WO2010143741A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2010143741A1
WO2010143741A1 PCT/JP2010/060148 JP2010060148W WO2010143741A1 WO 2010143741 A1 WO2010143741 A1 WO 2010143741A1 JP 2010060148 W JP2010060148 W JP 2010060148W WO 2010143741 A1 WO2010143741 A1 WO 2010143741A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
liquid crystal
light
crystal display
film
Prior art date
Application number
PCT/JP2010/060148
Other languages
French (fr)
Japanese (ja)
Inventor
室誠治
森美穂
金光昭佳
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2010800254065A priority Critical patent/CN102460285A/en
Publication of WO2010143741A1 publication Critical patent/WO2010143741A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one

Definitions

  • the present invention relates to a liquid crystal display device used for a liquid crystal television, a liquid crystal monitor, a personal computer, and the like.
  • liquid crystal display devices are rapidly expanding as thin display devices used in liquid crystal televisions, liquid crystal monitors, personal computers, and the like.
  • market for liquid crystal televisions is remarkably expanding, and the demand for cost reduction is very high.
  • a normal liquid crystal display device includes a surface light source using a cold cathode tube or an LED, a light diffusion plate, one or more diffusion sheets, a light collecting sheet, and a liquid crystal panel on which a polarizing plate is bonded.
  • a surface light source using a cold cathode tube or an LED a light diffusion plate, one or more diffusion sheets, a light collecting sheet, and a liquid crystal panel on which a polarizing plate is bonded.
  • a method of directly bonding a condensing prism sheet to one surface of a polarizing plate disposed between a liquid crystal cell constituting a liquid crystal panel and a surface light source for example, JPH11-295714-A and JP2008) -262132-A
  • a method using a condensing prism sheet for example, JP2008-262132-A and JP2005-17355-A
  • the technique which reduces a number of parts except a some member is known.
  • the sheet member is expected depending on the light emission characteristics of the surface light source used. In some cases, the light condensing function is not fully exhibited, and display characteristics such as luminance and contrast are deteriorated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a liquid crystal display device having high luminance and contrast and excellent display characteristics.
  • the present invention relates to a liquid crystal display device including a surface light source and a liquid crystal panel provided on the surface light source and including a liquid crystal cell and a polarizing plate laminated on the surface of the liquid crystal cell on the surface light source side.
  • the polarizing plate includes a polarizing film and a prism sheet having a surface composed of prismatic protrusions laminated on the surface of the polarizing film via an adhesive layer. The sheet is disposed such that the surface formed by the prismatic protrusions faces the surface light source.
  • the liquid crystal display device of the present invention has an emission angle that is an angle formed by the normal direction of the light emission surface of the surface light source and the emission direction of the emission light of the surface light source in a plane orthogonal to the ridge line direction of the prismatic protrusion.
  • (where ⁇ 90 ° ⁇ ⁇ ⁇ 90 °) is satisfied, the light intensity distribution of the surface light source that shows the emission angle dependence of the light intensity of the emitted light satisfies the following (1) and (2).
  • (1) It has a peak having the highest light intensity maximum value in the range of ⁇ 80 ° ⁇ ⁇ ⁇ 40 ° or 40 ° ⁇ ⁇ 80 °.
  • the surface light source preferably includes a light guide plate and a light source device disposed on the side of the light guide plate.
  • the light source device is a light source device composed of a light source device in which point light sources are arranged in a line or a rod-like light source, and the light source device and the prism sheet are parallel or substantially parallel to the ridge line of the light source device and the prismatic protrusion. It is preferable to arrange so that.
  • the surface light source preferably has one light source device arranged on one side of the light guide plate or two light source devices arranged on two sides facing the light guide plate.
  • the apex angle ⁇ of the prismatic protrusion is preferably 60 ° or more.
  • the cross-sectional shape of the prismatic protrusion is preferably an isosceles triangle.
  • the liquid crystal display device of the present invention is thin, has high brightness and contrast, and has excellent display characteristics.
  • the liquid crystal display device of the present invention can be suitably applied as a liquid crystal display device for a large-screen liquid crystal television, in particular, a liquid crystal display device for a liquid crystal television that can be wall-mounted.
  • FIG. 6 is a diagram illustrating a light intensity distribution (luminance distribution) of the liquid crystal display device manufactured in Example 1.
  • FIG. 6 is a diagram showing a light intensity distribution (luminance distribution) of a liquid crystal display device manufactured in Comparative Example 1.
  • FIG. 6 is a diagram illustrating a light intensity distribution (luminance distribution) of the liquid crystal display device manufactured in Example 1.
  • FIG. 6 is a diagram showing a light intensity distribution (luminance distribution) of a liquid crystal display device manufactured in Comparative Example 1.
  • FIG. 1 is a schematic sectional view showing a preferred example of the liquid crystal display device of the present invention.
  • a liquid crystal display device 100 shown in FIG. 1 according to the present invention includes a light source plate 21 and a surface light source 20 including a light source device 21 that is disposed on the side of the light guide plate 22 and along one side of the light guide plate 22.
  • the liquid crystal panel 10 is disposed on the surface light source 20.
  • the liquid crystal panel 10 includes a liquid crystal cell 3, a polarizing plate 1 that is a back side polarizing plate laminated on the surface of the liquid crystal cell 3 on the surface light source 20 side, and a front side polarized light laminated on the viewing side surface of the liquid crystal cell 3.
  • the polarizing plate 2 is a plate.
  • the polarizing plate 1 and the polarizing plate 2 are bonded to the liquid crystal cell 3 through the adhesive layer 17.
  • a polarizing plate 1 which is a back side polarizing plate is a surface (hereinafter referred to as a prism surface) composed of a polarizing film 12 and a prism-shaped protrusion 13a laminated on the surface light source 20 side surface of the polarizing film 12 with an adhesive layer 14 interposed therebetween. And a resin film 15 laminated on the surface of the polarizing film 12 via the adhesive layer 16. The polarizing plate 1 is bonded to the liquid crystal cell 3 on the resin film 15 side.
  • the liquid crystal cell 3 and the polarizing plate 1 are arranged such that the surface of the polarizing film 12 opposite to the surface on which the prism sheet 13 is laminated faces the liquid crystal cell 3, that is, the prism sheet 13
  • the prism surface forms a surface light source side surface of the liquid crystal panel 10 and is bonded so that the prism surface faces the surface light source 20.
  • the back side polarizing plate does not need to have such a resin film, and is the structure by which the polarizing film 12 is directly bonded to the liquid crystal cell 3 through an adhesive layer etc. Also good.
  • the liquid crystal display device of the present invention is a liquid crystal display device using a back-side polarizing plate having a prism sheet laminated on the surface of a polarizing film via an adhesive layer.
  • the liquid crystal display device using the back-side polarizing plate having such a prism sheet specific light emission characteristics, specifically light distribution characteristics (how much light is emitted in which direction and how much light is emitted) A surface light source having the above is applied.
  • ADVANTAGE OF THE INVENTION According to this invention, it is a liquid crystal display device using the back side polarizing plate which has a prism sheet, Comprising: A brightness
  • the liquid crystal display device of the present invention includes a liquid crystal panel in which a thinned polarizing plate is bonded to the back side of the liquid crystal cell, and thus has sufficient mechanical strength while supporting thinning. Since the prism sheet is disposed on the back side of the liquid crystal panel, the liquid crystal panel and the surface light source are prevented from coming into close contact with each other, thereby improving the display characteristics.
  • the liquid crystal display device of the present invention will be described in detail with reference to the drawings as appropriate.
  • FIG. 2 is a schematic cross-sectional view showing a preferred example of the back-side polarizing plate used in the present invention, and the configuration thereof is the same as that of the polarizing plate 1 in FIG. 1 (reference numerals are also the same).
  • the back side polarizing plate used in the present invention was laminated on the polarizing film 12 and one surface (surface light source side surface) of the polarizing film 12 via the adhesive layer 14.
  • a prism sheet 13 having a surface (prism surface) composed of the prismatic protrusions 13a.
  • the back-side polarizing plate was laminated on the surface opposite to the surface on which the prism sheet 13 was laminated (surface on the liquid crystal cell side) via the adhesive layer 16 like the polarizing plate 1 shown in FIG.
  • a resin film 15 may be provided.
  • the polarizing film 12 used for the back polarizing plate is obtained by adsorbing and orienting a dichroic dye on a uniaxially stretched polyvinyl alcohol resin film.
  • a saponified polyvinyl acetate resin can be used as the polyvinyl alcohol resin constituting the polyvinyl alcohol resin film.
  • Polyvinyl acetate resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith, such as ethylene-vinyl acetate copolymers. Etc.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, for example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like can be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10000, and preferably about 1500 to 5000.
  • a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film.
  • the method for forming the polyvinyl alcohol-based resin is not particularly limited, and can be formed by a conventionally known appropriate method.
  • the film thickness of the raw film made of the polyvinyl alcohol resin is not particularly limited, but is, for example, about 10 to 150 ⁇ m.
  • a polarizing film is usually a process of dyeing an original film made of polyvinyl alcohol resin as described above with a dichroic dye and adsorbing the dichroic dye (dyeing process), and the dichroic dye is adsorbed.
  • the polyvinyl alcohol-based resin film is produced through a step of treating with a boric acid aqueous solution (boric acid treatment step) and a step of washing with water after the treatment with the boric acid aqueous solution (water washing treatment step).
  • the polyvinyl alcohol-based resin film is usually uniaxially stretched, but this uniaxial stretching may be performed before the dyeing treatment step or during the dyeing treatment step, It may be performed after the dyeing process.
  • this uniaxial stretching may be performed before the boric acid treatment step or during the boric acid treatment step.
  • atmosphere may be sufficient
  • stretches in the state swollen with the solvent may be sufficient.
  • the draw ratio is usually about 3 to 8 times.
  • the dyeing of the polyvinyl alcohol-based resin film with the dichroic dye in the dyeing process is performed, for example, by immersing the polyvinyl alcohol-based resin film in an aqueous solution containing the dichroic dye.
  • the dichroic dye for example, iodine, a dichroic dye or the like is used.
  • dichroic dyes include C.I. I. Dichroic direct dyes composed of disazo compounds such as DIRECT RED 39, dichroic direct dyes composed of trisazo, tetrakisazo compounds and the like are included.
  • the polyvinyl alcohol-type resin film performs the immersion process to water before a dyeing process.
  • iodine When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the content of iodine in this aqueous solution is usually 0.01 to 1 part by weight per 100 parts by weight of water, and the content of potassium iodide is usually 0.5 to 20 parts by weight per 100 parts by weight of water. .
  • the temperature of the aqueous solution used for dyeing is usually 20 to 40 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually 20 to 1800 seconds.
  • a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye is usually employed.
  • the content of the dichroic dye in this aqueous solution usually, 1 ⁇ 10 -4 ⁇ 10 parts by weight per 100 parts by weight of water, preferably 1 ⁇ 10 -3 ⁇ 1 parts by weight, particularly preferably 1 ⁇ 10 - 3 to 1 ⁇ 10 ⁇ 2 parts by weight.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant.
  • the temperature of the dye aqueous solution used for dyeing is usually 20 to 80 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually 10 to 1800 seconds. is there.
  • the boric acid treatment step is performed by immersing a polyvinyl alcohol resin film dyed with a dichroic dye in a boric acid-containing aqueous solution.
  • the amount of boric acid in the boric acid-containing aqueous solution is usually 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water.
  • the boric acid-containing aqueous solution used in this boric acid treatment process preferably contains potassium iodide.
  • the amount of potassium iodide in the boric acid-containing aqueous solution is usually 0.1 to 15 parts by weight, preferably 5 to 12 parts by weight, per 100 parts by weight of water.
  • the immersion time in the boric acid-containing aqueous solution is usually 60 to 1200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
  • the polyvinyl alcohol-based resin film after the boric acid treatment described above is washed with water, for example, by immersing it in water.
  • the temperature of water in the water washing treatment is usually 5 to 40 ° C., and the immersion time is usually 1 to 120 seconds.
  • a drying treatment is usually performed to obtain a polarizing film.
  • the drying process can be performed using, for example, a hot air dryer or a far infrared heater.
  • the temperature for the drying treatment is usually 30 to 100 ° C., preferably 50 to 80 ° C.
  • the time for the drying treatment is usually 60 to 600 seconds, preferably 120 to 600 seconds.
  • a polarizing film is obtained by subjecting the polyvinyl alcohol-based resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment and water washing treatment.
  • the thickness of this polarizing film is usually in the range of 5 to 40 ⁇ m.
  • the prism sheet 13 used for the back-side polarizing plate has a surface (prism surface) composed of prism-shaped protrusions (prism-shaped protrusions 13a).
  • the prism sheet 13 is laminated on the polarizing film 12 so that the surface opposite to the prism surface faces the polarizing film 12.
  • a prism sheet 13 having a prism surface is disposed on the surface of the back-side polarizing plate, and the prism surface is opposed to a surface light source to be described later, thereby exiting from the light emitting surface of the surface light source (surface facing the prism surface).
  • the direction of the emitted light can be changed intentionally (deflected).
  • the outgoing light from the surface light source, particularly the outgoing light having directivity [the main outgoing direction is different from the normal direction of the light outgoing surface of the surface light source (the front direction of the liquid crystal display device).
  • the emission direction of the emitted light can be deflected in the front direction of the liquid crystal display device by the prism sheet, thereby improving the brightness and contrast of the front surface of the liquid crystal display device.
  • the prism sheet 13 also serves as a protective film for the polarizing film 12.
  • the “prism-like protrusion” is a columnar shape indicated by a locus obtained by translating a triangular shape (which may include a substantially triangular shape including a curve in part, a sawtooth shape, etc.) perpendicularly to the triangular surface.
  • a triangular shape which may include a substantially triangular shape including a curve in part, a sawtooth shape, etc.
  • the prism surface refers to the prismatic protrusion on the columnar body.
  • FIG. 3 is a schematic perspective view showing an example of the surface shape of the prism sheet, and the cross-sectional shape of the prism-shaped protrusion is an isosceles triangle.
  • the apex angle (vertex angle) of the prismatic protrusion 13a of the prism sheet 13 can be set to, for example, 30 to 100 °.
  • the emitted light from the surface light source, particularly the emitted light having directivity. Is more preferably 60 ° or more and 100 ° or less, and more preferably 60 ° or more and 80 ° or less in order to more efficiently deflect the light in the front direction of the liquid crystal display device.
  • the height of the prismatic protrusion 13a can be set to 10 to 200 ⁇ m, for example. Further, the pitch of the prismatic protrusions 13a (the distance between the ridge lines of adjacent protrusions) is appropriately determined in consideration of the apex angle and height of the prismatic protrusions 13a, for example, 5 to 300 ⁇ m. it can.
  • the two sides constituting the projection in the triangular cross section of the prismatic projection 13a may have the same length or different lengths, but at least the light source device of the surface light source used is When arranged on two sides facing each other of the light guide plate, it is preferable that the two sides have the same length. Therefore, the cross-sectional shape of the prismatic protrusion 13a is preferably an isosceles triangle. The heights of the plurality of prismatic protrusions 13a may all be the same or different. The shape of the groove formed between the protrusions may be a straight line or a curved line.
  • polystyrene resins such as polyethylene and polypropylene
  • polyester resins such as polyethylene terephthalate resin and polyethylene naphthalate resin
  • polyvinyl chloride resins such as polyethylene terephthalate resin and polyethylene naphthalate resin
  • polyvinyl chloride resins such as polyethylene terephthalate resin and polyethylene naphthalate resin
  • polycarbonate resins such as polyethylene terephthalate resin and polyethylene naphthalate resin
  • norbornene resins such as polyurethane resins
  • acrylic resins polymethyl methacrylate resins
  • Synthetic polymers such as polystyrene resin, methyl methacrylate-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, natural diacetate resin, cellulose triacetate resin, etc.
  • Polymers can be used.
  • polyolefin resin polyacrylic resin, polycarbonate resin, polyester resin, polystyrene resin, methyl methacrylate-styrene copolymer, acrylonitrile-butadiene-styrene Any one of a thermoplastic copolymer and an acrylonitrile-styrene copolymer is suitable.
  • These polymer materials can contain additives such as ultraviolet absorbers, antioxidants, and plasticizers as necessary.
  • the prism sheet 13 is a known material such as a photopolymer process method, a profile extrusion method, a press molding method, an injection molding method, a roll transfer method, a laser ablation method, a mechanical cutting method, or a mechanical grinding method using the transparent polymer material as a base material. It can be manufactured by the method. Each of these methods may be used alone, or two or more methods may be combined.
  • the thickness of the prism sheet 13 is not particularly limited, but is preferably about 20 ⁇ m or more and 200 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less from the viewpoint of thinning the polarizing plate.
  • a resin film 15 such as a protective film or an optical compensation film may be laminated on the surface of the polarizing film 12 opposite to the surface on which the prism sheet is laminated.
  • the polarizing plate 1 is bonded to the liquid crystal cell via the adhesive layer laminated on the resin film 15.
  • the optical functional film mentioned later can also be laminated
  • the resin film 15 examples include cellulose resin films such as a triacetyl cellulose film (TAC film), polyolefin resin films, acrylic resin films, and polyester resin films such as polyethylene terephthalate.
  • cellulose resin films such as a triacetyl cellulose film (TAC film), polyolefin resin films, acrylic resin films, and polyester resin films such as polyethylene terephthalate.
  • TAC film triacetyl cellulose film
  • acrylic resin films acrylic resin films
  • polyester resin films such as polyethylene terephthalate.
  • Examples of the cellulose-based resin constituting the cellulose-based resin film include a partially esterified product or a completely esterified product of cellulose, such as cellulose acetate ester, propionate ester, butyrate ester, and mixed esters thereof. Can be mentioned. More specifically, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like can be mentioned. When such a cellulose resin is formed into a film, a known method such as a solvent casting method or a melt extrusion method is appropriately used.
  • Examples of commercially available cellulose ester resin films include “Fujitac TD80” (manufactured by Fuji Film Co., Ltd.), “Fujitac TD80UF” (manufactured by Fuji Film Co., Ltd.), and “Fujitac TD80UZ” (manufactured by Fuji Film Co., Ltd.). , “KC8UX2M” (manufactured by Konica Minolta Opto), “KC8UY” (manufactured by Konica Minolta Opto), and the like.
  • an optical compensation film comprising a cellulose resin film
  • a film containing a compound having a retardation adjusting function in the cellulose resin film a compound having a retardation adjusting function is applied to the surface of the cellulose resin film.
  • a film obtained by uniaxially or biaxially stretching a cellulose resin film examples include “WV BZ 438” and “WV EA” manufactured by Fuji Film Co., Ltd., “KC4FR-1” and “KC4HR” manufactured by Konica Minolta Opto Co., Ltd. -1 "and the like.
  • the thickness of the protective film or optical compensation film made of a cellulose resin film is not particularly limited, but is preferably in the range of 20 to 90 ⁇ m, and more preferably in the range of 30 to 90 ⁇ m.
  • the thickness is less than 20 ⁇ m, it is difficult to handle the film.
  • the thickness exceeds 90 ⁇ m, the workability is inferior, and it is disadvantageous in reducing the thickness and weight of the resulting polarizing plate. .
  • the optical compensation film made of the polyolefin resin film examples include a uniaxially stretched or biaxially stretched cycloolefin resin film.
  • a stretched product of a cycloolefin-based resin film has optical characteristics and durability. It is suitable also from this point.
  • the cycloolefin resin film is a film made of a thermoplastic resin having a unit of a monomer made of a cyclic olefin (cycloolefin) such as norbornene or a polycyclic norbornene monomer.
  • the cycloolefin-based resin film may be a hydrogenated product of a ring-opening polymer using a single cycloolefin or a hydrogenated product of a ring-opening copolymer using two or more cycloolefins. And an addition copolymer of a chain olefin and / or an aromatic compound having a vinyl group. Further, those having a polar group introduced into the main chain or side chain are also effective.
  • thermoplastic cycloolefin-based resins are “Topas” sold by TOPAS ADVANCED POLYMERS GmbH in Germany, “Arton” sold by JSR Corporation, and Nippon Zeon Corporation. There are “ZEONOR” and “ZEONEX”, “APEL” (both trade names) sold by Mitsui Chemicals, Inc., and the like, which can be preferably used.
  • a cycloolefin resin film can be obtained by forming such a cycloolefin resin.
  • a film forming method a known method such as a solvent casting method or a melt extrusion method is appropriately used.
  • the thickness of the optical compensation film made of the stretched cycloolefin-based resin film is too thick, the workability will be inferior, and the transparency will be lowered, and it will be disadvantageous in reducing the thickness and weight of the polarizing plate. Therefore, the thickness is preferably about 20 to 80 ⁇ m.
  • the back side polarizing plate used in the present invention can be obtained by laminating the prism sheet on one surface of the polarizing film described above using an adhesive.
  • stacked through the adhesive bond layer 14 on the surface of the polarizing film 12 is obtained.
  • the resin film 15 is laminated on the other surface of the polarizing film 12, the polarizing film 12 and the resin film 15 are similarly bonded using an adhesive.
  • This adhesive forms the adhesive layer 16.
  • the adhesive used for bonding the prism sheet 13 and the adhesive used for bonding the resin film 15 may be the same type of adhesive, Different types of adhesives may be used. Examples of the adhesive used for laminating these films include a water-based adhesive, that is, an adhesive in which an adhesive component is dissolved or dispersed in water and a photocurable adhesive.
  • the aqueous adhesive is preferably used in that the adhesive layer can be thinned.
  • the water-based adhesive include a water-based adhesive using a polyvinyl alcohol resin or a urethane resin as an adhesive component.
  • the polyvinyl alcohol resin is not only partially saponified polyvinyl alcohol and completely saponified polyvinyl alcohol, but also carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, and methylol group-modified polyvinyl. It may be a modified polyvinyl alcohol resin such as alcohol and amino group-modified polyvinyl alcohol.
  • the water-based adhesive having a polyvinyl alcohol resin as an adhesive component is prepared as an aqueous solution of a polyvinyl alcohol resin.
  • the concentration of the polyvinyl alcohol resin in the adhesive is usually about 1 to 10 parts by weight, preferably about 1 to 5 parts by weight with respect to 100 parts by weight of water.
  • a curable component such as glyoxal or a water-soluble epoxy resin or a cross-linking agent
  • an adhesive having a polyvinyl alcohol resin as an adhesive component in order to improve adhesiveness.
  • water-soluble epoxy resins include polyamide polyamine epoxy resins obtained by reacting epichlorohydrin with polyamide polyamines obtained by reaction of polyalkylene polyamines such as diethylenetriamine and triethylenetetramine with dicarboxylic acids such as adipic acid. Can be suitably used.
  • the addition amount of the curable component and the crosslinking agent is less than 1 part by weight with respect to 100 parts by weight of the polyvinyl alcohol-based resin, the effect of improving adhesiveness tends to be reduced, and the curable component, When the addition amount of the crosslinking agent exceeds 100 parts by weight with respect to 100 parts by weight of the polyvinyl alcohol resin, the adhesive layer tends to become brittle.
  • a urethane resin When a urethane resin is used as the adhesive component, examples of suitable adhesive compositions include a mixture of a polyester ionomer type urethane resin and a compound having a glycidyloxy group.
  • the polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton.
  • an ionomer-type urethane resin is suitable as a water-based adhesive because it is emulsified directly in water without using an emulsifier to form an emulsion.
  • Polyester-based ionomer urethane resins are known per se.
  • JP-A-7-97504 describes an example of a polymer dispersant for dispersing a phenol-based resin in an aqueous medium.
  • a mixture of a polyester ionomer type urethane resin and a compound having a glycidyloxy group is used as an adhesive, and a polarizing film made of a polyvinyl alcohol resin is used as a cycloolefin resin. It is shown that a resin film is bonded.
  • a generally known method may be used as a method of applying an adhesive to the polarizing film and / or a member (prism sheet, protective film or optical compensation film) bonded to the polarizing film.
  • a casting method a Meyer bar may be used. Examples thereof include a coating method, a gravure coating method, a comma coater method, a doctor blade method, a die coating method, a dip coating method, and a spraying method.
  • the casting method is a method of spreading and spreading an adhesive on the surface of a film to be coated while moving it in a substantially vertical direction, a substantially horizontal direction, or an oblique direction between the two.
  • Film bonding using nip rolls is, for example, a method in which an adhesive is applied and then pressurized with a roll or the like to spread uniformly, and after applying an adhesive, it is passed between the rolls and pressed.
  • a method of spreading out can be employed.
  • the plurality of rolls may be made of the same material or different materials.
  • the polarizing plate can be obtained by drying and curing the adhesive layer.
  • This drying treatment is performed, for example, by blowing hot air, and the temperature is usually in the range of 40 to 100 ° C., and preferably in the range of 60 to 100 ° C.
  • the drying time is usually 20 to 1200 seconds.
  • the thickness of the adhesive layer after drying is usually 0.001 to 5 ⁇ m, preferably 0.01 to 2 ⁇ m, more preferably 0.01 to 1 ⁇ m. If the thickness of the adhesive layer after drying is less than 0.001 ⁇ m, the adhesion may be insufficient, and if the thickness of the adhesive layer after drying exceeds 5 ⁇ m, the appearance of the polarizing plate is poor. May occur. In addition, it is preferable that the thickness of the adhesive bond layer after bonding using the said nip roll etc. before drying and hardening is 5 micrometers or less, and it is preferable that it is 0.01 micrometers or more.
  • sufficient adhesive strength may be obtained by curing at room temperature or higher for at least half a day, usually 1 day or longer. Such curing is typically performed in a state of being wound in a roll.
  • the preferable curing temperature is in the range of 30 to 50 ° C, more preferably 35 to 45 ° C. When the curing temperature exceeds 50 ° C., so-called “roll tightening” is likely to occur in the roll winding state.
  • the humidity during curing is not particularly limited, but is preferably selected so that the relative humidity is in the range of about 0% RH to 70% RH.
  • the curing time is usually about 1 to 10 days, preferably about 2 to 7 days.
  • examples of the photocurable adhesive include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator.
  • examples of the photocurable epoxy resin include alicyclic epoxy resins, epoxy resins having no alicyclic structure, and mixtures thereof.
  • the photocurable adhesive may contain an acrylic resin, an okitacene resin, a urethane resin, a polyvinyl alcohol resin, etc. in addition to the photocurable epoxy resin, and together with the photocationic polymerization initiator or the photocationic polymerization initiator. Instead of this, a radical photopolymerization initiator may be included.
  • a photocurable adhesive When using a photocurable adhesive, a photocurable adhesive is applied to the polarizing film and / or a member (prism sheet, protective film, or optical compensation film) to be bonded to the polarizing film and the polarizing film and the same. After bonding the members to be combined, the photocurable adhesive is cured by irradiating active energy rays.
  • the application method of a photocurable adhesive and the bonding method of a film can be made the same as that of an aqueous adhesive.
  • the light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • the low-pressure mercury lamp, the medium-pressure mercury lamp, the high-pressure mercury lamp, the ultrahigh-pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
  • the light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW. / Cm 2 is preferable.
  • the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when it is 6000 mW / cm 2 or less, it is caused by heat radiated from the light source and heat generated during curing of the photocurable adhesive. There is little risk of yellowing of the epoxy resin and deterioration of the polarizing film.
  • the light irradiation time to the photocurable adhesive is controlled for each photocurable adhesive to be cured and is not particularly limited.
  • the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10. It is preferably set to be ⁇ 10000 mJ / m 2 .
  • the cumulative amount of light to the photocurable adhesive is 10 mJ / m 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to allow the curing reaction to proceed more reliably, and 10,000 mJ / m 2. In the case of the following, the irradiation time does not become too long, and good productivity can be maintained.
  • the polarizing film functions such as the degree of polarization, transmittance and hue of the polarizing film, and transparency of the prism sheet, protective film and optical compensation film do not deteriorate. It is preferable to perform curing under conditions.
  • the plasma treatment, corona, and the like are performed on the bonding surface of the polarizing film and / or a member bonded to the polarizing film.
  • Surface treatment such as treatment, ultraviolet irradiation treatment, flame (flame) treatment, and saponification treatment may be performed.
  • the saponification treatment include a method of immersing in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide.
  • the back side polarizing plate may have an optical functional film laminated on the surface of the polarizing film 12 opposite to the surface on which the prism sheet 13 is laminated.
  • an optical functional film for example, an optical compensation film in which a liquid crystal compound is coated on a substrate surface and oriented; a reflection type that transmits polarized light of some kind and reflects polarized light that shows the opposite property Polarizing film; Retardation film made of polycarbonate-based resin; Retardation film made of cycloolefin-based resin film; Film with anti-glare function having uneven shape on surface; Film with surface anti-reflection function; Reflecting film having reflection function on surface And a transflective film having both a reflection function and a transmission function.
  • the retardation film which consists of a cycloolefin type resin film for example, "Arton film” (made by JSR Corporation), “Essina” (made by Sekisui Chemical Co., Ltd.), “Zeonor film” (Nippon ZEON Co., Ltd.).
  • the back side polarizing plate preferably has an adhesive layer for bonding to the liquid crystal cell on the surface opposite to the prism sheet.
  • the pressure-sensitive adhesive used for such a pressure-sensitive adhesive layer conventionally known appropriate pressure-sensitive adhesives can be used, and examples thereof include acrylic pressure-sensitive adhesives, urethane pressure-sensitive adhesives, and silicone-based pressure-sensitive adhesives. Among these, an acrylic pressure-sensitive adhesive is preferably used from the viewpoints of transparency, adhesive strength, reliability, reworkability, and the like.
  • the pressure-sensitive adhesive layer can be provided by a method in which such a pressure-sensitive adhesive is, for example, an organic solvent solution, which is applied on a base film (for example, a polarizing film) by a die coater or a gravure coater and dried. Moreover, it can provide also by the method of transcribe
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably in the range of 2 to 40 ⁇ m.
  • the front side polarizing plate (polarizing plate 2 in FIG. 1) is a polarizing plate disposed on the opposite side (viewing side) from the surface light source with reference to the liquid crystal cell.
  • a conventionally well-known appropriate polarizing plate can be used as the front side polarizing plate.
  • a polarizing plate subjected to an antiglare treatment, a hard coat treatment, or an antireflection treatment can be used.
  • surface of the polarizing film may be laminated
  • the liquid crystal display device of the present invention includes a surface light source 20 for uniformly illuminating a liquid crystal panel.
  • the function of the prism sheet (the function of deflecting the light emitted from the surface light source and correcting the direction of the light emitted from the prism-shaped protrusion to the front direction of the liquid crystal display device) is maximized.
  • a surface light source having specific light emission characteristics (light distribution characteristics) is used. More specifically, referring to FIG. 4, the surface light source used in the present invention is the normal direction of the light emitting surface of the surface light source in the plane W orthogonal to the ridge line direction of the prismatic protrusions of the prism sheet.
  • a surface showing the output angle dependency of the light intensity of the emitted light when the angle formed by T and the emission direction M of the emitted light from the surface light source is an outgoing angle ⁇ (where ⁇ 90 ° ⁇ ⁇ ⁇ 90 °).
  • the light intensity distribution of the light source satisfies the following (1) and (2). (1) It has a peak having the highest light intensity maximum value in the range of ⁇ 80 ° ⁇ ⁇ ⁇ 40 ° or 40 ° ⁇ ⁇ 80 °.
  • the range in which the emission angle ⁇ can be taken is ⁇ 90 ° ⁇ ⁇ ⁇ 90 °.
  • the liquid crystal display device in a liquid crystal display device using a back-side polarizing plate including a prism sheet, the liquid crystal display device has an emission direction M that is relatively far from the normal direction T of the light emission surface of such a surface light source (the absolute value of the emission angle ⁇ ).
  • the light having a relatively large value greatly contributes to the improvement of the brightness and contrast in the front direction of the liquid crystal display device.
  • the present inventors have a range of ⁇ 80 ° ⁇ ⁇ ⁇ 40 ° or 40 ° ⁇ ⁇ 80 ° in the plane W (that is, the absolute value
  • the lower and upper limits of the emission angle ⁇ considered in the above condition (1) are set to ⁇ 80 ° and 80 °, respectively, and it is difficult to accurately measure the light intensity at an angle exceeding the lower and upper limits. This is because it is not practical.
  • the peak having the highest light intensity maximum value is preferably located within the range of 50 ° ⁇
  • the present inventors have found that the width (broadening) of the peak having the highest maximum value of the light intensity also affects the luminance and contrast in the front direction of the liquid crystal display device. That is, in the light intensity distribution of the surface light source on the plane W, the angle indicating the maximum value of the light intensity at the peak where the maximum value of the light intensity is the highest is ⁇ a, and 1/2 of the maximum value of the light intensity at the peak.
  • the angle is ⁇ b
  • is less than 30 ° (satisfies the above condition (2))
  • the absolute value of the emission angle ⁇ is not significantly affected by light, By condensing light whose emission angle, which is the main emitted light, is in the vicinity of ⁇ a, the luminance and contrast in the front direction of the liquid crystal display device can be improved.
  • is 30 ° or more or ⁇ b does not exist (for example, the peak is an extremely gentle peak, and is maximal in the range of ⁇ 80 ° ⁇ ⁇ ⁇ 80 °).
  • the light component having a relatively small absolute value of the emission angle ⁇ constituting the vicinity of the base of the peak where the maximum value of the light intensity is highest increases.
  • the light component bent in a direction other than the front direction of the liquid crystal display device (normal direction T of the light emitting surface of the surface light source) is increased by the prism sheet, so that the brightness and contrast in the front direction of the liquid crystal display device are sufficient.
  • is preferably 25 ° or less.
  • the light intensity distribution of the surface light source on the plane W may have any light distribution characteristic as long as the above (1) and (2) are satisfied, but within an emission angle range of ⁇ 40 to 40 °. It is preferred not to have a significant peak. This is because such a peak tends not to be properly collected in the front direction of the liquid crystal display device by the prism sheet.
  • the plane W orthogonal to the ridge line direction of the prism-like projection a plurality of planes can be adopted.
  • the above (1) and (2) must be satisfied in any two or more planes W orthogonal to the ridge line direction of the prism-shaped protrusions. preferable.
  • the light intensity distribution of the surface light source can be obtained by measuring the brightness of the surface light source using a commercially available brightness measuring device.
  • a direct light source using a diffusing plate, an edge light source using a light guide plate, or the like can be used.
  • an edge-type light source surface light source 20
  • the light guide plate 22 for example, a flat plate or wedge-shaped member made of a transparent resin such as an acrylic resin can be used.
  • a pattern is added to the back surface or both surfaces of the light guide plate by screen printing using ink, etching, or blasting.
  • a minute reflection element or a minute refraction element having a reflection function may be formed on the back surface or both surfaces of the light guide plate. Desired light distribution characteristics can be obtained by appropriately adjusting the shapes or elements of the back surface or both surfaces of these light guide plates. More specifically, for example, “Latest Liquid Crystal Backlight Technology Chapter 4” published by Toray Research Center Co., Ltd., and “LCD Backlight Technology, Volume 2, Chapter 1, Chapter 4” published by CM Publishing Co., Ltd. The light source device described in “Chapter 1” can be suitably used.
  • the light source device 21 a light source device in which point light sources such as LEDs are arranged in a line or a light source device composed of a rod-like light source such as a cold cathode tube can be used.
  • the surface light source may have one light source device arranged on one side of the light guide plate, or two light source devices arranged on two sides facing the light guide plate. You may do it.
  • the edge type light source which includes a light source device in which point light sources are arranged in a line or a light source device including a rod-like light source, is arranged in parallel or substantially in parallel with the ridge line of the prism-shaped protrusions of the prism sheet.
  • the liquid crystal display device of the present invention may further include a light diffusing plate, a light diffusing sheet, a reflecting plate, and the like.
  • stacked on the polyethylene terephthalate film was obtained by peeling from a metal mold
  • the refractive index of the prismatic protrusions of the prism sheet 2 was 1.54.
  • composition of UV curable resin composition used in Production Example 4 45 parts by weight of NK ester A-BPE-4 (Shin Nakamura Chemical Co., Ltd., ethylene oxide-modified bisphenol A diacrylate) 25 parts by weight Sartomer 285 (tetrahydroful manufactured by Sartomer) Furyl acrylate) 30 parts by weight Darocur 1173 (2-hydroxy-2-methyl-1-phenylpropan-1-one manufactured by Ciba) 3 parts by weight.
  • a polarizing plate having an excellent appearance was obtained.
  • the curability of the ultraviolet curable adhesive which is an epoxy resin composition was good.
  • the number of non-peeling cross cuts with respect to the number of formed cross cuts was 100/100, indicating good adhesion.
  • An acrylic pressure-sensitive adhesive layer having a thickness of 25 ⁇ m was provided on the outer surface of the triacetyl cellulose film of the polarizing plate.
  • Example 2 A polarizing plate was produced in the same manner as in Example 1 except that the prism sheet 2 obtained in Production Example 4 was used instead of the prism sheet 1 obtained in Production Example 3, and then a liquid crystal display device was produced. When the display of the liquid crystal display device was visually observed, a bright image was obtained when viewed from the front, and the visibility was good.
  • Example 1 In the same manner as in Example 1, except that the surface light source A (edge-type light source) surface light source B (used in the Flexscan EV2411W-H manufactured by Nanao Corporation) was used instead of the surface light source A, the liquid crystal was used. A display device was produced. When the display of the liquid crystal display device was visually observed, the image viewed from the front was dark, the contrast was low, and the visibility was poor.
  • FIG. 7 shows a light intensity distribution of the surface light source B measured using EZContrast (ELXIM LX88W).
  • Table 1 summarizes the values of ⁇ a, ⁇ b and
  • the brightness and contrast of the liquid crystal display device were measured using EZContrast (ELXIM LX88W) from the front of the center of the liquid crystal display device in a dark room.
  • 8 and 9 show the light intensity distribution (luminance distribution) of the liquid crystal display devices manufactured in Example 1 and Comparative Example 1.
  • “ ⁇ ” in the column of “ ⁇ b” in Table 1 has a point that is 1 ⁇ 2 of the maximum value in the range of ⁇ 80 ° ⁇ ⁇ ⁇ 80 ° at the peak with the highest light intensity maximum value. It means not.
  • Polarizing plate 3 Liquid crystal cell 10: Liquid crystal panel, 12: Polarizing film, 13: Prism sheet, 13a: prism protrusion, 14, 16: adhesive layer, 15: Resin film, 17: adhesive layer 20: surface light source, 21: Light source device, 22: Light guide plate, 100: Liquid crystal display device, W: a plane perpendicular to the ridge line direction of the prismatic protrusion, T: normal direction of the light emitting surface of the surface light source, M: the emission direction of the emitted light from the surface light source, ⁇ : angle formed by the normal direction of the light emission surface of the surface light source and the emission direction of the emitted light of the surface light source (output angle), P: hypotenuse of prismatic protrusion, ⁇ The apex angle of the prismatic protrusion.

Abstract

Provided is a liquid crystal display device with high luminance and contrast and excellent display characteristics. The liquid crystal display device is configured from a surface light source (20), and a liquid crystal panel (10) disposed above the surface light source and provided with a liquid crystal cell (3) and a polarizing plate stacked on a surface on the surface light source side of the liquid crystal cell. The polarizing plate is provided with a polarizing film (12) and a prism sheet (13) having the surface thereof configured from prism-shaped protrusions (13a), the prism sheet (13) is disposed such that the surface thereof configured from the prism-shaped protrusions faces the surface light source, and the light intensity distribution indicating the emission angle dependence of the light intensity of emitted light from the surface light source (20) satisfies the following (1) and (2). (1) The maximum value of the light intensity has the highest peak in the range of -80°≤θ<-40° or 40°<θ≤80°. (2) The following expression is satisfied: |θa-θb|<30° where θa is an angle at which the maximum value of the light intensity at the peak is shown, and θb is an angle at which a half of the maximum value of the light intensity at the peak is shown.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶テレビ、液晶モニタ、パーソナルコンピュータなどに用いられる液晶表示装置に関する。 The present invention relates to a liquid crystal display device used for a liquid crystal television, a liquid crystal monitor, a personal computer, and the like.
 液晶表示装置は、液晶テレビ、液晶モニタ、パーソナルコンピュータなどに用いられる薄型の表示装置として用途が急拡大している。特に、液晶テレビの市場拡大は著しく、また、低コスト化の要求も非常に高い。 The use of liquid crystal display devices is rapidly expanding as thin display devices used in liquid crystal televisions, liquid crystal monitors, personal computers, and the like. In particular, the market for liquid crystal televisions is remarkably expanding, and the demand for cost reduction is very high.
 通常の液晶表示装置は、冷陰極管やLEDを用いた面光源、光拡散板、1つまたは複数の拡散シート、集光シート、および、偏光板が貼合された液晶パネルから構成されている。近年、壁掛け可能な大画面液晶テレビ用途などにおいて、液晶表示装置の薄型化の要求が顕在化しているが、この場合、液晶表示装置の薄型化に対応して、これに使用する部材の薄肉化、部材点数削減が必要となる。 A normal liquid crystal display device includes a surface light source using a cold cathode tube or an LED, a light diffusion plate, one or more diffusion sheets, a light collecting sheet, and a liquid crystal panel on which a polarizing plate is bonded. . In recent years, the demand for thin liquid crystal display devices has become apparent in applications such as wall-mounted large-screen liquid crystal televisions. In this case, in response to the thinning of liquid crystal display devices, the thickness of the members used therefor has been reduced. Therefore, it is necessary to reduce the number of members.
 このような要請に対し、液晶パネルを構成する液晶セルと面光源との間に配置される偏光板の片面に集光性を有するプリズムシートを直接接着する方法(たとえばJPH11−295714−AおよびJP2008−262132−A)や、液晶パネルの面光源側に配置される偏光板の保護フィルムとして、集光性プリズムシートを用いる方法(たとえばJP2008−262132−AおよびJP2005−17355−A)により、1つまたは複数の部材を除き、部品点数を削減する技術が知られている。 In response to such a request, a method of directly bonding a condensing prism sheet to one surface of a polarizing plate disposed between a liquid crystal cell constituting a liquid crystal panel and a surface light source (for example, JPH11-295714-A and JP2008) -262132-A) and a method using a condensing prism sheet (for example, JP2008-262132-A and JP2005-17355-A) as a protective film for a polarizing plate disposed on the surface light source side of the liquid crystal panel. Or the technique which reduces a number of parts except a some member is known.
 上記特許文献1~3に記載されるような、プリズムシート等のシート部材を備える偏光板を用いた液晶表示装置においては、使用される面光源が有する光出射特性によっては、シート部材に期待する集光機能が十分に発揮されず、輝度・コントラスト等表示特性の低下をきたす場合があった。 In a liquid crystal display device using a polarizing plate provided with a sheet member such as a prism sheet as described in Patent Documents 1 to 3, the sheet member is expected depending on the light emission characteristics of the surface light source used. In some cases, the light condensing function is not fully exhibited, and display characteristics such as luminance and contrast are deteriorated.
 本発明は、上記課題を解決するためになされたものであり、その目的は、輝度およびコントラストが高く、表示特性に優れる液晶表示装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a liquid crystal display device having high luminance and contrast and excellent display characteristics.
 本発明は、面光源と、該面光源上に配置され、液晶セルおよび該液晶セルの面光源側の面に積層される偏光板を備える液晶パネルとから構成される液晶表示装置に関する。本発明の液晶表示装置において、上記偏光板は、偏光フィルムと、該偏光フィルムの表面に接着剤層を介して積層される、プリズム状突起から構成される表面を有するプリズムシートを備え、該プリズムシートは、プリズム状突起から構成される表面が面光源に対向するように配置されている。また、本発明の液晶表示装置は、プリズム状突起の稜線方向に直交する平面内における、面光源の光出射面の法線方向と、面光源の出射光の出射方向とがなす角度を出射角度θ(ただし、−90°≦θ≦90°)とするとき、出射光の光強度の出射角度依存性を示す面光源の光強度分布が下記(1)および(2)を満たす。
(1)−80°≦θ<−40°または40°<θ≦80°の範囲内に、光強度の極大値が最も高いピークを有する。
(2)上記光強度の極大値が最も高いピークにおける光強度の極大値を示す角度をθa、該ピークにおける光強度の極大値の1/2を示す角度をθbとするとき、下記式[1]: |θa−θb|<30°     [1]
を満たす。
The present invention relates to a liquid crystal display device including a surface light source and a liquid crystal panel provided on the surface light source and including a liquid crystal cell and a polarizing plate laminated on the surface of the liquid crystal cell on the surface light source side. In the liquid crystal display device of the present invention, the polarizing plate includes a polarizing film and a prism sheet having a surface composed of prismatic protrusions laminated on the surface of the polarizing film via an adhesive layer. The sheet is disposed such that the surface formed by the prismatic protrusions faces the surface light source. Further, the liquid crystal display device of the present invention has an emission angle that is an angle formed by the normal direction of the light emission surface of the surface light source and the emission direction of the emission light of the surface light source in a plane orthogonal to the ridge line direction of the prismatic protrusion. When θ (where −90 ° ≦ θ ≦ 90 °) is satisfied, the light intensity distribution of the surface light source that shows the emission angle dependence of the light intensity of the emitted light satisfies the following (1) and (2).
(1) It has a peak having the highest light intensity maximum value in the range of −80 ° ≦ θ <−40 ° or 40 ° <θ ≦ 80 °.
(2) When the angle indicating the maximum value of the light intensity at the peak where the maximum value of the light intensity is the highest is θa, and the angle indicating 1/2 of the maximum value of the light intensity at the peak is θb, the following formula [1 ]: | Θa−θb | <30 ° [1]
Meet.
 本発明の液晶表示装置において、上記面光源は、導光板と、該導光板の側方に配置される光源装置とからなることが好ましい。また、光源装置は、点状の光源を線状に並べた光源装置または棒状の光源からなる光源装置であり、光源装置とプリズムシートとは、光源装置とプリズム状突起の稜線が平行または略平行となるように配置されることが好ましい。 In the liquid crystal display device of the present invention, the surface light source preferably includes a light guide plate and a light source device disposed on the side of the light guide plate. The light source device is a light source device composed of a light source device in which point light sources are arranged in a line or a rod-like light source, and the light source device and the prism sheet are parallel or substantially parallel to the ridge line of the light source device and the prismatic protrusion. It is preferable to arrange so that.
 本発明の液晶表示装置において、上記面光源は、好ましくは、導光板の一辺に配置される1つの光源装置または導光板の向かいあう二辺に配置される2つの光源装置を有する。 In the liquid crystal display device of the present invention, the surface light source preferably has one light source device arranged on one side of the light guide plate or two light source devices arranged on two sides facing the light guide plate.
 プリズム状突起の頂角αは60°以上であることが好ましい。また、プリズム状突起の断面形状は、二等辺三角形であることが好ましい。 The apex angle α of the prismatic protrusion is preferably 60 ° or more. The cross-sectional shape of the prismatic protrusion is preferably an isosceles triangle.
 本発明の液晶表示装置は、薄型であるとともに、輝度およびコントラストが高く、表示特性に優れる。本発明の液晶表示装置は、大画面液晶テレビ用液晶表示装置、特には壁掛け可能な液晶テレビ用液晶表示装置などとして好適に適用することができる。 The liquid crystal display device of the present invention is thin, has high brightness and contrast, and has excellent display characteristics. The liquid crystal display device of the present invention can be suitably applied as a liquid crystal display device for a large-screen liquid crystal television, in particular, a liquid crystal display device for a liquid crystal television that can be wall-mounted.
本発明の液晶表示装置の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows a preferable example of the liquid crystal display device of this invention. 本発明で用いられる背面側偏光板の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows a preferable example of the back side polarizing plate used by this invention. プリズムシートの表面形状の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the surface shape of a prism sheet. 本発明で用いられる面光源の光出射特性を説明するための模式的な斜視図である。It is a typical perspective view for demonstrating the light emission characteristic of the surface light source used by this invention. プリズムシートが有するプリズム状突起に入射される光の経路を説明するための模式図である。It is a schematic diagram for demonstrating the path | route of the light which injects into the prism-shaped protrusion which a prism sheet has. 実施例1および2で用いた面光源Aの光強度分布を示す図である。It is a figure which shows the light intensity distribution of the surface light source A used in Example 1 and 2. FIG. 比較例1および2で用いた面光源Bの光強度分布を示す図である。It is a figure which shows the light intensity distribution of the surface light source B used by the comparative examples 1 and 2. FIG. 実施例1で作製した液晶表示装置の光強度分布(輝度分布)を示す図である。6 is a diagram illustrating a light intensity distribution (luminance distribution) of the liquid crystal display device manufactured in Example 1. FIG. 比較例1で作製した液晶表示装置の光強度分布(輝度分布)を示す図である。6 is a diagram showing a light intensity distribution (luminance distribution) of a liquid crystal display device manufactured in Comparative Example 1. FIG.
 図1は、本発明の液晶表示装置の好ましい一例を示す概略断面図である。本発明に係る図1に示される液晶表示装置100は、導光板22および導光板22の側方であって、導光板22の一辺に沿うように配置された光源装置21を備える面光源20と、面光源20上に配置された液晶パネル10とから構成されている。液晶パネル10は、液晶セル3と、液晶セル3における面光源20側の面に積層された背面側偏光板である偏光板1と、液晶セル3における視認側の面に積層された前面側偏光板である偏光板2とからなる。偏光板1および偏光板2は、粘着剤層17を介して液晶セル3に貼合されている。 FIG. 1 is a schematic sectional view showing a preferred example of the liquid crystal display device of the present invention. A liquid crystal display device 100 shown in FIG. 1 according to the present invention includes a light source plate 21 and a surface light source 20 including a light source device 21 that is disposed on the side of the light guide plate 22 and along one side of the light guide plate 22. The liquid crystal panel 10 is disposed on the surface light source 20. The liquid crystal panel 10 includes a liquid crystal cell 3, a polarizing plate 1 that is a back side polarizing plate laminated on the surface of the liquid crystal cell 3 on the surface light source 20 side, and a front side polarized light laminated on the viewing side surface of the liquid crystal cell 3. The polarizing plate 2 is a plate. The polarizing plate 1 and the polarizing plate 2 are bonded to the liquid crystal cell 3 through the adhesive layer 17.
 背面側偏光板である偏光板1は、偏光フィルム12と、偏光フィルム12の面光源20側表面に接着剤層14を介して積層されたプリズム状突起13aから構成される表面(以下、プリズム面とも称する)を有するプリズムシート13と、偏光フィルム12の視認側表面に接着剤層16を介して積層された樹脂フィルム15とを備える。偏光板1は、その樹脂フィルム15側で液晶セル3に貼合されている。より具体的には、液晶セル3と偏光板1とは、偏光フィルム12におけるプリズムシート13が積層される面とは反対側の面が液晶セル3に対向するように、すなわち、プリズムシート13のプリズム面が液晶パネル10の面光源側表面を形成し、該プリズム面が面光源20に対向するように貼合されている。なお、本発明において背面側偏光板は、このような樹脂フィルムを有していなくてもよく、偏光フィルム12が直接、粘着剤層等を介して液晶セル3に貼合される構成であってもよい。 A polarizing plate 1 which is a back side polarizing plate is a surface (hereinafter referred to as a prism surface) composed of a polarizing film 12 and a prism-shaped protrusion 13a laminated on the surface light source 20 side surface of the polarizing film 12 with an adhesive layer 14 interposed therebetween. And a resin film 15 laminated on the surface of the polarizing film 12 via the adhesive layer 16. The polarizing plate 1 is bonded to the liquid crystal cell 3 on the resin film 15 side. More specifically, the liquid crystal cell 3 and the polarizing plate 1 are arranged such that the surface of the polarizing film 12 opposite to the surface on which the prism sheet 13 is laminated faces the liquid crystal cell 3, that is, the prism sheet 13 The prism surface forms a surface light source side surface of the liquid crystal panel 10 and is bonded so that the prism surface faces the surface light source 20. In addition, in this invention, the back side polarizing plate does not need to have such a resin film, and is the structure by which the polarizing film 12 is directly bonded to the liquid crystal cell 3 through an adhesive layer etc. Also good.
 本発明の液晶表示装置は、図1に示されるように、偏光フィルムの表面に接着剤層を介して積層されたプリズムシートを有する背面側偏光板を用いた液晶表示装置であり、後で詳細を述べるように、このようなプリズムシートを有する背面側偏光板を用いた液晶表示装置において、特定の光出射特性、具体的には配光特性(どの方向にどの程度の強度の光を出射するか)を有する面光源を適用することを特徴とする。本発明によれば、プリズムシートを有する背面側偏光板を用いた液晶表示装置であって、輝度およびコントラストが高く、表示特性に優れる液晶表示装置を提供することができる。また、本発明の液晶表示装置は、薄型化が達成された偏光板が液晶セルの背面側に貼合された液晶パネルを備えることにより、薄肉化に対応しつつ十分な機械的強度を有するとともに、液晶パネルの背面側にプリズムシートを配置させていることから、液晶パネルと面光源との密着が防止されており、これによっても表示特性の改善が達成されている。以下、適宜図面を参照しながら、本発明の液晶表示装置について詳細に説明する。 As shown in FIG. 1, the liquid crystal display device of the present invention is a liquid crystal display device using a back-side polarizing plate having a prism sheet laminated on the surface of a polarizing film via an adhesive layer. In the liquid crystal display device using the back-side polarizing plate having such a prism sheet, specific light emission characteristics, specifically light distribution characteristics (how much light is emitted in which direction and how much light is emitted) A surface light source having the above is applied. ADVANTAGE OF THE INVENTION According to this invention, it is a liquid crystal display device using the back side polarizing plate which has a prism sheet, Comprising: A brightness | luminance and contrast are high, and the liquid crystal display device which is excellent in the display characteristic can be provided. In addition, the liquid crystal display device of the present invention includes a liquid crystal panel in which a thinned polarizing plate is bonded to the back side of the liquid crystal cell, and thus has sufficient mechanical strength while supporting thinning. Since the prism sheet is disposed on the back side of the liquid crystal panel, the liquid crystal panel and the surface light source are prevented from coming into close contact with each other, thereby improving the display characteristics. Hereinafter, the liquid crystal display device of the present invention will be described in detail with reference to the drawings as appropriate.
 <背面側偏光板>
 図2は、本発明で用いられる背面側偏光板の好ましい一例を示す概略断面図であり、その構成は、図1における偏光板1と同じである(参照符号も同じである)。図2に示される例のように、本発明で用いられる背面側偏光板は、偏光フィルム12と、偏光フィルム12の一方の表面(面光源側表面)に接着剤層14を介して積層された、プリズム状突起13aから構成される表面(プリズム面)を有するプリズムシート13とを少なくとも備える。背面側偏光板は、図2に示される偏光板1のように、プリズムシート13が積層される面とは反対側の面(液晶セル側の面)に接着剤層16を介して積層された樹脂フィルム15を備えていてもよい。
<Back side polarizing plate>
FIG. 2 is a schematic cross-sectional view showing a preferred example of the back-side polarizing plate used in the present invention, and the configuration thereof is the same as that of the polarizing plate 1 in FIG. 1 (reference numerals are also the same). As in the example shown in FIG. 2, the back side polarizing plate used in the present invention was laminated on the polarizing film 12 and one surface (surface light source side surface) of the polarizing film 12 via the adhesive layer 14. And a prism sheet 13 having a surface (prism surface) composed of the prismatic protrusions 13a. The back-side polarizing plate was laminated on the surface opposite to the surface on which the prism sheet 13 was laminated (surface on the liquid crystal cell side) via the adhesive layer 16 like the polarizing plate 1 shown in FIG. A resin film 15 may be provided.
 (偏光フィルム)
 背面偏光板に用いられる偏光フィルム12は、具体的には、一軸延伸したポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させたものである。ポリビニルアルコール系樹脂フィルムを構成するポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとこれに共重合可能な他の単量体との共重合体、たとえばエチレン−酢酸ビニル共重合体などが挙げられる。酢酸ビニルと共重合可能な他の単量体としては、たとえば不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
(Polarizing film)
Specifically, the polarizing film 12 used for the back polarizing plate is obtained by adsorbing and orienting a dichroic dye on a uniaxially stretched polyvinyl alcohol resin film. As the polyvinyl alcohol resin constituting the polyvinyl alcohol resin film, a saponified polyvinyl acetate resin can be used. Polyvinyl acetate resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith, such as ethylene-vinyl acetate copolymers. Etc. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常、85~100モル%程度であり、98モル%以上が好ましい。ポリビニルアルコール系樹脂は変性されていてもよく、たとえば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、およびポリビニルブチラール等も用いることができる。ポリビニルアルコール系樹脂の重合度は、通常、1000~10000程度であり、1500~5000程度が好ましい。 The saponification degree of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, for example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like can be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10000, and preferably about 1500 to 5000.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、従来公知の適宜の方法で製膜することができる。ポリビニルアルコール系樹脂からなる原反フィルムの膜厚は特に限定されるものではないが、たとえば10~150μm程度である。 A film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film. The method for forming the polyvinyl alcohol-based resin is not particularly limited, and can be formed by a conventionally known appropriate method. The film thickness of the raw film made of the polyvinyl alcohol resin is not particularly limited, but is, for example, about 10 to 150 μm.
 偏光フィルムは、通常、上記したようなポリビニルアルコール系樹脂からなる原反フィルムを二色性色素で染色してその二色性色素を吸着させる工程(染色処理工程)、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程(ホウ酸処理工程)、ならびに、このホウ酸水溶液による処理後に水洗する工程(水洗処理工程)を経て製造される。 A polarizing film is usually a process of dyeing an original film made of polyvinyl alcohol resin as described above with a dichroic dye and adsorbing the dichroic dye (dyeing process), and the dichroic dye is adsorbed. The polyvinyl alcohol-based resin film is produced through a step of treating with a boric acid aqueous solution (boric acid treatment step) and a step of washing with water after the treatment with the boric acid aqueous solution (water washing treatment step).
 また、偏光フィルムの製造に際し、通常、ポリビニルアルコール系樹脂フィルムは一軸延伸されるが、この一軸延伸は、染色処理工程の前に行なってもよいし、染色処理工程中に行なってもよいし、染色処理工程の後に行なってもよい。一軸延伸を染色処理工程の後に行なう場合において、この一軸延伸は、ホウ酸処理工程の前に行なってもよいし、ホウ酸処理工程中に行なってもよい。勿論、これらの複数の段階で一軸延伸を行なうことも可能である。一軸延伸は、周速の異なるロール間で一軸に延伸するようにしてもよいし、熱ロールを用いて一軸に延伸するようにしてもよい。また、大気中で延伸を行なう乾式延伸であってもよいし、溶剤にて膨潤させた状態で延伸を行なう湿式延伸であってもよい。延伸倍率は、通常3~8倍程度である。 Further, in the production of the polarizing film, the polyvinyl alcohol-based resin film is usually uniaxially stretched, but this uniaxial stretching may be performed before the dyeing treatment step or during the dyeing treatment step, It may be performed after the dyeing process. When uniaxial stretching is performed after the dyeing treatment step, this uniaxial stretching may be performed before the boric acid treatment step or during the boric acid treatment step. Of course, it is also possible to perform uniaxial stretching in these plural stages. Uniaxial stretching may be performed uniaxially between rolls having different peripheral speeds, or may be performed uniaxially using a hot roll. Moreover, the dry-type extending | stretching which extends | stretches in air | atmosphere may be sufficient, and the wet extending | stretching which extends | stretches in the state swollen with the solvent may be sufficient. The draw ratio is usually about 3 to 8 times.
 染色処理工程におけるポリビニルアルコール系樹脂フィルムの二色性色素による染色は、たとえば、ポリビニルアルコール系樹脂フィルムを、二色性色素を含有する水溶液に浸漬することによって行なわれる。二色性色素としては、たとえばヨウ素、二色性染料などが用いられる。二色性染料には、たとえば、C.I.DIRECT RED 39などのジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾ化合物などからなる二色性直接染料が包含される。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水への浸漬処理を施しておくことが好ましい。 The dyeing of the polyvinyl alcohol-based resin film with the dichroic dye in the dyeing process is performed, for example, by immersing the polyvinyl alcohol-based resin film in an aqueous solution containing the dichroic dye. As the dichroic dye, for example, iodine, a dichroic dye or the like is used. Examples of dichroic dyes include C.I. I. Dichroic direct dyes composed of disazo compounds such as DIRECT RED 39, dichroic direct dyes composed of trisazo, tetrakisazo compounds and the like are included. In addition, it is preferable that the polyvinyl alcohol-type resin film performs the immersion process to water before a dyeing process.
 二色性色素としてヨウ素を用いる場合は、通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は、通常、水100重量部あたり0.01~1重量部であり、ヨウ化カリウムの含有量は、通常、水100重量部あたり0.5~20重量部である。二色性色素としてヨウ素を用いる場合、染色に用いる水溶液の温度は、通常20~40℃であり、また、この水溶液への浸漬時間(染色時間)は、通常20~1800秒である。 When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed. The content of iodine in this aqueous solution is usually 0.01 to 1 part by weight per 100 parts by weight of water, and the content of potassium iodide is usually 0.5 to 20 parts by weight per 100 parts by weight of water. . When iodine is used as the dichroic dye, the temperature of the aqueous solution used for dyeing is usually 20 to 40 ° C., and the immersion time (dyeing time) in this aqueous solution is usually 20 to 1800 seconds.
 一方、二色性色素として二色性染料を用いる場合は、通常、水溶性二色性染料を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性染料の含有量は、通常、水100重量部あたり1×10−4~10重量部、好ましくは1×10−3~1重量部であり、特に好ましくは1×10−3~1×10−2重量部である。この水溶液は、硫酸ナトリウムなどの無機塩を染色助剤として含有して
いてもよい。二色性色素として二色性染料を用いる場合、染色に用いる染料水溶液の温度は、通常20~80℃であり、また、この水溶液への浸漬時間(染色時間)は、通常10~1800秒である。
On the other hand, when a dichroic dye is used as the dichroic dye, a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye is usually employed. The content of the dichroic dye in this aqueous solution, usually, 1 × 10 -4 ~ 10 parts by weight per 100 parts by weight of water, preferably 1 × 10 -3 ~ 1 parts by weight, particularly preferably 1 × 10 - 3 to 1 × 10 −2 parts by weight. This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant. When a dichroic dye is used as the dichroic dye, the temperature of the dye aqueous solution used for dyeing is usually 20 to 80 ° C., and the immersion time (dyeing time) in this aqueous solution is usually 10 to 1800 seconds. is there.
 ホウ酸処理工程は、二色性色素により染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬することにより行なわれる。ホウ酸含有水溶液におけるホウ酸の量は、水100重量部あたり、通常2~15重量部、好ましくは5~12重量部である。上述した染色処理工程における二色性色素としてヨウ素を用いた場合には、このホウ酸処理工程に用いるホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。この場合、ホウ酸含有水溶液におけるヨウ化カリウムの量は、水100重量部あたり、通常0.1~15重量部、好ましくは5~12重量部である。ホウ酸含有水溶液への浸漬時間は、通常、60~1200秒、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸含有水溶液の温度は、通常50℃以上であり、好ましくは50~85℃、より好ましくは60~80℃である。 The boric acid treatment step is performed by immersing a polyvinyl alcohol resin film dyed with a dichroic dye in a boric acid-containing aqueous solution. The amount of boric acid in the boric acid-containing aqueous solution is usually 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water. When iodine is used as the dichroic dye in the dyeing process described above, the boric acid-containing aqueous solution used in this boric acid treatment process preferably contains potassium iodide. In this case, the amount of potassium iodide in the boric acid-containing aqueous solution is usually 0.1 to 15 parts by weight, preferably 5 to 12 parts by weight, per 100 parts by weight of water. The immersion time in the boric acid-containing aqueous solution is usually 60 to 1200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds. The temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
 続く水洗処理工程では、上述したホウ酸処理後のポリビニルアルコール系樹脂フィルムを、たとえば水に浸漬することによって水洗処理する。水洗処理における水の温度は、通常5~40℃であり、浸漬時間は、通常1~120秒である。水洗処理後は、通常、乾燥処理が施されて、偏光フィルムが得られる。乾燥処理は、たとえば熱風乾燥機、遠赤外線ヒータなどを用いて行なうことができる。乾燥処理の温度は、通常、30~100℃、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒、好ましくは120~600秒である。 In the subsequent washing process, the polyvinyl alcohol-based resin film after the boric acid treatment described above is washed with water, for example, by immersing it in water. The temperature of water in the water washing treatment is usually 5 to 40 ° C., and the immersion time is usually 1 to 120 seconds. After the water washing treatment, a drying treatment is usually performed to obtain a polarizing film. The drying process can be performed using, for example, a hot air dryer or a far infrared heater. The temperature for the drying treatment is usually 30 to 100 ° C., preferably 50 to 80 ° C. The time for the drying treatment is usually 60 to 600 seconds, preferably 120 to 600 seconds.
 こうして、ポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色、ホウ酸処理および水洗処理を施して、偏光フィルムが得られる。この偏光フィルムの厚みは、通常、5~40μmの範囲内である。 Thus, a polarizing film is obtained by subjecting the polyvinyl alcohol-based resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment and water washing treatment. The thickness of this polarizing film is usually in the range of 5 to 40 μm.
 (プリズムシート)
 背面側偏光板に用いられるプリズムシート13は、プリズム状の突起(プリズム状突起13a)から構成される表面(プリズム面)を有する。プリズムシート13は、プリズム面とは反対側の面が偏光フィルム12に対向するように、偏光フィルム12上に積層される。プリズム面を有するプリズムシート13を背面側偏光板の表面に配置し、該プリズム面を後述する面光源に対向させることにより、面光源の光出射面(プリズム面に対向する側の面)から出射された光の向きを意図的に変える(偏向する)ことができる。本発明によれば、面光源からの出射光、とりわけ指向性を有する出射光〔主たる出射方向が、面光源の光出射面の法線方向(液晶表示装置の正面方向)とは異なる方向である出射光〕の出射方向を、上記プリズムシートにより液晶表示装置の正面方向に偏向することが可能であり、これにより、液晶表示装置の正面の輝度およびコントラストを向上させることができる。なお、プリズムシート13は、偏光フィルム12の保護フィルムとしての役割をも果たす。
(Prism sheet)
The prism sheet 13 used for the back-side polarizing plate has a surface (prism surface) composed of prism-shaped protrusions (prism-shaped protrusions 13a). The prism sheet 13 is laminated on the polarizing film 12 so that the surface opposite to the prism surface faces the polarizing film 12. A prism sheet 13 having a prism surface is disposed on the surface of the back-side polarizing plate, and the prism surface is opposed to a surface light source to be described later, thereby exiting from the light emitting surface of the surface light source (surface facing the prism surface). The direction of the emitted light can be changed intentionally (deflected). According to the present invention, the outgoing light from the surface light source, particularly the outgoing light having directivity [the main outgoing direction is different from the normal direction of the light outgoing surface of the surface light source (the front direction of the liquid crystal display device). The emission direction of the emitted light can be deflected in the front direction of the liquid crystal display device by the prism sheet, thereby improving the brightness and contrast of the front surface of the liquid crystal display device. The prism sheet 13 also serves as a protective film for the polarizing film 12.
 ここで、「プリズム状突起」とは、三角形状(一部に曲線を含む略三角形状、鋸歯形状などを含み得る)を、該三角形状の面と垂直に平行移動させた軌跡で示される柱状体における、底面を形成しない2側面に挟まれる辺(稜線)の部分(該三角形状の底辺の対角の軌跡)を意味し、プリズム面は、該柱状体を該柱状体におけるプリズム状突起に対する面(該三角形状の底辺の軌跡)を底面として平行に複数密接して配列してなり、複数のプリズム状突起は一方向に(各プリズム状突起の稜線が平行または略平行となるように)配列されている。図3は、プリズムシートの表面形状の一例を示す概略斜視図であり、そのプリズム状突起の断面形状は二等辺三角形である。 Here, the “prism-like protrusion” is a columnar shape indicated by a locus obtained by translating a triangular shape (which may include a substantially triangular shape including a curve in part, a sawtooth shape, etc.) perpendicularly to the triangular surface. This means the part of the side (ridgeline) sandwiched between two side surfaces that do not form the bottom surface (the trajectory of the diagonal of the triangular base) in the body, and the prism surface refers to the prismatic protrusion on the columnar body. A plurality of prismatic protrusions are arranged in close contact in parallel with the surface (the locus of the base of the triangular shape) as the bottom surface, and the plurality of prismatic protrusions are in one direction (so that the ridgelines of each prismatic protrusion are parallel or substantially parallel) It is arranged. FIG. 3 is a schematic perspective view showing an example of the surface shape of the prism sheet, and the cross-sectional shape of the prism-shaped protrusion is an isosceles triangle.
 プリズムシート13が有するプリズム状突起13aの頂角(頂点の角度)は、たとえば30~100°とすることができるが、本発明においては、面光源からの出射光、特に指向性を有する出射光をより効率よく液晶表示装置の正面方向に偏向するために、とりわけ60°以上100°以下とすることが好ましく、60°以上80°以下とすることがより好ましい。 The apex angle (vertex angle) of the prismatic protrusion 13a of the prism sheet 13 can be set to, for example, 30 to 100 °. In the present invention, the emitted light from the surface light source, particularly the emitted light having directivity. Is more preferably 60 ° or more and 100 ° or less, and more preferably 60 ° or more and 80 ° or less in order to more efficiently deflect the light in the front direction of the liquid crystal display device.
 プリズム状突起13aの高さは、たとえば10~200μmとすることができる。また、プリズム状突起13aのピッチ(隣り合う突起の稜線間の距離)は、プリズム状突起13aの頂角および高さなどを考慮して適宜決定されるが、たとえば、5~300μmとすることができる。 The height of the prismatic protrusion 13a can be set to 10 to 200 μm, for example. Further, the pitch of the prismatic protrusions 13a (the distance between the ridge lines of adjacent protrusions) is appropriately determined in consideration of the apex angle and height of the prismatic protrusions 13a, for example, 5 to 300 μm. it can.
 プリズム状突起13aの断面三角形状における突起を構成する二辺は、同じ長さであってもよいし、異なる長さを有していてもよいが、少なくとも、用いられる面光源の光源装置が、導光板の向かいあう二辺に配置される場合は、当該二辺は同じ長さとすることが好ましく、したがって、プリズム状突起13aの断面形状は二等辺三角形であることが好ましい。複数のプリズム状突起13aの高さは、すべて同じであってもよいし、異なっていてもよい。また、突起間に形成される溝の形状は、直線であっても、曲線であってもよい。 The two sides constituting the projection in the triangular cross section of the prismatic projection 13a may have the same length or different lengths, but at least the light source device of the surface light source used is When arranged on two sides facing each other of the light guide plate, it is preferable that the two sides have the same length. Therefore, the cross-sectional shape of the prismatic protrusion 13a is preferably an isosceles triangle. The heights of the plurality of prismatic protrusions 13a may all be the same or different. The shape of the groove formed between the protrusions may be a straight line or a curved line.
 プリズムシート13の材質としては、公知の各種材料を用いることができる。たとえば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂などのポリエステル系樹脂、ポリ塩化ビニル樹脂、ポリカーボネート系樹脂、ノルボルネン系樹脂、ポリウレタン系樹脂、アクリル系樹脂、ポリメチルメタクリレート樹脂、ポリスチレン系樹脂、メタクリル酸メチル−スチレン系共重合体、アクリロニトリル−ブタジエン−スチレン系共重合体、アクリロニトリル−スチレン系共重合体などの合成高分子、二酢酸セルロース樹脂、三酢酸セルロース樹脂などの天然高分子が使用できる。中でも、透明性、透湿性および生産性の観点から、ポリオレフィン系樹脂、ポリアクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、メタクリル酸メチル−スチレン系共重合体、アクリロニトリル−ブタジエン−スチレン系共重合体、アクリロニトリル−スチレン系共重合体のいずれかの熱可塑性樹脂が好適である。またこれらの高分子材料は、必要に応じて、紫外線吸収剤や酸化防止剤、可塑剤などの添加剤を含有することができる。 As the material of the prism sheet 13, various known materials can be used. For example, polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate resin and polyethylene naphthalate resin, polyvinyl chloride resins, polycarbonate resins, norbornene resins, polyurethane resins, acrylic resins, polymethyl methacrylate resins , Synthetic polymers such as polystyrene resin, methyl methacrylate-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, natural diacetate resin, cellulose triacetate resin, etc. Polymers can be used. Among them, from the viewpoint of transparency, moisture permeability and productivity, polyolefin resin, polyacrylic resin, polycarbonate resin, polyester resin, polystyrene resin, methyl methacrylate-styrene copolymer, acrylonitrile-butadiene-styrene Any one of a thermoplastic copolymer and an acrylonitrile-styrene copolymer is suitable. These polymer materials can contain additives such as ultraviolet absorbers, antioxidants, and plasticizers as necessary.
 プリズムシート13は、上記透明高分子材料を基材として、フォトポリマープロセス法、異形押出法、プレス成形法、射出成形法、ロール転写法、レーザーアブレーション法、機械切削法、機械研削法などの公知の方法で製造することができる。これらの方法は、それぞれ単独で使用されてもよいし、あるいは2種以上の方法を組み合わせてもよい。 The prism sheet 13 is a known material such as a photopolymer process method, a profile extrusion method, a press molding method, an injection molding method, a roll transfer method, a laser ablation method, a mechanical cutting method, or a mechanical grinding method using the transparent polymer material as a base material. It can be manufactured by the method. Each of these methods may be used alone, or two or more methods may be combined.
 プリズムシート13の厚みは特に限定されないが、偏光板の薄肉化の観点から、20μm以上200μm以下程度であることが好ましく、30μm以上100μm以下であることがより好ましい。 The thickness of the prism sheet 13 is not particularly limited, but is preferably about 20 μm or more and 200 μm or less, and more preferably 30 μm or more and 100 μm or less from the viewpoint of thinning the polarizing plate.
 (樹脂フィルム)
 図2に示される例のように、偏光フィルム12におけるプリズムシートが積層される面とは反対側の面には、保護フィルムや光学補償フィルムなどの樹脂フィルム15を積層してもよい。この場合、偏光板1は、樹脂フィルム15上に積層した粘着剤層を介して液晶セルに貼合される。また、偏光フィルム12または、保護フィルムあるいは光学補償フィルム上に、接着剤層または粘着剤層を介して後述する光学機能性フィルムを積層することもできる。
(Resin film)
As in the example shown in FIG. 2, a resin film 15 such as a protective film or an optical compensation film may be laminated on the surface of the polarizing film 12 opposite to the surface on which the prism sheet is laminated. In this case, the polarizing plate 1 is bonded to the liquid crystal cell via the adhesive layer laminated on the resin film 15. Moreover, the optical functional film mentioned later can also be laminated | stacked through the adhesive bond layer or an adhesive layer on the polarizing film 12, a protective film, or an optical compensation film.
 樹脂フィルム15としては、トリアセチルセルロースフィルム(TACフィルム)などのセルロース系樹脂フィルム、ポリオレフィン系樹脂フィルム、アクリル系樹脂フィルム、ポリエチレンテレフタレートなどのポリエステル系樹脂フィルムなどが挙げられる。 Examples of the resin film 15 include cellulose resin films such as a triacetyl cellulose film (TAC film), polyolefin resin films, acrylic resin films, and polyester resin films such as polyethylene terephthalate.
 上記セルロース系樹脂フィルムを構成するセルロース系樹脂としては、セルロースの部分エステル化物または完全エステル化物を挙げることができ、たとえば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、および、それらの混合エステルなどを挙げることができる。より具体的には、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどが挙げられる。このようなセルロース系樹脂を製膜してフィルムとする際には、溶剤キャスト法、溶融押出法などの公知の方法が適宜用いられる。セルロースエステル系樹脂フィルムの市販品としては、たとえば「フジタックTD80」(富士フイルム(株)製)、「フジタックTD80UF」(富士フイルム(株)製)、「フジタックTD80UZ」(富士フイルム(株)製)、「KC8UX2M」(コニカミノルタオプト(株)製)、「KC8UY」(コニカミノルタオプト(株)製)などが挙げられる。 Examples of the cellulose-based resin constituting the cellulose-based resin film include a partially esterified product or a completely esterified product of cellulose, such as cellulose acetate ester, propionate ester, butyrate ester, and mixed esters thereof. Can be mentioned. More specifically, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like can be mentioned. When such a cellulose resin is formed into a film, a known method such as a solvent casting method or a melt extrusion method is appropriately used. Examples of commercially available cellulose ester resin films include “Fujitac TD80” (manufactured by Fuji Film Co., Ltd.), “Fujitac TD80UF” (manufactured by Fuji Film Co., Ltd.), and “Fujitac TD80UZ” (manufactured by Fuji Film Co., Ltd.). , “KC8UX2M” (manufactured by Konica Minolta Opto), “KC8UY” (manufactured by Konica Minolta Opto), and the like.
 また、セルロース系樹脂フィルムからなる光学補償フィルムとしては、たとえば、上記セルロース系樹脂フィルムに位相差調整機能を有する化合物を含有させたフィルム;セルロース系樹脂フィルム表面に位相差調整機能を有する化合物を塗布したフィルム;セルロース系樹脂フィルムを一軸延伸または二軸延伸して得られるフィルムなどが挙げられる。
市販のセルロース系樹脂フィルムからなる光学補償フィルムとしては、たとえば、富士フイルム(株)製の「WV BZ 438」、「WV EA」、コニカミノルタオプト(株)製の「KC4FR−1」、「KC4HR−1」などが挙げられる。
Moreover, as an optical compensation film comprising a cellulose resin film, for example, a film containing a compound having a retardation adjusting function in the cellulose resin film; a compound having a retardation adjusting function is applied to the surface of the cellulose resin film. And a film obtained by uniaxially or biaxially stretching a cellulose resin film.
Examples of the optical compensation film made of a commercially available cellulose resin film include “WV BZ 438” and “WV EA” manufactured by Fuji Film Co., Ltd., “KC4FR-1” and “KC4HR” manufactured by Konica Minolta Opto Co., Ltd. -1 "and the like.
 セルロース系樹脂フィルムからなる保護フィルムまたは光学補償フィルムの厚みは特に制限されないが、20~90μmの範囲内であることが好ましく、30~90μmの範囲内であることがより好ましい。厚みが20μm未満である場合には、フィルムの取扱いが難しく、一方、厚みが90μmを超える場合には、加工性に劣るものとなり、また、得られる偏光板の薄肉化および軽量化において不利である。 The thickness of the protective film or optical compensation film made of a cellulose resin film is not particularly limited, but is preferably in the range of 20 to 90 μm, and more preferably in the range of 30 to 90 μm. When the thickness is less than 20 μm, it is difficult to handle the film. On the other hand, when the thickness exceeds 90 μm, the workability is inferior, and it is disadvantageous in reducing the thickness and weight of the resulting polarizing plate. .
 上記ポリオレフィン系樹脂フィルムからなる光学補償フィルムとしては、たとえば一軸延伸または二軸延伸されたシクロオレフィン系樹脂フィルムを挙げることができる。大型液晶テレビ用液晶パネル、特に垂直配向(VA)モードの液晶セルを備える液晶パネルに適用する場合には、上記光学補償フィルムとしては、シクロオレフィン系樹脂フィルムの延伸品が、光学特性および耐久性の点からも好適である。ここで、シクロオレフィン系樹脂フィルムとは、たとえば、ノルボルネンや多環ノルボルネン系モノマーなどの環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する熱可塑性の樹脂からなるフィルムである。シクロオレフィン系樹脂フィルムは、単一のシクロオレフィンを用いた開環重合体の水素添加物や2種以上のシクロオレフィンを用いた開環共重合体の水素添加物であってもよく、シクロオレフィンと鎖状オレフィンおよび/またはビニル基を有する芳香族化合物などとの付加共重合体であってもよい。また、主鎖あるいは側鎖に極性基が導入されているものも有効である。 Examples of the optical compensation film made of the polyolefin resin film include a uniaxially stretched or biaxially stretched cycloolefin resin film. When applied to a liquid crystal panel for a large-sized liquid crystal television, particularly a liquid crystal panel having a vertical alignment (VA) mode liquid crystal cell, as the optical compensation film, a stretched product of a cycloolefin-based resin film has optical characteristics and durability. It is suitable also from this point. Here, the cycloolefin resin film is a film made of a thermoplastic resin having a unit of a monomer made of a cyclic olefin (cycloolefin) such as norbornene or a polycyclic norbornene monomer. The cycloolefin-based resin film may be a hydrogenated product of a ring-opening polymer using a single cycloolefin or a hydrogenated product of a ring-opening copolymer using two or more cycloolefins. And an addition copolymer of a chain olefin and / or an aromatic compound having a vinyl group. Further, those having a polar group introduced into the main chain or side chain are also effective.
 市販の熱可塑性シクロオレフィン系樹脂としては、ドイツのTOPAS ADVANCED POLYMERS GmbH社から販売されている「Topas」、JSR(株)から販売されている「アートン」、日本ゼオン(株)から販売されている「ゼオノア(ZEONOR)」および「ゼオネックス(ZEONEX)」、三井化学(株)から販売されている「アペル」(いずれも商品名)などがあり、これらを好適に用いることができる。
このようなシクロオレフィン系樹脂を製膜して、シクロオレフィン系樹脂フィルムを得ることができる。製膜方法としては、溶剤キャスト法、溶融押出法など、公知の方法が適宜用いられる。また、たとえば、積水化学工業(株)から販売されている「エスシーナ」および「SCA40」、日本ゼオン(株)から販売されている「ゼオノアフィルム」、JSR(株)から販売されている「アートンフィルム」(いずれも商品名)などの製膜されたシクロオレフィン系樹脂フィルムも市販されており、これらも好適に使用することができる。
Commercially available thermoplastic cycloolefin-based resins are “Topas” sold by TOPAS ADVANCED POLYMERS GmbH in Germany, “Arton” sold by JSR Corporation, and Nippon Zeon Corporation. There are “ZEONOR” and “ZEONEX”, “APEL” (both trade names) sold by Mitsui Chemicals, Inc., and the like, which can be preferably used.
A cycloolefin resin film can be obtained by forming such a cycloolefin resin. As a film forming method, a known method such as a solvent casting method or a melt extrusion method is appropriately used. In addition, for example, “Essina” and “SCA40” sold by Sekisui Chemical Co., Ltd., “Zeonor Film” sold by Nippon Zeon Co., Ltd., “Arton Film” sold by JSR Co., Ltd. (All are trade names) and the like are also commercially available, and these can also be used suitably.
 延伸されたシクロオレフィン系樹脂フィルムからなる光学補償フィルムの厚みは、厚すぎると、加工性に劣るものとなり、また、透明性が低下したり、偏光板の薄肉化および軽量化において不利であることなどから、20~80μm程度であるのが好ましい。 If the thickness of the optical compensation film made of the stretched cycloolefin-based resin film is too thick, the workability will be inferior, and the transparency will be lowered, and it will be disadvantageous in reducing the thickness and weight of the polarizing plate. Therefore, the thickness is preferably about 20 to 80 μm.
 本発明で用いられる背面側偏光板は、上述した偏光フィルムの一方の表面に接着剤を用いて上記プリズムシートを貼合することにより得ることができる。これにより、図2を参照して、偏光フィルム12の表面に接着剤層14を介してプリズムシート13が積層された偏光板が得られる。偏光フィルム12の他方の面に樹脂フィルム15を積層する場合、偏光フィルム12と樹脂フィルム15との貼合は、同様に接着剤を用いて行なわれる。この接着剤は、接着剤層16を形成するものである。偏光フィルム12に樹脂フィルム15が貼合される場合、プリズムシート13の貼合に用いられる接着剤と樹脂フィルム15の貼合に用いられる接着剤とは、同種の接着剤であってもよく、異種の接着剤であってもよい。これらのフィルムの貼合に用いられる接着剤としては、水系接着剤、すなわち、接着剤成分を水に溶解または分散させた接着剤および光硬化性接着剤を挙げることができる。 The back side polarizing plate used in the present invention can be obtained by laminating the prism sheet on one surface of the polarizing film described above using an adhesive. Thereby, with reference to FIG. 2, the polarizing plate by which the prism sheet 13 was laminated | stacked through the adhesive bond layer 14 on the surface of the polarizing film 12 is obtained. When the resin film 15 is laminated on the other surface of the polarizing film 12, the polarizing film 12 and the resin film 15 are similarly bonded using an adhesive. This adhesive forms the adhesive layer 16. When the resin film 15 is bonded to the polarizing film 12, the adhesive used for bonding the prism sheet 13 and the adhesive used for bonding the resin film 15 may be the same type of adhesive, Different types of adhesives may be used. Examples of the adhesive used for laminating these films include a water-based adhesive, that is, an adhesive in which an adhesive component is dissolved or dispersed in water and a photocurable adhesive.
 上記水系接着剤は、接着剤層を薄くできる点において好ましく用いられる。水系接着剤としては、たとえば、接着剤成分としてポリビニルアルコール系樹脂またはウレタン樹脂を用いた水系接着剤が挙げられる。 The aqueous adhesive is preferably used in that the adhesive layer can be thinned. Examples of the water-based adhesive include a water-based adhesive using a polyvinyl alcohol resin or a urethane resin as an adhesive component.
 接着剤成分としてポリビニルアルコール系樹脂を用いる場合、当該ポリビニルアルコール系樹脂は、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコールのほか、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、アミノ基変性ポリビニルアルコールなどの変性されたポリビニルアルコール系樹脂であってもよい。通常、ポリビニルアルコール系樹脂を接着剤成分とする水系接着剤は、ポリビニルアルコール系樹脂の水溶液として調製される。接着剤中のポリビニルアルコール系樹脂の濃度は、水100重量部に対して、通常1~10重量部程度、好ましくは1~5重量部程度である。 When a polyvinyl alcohol resin is used as the adhesive component, the polyvinyl alcohol resin is not only partially saponified polyvinyl alcohol and completely saponified polyvinyl alcohol, but also carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, and methylol group-modified polyvinyl. It may be a modified polyvinyl alcohol resin such as alcohol and amino group-modified polyvinyl alcohol. Usually, the water-based adhesive having a polyvinyl alcohol resin as an adhesive component is prepared as an aqueous solution of a polyvinyl alcohol resin. The concentration of the polyvinyl alcohol resin in the adhesive is usually about 1 to 10 parts by weight, preferably about 1 to 5 parts by weight with respect to 100 parts by weight of water.
 ポリビニルアルコール系樹脂を接着剤成分とする接着剤には、接着性を向上させるために、グリオキザール、水溶性エポキシ樹脂などの硬化性成分または架橋剤を添加することが好ましい。水溶性エポキシ樹脂としては、たとえばジエチレントリアミン、トリエチレンテトラミンなどのポリアルキレンポリアミンと、アジピン酸などのジカルボン酸との反応により得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドポリアミンエポキシ樹脂を好適に用いることができる。かかるポリアミドポリアミンエポキシ樹脂の市販品としては、住化ケムテックス(株)から販売されている「スミレーズレジン 650」および「スミレーズレジン 675」、日本PMC(株)から販売されている「WS−525」などが挙げられる。これら硬化性成分または架橋剤の添加量(共に添加する場合にはその合計量)は、ポリビニルアルコール系樹脂100重量部に対して、通常1~100重量部、好ましくは1~50重量部である。上記硬化性成分、架橋剤の添加量がポリビニルアルコール系樹脂100重量部に対して1重量部未満である場合には、接着性向上の効果が小さくなる傾向にあり、また、上記硬化性成分、架橋剤の添加量がポリビニルアルコール系樹脂100重量部に対して100重量部を超える場合には、接着剤層が脆くなる傾向にある。 It is preferable to add a curable component such as glyoxal or a water-soluble epoxy resin or a cross-linking agent to an adhesive having a polyvinyl alcohol resin as an adhesive component in order to improve adhesiveness. Examples of water-soluble epoxy resins include polyamide polyamine epoxy resins obtained by reacting epichlorohydrin with polyamide polyamines obtained by reaction of polyalkylene polyamines such as diethylenetriamine and triethylenetetramine with dicarboxylic acids such as adipic acid. Can be suitably used. Commercially available products of such polyamide polyamine epoxy resins include “Smiles Resin 650” and “Smiles Resin 675” sold by Sumika Chemtex Co., Ltd., and “WS-525” sold by Japan PMC Co., Ltd. Or the like. The addition amount of these curable components or crosslinking agents (the total amount when added together) is usually 1 to 100 parts by weight, preferably 1 to 50 parts by weight with respect to 100 parts by weight of the polyvinyl alcohol resin. . When the addition amount of the curable component and the crosslinking agent is less than 1 part by weight with respect to 100 parts by weight of the polyvinyl alcohol-based resin, the effect of improving adhesiveness tends to be reduced, and the curable component, When the addition amount of the crosslinking agent exceeds 100 parts by weight with respect to 100 parts by weight of the polyvinyl alcohol resin, the adhesive layer tends to become brittle.
 また、接着剤成分としてウレタン樹脂を用いる場合、適当な接着剤組成物の例として、ポリエステル系アイオノマー型ウレタン樹脂とグリシジルオキシ基を有する化合物との混合物を挙げることができる。ここで、ポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その骨格内に少量のイオン性成分(親水成分)が導入されたものである。かかるアイオノマー型ウレタン樹脂は、乳化剤を使用せずに直接、水中で乳化してエマルジョンとなるため、水系の接着剤として好適である。
ポリエステル系アイオノマー型ウレタン樹脂それ自体は公知であり、たとえば特開平7−97504号公報には、フェノール系樹脂を水性媒体中に分散させるための高分子分散剤の例として記載されており、また特開2005−070140号公報および特開2005−181817号公報には、ポリエステル系アイオノマー型ウレタン樹脂とグリシジルオキシ基を有する化合物との混合物を接着剤として、ポリビニルアルコール系樹脂からなる偏光フィルムにシクロオレフィン系樹脂フィルムを貼合することが示されている。
When a urethane resin is used as the adhesive component, examples of suitable adhesive compositions include a mixture of a polyester ionomer type urethane resin and a compound having a glycidyloxy group. Here, the polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton. Such an ionomer-type urethane resin is suitable as a water-based adhesive because it is emulsified directly in water without using an emulsifier to form an emulsion.
Polyester-based ionomer urethane resins are known per se. For example, JP-A-7-97504 describes an example of a polymer dispersant for dispersing a phenol-based resin in an aqueous medium. In JP-A-2005-070140 and JP-A-2005-181817, a mixture of a polyester ionomer type urethane resin and a compound having a glycidyloxy group is used as an adhesive, and a polarizing film made of a polyvinyl alcohol resin is used as a cycloolefin resin. It is shown that a resin film is bonded.
 偏光フィルムおよび/またはこれに貼合される部材(プリズムシートや保護フィルムまたは光学補償フィルム)に接着剤を塗布する方法としては、一般に知られている方法でよく、たとえば、流延法、マイヤーバーコート法、グラビアコート法、カンマコーター法、ドクターブレード法、ダイコート法、ディップコート法、噴霧法などを挙げることができる。流延法とは、被塗布物であるフィルムを、概ね垂直方向、概ね水平方向、または両者の間の斜め方向に移動させながら、その表面に接着剤を流下して拡布させる方法である。
接着剤を塗布した後、偏光フィルムおよびこれに貼合される部材を重ね合わせ、ニップロールなどにより挟んでフィルムの貼合を行なう。ニップロールを用いたフィルムの貼合は、たとえば、接着剤を塗布した後、ロールなどで加圧して均一に押し広げる方法、接着剤を塗布した後、ロールとロールとの間に通し、加圧して押し広げる方法などを採用することができる。前者の場合において、ロールの材質としては金属やゴムなどを用いることが可能である。また、後者の場合、複数のロールは同じ材質であってもよく、異なる材質であってもよい。
As a method of applying an adhesive to the polarizing film and / or a member (prism sheet, protective film or optical compensation film) bonded to the polarizing film, a generally known method may be used. For example, a casting method, a Meyer bar may be used. Examples thereof include a coating method, a gravure coating method, a comma coater method, a doctor blade method, a die coating method, a dip coating method, and a spraying method. The casting method is a method of spreading and spreading an adhesive on the surface of a film to be coated while moving it in a substantially vertical direction, a substantially horizontal direction, or an oblique direction between the two.
After apply | coating an adhesive agent, a polarizing film and the member bonded by this are piled up, and it bonds by a nip roll etc. and bonds a film. Film bonding using nip rolls is, for example, a method in which an adhesive is applied and then pressurized with a roll or the like to spread uniformly, and after applying an adhesive, it is passed between the rolls and pressed. A method of spreading out can be employed. In the former case, it is possible to use metal or rubber as the material of the roll. In the latter case, the plurality of rolls may be made of the same material or different materials.
 上記貼合後、乾燥して接着剤層を硬化させることにより偏光板を得ることができる。この乾燥処理は、たとえば熱風を吹き付けることにより行なわれ、その温度は、通常40~100℃の範囲内であり、好ましくは60~100℃の範囲内である。また、乾燥時間は通常、20~1200秒である。 After the above bonding, the polarizing plate can be obtained by drying and curing the adhesive layer. This drying treatment is performed, for example, by blowing hot air, and the temperature is usually in the range of 40 to 100 ° C., and preferably in the range of 60 to 100 ° C. The drying time is usually 20 to 1200 seconds.
 乾燥後の接着剤層の厚みは、通常0.001~5μmであり、好ましくは0.01~2μm、さらに好ましくは0.01~1μmである。乾燥後の接着剤層の厚みが0.001μm未満である場合には、接着が不十分となる虞があり、また、乾燥後の接着剤層の厚みが5μmを超えると、偏光板の外観不良が生じる虞がある。なお、乾燥、硬化前における、上記ニップロール等を用いて貼り合わされた後の接着剤層の厚さは、5μm以下であることが好ましく、また0.01μm以上であることが好ましい。 The thickness of the adhesive layer after drying is usually 0.001 to 5 μm, preferably 0.01 to 2 μm, more preferably 0.01 to 1 μm. If the thickness of the adhesive layer after drying is less than 0.001 μm, the adhesion may be insufficient, and if the thickness of the adhesive layer after drying exceeds 5 μm, the appearance of the polarizing plate is poor. May occur. In addition, it is preferable that the thickness of the adhesive bond layer after bonding using the said nip roll etc. before drying and hardening is 5 micrometers or less, and it is preferable that it is 0.01 micrometers or more.
 乾燥処理の後、室温以上の温度で少なくとも半日、通常は1日間以上の養生を施して十分な接着強度を得てもよい。かかる養生は、典型的には、ロール状に巻き取られた状態で行なわれる。好ましい養生温度は30~50℃の範囲であり、さらに好ましくは35~45℃である。養生温度が50℃を超えると、ロール巻き状態において、いわゆる「巻き締まり」が起こりやすくなる。なお、養生時の湿度は、特に限定されないが、相対湿度が0%RH~70%RH程度の範囲となるように選択されることが好ましい。養生時間は、通常1日~10日程度、好ましくは2日~7日程度である。 After the drying treatment, sufficient adhesive strength may be obtained by curing at room temperature or higher for at least half a day, usually 1 day or longer. Such curing is typically performed in a state of being wound in a roll. The preferable curing temperature is in the range of 30 to 50 ° C, more preferably 35 to 45 ° C. When the curing temperature exceeds 50 ° C., so-called “roll tightening” is likely to occur in the roll winding state. The humidity during curing is not particularly limited, but is preferably selected so that the relative humidity is in the range of about 0% RH to 70% RH. The curing time is usually about 1 to 10 days, preferably about 2 to 7 days.
 また、上記光硬化性接着剤としては、たとえば、光硬化性エポキシ樹脂と光カチオン重合開始剤との混合物などが挙げられる。光硬化性エポキシ樹脂としては、たとえば、脂環式エポキシ樹脂、脂環式構造を有しないエポキシ樹脂、およびそれらの混合物などが挙げられる。光硬化性接着剤は、光硬化性エポキシ樹脂のほか、アクリル樹脂、オキタセン樹脂、ウレタン樹脂、ポリビニルアルコール樹脂などを含んでいてもよく、また、光カチオン重合開始剤とともに、または光カチオン重合開始剤の代わりに、光ラジカル重合開始剤を含んでいてもよい。 Further, examples of the photocurable adhesive include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator. Examples of the photocurable epoxy resin include alicyclic epoxy resins, epoxy resins having no alicyclic structure, and mixtures thereof. The photocurable adhesive may contain an acrylic resin, an okitacene resin, a urethane resin, a polyvinyl alcohol resin, etc. in addition to the photocurable epoxy resin, and together with the photocationic polymerization initiator or the photocationic polymerization initiator. Instead of this, a radical photopolymerization initiator may be included.
 光硬化性接着剤を用いる場合には、偏光フィルムおよび/またはこれに貼合される部材(プリズムシートや保護フィルムまたは光学補償フィルム)に光硬化性接着剤を塗布し、偏光フィルムおよびこれに貼合される部材を貼合した後、活性エネルギー線を照射することによって光硬化性接着剤を硬化させる。光硬化性接着剤の塗布方法およびフィルムの貼合方法は、水系接着剤と同様とすることができる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好ましく用いられる。 When using a photocurable adhesive, a photocurable adhesive is applied to the polarizing film and / or a member (prism sheet, protective film, or optical compensation film) to be bonded to the polarizing film and the polarizing film and the same. After bonding the members to be combined, the photocurable adhesive is cured by irradiating active energy rays. The application method of a photocurable adhesive and the bonding method of a film can be made the same as that of an aqueous adhesive. The light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable. Specifically, the low-pressure mercury lamp, the medium-pressure mercury lamp, the high-pressure mercury lamp, the ultrahigh-pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
 光硬化性接着剤への光照射強度は、該光硬化性接着剤の組成によって適宜決定され、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度が0.1~6000mW/cmであることが好ましい。該照射強度が0.1mW/cm以上である場合、反応時間が長くなりすぎず、6000mW/cm以下である場合、光源から輻射される熱および光硬化性接着剤の硬化時の発熱によるエポキシ樹脂の黄変や偏光フィルムの劣化を生じる虞が少ない。光硬化性接着剤への光照射時間は、硬化させる光硬化性接着剤ごとに制御されるものであって特に制限されないが、上記照射強度と照射時間との積として表される積算光量が10~10000mJ/mとなるように設定されることが好ましい。光硬化性接着剤への積算光量が10mJ/m以上である場合、重合開始剤由来の活性種を十分量発生させて硬化反応をより確実に進行させることができ、また、10000mJ/m以下である場合、照射時間が長くなりすぎず、良好な生産性を維持できる。 The light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW. / Cm 2 is preferable. When the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when it is 6000 mW / cm 2 or less, it is caused by heat radiated from the light source and heat generated during curing of the photocurable adhesive. There is little risk of yellowing of the epoxy resin and deterioration of the polarizing film. The light irradiation time to the photocurable adhesive is controlled for each photocurable adhesive to be cured and is not particularly limited. However, the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10. It is preferably set to be ˜10000 mJ / m 2 . When the cumulative amount of light to the photocurable adhesive is 10 mJ / m 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to allow the curing reaction to proceed more reliably, and 10,000 mJ / m 2. In the case of the following, the irradiation time does not become too long, and good productivity can be maintained.
 活性エネルギー線の照射によって光硬化性接着剤を硬化させる場合、偏光フィルムの偏光度、透過率および色相、ならびにプリズムシート、保護フィルムおよび光学補償フィルムの透明性などの偏光板の諸機能が低下しない条件で硬化を行なうことが好ましい。 When curing a photo-curable adhesive by irradiation with active energy rays, the polarizing film functions such as the degree of polarization, transmittance and hue of the polarizing film, and transparency of the prism sheet, protective film and optical compensation film do not deteriorate. It is preferable to perform curing under conditions.
 なお、プリズムシートおよび保護フィルムまたは光学補償フィルムの偏光フィルムへの貼合に先立ち、偏光フィルムおよび/またはこれに貼合される部材の接着表面に、接着性を向上させるために、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を施してもよい。ケン化処理としては、水酸化ナトリウムや水酸化カリウム等のアルカリ水溶液に浸漬する方法が挙げられる。 Prior to the bonding of the prism sheet and the protective film or the optical compensation film to the polarizing film, the plasma treatment, corona, and the like are performed on the bonding surface of the polarizing film and / or a member bonded to the polarizing film. Surface treatment such as treatment, ultraviolet irradiation treatment, flame (flame) treatment, and saponification treatment may be performed. Examples of the saponification treatment include a method of immersing in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide.
 また、上述のように、背面側偏光板は、偏光フィルム12におけるプリズムシート13が積層される面とは反対側の面に積層された光学機能性フィルムを有していてもよい。光学機能性フィルムとしては、たとえば、基材表面に液晶性化合物が塗布され、配向されている光学補償フィルム;ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルム;ポリカーボネート系樹脂からなる位相差フィルム;シクロオレフィン系樹脂フィルムからなる位相差フィルム;表面に凹凸形状を有する防眩機能付きフィルム;表面反射防止機能付きフィルム;表面に反射機能を有する反射フィルム;および反射機能と透過機能とを併せ持つ半透過反射フィルムなどが挙げられる。基材表面に液晶性化合物が塗布され、配向されている光学補償フィルムに相当する市販品としては、「WVフィルム」(富士フィルム(株)製)、「NHフィルム」(新日本石油(株)製)、「NRフィルム」(新日本石油(株)製)などが挙げられる。ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルムに相当する市販品としては、たとえば「DBEF」(3M社製、日本では住友スリーエム(株)から入手できる)などが挙げられる。また、シクロオレフィン系樹脂フィルムからなる位相差フィルムに相当する市販品としては、たとえば「アートンフィルム」(JSR(株)製)、「エスシーナ」(積水化学工業(株)製)、「ゼオノアフィルム」(日本ゼオン(株))などが挙げられる。 Further, as described above, the back side polarizing plate may have an optical functional film laminated on the surface of the polarizing film 12 opposite to the surface on which the prism sheet 13 is laminated. As an optical functional film, for example, an optical compensation film in which a liquid crystal compound is coated on a substrate surface and oriented; a reflection type that transmits polarized light of some kind and reflects polarized light that shows the opposite property Polarizing film; Retardation film made of polycarbonate-based resin; Retardation film made of cycloolefin-based resin film; Film with anti-glare function having uneven shape on surface; Film with surface anti-reflection function; Reflecting film having reflection function on surface And a transflective film having both a reflection function and a transmission function. Commercially available products corresponding to an optical compensation film coated with a liquid crystal compound on the surface of the base material are “WV film” (Fuji Film Co., Ltd.), “NH film” (Shin Nippon Oil Co., Ltd.) And “NR Film” (manufactured by Nippon Oil Corporation). For example, “DBEF” (manufactured by 3M, available from Sumitomo 3M Co., Ltd. in Japan) is a commercially available product corresponding to a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties. Can be). Moreover, as a commercial item corresponding to the retardation film which consists of a cycloolefin type resin film, for example, "Arton film" (made by JSR Corporation), "Essina" (made by Sekisui Chemical Co., Ltd.), "Zeonor film" (Nippon ZEON Co., Ltd.).
 背面側偏光板は、プリズムシートとは反対側の表面に液晶セルに貼合するための粘着剤層を有することが好ましい。このような粘着剤層に用いられる粘着剤としては、従来公知の適宜の粘着剤を用いることができ、たとえばアクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などが挙げられる。中でも、透明性、粘着力、信頼性、リワーク性などの観点から、アクリル系粘着剤が好ましく用いられる。粘着剤層は、このような粘着剤を、たとえば有機溶剤溶液とし、これを基材フィルム(たとえば偏光フィルム等)上にダイコータやグラビアコータなどによって塗布し、乾燥させる方法によって設けることができる。また、離型処理が施されたプラスチックフィルム(セパレートフィルムと呼ばれる)上に形成されたシート状粘着剤を基材フィルムに転写する方法によっても設けることができる。粘着剤層の厚みは、特に制限されないが、2~40μmの範囲内であることが好ましい。 The back side polarizing plate preferably has an adhesive layer for bonding to the liquid crystal cell on the surface opposite to the prism sheet. As the pressure-sensitive adhesive used for such a pressure-sensitive adhesive layer, conventionally known appropriate pressure-sensitive adhesives can be used, and examples thereof include acrylic pressure-sensitive adhesives, urethane pressure-sensitive adhesives, and silicone-based pressure-sensitive adhesives. Among these, an acrylic pressure-sensitive adhesive is preferably used from the viewpoints of transparency, adhesive strength, reliability, reworkability, and the like. The pressure-sensitive adhesive layer can be provided by a method in which such a pressure-sensitive adhesive is, for example, an organic solvent solution, which is applied on a base film (for example, a polarizing film) by a die coater or a gravure coater and dried. Moreover, it can provide also by the method of transcribe | transferring the sheet-like adhesive formed on the plastic film (it is called a separate film) to which the mold release process was given to a base film. The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably in the range of 2 to 40 μm.
 <前面側偏光板>
 前面側偏光板(図1における偏光板2)は、液晶セルを基準に、面光源とは反対側(視認側)に配置される偏光板である。前面側偏光板としては、従来公知の適宜の偏光板を用いることができる。たとえば、偏光フィルムの片面または両面にトリアセチルセルロース等からなる保護フィルムが積層された偏光板のほか、防眩処理、ハードコート処理、反射防止処理が施された偏光板などを用いることができる。また、偏光フィルムの片面にポリエチレンテレフタレートフィルム、アクリルフィルム、ポリプロピレンフィルムなどからなる保護フィルムまたは光学補償フィルムが積層された偏光板でもよい。
<Front side polarizing plate>
The front side polarizing plate (polarizing plate 2 in FIG. 1) is a polarizing plate disposed on the opposite side (viewing side) from the surface light source with reference to the liquid crystal cell. A conventionally well-known appropriate polarizing plate can be used as the front side polarizing plate. For example, in addition to a polarizing plate in which a protective film made of triacetyl cellulose or the like is laminated on one side or both sides of a polarizing film, a polarizing plate subjected to an antiglare treatment, a hard coat treatment, or an antireflection treatment can be used. Moreover, the polarizing plate by which the protective film or optical compensation film which consists of a polyethylene terephthalate film, an acrylic film, a polypropylene film etc. on the single side | surface of the polarizing film may be laminated | stacked.
 <面光源>
 本発明の液晶表示装置は、液晶パネルを均一に照明するための面光源20を備える。本発明においては、面光源20として、プリズムシートの機能(面光源からの出射光を偏向して、プリズム状突起からの出射光の方向を液晶表示装置の正面方向に補正する機能)を最大限発揮させるために、特定の光出射特性(配光特性)を有する面光源が用いられる。
より具体的には、本発明において用いられる面光源は、図4を参照して、プリズムシートが有するプリズム状突起の稜線方向に直交する平面W内における、面光源の光出射面の法線方向Tと、面光源の出射光の出射方向Mとがなす角度を出射角度θ(ただし、−90°≦θ≦90°)とするとき、該出射光の光強度の出射角度依存性を示す面光源の光強度分布が下記(1)および(2)を満たす。
(1)−80°≦θ<−40°または40°<θ≦80°の範囲内に、光強度の極大値が最も高いピークを有する。
(2)上記光強度の極大値が最も高いピークにおける光強度の極大値を示す角度をθa、前記ピークにおける光強度の極大値の1/2を示す角度をθbとするとき、下記式[1]:
 |θa−θb|<30°     [1]
を満たす。
<Surface light source>
The liquid crystal display device of the present invention includes a surface light source 20 for uniformly illuminating a liquid crystal panel. In the present invention, as the surface light source 20, the function of the prism sheet (the function of deflecting the light emitted from the surface light source and correcting the direction of the light emitted from the prism-shaped protrusion to the front direction of the liquid crystal display device) is maximized. In order to achieve this, a surface light source having specific light emission characteristics (light distribution characteristics) is used.
More specifically, referring to FIG. 4, the surface light source used in the present invention is the normal direction of the light emitting surface of the surface light source in the plane W orthogonal to the ridge line direction of the prismatic protrusions of the prism sheet. A surface showing the output angle dependency of the light intensity of the emitted light when the angle formed by T and the emission direction M of the emitted light from the surface light source is an outgoing angle θ (where −90 ° ≦ θ ≦ 90 °). The light intensity distribution of the light source satisfies the following (1) and (2).
(1) It has a peak having the highest light intensity maximum value in the range of −80 ° ≦ θ <−40 ° or 40 ° <θ ≦ 80 °.
(2) When the angle indicating the maximum value of the light intensity at the peak having the highest light intensity maximum value is θa and the angle indicating 1/2 of the maximum value of the light intensity at the peak is θb, the following formula [1 ]:
| Θa−θb | <30 ° [1]
Meet.
 なお、出射角度θが採り得る範囲は、−90°≦θ≦90°である。θ=0°とは、面光源からの出射光の方向Mが面光源の光出射面の法線方向Tと同方向であることを意味する。θ=−90°とは、平面W内において、面光源からの出射光の方向Mが法線方向Tに対して、反時計回りに(または時計回りに)90°の角度をなしていることを意味し、θ=90°とは、平面W内において、面光源からの出射光の方向Mが法線方向Tに対して、時計回りに(または反時計回りに)90°の角度をなしていることを意味する。 Note that the range in which the emission angle θ can be taken is −90 ° ≦ θ ≦ 90 °. θ = 0 ° means that the direction M of the emitted light from the surface light source is the same as the normal direction T of the light emitting surface of the surface light source. θ = −90 ° means that in the plane W, the direction M of the light emitted from the surface light source forms an angle of 90 ° counterclockwise (or clockwise) with respect to the normal direction T. Θ = 90 ° means that the direction M of the light emitted from the surface light source is 90 ° clockwise (or counterclockwise) with respect to the normal direction T in the plane W. Means that
 面光源の光出射面の法線方向Tから比較的大きく離れた出射方向Mを有する(出射角度θの絶対値が比較的大きい)光が、プリズムシートが有するプリズム状突起13aに入射する場合、その入射光は、図5において模式的に示すように、プリズム状突起13aの斜辺Pに到達し、当該斜辺Pによって反射されることにより、液晶表示装置の正面方向(面光源の光出射面の法線方向T)に集光されることができる。すなわち、プリズムシートを備える背面側偏光板を用いた液晶表示装置においては、このような面光源の光出射面の法線方向Tから比較的大きく離れた出射方向Mを有する(出射角度θの絶対値が比較的大きい)光は、液晶表示装置の正面方向の輝度およびコントラストの向上に大きく寄与する。
本発明者らは、なかでも、平面Wにおいて、−80°≦θ<−40°または40°<θ≦80°の範囲(すなわち、出射角度θの絶対値|θ|が40°<|θ|≦80°の範囲)内に、光強度の極大値が最も高いピークを有する光強度分布特性を示す〔上記条件(1)を満たす〕面光源は、当該ピークを構成する光がプリズムシートによって効果的に液晶表示装置の正面方向(面光源の光出射面の法線方向T)に集光されることから、液晶表示装置の正面方向の輝度およびコントラストの向上に極めて有効であることを見出した。なお、上記条件(1)において考慮される出射角度θの下限および上限をそれぞれ−80°、80°としたのは、当該下限および上限を超える角度での光強度を精度よく測定することが困難であり、実用的でないためである。
When light having an emission direction M that is relatively far away from the normal direction T of the light emission surface of the surface light source (the absolute value of the emission angle θ is relatively large) is incident on the prismatic protrusion 13a of the prism sheet, As schematically shown in FIG. 5, the incident light reaches the oblique side P of the prism-shaped protrusion 13 a and is reflected by the oblique side P, thereby causing the front direction of the liquid crystal display device (the light emitting surface of the surface light source to It can be condensed in the normal direction T). That is, in a liquid crystal display device using a back-side polarizing plate including a prism sheet, the liquid crystal display device has an emission direction M that is relatively far from the normal direction T of the light emission surface of such a surface light source (the absolute value of the emission angle θ). The light having a relatively large value greatly contributes to the improvement of the brightness and contrast in the front direction of the liquid crystal display device.
In particular, the present inventors have a range of −80 ° ≦ θ <−40 ° or 40 ° <θ ≦ 80 ° in the plane W (that is, the absolute value | θ | of the emission angle θ is 40 ° <| θ | ≦ 80 °), a surface light source exhibiting a light intensity distribution characteristic having a peak with the highest light intensity maximum value (satisfying the above condition (1)), the light constituting the peak is reflected by the prism sheet It is found that it is extremely effective in improving the brightness and contrast in the front direction of the liquid crystal display device because the light is effectively focused in the front direction of the liquid crystal display device (normal direction T of the light emitting surface of the surface light source). It was. The lower and upper limits of the emission angle θ considered in the above condition (1) are set to −80 ° and 80 °, respectively, and it is difficult to accurately measure the light intensity at an angle exceeding the lower and upper limits. This is because it is not practical.
 上記光強度の極大値が最も高いピークは、50°≦|θ|≦80°の範囲内に位置していることが好ましく、60°≦|θ|≦80°の範囲内に位置していることがより好ましい。 The peak having the highest light intensity maximum value is preferably located within the range of 50 ° ≦ | θ | ≦ 80 °, and is located within the range of 60 ° ≦ | θ | ≦ 80 °. It is more preferable.
 一方、上記光強度の極大値が最も高いピークの幅(広がり)も液晶表示装置の正面方向の輝度およびコントラストに影響を与えることが本発明者らによって見出された。すなわち、平面Wでの面光源の光強度分布において、上記光強度の極大値が最も高いピークにおける光強度の極大値を示す角度をθa、当該ピークにおける光強度の極大値の1/2を示す角度をθbとするとき、半半値幅|θa−θb|が30°未満である〔上記条件(2)を満たす〕と、出射角度θの絶対値が比較的小さい光の悪影響を大きく受けることなく、主たる出射光である出射角度がθa近傍である光の集光により、液晶表示装置の正面方向の輝度およびコントラストを向上させることができる。これに対し、半半値幅|θa−θb|が30°以上であるか、θbが存在しない場合(たとえば、当該ピークが極めて緩やかなピークであり、−80°≦θ≦80°の範囲において、極大値の1/2となる点がピーク上に存在しない場合)、上記光強度の極大値が最も高いピークの裾野付近を構成する出射角度θの絶対値が比較的小さい光成分が増加し、その結果、プリズムシートによって液晶表示装置の正面方向(面光源の光出射面の法線方向T)以外の方向に曲げられる光成分が増加することから、液晶表示装置の正面方向の輝度およびコントラストを十分に向上させることができない傾向にある。半半値幅|θa−θb|は、25°以下であることが好ましい。 On the other hand, the present inventors have found that the width (broadening) of the peak having the highest maximum value of the light intensity also affects the luminance and contrast in the front direction of the liquid crystal display device. That is, in the light intensity distribution of the surface light source on the plane W, the angle indicating the maximum value of the light intensity at the peak where the maximum value of the light intensity is the highest is θa, and 1/2 of the maximum value of the light intensity at the peak. When the angle is θb, when the half-value width | θa−θb | is less than 30 ° (satisfies the above condition (2)), the absolute value of the emission angle θ is not significantly affected by light, By condensing light whose emission angle, which is the main emitted light, is in the vicinity of θa, the luminance and contrast in the front direction of the liquid crystal display device can be improved. On the other hand, when the half-value width | θa−θb | is 30 ° or more or θb does not exist (for example, the peak is an extremely gentle peak, and is maximal in the range of −80 ° ≦ θ ≦ 80 °). The point where the value becomes ½ of the peak does not exist on the peak), the light component having a relatively small absolute value of the emission angle θ constituting the vicinity of the base of the peak where the maximum value of the light intensity is highest increases. As a result, the light component bent in a direction other than the front direction of the liquid crystal display device (normal direction T of the light emitting surface of the surface light source) is increased by the prism sheet, so that the brightness and contrast in the front direction of the liquid crystal display device are sufficient. There is a tendency that cannot be improved. The half-value width | θa−θb | is preferably 25 ° or less.
 平面Wでの面光源の光強度分布は、上記(1)および(2)を満たす限りにおいてどのような光分布特性を有していてもよいが、出射角度−40~40°の範囲内において顕著なピークを有しないことが好ましい。このようなピークは、プリズムシートによって適切に液晶表示装置の正面方向に集光されない傾向にあるためである。 The light intensity distribution of the surface light source on the plane W may have any light distribution characteristic as long as the above (1) and (2) are satisfied, but within an emission angle range of −40 to 40 °. It is preferred not to have a significant peak. This is because such a peak tends not to be properly collected in the front direction of the liquid crystal display device by the prism sheet.
 ここで、プリズム状突起の稜線方向に直交する平面Wとしては、複数の平面を採用することが可能であるが、本発明においては、少なくともいずれか1つの平面Wにおいて上記(1)および(2)を満たしていればよい。ただし、液晶表示装置の全面にわたって十分に高い輝度およびコントラストを達成するためには、プリズム状突起の稜線方向に直交する任意の2以上の平面Wにおいて上記(1)および(2)を満たすことが好ましい。 Here, as the plane W orthogonal to the ridge line direction of the prism-like projection, a plurality of planes can be adopted. However, in the present invention, at least one of the planes W (1) and (2 ). However, in order to achieve sufficiently high luminance and contrast over the entire surface of the liquid crystal display device, the above (1) and (2) must be satisfied in any two or more planes W orthogonal to the ridge line direction of the prism-shaped protrusions. preferable.
 面光源の光強度分布は、市販の輝度測定装置を用いて、面光源の輝度を測定することにより得ることができる。 The light intensity distribution of the surface light source can be obtained by measuring the brightness of the surface light source using a commercially available brightness measuring device.
 面光源としては、拡散板を用いた直下型光源、導光板を用いたエッジ型光源などを用いることができるが、上記のような配光特性を実現するために、図1に示されるような、導光板22と導光板22の側方に配置された光源装置21とを備えるエッジ型光源(面光源20)を用いることが好ましい。導光板22としては、たとえば、アクリル樹脂等の透明樹脂からなる平板状またはくさび形状部材を用いることができる。導光板の裏面または両面には、インクを使用したスクリーン印刷またはエッチング、ブラストの加工により、パターンが付加される。また、導光板の裏面または両面に、反射機能を有する微小反射素子、微小屈折素子などを構成することもある。これらの導光板の裏面または両面の形状あるいは素子を適切に調整することで、所望の配光特性を得ることができる。より具体的には、例えば、東レリサーチセンター株式会社刊「液晶バックライトの最新技術 第4章」や、シーエムシー出版株式会社刊「液晶ディスプレイ用バックライト技術 第2編第1章、第4編第1章」に記載される光源装置を好適に利用できる。 As the surface light source, a direct light source using a diffusing plate, an edge light source using a light guide plate, or the like can be used. In order to realize the above light distribution characteristics, as shown in FIG. It is preferable to use an edge-type light source (surface light source 20) including the light guide plate 22 and the light source device 21 disposed on the side of the light guide plate 22. As the light guide plate 22, for example, a flat plate or wedge-shaped member made of a transparent resin such as an acrylic resin can be used. A pattern is added to the back surface or both surfaces of the light guide plate by screen printing using ink, etching, or blasting. In addition, a minute reflection element or a minute refraction element having a reflection function may be formed on the back surface or both surfaces of the light guide plate. Desired light distribution characteristics can be obtained by appropriately adjusting the shapes or elements of the back surface or both surfaces of these light guide plates. More specifically, for example, “Latest Liquid Crystal Backlight Technology Chapter 4” published by Toray Research Center Co., Ltd., and “LCD Backlight Technology, Volume 2, Chapter 1, Chapter 4” published by CM Publishing Co., Ltd. The light source device described in “Chapter 1” can be suitably used.
 光源装置21としては、LED等の点状光源を線状に並べた光源装置や、冷陰極管等の棒状光源からなる光源装置を用いることができる。本発明の液晶表示装置において、面光源は、導光板の一辺に配置される1つの光源装置を有していてもよいし、または導光板の向かいあう二辺に配置される2つの光源装置を有していてもよい。 As the light source device 21, a light source device in which point light sources such as LEDs are arranged in a line or a light source device composed of a rod-like light source such as a cold cathode tube can be used. In the liquid crystal display device of the present invention, the surface light source may have one light source device arranged on one side of the light guide plate, or two light source devices arranged on two sides facing the light guide plate. You may do it.
 エッジ型光源が備える、点状の光源を線状に並べた光源装置または棒状の光源からなる光源装置は、プリズムシートが有するプリズム状突起の稜線と平行または略平行に配置されることが好ましい。このように配置することで、エッジ型光源の発する光は、プリズムシートによって最も効率的に集光される。 It is preferable that the edge type light source, which includes a light source device in which point light sources are arranged in a line or a light source device including a rod-like light source, is arranged in parallel or substantially in parallel with the ridge line of the prism-shaped protrusions of the prism sheet. By arranging in this way, the light emitted from the edge type light source is most efficiently collected by the prism sheet.
 本発明の液晶表示装置において、上記で説明した以外の構成については、従来公知の適宜の構成を採用することができる。たとえば、本発明の液晶表示装置は、光拡散板、光拡散シート、反射板などをさらに備えていてもよい。 In the liquid crystal display device of the present invention, a conventionally known appropriate configuration can be adopted for configurations other than those described above. For example, the liquid crystal display device of the present invention may further include a light diffusing plate, a light diffusing sheet, a reflecting plate, and the like.
 以下、実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 (製造例1:偏光フィルムの作製)
 平均重合度約2400、ケン化度99.9モル%以上で厚み75μmのポリビニルアルコールフィルムを、30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.02/2/100の水溶液に30℃で浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が12/5/100の水溶液に56.5℃で浸漬した。引き続き、8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向された偏光フィルムを得た。延伸は、主に、ヨウ素染色およびホウ酸処理の工程で行ない、トータル延伸倍率は5.3倍であった。
(Production Example 1: Production of polarizing film)
A polyvinyl alcohol film having an average polymerization degree of about 2400 and a saponification degree of 99.9 mol% or more and a thickness of 75 μm was immersed in pure water at 30 ° C., and then the weight ratio of iodine / potassium iodide / water was 0.02 / 2. / 100 aqueous solution at 30 ° C. Then, it was immersed at 56.5 ° C. in an aqueous solution having a potassium iodide / boric acid / water weight ratio of 12/5/100. Subsequently, after washing with pure water at 8 ° C., it was dried at 65 ° C. to obtain a polarizing film in which iodine was adsorbed and oriented on polyvinyl alcohol. Stretching was mainly performed in the iodine staining and boric acid treatment steps, and the total stretching ratio was 5.3 times.
 (製造例2:紫外線硬化型接着剤の調製)
 ジャパンエポキシレジン(株)製の水素化エポキシ樹脂である商品名「エピコートYX8000」(核水添ビスフェノールAのジグリシジルエーテルであって、約205g/当量のエポキシ当量を有する)10.0g、日本曹達(株)製の光カチオン重合開始剤である商品名「CI5102」4.0g、および、日本曹達(株)製の光増感剤である商品名「CS7001」1.0gを、100mlのディスポカップに量り取り、混合・脱泡することにより、紫外線硬化型接着剤を調製した。
(Production Example 2: Preparation of UV-curable adhesive)
10.0 g of Nippon Epoxy Resin Co., Ltd. product name “Epicoat YX8000” (diglycidyl ether of hydrogenated bisphenol A having an epoxy equivalent of about 205 g / equivalent), Nippon Soda A 100 ml disposable cup of 4.0 g of trade name “CI5102”, which is a photocationic polymerization initiator manufactured by Co., Ltd., and 1.0 g of trade name “CS7001,” which is a photosensitizer, manufactured by Nippon Soda Co., Ltd. The ultraviolet curable adhesive was prepared by weighing out, mixing and defoaming.
 (製造例3:プリズムシート1の作製)
 成形後のプリズム状突起(断面形状は二等辺三角形である)のピッチが50μm、および頂角が65°となるように予め設計された金型に、溶融したポリプロピレン樹脂を塗布し、加熱しながら加圧した。ついで、金型から剥離後すぐに、60℃まで冷却し、ポリプロピレン樹脂からなるプリズムシート1を得た。いずれのプリズム状突起も設計通りの形状を有していた。プリズムシート1の屈折率は1.49であった。
(Production Example 3: Preparation of prism sheet 1)
Applying molten polypropylene resin to a mold that has been designed in advance so that the pitch of prism-shaped protrusions after molding (the cross-sectional shape is an isosceles triangle) is 50 μm and the apex angle is 65 °, while heating Pressurized. Then, immediately after peeling from the mold, it was cooled to 60 ° C. to obtain a prism sheet 1 made of polypropylene resin. All the prismatic protrusions had the shape as designed. The refractive index of the prism sheet 1 was 1.49.
 (製造例4:プリズムシート2の作製)
 成形後のプリズム状突起(断面形状は二等辺三角形である)のピッチが50μm、およびプリズム頂角が65°となるように予め設計された金型に、以下に示される組成を有する紫外線硬化型樹脂組成物を塗布し、その表面を平滑化した後、紫外線硬化型樹脂組成物からなる層の上に、厚さ188μmのポリエチレンテレフタレートフィルムを重ね合わせた。次いで、波長320~390nmの紫外線を、積算照射量が1000mJ/cmとなるように照射して、紫外線硬化型樹脂組成物を硬化させた。その後、金型から剥離することにより、ポリエチレンテレフタレートフィルム上にプリズム状突起を有する紫外線硬化型樹脂組成物の硬化物層が積層されたプリズムシート2を得た。いずれのプリズム状突起も設計通りの形状を有していた。プリズムシート2のプリズム状突起の屈折率は1.54であった。
(Production Example 4: Production of Prism Sheet 2)
A UV curable mold having the composition shown below in a mold preliminarily designed so that the pitch of the prism-shaped projections after molding (the cross-sectional shape is an isosceles triangle) is 50 μm and the prism apex angle is 65 ° After applying the resin composition and smoothing the surface, a polyethylene terephthalate film having a thickness of 188 μm was overlaid on the layer made of the ultraviolet curable resin composition. Subsequently, ultraviolet rays having a wavelength of 320 to 390 nm were irradiated so that the integrated irradiation amount was 1000 mJ / cm 2 to cure the ultraviolet curable resin composition. Then, the prism sheet 2 by which the hardened | cured material layer of the ultraviolet curable resin composition which has a prism-shaped protrusion was laminated | stacked on the polyethylene terephthalate film was obtained by peeling from a metal mold | die. All the prismatic protrusions had the shape as designed. The refractive index of the prismatic protrusions of the prism sheet 2 was 1.54.
 〔製造例4で用いた紫外線硬化型樹脂組成物の組成〕
 ファンクリルFA−321M(日立化成社製 エチレンオキシド変性ビスフェノー
ルAメタクリレート)                      45重量部
NKエステルA−BPE−4(新中村化学社製 エチレンオキシド変性ビスフェノー
ルAジアクリレート)                      25重量部
サートマー285(サートマー社製 テトラヒドロフルフリルアクリレート)
                                30重量部
ダロキュアー1173(チバ社製 2−ヒドロキシ−2−メチル−1−フェニルプロ
パン−1−オン)                         3重量部。
[Composition of UV curable resin composition used in Production Example 4]
45 parts by weight of NK ester A-BPE-4 (Shin Nakamura Chemical Co., Ltd., ethylene oxide-modified bisphenol A diacrylate) 25 parts by weight Sartomer 285 (tetrahydroful manufactured by Sartomer) Furyl acrylate)
30 parts by weight Darocur 1173 (2-hydroxy-2-methyl-1-phenylpropan-1-one manufactured by Ciba) 3 parts by weight.
 <実施例1>
 (a)偏光板の作製
 製造例1で得た偏光フィルムの一方の面に、製造例3で得たプリズムシート1を、そのプリズム面とは反対側の面を貼合面として、製造例2で得た紫外線硬化型接着剤を介して貼合した。また、偏光フィルムの他方の面に、トリアセチルセルロースフィルム(80μm、コニカミノルタオプト社製)を、製造例2で得た紫外線硬化型接着剤を介して貼合した。次に、日本電池(株)製の紫外線照射装置(紫外線ランプは“HAL400NL”を80Wで使用し、照射距離は50cmとした)の中にライン速度1.0m/minで1回通過させ、良好な外観を有する偏光板を得た。エポキシ樹脂組成物である紫外線硬化型接着剤の硬化性は良好であった。また、プリズムシート1の密着性をJIS K 5400に記載の碁盤目法で評価したところ、形成した碁盤目の数に対する非剥離碁盤目数は100/100であり、良好な密着性を示した。この偏光板のトリアセチルセルロースフィルムの外面に、厚み25μmのアクリル系粘着剤の層を設けた。
<Example 1>
(A) Production of Polarizing Plate Production Example 2 with the prism sheet 1 obtained in Production Example 3 on one surface of the polarizing film obtained in Production Example 1 and the surface opposite to the prism surface as the bonding surface It bonded together through the ultraviolet curable adhesive obtained in above. A triacetyl cellulose film (80 μm, manufactured by Konica Minolta Opto) was bonded to the other surface of the polarizing film via the ultraviolet curable adhesive obtained in Production Example 2. Next, it was passed once at a line speed of 1.0 m / min through a UV irradiation device manufactured by Nippon Batteries Co., Ltd. (UV lamp uses “HAL400NL” at 80 W and irradiation distance was 50 cm). A polarizing plate having an excellent appearance was obtained. The curability of the ultraviolet curable adhesive which is an epoxy resin composition was good. Moreover, when the adhesiveness of the prism sheet 1 was evaluated by the cross cut method described in JIS K 5400, the number of non-peeling cross cuts with respect to the number of formed cross cuts was 100/100, indicating good adhesion. An acrylic pressure-sensitive adhesive layer having a thickness of 25 μm was provided on the outer surface of the triacetyl cellulose film of the polarizing plate.
 (b)液晶表示装置の作製
 上記偏光板をアクリル系粘着剤層を介して液晶セルの背面に配置し、液晶セルの前面には市販の偏光板を配置して液晶パネルを組み立てた。この液晶パネルを、導光板方式(エッジ型光源)の面光源A(ソニー社製VAIO VGN−FE32B/Wにて使用されているもの)と組み合わせて液晶表示装置を作製した。液晶表示装置の表示を目視にて観察したところ、正面から見て明るい画像が得られ、視認性は良好であった。EZContrast(ELDIM製 LX88W)を用いて測定した面光源Aの光強度分布を図6に示す。
(B) Production of liquid crystal display device The above polarizing plate was disposed on the back surface of the liquid crystal cell via an acrylic pressure-sensitive adhesive layer, and a commercially available polarizing plate was disposed on the front surface of the liquid crystal cell to assemble a liquid crystal panel. This liquid crystal panel was combined with a light source plate type (edge type light source) surface light source A (used in Sony VAIO VGN-FE32B / W) to produce a liquid crystal display device. When the display of the liquid crystal display device was visually observed, a bright image was obtained when viewed from the front, and the visibility was good. The light intensity distribution of the surface light source A measured using EZContrast (ELXIM LX88W) is shown in FIG.
 <実施例2>
 製造例3で得たプリズムシート1の代わりに、製造例4で得たプリズムシート2を用いたこと以外は実施例1と同様にして、偏光板を作製し、ついで液晶表示装置を作製した。
液晶表示装置の表示を目視にて観察したところ、正面から見て明るい画像が得られ、視認性は良好であった。
<Example 2>
A polarizing plate was produced in the same manner as in Example 1 except that the prism sheet 2 obtained in Production Example 4 was used instead of the prism sheet 1 obtained in Production Example 3, and then a liquid crystal display device was produced.
When the display of the liquid crystal display device was visually observed, a bright image was obtained when viewed from the front, and the visibility was good.
 <比較例1>
 面光源Aの代わりに、導光板方式(エッジ型光源)の面光源B(ナナオ社製Flexscan EV2411W−Hにて使用されているもの)を用いたこと以外は実施例1と同様にして、液晶表示装置を作製した。液晶表示装置の表示を目視にて観察したところ、正面から見た画像は暗く、コントラストは低く、視認性は不良であった。EZContrast(ELDIM製 LX88W)を用いて測定した面光源Bの光強度分布を図7に示す。
<Comparative Example 1>
In the same manner as in Example 1, except that the surface light source A (edge-type light source) surface light source B (used in the Flexscan EV2411W-H manufactured by Nanao Corporation) was used instead of the surface light source A, the liquid crystal was used. A display device was produced. When the display of the liquid crystal display device was visually observed, the image viewed from the front was dark, the contrast was low, and the visibility was poor. FIG. 7 shows a light intensity distribution of the surface light source B measured using EZContrast (ELXIM LX88W).
 <比較例2>
 製造例3で得たプリズムシート1の代わりに、製造例4で得たプリズムシート2を用いたこと以外は比較例1と同様にして、液晶表示装置を作製した。液晶表示装置の表示を目視にて観察したところ、正面から見た画像は暗く、コントラストは低く、視認性は不良であった。
<Comparative Example 2>
A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that the prism sheet 2 obtained in Production Example 4 was used instead of the prism sheet 1 obtained in Production Example 3. When the display of the liquid crystal display device was visually observed, the image viewed from the front was dark, the contrast was low, and the visibility was poor.
 上記実施例および比較例で用いた面光源の光強度分布から求められるθa、θbおよび|θa−θb|の値、ならびに、作製した液晶表示装置の視認性評価結果を表1にまとめた。液晶表示装置の輝度およびコントラストは、暗室にて液晶表示装置の中央部を正面から、EZContrast(ELDIM製 LX88W)を用いて測定した。図8および図9に、実施例1および比較例1で作製した液晶表示装置の光強度分布(輝度分布)を示した。なお、表1の「θb」の欄における「−」は、光強度の極大値が最も高いピークにおいて、−80°≦θ≦80°の範囲内に極大値の1/2となる点が存在しないことを意味する。 Table 1 summarizes the values of θa, θb and | θa−θb | obtained from the light intensity distributions of the surface light sources used in the examples and comparative examples, and the visibility evaluation results of the manufactured liquid crystal display device. The brightness and contrast of the liquid crystal display device were measured using EZContrast (ELXIM LX88W) from the front of the center of the liquid crystal display device in a dark room. 8 and 9 show the light intensity distribution (luminance distribution) of the liquid crystal display devices manufactured in Example 1 and Comparative Example 1. FIG. In addition, “−” in the column of “θb” in Table 1 has a point that is ½ of the maximum value in the range of −80 ° ≦ θ ≦ 80 ° at the peak with the highest light intensity maximum value. It means not.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は前記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1,2:偏光板
3:液晶セル
10:液晶パネル、
12:偏光フィルム、
13:プリズムシート、
13a:プリズム突起、
14,16:接着剤層、
15:樹脂フィルム、
17:粘着剤層、
20:面光源、
21:光源装置、
22:導光板、
100:液晶表示装置、
W:プリズム状突起の稜線方向に直交する平面、
T:面光源の光出射面の法線方向、
M:面光源の出射光の出射方向、
θ:面光源の光出射面の法線方向と面光源の出射光の出射方向とがなす角度(出射角度)、
P:プリズム状突起の斜辺、
α プリズム状突起の頂角。
1, 2: Polarizing plate 3: Liquid crystal cell 10: Liquid crystal panel,
12: Polarizing film,
13: Prism sheet,
13a: prism protrusion,
14, 16: adhesive layer,
15: Resin film,
17: adhesive layer
20: surface light source,
21: Light source device,
22: Light guide plate,
100: Liquid crystal display device,
W: a plane perpendicular to the ridge line direction of the prismatic protrusion,
T: normal direction of the light emitting surface of the surface light source,
M: the emission direction of the emitted light from the surface light source,
θ: angle formed by the normal direction of the light emission surface of the surface light source and the emission direction of the emitted light of the surface light source (output angle),
P: hypotenuse of prismatic protrusion,
α The apex angle of the prismatic protrusion.

Claims (5)

  1. [規則26に基づく補充 12.11.2010] 
     面光源と、
     前記面光源上に配置され、液晶セルおよび前記液晶セルの面光源側の面に積層される偏光板を備える液晶パネルと、
    から構成される液晶表示装置であって、
     前記偏光板は、偏光フィルムと、前記偏光フィルムの表面に接着剤層を介して積層される、プリズム状突起から構成される表面を有するプリズムシートを備え、
     前記プリズムシートは、前記プリズム状突起から構成される表面が前記面光源に対向するように配置されており、
     前記プリズム状突起の稜線方向に直交する平面内における、前記面光源の光出射面の法線方向と、前記面光源の出射光の出射方向とがなす角度を出射角度θ(ただし、−90°≦θ≦90°)とするとき、前記出射光の光強度の出射角度依存性を示す前記面光源の光強度分布が下記(1)および(2)を満たす液晶表示装置。
     (1)−80°≦θ<−40°または40°<θ≦80°の範囲内に、光強度の極大値が最も高いピークを有する。
     (2)前記ピークにおける光強度の極大値を示す角度をθa、前記ピークにおける光強度の極大値の1/2を示す角度をθbとするとき、下記式[1]:
     |θa−θb|<30°     [1]
    を満たす。
    [Supplement under rule 26 12.11.2010]
    A surface light source;
    A liquid crystal panel comprising a polarizing plate disposed on the surface light source and laminated on a surface of the liquid crystal cell and the surface light source side of the liquid crystal cell;
    A liquid crystal display device comprising:
    The polarizing plate includes a polarizing film and a prism sheet having a surface composed of prismatic protrusions laminated on the surface of the polarizing film via an adhesive layer,
    The prism sheet is arranged such that a surface constituted by the prism-shaped projections faces the surface light source,
    The angle formed by the normal direction of the light emitting surface of the surface light source and the emitting direction of the emitted light of the surface light source in a plane orthogonal to the ridge line direction of the prism-shaped protrusion is an emission angle θ (however, −90 ° ≦ θ ≦ 90 °), a liquid crystal display device in which the light intensity distribution of the surface light source, which shows the emission angle dependence of the light intensity of the emitted light, satisfies the following (1) and (2).
    (1) It has a peak having the highest light intensity maximum value in the range of −80 ° ≦ θ <−40 ° or 40 ° <θ ≦ 80 °.
    (2) When the angle indicating the maximum value of the light intensity at the peak is θa and the angle indicating 1/2 of the maximum value of the light intensity at the peak is θb, the following formula [1]:
    | Θa−θb | <30 ° [1]
    Meet.
  2.  前記面光源は、導光板と、前記導光板の側方に配置される光源装置とからなる請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the surface light source includes a light guide plate and a light source device disposed on a side of the light guide plate.
  3.  前記光源装置は、点状の光源を線状に並べた光源装置または棒状の光源からなる光源装置であり、
     前記光源装置と前記プリズムシートとは、前記光源装置と前記プリズム状突起の稜線が平行または略平行となるように配置される請求項2に記載の液晶表示装置。
    The light source device is a light source device composed of a light source device or a rod-like light source in which point light sources are arranged in a line,
    The liquid crystal display device according to claim 2, wherein the light source device and the prism sheet are arranged such that ridge lines of the light source device and the prismatic protrusion are parallel or substantially parallel.
  4.  前記光源装置は、前記導光板の一辺または向かいあう二辺に配置される請求項1~3のいずれかに記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the light source device is disposed on one side of the light guide plate or on two sides facing each other.
  5.  前記プリズム状突起の頂角αは60°以上である請求項1~4のいずれかに記載の液晶表示装置。 5. The liquid crystal display device according to claim 1, wherein an apex angle α of the prismatic protrusion is 60 ° or more.
PCT/JP2010/060148 2009-06-12 2010-06-09 Liquid crystal display device WO2010143741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800254065A CN102460285A (en) 2009-06-12 2010-06-09 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-140983 2009-06-12
JP2009140983A JP2010286701A (en) 2009-06-12 2009-06-12 Liquid crystal display

Publications (1)

Publication Number Publication Date
WO2010143741A1 true WO2010143741A1 (en) 2010-12-16

Family

ID=43308991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060148 WO2010143741A1 (en) 2009-06-12 2010-06-09 Liquid crystal display device

Country Status (5)

Country Link
JP (1) JP2010286701A (en)
KR (1) KR20120026600A (en)
CN (1) CN102460285A (en)
TW (1) TW201107837A (en)
WO (1) WO2010143741A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230194926A1 (en) * 2021-12-16 2023-06-22 3M Innovative Properties Company Integral multilayer optical film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6310645B2 (en) 2013-05-20 2018-04-11 日東電工株式会社 Optical member, polarizing plate set and liquid crystal display device
KR101871573B1 (en) * 2016-04-27 2018-06-27 삼성에스디아이 주식회사 Optical film for improving contrast ratio, polarizing plate comprising the same, and liquid crystal display apparatus comprising the same
WO2016175580A1 (en) 2015-04-29 2016-11-03 삼성에스디아이 주식회사 Optical film for improving contrast ratio, polarizing plate including same, and liquid crystal display device including same
CN105759506A (en) * 2016-05-18 2016-07-13 京东方科技集团股份有限公司 Backlight module and display device
KR102063202B1 (en) * 2017-06-01 2020-02-11 삼성에스디아이 주식회사 Polarizing plate and liquid crystal display apparatus comprising the same
CN113419375B (en) * 2021-06-17 2023-02-21 合肥京东方光电科技有限公司 Optical film, polarizer and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295714A (en) * 1998-04-08 1999-10-29 Enplas Corp Liquid crystal display panel, liquid crystal display device and sheet member
JP2002197908A (en) * 2000-12-25 2002-07-12 Enplas Corp Light control sheet, surface light source device, and liquid crystal display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295714A (en) * 1998-04-08 1999-10-29 Enplas Corp Liquid crystal display panel, liquid crystal display device and sheet member
JP2002197908A (en) * 2000-12-25 2002-07-12 Enplas Corp Light control sheet, surface light source device, and liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230194926A1 (en) * 2021-12-16 2023-06-22 3M Innovative Properties Company Integral multilayer optical film

Also Published As

Publication number Publication date
CN102460285A (en) 2012-05-16
KR20120026600A (en) 2012-03-19
TW201107837A (en) 2011-03-01
JP2010286701A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
TWI550318B (en) A light diffusion film and a method for manufacturing the same, a light diffusing polarizing plate and a liquid crystal display device
WO2010143742A1 (en) Liquid crystal display device
WO2010143741A1 (en) Liquid crystal display device
KR101751543B1 (en) Polarizer, and liquid-crystal panel and liquid-crystal display device each including same
JP5529665B2 (en) Polarizing plate, and liquid crystal panel and liquid crystal display device using the same
JP2016110159A (en) Polarizing plate, polarizing plate with adhesive, and liquid crystal display device
WO2011162184A1 (en) Light-diffusing polarization plate and liquid-crystal display device
JP6143917B2 (en) Convex-side polarizing plate for curved image display panel
JP5120728B2 (en) Polarizing plate, and liquid crystal panel and liquid crystal display device using the same
JP2009175685A (en) Polarizing plate and liquid crystal display using the same
JP5258016B2 (en) Set of polarizing plates, and liquid crystal panel and liquid crystal display device using the same
TW201621363A (en) Polarizing plate and liquid display device
WO2010126157A1 (en) Polarizer, and liquid crystal panel and liquid crystal display device using the same
WO2012111168A1 (en) Liquid crystal panel and liquid crystal display device using same
JP2012008333A (en) Light-diffusing polarizing plate and liquid crystal display device
JP2010185968A (en) Polarizing plate, liquid crystal panel using the same and liquid crystal display apparatus
JP2011123475A (en) Polarizing plate, liquid crystal panel and liquid crystal display apparatus using the polarizing plate
JP2011043800A (en) Liquid crystal panel and liquid crystal display using the same
JP2010185969A (en) Polarizing plate, liquid crystal panel using the same and liquid crystal display apparatus
JP2017126057A (en) Polarizing plate for curved surface image display panel
JP2010085627A (en) Polarizing plate, liquid crystal panel using it, and liquid crystal display
JP2012181277A (en) Polarizing plate, polarizing plate set, liquid crystal panel and liquid crystal display device
JP2012037683A (en) Optical member, liquid crystal panel including the same, and liquid crystal display device
JP2012181279A (en) Laminating method of light condensation film, light condensation film laminated by the method, and polarizer plate, liquid crystal panel and liquid crystal display device including the same
JP2010231022A (en) Polarizing plate, liquid crystal panel using the same, and liquid crystal display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025406.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127000247

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10786269

Country of ref document: EP

Kind code of ref document: A1