WO2010146048A1 - Brennkraftmaschine mit druckluftunterstützter abgasrückführung - Google Patents

Brennkraftmaschine mit druckluftunterstützter abgasrückführung Download PDF

Info

Publication number
WO2010146048A1
WO2010146048A1 PCT/EP2010/058384 EP2010058384W WO2010146048A1 WO 2010146048 A1 WO2010146048 A1 WO 2010146048A1 EP 2010058384 W EP2010058384 W EP 2010058384W WO 2010146048 A1 WO2010146048 A1 WO 2010146048A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
flow path
exhaust
internal combustion
combustion engine
Prior art date
Application number
PCT/EP2010/058384
Other languages
English (en)
French (fr)
Inventor
Michael Glensvig
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to DE112010002560T priority Critical patent/DE112010002560A5/de
Publication of WO2010146048A1 publication Critical patent/WO2010146048A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • B08B1/143
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/40Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with timing means in the recirculation passage, e.g. cyclically operating valves or regenerators; with arrangements involving pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine having an intake system with a preferably driven by an exhaust gas turbine compressor and an exhaust system, with an exhaust gas recirculation system with at least one exhaust gas recirculation return line for exhaust gas from the exhaust system in the intake system, said exhaust with the aid of a compressed air system via a Ventu- ri sensible is traceable.
  • WO 98/32964 A1 describes an exhaust gas recirculation system for an internal combustion engine with a Coanda effect utilizing air jet pump, wherein compressed air is supplied to the exhaust gas flow path in front of a Venturi adopted.
  • the exhaust flowpath enters the intake system via an EGR / air mixer.
  • the Venturi dressed is arranged upstream of an EGR cooler.
  • the disadvantage is that a large part of the cylinder charge must pass through the EGR cooler and the exhaust gas / air mixer during the compressed air injection.
  • the flow area of the EGR cooler, EGR duct and exhaust gas / air mixer must be relatively large, which adversely affects the EGR / air mixture, the EGR cooling capacity and the dimensions of the exhaust gas recirculation system.
  • the object of the invention is to avoid these disadvantages and to develop an exhaust gas recirculation system with which nitrogen oxide emissions, in particular in the transient operation of an internal combustion engine, can be reduced in the simplest and most compact manner possible.
  • the exhaust gas recirculation system has a first and a second exhaust gas flow path for recirculated exhaust gas, the two exhaust gas flow paths branching from a common exhaust gas recirculation line, and wherein the venturi device is arranged in the first exhaust gas flow path and in the first and / or second flow path downstream of the branch at least one exhaust valve is arranged.
  • the exhaust gas recirculation can take place via the exhaust valve through the first or second flow path.
  • High exhaust gas recirculation rates can be achieved when a throttle is located downstream of the compressor in the intake system, with the first and second exhaust flow paths leading into the intake system downstream of the throttle.
  • the first exhaust gas flow path can flow downstream or upstream into the intake system.
  • at least one exhaust gas flow path, preferably the second exhaust gas flow path can lead into the intake system in the region of an exhaust gas / air mixer.
  • the exhaust gas valve is a preferably spring-loaded one-way valve which opens in the direction of the intake system.
  • the one-way valve may be formed for example by a spring-loaded flap.
  • a particularly flexible switching between the first and second flow paths can take place when the exhaust valve is an externally actuated by an actuator control valve.
  • the actuator may be formed, for example, as a vacuum box.
  • the exhaust valve is designed as a switching valve for the flow of the first and second flow paths with at least two switching position, locked in istt first switching position of the first flow path and the opened second flow path and opened in the second switching position of the first flow path and the second flow path is blocked.
  • the actuation can be done automatically by the pressure difference between the first and second exhaust flow path or externally controlled by an actuator.
  • venturi device It is particularly advantageous if upstream of the venturi device, a compressed air valve is arranged. Due to the venturi device, it is possible to recirculate sufficient amounts of exhaust gas into the intake system even under unfavorable pressure conditions, as a result of which nitrogen oxide spikes during transient engine operation can be avoided. It is particularly advantageous if the flow cross section of the venturi device is variable. Venturi arrangements with a variable cross section are known, for example, from the publications DE 20 59 005 A1, EP 0 124 666 A1, EP 0 679 873 B1, EP 1 905 999 A2 or WO 2005/085617 A1.
  • Exhaust gas recirculation may be performed with the exhaust valve open via the second exhaust flow path, with throttling of the intake air via the throttle.
  • compressed air is injected via the compressed air line in the first Abgasströmungsweg, whereby exhaust gas is recycled via the Venturi dressed, preferably in a transient operating range, the throttle valve is closed in the intake system until the speed of the compressor reaches a target speed.
  • FIG. 1 shows an exhaust gas recirculation system of an internal combustion engine according to the invention in a first embodiment in a first switching position of the exhaust valve.
  • FIG. 2 shows the exhaust gas recirculation system from FIG. 1 in a second switching position
  • Fig. 3 is an exhaust gas recirculation system of an internal combustion engine according to the invention in a second embodiment.
  • FIG. 1 shows an internal combustion engine 1 with an intake system 2 and an exhaust system 3.
  • the exhaust gas turbine 4 and in the intake system 2 of the compressor 5 of an exhaust gas turbocharger is arranged in the exhaust system 3.
  • an exhaust gas recirculation valve 6 and an exhaust gas recirculation cooler 7 is arranged in the exhaust gas recirculation line 13a of the exhaust gas recirculation system 13.
  • Downstream of the compressor 5 is a charge air cooler 8 and a throttle valve. 9
  • a compressed air system 14 is provided with an opening into the intake system compressed air line 15, wherein the compressed air system 14 further comprises a compressed air tank 10 and a compressed air valve 11.
  • the exhaust gas recirculation line 13a branches into a first and a second exhaust gas flow path 16, 17.
  • the branch is designated by reference numeral 13b.
  • a venturi device 12 is arranged in the first exhaust gas flow path 16, with the compressed air line 15 leading into the first exhaust gas flow path 16 upstream of the venturi device 12.
  • an exhaust valve 18 is arranged in the first and / or second Abgasströmungsweg 16, 17 downstream of the Venturi worn 12, with which the flow cross-section of the first and second exhaust gas flow path 16, 17 can be reduced or closed.
  • this exhaust valve 18 is designed as a changeover valve 18a for switching between the first and the second flow path 16, 17.
  • the switching valve 18a has at least two switching position, wherein in a first switching position, as shown in Fig. 1, the first flow path 16 is blocked and the second flow path 17 is opened and opened in the second switching position shown in FIG. 2, the first flow path 16 and the second flow path 17 is blocked.
  • the switching valve can be actuated automatically by the pressure difference between the first and second flow paths 16, 17 or controlled by an actuator.
  • FIG 3 shows a further embodiment in which the exhaust valve 18 is formed as actuated by an actuator 19 control valve 18b, wherein the flow cross-section of the second exhaust gas flow path 17 can be changed by the control valve 18b.
  • the second flow path 17 opens into the intake system 2 via an exhaust gas / air mixer 20.
  • the actuator 19 may be formed for example by a vacuum box.
  • the exhaust valve 18 by a spring-loaded one-way valve, such as a spring-loaded flap which opens in the direction of the inlet system 2.
  • the compressed air valve 11 is closed.
  • the internal combustion engine 1 can thus be controlled with conventional exhaust gas recirculation via the exhaust gas recirculation valve 6 and the throttle valve 9, wherein the second exhaust gas flow path 17 is opened by the exhaust valve 18.
  • the compressed air valve 11 may be opened to supply fresh compressed air to the intake system 2 via the first exhaust flow path 16, thereby improving the transient performance of the internal combustion engine 1.
  • the exhaust gas recirculation valve 6 for recirculating exhaust gas into the intake system 2 can be opened in this phase, whereby exhaust gas flows into the intake system 2 via the Venturi device 12 and the first exhaust gas flow path 16.
  • the exhaust valve 18 is closed.
  • the throttle valve 9 can be closed when compressed air is injected via the compressed air valve 11 into the intake system 2 in order to improve the torque buildup of the internal combustion engine 1.
  • the additional Venturi device 12 has the advantage that exhaust gas can be recycled in an adequate amount even in this phase at unfavorable pressure ratio. Thereby, the occurrence of nitrogen oxide peaks can be reliably prevented.

Abstract

Die Erfindung betrifft eine Brennkraftmaschine (1) mit einem Einlasssystem (2) mit einem vorzugsweise durch eine Abgasturbine (4) angetriebenen Verdichter (5) und einem Auslasssystem (3), mit einem Abgasrückführsystem (13) mit zumindest einer Abgasrückführleitung (13a) zur Rückführung von Abgas aus dem Auslasssystem (3) in das Einlasssystem (2), wobei Abgas mit Unterstützung eines Druckluftsystems (14) über eine Venturieinrichtung (12) rückführbar ist. Um die Abgasqualität im transienten Motorbetrieb zu verbessern, ist vorgesehen, dass das Abgasrückführsystem (13) einen ersten und einen zweiten Abgasströmungsweg (16, 17) für rückgeführtes Abgas aufweist, wobei sich die beiden Abgasströmungswege (16, 17) von einer gemeinsamen Abgasrückführleitung (13a) verzweigen und wobei die Venturieinrichtung im ersten Abgasströmungsweg (16) angeordnet ist, und im in das Einlasssystem (2) einmündenden ersten und/oder zweiten Strömungsweg (16, 17) stromabwärts der Verzweigung (13b) zumindest ein Abgasventil (18) angeordnet ist.

Description

BRENNKRAFTMASCHINE MIT DRUCKLUFTUNTERSTÜTZTER ABGASRÜCKFÜHRUNG
Die Erfindung betrifft eine Brennkraftmaschine mit einem Einlasssystem mit einem vorzugsweise durch eine Abgasturbine angetriebenen Verdichter und einem Auslasssystem, mit einem Abgasrückführsystem mit zumindest einer Abgasrück- führleitung zur Rückführung von Abgas aus dem Auslasssystem in das Einlasssystem, wobei Abgas mit Unterstützung eines Druckluftsystems über eine Ventu- rieinrichtung rückführbar ist.
Aus der DE 43 19 380 C2 ist eine Brennkraftmaschine mit einem Abgasturbolader bekannt, welche eine Abgasrückführleitung aufweist, die im Bereich einer Venturi-Einrichtung in das Einlasssystem einmündet. Durch die Venturi-Einrich- tung lassen sich auch bei positiver Druckdifferenz zwischen Einlass- und Auslasssystem ausreichende Abgasrückführmengen erzielen.
Aus der WO 08/022769 Al ist eine Brennkraftmaschine mit einem Einlasssystem und einem Auslasssystem sowie einer Abgasrückführleitung zur Rückführung von Abgasen bekannt. In das Einlasssystem mündet eine Druckluftleitung ein, welche mit einer Mengenregelvorrichtung versehen ist. Stromaufwärts der Einmündung der Druckluftleitung ist im Einlasssystem eine Drosselklappe und ein Verdichter angeordnet. Die Drosselklappe wird dabei synchron mit einer Mengenregelvorrichtung in der Druckluftleitung betätigt. Durch Einblasen von komprimierter Luft in das Einlasssystem bei geschlossener Drosselklappe kann die Drehzahl des Verdichterlaufrades sehr rasch erhöht werden und dadurch ein schneller Drehmomentaufbau realisiert werden. Nachteilig ist, dass es kurzfristig zu einer positiven Druckdifferenz zwischen dem Einlasssystem und dem Auslasssystem kommt, während welcher keine Abgasrückführung stattfindet. Dies hat den Nachteil, dass ein Spitzenwert an Stickoxidemissionen auftritt.
Die WO 98/32964 Al beschreibt ein Abgasrückführsystem für eine Brennkraftmaschine mit einer den Coanda-Effekt ausnützende Luftstrahlpumpe, wobei vor einer Venturieinrichtung Druckluft dem Abgasströmungsweg zugeführt wird. Der Abgasströmungsweg mündet über einen EGR/Luft-Mischer in das Einlasssystem ein. Die Venturieinrichtung ist dabei stromaufwärts eines EGR-Kühlers angeordnet. Nachteilig ist, dass ein großer Teil der Zylinderladung während der Drucklufteinblasung den EGR-Kühler und den Abgas/Luft-Mischer passieren muss. Der Durchflussquerschnitt des EGR-Kühlers, der EGR-Leitung und des Abgas/Luft-Mischers muss relativ groß dimensioniert werden, was sich nachteilig auf die EGR/Luft-Mischung, auf die EGR-Kühlleistung und die Abmessungen des Abgas- rückführsystems auswirken. Aufgabe der Erfindung ist es, diese Nachteile zu vermeiden und ein Abgasrück- führsystem zu entwickeln, mit welchem auf möglichst einfache und kompakte Weise Stickoxidemissionen, insbesondere im transienten Betrieb einer Brennkraftmaschine reduziert werden können.
Erfindungsgemäß wird dies dadurch erreicht, dass das Abgasrückführsystem einen ersten und einen zweiten Abgasströmungsweg für rückgeführtes Abgas aufweist, wobei sich die beiden Abgasströmungswege von einer gemeinsamen Ab- gasrückführleitung verzweigen, und wobei die Venturieinrichtung im ersten Abgasströmungsweg angeordnet ist und im in das Einlasssystem einmündenden ersten und/oder zweiten Strömungsweg stromabwärts der Verzweigung zumindest ein Abgasventil angeordnet ist.
Über das Abgasventil kann die Abgasrückführung durch den ersten oder zweiten Strömungsweg erfolgen.
Hohe Abgasrückführraten lassen sich erreichen, wenn stromabwärts des Verdichters im Einasssystem eine Drosselklappe angeordnet ist, wobei der erste und der zweite Abgasströmungsweg stromabwärts der Drosselklappe in das Einlasssystem einmünden. Dabei kann der erste Abgasströmungsweg stromabwärts oder stromaufwärts in das Einlasssystem einmünden. Zur besseren Vermischung mit Luft kann zumindest ein Abgasströmungsweg, vorzugsweise der zweite Abgasströmungsweg, im Bereich eines Abgas/Luft-Mischers in das Einlasssystem einmünden.
Bauraum kann gespart werden, wenn der erste und der zweite Abgasströmungsweg sich stromabwärts eines in der Abgasrückführleitung angeordneten Abgas- rückführkühlers verzweigen.
In einer besonders einfachen Ausführungsvariante der Erfindung ist vorgesehen, dass das Abgasventil ein in Richtung des Einlasssystems öffnendes vorzugsweise federbelastetes Einwegventil ist. Das Einwegventil kann beispielsweise durch eine federbelastete Klappe gebildet sein.
Eine besonders flexibles Umschalten zwischen erstem und zweitem Strömungsweg kann erfolgen, wenn das Abgasventil ein durch einen Aktuator extern betätigbares Steuerventil ist. Der Aktuator kann beispielsweise als Unterdruckdose ausgebildet sein.
In einer besonders bevorzugten Ausführungsvariante der Erfindung ist vorgesehen, dass das Abgasventil als Umschaltventil für den Durchfluss des ersten und des zweiten Strömungsweges mit zumindest zwei Schaltstellung ausgebildet ist, wobei in einet ersten Schaltstellung der erste Strömungsweg gesperrt und der zweite Strömungsweg geöffnet und in der zweiten Schaltstellung der erste Strömungsweg geöffnet und der zweite Strömungsweg gesperrt ist. Dadurch kann mit einem einzigen Abgasventil wahlweise zwischen dem ersten und dem zweiten Abgasströmungsweg umgeschalten werden. Die Betätigung kann selbsttätig durch die Druckdifferenz zwischen erstem und zweitem Abgasströmungsweg oder extern gesteuert durch einen Aktuator erfolgen.
Besonders vorteilhaft ist es dabei, wenn stromaufwärts der Venturi-Einrichtung ein Druckluftventil angeordnet ist. Durch die Venturi-Einrichtung lassen sich auch bei ungünstigen Druckverhältnissen ausreichende Abgasmengen in das Einlasssystem rückführen, wodurch Stickoxidspitzen bei transientem Motorbetrieb vermieden werden können. Besonders vorteilhaft ist es dabei, wenn der Durchflussquerschnitt der Venturieinrichtung veränderbar ist. Venturianordnungen mit veränderbarem Querschnitt sind beispielsweise aus den Veröffentlichungen DE 20 59 005 Al, EP 0 124 666 Al, EP 0 679 873 Bl, EP 1 905 999 A2 oder WO 2005/085617 Al bekannt.
Im stationären Betrieb ist dabei das Druckluftventil geschlossen. Abgasrückführung kann bei geöffnetem Abgasventil über den zweiten Abgasströmungsweg durchgeführt werden, wobei die Drosselung der Einlassluft über die Drosselklappe erfolgt.
Insbesondere in einem transienten Betriebsbereich wird Druckluft über die Druckluftleitung in den ersten Abgasströmungsweg eingeblasen, wodurch Abgas über die Venturieinrichtung rückgeführt wird, wobei vorzugsweise insbesondere in einem transienten Betriebsbereich die Drosselklappe im Einlasssystem geschlossen wird, bis die Drehzahl des Verdichters eine Solldrehzahl erreicht.
Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen :
Fig. 1 ein Abgasrückführsystem einer erfindungsgemäßen Brennkraftmaschine in einer ersten Ausführungsvariante in einer ersten Schaltstellung des Abgasventils;
Fig. 2 das Abgasrückführsystem aus Fig. 1 in einer zweiten Schaltstellung; und
Fig. 3 ein Abgasrückführsystem einer erfindungsgemäßen Brennkraftmaschine in einer zweiten Ausführungsvariante.
Die Fig. 1 zeigt eine Brennkraftmaschine 1 mit einem Einlasssystem 2 und einem Auslasssystem 3. Im Auslasssystem 3 ist die Abgasturbine 4 und im Einlasssystem 2 der Verdichter 5 eines Abgasturboladers angeordnet. Zur Rückführung von Abgas aus dem Auslasssystem 3 in das Einlasssystem 2 ist in der Abgasrück- führleitung 13a des Abgasrückführsystem 13 ein Abgasrückführventil 6 und ein Abgasrückführkühler 7 angeordnet. Stromabwärts des Verdichters 5 befindet sich ein Ladeluftkühler 8 und eine Drosselklappe 9.
Um ein rasches Ansprechverhalten des Verdichter 5 des Abgasturboladers zu erreichen, ist ein Druckluftsystem 14 mit einer in das Einlasssystem mündenden Druckluftleitung 15 vorgesehen, wobei das Druckluftsystem 14 weiters einen Druckluftbehälter 10 und ein Druckluftventil 11 aufweist.
Stromabwärts des Abgasrückführkühlers 7 verzweigt sich die Abgasrückführlei- tung 13a in einen ersten und einen zweiten Abgasströmungsweg 16, 17. Die Verzweigung ist mit Bezugszeichen 13b bezeichnet.
Im ersten Abgasströmungsweg 16 ist eine Venturi-Einrichtung 12 angeordnet, wobei die Druckluftleitung 15 stromaufwärts der Venturi-Einrichtung 12 in den ersten Abgasströmungsweg 16 einmündet. Dadurch kann auch bei ungünstiger Druckdifferenz zwischen Einlasssystem 2 und Auslasssystem 3 ausreichend Abgas vom Auslasssystem 3 in das Einlasssystem 2 rückgeführt werden.
Um eine effektive Abgasrückführung zu erreichen, ist im ersten und/oder zweiten Abgasströmungsweg 16, 17 stromabwärts der Venturieinrichtung 12 ein Abgasventil 18 angeordnet, mit welchem der Strömungsquerschnitt des ersten bzw. zweiten Abgasströmungsweges 16, 17 vermindert oder geschlossen werden kann. Im in Fig. 1 dargestellten Ausführungsbeispiel ist dieses Abgasventil 18 als Umschaltventil 18a zum Umschalten zwischen erstem und dem zweitem Strömungsweg 16, 17 ausgebildet. Das Umschaltventil 18a weist dabei zumindest zwei Schaltstellung auf, wobei in einer ersten Schaltstellung, wie in Fig. 1 ersichtlich, der erste Strömungsweg 16 gesperrt und der zweite Strömungsweg 17 geöffnet und in der in Fig. 2 dargestellten zweiten Schaltstellung der erste Strömungsweg 16 geöffnet und der zweite Strömungsweg 17 gesperrt ist. Das Umschaltventil kann selbsttätig durch die Druckdifferenz zwischen erstem und zweiten Strömungsweg 16, 17 oder gesteuert durch einen Aktuator betätigt werden.
Die Fig. 3 zeigt ein weiteres Ausführungsbeispiel, bei dem das Abgasventil 18 als durch einen Aktuator 19 betätigtes Steuerventil 18b ausgebildet ist, wobei durch das Steuerventil 18b der Strömungsquerschnitt des zweiten Abgasströmungsweges 17 verändert werden kann. Der zweite Strömungsweg 17 mündet dabei über einen Abgas/Luft-Mischer 20 in das Einlasssystem 2 ein. Der Aktuator 19 kann beispielsweise durch eine Unterdruckdose gebildet sein. Alternativ dazu kann das Abgasventil 18 auch durch ein federbelastetes Einwegventil, beispielsweise eine federbelastete Klappe gebildet sein, welche in Richtung des Einlasssystems 2 öffnet.
Während des stationären Motorbetriebes ist das Druckluftventil 11 geschlossen. Die Brennkraftmaschine 1 kann somit mit konventioneller Abgasrückführung über das Abgasrückführventil 6 und die Drosselklappe 9 gesteuert werden, wobei durch das Abgasventil 18 der zweite Abgasströmungsweg 17 geöffnet wird.
Während eines transienten Motorbetriebes kann das Druckluftventil 11 geöffnet werden, um frische Druckluft über den ersten Abgasströmungsweg 16 dem Einlasssystem 2 zuzuführen, wodurch das transiente Verhalten der Brennkraftmaschine 1 verbessert wird. Zur Verbesserung der Abgasqualität kann in dieser Phase das Abgasrückführventil 6 zur Rückführung von Abgas in den Einlasssystem 2 geöffnet werden, wodurch Abgas über die Venturi-Einrichtung 12 und dem ersten Abgasströmungsweg 16 in das Einlasssystem 2 strömt. Das Abgasventil 18 ist dabei geschlossen.
Weiters kann im transienten Betriebsbereich der Brennkraftmaschine 1 die Drosselklappe 9 geschlossen werden, wenn Druckluft über das Druckluftventil 11 in das Einlasssystem 2 eingeblasen wird, um den Drehmomentaufbau der Brennkraftmaschine 1 zu verbessern. Die zusätzliche Venturi-Einrichtung 12 hat den Vorteil, dass Abgas auch in dieser Phase bei ungünstigen Druckverhältnisses in ausreichender Menge rückgeführt werden kann. Dadurch kann das Auftreten von Stickoxidspitzen zuverlässig verhindert werden.

Claims

PATENTANSPRUCHE
1. Brennkraftmaschine (1) mit einem Einlasssystem (2) mit einem vorzugsweise durch eine Abgasturbine (4) angetriebenen Verdichter (5) und einem Auslasssystem (3), mit einem Abgasrückführsystem (13) mit zumindest einer Abgasrückführleitung (13a) zur Rückführung von Abgas aus dem Auslasssystem (3) in das Einlasssystem (2), wobei Abgas mit Unterstützung eines Druckluftsystems (14) über eine Venturieinrichtung (12) rückführbar ist, dadurch gekennzeichnet, dass das Abgasrückführsystem (13) einen ersten und einen zweiten Abgasströmungsweg (16, 17) für rückgeführtes Abgas aufweist, wobei sich die beiden Abgasströmungswege (16, 17) von einer gemeinsamen Abgasrückführleitung (13a) verzweigen, und wobei die Venturieinrichtung im ersten Abgasströmungsweg (16) angeordnet ist und im in das Einlasssystem (2) einmündenden ersten und/oder zweiten Strömungsweg (16, 17) stromabwärts der Verzweigung (13b) zumindest ein Abgasventil (18) angeordnet ist.
2. Brennkraftmaschine (1) nach Anspruch 1, dadurch gekennzeichnet, dass stromabwärts des Verdichters (5) im Einasssystem (2) eine Drosselklappe (9) angeordnet ist, wobei der erste und der zweite Abgasströmungsweg (16, 17) stromabwärts der Drosselklappe (9) in das Einlasssystem (2) einmünden.
3. Brennkraftmaschine (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste und der zweite Abgasströmungsweg (16, 17) sich stromabwärts eines in der Abgasrückführleitung (13a) angeordneten Abgas- rückführkühlers (7) verzweigen.
4. Brennkraftmaschine (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Abgasventil (18) ein in Richtung des Einlasssystems (2) öffnendes vorzugsweise federbelastetes Einwegventil ist.
5. Brennkraftmaschine (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Abgasventil (18) ein durch einen Aktuator (19) extern betätigbares Steuerventil (18b) ist.
6. Brennkraftmaschine (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Abgasventil (18) als Umschaltventil (18a) für den Durchfluss des ersten und des zweiten Abgasströmungsweges (16, 17) mit zumindest zwei Schaltstellung ausgebildet ist, wobei in einet ersten Schaltstellung der erste Strömungsweg (16) gesperrt und der zweite Strömungs- weg (17) geöffnet und in der zweiten Schaltstellung der erste Strömungsweg (16) geöffnet und der zweite Strömungsweg (17) gesperrt ist.
7. Brennkraftmaschine (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass stromaufwärts der Venturieinrichtung (12) ein Druckluftventil (11) in der Druckluftleitung (15) angeordnet ist.
8. Brennkraftmaschine (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest ein Abgasströmungsweg (16, 17), vorzugsweise der zweite Abgasströmungsweg (17), im Bereich eines Abgas/Luft-Mischers (20) in das Einlasssystem (2) einmündet.
9. Brennkraftmaschine (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Durchflussquerschnitt der Venturieinrichtung (12) veränderbar ist.
2010 06 15
Fu
PCT/EP2010/058384 2009-06-18 2010-06-15 Brennkraftmaschine mit druckluftunterstützter abgasrückführung WO2010146048A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112010002560T DE112010002560A5 (de) 2009-06-18 2010-06-15 Brennkraftmaschine mit druckluftunterstützter abgasrückführung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0093809A AT506476B1 (de) 2009-06-18 2009-06-18 Brennkraftmaschine mit einem einlasssystem
ATA938/2009 2009-06-18

Publications (1)

Publication Number Publication Date
WO2010146048A1 true WO2010146048A1 (de) 2010-12-23

Family

ID=41057724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/058384 WO2010146048A1 (de) 2009-06-18 2010-06-15 Brennkraftmaschine mit druckluftunterstützter abgasrückführung

Country Status (3)

Country Link
AT (1) AT506476B1 (de)
DE (1) DE112010002560A5 (de)
WO (1) WO2010146048A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874193B2 (en) 2016-06-16 2018-01-23 Southwest Research Institute Dedicated exhaust gas recirculation engine fueling control
US10125726B2 (en) 2015-02-25 2018-11-13 Southwest Research Institute Apparatus and methods for exhaust gas recirculation for an internal combustion engine utilizing at least two hydrocarbon fuels
US10233809B2 (en) 2014-09-16 2019-03-19 Southwest Research Institute Apparatus and methods for exhaust gas recirculation for an internal combustion engine powered by a hydrocarbon fuel
US10495035B2 (en) 2017-02-07 2019-12-03 Southwest Research Institute Dedicated exhaust gas recirculation configuration for reduced EGR and fresh air backflow

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2486256A4 (de) * 2009-10-09 2014-03-05 Int Engine Intellectual Prop Motoreinlassverstärker
US8434305B2 (en) * 2010-05-06 2013-05-07 Honeywell International Inc. Compressed-air-assisted turbocharger system for internal combustion engine
FR3016192B1 (fr) * 2014-01-06 2016-02-05 Peugeot Citroen Automobiles Sa Moteur a combustion interne avec recirculation des gaz d'echappement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213467A2 (de) * 2000-12-07 2002-06-12 Caterpillar Inc. Venturi-Bypass eines Abgasrückführungssystems
WO2008022769A1 (de) * 2006-08-22 2008-02-28 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Einrichtung und verfahren zur frischluftversorgung einer turboaufgeladenen kolbenbrennkraftmaschine
WO2009040041A1 (de) * 2007-09-24 2009-04-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren und vorrichtung zum verbessern einer abgasrückführung einer verbrennungskraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213467A2 (de) * 2000-12-07 2002-06-12 Caterpillar Inc. Venturi-Bypass eines Abgasrückführungssystems
WO2008022769A1 (de) * 2006-08-22 2008-02-28 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Einrichtung und verfahren zur frischluftversorgung einer turboaufgeladenen kolbenbrennkraftmaschine
WO2009040041A1 (de) * 2007-09-24 2009-04-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren und vorrichtung zum verbessern einer abgasrückführung einer verbrennungskraftmaschine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233809B2 (en) 2014-09-16 2019-03-19 Southwest Research Institute Apparatus and methods for exhaust gas recirculation for an internal combustion engine powered by a hydrocarbon fuel
US10125726B2 (en) 2015-02-25 2018-11-13 Southwest Research Institute Apparatus and methods for exhaust gas recirculation for an internal combustion engine utilizing at least two hydrocarbon fuels
US9874193B2 (en) 2016-06-16 2018-01-23 Southwest Research Institute Dedicated exhaust gas recirculation engine fueling control
US10495035B2 (en) 2017-02-07 2019-12-03 Southwest Research Institute Dedicated exhaust gas recirculation configuration for reduced EGR and fresh air backflow

Also Published As

Publication number Publication date
DE112010002560A5 (de) 2012-09-20
AT506476B1 (de) 2010-12-15
AT506476A2 (de) 2009-09-15
AT506476A3 (de) 2010-03-15

Similar Documents

Publication Publication Date Title
AT506476B1 (de) Brennkraftmaschine mit einem einlasssystem
DE60117448T2 (de) Venturi-Bypass eines Abgasrückführungssystems
DE10116643C2 (de) Hubkolbenbrennkraftmaschine
DE102011078457B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Ladeluftkühler
DE102004044895A1 (de) Abgasrückführeinrichtung und Verfahren zum Betreiben der Abgasrückführeinrichtung
DE102008048912B4 (de) Abgasanlage und Abgasventil zur Steuerung eines Volumenstroms von Abgas sowie ein Verfahren zur Steuerung eines Volumenstroms
DE102011078454B4 (de) Brennkraftmaschine mit Ladeluftkühlung
DE19929956C5 (de) Abgasrückführventil
DE10329019A1 (de) Brennkraftmaschine mit einem Verdichter im Ansaugtrakt und Verfahren hierzu
EP1570161A1 (de) Brennkraftmaschine mit einem abgasturbolader
DE10110986B4 (de) Viertakt-Brennkraftmaschine mit zumindest zwei Einlassventilen
WO2016005152A1 (de) Abgasrückführungssystem für eine verbrennungskraftmaschine und verfahren zum betreiben eines solchen abgasrückführungssystems
DE4235794C1 (de) Abgasrückführung für eine Brennkraftmaschine
DE10132672A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2004031563A1 (de) Abgasrückführungssystem für eine brennkraftmaschine
EP0095789B1 (de) Verfahren und Einrichtung zur Steuerung der Rezirkulation von Abgas in einem Druckwellenlader für einen Verbrennungsmotor
DE102005041149A1 (de) Wärmeübertragerventileinrichtung
DE102005041146A1 (de) Ventil, insbesondere Drehkolbenventil, und Abgasrückführsystem mit einem solchen Ventil
AT507481B1 (de) Brennkraftmaschine
DE112010002706B4 (de) Brennkraftmaschine mit einem einlasssystem
DE102005056955A1 (de) Brennkraftmaschine mit Niederdruck-Abgasrückführung
DE102005041150A1 (de) Wärmeübertragerventileinrichtung
AT3762U1 (de) Brennkraftmaschine mit einem einlasssystem
DE102018208983B4 (de) Anordnung zum Rezirkulieren von Abgas
EP2562407B1 (de) Abgasrückführeinrichtung für eine Brennkraftmaschine eines Fahrzeuges sowie Verfahren zum Betreiben einer Abgasrückführeinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10723148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120100025606

Country of ref document: DE

Ref document number: 112010002560

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10723148

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112010002560

Country of ref document: DE

Effective date: 20120920