WO2010143618A1 - Fluorescent material and luminescent device - Google Patents

Fluorescent material and luminescent device Download PDF

Info

Publication number
WO2010143618A1
WO2010143618A1 PCT/JP2010/059650 JP2010059650W WO2010143618A1 WO 2010143618 A1 WO2010143618 A1 WO 2010143618A1 JP 2010059650 W JP2010059650 W JP 2010059650W WO 2010143618 A1 WO2010143618 A1 WO 2010143618A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
phosphor
oxide
aluminum
phosphor material
Prior art date
Application number
PCT/JP2010/059650
Other languages
French (fr)
Japanese (ja)
Inventor
美史 傳井
敬輔 佐藤
佐藤 豊
井口 真仁
Original Assignee
株式会社日本セラテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本セラテック filed Critical 株式会社日本セラテック
Priority to KR2020127000009U priority Critical patent/KR200475471Y1/en
Publication of WO2010143618A1 publication Critical patent/WO2010143618A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a phosphor material having a coating layer on the surface of phosphor particles and a light emitting device using the same.
  • LED lamps are used in various display devices such as portable devices, PC peripheral devices, OA devices, various switches, and backlight light sources. Such LED lamps use phosphors to emit various colors, and various phosphors have been developed (see, for example, Patent Document 1).
  • the present invention has been made based on such problems, and an object of the present invention is to provide a phosphor material and a light emitting device capable of extending the life by improving water resistance, ultraviolet light resistance and the like. To do.
  • the phosphor material of the present invention has phosphor particles and a coating layer that covers the entire surface of the phosphor particles.
  • the coating layer includes rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum, oxidation It contains at least one metal oxide selected from the group consisting of magnesium and composite oxides of aluminum and magnesium.
  • the light emitting device of the present invention includes the phosphor material of the present invention.
  • the entire surface of the phosphor particles is at least selected from the group consisting of rare earth oxide, aluminum oxide, yttrium and aluminum composite oxide, magnesium oxide, and aluminum and magnesium composite oxide. Since the coating layer made of one kind of metal oxide is formed, characteristics such as water resistance and ultraviolet light resistance can be improved. Therefore, according to the light emitting device using the phosphor material of the present invention, the lifetime can be extended.
  • the coating layer is formed of a rare earth oxide containing at least one element selected from the group consisting of yttrium (Y), gadolinium (Gd), and ytterbium (Yb), higher characteristics can be obtained. And cost can be reduced.
  • Y yttrium
  • Gd gadolinium
  • Yb ytterbium
  • the thickness of the coating layer is set to 5 nm or more and 1 ⁇ m or less, excellent water resistance can be obtained and high permeability can be obtained.
  • FIG. 2 It is a schematic diagram showing the structure of the phosphor material which concerns on one embodiment of this invention. It is a schematic diagram showing the structure of fluorescent substance materials other than one embodiment of this invention. It is a figure showing the structure of the light-emitting device using the fluorescent substance material of FIG. 2 is a TEM photograph of the phosphor material of Example 1. It is an enlarged photograph of the phosphor material of FIG. 4 is a TEM photograph of a phosphor material of Comparative Example 2. It is a characteristic view which shows the brightness
  • FIG. 1 schematically shows a phosphor material 10 according to an embodiment of the present invention.
  • the phosphor material 10 includes phosphor particles 11 and a coating layer 12.
  • Examples of the phosphor particles 11 include blue phosphors such as BaMgAl 10 O 17 : Eu or CaMgSi 2 O 6 : Eu, Zn 2 SiO 4 : Mn, (Y, Gd) BO 3 : Tb or (Ba, Sr). , Mg) O.aAl 2 O 3 : Mn green phosphors, and (Y, Gd) BO 3 : Eu or red phosphors such as YPVO 4 : Eu.
  • blue phosphors such as BaMgAl 10 O 17 : Eu or CaMgSi 2 O 6 : Eu, Zn 2 SiO 4 : Mn, (Y, Gd) BO 3 : Tb or (Ba, Sr).
  • Mg) O.aAl 2 O 3 Mn green phosphors
  • (Y, Gd) BO 3 Eu or red phosphors such as YPVO 4 : Eu.
  • the covering layer 12 is made of a rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum such as yttrium / aluminum / garnet, magnesium oxide, and a composite oxide of aluminum and magnesium such as MgAl 2 O 4 . At least one kind is formed as a main component. This is because deterioration over time with respect to ultraviolet light can be suppressed and water resistance can be improved. Among these, rare earth oxides are preferred, rare earth oxides containing at least one element from the group consisting of yttrium, gadolinium and ytterbium are more preferred, and Y 2 O 3 is particularly desirable. This is because higher effects can be obtained and costs can be suppressed.
  • the coating layer 12 may be a single layer of these, or may be a stack of a plurality of layers.
  • the coating layer 12 may be mixed in the coating layer 12 in the process of manufacture, it is preferable to make the ratio of another component 0.1 mass% or less in that case. This is because deterioration over time with respect to ultraviolet light can be further suppressed, and water resistance can be further improved. Further, it is preferable that the other components do not adversely affect the characteristics of the coating layer 12. Specifically, silicon (Si), sodium (Na), iron (Fe), zinc (Zn), chromium ( Cr), nickel (Ni), copper (Cu), calcium (Ca), manganese (Mn), titanium (Ti) or potassium (K).
  • the green phosphor is greatly deteriorated by ultraviolet light, it is preferable to form the coating layer 12 with Y 2 O 3 because the deterioration can be remarkably suppressed.
  • the coating layer 12 covers the entire surface of the phosphor particles 11. Thereby, hydrolysis due to contact of the phosphor particles 11 with moisture can be suppressed, and water resistance can be improved. Further, since the phosphor particles 11 are irradiated with ultraviolet light through the coating layer 12, the effect of preventing deterioration can be improved.
  • FIG. 2 schematically shows the phosphor material 110 in which a part of the surface of the phosphor particle 111 is coated with the coating layer 112, but the phosphor particle 111 is exposed from between the coating layers 112. Therefore, sufficient effect cannot be obtained.
  • the fact that the coating layer 12 covers the entire surface of the phosphor particles 11 does not exclude even the presence of defects such as vacancies, and is substantially close to 100%. It means that it is coverage.
  • the thickness of the coating layer 12 is preferably 5 nm or more and 1 ⁇ m or less. If the thickness is small, it is difficult to form, and the effect of improving water resistance is reduced. If the thickness is thick, the permeability is lowered and the cost is increased.
  • the phosphor material 10 can form the coating layer 12 on the surface of the phosphor particles 11 by using a sol-gel method, for example. Specifically, for example, after the phosphor particles 11 are immersed in a solution in which a metal salt is dissolved in a solvent, the phosphor particles 11 to which the solution is attached are taken out, gelled by drying or the like, and then fired. 12 is preferably formed. This is because the coating layer 12 can be formed on the entire surface of the phosphor particles 11 by immersing the phosphor particles 11 in a solution in which a metal salt is dissolved in a solvent and attaching the solution to the surfaces of the phosphor particles 11. is there.
  • the solvent an organic solvent, water, or the like can be used.
  • the metal salt carbonate, nitrate, alkoxide, or the like can be used.
  • the firing temperature is preferably 300 ° C. or higher and 1000 ° C. or lower. This is because it is difficult to form the coating layer 12 when the temperature is lower than 300 ° C., and thermal deterioration may occur depending on the material of the phosphor particles 11 when the temperature exceeds 1000 ° C.
  • FIG. 3 shows a configuration example of the light emitting device 20 using the phosphor material 10.
  • a light emitting element 22 is mounted on a substrate 21, and the light emitting element 22 is electrically connected to a wiring 23 formed on the substrate 21 by a wire 24.
  • a reflector frame 25 is formed around the light emitting element 22, and a sealing layer 26 is formed on the light emitting element 22 so as to cover the light emitting element 22.
  • the sealing layer 26 is made of, for example, a resin in which the phosphor material 10 is dispersed.
  • the light emitting element 22 is, for example, one that emits ultraviolet light, blue light, or green light as excitation light.
  • Examples of the phosphor material 10 include one that absorbs excitation light emitted from the light emitting element 22 and emits red light, one that emits blue light, one that emits yellow light, and the like, or a mixture thereof as necessary. Used. Among these, when the light emitting element 22 that emits ultraviolet light is used, the phosphor material 10 of the present invention is preferably used. This is because the phosphor material 10 of the present invention has excellent ultraviolet light resistance.
  • the entire surface of the phosphor particles 11 is made of a rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum, magnesium oxide, and a composite oxide of aluminum and magnesium. Since the coating layer 12 made of at least one metal oxide is formed, characteristics such as water resistance and ultraviolet light resistance can be improved. Therefore, according to the light emitting device 20 using the phosphor material 10, the lifetime can be extended.
  • the coating layer 12 is formed of a rare earth oxide containing at least one element selected from the group consisting of yttrium, gadolinium, and ytterbium, higher characteristics can be obtained, and costs can be reduced. be able to.
  • the thickness of the coating layer 12 is set to 5 nm or more and 1 ⁇ m or less, excellent water resistance can be obtained and high permeability can be obtained.
  • Example 1 As the phosphor particles 11, blue, green, and red particles were prepared, respectively, and immersed in a solution in which an yttrium salt was dissolved in a solvent. Next, the phosphor particles 11 with the solution attached were taken out, dried and gelled, and then baked at 500 ° C. for 2 hours.
  • FIG. 4 shows an example of a TEM (Transmission Electron Microscope) photograph near the surface of the obtained phosphor material 10
  • FIG. 5 is an enlarged view of a part of the TEM photograph of FIG. It is a thing. 4 and 5, the portion indicated by 11 is a phosphor particle, and the portion indicated by 12 is a coating layer.
  • the white part on the coating layer 12 is a carbon film used at the time of analysis.
  • the phosphor material 10 has the coating layer 12 formed on the entire surface of the phosphor particles 11.
  • a light emitting device 20 as shown in FIG. 3 was produced.
  • a light emitting element 22 that emits ultraviolet light is used, and a phosphor material 10 that emits blue, green, and red emits light to obtain white light emission. It was adjusted.
  • the green light-emitting device 20 was also produced by using only the thing which emits green as the fluorescent material 10.
  • Example 1 A light emitting device was fabricated in the same manner as in Example 1 except that the phosphor particles were used as they were without forming a coating layer on the phosphor particles.
  • FIG. 6 shows an example of a TEM photograph near the surface of the obtained phosphor material.
  • the portion indicated by 111 is a phosphor particle
  • the portion indicated by 112 is a coating layer.
  • the white part on the fluorescent substance particle 11 and the coating layer 112 is a carbon film used at the time of analysis.
  • the phosphor material 110 has particles of the coating layer 112 partially attached to a part of the surface of the phosphor particles 111.
  • FIG. 7 shows a comparison of the results of Example 1 and Comparative Example 1.
  • Example 1 in which the coating layer 12 was formed, a decrease in the luminance maintenance rate could be significantly suppressed as compared with Comparative Example 1 in which the coating layer was not formed.
  • Comparative Example 2 although the decrease in the luminance maintenance rate was slightly suppressed as compared with Comparative Example 1, it was not significantly improved as in Example 1. That is, it has been found that if the entire surface of the phosphor particles 11 is covered with the coating layer 12, the deterioration can be significantly improved.
  • Example 2 The phosphor material 10 is the same as that of Example 1 except that the concentration of the phosphor particles 11 in the solution in which the yttrium salt is dissolved is changed to change the thickness of the coating layer 12 in the range of 5 nm to 1 ⁇ m. And the light-emitting device 20 was produced. At that time, green particles were used as the phosphor particles 11.
  • Example 2 a deterioration test was conducted in the same manner as in Example 1. As a result, a good luminance maintenance rate was obtained when the thickness of the coating layer 12 was in the range of 5 nm to 1 ⁇ m. That is, it was found that the thickness of the coating layer 12 is preferably in the range of 5 nm to 1 ⁇ m.
  • the coating layer 12 is mainly made of at least one selected from the group consisting of rare earth oxides, aluminum oxides, yttrium and aluminum composite oxides, magnesium oxide, and aluminum and magnesium composite oxides.
  • the coating layer 12 is mainly made of at least one selected from the group consisting of rare earth oxides, aluminum oxides, yttrium and aluminum composite oxides, magnesium oxide, and aluminum and magnesium composite oxides.
  • It can be used for light emitting devices such as LEDs.
  • SYMBOLS 10 Phosphor material, 11 ... Phosphor particle, 12 ... Cover layer, 20 ... Light emitting device, 21 ... Substrate, 22 ... Light emitting element, 23 ... Wiring, 24 ... Wire, 25 ... Reflector frame, 26 ... Sealing layer, 110 ... phosphor material, 111 ... phosphor particle, 112 ... coating layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a fluorescent material which has improved water resistance, ultraviolet light resistance, etc. and with which life prolongation can hence be achieved. Also provided is a luminescent device. The fluorescent material comprises particles (11) of a fluorescent substance and a coating layer (12) with which the whole surface of each fluorescent-substance particle (11) has been covered, the coating layer (12) comprising at least one metal oxide selected from a group consisting of rare-earth oxides, aluminum oxide, composite oxides of yttrium and aluminum, magnesium oxide, and composite oxides of aluminum and magnesium. The fluorescent material hence has improved water resistance, ultraviolet light resistance, etc., and is capable of life prolongation.

Description

蛍光体材料および発光装置Phosphor material and light emitting device
 本発明は、蛍光体粒子の表面に被覆層を有する蛍光体材料およびそれを用いた発光装置に関する。 The present invention relates to a phosphor material having a coating layer on the surface of phosphor particles and a light emitting device using the same.
 LEDランプは、携帯機器,PC周辺機器,OA機器,各種スイッチあるいはバックライト用光源などの各種表示装置に用いられている。このようなLEDランプは、各種の色を発光するために、蛍光体が用いられており、種々の蛍光体が開発されている(例えば、特許文献1参照)。 LED lamps are used in various display devices such as portable devices, PC peripheral devices, OA devices, various switches, and backlight light sources. Such LED lamps use phosphors to emit various colors, and various phosphors have been developed (see, for example, Patent Document 1).
特開2002-105449号公報JP 2002-105449 A
 しかしながら、これらの蛍光体は、水分を吸着して加水分解することにより、表面が劣化してしまい、あるいは、紫外光により表面が分解されて劣化してしまう。よって、輝度などの特性が低下してしまい、十分な寿命を得ることができないという問題があった。 However, the surface of these phosphors is degraded by adsorbing water and hydrolyzing, or the surface is degraded by ultraviolet light and degraded. Therefore, there is a problem that characteristics such as luminance are deteriorated and a sufficient lifetime cannot be obtained.
 本発明は、このような問題に基づきなされたものであり、耐水性や耐紫外光などを向上させることにより、長寿命化を図ることができる蛍光体材料および発光装置を提供することを目的とする。 The present invention has been made based on such problems, and an object of the present invention is to provide a phosphor material and a light emitting device capable of extending the life by improving water resistance, ultraviolet light resistance and the like. To do.
 本発明の蛍光体材料は、蛍光体粒子と、この蛍光体粒子の表面全体を被覆した被覆層とを有し、被覆層は、希土類酸化物,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を含むものである。 The phosphor material of the present invention has phosphor particles and a coating layer that covers the entire surface of the phosphor particles. The coating layer includes rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum, oxidation It contains at least one metal oxide selected from the group consisting of magnesium and composite oxides of aluminum and magnesium.
 本発明の発光装置は、本発明の蛍光体材料を含むものである。 The light emitting device of the present invention includes the phosphor material of the present invention.
 本発明の蛍光体材料によれば、蛍光体粒子の表面全体に、希土類酸化物,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物よりなる被覆層を形成するようにしたので、耐水性や耐紫外光などの特性を向上させることができる。よって、本発明の蛍光体材料を用いた発光装置によれば、長寿命化を図ることができる。 According to the phosphor material of the present invention, the entire surface of the phosphor particles is at least selected from the group consisting of rare earth oxide, aluminum oxide, yttrium and aluminum composite oxide, magnesium oxide, and aluminum and magnesium composite oxide. Since the coating layer made of one kind of metal oxide is formed, characteristics such as water resistance and ultraviolet light resistance can be improved. Therefore, according to the light emitting device using the phosphor material of the present invention, the lifetime can be extended.
 特に、イットリウム(Y),ガドリニウム(Gd)およびイッテルビウム(Yb)からなる群のうちの少なくとも1種の元素を含む希土類酸化物により被覆層を形成するようにすれば、より高い特性を得ることができ、また、コストを抑制することができる。 In particular, if the coating layer is formed of a rare earth oxide containing at least one element selected from the group consisting of yttrium (Y), gadolinium (Gd), and ytterbium (Yb), higher characteristics can be obtained. And cost can be reduced.
 また、被覆層の厚みを、5nm以上1μm以下とするようにすれば、優れた耐水性を得ることができると共に、高い透過性を得ることができる。 Further, if the thickness of the coating layer is set to 5 nm or more and 1 μm or less, excellent water resistance can be obtained and high permeability can be obtained.
本発明の一実施の形態に係る蛍光体材料の構成を表す模式図である。It is a schematic diagram showing the structure of the phosphor material which concerns on one embodiment of this invention. 本発明の一実施の形態以外の蛍光体材料の構成を表す模式図である。It is a schematic diagram showing the structure of fluorescent substance materials other than one embodiment of this invention. 図1の蛍光体材料を用いた発光装置の構成を表す図である。It is a figure showing the structure of the light-emitting device using the fluorescent substance material of FIG. 実施例1の蛍光体材料のTEM写真である。2 is a TEM photograph of the phosphor material of Example 1. 図4の蛍光体材料の拡大写真である。It is an enlarged photograph of the phosphor material of FIG. 比較例2の蛍光体材料のTEM写真である。4 is a TEM photograph of a phosphor material of Comparative Example 2. 実施例1の発光装置の輝度維持率を示す特性図である。It is a characteristic view which shows the brightness | luminance maintenance factor of the light-emitting device of Example 1.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の一実施の形態に係る蛍光体材料10を模式的に表したものである。この蛍光体材料10は、蛍光体粒子11と、被覆層12とを有している。 FIG. 1 schematically shows a phosphor material 10 according to an embodiment of the present invention. The phosphor material 10 includes phosphor particles 11 and a coating layer 12.
 蛍光体粒子11としては、例えば、BaMgAl1017:EuあるいはCaMgSi:Euなどの青色系蛍光体、ZnSiO:Mn,(Y,Gd)BO:Tbあるいは(Ba,Sr,Mg)O・aAl:Mnなどの緑色系蛍光体、(Y,Gd)BO:EuあるいはYPVO:Euなどの赤色系蛍光体が挙げられる。 Examples of the phosphor particles 11 include blue phosphors such as BaMgAl 10 O 17 : Eu or CaMgSi 2 O 6 : Eu, Zn 2 SiO 4 : Mn, (Y, Gd) BO 3 : Tb or (Ba, Sr). , Mg) O.aAl 2 O 3 : Mn green phosphors, and (Y, Gd) BO 3 : Eu or red phosphors such as YPVO 4 : Eu.
 被覆層12は、希土類酸化物,酸化アルミニウム,イットリウム・アルミニウム・ガーネットなどのイットリウムとアルミニウムの複合酸化物,酸化マグネシウム,およびMgAlなどのアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種を主成分として形成されている。これにより、紫外光に対する経時劣化を抑制することができると共に、耐水性を向上させることができるからである。中でも、希土類酸化物が好ましく、イットリウム,ガドリニウムおよびイッテルビウムからなる群のうちの少なくとも1種の元素を含む希土類酸化物がより好ましく、特にYが望ましい。より高い効果を得ることができ、また、コストを抑制することができるからである。被覆層12は、これらの単層であってもよいし、複数層を重ねたものであってもよい。 The covering layer 12 is made of a rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum such as yttrium / aluminum / garnet, magnesium oxide, and a composite oxide of aluminum and magnesium such as MgAl 2 O 4 . At least one kind is formed as a main component. This is because deterioration over time with respect to ultraviolet light can be suppressed and water resistance can be improved. Among these, rare earth oxides are preferred, rare earth oxides containing at least one element from the group consisting of yttrium, gadolinium and ytterbium are more preferred, and Y 2 O 3 is particularly desirable. This is because higher effects can be obtained and costs can be suppressed. The coating layer 12 may be a single layer of these, or may be a stack of a plurality of layers.
 なお、被覆層12には、製造の過程において、他の成分が混入されることもあるが、その場合には、他の成分の割合を0.1質量%以下とすることが好ましい。紫外光に対する経時劣化をより抑制することができると共に、耐水性をより向上させることができるからである。また、他の成分は、被覆層12の特性に対して悪影響を与えないものが好ましく、具体的には、ケイ素(Si),ナトリウム(Na),鉄(Fe),亜鉛(Zn),クロム(Cr),ニッケル(Ni),銅(Cu),カルシウム(Ca),マンガン(Mn),チタン(Ti)あるいはカリウム(K)などがある。 In addition, although other components may be mixed in the coating layer 12 in the process of manufacture, it is preferable to make the ratio of another component 0.1 mass% or less in that case. This is because deterioration over time with respect to ultraviolet light can be further suppressed, and water resistance can be further improved. Further, it is preferable that the other components do not adversely affect the characteristics of the coating layer 12. Specifically, silicon (Si), sodium (Na), iron (Fe), zinc (Zn), chromium ( Cr), nickel (Ni), copper (Cu), calcium (Ca), manganese (Mn), titanium (Ti) or potassium (K).
 なお、緑色系蛍光体は紫外光による劣化が大きいが、Yにより被覆層12を形成すれば、劣化を飛躍的に抑制することができるので好ましい。 Although the green phosphor is greatly deteriorated by ultraviolet light, it is preferable to form the coating layer 12 with Y 2 O 3 because the deterioration can be remarkably suppressed.
 被覆層12は、蛍光体粒子11の表面全体を被覆している。これにより、蛍光体粒子11の水分との接触による加水分解を抑制することができ、耐水性を向上させることができるからである。また、蛍光体粒子11には、被覆層12を通して紫外光があたるので、劣化を防止する効果を向上させることができるからである。図2は、蛍光体粒子111の表面の一部を被覆層112で被覆した蛍光体材料110を模式的に示したものであるが、被覆層112の間から蛍光体粒子111が露出しているので、十分な効果を得ることができない。なお、本発明において、被覆層12が蛍光体粒子11の表面全体を被覆しているというのは、空孔などの欠陥が存在する場合までも排除するものではなく、実質的に100%近くの被覆率であることを意味している。 The coating layer 12 covers the entire surface of the phosphor particles 11. Thereby, hydrolysis due to contact of the phosphor particles 11 with moisture can be suppressed, and water resistance can be improved. Further, since the phosphor particles 11 are irradiated with ultraviolet light through the coating layer 12, the effect of preventing deterioration can be improved. FIG. 2 schematically shows the phosphor material 110 in which a part of the surface of the phosphor particle 111 is coated with the coating layer 112, but the phosphor particle 111 is exposed from between the coating layers 112. Therefore, sufficient effect cannot be obtained. In the present invention, the fact that the coating layer 12 covers the entire surface of the phosphor particles 11 does not exclude even the presence of defects such as vacancies, and is substantially close to 100%. It means that it is coverage.
 被覆層12の厚みは、5nm以上1μm以下であることが好ましい。厚みが薄いと形成することが困難であると共に、耐水性向上の効果が少なくなり、厚みが厚いと、透過性が低下してしまうと共に、コスト高になってしまうからである。 The thickness of the coating layer 12 is preferably 5 nm or more and 1 μm or less. If the thickness is small, it is difficult to form, and the effect of improving water resistance is reduced. If the thickness is thick, the permeability is lowered and the cost is increased.
 この蛍光体材料10は、例えば、蛍光体粒子11の表面にゾルゲル法を用いて被覆層12を形成することができる。具体的には、例えば、溶媒に金属塩を溶解した溶液に、蛍光体粒子11を浸漬したのち、溶液が付着した蛍光体粒子11を取り出し、乾燥などによりゲル化して焼成することにより、被覆層12を形成することが好ましい。溶媒に金属塩を溶解した溶液に蛍光体粒子11を浸漬して蛍光体粒子11の表面に溶液を付着させることにより、蛍光体粒子11の表面全体に被覆層12を形成することができるからである。溶媒には、有機溶媒や水などを用いることができ、金属塩としては、炭酸塩、硝酸塩、アルコキシドなどを用いることができる。焼成温度は、300℃以上1000℃以下とすることが好ましい。300℃未満であると、被覆層12を形成することが困難であり、1000℃を超えると、蛍光体粒子11の材料によっては、熱劣化が発生する場合があるからである。 The phosphor material 10 can form the coating layer 12 on the surface of the phosphor particles 11 by using a sol-gel method, for example. Specifically, for example, after the phosphor particles 11 are immersed in a solution in which a metal salt is dissolved in a solvent, the phosphor particles 11 to which the solution is attached are taken out, gelled by drying or the like, and then fired. 12 is preferably formed. This is because the coating layer 12 can be formed on the entire surface of the phosphor particles 11 by immersing the phosphor particles 11 in a solution in which a metal salt is dissolved in a solvent and attaching the solution to the surfaces of the phosphor particles 11. is there. As the solvent, an organic solvent, water, or the like can be used. As the metal salt, carbonate, nitrate, alkoxide, or the like can be used. The firing temperature is preferably 300 ° C. or higher and 1000 ° C. or lower. This is because it is difficult to form the coating layer 12 when the temperature is lower than 300 ° C., and thermal deterioration may occur depending on the material of the phosphor particles 11 when the temperature exceeds 1000 ° C.
 図3は、この蛍光体材料10を用いた発光装置20の一構成例を表わすものである。この発光装置20は、基板21の上に発光素子22が搭載されており、発光素子22は基板21の上に形成された配線23とワイヤ24により電気的に接続されている。また、発光素子22の周りには例えばリフレクタ枠25が形成されており、発光素子22の上には、発光素子22を覆うように封止層26が形成されている。封止層26は、例えば、蛍光体材料10を分散させた樹脂により構成されている。 FIG. 3 shows a configuration example of the light emitting device 20 using the phosphor material 10. In the light emitting device 20, a light emitting element 22 is mounted on a substrate 21, and the light emitting element 22 is electrically connected to a wiring 23 formed on the substrate 21 by a wire 24. Further, for example, a reflector frame 25 is formed around the light emitting element 22, and a sealing layer 26 is formed on the light emitting element 22 so as to cover the light emitting element 22. The sealing layer 26 is made of, for example, a resin in which the phosphor material 10 is dispersed.
 発光素子22には、例えば、励起光として紫外光、青色光、または緑色光を発するものが用いられる。蛍光体材料10としては、例えば、発光素子22から発光された励起光を吸収して赤色光を発するもの、青色光を発するもの、黄色光を発するものなどが、1種類または必要に応じて混合して用いられる。中でも、発光素子22に紫外光を発するものを用いる場合に、本発明の蛍光体材料10を用いることが好ましい。本発明の蛍光体材料10は、優れた耐紫外光特性を有しているからである。 The light emitting element 22 is, for example, one that emits ultraviolet light, blue light, or green light as excitation light. Examples of the phosphor material 10 include one that absorbs excitation light emitted from the light emitting element 22 and emits red light, one that emits blue light, one that emits yellow light, and the like, or a mixture thereof as necessary. Used. Among these, when the light emitting element 22 that emits ultraviolet light is used, the phosphor material 10 of the present invention is preferably used. This is because the phosphor material 10 of the present invention has excellent ultraviolet light resistance.
 このように本実施の形態によれば、蛍光体粒子11の表面全体に、希土類酸化物,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物よりなる被覆層12を形成するようにしたので、耐水性や耐紫外光などの特性を向上させることができる。よって、この蛍光体材料10を用いた発光装置20によれば、長寿命化を図ることができる。 As described above, according to the present embodiment, the entire surface of the phosphor particles 11 is made of a rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum, magnesium oxide, and a composite oxide of aluminum and magnesium. Since the coating layer 12 made of at least one metal oxide is formed, characteristics such as water resistance and ultraviolet light resistance can be improved. Therefore, according to the light emitting device 20 using the phosphor material 10, the lifetime can be extended.
 特に、イットリウム,ガドリニウムおよびイッテルビウムからなる群のうちの少なくとも1種の元素を含む希土類酸化物により被覆層12を形成するようにすれば、より高い特性を得ることができ、また、コストを抑制することができる。 In particular, if the coating layer 12 is formed of a rare earth oxide containing at least one element selected from the group consisting of yttrium, gadolinium, and ytterbium, higher characteristics can be obtained, and costs can be reduced. be able to.
 また、被覆層12の厚みを、5nm以上1μm以下とするようにすれば、優れた耐水性を得ることができると共に、高い透過性を得ることができる。 Further, when the thickness of the coating layer 12 is set to 5 nm or more and 1 μm or less, excellent water resistance can be obtained and high permeability can be obtained.
(実施例1)
 蛍光体粒子11として、青色系のものと、緑色系のものと、赤色系ものをそれぞれ用意し、溶媒にイットリウム塩を溶解した溶液に浸漬した。次いで、溶液を付着させた蛍光体粒子11を取り出し、乾燥させてゲル化したのち、500℃で2時間焼成した。
Example 1
As the phosphor particles 11, blue, green, and red particles were prepared, respectively, and immersed in a solution in which an yttrium salt was dissolved in a solvent. Next, the phosphor particles 11 with the solution attached were taken out, dried and gelled, and then baked at 500 ° C. for 2 hours.
 図4は、得られた蛍光体材料10の表面付近のTEM(Transmission Electron Microscope:透過型電子顕微鏡)写真の一例を表したものであり、図5は、図4のTEM写真の一部を拡大したものである。図4および図5において、11で示した部分が蛍光体粒子であり、12で示した部分が被覆層である。なお、被覆層12の上の白色の部分は、分析時に用いるカーボン膜である。 FIG. 4 shows an example of a TEM (Transmission Electron Microscope) photograph near the surface of the obtained phosphor material 10, and FIG. 5 is an enlarged view of a part of the TEM photograph of FIG. It is a thing. 4 and 5, the portion indicated by 11 is a phosphor particle, and the portion indicated by 12 is a coating layer. In addition, the white part on the coating layer 12 is a carbon film used at the time of analysis.
 図4および図5に示したように、この蛍光体材料10は、蛍光体粒子11の表面全体に被覆層12が形成されていることが分かる。 As shown in FIGS. 4 and 5, it can be seen that the phosphor material 10 has the coating layer 12 formed on the entire surface of the phosphor particles 11.
 続いて、得られた蛍光体材料10を用い、図3に示したような発光装置20を作製した。発光素子22には紫外光を発するものを用い、蛍光体材料10には青色を発するものと、緑色を発するものと、赤色を発するものを混合して用いることにより、白色の発光を得るように調整した。また、蛍光体材料10に緑色を発するもののみを用いることにより、緑色の発光装置20も作製した。 Subsequently, using the obtained phosphor material 10, a light emitting device 20 as shown in FIG. 3 was produced. A light emitting element 22 that emits ultraviolet light is used, and a phosphor material 10 that emits blue, green, and red emits light to obtain white light emission. It was adjusted. Moreover, the green light-emitting device 20 was also produced by using only the thing which emits green as the fluorescent material 10.
(比較例1)
 蛍光体粒子に被覆層を形成せずに、そのまま蛍光体材料として用いたことを除き、他は実施例1と同様にして発光装置を作製した。
(Comparative Example 1)
A light emitting device was fabricated in the same manner as in Example 1 except that the phosphor particles were used as they were without forming a coating layer on the phosphor particles.
(比較例2)
 蛍光体粒子111の表面に、イットリウム塩を溶媒に溶解した溶液を噴霧して付着させることにより、被覆層112を形成したことを除き、他は実施例1と同様にして蛍光体材料110を作製し、発光装置を作製した。図6は、得られた蛍光体材料の表面付近のTEM写真の一例を表したものである。図6において、111で示した部分が蛍光体粒子であり、112で示した部分が被覆層である。なお、蛍光体粒子11および被覆層112の上の白色の部分は、分析時に用いるカーボン膜である。図6に示したように、この蛍光体材料110は、蛍光体粒子111の表面の一部に、部分的に、被覆層112の粒子が付着していることが分かる。
(Comparative Example 2)
A phosphor material 110 is produced in the same manner as in Example 1 except that the coating layer 112 is formed by spraying and adhering a solution of an yttrium salt dissolved in a solvent to the surface of the phosphor particles 111. Thus, a light emitting device was manufactured. FIG. 6 shows an example of a TEM photograph near the surface of the obtained phosphor material. In FIG. 6, the portion indicated by 111 is a phosphor particle, and the portion indicated by 112 is a coating layer. In addition, the white part on the fluorescent substance particle 11 and the coating layer 112 is a carbon film used at the time of analysis. As shown in FIG. 6, it can be seen that the phosphor material 110 has particles of the coating layer 112 partially attached to a part of the surface of the phosphor particles 111.
(劣化試験)
 実施例1および比較例1,2の各発光装置20について、発光試験を行い、輝度維持率の経時変化を調べた。図7に実施例1と比較例1の結果を比較して示す。図7に示したように、被覆層12を形成した実施例1によれば、被覆層を形成していない比較例1に比べて輝度維持率の低下を大幅に抑制することができた。また、比較例2では、比較例1に比べて輝度維持率の低下は若干抑制されたものの、実施例1のように大幅な改善はされなかった。すなわち、蛍光体粒子11の表面全体を被覆層12で被覆するようにすれば、劣化を大幅に改善することができることが分かった。
(Deterioration test)
About each light emitting device 20 of Example 1 and Comparative Examples 1 and 2, a light emission test was performed, and a change with time in luminance maintenance rate was examined. FIG. 7 shows a comparison of the results of Example 1 and Comparative Example 1. As shown in FIG. 7, according to Example 1 in which the coating layer 12 was formed, a decrease in the luminance maintenance rate could be significantly suppressed as compared with Comparative Example 1 in which the coating layer was not formed. Further, in Comparative Example 2, although the decrease in the luminance maintenance rate was slightly suppressed as compared with Comparative Example 1, it was not significantly improved as in Example 1. That is, it has been found that if the entire surface of the phosphor particles 11 is covered with the coating layer 12, the deterioration can be significantly improved.
(実施例2)
 イットリウム塩を溶解した溶液における蛍光体粒子11の濃度を変化させて、被覆層12の厚みを5nm~1μmの範囲で変化させたことを除き、他は実施例1と同様にして蛍光体材料10および発光装置20を作製した。その際、蛍光体粒子11には、緑色系のものを用いた。
(Example 2)
The phosphor material 10 is the same as that of Example 1 except that the concentration of the phosphor particles 11 in the solution in which the yttrium salt is dissolved is changed to change the thickness of the coating layer 12 in the range of 5 nm to 1 μm. And the light-emitting device 20 was produced. At that time, green particles were used as the phosphor particles 11.
 続いて、実施例1と同様にして劣化試験を行った。その結果、被覆層12の厚みが5nm以上1μm以下の範囲で、良好な輝度維持率が得られた。すなわち、被覆層12の厚みは、5nm以上1μm以下の範囲内が好ましいことが分かった。 Subsequently, a deterioration test was conducted in the same manner as in Example 1. As a result, a good luminance maintenance rate was obtained when the thickness of the coating layer 12 was in the range of 5 nm to 1 μm. That is, it was found that the thickness of the coating layer 12 is preferably in the range of 5 nm to 1 μm.
 以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、被覆層12は、希土類酸化物,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウム,およびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種を主成分として形成された単層、あるいは複数層を重ねたものについて説明したが、これらに加えて、蛍光体粒子に悪影響を与えない他の物質を含む層が形成されていてもよい。 The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, the coating layer 12 is mainly made of at least one selected from the group consisting of rare earth oxides, aluminum oxides, yttrium and aluminum composite oxides, magnesium oxide, and aluminum and magnesium composite oxides. Although a single layer formed as a component or a stack of a plurality of layers has been described, a layer containing another substance that does not adversely affect the phosphor particles may be formed in addition to these.
 LEDなどの発光装置に用いることができる。 It can be used for light emitting devices such as LEDs.
 10…蛍光体材料、11…蛍光体粒子、12…被覆層、20…発光装置、21…基板、22…発光素子、23…配線、24…ワイヤ、25…リフレクタ枠、26…封止層、110…蛍光体材料、111…蛍光体粒子、112…被覆層 DESCRIPTION OF SYMBOLS 10 ... Phosphor material, 11 ... Phosphor particle, 12 ... Cover layer, 20 ... Light emitting device, 21 ... Substrate, 22 ... Light emitting element, 23 ... Wiring, 24 ... Wire, 25 ... Reflector frame, 26 ... Sealing layer, 110 ... phosphor material, 111 ... phosphor particle, 112 ... coating layer

Claims (5)

  1.  蛍光体粒子と、この蛍光体粒子の表面全体を被覆した被覆層とを有し、
     前記被覆層は、希土類酸化物,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を含む
     ことを特徴とする蛍光体材料。
    Having phosphor particles and a coating layer covering the entire surface of the phosphor particles;
    The coating layer includes a rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum, magnesium oxide, and at least one metal oxide selected from the group consisting of a composite oxide of aluminum and magnesium. Phosphor material.
  2.  前記希土類酸化物は、イットリウム(Y),ガドリニウム(Gd)およびイッテルビウム(Yb)からなる群のうちの少なくとも1種の元素を含むことを特徴とする請求項1に記載の蛍光体材料。 The phosphor material according to claim 1, wherein the rare earth oxide contains at least one element selected from the group consisting of yttrium (Y), gadolinium (Gd), and ytterbium (Yb).
  3.  前記被覆層の厚みは、5nm以上1μm以下であることを特徴とする請求項1に記載の蛍光体材料。 2. The phosphor material according to claim 1, wherein the thickness of the coating layer is 5 nm or more and 1 μm or less.
  4.  溶媒に金属塩を溶解した溶液に、前記蛍光体粒子を浸漬したのち、前記溶液が付着した前記蛍光体粒子を取り出し、ゲル化して焼成することにより、前記被覆層を形成したことを特徴とする請求項1に記載の蛍光体材料。 The phosphor layer is immersed in a solution in which a metal salt is dissolved in a solvent, and then the phosphor particles to which the solution is attached are taken out, gelled, and fired to form the coating layer. The phosphor material according to claim 1.
  5.  蛍光体材料を含む発光装置であって、
     前記蛍光体材料は、蛍光体粒子と、この蛍光体粒子の表面全体を被覆した被覆層とを有し、
     前記被覆層は、希土類酸化物,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を含む
     ことを特徴とする発光装置。
    A light-emitting device including a phosphor material,
    The phosphor material has phosphor particles and a coating layer covering the entire surface of the phosphor particles,
    The coating layer includes a rare earth oxide, aluminum oxide, a composite oxide of yttrium and aluminum, magnesium oxide, and at least one metal oxide selected from the group consisting of composite oxides of aluminum and magnesium. Light emitting device.
PCT/JP2010/059650 2009-06-08 2010-06-08 Fluorescent material and luminescent device WO2010143618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2020127000009U KR200475471Y1 (en) 2009-06-08 2010-06-08 Fluorescent material and luminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-137727 2009-06-08
JP2009137727A JP2010280877A (en) 2009-06-08 2009-06-08 Phosphor material and light-emitting device

Publications (1)

Publication Number Publication Date
WO2010143618A1 true WO2010143618A1 (en) 2010-12-16

Family

ID=43308873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059650 WO2010143618A1 (en) 2009-06-08 2010-06-08 Fluorescent material and luminescent device

Country Status (4)

Country Link
JP (1) JP2010280877A (en)
KR (1) KR20110093950A (en)
TW (1) TWI544058B (en)
WO (1) WO2010143618A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004459A1 (en) * 2013-04-16 2014-10-17 Commissariat Energie Atomique HEART INORGANIC PARTICLE / LUMINESCENT SHELL, METHOD OF PREPARATION AND USE
US8907558B2 (en) 2012-03-15 2014-12-09 Kabushiki Kaisha Toshiba White light emitting device with red and green-yellow phosphor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594461B (en) * 2011-08-04 2017-08-01 國家中山科學研究院 Fluorescent coating and a method for making the same
JP7479006B2 (en) 2020-03-26 2024-05-08 パナソニックIpマネジメント株式会社 Ceramic Composites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236961A (en) * 2005-01-28 2006-09-07 Matsushita Electric Ind Co Ltd Fluorescent lamp manufacturing method thereof, and backlight device
JP2008031429A (en) * 2006-06-28 2008-02-14 Toray Ind Inc Phosphor paste and production method for display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737234B1 (en) * 1994-08-08 2002-04-17 Koninklijke Philips Electronics N.V. Method of coating a luminescent material
DE102007053770A1 (en) * 2007-11-12 2009-05-14 Merck Patent Gmbh Coated phosphor particles with refractive index matching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236961A (en) * 2005-01-28 2006-09-07 Matsushita Electric Ind Co Ltd Fluorescent lamp manufacturing method thereof, and backlight device
JP2008031429A (en) * 2006-06-28 2008-02-14 Toray Ind Inc Phosphor paste and production method for display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907558B2 (en) 2012-03-15 2014-12-09 Kabushiki Kaisha Toshiba White light emitting device with red and green-yellow phosphor
FR3004459A1 (en) * 2013-04-16 2014-10-17 Commissariat Energie Atomique HEART INORGANIC PARTICLE / LUMINESCENT SHELL, METHOD OF PREPARATION AND USE
WO2014170567A1 (en) * 2013-04-16 2014-10-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Luminescent inorganic core/shell particle, production method and use

Also Published As

Publication number Publication date
TW201107452A (en) 2011-03-01
KR20110093950A (en) 2011-08-18
TWI544058B (en) 2016-08-01
KR20120002303U (en) 2012-04-02
JP2010280877A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP6625582B2 (en) Red line emitting phosphor for use in light emitting diode applications
KR101528413B1 (en) Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
JP5777242B2 (en) Phosphor material and light emitting device
WO2010143618A1 (en) Fluorescent material and luminescent device
JP2013035953A (en) Phosphor molding material, method for producing phosphor molding material, and luminescent device
JP6186201B2 (en) Light emitting device
TWI595076B (en) A blue light-emitting phosphor, and a light-emitting device using the blue light-emitting phosphor
JP3954304B2 (en) Light emitting device
JP4886221B2 (en) Method for manufacturing light emitting device
KR200475471Y1 (en) Fluorescent material and luminescent device
JP2006351357A (en) Red el element
JP2004161808A (en) Nitride fluorescent sheet, light-emitting device and method for producing nitride fluorescent film
KR101771448B1 (en) Method for producing phosphor material, phosphor material and light emitting device
TWI464235B (en) Phosphor composition and light emitting diode device using the same
JP5192854B2 (en) Phosphor and display panel using the same
WO2012001821A1 (en) Fluorescent material and light-emitting device
KR101528104B1 (en) Oxynitride phosphor of improved reliability, method for manufacturing thereof, and white emitting device comprising the same
JP2005281380A (en) Method for producing electroluminescence phosphor
JP2008297505A (en) White phosphor for electron beam excitation and white light-emitting element and device
TW201309780A (en) Photoluminescent fluorescent material and white light emitting device
JPH0684591A (en) Zno red color luminescent phosphor, its manufacture and red color luminescent el element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117017822

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786149

Country of ref document: EP

Kind code of ref document: A1