WO2010147067A1 - Gas-generating agent - Google Patents

Gas-generating agent Download PDF

Info

Publication number
WO2010147067A1
WO2010147067A1 PCT/JP2010/059981 JP2010059981W WO2010147067A1 WO 2010147067 A1 WO2010147067 A1 WO 2010147067A1 JP 2010059981 W JP2010059981 W JP 2010059981W WO 2010147067 A1 WO2010147067 A1 WO 2010147067A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
generating agent
gas generating
foam
amount
Prior art date
Application number
PCT/JP2010/059981
Other languages
French (fr)
Japanese (ja)
Inventor
間山 憲和
Original Assignee
永和化成工業株式会社
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永和化成工業株式会社, 三菱瓦斯化学株式会社 filed Critical 永和化成工業株式会社
Priority to JP2011519759A priority Critical patent/JP5647606B2/en
Priority to CN201080026810.4A priority patent/CN102803424B/en
Priority to KR1020127001460A priority patent/KR101768431B1/en
Priority to DE112010002570T priority patent/DE112010002570A5/en
Publication of WO2010147067A1 publication Critical patent/WO2010147067A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/35Component parts; Details or accessories
    • B29C44/355Characteristics of the foam, e.g. having particular surface properties or structure
    • B29C44/357Auxetic foams, i.e. material with negative Poisson ratio; anti rubber; dilatational; re-entrant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to a gas generating agent used for producing a foamed material such as a thermoplastic resin or rubber.
  • azodicarbonamide In the production of foams such as thermoplastic resins and rubbers, chemical foaming agents such as azodicarbonamide (ADCA) and foaming aids such as urea are used to adjust the decomposition temperature.
  • azodicarbonamide is known to generate cyanuric acid, biurea (hydrazodicarbonamide), urea, and the like as decomposition residues during thermal decomposition.
  • the heating temperature is 220 ° C. or higher, a part of biurea is decomposed to generate ammonia (see Non-Patent Documents 1 to 3).
  • Urea compounds produce ammonia by heating, but ammonia gas does not contribute to the expansion ratio.
  • To produce a high-magnification foam it is necessary to increase the amount of foaming agent added, and ammonia is generated. Therefore, odor countermeasures are required at the foam manufacturing site.
  • Patent Document 1 A method of adding molybdenum and a molybdate compound to the foaming agent in order to increase the amount of gas generated by the chemical foaming agent (see Patent Document 1), or a method of supporting a fatty acid alkaline earth metal salt and a quaternary ammonium salt (Patent Document 2)
  • Patent Document 2 discloses a method for decomposing and removing organic nitrogen by adding nitrite to water containing organic nitrogen, which is a decomposition treatment of organic nitrogen in an aqueous solution. It cannot be applied to the body manufacturing field.
  • the purpose of the present invention is to suppress the generation of ammonia and nitrous acid gas and produce nitrogen gas when producing foams such as resin materials and rubber using a compound that generates ammonia gas by heating.
  • An object of the present invention is to provide a gas generating agent capable of obtaining a foam having uniform and fine bubbles and high magnification and high whiteness.
  • a gas generating agent used for the production of a foam which comprises (A) a nitrogen-containing compound that generates ammonia gas by thermal decomposition, (B) nitrite, and (C) hydrotalcite. Gas generating agent.
  • the gas generating agent according to (1) wherein the nitrogen-containing compound (A) is a compound having a urea bond.
  • the total amount of the nitrogen-containing compound (A), nitrite (B) and hydrotalcite (C) is 0.5 to 95% by weight of the nitrogen-containing compound (A) and 0% of nitrite (B).
  • the gas generating agent according to (1) or (2) characterized by containing 5 to 60% by weight and 1 to 40% by weight of hydrotalcite (C).
  • M 2+ is a divalent metal ion of a metal selected from the group consisting of Mg, Mn, Fe and Zn
  • M 3+ is a trivalent metal ion of a metal selected from the group consisting of Al, Fe and Cr
  • a n ⁇ is an n-valent anion of a group selected from the group consisting of OH, F, Cl, Br, NO 3 , CO 3 and SO 4
  • x is in the range of 0 ⁇ x ⁇ 0.33
  • n Is an integer and m is 0 or more.
  • a foaming composition comprising the gas generating agent according to any one of (1) to (6) in a foamed material.
  • a method for producing a foam comprising a step of heating the foaming composition according to (7) or (8).
  • urea compounds that are usually used as foaming aids such as urea can be used as foaming agents for synthetic resin materials and rubber materials, and when used as foaming aids for chemical foaming agents, While maintaining the function of adjusting the decomposition temperature of the chemical foaming agent, in addition to the generation of gas of the chemical foaming agent, the amount of gas generated can be increased by generating nitrogen gas from the foaming aid.
  • the reason why high magnification can be achieved without requiring countermeasures for odor in the present invention is that ammonia generated by thermal decomposition of a nitrogen-containing compound is reacted with nitrous acid and changed to nitrogen gas as a foaming gas. It is considered that the use of hydrotalcite at this time increases the reactivity of nitrous acid with ammonia to suppress the generation of nitrous acid gas.
  • the whiteness is improved by the method of using nitrous acid and hydrotalcite of the present invention in combination with a foaming agent that becomes orange-yellow before pyrolysis and becomes white after decomposition (thermal decomposition) like azodicarbonamide. It is considered that the problem of the residual color occurs when the color is insufficient) because the thermal decomposition is accelerated and the residual color disappears.
  • the gas generating agent of the present invention is characterized by containing a nitrogen-containing compound (A), a nitrite (B), and a hydrotalcite (C).
  • the nitrogen-containing compound (A) of the present invention generates ammonia gas by thermal decomposition.
  • ammonia gas is generated by thermal decomposition.
  • the main component of the gas generated by thermal decomposition is ammonia gas
  • the main component of the gas generated by thermal decomposition is ammonia such as nitrogen gas. It may be a gas other than a gas, and a small amount of ammonia gas may be generated as a by-product in addition to the gas.
  • ADCA 4,4′-oxybis (benzenesulfonylhydrazide)
  • DNPT N
  • one of these may be used alone, or two or more may be used in combination.
  • compounds having a urea bond are preferable, and urea and HDCA can be suitably used.
  • urea commercially available fine powder urea or fine powder urea whose hygroscopicity is improved by a surface treatment agent such as fatty acid, fatty acid metal salt, fatty acid ester, silane coupling agent, or the like can also be used.
  • thermal decomposition in the nitrogen-containing compound (A) of the present invention means heating when kneading the foam production raw material containing the nitrogen-containing compound (A), and heating when foaming the kneaded product (
  • thermal decomposition by heating in the press mold can be exemplified.
  • the heating temperature during the production of the foam is about 130 to 250 ° C.
  • nitrite (B) used in the present invention examples include sodium nitrite, potassium nitrite, calcium nitrite and the like, and one kind selected from these may be used alone or in combination of two or more kinds. it can. These nitrites are preferably finely divided powder.
  • the hydrotalcite (C) used in the present invention is a crystalline composite metal hydroxide, and is preferably a hydrotalcite represented by the following general formula (1).
  • M 2+ is a divalent metal ion of a metal selected from the group consisting of Mg, Mn, Fe, and Zn
  • M 3+ is a metal selected from the group consisting of Al, Fe, and Cr.
  • Trivalent metal ion, A n ⁇ is an n-valent anion of a group selected from the group consisting of OH, F, Cl, Br, NO 3 , CO 3 and SO 4
  • x is in the range of 0 ⁇ x ⁇ 0.33 Where n is an integer and m is 0 or greater.
  • n is the valence of the anion, preferably 1 or 2, and more preferably 2.
  • hydrotalcite in which M 2+ is Mg 2+ and M 3+ is Al 3+ is preferable, and the molar ratio of Al: Mg is preferably 2: 5 to 2:10 from the viewpoint of availability.
  • the molar ratio of Al: Mg is 2: 5
  • the molar ratio of Al to Mg is 2:10.
  • the molar fraction x of Al 0.17.
  • the hydrotalcite of the present invention has an action of improving the reactivity of nitrite.
  • hydrotalcite By adding hydrotalcite, it promotes the decomposition of ammonia generated when the nitrogen-containing compound (A) is thermally decomposed, and improves the reactivity of nitrite, thereby suppressing the generation of nitrous acid gas, nitrogen gas It is possible to improve the foaming property.
  • the particle diameter of the hydrotalcite of the present invention is not particularly limited, but in order to effectively act on the reaction between the nitrogen-containing compound (A) and nitrite, the dispersibility in the gas generant is increased. It is preferable to use finely divided hydrotalcite having a maximum particle size of 80 ⁇ m or less.
  • the gas generating agent of the present invention contains a nitrogen-containing compound (A), nitrite (B), and hydrotalcite (C) that generate gas by thermal decomposition and generate ammonia gas.
  • A nitrogen-containing compound
  • B nitrite
  • C hydrotalcite
  • the ratio of each component in the gas generating agent of this invention for example, the compounding quantity with respect to the nitrogen-containing compound (A) of the said nitrite (B) and hydrotalcite (C) depends on the amount of generated ammonia gas, and is generated. Since the amount of ammonia gas to be used varies greatly depending on the type of nitrogen-containing compound (A) used, it cannot be generally limited.
  • the nitrogen-containing compound (A) is preferably 0.5 to 95% by weight. is there.
  • the blending amount of nitrite (B) is varied depending on the amount of ammonia gas generated, but is preferably 0.5 to 60% by weight.
  • the blending amount of hydrotalcite (C) is also changed according to the amount of ammonia gas generated, but is preferably 1 to 40% by weight.
  • constituents other than (A), (B) and (C) in the gas generating agent of the present invention are not limited as long as the effects of the present invention are not impaired, and the blending amount thereof is also limited.
  • Specific examples of components other than (A), (B) and (C) include fatty acids such as stearic acid or salts of fatty acids such as calcium stearate.
  • the gas generating agent of the present invention can be used for producing foams such as various synthetic resin materials and rubber materials to obtain a suitable foam.
  • a gas generating agent can be blended and used as a composite gas generating agent.
  • thermal decomposition type chemical foaming agent examples include general chemical foaming agents that generate nitrogen gas or carbon dioxide gas by thermal decomposition.
  • general chemical foaming agents that generate nitrogen gas or carbon dioxide gas by thermal decomposition.
  • azodicarbonamide, 4,4 ′ -Chemical foaming agents such as oxybis (benzenesulfonylhydrazide), N, N'-dinitrosopentamethylenetetramine, 5-phenyl-1,2,3,4-tetrazole, and organic acids such as monosodium citrate and sodium tartrate
  • organic chemical foaming agents for metal salts and inorganic chemical foaming agents such as sodium hydrogen carbonate. You may use these individually by 1 type or in combination of 2 or more types.
  • the gas generating agent of the present invention when used in combination with a pyrolytic chemical foaming agent, the pyrolytic chemical foaming agent first generates a decomposing foaming gas as the heating temperature rises, and then the gas generating of the present invention
  • a two-stage decomposition foaming agent can be obtained by selecting and combining gas generating agents having different gas generation temperatures such that the agent generates nitrogen gas (or vice versa). By using such a two-stage decomposition type foaming agent, it becomes possible to produce a characteristic foam having a high foaming ratio.
  • the method for producing the gas generating agent of the present invention is not particularly limited, and a general mixing method can be used.
  • the nitrogen-containing compound (A), nitrite (B), and hydrotalcite (C) are uniformly applied using a high-speed mixer, ribbon blender, corn blender, etc. under conditions of a temperature of 60 ° C. or less and a time of about 5 minutes. What is necessary is just to mix so that it may disperse
  • the method for producing the composite gas generating agent of the present invention is not particularly limited, and a general mixing method can be used.
  • the pyrolytic chemical foaming agent may be mixed together, or after producing the gas generating agent of the present invention, the pyrolytic chemical foaming agent may be mixed.
  • the composite gas generating agent may be mixed using, for example, a high-speed mixer, ribbon blender, cone blender, or the like so as to be uniformly dispersed under conditions of a temperature of 60 ° C. or less and a time of about 5 minutes.
  • the gas generating agent or composite gas generating agent of the present invention can be suitably used for foam molding of synthetic resin materials or rubber materials.
  • the gas generating agent or composite gas generating agent of the present invention can suppress generation of ammonia and nitrous acid gas and generate nitrogen gas at a foam molding temperature (for example, about 130 to 250 ° C.) of a synthetic resin material or rubber material.
  • a foam molding temperature for example, about 130 to 250 ° C.
  • the foaming composition of the present invention is obtained by blending the above-described gas generating agent of the present invention into a material to be foamed.
  • the foamed material include synthetic resin materials and rubber materials.
  • the synthetic resin material of the present invention include a vinyl chloride resin, a vinyl chloride copolymer resin, polyethylene, polypropylene, a polyolefin copolymer resin exemplified by an ethylene-propylene copolymer, a polystyrene resin, and an acrylonitrile-butadiene-styrene copolymer. (ABS resin) and the like are exemplified, but not limited thereto.
  • the foaming composition (unfoamed resin composition) can be prepared by kneading the synthetic resin material, the crosslinking agent, and the gas generating agent or composite gas generating agent of the present invention with a heated kneading roll. .
  • the kneading temperature is preferably 90 to 130 ° C.
  • the unfoamed resin composition thus obtained is filled in a mold and pressed with a press to obtain a foam of a synthetic resin material.
  • a foam of a resin composition can be obtained by filling 100% in a mold having a thickness of 5 to 30 mm and pressurizing with a press machine at 145 to 170 ° C. and 150 kg / cm 2 for 5 to 60 minutes.
  • the blending ratio of each component in the foaming composition is not particularly limited, but the crosslinking agent is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 1.5 parts by weight with respect to 100 parts by weight of the synthetic resin material. Partly formulated. If the blending ratio of the cross-linking agent is too small, the cross-linking may become under, resulting in insufficient foaming due to outgassing, and if too large, the cross-linking may be over and the foam may be cracked or roughened.
  • the amount of the gas generating agent of the present invention can be appropriately selected according to the target foaming ratio and is not particularly limited, but is preferably 1 to 7 parts by weight per 100 parts by weight of the synthetic resin material. .
  • the amount of the composite gas generating agent used can be appropriately selected according to the target foaming ratio and is not particularly limited. 1 to 7 parts by weight is blended with 100 parts by weight of the resin material.
  • the nitrogen-containing compound (A) contained in the gas generating agent of the present invention is the one conventionally used as a foaming aid for a chemical foaming agent, composite gas generation containing the gas generating agent of the present invention is used.
  • the agent also has a function of adjusting the decomposition temperature for the chemical foaming agent as the foaming aid.
  • urea-based foaming aids conventionally did not contribute to foaming even when ammonia was generated by thermal decomposition, but the gas generating agent of the present invention generates nitrogen gas by combining nitrite and hydrotalcite. Can contribute to foaming.
  • the nitrogen gas derived from the foaming aid can also be used as the foaming gas, so that the generated gas can be increased with the same amount of chemical foaming agent used.
  • a foam having the same expansion ratio can be produced with a smaller amount of chemical foaming agent than in the past.
  • the ratio of the gas generating agent of the present invention in the composite gas generating agent is not particularly limited, and can be appropriately selected according to the target expansion ratio.
  • it can be used according to the ratio of the foaming aid to the chemical foaming agent in the case of combining a conventional chemical foaming agent and a foaming aid.
  • crosslinking agent examples include dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di -(T-butylperoxy) hexyne-3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl- 4,4-bis (t-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, t-butylperoxybenzoate, t-butylperbenzoate, t-butylperoxyisopropyl carbonate, diacetyl Peroxide, lauroyl peroxide, t
  • Examples of the rubber material of the present invention include natural rubber (NR), polyisoprene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, butadiene rubber and the like. However, it is not limited to these.
  • a method for preparing a foaming composition by blending the gas generating agent or composite gas generating agent of the present invention into a rubber material, and thereby manufacturing a foam general manufacturing conditions for the foam can be used.
  • a rubber material, a vulcanizing agent, a filler, a vulcanization accelerator, and the gas generating agent or composite gas generating agent of the present invention are uniformly dispersed with a kneading roll to obtain a foaming composition.
  • the obtained foaming composition is put into an extruder heated to about 70 to 90 ° C. to prepare an unvulcanized molded body.
  • the resulting unvulcanized molded body is heated in an oven heated to about 60 to 220 ° C. for about 5 to 15 minutes to vulcanize and foam to obtain a foam of rubber material.
  • the blending ratio of each component in the foaming composition is not particularly limited, but the vulcanizing agent is preferably blended in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber material.
  • the filler is preferably blended in an amount of 10 to 150 parts by weight per 100 parts by weight of the rubber material.
  • the vulcanization accelerator is preferably blended in an amount of 0.1 to 20 parts by weight per 100 parts by weight of the rubber material.
  • the amount of the gas generating agent of the present invention can be appropriately selected according to the target foaming ratio and is not particularly limited, but is preferably 1 to 20 parts by weight per 100 parts by weight of the rubber material.
  • the usage amount of the composite gas generating agent can be appropriately selected according to the target foaming ratio and is not particularly limited, but preferably rubber. 1 to 20 parts by weight per 100 parts by weight of the material.
  • Specific examples of the vulcanizing agent used in the present invention include sulfur.
  • Specific examples of the filler used in the present invention include heavy and light calcium carbonate.
  • Specific examples of the vulcanization accelerator used in the present invention include DM (dibenzylthiazol disulfide).
  • the gas generating agent of the present invention is economical because it is possible to produce a foam having the same magnification with an addition amount smaller than that of a conventional product.
  • problems such as poor adhesion and fogging of resin foam caused by urea compounds by using nitrogen gas as a by-product such as ammonia odor generated from chemical blowing agents and urea compounds, urea compounds and biurea (hydrazodicarbonamide) Can also be improved.
  • the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
  • the amount of gas generated, the amount of nitrous acid gas generated, the amount of ammonia generated, the specific gravity of the foam, and the bubble state of the foam were evaluated by the following methods.
  • ⁇ Measurement of nitrous acid generation amount> The gas generated during pyrolysis was absorbed in an absorption bottle containing 400 ml of 1N aqueous sodium hydroxide solution, and the amount of nitrous acid gas generated in the absorbing solution was measured according to JIS-K0102 (naphthylethylenediamine absorptiometry).
  • Specific gravity of foam The specific gravity of the foam of the resin composition and the rubber composition was determined by an electronic hydrometer (manufactured by Alpha Mirage, product name MD-200S).
  • urea manufactured by Mitsui Chemicals, Inc., industrial mole
  • sodium nitrite 1 mole
  • hydrotalcite [Mg 2+ 0.83 Al 3+ 0.17 (OH) 2 ] 0.17+ [(CO 3 ) 2 ⁇ 0.17 /
  • the amount of generated gas was measured using 1 g of the obtained gas generating agent. When the amount of generated gas was measured, gas generation was observed from 120 ° C., gas was rapidly generated at 155 ° C., and rapid gas generation was completed at 158 ° C., but slow gas generation was observed up to 180 ° C., and thereafter 220 ° C. Until now, no gas generation was observed. Table 1 shows the measurement results of the generated gas amount, the nitrous acid gas generated amount, and the ammonia generated amount.
  • EVA ethylene-vinyl acetate copolymer
  • DCP dicumyl peroxide
  • Table 1 shows the blending amount and evaluation result of the gas generating agent
  • Table 2 shows the blending amount and evaluation result of the foam.
  • the obtained foam was colored light yellow and the degree of crosslinking was low, so that the foam adhered to the mold and could not be taken out.
  • Example 2 Using 1 g of the gas generant, the amount of gas generated, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured in the same manner as in Example 1 to produce a foam.
  • Table 1 shows the blending amount and evaluation result of the gas generating agent
  • Table 2 shows the blending amount and evaluation result of the foam.
  • Example 2 Except that hydrotalcite was removed from the formulation of Example 2, the amount of gas generated, the amount of nitrous acid generated, and the amount of ammonia generated were measured in the same manner as in Example 2 to produce a foam.
  • Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The obtained foam was pale yellow and adhered to the mold and could not be taken out.
  • a gas generating agent was obtained by mixing at room temperature for 5 minutes using a bag. Using 1 g of the resulting gas generant, the amount of gas generated, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured in the same manner as in Example 1. Table 1 shows the blending amount of the gas generating agent and the evaluation results.
  • Example 3 The chemical foaming agent azodicarbonamide (ADCA) (trade name “Binihol AC # 3”, Eiwa Kasei Co., Ltd.) was used in the same manner as in Example 3 except that the hydrotalcite was replaced with aluminum silicate (Wako Pure Chemical Industries, Ltd., aluminum silicate). Industrial Co., Ltd.) and zinc oxide (manufactured by Sakai Chemical Co., Ltd., 2 types of zinc oxide) were mixed to obtain a gas generating agent. In the same manner as in Example 1, the amount of gas generated, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured, and then a foam was produced in the same manner as in Example 3. Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The obtained foam was colored light yellow, and the bubbles inside the foam were also non-uniform.
  • ADCA chemical foaming agent azodicarbonamide
  • Table 1 shows the blending amount and evaluation result of
  • Carplex # 80 20 parts by weight, titanium dioxide (manufactured by Wako Pure Chemical Industries, titanium oxide) 10 parts by weight, zinc oxide (manufactured by Sakai Chemical Co., Ltd., 2 types of zinc oxide), 5 parts by weight, stearic acid (manufactured by Kao Corporation, 3 parts by weight of Lunac S-20) and 5 parts by weight of naphthenic oil (Sansen 410, manufactured by Nippon San Oil Co., Ltd.) were added and further kneaded and taken out.
  • titanium dioxide manufactured by Wako Pure Chemical Industries, titanium oxide
  • zinc oxide manufactured by Sakai Chemical Co., Ltd., 2 types of zinc oxide
  • stearic acid manufactured by Kao Corporation, 3 parts by weight of Lunac S-20
  • naphthenic oil Sansen 410, manufactured by Nippon San Oil Co., Ltd.
  • This kneaded product is wound around a mixing roll, 2.5 parts of sulfur (manufactured by Tsurumi Chemical Co., Ltd., fine powdered sulfur) and 1 part of vulcanization accelerator DM are added and kneaded for 3 minutes as a vulcanizing agent, and then a foaming agent mixture 15 Part was added and kneaded for 3 minutes.
  • the kneaded material was charged so that the inner volume of the mold (124 mm ⁇ 124 mm ⁇ 11 mm) of the press apparatus heated to 150 ° C. was filled to 100%, and pressurized at a press pressure of 150 kg / cm 2 . After 15 minutes, the press pressure was released to normal pressure all at once, and a foam was obtained.
  • the amount of foam blended and the evaluation results are shown in Table 2.
  • Example 4 Except that hydrotalcite was removed from the formulation of Example 4, the same operations as in Example 4 were performed, and the amount of generated gas, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured to produce a foam.
  • Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The bubbles inside the foam were not uniform.
  • Example 5 118 g (1 mol) of biurea (hydrazodicarbonamide, manufactured by Eiwa Kasei Kogyo Co., Ltd., FE-823), 42.5 g (0.5 mol) of potassium nitrite (manufactured by Wako Pure Chemical Industries, Ltd., Wako special grade potassium nitrite), hydro Talsite ([Mg 2+ 0.83 Al 3+ 0.17 (OH) 2 ] 0.17+ [(CO3) 2 ⁇ 0.17 / 2 ⁇ 0.33H 2 O] 0.17 ⁇ , Al: Mg mole A ratio of 2:10) 12 g was mixed at room temperature for 5 minutes using a polyethylene bag, and then pulverized to 150 mesh pass with a ball mill to obtain a gas generating agent.
  • biurea hydro nitrite
  • potassium nitrite manufactured by Wako Pure Chemical Industries, Ltd., Wako special grade potassium nitrite
  • hydro Talsite [Mg 2+ 0.83 Al 3+ 0.17 (OH) 2 ]
  • Example 5 Except for removing hydrotalcite from the formulation of Example 5, the amount of generated gas, the amount of nitrous acid generated, and the amount of ammonia generated were measured in the same manner as in Example 5 to produce a foam.
  • Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The obtained foam was colored pale yellow and almost no bubbles were observed.
  • Example 1 As shown in Table 1, in Examples 1 to 5, the amount of generated gas was improved, the detected amount of nitrous acid was decreased, and ammonia was not detected in all gas generating agents. Therefore, in Examples 1 to 5, it was confirmed that the nitrite reactivity was improved by hydrotalcite, nitrous acid gas was reduced, ammonia was further decomposed, and the amount of nitrogen gas generated during foaming was increased. It was done.
  • Examples 1 to 5 are excellent in whiteness of the foam, and the bubbles inside the foam are fine and uniform bubbles. As can be seen from the specific gravity of the foam, the expansion ratio is as follows. It was confirmed to improve.
  • thermoplastic resin or rubber when producing a foam of thermoplastic resin or rubber, it is possible to produce a high-magnification foam without increasing the amount of the chemical foaming agent, and at the same time, it is possible to suppress ammonia, and thus the production site This eliminates the need for ammonia odor countermeasures, and is extremely advantageous industrially.

Abstract

A gas-generating agent obtained by combining (A) a nitrogen-containing compound (such as compounds containing a urea bond such as urea and hydrazodicarbonamide) that produces ammonia gas when heated, (B) a nitrite, and (C) hydrotalcite is mixed with a synthetic resin material or a rubber material to obtain a foaming composition, which is then heated and shaped into a foamed body. Thus, nitrogen gas can be generated while suppressing the generation of ammonia or nitrous acid gas, thereby making it possible to obtain a foamed body having uniform, fine gas bubbles and a high degree of whiteness and a high scaling ratio.

Description

ガス発生剤Gas generant
 本発明は熱可塑性樹脂やゴムなどの発泡体の製造に用いるガス発生剤に関する。 The present invention relates to a gas generating agent used for producing a foamed material such as a thermoplastic resin or rubber.
 熱可塑性樹脂やゴムなどの発泡体の製造にはアゾジカルボンアミド(ADCA)などの化学発泡剤と、分解温度などを調整する為に尿素などの発泡助剤が使用されている。また、アゾジカルボンアミドは熱分解時の分解残渣としてシアヌル酸、ビウレア(ヒドラゾジカルボンアミド)、尿素などを生成することが知られている。さらに、加熱温度が220℃以上ではビウレアの一部が分解しアンモニアを生成することが知られている(非特許文献1~3参照)。
 尿素化合物は加熱によりアンモニアを生成するがアンモニアガスは発泡倍率には寄与せず、高倍率の発泡体を製造するためには発泡剤の添加量を増量することが必要であり、さらにアンモニアが発生するために発泡体製造現場では臭気対策が必要となる。
In the production of foams such as thermoplastic resins and rubbers, chemical foaming agents such as azodicarbonamide (ADCA) and foaming aids such as urea are used to adjust the decomposition temperature. In addition, azodicarbonamide is known to generate cyanuric acid, biurea (hydrazodicarbonamide), urea, and the like as decomposition residues during thermal decomposition. Furthermore, it is known that when the heating temperature is 220 ° C. or higher, a part of biurea is decomposed to generate ammonia (see Non-Patent Documents 1 to 3).
Urea compounds produce ammonia by heating, but ammonia gas does not contribute to the expansion ratio. To produce a high-magnification foam, it is necessary to increase the amount of foaming agent added, and ammonia is generated. Therefore, odor countermeasures are required at the foam manufacturing site.
 化学発泡剤の発生ガス量を増やす為に発泡剤にモリブデン及びモリブデン酸化合物を添加する方法(特許文献1参照)や、脂肪酸アルカリ土類金属塩及び4級アンモニウム塩を担持させる方法(特許文献2参照)が知られているが、これらの方法では熱分解時に生成されるビウレア(ヒドラゾジカルボンアミド)やアンモニアを窒素ガスにすることができず、臭気を抑制することは困難である。また、特許文献3には、有機態窒素を含む水に亜硝酸塩を添加して有機態窒素を分解除去する方法が開示されているが、水溶液中での有機態窒素の分解処理であり、発泡体製造分野には適用することができない。 A method of adding molybdenum and a molybdate compound to the foaming agent in order to increase the amount of gas generated by the chemical foaming agent (see Patent Document 1), or a method of supporting a fatty acid alkaline earth metal salt and a quaternary ammonium salt (Patent Document 2) However, these methods cannot make biurea (hydrazodicarbonamide) or ammonia produced during thermal decomposition into nitrogen gas, and it is difficult to suppress odor. Further, Patent Document 3 discloses a method for decomposing and removing organic nitrogen by adding nitrite to water containing organic nitrogen, which is a decomposition treatment of organic nitrogen in an aqueous solution. It cannot be applied to the body manufacturing field.
特開2001-139928号公報Japanese Patent Laid-Open No. 2001-139928 特開2000-336337号公報JP 2000-336337 A 特開平9-122690号公報JP-A-9-122690
 本発明の目的は、加熱によりアンモニアガスを生成する化合物を用いて、樹脂材料やゴム等の発泡体を製造する際に、アンモニアや亜硝酸ガスの発生を抑制し窒素ガスを発生させることで、均一で微細な気泡を有し高倍率で白色度の高い発泡体を得ることができるガス発生剤を提供することである。 The purpose of the present invention is to suppress the generation of ammonia and nitrous acid gas and produce nitrogen gas when producing foams such as resin materials and rubber using a compound that generates ammonia gas by heating. An object of the present invention is to provide a gas generating agent capable of obtaining a foam having uniform and fine bubbles and high magnification and high whiteness.
 本発明者らは、上記課題について鋭意検討した結果、亜硝酸塩およびハイドロタルサイトを使用することで前記課題を解決できることを見出した。 As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved by using nitrite and hydrotalcite.
 すなわち本発明は、以下に示すガス発生剤に関するものである。
(1)発泡体の製造に用いるガス発生剤であって、(A)熱分解によりアンモニアガスを生成する含窒素化合物、(B)亜硝酸塩、および(C)ハイドロタルサイトを含有することを特徴とするガス発生剤。
That is, this invention relates to the gas generating agent shown below.
(1) A gas generating agent used for the production of a foam, which comprises (A) a nitrogen-containing compound that generates ammonia gas by thermal decomposition, (B) nitrite, and (C) hydrotalcite. Gas generating agent.
(2)前記含窒素化合物(A)が尿素結合を有する化合物である、(1)記載のガス発生剤。
(3)含窒素化合物(A)、亜硝酸塩(B)およびハイドロタルサイト(C)の合計全量に対し、含窒素化合物(A)を0.5~95重量%、亜硝酸塩(B)を0.5~60重量%、ハイドロタルサイト(C)を1~40重量%含有することを特徴とする、(1)又は(2)記載のガス発生剤。
(4)亜硝酸塩(B)が亜硝酸ナトリウム、亜硝酸カリウムおよび亜硝酸バリウムからなる群から選ばれる一種以上である、(1)~(3)のいずれかに記載のガス発生剤。
(2) The gas generating agent according to (1), wherein the nitrogen-containing compound (A) is a compound having a urea bond.
(3) The total amount of the nitrogen-containing compound (A), nitrite (B) and hydrotalcite (C) is 0.5 to 95% by weight of the nitrogen-containing compound (A) and 0% of nitrite (B). The gas generating agent according to (1) or (2), characterized by containing 5 to 60% by weight and 1 to 40% by weight of hydrotalcite (C).
(4) The gas generating agent according to any one of (1) to (3), wherein the nitrite (B) is at least one selected from the group consisting of sodium nitrite, potassium nitrite and barium nitrite.
(5)ハイドロタルサイト(C)が下記一般式(1)で表されるものである、(1)~(4)のいずれかに記載のガス発生剤。 (5) The gas generating agent according to any one of (1) to (4), wherein the hydrotalcite (C) is represented by the following general formula (1).
[化1]
[M2+ 1-x3+ (OH)x+[An- x/n・mHO]x-   (1)
[Chemical 1]
[M 2+ 1-x M 3+ x (OH) 2 ] x + [A n− x / n · mH 2 O] x− (1)
(式中、M2+はMg、Mn、Fe、およびZnからなる群から選択される金属の2価金属イオン、M3+はAl、FeおよびCrからなる群から選択される金属の3価金属イオン、An-はOH、F、Cl、Br、NO、COおよびSOからなる群から選択される基のn価のアニオン、xは0<x≦0.33の範囲であり、nは整数であり、mは0以上である。) ( Wherein M 2+ is a divalent metal ion of a metal selected from the group consisting of Mg, Mn, Fe and Zn, and M 3+ is a trivalent metal ion of a metal selected from the group consisting of Al, Fe and Cr , A n− is an n-valent anion of a group selected from the group consisting of OH, F, Cl, Br, NO 3 , CO 3 and SO 4 , x is in the range of 0 <x ≦ 0.33, n Is an integer and m is 0 or more.)
(6)前記一般式(1)中のM2+がMg2+であり、M3+がAl3+である、(5)記載のガス発生剤。
(7)(1)~(6)のいずれかに記載のガス発生剤を被発泡材料に配合してなる、発泡用組成物。
(8)被発泡材料が合成樹脂材料又はゴム材料である、(7)記載の発泡用組成物。
(9)(7)又は(8)に記載の発泡用組成物を加熱する工程を含む、発泡体の製造方法。
(6) The gas generating agent according to (5), wherein M 2+ in the general formula (1) is Mg 2+ and M 3+ is Al 3+ .
(7) A foaming composition comprising the gas generating agent according to any one of (1) to (6) in a foamed material.
(8) The foaming composition according to (7), wherein the foamed material is a synthetic resin material or a rubber material.
(9) A method for producing a foam, comprising a step of heating the foaming composition according to (7) or (8).
 本発明によれば、合成樹脂材料やゴム材料の発泡体成形温度域で、アンモニアや亜硝酸ガスの発生を抑制し窒素ガスを発生させることができ、均一で微細な気泡を有し高倍率で白色度の高い発泡体を得ることができる。また、尿素などの通常は発泡助剤として用いられている尿素化合物を、合成樹脂材料やゴム材料などの発泡剤として使用することができ、化学発泡剤の発泡助剤として使用した場合には、化学発泡剤の分解温度の調整機能を保持しつつ、化学発泡剤のガス発生に加えて、発泡助剤が窒素ガスを発生することにより発生ガス量を増加させることができる。これにより、熱可塑性樹脂やゴムの発泡体を製造する場合、化学発泡剤を増量することなく高倍率の発泡体を製造することが可能であると同時に、アンモニアを抑制できることから製造現場でのアンモニア臭気対策も不要となり、工業的に極めて有利である。 According to the present invention, it is possible to suppress generation of ammonia and nitrous acid gas and generate nitrogen gas in a foam molding temperature range of a synthetic resin material or a rubber material, and generate uniform and fine bubbles at a high magnification. A foam with high whiteness can be obtained. In addition, urea compounds that are usually used as foaming aids such as urea can be used as foaming agents for synthetic resin materials and rubber materials, and when used as foaming aids for chemical foaming agents, While maintaining the function of adjusting the decomposition temperature of the chemical foaming agent, in addition to the generation of gas of the chemical foaming agent, the amount of gas generated can be increased by generating nitrogen gas from the foaming aid. As a result, when manufacturing a foam of thermoplastic resin or rubber, it is possible to manufacture a high-magnification foam without increasing the amount of chemical foaming agent, and at the same time, ammonia can be suppressed, so ammonia at the production site Odor control is unnecessary, which is extremely advantageous industrially.
 なお、本発明で臭気対策を要することなく高倍率を達成できるのは、含窒素化合物の熱分解で発生するアンモニアを亜硝酸と反応させて、発泡用ガスとしての窒素ガスに変えているためであり、そしてこのときハイドロタルサイトを用いることにより、亜硝酸のアンモニアに対する反応性を高めて亜硝酸ガスの発生を抑制しているためと考えられる。また、白色度が向上するのは、本発明の亜硝酸とハイドロタルサイトを併用する方法によれば、アゾジカルボンアミドのように熱分解前が橙黄色で分解後に白色になる発泡剤(熱分解が不十分の場合に残色の問題が生じる)についても熱分解が促進されて残色がなくなることによる、と考えられる。 The reason why high magnification can be achieved without requiring countermeasures for odor in the present invention is that ammonia generated by thermal decomposition of a nitrogen-containing compound is reacted with nitrous acid and changed to nitrogen gas as a foaming gas. It is considered that the use of hydrotalcite at this time increases the reactivity of nitrous acid with ammonia to suppress the generation of nitrous acid gas. In addition, the whiteness is improved by the method of using nitrous acid and hydrotalcite of the present invention in combination with a foaming agent that becomes orange-yellow before pyrolysis and becomes white after decomposition (thermal decomposition) like azodicarbonamide. It is considered that the problem of the residual color occurs when the color is insufficient) because the thermal decomposition is accelerated and the residual color disappears.
 本発明のガス発生剤は、含窒素化合物(A)、亜硝酸塩(B)、およびハイドロタルサイト(C)を含有することを特徴とする。
 本発明の含窒素化合物(A)は、熱分解によりアンモニアガスを生成するものである。ここで、熱分解によりアンモニアガスを生成するものとしては、熱分解によって発生するガスの主成分がアンモニアガスであるものであっても、熱分解によって発生するガスの主成分が窒素ガスなどのアンモニアガス以外のガスであって、それに加えて少量のアンモニアガスが副生するものであってもよい。
The gas generating agent of the present invention is characterized by containing a nitrogen-containing compound (A), a nitrite (B), and a hydrotalcite (C).
The nitrogen-containing compound (A) of the present invention generates ammonia gas by thermal decomposition. Here, ammonia gas is generated by thermal decomposition. Even if the main component of the gas generated by thermal decomposition is ammonia gas, the main component of the gas generated by thermal decomposition is ammonia such as nitrogen gas. It may be a gas other than a gas, and a small amount of ammonia gas may be generated as a by-product in addition to the gas.
 含窒素化合物(A)としては、尿素、ヒドラゾジカルボンアミド(以下、HDCAと称すことがある)、ビウレット、ウラゾール等の尿素結合(例えば-NHCONH、-NRCONH、-NHCONHR、-NRCONHR等;ここでRは有機基)を有する化合物や、アゾジカルボンアミド(以下、ADCAと称すことがある)、グアニジン類、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)(以下、OBSHと称すことがある)、N,N’-ジニトロソペンタメチレンテトラミン(以下、DNPTと称すことがある)、p-トルエンスルホニルヒドラジド(以下、TSHと称すことがある)、2,2’-アゾイソブチロニトリル(以下、AIBNと称すことがある)等が挙げられる。 Examples of the nitrogen-containing compound (A), urea, hydrazodicarbonamide (hereinafter sometimes referred to as HDCA), biuret, urea bonds (e.g. -NHCONH 2 such urazol, -NRCONH 2, -NHCONHR, -NRCONHR like; Where R is an organic group), azodicarbonamide (hereinafter sometimes referred to as ADCA), guanidines, 4,4′-oxybis (benzenesulfonylhydrazide) (hereinafter sometimes referred to as OBSH) N, N′-dinitrosopentamethylenetetramine (hereinafter sometimes referred to as DNPT), p-toluenesulfonyl hydrazide (hereinafter sometimes referred to as TSH), 2,2′-azoisobutyronitrile (hereinafter referred to as TSH) , Sometimes referred to as AIBN).
 本発明では、これらのうちの一種類を単独で用いても良いし、二種類以上を組み合わせて用いても良い。これらの中でも、尿素結合を有する化合物が好ましく、尿素、HDCAを好適に用いることができる。また、尿素としては、市販の微粉尿素や、脂肪酸、脂肪酸金属塩、脂肪酸エステル、シランカップリング剤等の表面処理剤により吸湿性が改善された微粉尿素を用いることもできる。 In the present invention, one of these may be used alone, or two or more may be used in combination. Among these, compounds having a urea bond are preferable, and urea and HDCA can be suitably used. As urea, commercially available fine powder urea or fine powder urea whose hygroscopicity is improved by a surface treatment agent such as fatty acid, fatty acid metal salt, fatty acid ester, silane coupling agent, or the like can also be used.
 ここで、本発明の含窒素化合物(A)における「熱分解」とは、含窒素化合物(A)を含む発泡体製造原料を混練する際の加熱、ならびに前記混練物を発泡させる際の加熱(例えば、発泡にプレス金型を用いる場合はプレス金型内での加熱)などによる熱分解を例示することができる。例えば、発泡体製造時の加熱温度としては130~250℃程度である。 Here, “thermal decomposition” in the nitrogen-containing compound (A) of the present invention means heating when kneading the foam production raw material containing the nitrogen-containing compound (A), and heating when foaming the kneaded product ( For example, when a press mold is used for foaming, thermal decomposition by heating in the press mold) can be exemplified. For example, the heating temperature during the production of the foam is about 130 to 250 ° C.
 本発明に使用される亜硝酸塩(B)としては、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウム等が挙げられ、これらの中からから選ばれる一種を単独でまたは二種以上を組み合わせて用いることができる。また、これらの亜硝酸塩は粉砕された微粉であることが好ましい。 Examples of the nitrite (B) used in the present invention include sodium nitrite, potassium nitrite, calcium nitrite and the like, and one kind selected from these may be used alone or in combination of two or more kinds. it can. These nitrites are preferably finely divided powder.
 本発明に使用されるハイドロタルサイト(C)は、結晶性複合金属水酸化物であり、下記一般式(1)で表されるハイドロタルサイトが好ましい。 The hydrotalcite (C) used in the present invention is a crystalline composite metal hydroxide, and is preferably a hydrotalcite represented by the following general formula (1).
[化2]
[M2+ 1-x3+ (OH)x+[An- x/n・mHO]x-   (1)
[Chemical 2]
[M 2+ 1-x M 3+ x (OH) 2 ] x + [A n− x / n · mH 2 O] x− (1)
 上記一般式(1)中、M2+はMg、Mn、Fe、およびZnからなる群から選択される金属の2価金属イオン、M3+はAl、FeおよびCrからなる群から選択される金属の3価金属イオン、An-はOH、F、Cl、Br、NO、COおよびSOからなる群から選択される基のn価のアニオン、xは0<x≦0.33の範囲であり、nは整数であり、mは0以上である。 In the general formula (1), M 2+ is a divalent metal ion of a metal selected from the group consisting of Mg, Mn, Fe, and Zn, and M 3+ is a metal selected from the group consisting of Al, Fe, and Cr. Trivalent metal ion, A n− is an n-valent anion of a group selected from the group consisting of OH, F, Cl, Br, NO 3 , CO 3 and SO 4 , x is in the range of 0 <x ≦ 0.33 Where n is an integer and m is 0 or greater.
 ここで、mは好ましくは0であるが、ハイドロタルサイトの乾燥状態や保管状態により変動するものであり、本発明の効果を損なわない範囲であれば特にmを限定するものではない。nはアニオンの価数であり、好ましくは1又は2、より好ましくは2である。 Here, m is preferably 0, but it varies depending on the dry state and storage state of hydrotalcite, and m is not particularly limited as long as the effect of the present invention is not impaired. n is the valence of the anion, preferably 1 or 2, and more preferably 2.
 これらの中でも、M2+がMg2+、M3+がAl3+であるハイドロタルサイトが好ましく、Al:Mgのモル比は、入手のし易さから2:5~2:10が好ましい。例えば、Al:Mgのモル比が2:5である場合には、Alのモル分率x(x=Al/(Mg+Al))は0.29であり、AlとMgのモル比が2:10の場合には、Alのモル分率xは0.17である。 Among these, hydrotalcite in which M 2+ is Mg 2+ and M 3+ is Al 3+ is preferable, and the molar ratio of Al: Mg is preferably 2: 5 to 2:10 from the viewpoint of availability. For example, when the molar ratio of Al: Mg is 2: 5, the molar fraction x of Al (x = Al / (Mg + Al)) is 0.29, and the molar ratio of Al to Mg is 2:10. In this case, the molar fraction x of Al is 0.17.
 本発明のハイドロタルサイトは、亜硝酸塩の反応性を向上させる作用を有するものである。ハイドロタルサイトを配合することにより、含窒素化合物(A)が熱分解した際に生じるアンモニアの分解を促進し、亜硝酸塩の反応性を向上させることで亜硝酸ガスの発生を抑制し、窒素ガスの生成を促進し発泡性を向上することができる。本発明のハイドロタルサイトの粒子径は特に限定されるものではないが、含窒素化合物(A)と亜硝酸塩の反応に効果的に作用させるために、ガス発生剤中での分散性を高めることが好ましく、最大粒子径が80μm以下の微粉ハイドロタルサイトが望ましい。 The hydrotalcite of the present invention has an action of improving the reactivity of nitrite. By adding hydrotalcite, it promotes the decomposition of ammonia generated when the nitrogen-containing compound (A) is thermally decomposed, and improves the reactivity of nitrite, thereby suppressing the generation of nitrous acid gas, nitrogen gas It is possible to improve the foaming property. The particle diameter of the hydrotalcite of the present invention is not particularly limited, but in order to effectively act on the reaction between the nitrogen-containing compound (A) and nitrite, the dispersibility in the gas generant is increased. It is preferable to use finely divided hydrotalcite having a maximum particle size of 80 μm or less.
 本発明のガス発生剤は、熱分解によりガスを発生し且つアンモニアガスを生成する含窒素化合物(A)、亜硝酸塩(B)およびハイドロタルサイト(C)を含有するものである。
 本発明のガス発生剤中における各成分の割合については、例えば前記亜硝酸塩(B)及びハイドロタルサイト(C)の含窒素化合物(A)に対する配合量は発生するアンモニアガス量に依存し、発生するアンモニアガス量は使用する含窒素化合物(A)の種類によって大きく異なるため、一概に限定することはできない。
The gas generating agent of the present invention contains a nitrogen-containing compound (A), nitrite (B), and hydrotalcite (C) that generate gas by thermal decomposition and generate ammonia gas.
About the ratio of each component in the gas generating agent of this invention, for example, the compounding quantity with respect to the nitrogen-containing compound (A) of the said nitrite (B) and hydrotalcite (C) depends on the amount of generated ammonia gas, and is generated. Since the amount of ammonia gas to be used varies greatly depending on the type of nitrogen-containing compound (A) used, it cannot be generally limited.
 しかしながら、前記含窒素化合物(A)、亜硝酸塩(B)およびハイドロタルサイト(C)の合計を100重量%とした場合に、含窒素化合物(A)は好ましくは0.5~95重量%である。
 また、亜硝酸塩(B)の配合量は発生するアンモニアガス量に応じて変化させるが、好ましくは0.5~60重量%である。ハイドロタルサイト(C)の配合量も発生するアンモニアガス量に応じて変化させるが、好ましくは1~40重量%である。
 含窒素化合物(A)が少なすぎると亜硝酸ガスがリークする場合がある。亜硝酸塩(B)が少なすぎるとアンモニアガスがリークする場合がある。
However, when the total of the nitrogen-containing compound (A), nitrite (B) and hydrotalcite (C) is 100% by weight, the nitrogen-containing compound (A) is preferably 0.5 to 95% by weight. is there.
The blending amount of nitrite (B) is varied depending on the amount of ammonia gas generated, but is preferably 0.5 to 60% by weight. The blending amount of hydrotalcite (C) is also changed according to the amount of ammonia gas generated, but is preferably 1 to 40% by weight.
When there is too little nitrogen-containing compound (A), nitrous acid gas may leak. If there is too little nitrite (B), ammonia gas may leak.
 また、本発明のガス発生剤における(A)、(B)および(C)以外の構成成分としては、本発明の効果を損なわないものであれば限定されるものではなく、その配合量も限定されない。(A)、(B)および(C)以外の構成成分の具体例としては、ステアリン酸などの脂肪酸もしくはステアリン酸カルシウムなどの脂肪酸の塩等が挙げられる。 In addition, the constituents other than (A), (B) and (C) in the gas generating agent of the present invention are not limited as long as the effects of the present invention are not impaired, and the blending amount thereof is also limited. Not. Specific examples of components other than (A), (B) and (C) include fatty acids such as stearic acid or salts of fatty acids such as calcium stearate.
 本発明のガス発生剤は、各種合成樹脂材料やゴム材料などの発泡体を製造する際に使用して好適な発泡体を得ることができるが、従来の熱分解型化学発泡剤に本発明のガス発生剤を配合して複合ガス発生剤として用いることもできる。 The gas generating agent of the present invention can be used for producing foams such as various synthetic resin materials and rubber materials to obtain a suitable foam. A gas generating agent can be blended and used as a composite gas generating agent.
 複合ガス発生剤において使用可能な熱分解型化学発泡剤としては、熱分解により窒素ガスまたは炭酸ガスを発生する一般的な化学発泡剤を挙げることができ、例えば、アゾジカルボンアミド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、N,N’-ジニトロソペンタメチレンテトラミン、5-フェニル-1,2,3,4-テトラゾールなどの化学発泡剤や、クエン酸モノナトリウム、酒石酸ナトリウム等の有機酸金属塩類の有機化学発泡剤、炭酸水素ナトリウム等の無機化学発泡剤が挙げられる。これらは一種を単独でまたは二種以上を組み合わせて用いてもよい。 Examples of the thermal decomposition type chemical foaming agent that can be used in the composite gas generating agent include general chemical foaming agents that generate nitrogen gas or carbon dioxide gas by thermal decomposition. For example, azodicarbonamide, 4,4 ′ -Chemical foaming agents such as oxybis (benzenesulfonylhydrazide), N, N'-dinitrosopentamethylenetetramine, 5-phenyl-1,2,3,4-tetrazole, and organic acids such as monosodium citrate and sodium tartrate Examples thereof include organic chemical foaming agents for metal salts and inorganic chemical foaming agents such as sodium hydrogen carbonate. You may use these individually by 1 type or in combination of 2 or more types.
 複合ガス発生剤における本発明のガス発生剤と熱分解型化学発泡剤の配合割合は特に制限されないが、好ましくは[本発明のガス発生剤]:[熱分解型化学発泡剤]=5~95:95~5(重量比)である。 The mixing ratio of the gas generating agent of the present invention and the pyrolytic chemical foaming agent in the composite gas generating agent is not particularly limited, but preferably [the gas generating agent of the present invention]: [thermal decomposing chemical foaming agent] = 5 to 95. : 95 to 5 (weight ratio).
 また、本発明のガス発生剤を熱分解型化学発泡剤と併用する際に、加熱温度の上昇に伴い、先に熱分解型化学発泡剤が分解発泡ガスを発生し、次いで本発明のガス発生剤が窒素ガスを発生する(あるいはその逆)というように、ガス発生温度の異なるガス発生剤を選択して組み合わせることで、2段分解型発泡剤とすることができる。このような、2段分解型発泡剤を用いることで、高い発泡倍率を有する特徴ある発泡体の製造が可能となる。 Further, when the gas generating agent of the present invention is used in combination with a pyrolytic chemical foaming agent, the pyrolytic chemical foaming agent first generates a decomposing foaming gas as the heating temperature rises, and then the gas generating of the present invention A two-stage decomposition foaming agent can be obtained by selecting and combining gas generating agents having different gas generation temperatures such that the agent generates nitrogen gas (or vice versa). By using such a two-stage decomposition type foaming agent, it becomes possible to produce a characteristic foam having a high foaming ratio.
 本発明のガス発生剤の製造方法は特に限定されるものではなく、一般的な混合方法を用いることができる。例えば、含窒素化合物(A)、亜硝酸塩(B)およびハイドロタルサイト(C)を、高速ミキサー、リボンブレンダー、コーンブレンダー等を用いて、温度60℃以下、時間5分程度の条件で均一に分散するように混合すればよい。 The method for producing the gas generating agent of the present invention is not particularly limited, and a general mixing method can be used. For example, the nitrogen-containing compound (A), nitrite (B), and hydrotalcite (C) are uniformly applied using a high-speed mixer, ribbon blender, corn blender, etc. under conditions of a temperature of 60 ° C. or less and a time of about 5 minutes. What is necessary is just to mix so that it may disperse | distribute.
 本発明の複合ガス発生剤の製造方法は特に限定されるものではなく、一般的な混合方法を用いることができる。本発明のガス発生剤を製造する際に、熱分解型化学発泡剤を一緒に混合しても良いし、本発明のガス発生剤を製造した後に熱分解型化学発泡剤を混合しても良い。複合ガス発生剤の混合には、例えば高速ミキサー、リボンブレンダー、コーンブレンダー等を用いて、温度60℃以下、時間5分程度の条件で均一に分散するように混合すればよい。 The method for producing the composite gas generating agent of the present invention is not particularly limited, and a general mixing method can be used. When producing the gas generating agent of the present invention, the pyrolytic chemical foaming agent may be mixed together, or after producing the gas generating agent of the present invention, the pyrolytic chemical foaming agent may be mixed. . The composite gas generating agent may be mixed using, for example, a high-speed mixer, ribbon blender, cone blender, or the like so as to be uniformly dispersed under conditions of a temperature of 60 ° C. or less and a time of about 5 minutes.
 本発明のガス発生剤または複合ガス発生剤は、合成樹脂材料またはゴム材料の発泡体成型に好適に用いることができる。本発明のガス発生剤または複合ガス発生剤は、合成樹脂材料やゴム材料の発泡体成型温度(例えば130~250℃程度)で、アンモニアや亜硝酸ガスの発生を抑制し窒素ガスを発生させられることから、均一で微細な気泡を有し高倍率で白色度の高い発泡体を得ることができる。 The gas generating agent or composite gas generating agent of the present invention can be suitably used for foam molding of synthetic resin materials or rubber materials. The gas generating agent or composite gas generating agent of the present invention can suppress generation of ammonia and nitrous acid gas and generate nitrogen gas at a foam molding temperature (for example, about 130 to 250 ° C.) of a synthetic resin material or rubber material. Thus, a foam having uniform and fine bubbles and high magnification and high whiteness can be obtained.
 本発明の発泡用組成物は、上述した本発明のガス発生剤を被発泡材料に配合してなるものである。被発泡材料としては、合成樹脂材料又はゴム材料が挙げられる。
 本発明の合成樹脂材料としては、例えば塩化ビニル樹脂、塩化ビニル共重合樹脂、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体で例示されるポリオレフィン共重合樹脂、ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等が挙げられるが、これらに限定されるものではない。
The foaming composition of the present invention is obtained by blending the above-described gas generating agent of the present invention into a material to be foamed. Examples of the foamed material include synthetic resin materials and rubber materials.
Examples of the synthetic resin material of the present invention include a vinyl chloride resin, a vinyl chloride copolymer resin, polyethylene, polypropylene, a polyolefin copolymer resin exemplified by an ethylene-propylene copolymer, a polystyrene resin, and an acrylonitrile-butadiene-styrene copolymer. (ABS resin) and the like are exemplified, but not limited thereto.
 本発明のガス発生剤または複合ガス発生剤を合成樹脂材料に配合して発泡体を製造する方法としては、一般的な発泡体の製造方法を用いることができる。例えば、合成樹脂材料、架橋剤、および本発明のガス発生剤または複合ガス発生剤を、加熱した混練りロールで混練りし、発泡用組成物(未発泡樹脂組成物)を調製することができる。混練温度は好ましくは90~130℃である。 As a method for producing a foam by blending the gas generating agent or composite gas generating agent of the present invention with a synthetic resin material, a general method for producing a foam can be used. For example, the foaming composition (unfoamed resin composition) can be prepared by kneading the synthetic resin material, the crosslinking agent, and the gas generating agent or composite gas generating agent of the present invention with a heated kneading roll. . The kneading temperature is preferably 90 to 130 ° C.
 このようにして得られた未発泡樹脂組成物を金型内に充填し、プレス機で加圧して合成樹脂材料の発泡体が得られる。金型厚み、加圧条件などは特に制限されず、合成樹脂の種類や用途などに応じて従来公知の発泡体成形方法を適宜採用することができる。例えば、厚み5~30mmの金型内に100%充填し、プレス機で145~170℃、及び150kg/cmの条件下、5~60分間加圧して樹脂組成物の発泡体が得られる。 The unfoamed resin composition thus obtained is filled in a mold and pressed with a press to obtain a foam of a synthetic resin material. There are no particular restrictions on the mold thickness, pressure conditions, and the like, and conventionally known foam molding methods can be appropriately employed depending on the type and application of the synthetic resin. For example, a foam of a resin composition can be obtained by filling 100% in a mold having a thickness of 5 to 30 mm and pressurizing with a press machine at 145 to 170 ° C. and 150 kg / cm 2 for 5 to 60 minutes.
 発泡用組成物中における各成分の配合割合は特に制限されないが、合成樹脂材料100重量部に対し、架橋剤は好ましくは0.1~10重量部、より好ましくは0.5~1.5重量部配合される。架橋剤の配合割合が少なすぎると架橋アンダーとなりガス抜けによる発泡不足が起き、多すぎると架橋オーバーとなり発泡体に亀裂や気泡荒れが生じる場合がある。 The blending ratio of each component in the foaming composition is not particularly limited, but the crosslinking agent is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 1.5 parts by weight with respect to 100 parts by weight of the synthetic resin material. Partly formulated. If the blending ratio of the cross-linking agent is too small, the cross-linking may become under, resulting in insufficient foaming due to outgassing, and if too large, the cross-linking may be over and the foam may be cracked or roughened.
 本発明のガス発生剤の使用量は、目的の発泡倍率に応じて適宜選択しうるものであって特に制限はないが、好ましくは合成樹脂材料100重量部に対し1~7重量部配合される。 The amount of the gas generating agent of the present invention can be appropriately selected according to the target foaming ratio and is not particularly limited, but is preferably 1 to 7 parts by weight per 100 parts by weight of the synthetic resin material. .
 本発明のガス発生剤を含む複合ガス発生剤を使用する場合、複合ガス発生剤の使用量は、目的の発泡倍率に応じて適宜選択しうるものであって特に制限はないが、好ましくは合成樹脂材料100重量部に対し1~7重量部配合される。 When the composite gas generating agent containing the gas generating agent of the present invention is used, the amount of the composite gas generating agent used can be appropriately selected according to the target foaming ratio and is not particularly limited. 1 to 7 parts by weight is blended with 100 parts by weight of the resin material.
 本発明のガス発生剤に含まれる含窒素化合物(A)は、従来、化学発泡剤の発泡助剤として使用されてきたものを使用しているため、本発明のガス発生剤を含む複合ガス発生剤においても、発泡助剤としての化学発泡剤に対する分解温度調整機能を保持している。
 一方、従来、尿素系発泡助剤は熱分解によりアンモニアを発生しても発泡には寄与しなかったが、本発明のガス発生剤は亜硝酸塩及びハイドロタルサイトを組み合わせることにより、窒素ガスを発生して発泡に寄与することができる。よって、化学発泡剤由来の発泡ガスに加えて、発泡助剤由来の窒素ガスをも発泡ガスとすることができることから、同じ化学発泡剤使用量で発生ガスを増加させることが可能となる。言い換えれば、従来よりも少ない化学発泡剤使用量で、同じ発泡倍率の発泡体を製造することができる。
Since the nitrogen-containing compound (A) contained in the gas generating agent of the present invention is the one conventionally used as a foaming aid for a chemical foaming agent, composite gas generation containing the gas generating agent of the present invention is used. The agent also has a function of adjusting the decomposition temperature for the chemical foaming agent as the foaming aid.
On the other hand, urea-based foaming aids conventionally did not contribute to foaming even when ammonia was generated by thermal decomposition, but the gas generating agent of the present invention generates nitrogen gas by combining nitrite and hydrotalcite. Can contribute to foaming. Therefore, in addition to the foaming gas derived from the chemical foaming agent, the nitrogen gas derived from the foaming aid can also be used as the foaming gas, so that the generated gas can be increased with the same amount of chemical foaming agent used. In other words, a foam having the same expansion ratio can be produced with a smaller amount of chemical foaming agent than in the past.
 このように、従来の化学発泡剤に本発明のガス発生剤を組み合わせれば、化学発泡剤の分解温度調整機能を発揮しつつ、発泡倍率の向上効果を発揮することができる。
 該複合ガス発生剤における本発明のガス発生剤の割合は特に制限されず、目的の発泡倍率に応じて適宜選択しうる。例えば、従来の化学発泡剤と発泡助剤とを組み合わせる場合における化学発泡剤に対する発泡助剤の割合に準じて使用することができる。
As described above, when the gas generating agent of the present invention is combined with the conventional chemical foaming agent, the effect of improving the expansion ratio can be exhibited while exhibiting the function of adjusting the decomposition temperature of the chemical foaming agent.
The ratio of the gas generating agent of the present invention in the composite gas generating agent is not particularly limited, and can be appropriately selected according to the target expansion ratio. For example, it can be used according to the ratio of the foaming aid to the chemical foaming agent in the case of combining a conventional chemical foaming agent and a foaming aid.
 前記架橋剤としては、例えば、ジクミルペルオキシド、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ-(t-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(t-ブチルペルオキシ)ヘキシン-3、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、t-ブチルペルオキシベンゾエート、t-ブチルペルベンゾエート、t-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、t-ブチルクミルペルオキシドなどを使用できる。 Examples of the crosslinking agent include dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di -(T-butylperoxy) hexyne-3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl- 4,4-bis (t-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, t-butylperoxybenzoate, t-butylperbenzoate, t-butylperoxyisopropyl carbonate, diacetyl Peroxide, lauroyl peroxide, t-butyl Or the like can be used torque mill peroxide.
 本発明のゴム材料としては、天然ゴム(NR)、ポリイソプレンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリルーブタジエンゴム、クロロプレンゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、ブタジエンゴム等が挙げられるが、これらに限定されるものではない。 Examples of the rubber material of the present invention include natural rubber (NR), polyisoprene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, butadiene rubber and the like. However, it is not limited to these.
 本発明のガス発生剤または複合ガス発生剤をゴム材料に配合して発泡用組成物を調製し、それにより発泡体を製造する方法としては、一般的な発泡体の製造条件を用いることができる。例えば、ゴム材料、加硫剤、充填剤、加硫促進剤、及び本発明のガス発生剤または複合ガス発生剤を混練りロールで均一に分散させ、発泡用組成物を得る。得られた発泡用組成物を70~90℃程度に加熱した押出機へ投入して未加硫成形体を調製する。得られた未加硫成形体を60~220℃程度に加熱したオーブン中で5~15分程度加熱することで加硫および発泡を行い、ゴム材料の発泡体が得られる。 As a method for preparing a foaming composition by blending the gas generating agent or composite gas generating agent of the present invention into a rubber material, and thereby manufacturing a foam, general manufacturing conditions for the foam can be used. . For example, a rubber material, a vulcanizing agent, a filler, a vulcanization accelerator, and the gas generating agent or composite gas generating agent of the present invention are uniformly dispersed with a kneading roll to obtain a foaming composition. The obtained foaming composition is put into an extruder heated to about 70 to 90 ° C. to prepare an unvulcanized molded body. The resulting unvulcanized molded body is heated in an oven heated to about 60 to 220 ° C. for about 5 to 15 minutes to vulcanize and foam to obtain a foam of rubber material.
 発泡用組成物中における各成分の配合割合は特に制限されないが、ゴム材料100重量部に対し、加硫剤は好ましくは0.1~10重量部配合される。充填剤は、ゴム材料100重量部に対し好ましくは10~150重量部配合される。加硫促進剤は、ゴム材料100重量部に対し好ましくは0.1~20重量部配合される。 The blending ratio of each component in the foaming composition is not particularly limited, but the vulcanizing agent is preferably blended in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber material. The filler is preferably blended in an amount of 10 to 150 parts by weight per 100 parts by weight of the rubber material. The vulcanization accelerator is preferably blended in an amount of 0.1 to 20 parts by weight per 100 parts by weight of the rubber material.
  本発明のガス発生剤の使用量は、目的の発泡倍率に応じて適宜選択しうるものであって特に制限はないが、好ましくはゴム材料100重量部に対し1~20重量部配合される。本発明のガス発生剤を含む複合ガス発生剤を使用する場合、複合ガス発生剤の使用量は、目的の発泡倍率に応じて適宜選択しうるものであって特に制限はないが、好ましくはゴム材料100重量部に対し1~20重量部される。 The amount of the gas generating agent of the present invention can be appropriately selected according to the target foaming ratio and is not particularly limited, but is preferably 1 to 20 parts by weight per 100 parts by weight of the rubber material. When the composite gas generating agent containing the gas generating agent of the present invention is used, the usage amount of the composite gas generating agent can be appropriately selected according to the target foaming ratio and is not particularly limited, but preferably rubber. 1 to 20 parts by weight per 100 parts by weight of the material.
 本発明で用いられる加硫剤の具体例としては、硫黄が挙げられる。
 本発明で用いられる充填剤の具体例としては、重質、軽質炭酸カルシウムが挙げられる。
 本発明で用いられる加硫促進剤の具体例としては、DM(ジベンジルチアゾル・ジスルフィド)が挙げられる。
Specific examples of the vulcanizing agent used in the present invention include sulfur.
Specific examples of the filler used in the present invention include heavy and light calcium carbonate.
Specific examples of the vulcanization accelerator used in the present invention include DM (dibenzylthiazol disulfide).
 本発明のガス発生剤は、従来品よりも少ない添加量で同倍率の発泡体を製造することが可能であるので経済的である。それと同時に、化学発泡剤や尿素化合物から発生するアンモニア臭気、尿素化合物やビウレア(ヒドラゾジカルボンアミド)といった副生物を窒素ガスにする事で尿素化合物に起因する樹脂発泡体の接着不良問題やフォギング問題も改善できる。 The gas generating agent of the present invention is economical because it is possible to produce a foam having the same magnification with an addition amount smaller than that of a conventional product. At the same time, problems such as poor adhesion and fogging of resin foam caused by urea compounds by using nitrogen gas as a by-product such as ammonia odor generated from chemical blowing agents and urea compounds, urea compounds and biurea (hydrazodicarbonamide) Can also be improved.
 以下に実施例および比較例をあげて本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。以下に示す実施例、比較例においては特に限定しない限り、発生ガス量、亜硝酸ガス発生量、アンモニア発生量、発泡体の比重、発泡体の気泡状態の評価はそれぞれ以下の方法で行った。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. Unless specifically limited in the following examples and comparative examples, the amount of gas generated, the amount of nitrous acid gas generated, the amount of ammonia generated, the specific gravity of the foam, and the bubble state of the foam were evaluated by the following methods.
<発生ガス量の測定>
 ガス発生剤または複合ガス発生剤1gを試験管に取り、熱媒体として流動パラフィン10mlを添加した後、試験管と水酸化ナトリウム水溶液吸収瓶、硼酸水溶液吸収瓶、ガスビュレットの順にゴム管で繋ぎ試験管を60℃オイルバスに浸した。その後、オイルバスを2℃/分の昇温速度で220℃まで加熱した。加熱中に発生したガスをガスビュレットで全て捕集し、発生ガス量を求めた。
<Measurement of generated gas amount>
Take 1 g of gas generant or composite gas generant in a test tube, add 10 ml of liquid paraffin as a heating medium, and then connect the test tube to the sodium hydroxide aqueous solution absorption bottle, boric acid aqueous solution absorption bottle, and gas burette in this order. The tube was immersed in a 60 ° C. oil bath. Thereafter, the oil bath was heated to 220 ° C. at a temperature rising rate of 2 ° C./min. All the gas generated during heating was collected with a gas burette, and the amount of generated gas was determined.
<亜硝酸ガス発生量の測定>
 熱分解時に発生したガスを1Nの水酸化ナトリウム水溶液400mlを入れた吸収瓶で吸収した後にJIS-K0102(ナフチルエチレンジアミン吸光光度法)に準じて吸収液中の亜硝酸ガス発生量を測定した。
<Measurement of nitrous acid generation amount>
The gas generated during pyrolysis was absorbed in an absorption bottle containing 400 ml of 1N aqueous sodium hydroxide solution, and the amount of nitrous acid gas generated in the absorbing solution was measured according to JIS-K0102 (naphthylethylenediamine absorptiometry).
<アンモニア発生量の測定>
 上述の、水酸化ナトリウム水溶液を入れた吸収瓶を通過したガスを0.5Nの硼酸水溶液400mlを入れた吸収瓶で吸収した後にJIS-K0102(インドフェノール青吸光光度法)に準じて吸収液中のアンモニア発生量を測定した。
<Measurement of ammonia generation amount>
The gas passing through the absorption bottle containing the aqueous sodium hydroxide solution is absorbed by the absorption bottle containing 400 ml of 0.5N boric acid aqueous solution, and then absorbed in the absorption liquid according to JIS-K0102 (Indophenol blue absorptiometry). The amount of ammonia generated was measured.
<発泡体の比重>
 樹脂組成物およびゴム組成物の発泡体の比重は電子比重計(アルファーミラージュ社製、製品名MD-200S)により求めた。
<Specific gravity of foam>
The specific gravity of the foam of the resin composition and the rubber composition was determined by an electronic hydrometer (manufactured by Alpha Mirage, product name MD-200S).
<発泡体の気泡状態の評価>
 樹脂組成物およびゴム組成物の気泡状態の評価には、SEM(キーエンス社製、VE-7800)を使用した。発泡成形体を厚み方向に平行にスライスし、スライス断面をSEMで観察し、気泡状態、気泡径を観察した。
<Evaluation of bubble state of foam>
SEM (manufactured by Keyence Corporation, VE-7800) was used for evaluation of the bubble state of the resin composition and the rubber composition. The foamed molded product was sliced parallel to the thickness direction, the slice cross section was observed with SEM, and the bubble state and bubble diameter were observed.
<ハイドロタルサイトの水分量調査>
 測定機器:京都電子製 カールフィッシャー水分計MKC-210
<Water content survey of hydrotalcite>
Measuring instrument: Karl Fischer moisture meter MKC-210 manufactured by Kyoto Electronics
<実施例1>
 尿素(三井化学社製、工業用尿素)60g(1モル)、亜硝酸ナトリウム(1モル)69g(日産化学社製、亜硝酸ナトリウム(湿状))、ハイドロタルサイト([Mg2+ 0.83Al3+ 0.17(OH)0.17+[(CO)2- 0.17/2・0.33HO]0.17-、Al:Mgのモル比=2:10)6gを、ポリエチレン袋を用いて常温で5分間混合した後、ボールミルで150メッシュ・パス(JIS8801篩使用)まで粉砕し、ガス発生剤を得た。
 得られたガス発生剤1gを用いて発生ガス量を測定した。発生ガス量測定時には、120℃からガス発生が認められ、155℃で急激にガスが発生し158℃で急激なガス発生は終了したが180℃まで緩慢なガス発生が認められ、それ以降220℃までガス発生は認められなかった。発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定結果を表1に示した。
<Example 1>
60 g (1 mole) of urea (manufactured by Mitsui Chemicals, Inc., industrial mole), 69 g of sodium nitrite (1 mole) (manufactured by Nissan Chemical Industries, sodium nitrite (wet)), hydrotalcite ([Mg 2+ 0.83 Al 3+ 0.17 (OH) 2 ] 0.17+ [(CO 3 ) 2 − 0.17 / 2 · 0.33H 2 O] 0.17− , Al: Mg molar ratio = 2: 10) 6 g After mixing for 5 minutes at room temperature using a polyethylene bag, it was pulverized to 150 mesh pass (using JIS8801 sieve) with a ball mill to obtain a gas generating agent.
The amount of generated gas was measured using 1 g of the obtained gas generating agent. When the amount of generated gas was measured, gas generation was observed from 120 ° C., gas was rapidly generated at 155 ° C., and rapid gas generation was completed at 158 ° C., but slow gas generation was observed up to 180 ° C., and thereafter 220 ° C. Until now, no gas generation was observed. Table 1 shows the measurement results of the generated gas amount, the nitrous acid gas generated amount, and the ammonia generated amount.
 次に90~100℃に加熱されたミキシングロールでエチレン-酢酸ビニル共重合体(EVA)(商品名「ウルトラセン630」東ソー(株)製)100重量部を混練し、続いて前記ガス発生剤5重量部を添加し5分間混練し、続いてジクミルパーオキサイド(DCP)0.8重量部を添加して3分間混練してミキシングロールから混練物を取り出した。160℃に加熱されたプレス装置の金型(200mm×200mm×10mm)の内容積100%充填となるように混練物を投入し、プレス圧力150Kg/cmで10分間加圧した。10分後プレス圧力を常圧まで一気に開放し発泡体を得た。得られた発泡体の配合量と評価結果を表2に示した。 Next, 100 parts by weight of ethylene-vinyl acetate copolymer (EVA) (trade name “Ultrasen 630” manufactured by Tosoh Corporation) is mixed with a mixing roll heated to 90 to 100 ° C., and then the gas generating agent is mixed. 5 parts by weight was added and kneaded for 5 minutes, then 0.8 part by weight of dicumyl peroxide (DCP) was added and kneaded for 3 minutes, and the kneaded product was taken out from the mixing roll. The kneaded product was charged so that the inner volume of the mold (200 mm × 200 mm × 10 mm) of the press apparatus heated to 160 ° C. was filled to 100%, and pressurized at a press pressure of 150 kg / cm 2 for 10 minutes. After 10 minutes, the press pressure was released to normal pressure all at once, and a foam was obtained. Table 2 shows the blending amount of the obtained foam and the evaluation results.
<比較例1>
 ハイドロタルサイトをゼオライト脱臭剤(東ソー社製、ゼオラムA-4)に代えた以外は実施例1と同様に発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行い、発泡体の製造を行った。ガス発生剤の配合量と評価結果を表1に、発泡体の配合量と評価結果を表2に示した。得られた発泡体は薄黄色に着色し、架橋度が低いため発泡体が金型に付着して取り出す事ができなかった。
<Comparative Example 1>
Production of foam by measuring the amount of generated gas, amount of nitrous acid gas, and amount of ammonia generated in the same manner as in Example 1 except that hydrotalcite was replaced with zeolite deodorant (Zeolam A-4, manufactured by Tosoh Corporation). Went. Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The obtained foam was colored light yellow and the degree of crosslinking was low, so that the foam adhered to the mold and could not be taken out.
<実施例2>
 尿素(三井化学社製、工業用尿素)60g(1モル)、亜硝酸ナトリウム(日産化学社製、亜硝酸ナトリウム(湿状))69g(1モル)、ハイドロタルサイト([Mg2+ 0.71Al3+ 0.29(OH)0.29+[(CO)2- 0.29/2・0.57HO]0.29-、Al:Mgのモル比=2:5)18g、ステアリン酸カルシウム(日本油脂社製、カルシウムステアレート)6gを、ポリエチレン袋を用いて常温で5分間混合した後、ボールミルで150メッシュ・パスまで粉砕しガス発生剤を得た。
 ガス発生剤1gを用いて実施例1と同様に発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行い、発泡体の製造を行った。ガス発生剤の配合量と評価結果を表1に、発泡体の配合量と評価結果を表2に示した。
<Example 2>
Urea (manufactured by Mitsui Chemicals, industrial urea) 60 g (1 mol), sodium nitrite (manufactured by Nissan Chemical Industries, sodium nitrite (wet)) 69 g (1 mol), hydrotalcite ([Mg 2+ 0.71 Al 3+ 0.29 (OH) 2 ] 0.29+ [(CO 3 ) 2 −0.29 / 2 · 0.57H 2 O] 0.29− , Al: Mg molar ratio = 2: 5) 18 g, 6 g of calcium stearate (manufactured by NOF Corporation, calcium stearate) was mixed at room temperature for 5 minutes using a polyethylene bag, and then pulverized to 150 mesh pass with a ball mill to obtain a gas generating agent.
Using 1 g of the gas generant, the amount of gas generated, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured in the same manner as in Example 1 to produce a foam. Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam.
<比較例2>
 実施例2の配合からハイドロタルサイトを抜いた以外は実施例2と同様に発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行い、発泡体の製造を行った。ガス発生剤の配合量と評価結果を表1に、発泡体の配合量と評価結果を表2に示した。得られた発泡体は薄黄色で金型に付着して取り出すことができなかった。
<Comparative Example 2>
Except that hydrotalcite was removed from the formulation of Example 2, the amount of gas generated, the amount of nitrous acid generated, and the amount of ammonia generated were measured in the same manner as in Example 2 to produce a foam. Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The obtained foam was pale yellow and adhered to the mold and could not be taken out.
<実施例3>
 尿素(三井化学社製、工業用尿素)60g(1モル)、亜硝酸ナトリウム(日産化学社製、亜硝酸ナトリウム(湿状))69g(1モル)、ハイドロタルサイト([Mg2+ 0.83Al3+ 0.17(OH)0.17+[(CO2- 0.17/2・0.33HO]0.17-、Al/Mgのモル比=2:10)18gを、ポリエチレン袋を用いて常温で5分間混合した後、ボールミルで150メッシュ・パスまで粉砕した。この粉砕試料に、化学発泡剤アゾジカルボンアミド(ADCA)(商品名「ビニホールAC#3」永和化成工業(株)製)200g、酸化亜鉛(堺化学社製、酸化亜鉛2種)53gを、ポリエチレン袋を用いて常温で5分間混合し、ガス発生剤を得た。得られたガス発生剤1gを用いて実施例1と同様に発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行った。ガス発生剤の配合量と評価結果を表1に示した。
<Example 3>
Urea (manufactured by Mitsui Chemicals, industrial urea) 60 g (1 mole), sodium nitrite (manufactured by Nissan Chemical Industries, sodium nitrite (wet)) 69 g (1 mole), hydrotalcite ([Mg 2+ 0.83 Al 3+ 0.17 (OH) 2 ] 0.17+ [(CO 3 ) 2 − 0.17 / 2 · 0.33H 2 O] 0.17− , Al / Mg molar ratio = 2: 10) 18 g After mixing for 5 minutes at room temperature using a polyethylene bag, it was pulverized to 150 mesh pass with a ball mill. 200 g of chemical foaming agent azodicarbonamide (ADCA) (trade name “VINYHALL AC # 3” manufactured by Eiwa Kasei Kogyo Co., Ltd.), 53 g of zinc oxide (manufactured by Sakai Chemical Co., Ltd., 2 types of zinc oxide), polyethylene, A gas generating agent was obtained by mixing at room temperature for 5 minutes using a bag. Using 1 g of the resulting gas generant, the amount of gas generated, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured in the same manner as in Example 1. Table 1 shows the blending amount of the gas generating agent and the evaluation results.
 次に、110~120℃に加熱されたニーダーに低密度ポリエチレン(商品名「ノバテックPE YF30」日本ポリエチレン(株)製)100重量部、前記ガス発生剤10重量部、ジクミルパーオキシド(DCP)1重量部を投入し混練した。155℃に加熱されたプレス装置の金型(200mm×200mm×10mm)の内容積100%充填となるように混練物を投入しプレス圧力150Kg/cmで加圧した。15分後にプレス圧力を常圧まで一気に開放し発泡体を得た。発泡体の配合量と評価結果を表2に示した。 Next, in a kneader heated to 110 to 120 ° C., 100 parts by weight of low density polyethylene (trade name “NOVATEC PE YF30” manufactured by Nippon Polyethylene Co., Ltd.), 10 parts by weight of the gas generating agent, dicumyl peroxide (DCP) 1 part by weight was added and kneaded. The kneaded material was charged so that the inner volume of the mold (200 mm × 200 mm × 10 mm) of the press apparatus heated to 155 ° C. was 100% filled, and pressurized at a press pressure of 150 kg / cm 2 . After 15 minutes, the press pressure was released to normal pressure all at once, and a foam was obtained. The amount of foam blended and the evaluation results are shown in Table 2.
<比較例3>
 ハイドロタルサイトをケイ酸アルミニウム(和光純薬社製、ケイ酸アルミニウム)に代えた以外は実施例3と同様に化学発泡剤アゾジカルボンアミド(ADCA)(商品名「ビニホールAC#3」、永和化成工業(株)製)と酸化亜鉛(堺化学社製、酸化亜鉛2種)を混合しガス発生剤を得た。実施例1と同様にして発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行い、次に実施例3と同様に発泡体の製造を行った。ガス発生剤の配合量と評価結果を表1に、発泡体の配合量と評価結果を表2に示した。得られた発泡体は薄黄色に着色しており、発泡体内部の気泡も不均一であった。
<Comparative Example 3>
The chemical foaming agent azodicarbonamide (ADCA) (trade name “Binihol AC # 3”, Eiwa Kasei Co., Ltd.) was used in the same manner as in Example 3 except that the hydrotalcite was replaced with aluminum silicate (Wako Pure Chemical Industries, Ltd., aluminum silicate). Industrial Co., Ltd.) and zinc oxide (manufactured by Sakai Chemical Co., Ltd., 2 types of zinc oxide) were mixed to obtain a gas generating agent. In the same manner as in Example 1, the amount of gas generated, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured, and then a foam was produced in the same manner as in Example 3. Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The obtained foam was colored light yellow, and the bubbles inside the foam were also non-uniform.
<実施例4>
 尿素(三井化学社製、工業用尿素)60g(1モル)、亜硝酸ナトリウム(日産化学社製、亜硝酸ナトリウム(湿状))69g(1モル)、ハイドロタルサイト([Mg2+ 0.83Al3+ 0.17(OH)0.17+[(CO)2-.17/2・0.33HO]0.17-、Al:Mgのモル比=2:10)12g、ステアリン酸マグネシウム(堺化学社製、SM-1000)6gを、ポリエチレン袋を用いて常温で5分間混合した後、ボールミルで150メッシュ・パスまで粉砕した。この粉砕試料にアゾジカルボンアミド(ADCA)(商品名「ビニホールAC#3」永和化成工業(株)製)62.6g、化学発泡剤N,N’-ジニトロソペンタメチレンテトラミン(DNPT)(商品名「セルラーD」、永和化成工業(株)製)93.8g、酸化亜鉛(堺化学社製、酸化亜鉛2種)9.4gをポリエチレン袋を用いて常温で5分間混合しガス発生剤を得た。得られたガス発生剤を用いて実施例1と同様に発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行った。各剤の配合量と評価結果を表1に示した。
<Example 4>
Urea (manufactured by Mitsui Chemicals, industrial urea) 60 g (1 mole), sodium nitrite (manufactured by Nissan Chemical Industries, sodium nitrite (wet)) 69 g (1 mole), hydrotalcite ([Mg 2+ 0.83 Al 3+ 0.17 (OH) 2 ] 0.17+ [(CO 3 ) 2 −0.17 / 2 · 0.33H 2 O] 0.17− , Al: Mg molar ratio = 2: 10) 12 g, 6 g of magnesium stearate (manufactured by Sakai Chemical Co., Ltd., SM-1000) was mixed at room temperature for 5 minutes using a polyethylene bag, and then ground to 150 mesh pass with a ball mill. 62.6 g of azodicarbonamide (ADCA) (trade name “VINYHALL AC # 3” manufactured by Eiwa Kasei Kogyo Co., Ltd.), chemical foaming agent N, N′-dinitrosopentamethylenetetramine (DNPT) (trade name) “Cellular D” (manufactured by Eiwa Chemical Industry Co., Ltd.) 93.8 g and zinc oxide (manufactured by Sakai Chemical Co., Ltd., 2 types of zinc oxide) 9.4 g were mixed in a polyethylene bag for 5 minutes at room temperature to obtain a gas generating agent. It was. Using the obtained gas generating agent, the amount of generated gas, the amount of generated nitrous acid gas, and the amount of generated ammonia were measured in the same manner as in Example 1. Table 1 shows the blending amount of each agent and the evaluation results.
 次に、NR(RSS#1)60重量部とSBR(1502)40重量部をニーダーで混練し、炭酸カルシウム(備北粉化工社製、ホワイトンSB)50重量部、ホワイトカーボン(DSLジャパン社製、カープレックス#80)20重量部、二酸化チタン(和光純薬社製、酸化チタン)10重量部、酸化亜鉛(堺化学社製、酸化亜鉛2種)5重量部、ステアリン酸(花王社製、ルナックS-20)3重量部、ナフテンオイル(日本サン石油社製、サンセン410)5重量部を投入して更に混練して取り出した。この混練物をミキシングロールに巻き付かせ、加硫剤として硫黄(鶴見化学社製、微粉硫黄)2.5部、加硫促進剤DM1部を添加して3分間混練り後、発泡剤混合物15部を添加し3分間混練した。
 150℃に加熱されたプレス装置の金型(124mm×124mm×11mm)の内容積100%充填となるように混練物を投入しプレス圧力150Kg/cmで加圧した。15分後プレス圧力を常圧まで一気に開放し発泡体を得た。発泡体の配合量と評価結果を表2に示した。
Next, 60 parts by weight of NR (RSS # 1) and 40 parts by weight of SBR (1502) are kneaded with a kneader, and 50 parts by weight of calcium carbonate (Bihoku Powder Chemical Co., Ltd., Whiten SB) and white carbon (manufactured by DSL Japan). Carplex # 80) 20 parts by weight, titanium dioxide (manufactured by Wako Pure Chemical Industries, titanium oxide) 10 parts by weight, zinc oxide (manufactured by Sakai Chemical Co., Ltd., 2 types of zinc oxide), 5 parts by weight, stearic acid (manufactured by Kao Corporation, 3 parts by weight of Lunac S-20) and 5 parts by weight of naphthenic oil (Sansen 410, manufactured by Nippon San Oil Co., Ltd.) were added and further kneaded and taken out. This kneaded product is wound around a mixing roll, 2.5 parts of sulfur (manufactured by Tsurumi Chemical Co., Ltd., fine powdered sulfur) and 1 part of vulcanization accelerator DM are added and kneaded for 3 minutes as a vulcanizing agent, and then a foaming agent mixture 15 Part was added and kneaded for 3 minutes.
The kneaded material was charged so that the inner volume of the mold (124 mm × 124 mm × 11 mm) of the press apparatus heated to 150 ° C. was filled to 100%, and pressurized at a press pressure of 150 kg / cm 2 . After 15 minutes, the press pressure was released to normal pressure all at once, and a foam was obtained. The amount of foam blended and the evaluation results are shown in Table 2.
<比較例4>
 実施例4の配合からハイドロタルサイトを除いた以外は実施例4と同様の操作を行い、発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行い、発泡体の製造を行った。ガス発生剤の配合量と評価結果を表1に、発泡体の配合量と評価結果を表2に示した。発泡体内部の気泡は不均一であった。
<Comparative example 4>
Except that hydrotalcite was removed from the formulation of Example 4, the same operations as in Example 4 were performed, and the amount of generated gas, the amount of nitrous acid gas generated, and the amount of ammonia generated were measured to produce a foam. Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The bubbles inside the foam were not uniform.
<実施例5>
 ビウレア(ヒドラゾジカルボンアミド、永和化成工業(株)製、FE-823)118g(1モル)、亜硝酸カリウム(和光純薬社製、和光特級 亜硝酸カリウム)42.5g(0.5モル)、ハイドロタルサイト([Mg2+ 0.83Al3+ 0.17(OH)0.17+[(CO3)2- 0.17/2・0.33HO]0.17-、Al:Mgのモル比=2:10)12gを、ポリエチレン袋を用いて常温で5分間混合した後、ボールミルで150メッシュ・パスまで粉砕しガス発生剤を得た。
 得られたガス発生剤1gを用い発生ガス量測定時のオイルバス温度220℃を250℃に変更した以外は、実施例1と同様に発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行った。ガス発生剤の配合量と評価結果を表1に示した。
<Example 5>
118 g (1 mol) of biurea (hydrazodicarbonamide, manufactured by Eiwa Kasei Kogyo Co., Ltd., FE-823), 42.5 g (0.5 mol) of potassium nitrite (manufactured by Wako Pure Chemical Industries, Ltd., Wako special grade potassium nitrite), hydro Talsite ([Mg 2+ 0.83 Al 3+ 0.17 (OH) 2 ] 0.17+ [(CO3) 2 − 0.17 / 2 · 0.33H 2 O] 0.17− , Al: Mg mole A ratio of 2:10) 12 g was mixed at room temperature for 5 minutes using a polyethylene bag, and then pulverized to 150 mesh pass with a ball mill to obtain a gas generating agent.
Measurement of generated gas amount, nitrous acid gas generated amount, and ammonia generated amount in the same manner as in Example 1 except that 1 g of the obtained gas generating agent was used and the oil bath temperature 220 ° C. at the time of measuring the generated gas amount was changed to 250 ° C. Went. Table 1 shows the blending amount of the gas generating agent and the evaluation results.
 次に、ポリプロピレン(商品名「ノバテックPP MA3」日本ポリプロ(株)製)100重量部に対して、流動パラフィン1重量部、上で得られたガス発生剤3重量部を添加し混合した。混合物を押出機(東洋精機製ラボプラストミル50C150、押出機械式D2025)に投入し、設定温度C1;200℃、C2;240℃、C3;200℃、ダイ;180℃とし、スクリュー回転数80rpmで押し出して発泡シートを得た。発泡体の配合量と評価結果を表2に示した。 Next, 1 part by weight of liquid paraffin and 3 parts by weight of the gas generating agent obtained above were added to and mixed with 100 parts by weight of polypropylene (trade name “NOVATEC PP MA3” manufactured by Nippon Polypro Co., Ltd.). The mixture was put into an extruder (Toyo Seiki Laboplast Mill 50C150, Extrusion Mechanical D2025), set temperature C1; 200 ° C, C2; 240 ° C, C3; 200 ° C, die: 180 ° C, screw rotation speed 80 rpm Extruded to obtain a foam sheet. The amount of foam blended and the evaluation results are shown in Table 2.
<比較例5>
 実施例5の配合からハイドロタルサイトを除いた以外は実施例5と同様に発生ガス量、亜硝酸ガス発生量、アンモニア発生量の測定を行い、発泡体の製造を行った。ガス発生剤の配合量と評価結果を表1に、発泡体の配合量と評価結果を表2に示した。得られた発泡体は薄黄色に着色しており、気泡はほとんど観察されなかった。
<Comparative Example 5>
Except for removing hydrotalcite from the formulation of Example 5, the amount of generated gas, the amount of nitrous acid generated, and the amount of ammonia generated were measured in the same manner as in Example 5 to produce a foam. Table 1 shows the blending amount and evaluation result of the gas generating agent, and Table 2 shows the blending amount and evaluation result of the foam. The obtained foam was colored pale yellow and almost no bubbles were observed.
Figure JPOXMLDOC01-appb-T000001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 表1に示したように、実施例1~5は、発生ガス量が向上し、亜硝酸ガスの検出量は減少し、アンモニアは全てのガス発生剤で検出されなかった。したがって、実施例1~5では、ハイドロタルサイトにより亜硝酸塩の反応性が向上したことにより、亜硝酸ガスが減少し、さらにアンモニアが分解され、発泡時の窒素ガス発生量が増加したことが確認された。 As shown in Table 1, in Examples 1 to 5, the amount of generated gas was improved, the detected amount of nitrous acid was decreased, and ammonia was not detected in all gas generating agents. Therefore, in Examples 1 to 5, it was confirmed that the nitrite reactivity was improved by hydrotalcite, nitrous acid gas was reduced, ammonia was further decomposed, and the amount of nitrogen gas generated during foaming was increased. It was done.
Figure JPOXMLDOC01-appb-T000002
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 
 
 
 
 
 
 
 
 
 
 
 表2に示されるように、実施例1~5は、発泡体の白度に優れており、発泡体内部の気泡は微小で均一な気泡であり、発泡体の比重からわかるように発泡倍率が向上することが確認された。 As shown in Table 2, Examples 1 to 5 are excellent in whiteness of the foam, and the bubbles inside the foam are fine and uniform bubbles. As can be seen from the specific gravity of the foam, the expansion ratio is as follows. It was confirmed to improve.
 本発明によれば、熱可塑性樹脂やゴムの発泡体を製造する場合、化学発泡剤を増量することなく高倍率の発泡体を製造することが可能であると同時に、アンモニアを抑制できることから製造現場でのアンモニア臭気対策も不要となり、工業的に極めて有利である。
 
According to the present invention, when producing a foam of thermoplastic resin or rubber, it is possible to produce a high-magnification foam without increasing the amount of the chemical foaming agent, and at the same time, it is possible to suppress ammonia, and thus the production site This eliminates the need for ammonia odor countermeasures, and is extremely advantageous industrially.

Claims (9)

  1.  発泡体の製造に用いるガス発生剤であって、(A)熱分解によりアンモニアガスを生成する含窒素化合物、(B)亜硝酸塩、および(C)ハイドロタルサイトを含有することを特徴とするガス発生剤。 A gas generating agent used for producing a foam, which comprises (A) a nitrogen-containing compound that generates ammonia gas by thermal decomposition, (B) nitrite, and (C) hydrotalcite Generating agent.
  2.  前記含窒素化合物(A)が尿素結合を有する化合物である、請求項1記載のガス発生剤。 The gas generating agent according to claim 1, wherein the nitrogen-containing compound (A) is a compound having a urea bond.
  3.  含窒素化合物(A)、亜硝酸塩(B)およびハイドロタルサイト(C)の合計全量に対し、含窒素化合物(A)を0.5~95重量%、亜硝酸塩(B)を0.5~60重量%、ハイドロタルサイト(C)を1~40重量%含有することを特徴とする、請求項1又は2記載のガス発生剤。 The total amount of the nitrogen-containing compound (A), nitrite (B), and hydrotalcite (C) is 0.5 to 95% by weight of the nitrogen-containing compound (A) and 0.5 to 95% of the nitrite (B). The gas generating agent according to claim 1 or 2, comprising 60% by weight and 1 to 40% by weight of hydrotalcite (C).
  4.  亜硝酸塩(B)が亜硝酸ナトリウム、亜硝酸カリウムおよび亜硝酸バリウムからなる群から選ばれる一種以上である、請求項1~3のいずれかに記載のガス発生剤。 The gas generating agent according to any one of claims 1 to 3, wherein the nitrite (B) is at least one selected from the group consisting of sodium nitrite, potassium nitrite and barium nitrite.
  5.  ハイドロタルサイト(C)が下記一般式(1)で表されるものである、請求項1~4のいずれかに記載のガス発生剤。
    [化1]
    [M2+ 1-x3+ (OH)x+[An- x/n・mHO]x-   (1)
    (式中、M2+はMg、Mn、Fe、およびZnからなる群から選択される金属の2価金属イオン、M3+はAl、FeおよびCrからなる群から選択される金属の3価金属イオン、An-はOH、F、Cl、Br、NO、COおよびSOからなる群から選択される基のn価のアニオン、xは0<x≦0.33の範囲であり、nは整数であり、mは0以上である。)
    The gas generating agent according to any one of claims 1 to 4, wherein the hydrotalcite (C) is represented by the following general formula (1).
    [Chemical 1]
    [M 2+ 1-x M 3+ x (OH) 2 ] x + [A n− x / n · mH 2 O] x− (1)
    ( Wherein M 2+ is a divalent metal ion of a metal selected from the group consisting of Mg, Mn, Fe and Zn, and M 3+ is a trivalent metal ion of a metal selected from the group consisting of Al, Fe and Cr , A n− is an n-valent anion of a group selected from the group consisting of OH, F, Cl, Br, NO 3 , CO 3 and SO 4 , x is in the range of 0 <x ≦ 0.33, n Is an integer and m is 0 or more.)
  6.  前記一般式(1)中のM2+がMg2+であり、M3+がAl3+である、請求項5記載のガス発生剤。 The gas generating agent according to claim 5, wherein M 2+ in the general formula (1) is Mg 2+ and M 3+ is Al 3+ .
  7.  請求項1~6のいずれかに記載のガス発生剤を被発泡材料に配合してなる、発泡用組成物。 A foaming composition comprising the foamed material and the gas generating agent according to any one of claims 1 to 6.
  8.  被発泡材料が合成樹脂材料又はゴム材料である、請求項7記載の発泡用組成物。 The foaming composition according to claim 7, wherein the foamed material is a synthetic resin material or a rubber material.
  9.  請求項7又は8に記載の発泡用組成物を加熱する工程を含む、発泡体の製造方法。
     
     
     
     
    The manufacturing method of a foam including the process of heating the foaming composition of Claim 7 or 8.



PCT/JP2010/059981 2009-06-19 2010-06-11 Gas-generating agent WO2010147067A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011519759A JP5647606B2 (en) 2009-06-19 2010-06-11 Gas generating agent
CN201080026810.4A CN102803424B (en) 2009-06-19 2010-06-11 Gas-generating agent
KR1020127001460A KR101768431B1 (en) 2009-06-19 2010-06-11 Gas-generating agent
DE112010002570T DE112010002570A5 (en) 2009-06-19 2010-06-11 Gas generating means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146119 2009-06-19
JP2009-146119 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147067A1 true WO2010147067A1 (en) 2010-12-23

Family

ID=43356385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059981 WO2010147067A1 (en) 2009-06-19 2010-06-11 Gas-generating agent

Country Status (5)

Country Link
JP (1) JP5647606B2 (en)
KR (1) KR101768431B1 (en)
CN (1) CN102803424B (en)
DE (1) DE112010002570A5 (en)
WO (1) WO2010147067A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032427A (en) * 2011-08-01 2013-02-14 Eiwa Kasei Kogyo Kk Gas generating agent for producing foam

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477927B1 (en) * 2015-04-23 2022-12-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Gas generating agent and method for producing a foam using the same
EP3196271B1 (en) * 2015-04-23 2019-01-09 Mitsubishi Gas Chemical Company, Inc. Gas-generating agent, and process for producing foamed object using same
KR101966289B1 (en) * 2017-12-01 2019-04-08 주식회사 동진쎄미켐 Foaming agent with reduced generation of foul smell and foam formed using the same
CN112624888A (en) * 2020-09-29 2021-04-09 陈肇明 Gas generating agent for novel safety air bag device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49369A (en) * 1972-04-14 1974-01-05
JPS63113033A (en) * 1986-05-09 1988-05-18 Sekisui Chem Co Ltd Foaming agent composition
JPH059321A (en) * 1991-07-02 1993-01-19 Eiwa Kasei Kogyo Kk Azodicarbonamide-based foaming agent composition
JPH08100075A (en) * 1994-09-29 1996-04-16 Asahi Denka Kogyo Kk Hard chlorinated resin composition for foaming
JPH08295803A (en) * 1995-04-26 1996-11-12 Konan Kasei:Kk Cleaning material for interior of heating column of resin molding machine and cleaning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49369A (en) * 1972-04-14 1974-01-05
JPS63113033A (en) * 1986-05-09 1988-05-18 Sekisui Chem Co Ltd Foaming agent composition
JPH059321A (en) * 1991-07-02 1993-01-19 Eiwa Kasei Kogyo Kk Azodicarbonamide-based foaming agent composition
JPH08100075A (en) * 1994-09-29 1996-04-16 Asahi Denka Kogyo Kk Hard chlorinated resin composition for foaming
JPH08295803A (en) * 1995-04-26 1996-11-12 Konan Kasei:Kk Cleaning material for interior of heating column of resin molding machine and cleaning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032427A (en) * 2011-08-01 2013-02-14 Eiwa Kasei Kogyo Kk Gas generating agent for producing foam

Also Published As

Publication number Publication date
KR20120101322A (en) 2012-09-13
JPWO2010147067A1 (en) 2012-12-06
CN102803424B (en) 2014-09-03
JP5647606B2 (en) 2015-01-07
DE112010002570A5 (en) 2012-04-26
KR101768431B1 (en) 2017-08-16
CN102803424A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5647606B2 (en) Gas generating agent
JP4890415B2 (en) Modified foaming agent surface-treated with metal siloxane compound, and polymer resin composition containing the same
KR20150125612A (en) Foaming agent composition and method for foaming using the same
JP6118002B2 (en) GAS GENERATOR AND METHOD FOR PRODUCING FOAM USING THE SAME
JP6043467B2 (en) Chloroprene rubber foam and method for producing the same
JP2019131702A (en) Polyolefin crosslinked foam, and manufacturing method therefor
JP2007204539A (en) Expandable rubber composition
JP5290039B2 (en) Foaming aid composition
JP5725957B2 (en) Method for producing cross-linked polyolefin foam
JP6755133B2 (en) Ethylene / propylene / diene rubber foam, its manufacturing method and sealing material
JP5903225B2 (en) Gas generant for foam production
JP6121638B2 (en) GAS GENERATOR AND METHOD FOR PRODUCING FOAM USING THE SAME
WO2020188931A1 (en) Gas generating agent, foaming composition, foam, and method for producing foam
WO2017002958A1 (en) Ethylene-propylene-diene rubber foam, method for producing same and sealing material
JP3565815B2 (en) Conductive cross-linked polyethylene foam and method for producing the same
JP2005330417A (en) Antistatic crosslinked polyolefin foam and its manufacturing method
JP5776081B2 (en) Gas generant for foam production
JP5271589B2 (en) Method for producing polyolefin foam hot-press molded product
JP2003096225A (en) Production method of open-cell crosslinked polyolefin foam
WO2023181942A1 (en) Polyolefin resin foam
JP2796739B2 (en) Method for producing conductive polyolefin foam
JP2003292661A (en) Polyolefin resin composition for foaming and foam composed of the same
JP2018053184A (en) Rubber-based foamable resin composition, rubber-based resin isolated cell foamed body, water-stopping seal material, and method for producing rubber-based resin isolated cell foamed body
JP2004352748A (en) Conductive crosslinked polyethylene foam and its manufacturing method
JP2006264415A (en) Foam-filled tire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026810.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519759

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112010002570

Country of ref document: DE

Ref document number: 1120100025703

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20127001460

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112010002570

Country of ref document: DE

Effective date: 20120426

122 Ep: pct application non-entry in european phase

Ref document number: 10789442

Country of ref document: EP

Kind code of ref document: A1