantages are described above.
- Fig. 1 is a side view of an operating device according to a first embodiment example of the invention.
- Fig. 2 is a perspective view of part of the operating device in Fig. 1.
- Fig. 3 is a section through a detail of the operating device in Fig. 2.
- Fig. 4 is a perspective view of an operating device according to a second embodiment example.
- Fig. 5 is a view from above of a detail of the operating device in Fig. 4.
- Fig. 6 is a section along the line Vl-Vl in Fig. 5.
- Fig. 7 is a longitudinal section through a detail of the operating device in Fig. 4.
- Fig. 8 illustrates schematically a gearbox with operating device according to the invention.
- Fig. 9 illustrates schematically a vehicle provided with a gearbox according to Fig. 8.
- Fig. 1 depicts an operating device according to the invention in a side view in which a rotary shaft 1 is provided with a number of, in this example three, shift fingers 2, 3, 4.
- Each of the shift fingers is adapted to being connectable to, for joint rotation with, the rotary shaft 1 by means of a spline-like connection.
- the other two are free-running. Pivoting of the rotary shaft 1 therefore causes whichever of shift fingers 2, 3, 4 is connected for joint rotation to pivot, whereupon its portion which protrudes downwards in the diagram will move out perpendicular to the plane of the paper.
- the other two shift fingers will be stationary.
- the pivoted shift finger is connected to an undepicted engagement shaft running perpendicular to the plane of the paper and moves the engagement shaft to engage or disengage one of the gears in an undepicted gearbox.
- Ref. 11 denotes a drive unit for axial movement of the rotary shaft 1.
- the drive unit 11 is with advantage a solenoid or an electric motor.
- Ref. 10 symbolises the drive mechanism for rotating the rotary shaft.
- Fig. 2 depicts the right portion of Fig. 1 in a perspective view with one of the shift fingers removed to make certain details clearer.
- Each shift finger 3, 4 comprises a circular portion 12 surrounding the rotary shaft 1 and a finger portion 13 which protrudes from the circular portion 12 and is flat-shaped.
- Each shift finger has in its circular portion a radial hole which accommodates a respective indexing mechanism 5, 6, 7 described in more detail in relation to Fig. 3.
- the rotary shaft 1 has two protrusions 14, only one of which is visible in Fig. 2, the other being situated on the diametrically opposite side.
- Each protrusion 14 takes the form of a ridge 14 running axially with an axial extent which is somewhat smaller than thickness of a shift finger.
- Fig. 3 depicts the middle shift finger 3 in a section transverse to the axial direction, the shift finger 3 being axially positioned centrally to the rotary shaft's protrusions 14.
- the shift finger 3 has two grooves 15 disposed diametrically and shaped to complement the protrusions 14. A spline-like connection is thus established between the rotary shaft 1 and the shift finger 3 which is positioned axially with its grooves 15 cooperating with the protrusions 14.
- the indexing mechanism 5 comprises a spring 17 which urges an indexing element 16 in the form of a ball 16 towards the rotary shaft.
- the rotary shaft 1 is provided with a spherical hollow 18 adapted to being able to accommodate the ball 16. In the position depicted, the ball 16 is pressed into the hollow 18.
- the rotary shaft's hollow 18 is axially situated centrally to the shaft's ridges 14.
- Gear changing takes place as follows with reference to Figs. 2 and 3.
- the shift fingers 2, 3, 4 are situated centrally to one another so that their respective grooves 15 form a composite groove.
- the rotary shaft 1 is so positioned that its ridges 14 are situated centrally to the grooves 15 of the shift fingers.
- the hollow 18 of the rotary shaft 1 is also axially situated centrally to the ball 16 of one of the shift fingers, with advantage the middle shift finger 3. If the gear which is engaged by means of the shift finger 4 is to be activated, the rotary shaft is moved axially to the right in Fig. 2. This results in its ball 16 being pushed out from the hollow 18 and sliding axially on the periphery of the rotary shaft.
- the rotary shaft has only one hollow 18 for the ball lock.
- the number of hollows may be the same as the number of shift fingers so that in a neutral state each ball 16 is pushed into a respective hollow.
- the hollow or hollows 18 may alternatively take the form of a groove of circular profile which runs in a circumferential direction.
- a rotary shaft package 101 is adapted to operating the shift fingers 102, 103, 104.
- the rotary shaft package 101 is composed of three coaxial rotary shafts 101a, 101b, 101c each connected to, for joint rotation with, the respective one of the shift fingers 102, 103, 104.
- the two outer rotary shafts 101b, 101c are therefore hollow shafts, while the inner rotary shaft 101a may alternatively be solid.
- the rotary shafts are each provided at their left end in the diagram with respective radially protruding pins 105, 106, 107 which in a neutral state are all in the same axial plane.
- the inner driveshaft 101a extends somewhat further out to the left than the middle driveshaft 101b, which itself extends somewhat further out than the outermost driveshaft 101c. The purpose of this is to provide space for the pins 105, 106 on the two inner shafts.
- a slide 110 for effecting the pivoting movement of the rotary shafts is provided in the region of their pins.
- the rotary shaft package 101 is journalled at its right end in the diagram in a bearing housing 108 supported by a bearing bracket 109 in a similar way to the first example.
- the slide 110 is of generally cylindrical shape with an inside diameter corresponding to the outside diameter of the outer rotary shaft 101c and is journalled on the latter in such a way that it can be moved axially and pivoted.
- An opening 111 running axially extends along the whole length of the slide 110.
- the opening is of varying width and divided into three sections 111a, 111b, 111c each running one-third of the length of the slide 110.
- a section 111 a of relatively large width corresponding to an angle of barely half a turn is situated at one end of the slide 110.
- a further section 111 c of the same width is situated at the other end of the slide 110. There is between them, in the axial central region of the slide, a section 111 b of considerably smaller width than the first and second sections.
- the width of the middle section 111b corresponds to an angle of about 10°.
- the middle section takes the form of a tongue 115 extending out from each side of the edges of the opening which constitute the wider sections 111a, 111c.
- the third section 111b is situated symmetrically relative to the other two.
- Engaging and disengaging a gear is effected by moving the slide 110 axially along the rotary shaft package 101 so that the section 111b with the smallest width becomes axially central to whichever of the pins 105, 106, 107 is associated with the gear which is to be engaged. Thereafter the slide 110 is pivoted, whereupon one edge of the smallest-width section 111 b is pressed against the respective pin, which in the diagram is the middle pin 106, and causes it to pivot with it. The result is pivoting of the rotary shaft 101b to which the pin 106 is fastened and hence of the shift finger 103 fastened to the rotary shaft. The shift finger 103 then moves in a conventional way the associated engagement shaft (not depicted).
- the smallest-width section need not necessarily be situated axially at the middle of the slide. It may alternatively be at one end of the slide, in which case the other two sections will form a composite larger-width section.
- Ref. 112 symbolises a control means for the axial movement of the slide 110, and ref. 113 a control means for the slide's pivoting via one of the pivot lugs 114 provided on the slide.
- these control means may themselves comprise conventional pneumatics or hydraulics
- the operating device according to the invention makes it possible to use for this purpose simpler and less expensive means such as solenoids or electric motors. With advantage, the operating device is therefore of this kind.
- Fig. 7 shows the respective rotary shafts 101a, 101b, 101c each extending to the respective associated operating fingers 102, 103, 104, to which they are connected for joint rotation with them.
- the diagram also shows the slide 110 placed on the outside of the shaft package at the latter's left end in the diagram.
- Fig. 8 illustrates schematically a gearbox 202 provided with an operating device 200 according to the invention, whereby the gear change movement is transmitted in a conventional way via an engagement element 201 with engagement shaft 203 and switching yoke 204.
- Fig. 9 illustrates a vehicle 205 provided with a gearbox 202 according to the invention.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gear-Shifting Mechanisms (AREA)
- Structure Of Transmissions (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13190013.6A EP2690323B1 (en) | 2009-06-17 | 2010-06-14 | Device for the automatic operation of a manual gear box |
EP10789821A EP2443368A4 (en) | 2009-06-17 | 2010-06-14 | Device for the automatic operation of a manual gear box |
JP2012516033A JP5727470B2 (en) | 2009-06-17 | 2010-06-14 | Equipment for automatic operation of manual gearbox |
US13/378,104 US9127767B2 (en) | 2009-06-17 | 2010-06-14 | Device for the automatic operation of a manual gear box |
BRPI1008181A BRPI1008181A2 (en) | 2009-06-17 | 2010-06-14 | "device for the automatic operation of a manual gearbox" |
CN2010800264442A CN102803798A (en) | 2009-06-17 | 2010-06-14 | Device for the automatic operation of a manual gear box |
RU2012101346/11A RU2496040C2 (en) | 2009-06-17 | 2010-06-14 | Control unit for semiautomatic gearbox (versions), gearbox (versions) and vehicle (versions) |
KR1020137026018A KR20130126731A (en) | 2009-06-17 | 2010-06-14 | Device for the automatic operation of a manual gear box |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0950469A SE533846C2 (en) | 2009-06-17 | 2009-06-17 | Control unit for a gearbox |
SE0950469-7 | 2009-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010147543A1 true WO2010147543A1 (en) | 2010-12-23 |
Family
ID=43356617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2010/050664 WO2010147543A1 (en) | 2009-06-17 | 2010-06-14 | Device for the automatic operation of a manual gear box |
Country Status (9)
Country | Link |
---|---|
US (1) | US9127767B2 (en) |
EP (2) | EP2690323B1 (en) |
JP (2) | JP5727470B2 (en) |
KR (2) | KR20120024780A (en) |
CN (2) | CN104832641A (en) |
BR (1) | BRPI1008181A2 (en) |
RU (1) | RU2496040C2 (en) |
SE (1) | SE533846C2 (en) |
WO (1) | WO2010147543A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008000643B4 (en) * | 2008-03-13 | 2022-02-17 | Zf Friedrichshafen Ag | Arrangement for shifting at least one loose wheel on an associated shaft of a transmission |
SE533846C2 (en) * | 2009-06-17 | 2011-02-08 | Scania Cv Ab | Control unit for a gearbox |
KR101249813B1 (en) * | 2012-08-31 | 2013-04-02 | 한은수 | Assembly for moving gear and transmission having the same |
DE112014001017A5 (en) * | 2013-02-27 | 2015-11-05 | Schaeffler Technologies AG & Co. KG | Actuating device for a motor vehicle |
DE102013004953A1 (en) * | 2013-03-22 | 2014-09-25 | Audi Ag | Actuator device for a transmission of a motor vehicle and corresponding transmission of a motor vehicle |
CN103291901A (en) * | 2013-06-02 | 2013-09-11 | 安庆市精诚拖拉机零部件有限责任公司 | Sleeve-type compact gear shifting mechanism for tractors |
JP6164041B2 (en) | 2013-10-22 | 2017-07-19 | スズキ株式会社 | Manual transmission shift device |
CN104842782A (en) * | 2014-02-17 | 2015-08-19 | 张标 | Truck speed-changing connection system |
DE102014003238A1 (en) * | 2014-03-10 | 2015-09-10 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | manual transmission |
DE102014103523A1 (en) * | 2014-03-14 | 2015-09-17 | Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg | Switching arrangement for a motor vehicle transmission and switching method |
DE102015204669A1 (en) * | 2014-04-03 | 2015-10-08 | Schaeffler Technologies AG & Co. KG | actuator assembly |
CN104019218B (en) * | 2014-05-26 | 2016-05-11 | 西安交通大学 | A kind of variable-speed controller |
DE102016218340A1 (en) * | 2016-09-23 | 2018-03-29 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Aisle and lanes (XY) gearbox |
KR101943739B1 (en) * | 2017-06-22 | 2019-01-30 | 현대트랜시스 주식회사 | Shift Apparatus For Manual Transmission |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2922315A (en) | 1957-11-29 | 1960-01-26 | Gen Motors Corp | Transmission control |
JPS5127767B2 (en) | 1973-05-02 | 1976-08-14 | ||
EP0144554A2 (en) | 1983-09-13 | 1985-06-19 | ZF FRIEDRICHSHAFEN Aktiengesellschaft | Holdings means in a gear change mechanism |
US20010037698A1 (en) | 2000-04-27 | 2001-11-08 | Yasushi Yamamoto | Shift-assisting device for a transmission |
DE10108881A1 (en) * | 2001-02-23 | 2002-09-05 | Volkswagen Ag | Dual clutch gearbox has two gearbox parts and single shift shaft axially displaced and rotated by selection actuator and shift actuator with shift shaft connecting to shift rod of one gearbox part without disengaging previously engaged gear |
US20020189388A1 (en) | 2001-06-18 | 2002-12-19 | Michinobu Suzuki | Gear change device |
US20040154419A1 (en) | 2002-11-19 | 2004-08-12 | Luk Lamellen Und Kupplungsbau Beteiligungs Kg | Gear engagement mechanisms |
FR2860567A1 (en) | 2003-10-03 | 2005-04-08 | Renault Sa | Internal control device for motor vehicles automated gearbox, has unit to select and engage gear ratios, and shifting units to contact jaw clutches when engaged ratio returns to neutral position to ensure engagement of clutches with ratios |
FR2863028A1 (en) * | 2003-11-27 | 2005-06-03 | Peugeot Citroen Automobiles Sa | Gear selector and changer for electrically- or hydraulically-controlled gearbox has selector crossbars made twice as thick as gear change fingers |
US20060150761A1 (en) * | 2002-11-16 | 2006-07-13 | Uwe Beer | Shifting device for a transmission |
DE102006017265A1 (en) * | 2005-04-13 | 2006-10-19 | Aktiebolaget Skf | Control device for switching of motor-driven vehicle comprises charging rod on which are charging devices each with selection finger and cam selection rod to switch device from active to passive state and back |
DE102005058406A1 (en) * | 2005-12-07 | 2007-06-14 | Dr.Ing.H.C. F. Porsche Ag | Actuation equipment for gearbox of motor vehicle has servomotor units each having switching motor and selecting motor that cooperate with shafts of actuation equipment |
US20090038423A1 (en) * | 2007-08-09 | 2009-02-12 | Masanori Shintani | Transmission |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242759A (en) | 1963-06-28 | 1966-03-29 | Zahnradfabrik Friedrichshafen | Shifting arrangement for change speed gears of motor vehicles |
JPS484804U (en) * | 1971-05-21 | 1973-01-20 | ||
JPS5424211Y2 (en) | 1974-08-22 | 1979-08-16 | ||
DE3136923C1 (en) | 1981-09-17 | 1983-01-27 | Daimler-Benz Ag, 7000 Stuttgart | Manual shift device for 5-gear transmission for motor vehicles |
JPS6165517A (en) | 1984-08-29 | 1986-04-04 | ゴーレム ラブス | Digital signal filtering device and method |
JPS6313548Y2 (en) * | 1984-09-28 | 1988-04-18 | ||
CS258206B1 (en) * | 1986-02-24 | 1988-07-15 | Vladimir Vaclavik | Device for gear shifting and blocking |
JPS6380356A (en) | 1986-09-24 | 1988-04-11 | Seiko Instr & Electronics Ltd | Electronic reminder |
JPS6380356U (en) * | 1986-11-13 | 1988-05-27 | ||
DE3841780A1 (en) * | 1988-12-12 | 1990-08-23 | Porsche Ag | ACTUATING DEVICE FOR A GEARBOX |
DE19539599C2 (en) * | 1995-10-25 | 1997-08-14 | Ford Werke Ag | Switching device for motor vehicle change gearbox with braking of the input shaft when switching on the reverse gear |
WO2000039987A1 (en) * | 1998-12-29 | 2000-07-06 | Swisscom Ag | Method and system for making objects available to users of a telecommunications network |
JP2002089707A (en) | 2000-09-18 | 2002-03-27 | Aisin Ai Co Ltd | Select mechanism of automatic shift manual transmission |
DE10206561B4 (en) * | 2001-02-23 | 2017-03-02 | Schaeffler Technologies AG & Co. KG | Double clutch |
DE10142225A1 (en) * | 2001-08-29 | 2003-03-20 | Zahnradfabrik Friedrichshafen | Single-rod switching device for motor vehicle manual transmissions |
US8635925B2 (en) * | 2004-11-22 | 2014-01-28 | Eaton Corporation | Transmission auxiliary unit shift inhibitor |
DE102006054611A1 (en) * | 2006-11-17 | 2008-05-21 | Dr.Ing.H.C. F. Porsche Ag | Actuation device for e.g. double clutch transmission, has shaft holding shift fingers that are mounted in shaft in axially non-movable manner, where shaft is provided with passage holes for holding balls |
ITTV20060007A1 (en) * | 2006-01-24 | 2007-07-25 | Nice Spa | BRAKE CLUTCH DEVICE |
EP1830112B1 (en) | 2006-03-02 | 2008-05-28 | ELASIS - Società Consortile per Azioni | Transmission unit provided with a control device for a motor vehicle |
JP4235845B2 (en) * | 2007-06-11 | 2009-03-11 | 三菱自動車工業株式会社 | Transmission |
EP2143979B1 (en) * | 2008-05-13 | 2012-02-08 | Magneti Marelli S.p.A. | Double-clutch gearchange |
SE533846C2 (en) * | 2009-06-17 | 2011-02-08 | Scania Cv Ab | Control unit for a gearbox |
-
2009
- 2009-06-17 SE SE0950469A patent/SE533846C2/en not_active IP Right Cessation
-
2010
- 2010-06-14 CN CN201510136843.9A patent/CN104832641A/en active Pending
- 2010-06-14 KR KR1020117030105A patent/KR20120024780A/en active Search and Examination
- 2010-06-14 RU RU2012101346/11A patent/RU2496040C2/en not_active IP Right Cessation
- 2010-06-14 EP EP13190013.6A patent/EP2690323B1/en active Active
- 2010-06-14 JP JP2012516033A patent/JP5727470B2/en not_active Expired - Fee Related
- 2010-06-14 EP EP10789821A patent/EP2443368A4/en not_active Withdrawn
- 2010-06-14 US US13/378,104 patent/US9127767B2/en not_active Expired - Fee Related
- 2010-06-14 WO PCT/SE2010/050664 patent/WO2010147543A1/en active Application Filing
- 2010-06-14 KR KR1020137026018A patent/KR20130126731A/en not_active Application Discontinuation
- 2010-06-14 CN CN2010800264442A patent/CN102803798A/en active Pending
- 2010-06-14 BR BRPI1008181A patent/BRPI1008181A2/en not_active IP Right Cessation
-
2013
- 2013-10-18 JP JP2013217428A patent/JP5726979B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2922315A (en) | 1957-11-29 | 1960-01-26 | Gen Motors Corp | Transmission control |
JPS5127767B2 (en) | 1973-05-02 | 1976-08-14 | ||
EP0144554A2 (en) | 1983-09-13 | 1985-06-19 | ZF FRIEDRICHSHAFEN Aktiengesellschaft | Holdings means in a gear change mechanism |
US20010037698A1 (en) | 2000-04-27 | 2001-11-08 | Yasushi Yamamoto | Shift-assisting device for a transmission |
DE10108881A1 (en) * | 2001-02-23 | 2002-09-05 | Volkswagen Ag | Dual clutch gearbox has two gearbox parts and single shift shaft axially displaced and rotated by selection actuator and shift actuator with shift shaft connecting to shift rod of one gearbox part without disengaging previously engaged gear |
US20020189388A1 (en) | 2001-06-18 | 2002-12-19 | Michinobu Suzuki | Gear change device |
US20060150761A1 (en) * | 2002-11-16 | 2006-07-13 | Uwe Beer | Shifting device for a transmission |
US20040154419A1 (en) | 2002-11-19 | 2004-08-12 | Luk Lamellen Und Kupplungsbau Beteiligungs Kg | Gear engagement mechanisms |
FR2860567A1 (en) | 2003-10-03 | 2005-04-08 | Renault Sa | Internal control device for motor vehicles automated gearbox, has unit to select and engage gear ratios, and shifting units to contact jaw clutches when engaged ratio returns to neutral position to ensure engagement of clutches with ratios |
FR2863028A1 (en) * | 2003-11-27 | 2005-06-03 | Peugeot Citroen Automobiles Sa | Gear selector and changer for electrically- or hydraulically-controlled gearbox has selector crossbars made twice as thick as gear change fingers |
DE102006017265A1 (en) * | 2005-04-13 | 2006-10-19 | Aktiebolaget Skf | Control device for switching of motor-driven vehicle comprises charging rod on which are charging devices each with selection finger and cam selection rod to switch device from active to passive state and back |
DE102005058406A1 (en) * | 2005-12-07 | 2007-06-14 | Dr.Ing.H.C. F. Porsche Ag | Actuation equipment for gearbox of motor vehicle has servomotor units each having switching motor and selecting motor that cooperate with shafts of actuation equipment |
US20090038423A1 (en) * | 2007-08-09 | 2009-02-12 | Masanori Shintani | Transmission |
Also Published As
Publication number | Publication date |
---|---|
JP5726979B2 (en) | 2015-06-03 |
JP2014040923A (en) | 2014-03-06 |
JP5727470B2 (en) | 2015-06-03 |
JP2012530881A (en) | 2012-12-06 |
KR20130126731A (en) | 2013-11-20 |
RU2012101346A (en) | 2013-09-10 |
EP2690323B1 (en) | 2019-08-14 |
EP2690323A1 (en) | 2014-01-29 |
CN104832641A (en) | 2015-08-12 |
US9127767B2 (en) | 2015-09-08 |
RU2496040C2 (en) | 2013-10-20 |
SE0950469A1 (en) | 2010-12-18 |
SE533846C2 (en) | 2011-02-08 |
EP2443368A4 (en) | 2012-11-21 |
EP2443368A1 (en) | 2012-04-25 |
BRPI1008181A2 (en) | 2016-03-01 |
US20120090421A1 (en) | 2012-04-19 |
CN102803798A (en) | 2012-11-28 |
KR20120024780A (en) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9127767B2 (en) | Device for the automatic operation of a manual gear box | |
US7997159B2 (en) | Gear selection assembly with nested differentially rotatable tube | |
EP2423538B1 (en) | A sequential gear control device for a motor-vehicle gearbox comprising a pair of rotary drums | |
EP0843112B1 (en) | Speed-change operating device for automated mechanical gearbox | |
KR101603795B1 (en) | Shifting Apparatus for Dual Clutch Transmission | |
EP2664825A1 (en) | Device for preventing erroneous operation of manual transmission | |
CN113423975B (en) | Rotary shifter assembly | |
KR101628104B1 (en) | Shifting apparatus for vehicle | |
US20150040710A1 (en) | Shift device having rotational free travel for the shift shaft, and motor vehicle transmission having such shift device | |
US9989145B2 (en) | Drive selector | |
KR100528039B1 (en) | Interlock apparatus of control system for manual transmission | |
US20140165768A1 (en) | Push down shifter with cross joint | |
WO2014093860A1 (en) | Push down shifter with a cross joint | |
EP3356706B1 (en) | Shift tower for a pull-pull gearshift assembly | |
CA1053933A (en) | Clutch shifting mechanism | |
JPS6357924A (en) | Pawl clutch | |
JPS6324494Y2 (en) | ||
JPH0219657Y2 (en) | ||
JP2007303672A (en) | Driving force transmission control device | |
JPH06100279B2 (en) | Gear change operation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080026444.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789821 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010789821 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012516033 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13378104 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117030105 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012101346 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1008181 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1008181 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111125 |