JP7431871B2 - Polyolefin crosslinked foam and its manufacturing method - Google Patents

Polyolefin crosslinked foam and its manufacturing method Download PDF

Info

Publication number
JP7431871B2
JP7431871B2 JP2022022082A JP2022022082A JP7431871B2 JP 7431871 B2 JP7431871 B2 JP 7431871B2 JP 2022022082 A JP2022022082 A JP 2022022082A JP 2022022082 A JP2022022082 A JP 2022022082A JP 7431871 B2 JP7431871 B2 JP 7431871B2
Authority
JP
Japan
Prior art keywords
foaming
foam
ppm
density
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022022082A
Other languages
Japanese (ja)
Other versions
JP2022063318A (en
Inventor
晋 中野
直樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2022022082A priority Critical patent/JP7431871B2/en
Publication of JP2022063318A publication Critical patent/JP2022063318A/en
Application granted granted Critical
Publication of JP7431871B2 publication Critical patent/JP7431871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、ポリオレフィン架橋発泡体とその製造方法に関する。 The present invention relates to a polyolefin crosslinked foam and a method for producing the same.

ポリオレフィン架橋発泡体は、耐久性があり、かつ耐薬品性や耐候性に優れるために、住宅の床材や壁材、建築の目地材、自動車の内装材、梱包用部材など衝撃緩衝用途に広く使用されている。
ポリオレフィン架橋発泡体の発泡は、コストや発泡体の厚み制御が容易な熱分解型発泡剤を用いる熱分解発泡で行うのが主流である。熱分解型発泡剤としては、作業性の良好なアゾジカルボンアミド(ADCA)系発泡剤が一般的に用いられている(特許文献1)。
Polyolefin crosslinked foam is durable and has excellent chemical and weather resistance, so it is widely used in shock-absorbing applications such as residential flooring and wall materials, building joints, automobile interior materials, and packaging materials. It is used.
Foaming of crosslinked polyolefin foams is mainly carried out by pyrolytic foaming using a pyrolytic foaming agent, which is easy to control the cost and the thickness of the foam. As a thermally decomposable blowing agent, an azodicarbonamide (ADCA) blowing agent with good workability is generally used (Patent Document 1).

しかし、アゾジカルボンアミド系発泡剤は、分解残渣としてアンモニアが発生するため、梱包用緩衝部材として使用する場合に、電子機器や医療部品、自動車の内装材、ヘッドランプなどを、ポリオレフィン系架橋発泡体に残留するアンモニアによって汚染、腐食させる問題がある。例えば、ヘッドランプにあっては、アンモニアによって曇る問題がある。さらに、アゾジカルボンアミド(ADCA)は分解温度が200~210℃と高温度であり、発泡体の製造時に金型温度を高温にする必要があった。 However, azodicarbonamide-based foaming agents generate ammonia as a decomposition residue, so when used as packaging cushioning materials, polyolefin-based crosslinked foams are used for electronic devices, medical parts, automobile interior materials, headlamps, etc. There is a problem of contamination and corrosion caused by residual ammonia. For example, headlamps have the problem of fogging due to ammonia. Furthermore, azodicarbonamide (ADCA) has a high decomposition temperature of 200 to 210° C., so it was necessary to raise the mold temperature to a high temperature during foam production.

ポリオレフィン系架橋発泡体に残留するアンモニアの影響を抑えるために、アンモニア吸着剤を含有させてアンモニア濃度を200ppm~1000ppmに減らしたオレフィン系架橋発泡体が提案されている(特許文献2)。 In order to suppress the influence of ammonia remaining in the polyolefin crosslinked foam, an olefin crosslinked foam containing an ammonia adsorbent to reduce the ammonia concentration to 200 ppm to 1000 ppm has been proposed (Patent Document 2).

特開平11-228725号公報Japanese Patent Application Publication No. 11-228725 特開2012-131848号公報JP2012-131848A

しかし、アンモニア濃度を200ppm~1000ppmに減らしたポリオレフィン系架橋発泡体であっても、残留するアンモニアによる汚染、腐食の問題の解決には不十分であり、更なる解決が求められている。 However, even a polyolefin crosslinked foam with a reduced ammonia concentration of 200 ppm to 1000 ppm is insufficient to solve the problems of contamination and corrosion caused by residual ammonia, and further solutions are required.

本発明は前記の点に鑑みなされたものであって、アンモニアによる汚染、腐食を防ぐことができるポリオレフィン系架橋発泡体とその製造方法の提供を目的とする。 The present invention has been made in view of the above points, and aims to provide a polyolefin crosslinked foam that can prevent contamination and corrosion caused by ammonia, and a method for producing the same.

第1の態様は、密度が20~160kg/m、アンモニア濃度が0ppm~100ppm、ガラス霞度が5%以下であるポリオレフィン系架橋発泡体に係る。 The first embodiment relates to a polyolefin crosslinked foam having a density of 20 to 160 kg/m 3 , an ammonia concentration of 0 ppm to 100 ppm, and a glass haze of 5% or less.

第2の態様は、第1の態様において、発泡剤は重曹及びp,p’-オキシビスベンゼンスルホニルヒドラジドの併用であることを特徴とする。 The second aspect is characterized in that in the first aspect , the blowing agent is a combination of baking soda and p,p'-oxybisbenzenesulfonyl hydrazide.

第3の態様は、密度が20~160kg/m、アンモニア濃度が0ppm~100ppm、ガラス霞度が5%以下であるポリオレフィン系架橋発泡体の製造方法であって、発泡剤として重曹とp,p’-オキシビスベンゼンスルホニルヒドラジドを、重曹の量よりもp,p’-オキシビスベンゼンスルホニルヒドラジドの量を大にして併用し、一段発泡または二段発泡によって発泡倍率6~40倍で発泡させることを特徴とするポリオレフィン系架橋発泡体の製造方法に係る。 A third aspect is a method for producing a polyolefin crosslinked foam having a density of 20 to 160 kg/m 3 , an ammonia concentration of 0 ppm to 100 ppm, and a glass haze of 5% or less, comprising baking soda as a blowing agent, p. P'-oxybisbenzenesulfonyl hydrazide is used in combination with p,p'-oxybisbenzenesulfonyl hydrazide in a larger amount than the amount of baking soda, and foaming is performed at a foaming ratio of 6 to 40 times by one-stage foaming or two-stage foaming. The present invention relates to a method for producing a polyolefin crosslinked foam, characterized in that:

第4の態様は、第3の態様において、前記発泡剤は、p,p’-オキシビスベンゼンスルホニルヒドラジドの量/重曹の量=5.5/4.5~77/23であることを特徴とする。 A fourth aspect is the third aspect , wherein the blowing agent has a ratio of p,p'-oxybisbenzenesulfonyl hydrazide amount/baking soda amount = 5.5/4.5 to 77/23. shall be.

第5の態様は、第3または第4の態様において、前記発泡剤は、ポリオレフィン系樹脂100重量部に対して3.0~35重量部であることを特徴とする。 A fifth aspect is the third or fourth aspect , wherein the blowing agent is 3.0 to 35 parts by weight based on 100 parts by weight of the polyolefin resin.

本発明によれば、残留するアンモニアによる汚染、腐食を防ぐことができるポリオレフィン系架橋発泡体が得られる。 According to the present invention, a polyolefin crosslinked foam can be obtained that can prevent contamination and corrosion caused by residual ammonia.

実施例と比較例の配合及び測定結果を示す表である。It is a table showing the formulations and measurement results of Examples and Comparative Examples.

本発明のポリオレフィン系架橋発泡体は、住宅の床材や壁材、建築の目地材、自動車の内装材、梱包用部材など衝撃緩衝用途に好適なものであり、密度(JIS K 6767準拠)が20~160kg/m、アンモニア濃度は0ppm~100ppm、ガラス霞度(ISO6452準拠)が5%以下である。アンモニア濃度は、丸底フラスコ500ccにサンプルを0.1g投入し、80℃のオーブン中に2時間放置した後、取り出して放冷し、アンモニア検知管(ガステック製)にて測定した。 The polyolefin crosslinked foam of the present invention is suitable for shock-absorbing applications such as flooring and wall materials of houses, joint materials of buildings, interior materials of automobiles, and packaging materials, and has a density (according to JIS K 6767). 20 to 160 kg/m 3 , ammonia concentration is 0 ppm to 100 ppm, and glass haze (according to ISO 6452) is 5% or less. The ammonia concentration was measured by putting 0.1 g of the sample into a 500 cc round bottom flask, leaving it in an oven at 80° C. for 2 hours, then taking it out, allowing it to cool, and measuring it with an ammonia detection tube (manufactured by Gastech).

ポリオレフィン系架橋発泡体を、例えば梱包用緩衝部材として使用した場合、ポリオレフィン系架橋発泡体の密度が低すぎると、発泡体が柔軟化されすぎて形状が保持できず緩衝材として好ましくない結果となる。一方、密度が高過ぎると発泡体は硬くなって柔軟性にかけ緩衝材として好ましくない結果となる。このため、密度は20~160kg/mが好ましい。
また、ポリオレフィン系架橋発泡体のアンモニア濃度が高すぎると、梱包した製品に対する汚染、腐食の問題が大きくなるため、アンモニア濃度は0ppm~100ppmが好ましい。
ポリオレフィン系架橋発泡体のガラス霞度が高すぎると、梱包したヘッドランプに曇りを生じ易くなるため、ガラス霞度は5%以下が好ましい。
When a polyolefin crosslinked foam is used, for example, as a cushioning material for packaging, if the density of the polyolefin crosslinked foam is too low, the foam becomes too flexible and cannot hold its shape, resulting in an undesirable result as a cushioning material. . On the other hand, if the density is too high, the foam will become hard and flexible, resulting in an undesirable use as a cushioning material. Therefore, the density is preferably 20 to 160 kg/m 3 .
Further, if the ammonia concentration in the polyolefin crosslinked foam is too high, problems of contamination and corrosion of the packaged product will increase, so the ammonia concentration is preferably 0 ppm to 100 ppm.
If the glass haze of the polyolefin crosslinked foam is too high, the packaged headlamp is likely to fog up, so the glass haze is preferably 5% or less.

ポリレフィン系架橋発泡体を形成するポリオレフィン系樹脂としては、低密度、中密度、高密度、直鎖状低密度などのポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-酢酸ビニル共重合体、エチレンとメチル、エチル、プロピル若しくはブチルの各アクリル酸エステル(このエステルの含有量;45モル%以内)との共重合体、又はこれらのそれぞれ塩素含有率60重量%まで塩素化したもの等を挙げることができる。特に低密度のポリエチレンが好ましい。 Examples of polyolefin resins forming crosslinked polyolefin foams include low density, medium density, high density, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene- Vinyl acetate copolymers, copolymers of ethylene and each acrylic ester of methyl, ethyl, propyl, or butyl (content of this ester: within 45 mol%), or chlorine content of each of these up to 60% by weight. Examples include those that have been transformed into Particularly preferred is low density polyethylene.

ポリオレフィン系架橋樹脂発泡体は、一段発泡または二段発泡によって製造される。一段発泡では、ポリオレフィン系樹脂と発泡剤を含む発泡性樹脂組成物を発泡型に充填し、加熱加圧して発泡剤を分解させた後、発泡型を開放して発泡させることにより、所望のポリオレフィン系架橋樹脂発泡体を得る。二段発泡では、ポリオレフィン系樹脂と発泡剤を含む発泡性樹脂組成物を一次発泡型に充填し、加熱加圧させることにより一次発泡させて一次発泡体を形成し、次に一次発泡体の外形よりも内面形状の大きい二次発泡型に一次発泡体を収容し、常圧下加熱することにより二次発泡させて所望のポリオレフィン系架橋発泡体を得る。二段発泡では、一段発泡よりも発泡倍率の高い発泡体が得られる。 Polyolefin crosslinked resin foams are produced by one-stage foaming or two-stage foaming. In one-stage foaming, a foamable resin composition containing a polyolefin resin and a blowing agent is filled into a foaming mold, heated and pressurized to decompose the foaming agent, and then the foaming mold is opened and foamed to form the desired polyolefin. A crosslinked resin foam is obtained. In two-stage foaming, a foamable resin composition containing a polyolefin resin and a blowing agent is filled into a primary foaming mold, heated and pressurized to cause primary foaming to form a primary foam, and then the external shape of the primary foam is The primary foam is housed in a secondary foaming mold having an inner surface larger than that of the primary foam, and is heated under normal pressure to cause secondary foaming to obtain a desired polyolefin crosslinked foam. Two-stage foaming provides a foam with a higher expansion ratio than single-stage foaming.

発泡剤としては、重曹(炭酸水素ナトリウム)とp,p’-オキシビスベンゼンスルホニルヒドラジド(OBSH)が併用される。重曹単独では、ポリオレフィン系架橋発泡体の発泡後に収縮を生じ易くなり、一方、p,p’-オキシビスベンゼンスルホニルヒドラジド単独では、発泡不足を生じ易くなる。重曹とp,p’-オキシビスベンゼンスルホニルヒドラジドを併用することにより、発泡後の収縮や発泡不足を生じ難くできる。重曹の量(重量部)とp,p’-オキシビスベンゼンスルホニルヒドラジドの量(重量部)は、重曹の量よりもp,p’-オキシビスベンゼンスルホニルヒドラジドの量を多くするのが好ましい。重曹の量よりもp,p’-オキシビスベンゼンスルホニルヒドラジドの量を多くすることによって、p,p’-オキシビスベンゼンスルホニルヒドラジドの分解ガスである窒素ガスを重曹の分解ガスである炭酸ガスよりも多くすることが可能となる。発泡成形後には、炭酸ガスだけでなく、拡散係数が低い窒素ガスで保持されているため、発泡成形後の急激な収縮、変形を抑制することができる。より好ましくは、p,p’-オキシビスベンゼンスルホニルヒドラジドの量(重量部)/重曹の量(重量部)=5.5/4.5~77/23である。 As the blowing agent, baking soda (sodium hydrogen carbonate) and p,p'-oxybisbenzenesulfonyl hydrazide (OBSH) are used in combination. Baking soda alone tends to cause shrinkage of the crosslinked polyolefin foam after foaming, while p,p'-oxybisbenzenesulfonyl hydrazide alone tends to cause insufficient foaming. By using baking soda and p,p'-oxybisbenzenesulfonyl hydrazide in combination, shrinkage after foaming and insufficient foaming can be prevented. Regarding the amount of baking soda (parts by weight) and the amount of p,p'-oxybisbenzenesulfonyl hydrazide (parts by weight), it is preferable that the amount of p,p'-oxybisbenzenesulfonyl hydrazide is greater than the amount of baking soda. By making the amount of p,p'-oxybisbenzenesulfonyl hydrazide larger than the amount of baking soda, nitrogen gas, which is the decomposition gas of p,p'-oxybisbenzenesulfonyl hydrazide, is more concentrated than carbon dioxide gas, which is the decomposition gas of baking soda. It is also possible to increase the number of After foam molding, the material is held not only by carbon dioxide gas but also by nitrogen gas, which has a low diffusion coefficient, so that rapid shrinkage and deformation after foam molding can be suppressed. More preferably, the amount of p,p'-oxybisbenzenesulfonyl hydrazide (parts by weight)/the amount of sodium bicarbonate (parts by weight) = 5.5/4.5 to 77/23.

重曹及びp,p’-オキシビスベンゼンスルホニルヒドラジドは、ポリオレフィン系架橋発泡体の製造時における加熱によって、それぞれ熱分解してガスを発生し、ポリオレフィン系樹脂を発泡させる。重曹は、140℃~170℃で熱分解により炭酸ガスを発生し、分解残渣として炭酸ナトリウムを生じる。一方、p,p’-オキシビスベンゼンスルホニルヒドラジドは、155℃~165℃で熱分解により窒素ガスを発生し、分解残渣としてポリジチオフェニルエーテル、ポリチオフェニルベンゼンスルホニルエーテルを生じる。重曹及びp,p’-オキシビスベンゼンスルホニルヒドラジドの何れも分解残渣としてアンモニアを生じないため、ポリオレフィン架橋発泡体のアンモニア濃度を減らすことができる。
また、重曹とp,p’-オキシビスベンゼンスルホニルヒドラジドの両者の熱分解温度の範囲の差が±15℃以内と近く、155℃~165℃の範囲で、ともに熱分解可能であるため、発泡バランスがよく、混合する発泡剤として好ましい。
Baking soda and p,p'-oxybisbenzenesulfonyl hydrazide are each thermally decomposed by heating during production of the polyolefin crosslinked foam to generate gas and foam the polyolefin resin. Baking soda generates carbon dioxide gas through thermal decomposition at 140°C to 170°C, and produces sodium carbonate as a decomposition residue. On the other hand, p,p'-oxybisbenzenesulfonyl hydrazide generates nitrogen gas by thermal decomposition at 155° C. to 165° C., producing polydithophenyl ether and polythiophenylbenzenesulfonyl ether as decomposition residues. Since neither baking soda nor p,p'-oxybisbenzenesulfonyl hydrazide produces ammonia as a decomposition residue, the ammonia concentration in the polyolefin crosslinked foam can be reduced.
In addition, the difference in the thermal decomposition temperature ranges of both baking soda and p,p'-oxybisbenzenesulfonyl hydrazide is close, within ±15°C, and both can be thermally decomposed in the range of 155°C to 165°C. It is well-balanced and is preferred as a foaming agent to be mixed.

発泡剤の量はポリオレフィン系樹脂100重量部に対して3.0~35重量部が好ましい。発泡剤の量が少なすぎると、発泡が不良になったり、密度が高くなったりする。一方、発泡剤の量が多すぎると、発泡型を開放した際に発泡体が破裂したり、密度が低くなりすぎたりする。 The amount of the blowing agent is preferably 3.0 to 35 parts by weight per 100 parts by weight of the polyolefin resin. If the amount of foaming agent is too small, foaming will be poor or the density will be high. On the other hand, if the amount of foaming agent is too large, the foam may burst when the foaming mold is opened, or the density may become too low.

発泡性樹脂組成物には、発泡剤と共に架橋剤が含まれる。架橋剤としては、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス-ターシャリーブチルパーオキシヘキサン、1,3-ビス-ターシャリーパーオキシ-イソプロピルベンゼンなどの有機過酸化物等を挙げることができる。架橋剤の量は、ポリオレフィン系樹脂100重量部に対して1.0~5.0重量部が好ましい。 The foamable resin composition contains a crosslinking agent together with a foaming agent. Examples of the crosslinking agent include organic peroxides such as dicumyl peroxide, 2,5-dimethyl-2,5-bis-tert-butylperoxyhexane, and 1,3-bis-tert-peroxy-isopropylbenzene. be able to. The amount of the crosslinking agent is preferably 1.0 to 5.0 parts by weight per 100 parts by weight of the polyolefin resin.

また、発泡性樹脂組成物には、適宜助剤が含まれる。助剤としては、発泡助剤、造核剤、その他の無機フィラー、着色剤などが挙げられる。発泡助剤としては、酸化亜鉛、酸化鉛等の金属酸化物、低級又は高級脂肪酸あるいはそれらの金属塩等を挙げることができる。造核剤としては、重炭酸カルシウムなどを挙げることができる。その他の無機フィラーとしては、導電性カーボンブラックなどを挙げることができる。 Further, the foamable resin composition contains an auxiliary agent as appropriate. Examples of the auxiliary agent include a foaming auxiliary agent, a nucleating agent, other inorganic fillers, and a coloring agent. Examples of the foaming aid include metal oxides such as zinc oxide and lead oxide, lower or higher fatty acids, or metal salts thereof. Examples of the nucleating agent include calcium bicarbonate. Other inorganic fillers include conductive carbon black and the like.

一段発泡の場合の加熱及び加圧は、発泡倍率によって異なるが、例として加熱温度130~170℃、加熱時間30~60分、圧力5~35Pa程度を挙げる。
二段発泡の場合の加熱及び加圧は、発泡倍率によって異なるが、例として一次発泡時の加熱温度100~150℃、加熱時間30~60分、圧力5~35Pa程度、二次発泡時の加熱温度140~170℃、加熱時間25~180分程度を挙げる。発泡倍率は、一段発泡及び二段発泡の何れの場合でも6~40倍が好ましい。発泡倍率は、未発泡樹脂を1000kg/mとし、以下式1で算出される値である。
1000kg/m(未発泡) ÷ 発泡体密度実測値(kg/m) (式1)
発泡体密度実測値は、JIS K 6767に準拠して測定した値である。
発泡倍率が低すぎると発泡体が柔軟化されすぎて形状が保持できず緩衝材として好ましくない結果となり、逆に高すぎると発泡体は硬くなって柔軟性にかけ緩衝材として好ましくない結果となる。また、一段発泡及び二段発泡時における発泡倍率の調整は、発泡剤によって6~40倍となるようにする。
Heating and pressurization in the case of one-stage foaming vary depending on the expansion ratio, but examples include heating temperature of 130 to 170°C, heating time of 30 to 60 minutes, and pressure of about 5 to 35 Pa.
Heating and pressurization in the case of two-stage foaming vary depending on the expansion ratio, but examples include heating temperature of 100 to 150°C during primary foaming, heating time of 30 to 60 minutes, pressure of about 5 to 35 Pa, and heating during secondary foaming. The temperature is 140 to 170°C and the heating time is about 25 to 180 minutes. The expansion ratio is preferably 6 to 40 times in both one-stage foaming and two-stage foaming. The expansion ratio is a value calculated using the following formula 1, assuming that the unfoamed resin is 1000 kg/m 3 .
1000kg/m 3 (unfoamed) ÷ Actual foam density (kg/m 3 ) (Formula 1)
The foam density actual value is a value measured in accordance with JIS K 6767.
If the expansion ratio is too low, the foam becomes too flexible and cannot hold its shape, resulting in an undesirable result as a cushioning material.On the other hand, if the expansion ratio is too high, the foam becomes hard, resulting in poor flexibility, resulting in an undesirable result as a cushioning material. Further, the expansion ratio during one-stage foaming and two-stage foaming is adjusted to 6 to 40 times depending on the foaming agent.

ポリオレフィンとして低密度ポリエチレン(LDPE):MFR2、密度0.924kg/m、品番UBEポリエチレンF224C、宇部丸善ポリエチレン株式会社製を用い、重曹:三協化成株式会社製セルマイク266、p,p'-オキシビスベンゼンスルホニルヒドラジド(OBSH):永和化成工業社製ネオセルボンN#5000、アゾジカルボンアミド(ADCA):永和化成工業社製パンスレンH7310を、図1の配合とした。さらに架橋剤(図1に示さず)として化薬アクゾ株式会社製カヤクミルD-40CをLDPE100重量部に対して2.7重量部配合した混合物をニーダーにて混練し、その後ロールにて混練し、実施例1~7及び比較例1~6の発泡性樹脂組成物を得た。混練は、1Lニーダーを用いて90℃の温度で20分間行った。 Low-density polyethylene (LDPE): MFR2, density 0.924 kg/m 3 , product number UBE polyethylene F224C, manufactured by Ube Maruzen Polyethylene Co., Ltd., was used as the polyolefin, baking soda: Cellmic 266, manufactured by Sankyo Kasei Co., Ltd., p, p'-oxy Bisbenzenesulfonyl hydrazide (OBSH): Neocellvon N#5000 manufactured by Eiwa Kasei Kogyo Co., Ltd., and azodicarbonamide (ADCA): Pansuren H7310 manufactured by Eiwa Kasei Kogyo Co., Ltd. were used in the formulation shown in FIG. Furthermore, a mixture containing 2.7 parts by weight of Kayakumil D-40C manufactured by Kayaku Akzo Co., Ltd. as a crosslinking agent (not shown in FIG. 1) per 100 parts by weight of LDPE was kneaded in a kneader, and then kneaded in a roll. Foamable resin compositions of Examples 1 to 7 and Comparative Examples 1 to 6 were obtained. Kneading was performed at a temperature of 90° C. for 20 minutes using a 1 L kneader.

前記発泡性樹脂組成物を用い、実施例1~4については一段発泡により製造し、実施例5、6及び比較例1~6については二段発泡より製造した。
実施例1~4は、混練後の発泡性樹脂組成物を、発泡型に充填して加圧下加熱し、除圧して発泡させ、発泡型からポリオレフィン系架橋発泡体を取り出した。発泡型の成形空間は、縦160mm、横160mm、深さ33mm、容積0.85Lである。発泡性樹脂組成物の充填量は、何れも900g、加圧は7Pa、加熱は135℃で50分間である。
Using the foamable resin composition, Examples 1 to 4 were produced by one-stage foaming, and Examples 5 and 6 and Comparative Examples 1 to 6 were produced by two-stage foaming.
In Examples 1 to 4, the foamable resin composition after kneading was filled into a foaming mold, heated under pressure, and foamed by removing the pressure, and the polyolefin crosslinked foam was taken out from the foaming mold. The molding space of the foam mold has a length of 160 mm, a width of 160 mm, a depth of 33 mm, and a volume of 0.85 L. The filling amount of the foamable resin composition was 900 g, the pressure was 7 Pa, and the heating was 135° C. for 50 minutes.

実施例5、6及び比較例1~6は、混練後の発泡性樹脂組成物を一次発泡型に充填して加圧下加熱し、除圧して発泡させ、その後に一次発泡型から一次発泡体を取り出す一次発泡工程を行い、得られた一次発泡体を二次発泡型に収容し、常圧下二次加熱による二次発泡を行って、二次発泡型からポリオレフィン系架橋発泡体を取り出した。 In Examples 5 and 6 and Comparative Examples 1 to 6, the foamable resin composition after kneading was filled into a primary foaming mold, heated under pressure, and foamed by removing the pressure, and then the primary foam was removed from the primary foaming mold. A primary foaming process for taking out was carried out, the obtained primary foam was placed in a secondary foaming mold, secondary foaming was performed by secondary heating under normal pressure, and the polyolefin crosslinked foam was taken out from the secondary foaming mold.

一次発泡型の成形空間は、縦160mm、横160mm、深さ33mm、容積0.85Lである。発泡性樹脂組成物の充填量は、何れも900g、加圧は7Pa、加熱は130℃で50分間である。
二次発泡型の成形空間は、縦300mm、横300mm、深さ55mm、容積1.5Lである。加熱は150℃で50分間である。
The molding space of the primary foam mold has a length of 160 mm, a width of 160 mm, a depth of 33 mm, and a volume of 0.85 L. The filling amount of the foamable resin composition was 900 g, the pressure was 7 Pa, and the heating was at 130° C. for 50 minutes.
The molding space of the secondary foam mold has a length of 300 mm, a width of 300 mm, a depth of 55 mm, and a volume of 1.5 L. Heating is at 150°C for 50 minutes.

各実施例及び各比較例における密度(JIS K 6767準拠)、発泡倍率、アンモニア濃度、ガラス霞度(ISO6452準拠)、収縮を測定した。測定結果は図1に示す。 The density (based on JIS K 6767), expansion ratio, ammonia concentration, glass haze (based on ISO 6452), and shrinkage in each example and each comparative example were measured. The measurement results are shown in Figure 1.

発泡倍率は、上記式1により算出した。
アンモニア濃度は、丸底フラスコに0.1gのサンプルを投入し、80℃のオーブンで2時間加熱し、その後冷えないうちに10~1000ppmを測定できるガステック製検知管(品番:3M)で粗々の値を測定した後、100ppm未満を測定できる、精度の良いガステック検知管(品番:3L)にてアンモニア濃度を測定した。
ガラス霞度(フォギング)は、サンプルをガラス板で遮蔽した状態で80℃×20時間加熱し、ガラス板に付着した曇り度を日本電色工業株式会社製(品番:NDH-20H)により測定した。
収縮は、発泡型から取り出した直後の発泡体の厚み寸法と、発泡型から取り出してから24時間後の厚み寸法との差分を測定し、その差分を発泡型から取り出した直後の発泡体の厚み寸法に対する比率で表した。収縮が5.0%以下の場合に「〇」とし、5.0%を超える場合は「×」とした。
総合判定は、アンモニア濃度が0ppm~100ppm、ガラス霞度が5%以下、収縮が5.0%以下の条件を全て満たす場合に「〇」とし、一つでも外れる場合に「×」とした。
The foaming ratio was calculated using the above formula 1.
Ammonia concentration was determined by placing 0.1 g of sample in a round bottom flask, heating it in an oven at 80°C for 2 hours, and then using a Gastech detector tube (product number: 3M) that can measure 10 to 1000 ppm before cooling. After measuring each value, the ammonia concentration was measured using a highly accurate Gastech detection tube (product number: 3L) that can measure less than 100 ppm.
Glass haze (fogging) was measured by heating the sample at 80°C for 20 hours while shielding it with a glass plate, and measuring the degree of fogging attached to the glass plate using Nippon Denshoku Industries Co., Ltd. (product number: NDH-20H). .
Shrinkage is measured by measuring the difference between the thickness of the foam immediately after taking it out of the foaming mold and the thickness dimension 24 hours after taking it out from the foaming mold, and calculating the difference as the thickness of the foam immediately after taking it out from the foaming mold. Expressed as a ratio to the dimensions. When the shrinkage was 5.0% or less, it was marked as "○", and when it exceeded 5.0%, it was marked as "x".
The overall evaluation was evaluated as "○" if all of the following conditions were satisfied: ammonia concentration of 0 ppm to 100 ppm, glass haze of 5% or less, and shrinkage of 5.0% or less, and "x" if any of the conditions were met.

実施例1は、発泡剤の量が3.0重量部、OBSH/重曹の重量比が6/4の例である。実施例1は、アンモニア濃度15ppm、ガラス霞度0.7%、密度150kg/m、発泡倍率6.7倍、収縮2.1%であり、総合評価「〇」である。 Example 1 is an example in which the amount of blowing agent was 3.0 parts by weight and the weight ratio of OBSH/baking soda was 6/4. Example 1 has an ammonia concentration of 15 ppm, a glass haze of 0.7%, a density of 150 kg/m 3 , a foaming ratio of 6.7 times, and a shrinkage of 2.1%, and is given an overall evaluation of "Good".

実施例2は、発泡剤の量が3.0重量部、OBSH/重曹の重量比が2/1の例である。実施例2は、アンモニア濃度25ppm、ガラス霞度2.3%、密度140kg/m、発泡倍率7.0倍、収縮2.1%であり、総合評価「〇」である。 Example 2 is an example in which the amount of blowing agent is 3.0 parts by weight and the weight ratio of OBSH/baking soda is 2/1. Example 2 has an ammonia concentration of 25 ppm, a glass haze of 2.3%, a density of 140 kg/m 3 , a foaming ratio of 7.0 times, and a shrinkage of 2.1%, and is given an overall rating of "Good".

実施例3は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が6/4の例である。実施例3は、アンモニア濃度5ppm、ガラス霞度0.3%、密度80kg/m、発泡倍率12.5倍、収縮2.3%であり、総合評価「〇」である。 Example 3 is an example in which the amount of blowing agent is 7.0 parts by weight and the weight ratio of OBSH/baking soda is 6/4. Example 3 has an ammonia concentration of 5 ppm, a glass haze of 0.3%, a density of 80 kg/m 3 , a foaming ratio of 12.5 times, and a shrinkage of 2.3%, and is given an overall rating of "Good".

実施例4は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が76/24の例である。実施例4は、アンモニア濃度40ppm、ガラス霞度2.1%、密度75kg/m、発泡倍率13.3倍、収縮2.6%であり、総合評価「〇」である。 Example 4 is an example in which the amount of blowing agent was 7.0 parts by weight and the weight ratio of OBSH/baking soda was 76/24. Example 4 has an ammonia concentration of 40 ppm, a glass haze of 2.1%, a density of 75 kg/m 3 , a foaming ratio of 13.3 times, and a shrinkage of 2.6%, and is given an overall evaluation of "Good".

実施例5は、発泡剤の量が25.0重量部、OBSH/重曹の重量比が6/4の例である。実施例5は、アンモニア濃度20ppm、ガラス霞度0.4%、密度33kg/m、発泡倍率30.0倍、収縮3.6%であり、総合評価「〇」である。 Example 5 is an example in which the amount of blowing agent was 25.0 parts by weight and the weight ratio of OBSH/baking soda was 6/4. Example 5 has an ammonia concentration of 20 ppm, a glass haze of 0.4%, a density of 33 kg/m 3 , a foaming ratio of 30.0 times, and a shrinkage of 3.6%, and is given an overall evaluation of "Good".

実施例6は、発泡剤の量が35.0重量部、OBSH/重曹の重量比が6/4の例である。実施例6は、アンモニア濃度15ppm、ガラス霞度0.5%、密度25kg/m、発泡倍率40.0倍、収縮3.4%であり、総合評価「〇」である。 Example 6 is an example in which the amount of blowing agent was 35.0 parts by weight and the weight ratio of OBSH/baking soda was 6/4. Example 6 has an ammonia concentration of 15 ppm, a glass haze of 0.5%, a density of 25 kg/m 3 , a foaming ratio of 40.0 times, and a shrinkage of 3.4%, and is given an overall evaluation of "Good".

比較例1は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が0/7の例であり、OBSHが含まれていない。比較例1は、アンモニア濃度0ppm、ガラス霞度0.1%、密度200kg/m、発泡倍率5倍、収縮7.2%であり、総合評価「×」である。比較例1は、アンモニア濃度及びガラス霞度が小さかったが、発泡剤が重曹単独のため、成形後に炭酸ガスが急激に抜けることで、密度が高く、収縮も大きかった。 Comparative Example 1 is an example in which the amount of blowing agent is 7.0 parts by weight, the weight ratio of OBSH/baking soda is 0/7, and OBSH is not included. Comparative Example 1 has an ammonia concentration of 0 ppm, a glass haze of 0.1%, a density of 200 kg/m 3 , a foaming ratio of 5 times, and a shrinkage of 7.2%, and is given an overall evaluation of "x". Comparative Example 1 had low ammonia concentration and glass haze, but because the foaming agent was baking soda alone, carbon dioxide gas rapidly escaped after molding, resulting in high density and large shrinkage.

比較例2は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が5/5の例であり、OBSHと重曹の量が等しい。比較例2は、アンモニア濃度30ppm、ガラス霞度2.4%、密度100kg/m、発泡倍率10倍、収縮5.8%であり、総合評価「×」である。比較例2は、アンモニア濃度及びガラス霞度については小さかったが、密度が高く、収縮が大きかった。 Comparative Example 2 is an example in which the amount of blowing agent is 7.0 parts by weight, the weight ratio of OBSH/baking soda is 5/5, and the amounts of OBSH and baking soda are equal. Comparative Example 2 has an ammonia concentration of 30 ppm, a glass haze of 2.4%, a density of 100 kg/m 3 , a foaming ratio of 10 times, and a shrinkage of 5.8%, and is given an overall evaluation of "x". Comparative Example 2 had low ammonia concentration and glass haze, but high density and large shrinkage.

比較例3は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が8/2の例である。比較例3は、アンモニア濃度60ppm、ガラス霞度3.1%、密度180kg/m、発泡倍率5.5倍、収縮1.8%であり、総合評価「×」である。比較例3は、密度が高く、発泡不足であった。 Comparative Example 3 is an example in which the amount of blowing agent was 7.0 parts by weight and the weight ratio of OBSH/baking soda was 8/2. Comparative Example 3 has an ammonia concentration of 60 ppm, a glass haze of 3.1%, a density of 180 kg/m 3 , a foaming ratio of 5.5 times, and a shrinkage of 1.8%, and is given an overall evaluation of "x". Comparative Example 3 had high density and insufficient foaming.

比較例4は、発泡剤の量が7.0重量部、OBSH/重曹の重量比が7/0の例であり、重曹を含まない。比較例4は、アンモニア濃度65ppm、ガラス霞度3.6%、密度230kg/m、発泡倍率4.3倍、収縮1.7%であり、総合評価「×」である。比較例4は、発泡剤がOBSH単独のため、架橋が先行して行われ、発泡が十分になされず、密度が高く、発泡不足であった。 Comparative Example 4 is an example in which the amount of blowing agent is 7.0 parts by weight, the weight ratio of OBSH/baking soda is 7/0, and baking soda is not included. Comparative Example 4 has an ammonia concentration of 65 ppm, a glass haze of 3.6%, a density of 230 kg/m 3 , a foaming ratio of 4.3 times, and a shrinkage of 1.7%, and is given an overall evaluation of "x". In Comparative Example 4, since the foaming agent was OBSH alone, crosslinking was performed in advance, and foaming was not performed sufficiently, resulting in high density and insufficient foaming.

比較例5は、発泡剤の量が2.0重量部、OBSH/重曹の重量比が6/4の例であり、発泡剤の量が少ない。比較例5は、発泡しないため、アンモニア濃度、ガラス霞度、収縮を測定できず、総合評価「×」である。比較例5は、発泡しないため密度が900kg/mと高かった。発泡倍率は1.1倍であった。 Comparative Example 5 is an example in which the amount of blowing agent is 2.0 parts by weight and the weight ratio of OBSH/baking soda is 6/4, and the amount of blowing agent is small. In Comparative Example 5, since no foaming occurred, ammonia concentration, glass haze, and shrinkage could not be measured, and the overall evaluation was "x". Comparative Example 5 had a high density of 900 kg/m 3 because it did not foam. The expansion ratio was 1.1 times.

比較例6は、発泡剤としてADCAを単独で5.0重量部使用した例である。比較例6は、アンモニア濃度900ppm、ガラス霞度22%、密度65kg/m、発泡倍率15倍、収縮1.8%であり、総合評価「×」である。比較例6は、発泡剤としてADCAを使用するため、アンモニア濃度及びガラス霞度が何れも高かった。 Comparative Example 6 is an example in which 5.0 parts by weight of ADCA was used alone as a blowing agent. Comparative Example 6 has an ammonia concentration of 900 ppm, a glass haze of 22%, a density of 65 kg/m 3 , a foaming ratio of 15 times, and a shrinkage of 1.8%, and is given an overall evaluation of "x". In Comparative Example 6, since ADCA was used as a blowing agent, both the ammonia concentration and the glass haze were high.

このように、本発明では、残留するアンモニア濃度が低く、アンモニアによる汚染、腐食を防ぐことができるポリオレフィン系架橋発泡体が得られる。 As described above, the present invention provides a polyolefin crosslinked foam that has a low residual ammonia concentration and can prevent contamination and corrosion caused by ammonia.

Claims (2)

密度が20~160kg/m、アンモニア濃度が5ppm~100ppmであるポリオレフィン系架橋発泡体(ただし、アルミニウムパウダーを含むものを除く。)。 A polyolefin crosslinked foam having a density of 20 to 160 kg/m 3 and an ammonia concentration of 5 ppm to 100 ppm (excluding those containing aluminum powder). 密度が20~33kg/m、アンモニア濃度が5ppm~20ppmであるポリオレフィン系架橋発泡体。
A polyolefin crosslinked foam having a density of 20 to 33 kg/m 3 and an ammonia concentration of 5 ppm to 20 ppm.
JP2022022082A 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method Active JP7431871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022022082A JP7431871B2 (en) 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014688A JP7027183B2 (en) 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method
JP2022022082A JP7431871B2 (en) 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018014688A Division JP7027183B2 (en) 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022063318A JP2022063318A (en) 2022-04-21
JP7431871B2 true JP7431871B2 (en) 2024-02-15

Family

ID=67545645

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018014688A Active JP7027183B2 (en) 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method
JP2022022082A Active JP7431871B2 (en) 2018-01-31 2022-02-16 Polyolefin crosslinked foam and its manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018014688A Active JP7027183B2 (en) 2018-01-31 2018-01-31 Polyolefin-based crosslinked foam and its manufacturing method

Country Status (1)

Country Link
JP (2) JP7027183B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161273A (en) * 2020-03-31 2021-10-11 積水化学工業株式会社 Polyolefin resin foam sheet and vehicle interior member
KR102565837B1 (en) * 2021-04-21 2023-08-11 한국신발피혁연구원 Foam composition applied for inorganic chemical blowing agent with improved foaming efficiency
CN115850832A (en) * 2022-09-06 2023-03-28 东莞市盈圆合创新材料有限公司 Environment-friendly antibacterial electron radiation cross-linked polyolefin foam and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292661A (en) 2002-03-29 2003-10-15 Tosoh Corp Polyolefin resin composition for foaming and foam composed of the same
JP2012097285A (en) 2012-02-20 2012-05-24 Inoac Corp Method for manufacturing polyolefin resin foam
JP2012224751A (en) 2011-04-20 2012-11-15 Sanwa Kako Co Ltd Method for producing crosslinked polyolefin resin foam
JP2013142146A (en) 2012-01-12 2013-07-22 Tosoh Corp Foaming agent master batch, and foamed body using the same
JP2015145503A (en) 2015-03-31 2015-08-13 東レペフ加工品株式会社 Resin foam, cylindrical body and molded body
JP2017145367A (en) 2016-02-19 2017-08-24 東レ株式会社 Flame-retardant polyolefin resin crosslinked foam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439465A (en) * 1977-09-05 1979-03-26 Furukawa Electric Co Ltd:The Preparation of polypropylene foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292661A (en) 2002-03-29 2003-10-15 Tosoh Corp Polyolefin resin composition for foaming and foam composed of the same
JP2012224751A (en) 2011-04-20 2012-11-15 Sanwa Kako Co Ltd Method for producing crosslinked polyolefin resin foam
JP2013142146A (en) 2012-01-12 2013-07-22 Tosoh Corp Foaming agent master batch, and foamed body using the same
JP2012097285A (en) 2012-02-20 2012-05-24 Inoac Corp Method for manufacturing polyolefin resin foam
JP2015145503A (en) 2015-03-31 2015-08-13 東レペフ加工品株式会社 Resin foam, cylindrical body and molded body
JP2017145367A (en) 2016-02-19 2017-08-24 東レ株式会社 Flame-retardant polyolefin resin crosslinked foam

Also Published As

Publication number Publication date
JP2022063318A (en) 2022-04-21
JP2019131702A (en) 2019-08-08
JP7027183B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP7431871B2 (en) Polyolefin crosslinked foam and its manufacturing method
EP1454947B1 (en) Flame retardant polyolefin resin pre-expanded particles and in-mold foamed articles prepared therefrom
JP7027185B2 (en) Masterbatch for polyolefin-based crosslinked foam, method for producing polyolefin-based crosslinked foam and polyolefin-based crosslinked foam
JP7331176B2 (en) Masterbatch for polyolefin-based crosslinked foam, polyolefin-based crosslinked foam, and method for producing polyolefin-based crosslinked foam
JP5647606B2 (en) Gas generating agent
KR101083277B1 (en) Metalatearate containig the foam compositions and foam products
JP5725957B2 (en) Method for producing cross-linked polyolefin foam
JPH07118435A (en) Resin foam of flame retardant polyolefin film
JP7254577B2 (en) Piping material
JP5432301B2 (en) Method for producing polyolefin resin foam
JP6916025B2 (en) Resin pipe fitting
JPH06184342A (en) Flame-retardant heat-resistant polyolefin foam
JP4965136B2 (en) Method for producing polyolefin resin foam
JP2007231064A (en) Method for producing polyolefin resin foam
JP4468029B2 (en) Method for producing flame retardant crosslinked polyolefin foam
JP4782306B2 (en) Open-cell cross-linked polyolefin foam and method for producing the same
JP4903452B2 (en) Method for producing polyolefin resin foam
JP4060206B2 (en) Method for producing conductive polyolefin foam
JPH08208875A (en) Foamed material of flame-retardant polyolefin resin
JPH03287637A (en) Preparation of flame-retardant resin foam
JP2023039623A (en) Crosslinked ethylene-vinyl acetate copolymer foam having continuous foam structure and its manufacturing method and sealing agent
JPH08295753A (en) Flame-retardant polyolefin resin foam
JP3186821B2 (en) Method for producing polyolefin resin foam and foam
JPH05295149A (en) Resin composition for crosslinked polyolefin foamed body
JPH0748467A (en) Expandable polyolefinic resin composition containing inorganic filler

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240202

R150 Certificate of patent or registration of utility model

Ref document number: 7431871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150