JP2019131702A - Polyolefin crosslinked foam, and manufacturing method therefor - Google Patents

Polyolefin crosslinked foam, and manufacturing method therefor Download PDF

Info

Publication number
JP2019131702A
JP2019131702A JP2018014688A JP2018014688A JP2019131702A JP 2019131702 A JP2019131702 A JP 2019131702A JP 2018014688 A JP2018014688 A JP 2018014688A JP 2018014688 A JP2018014688 A JP 2018014688A JP 2019131702 A JP2019131702 A JP 2019131702A
Authority
JP
Japan
Prior art keywords
foaming
polyolefin
ppm
foam
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014688A
Other languages
Japanese (ja)
Other versions
JP7027183B2 (en
Inventor
晋 中野
Susumu Nakano
晋 中野
橋本 直樹
Naoki Hashimoto
直樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2018014688A priority Critical patent/JP7027183B2/en
Publication of JP2019131702A publication Critical patent/JP2019131702A/en
Priority to JP2022022082A priority patent/JP7431871B2/en
Application granted granted Critical
Publication of JP7027183B2 publication Critical patent/JP7027183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

To provide a polyolefin crosslinked foam low in remaining ammonium concentration, capable of preventing contamination or corrosion due to ammonia, and suitable for impact cushioning applications such as a floor material or a wall material of house, a joint filling material of building, an automotive interior member, a member for package or the like.SOLUTION: There is provided a polyolefin crosslinked foam having density of 20 to 160 kg/m, ammonia concentration of 0 ppm to 100 ppm, and glass haze degree of 5% or less by using sodium bicarbonate and p,p'-oxybisbenzenesulfonyl hydrazide (OBSH) as foaming agents.SELECTED DRAWING: Figure 1

Description

本発明は、ポリオレフィン架橋発泡体とその製造方法に関する。   The present invention relates to a crosslinked polyolefin foam and a method for producing the same.

ポリオレフィン架橋発泡体は、耐久性があり、かつ耐薬品性や耐候性に優れるために、住宅の床材や壁材、建築の目地材、自動車の内装材、梱包用部材など衝撃緩衝用途に広く使用されている。
ポリオレフィン架橋発泡体の発泡は、コストや発泡体の厚み制御が容易な熱分解型発泡剤を用いる熱分解発泡で行うのが主流である。熱分解型発泡剤としては、作業性の良好なアゾジカルボンアミド(ADCA)系発泡剤が一般的に用いられている(特許文献1)。
Polyolefin cross-linked foam is durable and excellent in chemical resistance and weather resistance, so it is widely used in shock buffering applications such as residential flooring and wall materials, building joint materials, automobile interior materials, and packaging materials. It is used.
Foaming of a polyolefin cross-linked foam is mainly carried out by pyrolysis foaming using a pyrolytic foaming agent that allows easy control of cost and thickness of the foam. As the pyrolytic foaming agent, an azodicarbonamide (ADCA) foaming agent having good workability is generally used (Patent Document 1).

しかし、アゾジカルボンアミド系発泡剤は、分解残渣としてアンモニアが発生するため、梱包用緩衝部材として使用する場合に、電子機器や医療部品、自動車の内装材、ヘッドランプなどを、ポリオレフィン系架橋発泡体に残留するアンモニアによって汚染、腐食させる問題がある。例えば、ヘッドランプにあっては、アンモニアによって曇る問題がある。さらに、アゾジカルボンアミド(ADCA)は分解温度が200〜210℃と高温度であり、発泡体の製造時に金型温度を高温にする必要があった。   However, since azodicarbonamide-based foaming agents generate ammonia as a decomposition residue, when used as cushioning members for packaging, polyolefin-based crosslinked foams for electronic devices, medical parts, automotive interior materials, headlamps, etc. There is a problem of contamination and corrosion by residual ammonia. For example, a headlamp has a problem of being clouded by ammonia. Furthermore, azodicarbonamide (ADCA) has a decomposition temperature as high as 200 to 210 ° C., and it was necessary to increase the mold temperature during the production of the foam.

ポリオレフィン系架橋発泡体に残留するアンモニアの影響を抑えるために、アンモニア吸着剤を含有させてアンモニア濃度を200ppm〜1000ppmに減らしたオレフィン系架橋発泡体が提案されている(特許文献2)。   In order to suppress the influence of ammonia remaining in the polyolefin-based crosslinked foam, an olefin-based crosslinked foam containing an ammonia adsorbent and reducing the ammonia concentration to 200 ppm to 1000 ppm has been proposed (Patent Document 2).

特開平11−228725号公報JP-A-11-228725 特開2012−131848号公報JP 2012-131848 A

しかし、アンモニア濃度を200ppm〜1000ppmに減らしたポリオレフィン系架橋発泡体であっても、残留するアンモニアによる汚染、腐食の問題の解決には不十分であり、更なる解決が求められている。   However, even a polyolefin-based crosslinked foam having an ammonia concentration reduced to 200 ppm to 1000 ppm is insufficient for solving the problems of contamination and corrosion due to residual ammonia, and further solutions are required.

本発明は前記の点に鑑みなされたものであって、アンモニアによる汚染、腐食を防ぐことができるポリオレフィン系架橋発泡体とその製造方法の提供を目的とする。   This invention is made | formed in view of the said point, Comprising: It aims at provision of the polyolefin-type crosslinked foam which can prevent the contamination and corrosion by ammonia, and its manufacturing method.

請求項1の発明は、密度が20〜160kg/m、アンモニア濃度が0ppm〜100ppm、ガラス霞度が5%以下であるポリオレフィン系架橋発泡体に係る。 The invention of claim 1 relates to a polyolefin-based crosslinked foam having a density of 20 to 160 kg / m 3 , an ammonia concentration of 0 ppm to 100 ppm, and a glass strength of 5% or less.

請求項2の発明は、請求項1において、発泡剤は重曹及びp,p’−オキシビスベンゼンスルホニルヒドラジドの併用であることを特徴とする。   The invention of claim 2 is characterized in that, in claim 1, the foaming agent is a combined use of baking soda and p, p'-oxybisbenzenesulfonylhydrazide.

請求項3の発明は、密度が20〜160kg/m、アンモニア濃度が0ppm〜100ppm、ガラス霞度が5%以下であるポリオレフィン系架橋発泡体の製造方法であって、発泡剤として重曹とp,p’−オキシビスベンゼンスルホニルヒドラジドを、重曹の量よりもp,p’−オキシビスベンゼンスルホニルヒドラジドの量を大にして併用し、一段発泡または二段発泡によって発泡倍率6〜40倍で発泡させることを特徴とするポリオレフィン系架橋発泡体の製造方法に係る。 The invention of claim 3 is a method for producing a polyolefin-based crosslinked foam having a density of 20 to 160 kg / m 3 , an ammonia concentration of 0 ppm to 100 ppm, and a glass consistency of 5% or less. , P′-oxybisbenzenesulfonyl hydrazide is used in combination with a larger amount of p, p′-oxybisbenzenesulfonyl hydrazide than the amount of baking soda, and foaming at a foaming ratio of 6 to 40 times by one-stage foaming or two-stage foaming. The present invention relates to a method for producing a polyolefin-based crosslinked foam.

請求項4の発明は、請求項3において、前記発泡剤は、p,p’−オキシビスベンゼンスルホニルヒドラジドの量/重曹の量=5.5/4.5〜77/23であることを特徴とする。   The invention of claim 4 is characterized in that, in claim 3, the blowing agent is an amount of p, p′-oxybisbenzenesulfonylhydrazide / amount of baking soda = 5.5 / 4.5 to 77/23. And

請求項5の発明は、請求項3または4において、前記発泡剤は、ポリオレフィン系樹脂100重量部に対して3.0〜35重量部であることを特徴とする。   The invention of claim 5 is characterized in that, in claim 3 or 4, the foaming agent is 3.0 to 35 parts by weight with respect to 100 parts by weight of the polyolefin resin.

本発明によれば、残留するアンモニアによる汚染、腐食を防ぐことができるポリオレフィン系架橋発泡体が得られる。   According to the present invention, a polyolefin-based crosslinked foam capable of preventing contamination and corrosion by residual ammonia is obtained.

実施例と比較例の配合及び測定結果を示す表である。It is a table | surface which shows the mixing | blending and measurement result of an Example and a comparative example.

本発明のポリオレフィン系架橋発泡体は、住宅の床材や壁材、建築の目地材、自動車の内装材、梱包用部材など衝撃緩衝用途に好適なものであり、密度(JIS K 6767準拠)が20〜160kg/m、アンモニア濃度は0ppm〜100ppm、ガラス霞度(ISO6452準拠)が5%以下である。アンモニア濃度は、丸底フラスコ500ccにサンプルを0.1g投入し、80℃のオーブン中に2時間放置した後、取り出して放冷し、アンモニア検知管(ガステック製)にて測定した。 The polyolefin-based crosslinked foam of the present invention is suitable for impact buffering applications such as residential flooring and wall materials, building joint materials, automobile interior materials, and packaging materials, and has a density (conforming to JIS K 6767). 20 to 160 kg / m 3 , the ammonia concentration is 0 ppm to 100 ppm, and the glass consistency (ISO 6452 compliant) is 5% or less. The ammonia concentration was measured by using an ammonia detector tube (manufactured by Gastec) after putting 0.1 g of the sample into a 500 cc round bottom flask and leaving it in an oven at 80 ° C. for 2 hours, taking it out and allowing it to cool.

ポリオレフィン系架橋発泡体を、例えば梱包用緩衝部材として使用した場合、ポリオレフィン系架橋発泡体の密度が低すぎると、発泡体が柔軟化されすぎて形状が保持できず緩衝材として好ましくない結果となる。一方、密度が高過ぎると発泡体は硬くなって柔軟性にかけ緩衝材として好ましくない結果となる。このため、密度は20〜160kg/mが好ましい。
また、ポリオレフィン系架橋発泡体のアンモニア濃度が高すぎると、梱包した製品に対する汚染、腐食の問題が大きくなるため、アンモニア濃度は0ppm〜100ppmが好ましい。
ポリオレフィン系架橋発泡体のガラス霞度が高すぎると、梱包したヘッドランプに曇りを生じ易くなるため、ガラス霞度は5%以下が好ましい。
When the polyolefin-based crosslinked foam is used as, for example, a cushioning member for packing, if the density of the polyolefin-based crosslinked foam is too low, the foam is too soft and the shape cannot be maintained, resulting in an unfavorable result as a cushioning material. . On the other hand, if the density is too high, the foam becomes hard and is subjected to flexibility, resulting in an undesirable result as a cushioning material. For this reason, the density is preferably 20 to 160 kg / m 3 .
Moreover, since the problem of the contamination and corrosion with respect to the packaged product will become large when the ammonia concentration of polyolefin type cross-linked foam is too high, the ammonia concentration is preferably 0 ppm to 100 ppm.
If the polyolefin-based crosslinked foam has an excessively high glass strength, the packaged headlamp is likely to be fogged. Therefore, the glass strength is preferably 5% or less.

ポリレフィン系架橋発泡体を形成するポリオレフィン系樹脂としては、低密度、中密度、高密度、直鎖状低密度などのポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−酢酸ビニル共重合体、エチレンとメチル、エチル、プロピル若しくはブチルの各アクリル酸エステル(このエステルの含有量;45モル%以内)との共重合体、又はこれらのそれぞれ塩素含有率60重量%まで塩素化したもの等を挙げることができる。特に低密度のポリエチレンが好ましい。   Examples of polyolefin resins that form polyolefin-based crosslinked foams include polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-butene copolymers, ethylene-, such as low density, medium density, high density, and linear low density. Vinyl acetate copolymer, copolymer of ethylene and each acrylic acid ester of methyl, ethyl, propyl or butyl (the content of this ester; within 45 mol%), or chlorine up to 60% by weight of each of these. And the like. Particularly preferred is low density polyethylene.

ポリオレフィン系架橋樹脂発泡体は、一段発泡または二段発泡によって製造される。一段発泡では、ポリオレフィン系樹脂と発泡剤を含む発泡性樹脂組成物を発泡型に充填し、加熱加圧して発泡剤を分解させた後、発泡型を開放して発泡させることにより、所望のポリオレフィン系架橋樹脂発泡体を得る。二段発泡では、ポリオレフィン系樹脂と発泡剤を含む発泡性樹脂組成物を一次発泡型に充填し、加熱加圧させることにより一次発泡させて一次発泡体を形成し、次に一次発泡体の外形よりも内面形状の大きい二次発泡型に一次発泡体を収容し、常圧下加熱することにより二次発泡させて所望のポリオレフィン系架橋発泡体を得る。二段発泡では、一段発泡よりも発泡倍率の高い発泡体が得られる。   The polyolefin-based crosslinked resin foam is produced by one-stage foaming or two-stage foaming. In one-stage foaming, a foamable resin composition containing a polyolefin resin and a foaming agent is filled in a foaming mold, heated and pressurized to decompose the foaming agent, and then the foaming mold is opened to foam the desired polyolefin. A cross-linked resin foam is obtained. In two-stage foaming, a foamable resin composition containing a polyolefin-based resin and a foaming agent is filled into a primary foaming mold and primary foamed by heating and pressurizing to form a primary foam, and then the outer shape of the primary foam The primary foam is accommodated in a secondary foaming mold having a larger inner surface shape, and subjected to secondary foaming by heating under normal pressure to obtain a desired polyolefin-based crosslinked foam. In the two-stage foaming, a foam having a higher foaming ratio than that in the first-stage foaming is obtained.

発泡剤としては、重曹(炭酸水素ナトリウム)とp,p’−オキシビスベンゼンスルホニルヒドラジド(OBSH)が併用される。重曹単独では、ポリオレフィン系架橋発泡体の発泡後に収縮を生じ易くなり、一方、p,p’−オキシビスベンゼンスルホニルヒドラジド単独では、発泡不足を生じ易くなる。重曹とp,p’−オキシビスベンゼンスルホニルヒドラジドを併用することにより、発泡後の収縮や発泡不足を生じ難くできる。重曹の量(重量部)とp,p’−オキシビスベンゼンスルホニルヒドラジドの量(重量部)は、重曹の量よりもp,p’−オキシビスベンゼンスルホニルヒドラジドの量を多くするのが好ましい。重曹の量よりもp,p’−オキシビスベンゼンスルホニルヒドラジドの量を多くすることによって、p,p’−オキシビスベンゼンスルホニルヒドラジドの分解ガスである窒素ガスを重曹の分解ガスである炭酸ガスよりも多くすることが可能となる。発泡成形後には、炭酸ガスだけでなく、拡散係数が低い窒素ガスで保持されているため、発泡成形後の急激な収縮、変形を抑制することができる。より好ましくは、p,p’−オキシビスベンゼンスルホニルヒドラジドの量(重量部)/重曹の量(重量部)=5.5/4.5〜77/23である。   As the foaming agent, sodium bicarbonate (sodium bicarbonate) and p, p'-oxybisbenzenesulfonyl hydrazide (OBSH) are used in combination. Sodium bicarbonate alone tends to cause shrinkage after foaming of the polyolefin-based crosslinked foam, while p, p'-oxybisbenzenesulfonyl hydrazide alone tends to cause insufficient foaming. By using sodium bicarbonate and p, p'-oxybisbenzenesulfonylhydrazide in combination, shrinkage after foaming and insufficient foaming can be made difficult to occur. The amount of sodium bicarbonate (parts by weight) and the amount of p, p'-oxybisbenzenesulfonyl hydrazide (parts by weight) are preferably greater than the amount of sodium bicarbonate. By increasing the amount of p, p′-oxybisbenzenesulfonyl hydrazide over the amount of sodium bicarbonate, nitrogen gas, which is a decomposition gas of p, p′-oxybisbenzenesulfonyl hydrazide, is changed from carbon dioxide, which is a decomposition gas of sodium bicarbonate. Can be increased. After foam molding, since not only carbon dioxide gas but also nitrogen gas having a low diffusion coefficient is held, rapid shrinkage and deformation after foam molding can be suppressed. More preferably, the amount of p, p′-oxybisbenzenesulfonylhydrazide (parts by weight) / the amount of sodium bicarbonate (parts by weight) = 5.5 / 4.5 to 77/23.

重曹及びp,p’−オキシビスベンゼンスルホニルヒドラジドは、ポリオレフィン系架橋発泡体の製造時における加熱によって、それぞれ熱分解してガスを発生し、ポリオレフィン系樹脂を発泡させる。重曹は、140℃〜170℃で熱分解により炭酸ガスを発生し、分解残渣として炭酸ナトリウムを生じる。一方、p,p’−オキシビスベンゼンスルホニルヒドラジドは、155℃〜165℃で熱分解により窒素ガスを発生し、分解残渣としてポリジチオフェニルエーテル、ポリチオフェニルベンゼンスルホニルエーテルを生じる。重曹及びp,p’−オキシビスベンゼンスルホニルヒドラジドの何れも分解残渣としてアンモニアを生じないため、ポリオレフィン架橋発泡体のアンモニア濃度を減らすことができる。
また、重曹とp,p’−オキシビスベンゼンスルホニルヒドラジドの両者の熱分解温度の範囲の差が±15℃以内と近く、155℃〜165℃の範囲で、ともに熱分解可能であるため、発泡バランスがよく、混合する発泡剤として好ましい。
Baking soda and p, p′-oxybisbenzenesulfonylhydrazide are thermally decomposed by heating during the production of the polyolefin-based crosslinked foam to generate gas, thereby foaming the polyolefin-based resin. Sodium bicarbonate generates carbon dioxide by thermal decomposition at 140 ° C. to 170 ° C., and sodium carbonate is generated as a decomposition residue. On the other hand, p, p′-oxybisbenzenesulfonyl hydrazide generates nitrogen gas by thermal decomposition at 155 ° C. to 165 ° C., and produces polydithiophenyl ether and polythiophenylbenzenesulfonyl ether as decomposition residues. Neither baking soda nor p, p′-oxybisbenzenesulfonyl hydrazide produces ammonia as a decomposition residue, so the ammonia concentration in the polyolefin crosslinked foam can be reduced.
In addition, the difference in thermal decomposition temperature range between sodium bicarbonate and p, p'-oxybisbenzenesulfonyl hydrazide is close to within ± 15 ° C, and both can be thermally decomposed in the range of 155 ° C to 165 ° C. Good balance and preferable as a foaming agent to be mixed.

発泡剤の量はポリオレフィン系樹脂100重量部に対して3.0〜35重量部が好ましい。発泡剤の量が少なすぎると、発泡が不良になったり、密度が高くなったりする。一方、発泡剤の量が多すぎると、発泡型を開放した際に発泡体が破裂したり、密度が低くなりすぎたりする。   The amount of the foaming agent is preferably 3.0 to 35 parts by weight with respect to 100 parts by weight of the polyolefin resin. If the amount of the foaming agent is too small, foaming becomes poor or the density becomes high. On the other hand, when the amount of the foaming agent is too large, the foam bursts or the density becomes too low when the foaming mold is opened.

発泡性樹脂組成物には、発泡剤と共に架橋剤が含まれる。架橋剤としては、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス−ターシャリーブチルパーオキシヘキサン、1,3−ビス−ターシャリーパーオキシ−イソプロピルベンゼンなどの有機過酸化物等を挙げることができる。架橋剤の量は、ポリオレフィン系樹脂100重量部に対して1.0〜5.0重量部が好ましい。   A foaming resin composition contains a crosslinking agent together with a foaming agent. Examples of the crosslinking agent include organic peroxides such as dicumyl peroxide, 2,5-dimethyl-2,5-bis-tertiary butyl peroxyhexane, 1,3-bis-tertiary peroxy-isopropylbenzene, and the like. be able to. The amount of the crosslinking agent is preferably 1.0 to 5.0 parts by weight with respect to 100 parts by weight of the polyolefin resin.

また、発泡性樹脂組成物には、適宜助剤が含まれる。助剤としては、発泡助剤、造核剤、その他の無機フィラー、着色剤などが挙げられる。発泡助剤としては、酸化亜鉛、酸化鉛等の金属酸化物、低級又は高級脂肪酸あるいはそれらの金属塩等を挙げることができる。造核剤としては、重炭酸カルシウムなどを挙げることができる。その他の無機フィラーとしては、導電性カーボンブラックなどを挙げることができる。   Moreover, an auxiliary agent is suitably contained in the foamable resin composition. Examples of auxiliary agents include foaming auxiliary agents, nucleating agents, other inorganic fillers, and coloring agents. Examples of the foaming aid include metal oxides such as zinc oxide and lead oxide, lower or higher fatty acids, and metal salts thereof. Examples of the nucleating agent include calcium bicarbonate. Examples of other inorganic fillers include conductive carbon black.

一段発泡の場合の加熱及び加圧は、発泡倍率によって異なるが、例として加熱温度130〜170℃、加熱時間30〜60分、圧力5〜35Pa程度を挙げる。
二段発泡の場合の加熱及び加圧は、発泡倍率によって異なるが、例として一次発泡時の加熱温度100〜150℃、加熱時間30〜60分、圧力5〜35Pa程度、二次発泡時の加熱温度140〜170℃、加熱時間25〜180分程度を挙げる。発泡倍率は、一段発泡及び二段発泡の何れの場合でも6〜40倍が好ましい。発泡倍率は、未発泡樹脂を1000kg/mとし、以下式1で算出される値である。
1000kg/m(未発泡) ÷ 発泡体密度実測値(kg/m) (式1)
発泡体密度実測値は、JIS K 6767に準拠して測定した値である。
発泡倍率が低すぎると発泡体が柔軟化されすぎて形状が保持できず緩衝材として好ましくない結果となり、逆に高すぎると発泡体は硬くなって柔軟性にかけ緩衝材として好ましくない結果となる。また、一段発泡及び二段発泡時における発泡倍率の調整は、発泡剤によって6〜40倍となるようにする。
Although heating and pressurization in the case of one-stage foaming vary depending on the foaming ratio, examples include a heating temperature of 130 to 170 ° C., a heating time of 30 to 60 minutes, and a pressure of about 5 to 35 Pa.
Heating and pressurization in the case of two-stage foaming vary depending on the foaming ratio. For example, the heating temperature during primary foaming is 100 to 150 ° C., the heating time is 30 to 60 minutes, the pressure is about 5 to 35 Pa, and the heating during secondary foaming. The temperature is about 140 to 170 ° C., and the heating time is about 25 to 180 minutes. The expansion ratio is preferably 6 to 40 times in either case of single-stage foaming or two-stage foaming. The expansion ratio is a value calculated by Equation 1 below, assuming that the unfoamed resin is 1000 kg / m 3 .
1000 kg / m 3 (not foamed) ÷ foam density measured value (kg / m 3 ) (Formula 1)
The measured value of foam density is a value measured according to JIS K 6767.
If the expansion ratio is too low, the foam is too soft and cannot retain its shape, which is not preferable as a cushioning material. Conversely, if the foaming ratio is too high, the foam becomes hard and is not flexible as a cushioning material. Moreover, adjustment of the expansion ratio at the time of one-stage foaming and two-stage foaming is made to be 6 to 40 times with a foaming agent.

ポリオレフィンとして低密度ポリエチレン(LDPE):MFR2、密度0.924kg/m、品番UBEポリエチレンF224C、宇部丸善ポリエチレン株式会社製を用い、重曹:三協化成株式会社製セルマイク266、p,p'−オキシビスベンゼンスルホニルヒドラジド(OBSH):永和化成工業社製ネオセルボンN#5000、アゾジカルボンアミド(ADCA):永和化成工業社製パンスレンH7310を、図1の配合とした。さらに架橋剤(図1に示さず)として化薬アクゾ株式会社製カヤクミルD−40CをLDPE100重量部に対して2.7重量部配合した混合物をニーダーにて混練し、その後ロールにて混練し、実施例1〜7及び比較例1〜6の発泡性樹脂組成物を得た。混練は、1Lニーダーを用いて90℃の温度で20分間行った。 Low density polyethylene (LDPE): MFR2, density 0.924 kg / m 3 , product number UBE polyethylene F224C, manufactured by Ube Maruzen Polyethylene Co., Ltd., baking soda: Sankyo Kasei Co., Ltd. Cellmic 266, p, p′-oxy Bisbenzenesulfonyl hydrazide (OBSH): Neocerbon N # 5000 manufactured by Eiwa Kasei Kogyo Co., Ltd., and Azodicarbonamide (ADCA): Panthrene H7310 manufactured by Eiwa Kasei Kogyo Co., Ltd. were used as the formulation shown in FIG. Furthermore, as a cross-linking agent (not shown in FIG. 1), a mixture in which 2.7 parts by weight of Kayaku Mill D-40C manufactured by Kayaku Akzo Co., Ltd. with respect to 100 parts by weight of LDPE was kneaded with a kneader, and then kneaded with a roll, The foamable resin compositions of Examples 1 to 7 and Comparative Examples 1 to 6 were obtained. Kneading was performed at a temperature of 90 ° C. for 20 minutes using a 1 L kneader.

前記発泡性樹脂組成物を用い、実施例1〜4については一段発泡により製造し、実施例5、6及び比較例1〜6については二段発泡より製造した。
実施例1〜4は、混練後の発泡性樹脂組成物を、発泡型に充填して加圧下加熱し、除圧して発泡させ、発泡型からポリオレフィン系架橋発泡体を取り出した。発泡型の成形空間は、縦160mm、横160mm、深さ33mm、容積0.85Lである。発泡性樹脂組成物の充填量は、何れも900g、加圧は7Pa、加熱は135℃で50分間である。
Using the foamable resin composition, Examples 1 to 4 were produced by single-stage foaming, and Examples 5 and 6 and Comparative Examples 1 to 6 were produced by two-stage foaming.
In Examples 1 to 4, the foamable resin composition after kneading was filled in a foaming mold, heated under pressure, decompressed and foamed, and a polyolefin-based crosslinked foam was taken out from the foaming mold. The molding space for the foaming mold is 160 mm long, 160 mm wide, 33 mm deep, and 0.85 L in volume. The filling amount of the foamable resin composition is 900 g for all, the pressure is 7 Pa, and the heating is 135 ° C. for 50 minutes.

実施例5、6及び比較例1〜6は、混練後の発泡性樹脂組成物を一次発泡型に充填して加圧下加熱し、除圧して発泡させ、その後に一次発泡型から一次発泡体を取り出す一次発泡工程を行い、得られた一次発泡体を二次発泡型に収容し、常圧下二次加熱による二次発泡を行って、二次発泡型からポリオレフィン系架橋発泡体を取り出した。   In Examples 5 and 6 and Comparative Examples 1 to 6, the foamable resin composition after kneading was filled into a primary foaming mold, heated under pressure, decompressed and foamed, and then the primary foam was removed from the primary foaming mold. The primary foaming process to take out was performed, the obtained primary foam was accommodated in the secondary foaming mold, the secondary foaming was performed by secondary heating under normal pressure, and the polyolefin-based crosslinked foam was taken out from the secondary foaming mold.

一次発泡型の成形空間は、縦160mm、横160mm、深さ33mm、容積0.85Lである。発泡性樹脂組成物の充填量は、何れも900g、加圧は7Pa、加熱は130℃で50分間である。
二次発泡型の成形空間は、縦300mm、横300mm、深さ55mm、容積1.5Lである。加熱は150℃で50分間である。
The molding space of the primary foaming mold is 160 mm long, 160 mm wide, 33 mm deep, and 0.85 L in volume. The filling amount of the foamable resin composition is 900 g for all, the pressure is 7 Pa, and the heating is 130 ° C. for 50 minutes.
The molding space of the secondary foaming mold is 300 mm long, 300 mm wide, 55 mm deep, and 1.5 L in volume. Heating is at 150 ° C. for 50 minutes.

各実施例及び各比較例における密度(JIS K 6767準拠)、発泡倍率、アンモニア濃度、ガラス霞度(ISO6452準拠)、収縮を測定した。測定結果は図1に示す。   The density (conforming to JIS K 6767), expansion ratio, ammonia concentration, glass strength (conforming to ISO6452), and shrinkage in each example and each comparative example were measured. The measurement results are shown in FIG.

発泡倍率は、上記式1により算出した。
アンモニア濃度は、丸底フラスコに0.1gのサンプルを投入し、80℃のオーブンで2時間加熱し、その後冷えないうちに10〜1000ppmを測定できるガステック製検知管(品番:3M)で粗々の値を測定した後、100ppm未満を測定できる、精度の良いガステック検知管(品番:3L)にてアンモニア濃度を測定した。
ガラス霞度(フォギング)は、サンプルをガラス板で遮蔽した状態で80℃×20時間加熱し、ガラス板に付着した曇り度を日本電色工業株式会社製(品番:NDH−20H)により測定した。
収縮は、発泡型から取り出した直後の発泡体の厚み寸法と、発泡型から取り出してから24時間後の厚み寸法との差分を測定し、その差分を発泡型から取り出した直後の発泡体の厚み寸法に対する比率で表した。収縮が5.0%以下の場合に「〇」とし、5.0%を超える場合は「×」とした。
総合判定は、アンモニア濃度が0ppm〜100ppm、ガラス霞度が5%以下、収縮が5.0%以下の条件を全て満たす場合に「〇」とし、一つでも外れる場合に「×」とした。
The expansion ratio was calculated by the above formula 1.
Ammonia concentration was roughly measured with a GASTEC detector tube (part number: 3M), in which a 0.1 g sample was put into a round bottom flask, heated in an oven at 80 ° C. for 2 hours, and then measured at 10 to 1000 ppm before cooling. After measuring various values, the ammonia concentration was measured with an accurate GASTEC detector tube (product number: 3 L) capable of measuring less than 100 ppm.
The glass haze (fogging) was heated at 80 ° C. for 20 hours while the sample was shielded with a glass plate, and the haze attached to the glass plate was measured by Nippon Denshoku Industries Co., Ltd. (product number: NDH-20H). .
Shrinkage is measured by measuring the difference between the thickness dimension of the foam immediately after removal from the foaming mold and the thickness dimension 24 hours after removal from the foaming mold, and the thickness of the foam immediately after removal from the foaming mold. Expressed as a ratio to dimensions. When the shrinkage was 5.0% or less, “◯” was indicated, and when the shrinkage exceeded 5.0%, “X” was indicated.
The overall judgment was “◯” when all the conditions of ammonia concentration 0 ppm to 100 ppm, glass strength 5% or less, and shrinkage 5.0% or less were satisfied, and “x” when even one of them was off.

実施例1は、発泡剤の量が3.0重量部、OBSH/重曹の重量比が6/4の例である。実施例1は、アンモニア濃度15ppm、ガラス霞度0.7%、密度150kg/m、発泡倍率6.7倍、収縮2.1%であり、総合評価「〇」である。 Example 1 is an example in which the amount of the foaming agent is 3.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 6/4. Example 1 has an ammonia concentration of 15 ppm, a glass glass strength of 0.7%, a density of 150 kg / m 3 , a foaming ratio of 6.7 times, and a shrinkage of 2.1%, and the overall evaluation is “◯”.

実施例2は、発泡剤の量が3.0重量部、OBSH/重曹の重量比が2/1の例である。実施例2は、アンモニア濃度25ppm、ガラス霞度2.3%、密度140kg/m、発泡倍率7.0倍、収縮2.1%であり、総合評価「〇」である。 Example 2 is an example in which the amount of the foaming agent is 3.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 2/1. In Example 2, the ammonia concentration was 25 ppm, the glass purity was 2.3%, the density was 140 kg / m 3 , the foaming ratio was 7.0 times, and the shrinkage was 2.1%, and the overall evaluation was “◯”.

実施例3は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が6/4の例である。実施例3は、アンモニア濃度5ppm、ガラス霞度0.3%、密度80kg/m、発泡倍率12.5倍、収縮2.3%であり、総合評価「〇」である。 Example 3 is an example in which the amount of the foaming agent is 7.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 6/4. In Example 3, the ammonia concentration was 5 ppm, the glass purity was 0.3%, the density was 80 kg / m 3 , the foaming ratio was 12.5 times, and the shrinkage was 2.3%, and the overall evaluation was “◯”.

実施例4は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が76/24の例である。実施例4は、アンモニア濃度40ppm、ガラス霞度2.1%、密度75kg/m、発泡倍率13.3倍、収縮2.6%であり、総合評価「〇」である。 Example 4 is an example in which the amount of the foaming agent is 7.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 76/24. In Example 4, the ammonia concentration was 40 ppm, the glass strength was 2.1%, the density was 75 kg / m 3 , the foaming ratio was 13.3 times, the shrinkage was 2.6%, and the overall evaluation was “◯”.

実施例5は、発泡剤の量が25.0重量部、OBSH/重曹の重量比が6/4の例である。実施例5は、アンモニア濃度20ppm、ガラス霞度0.4%、密度33kg/m、発泡倍率30.0倍、収縮3.6%であり、総合評価「〇」である。 Example 5 is an example in which the amount of the foaming agent is 25.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 6/4. Example 5 has an ammonia concentration of 20 ppm, a glass haze of 0.4%, a density of 33 kg / m 3 , an expansion ratio of 30.0 times, and a shrinkage of 3.6%, and the overall evaluation is “◯”.

実施例6は、発泡剤の量が35.0重量部、OBSH/重曹の重量比が6/4の例である。実施例6は、アンモニア濃度15ppm、ガラス霞度0.5%、密度25kg/m、発泡倍率40.0倍、収縮3.4%であり、総合評価「〇」である。 Example 6 is an example in which the amount of the foaming agent is 35.0 parts by weight and the weight ratio of OBSH / bicarbonate is 6/4. In Example 6, the ammonia concentration was 15 ppm, the glass strength was 0.5%, the density was 25 kg / m 3 , the foaming ratio was 40.0 times, and the shrinkage was 3.4%, and the overall evaluation was “◯”.

比較例1は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が0/7の例であり、OBSHが含まれていない。比較例1は、アンモニア濃度0ppm、ガラス霞度0.1%、密度200kg/m、発泡倍率5倍、収縮7.2%であり、総合評価「×」である。比較例1は、アンモニア濃度及びガラス霞度が小さかったが、発泡剤が重曹単独のため、成形後に炭酸ガスが急激に抜けることで、密度が高く、収縮も大きかった。 Comparative Example 1 is an example in which the amount of the foaming agent is 7.0 parts by weight, and the weight ratio of OBSH / sodium bicarbonate is 0/7, and does not contain OBSH. Comparative Example 1 has an ammonia concentration of 0 ppm, a glass strength of 0.1%, a density of 200 kg / m 3 , a foaming ratio of 5 times, and a shrinkage of 7.2%, and the overall evaluation is “x”. In Comparative Example 1, the ammonia concentration and the glass vigor were small, but since the blowing agent was baking soda alone, the carbon dioxide gas rapidly escaped after molding, resulting in high density and large shrinkage.

比較例2は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が5/5の例であり、OBSHと重曹の量が等しい。比較例2は、アンモニア濃度30ppm、ガラス霞度2.4%、密度100kg/m、発泡倍率10倍、収縮5.8%であり、総合評価「×」である。比較例2は、アンモニア濃度及びガラス霞度については小さかったが、密度が高く、収縮が大きかった。 Comparative Example 2 is an example in which the amount of the foaming agent is 7.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 5/5, and the amounts of OBSH and sodium bicarbonate are equal. Comparative Example 2 has an ammonia concentration of 30 ppm, a glass purity of 2.4%, a density of 100 kg / m 3 , a foaming ratio of 10 times, and a shrinkage of 5.8%, and is an overall evaluation “x”. In Comparative Example 2, the ammonia concentration and the glass haze were small, but the density was high and the shrinkage was large.

比較例3は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が8/2の例である。比較例3は、アンモニア濃度60ppm、ガラス霞度3.1%、密度180kg/m、発泡倍率5.5倍、収縮1.8%であり、総合評価「×」である。比較例3は、密度が高く、発泡不足であった。 Comparative Example 3 is an example in which the amount of the foaming agent is 7.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 8/2. Comparative Example 3 has an ammonia concentration of 60 ppm, a glass purity of 3.1%, a density of 180 kg / m 3 , a foaming ratio of 5.5 times, and a shrinkage of 1.8%, and is an overall evaluation “x”. In Comparative Example 3, the density was high and foaming was insufficient.

比較例4は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が7/0の例であり、重曹を含まない。比較例4は、アンモニア濃度65ppm、ガラス霞度3.6%、密度230kg/m、発泡倍率4.3倍、収縮1.7%であり、総合評価「×」である。比較例4は、発泡剤がOBSH単独のため、架橋が先行して行われ、発泡が十分になされず、密度が高く、発泡不足であった。 Comparative Example 4 is an example in which the amount of the foaming agent is 7.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 7/0, and does not include sodium bicarbonate. Comparative Example 4 has an ammonia concentration of 65 ppm, a glass purity of 3.6%, a density of 230 kg / m 3 , an expansion ratio of 4.3 times, and a shrinkage of 1.7%, and is an overall evaluation “x”. In Comparative Example 4, since the foaming agent was OBSH alone, crosslinking was performed in advance, foaming was not sufficiently performed, the density was high, and foaming was insufficient.

比較例5は、発泡剤の量が2.0重量部、OBSH/重曹の重量比が6/4の例であり、発泡剤の量が少ない。比較例5は、発泡しないため、アンモニア濃度、ガラス霞度、収縮を測定できず、総合評価「×」である。比較例5は、発泡しないため密度が900kg/mと高かった。発泡倍率は1.1倍であった。 Comparative Example 5 is an example in which the amount of the foaming agent is 2.0 parts by weight and the weight ratio of OBSH / sodium bicarbonate is 6/4, and the amount of the foaming agent is small. Since Comparative Example 5 does not foam, the ammonia concentration, the glass strength, and the shrinkage cannot be measured, and the overall evaluation is “x”. Comparative Example 5 had a high density of 900 kg / m 3 because it did not foam. The expansion ratio was 1.1 times.

比較例6は、発泡剤としてADCAを単独で5.0重量部使用した例である。比較例6は、アンモニア濃度900ppm、ガラス霞度22%、密度65kg/m、発泡倍率15倍、収縮1.8%であり、総合評価「×」である。比較例6は、発泡剤としてADCAを使用するため、アンモニア濃度及びガラス霞度が何れも高かった。 Comparative Example 6 is an example using 5.0 parts by weight of ADCA alone as a foaming agent. Comparative Example 6 has an ammonia concentration of 900 ppm, a glass strength of 22%, a density of 65 kg / m 3 , an expansion ratio of 15 times, and a shrinkage of 1.8%, and is an overall evaluation “x”. Since the comparative example 6 uses ADCA as a foaming agent, both the ammonia concentration and the glass haze were high.

このように、本発明では、残留するアンモニア濃度が低く、アンモニアによる汚染、腐食を防ぐことができるポリオレフィン系架橋発泡体が得られる。   As described above, in the present invention, a polyolefin-based crosslinked foam having a low residual ammonia concentration and capable of preventing contamination and corrosion by ammonia is obtained.

Claims (5)

密度が20〜160kg/m、アンモニア濃度が0ppm〜100ppm、ガラス霞度が5%以下であるポリオレフィン系架橋発泡体。 A polyolefin-based crosslinked foam having a density of 20 to 160 kg / m 3 , an ammonia concentration of 0 ppm to 100 ppm, and a glass strength of 5% or less. 発泡剤は重曹及びp,p’−オキシビスベンゼンスルホニルヒドラジドの併用であることを特徴とする請求項1に記載のポリオレフィン系架橋発泡体。   The polyolefin-based crosslinked foamed product according to claim 1, wherein the foaming agent is a combination of baking soda and p, p'-oxybisbenzenesulfonylhydrazide. 密度が20〜160kg/m、アンモニア濃度が0ppm〜100ppm、ガラス霞度が5%以下であるポリオレフィン系架橋発泡体の製造方法であって、
発泡剤として重曹とp,p’−オキシビスベンゼンスルホニルヒドラジドを、重曹の量よりもp,p’−オキシビスベンゼンスルホニルヒドラジドの量を大にして併用し、一段発泡または二段発泡によって発泡倍率6〜40倍で発泡させることを特徴とするポリオレフィン系架橋発泡体の製造方法。
A method for producing a polyolefin-based crosslinked foam having a density of 20 to 160 kg / m 3 , an ammonia concentration of 0 ppm to 100 ppm, and a glass strength of 5% or less,
Baking soda and p, p'-oxybisbenzenesulfonyl hydrazide as a blowing agent are used in combination with a larger amount of p, p'-oxybisbenzenesulfonyl hydrazide than the amount of baking soda. A method for producing a polyolefin-based crosslinked foam, wherein foaming is performed 6 to 40 times.
前記発泡剤は、p,p’−オキシビスベンゼンスルホニルヒドラジドの量/重曹の量=5.5/4.5〜77/23であることを特徴とする請求項3に記載のポリオレフィン系架橋発泡体の製造方法。   4. The polyolefin-based crosslinked foamed foam according to claim 3, wherein the blowing agent is p, p′-oxybisbenzenesulfonylhydrazide amount / sodium bicarbonate amount = 5.5 / 4.5 to 77/23. 5. Body manufacturing method. 前記発泡剤は、ポリオレフィン系樹脂100重量部に対して3.0〜35重量部であることを特徴とする請求項3または4に記載のポリオレフィン系架橋発泡体の製造方法。   The said foaming agent is 3.0-35 weight part with respect to 100 weight part of polyolefin resin, The manufacturing method of the polyolefin-type crosslinked foam of Claim 3 or 4 characterized by the above-mentioned.
JP2018014688A 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method Active JP7027183B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018014688A JP7027183B2 (en) 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method
JP2022022082A JP7431871B2 (en) 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014688A JP7027183B2 (en) 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022022082A Division JP7431871B2 (en) 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019131702A true JP2019131702A (en) 2019-08-08
JP7027183B2 JP7027183B2 (en) 2022-03-01

Family

ID=67545645

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018014688A Active JP7027183B2 (en) 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method
JP2022022082A Active JP7431871B2 (en) 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022022082A Active JP7431871B2 (en) 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method

Country Status (1)

Country Link
JP (2) JP7027183B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201056A1 (en) * 2020-03-31 2021-10-07 積水化学工業株式会社 Polyolefin resin foam sheet and vehicle interior member
KR20220145469A (en) * 2021-04-21 2022-10-31 한국신발피혁연구원 Foam composition applied for inorganic chemical blowing agent with improved foaming efficiency
CN115850832A (en) * 2022-09-06 2023-03-28 东莞市盈圆合创新材料有限公司 Environment-friendly antibacterial electron radiation cross-linked polyolefin foam and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439465A (en) * 1977-09-05 1979-03-26 Furukawa Electric Co Ltd:The Preparation of polypropylene foam
JP2012097285A (en) * 2012-02-20 2012-05-24 Inoac Corp Method for manufacturing polyolefin resin foam
JP2012224751A (en) * 2011-04-20 2012-11-15 Sanwa Kako Co Ltd Method for producing crosslinked polyolefin resin foam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292661A (en) 2002-03-29 2003-10-15 Tosoh Corp Polyolefin resin composition for foaming and foam composed of the same
JP2013142146A (en) 2012-01-12 2013-07-22 Tosoh Corp Foaming agent master batch, and foamed body using the same
JP2015145503A (en) 2015-03-31 2015-08-13 東レペフ加工品株式会社 Resin foam, cylindrical body and molded body
JP6834142B2 (en) 2016-02-19 2021-02-24 東レ株式会社 Flame-retardant polyolefin resin cross-linked foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439465A (en) * 1977-09-05 1979-03-26 Furukawa Electric Co Ltd:The Preparation of polypropylene foam
JP2012224751A (en) * 2011-04-20 2012-11-15 Sanwa Kako Co Ltd Method for producing crosslinked polyolefin resin foam
JP2012097285A (en) * 2012-02-20 2012-05-24 Inoac Corp Method for manufacturing polyolefin resin foam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201056A1 (en) * 2020-03-31 2021-10-07 積水化学工業株式会社 Polyolefin resin foam sheet and vehicle interior member
KR20220145469A (en) * 2021-04-21 2022-10-31 한국신발피혁연구원 Foam composition applied for inorganic chemical blowing agent with improved foaming efficiency
KR102565837B1 (en) * 2021-04-21 2023-08-11 한국신발피혁연구원 Foam composition applied for inorganic chemical blowing agent with improved foaming efficiency
CN115850832A (en) * 2022-09-06 2023-03-28 东莞市盈圆合创新材料有限公司 Environment-friendly antibacterial electron radiation cross-linked polyolefin foam and preparation method thereof

Also Published As

Publication number Publication date
JP7431871B2 (en) 2024-02-15
JP7027183B2 (en) 2022-03-01
JP2022063318A (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JP7431871B2 (en) Polyolefin crosslinked foam and its manufacturing method
JP5647606B2 (en) Gas generating agent
JP7027185B2 (en) Masterbatch for polyolefin-based crosslinked foam, method for producing polyolefin-based crosslinked foam and polyolefin-based crosslinked foam
JP7331176B2 (en) Masterbatch for polyolefin-based crosslinked foam, polyolefin-based crosslinked foam, and method for producing polyolefin-based crosslinked foam
JP5725957B2 (en) Method for producing cross-linked polyolefin foam
JPH07118435A (en) Resin foam of flame retardant polyolefin film
JP5022701B2 (en) Polyolefin resin foam and method for producing the same
JP5432301B2 (en) Method for producing polyolefin resin foam
JP3565815B2 (en) Conductive cross-linked polyethylene foam and method for producing the same
JPH06184342A (en) Flame-retardant heat-resistant polyolefin foam
JP4965136B2 (en) Method for producing polyolefin resin foam
JP4468029B2 (en) Method for producing flame retardant crosslinked polyolefin foam
JP2007231064A (en) Method for producing polyolefin resin foam
JP3766838B2 (en) Method for producing polyolefin open cell
JP4903452B2 (en) Method for producing polyolefin resin foam
JPH1053756A (en) Blowing agent composition and foam
JP3047623B2 (en) Composition for crosslinked polyolefin resin foam
JP3186821B2 (en) Method for producing polyolefin resin foam and foam
JP2005264005A (en) Method for producing flame-retardant conductive crosslinked polyolefin foam
JPH08208875A (en) Foamed material of flame-retardant polyolefin resin
JP2001059038A (en) Production of flame-retardant crosslinked polyethylene- based foam
JPH05295149A (en) Resin composition for crosslinked polyolefin foamed body
JP2001233985A (en) Flame-retardant polyolefin resin foam and its manufacturing method
JP2003096225A (en) Production method of open-cell crosslinked polyolefin foam
JPH1160773A (en) Production of crosslinked foamed material of polyolefin resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220216

R150 Certificate of patent or registration of utility model

Ref document number: 7027183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150