WO2010143477A1 - 無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム - Google Patents

無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム Download PDF

Info

Publication number
WO2010143477A1
WO2010143477A1 PCT/JP2010/057260 JP2010057260W WO2010143477A1 WO 2010143477 A1 WO2010143477 A1 WO 2010143477A1 JP 2010057260 W JP2010057260 W JP 2010057260W WO 2010143477 A1 WO2010143477 A1 WO 2010143477A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
transmission
base station
transmission power
retransmission
Prior art date
Application number
PCT/JP2010/057260
Other languages
English (en)
French (fr)
Inventor
淳悟 後藤
泰弘 浜口
一成 横枕
中村 理
高橋 宏樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/377,474 priority Critical patent/US8654730B2/en
Priority to KR1020117029745A priority patent/KR101518535B1/ko
Priority to EP10786008.2A priority patent/EP2442617B1/en
Priority to CN201080025608.XA priority patent/CN102461285B/zh
Priority to JP2011518360A priority patent/JP5123434B2/ja
Publication of WO2010143477A1 publication Critical patent/WO2010143477A1/ja
Priority to US14/147,398 priority patent/US20140119326A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access

Definitions

  • the present invention relates to a wireless communication system, a base station, a mobile station, a base station control program, and a mobile station control program that implement a retransmission processing method in wireless communication.
  • LTE Long Term Evolution
  • HARQ Hybrid Automatic Repeat Request
  • CRC Cyclic Redundancy Check
  • NACK Negative ACKnowledgement
  • Retransmission control includes non-adaptive ARQ (Non-adaptive ARQ) and adaptive ARQ (Adaptive ARQ).
  • non-adaptive ARQ data is transmitted by the same transmission method as the initial transmission at the time of retransmission, but adaptive ARQ uses different modulation scheme, coding rate, puncture pattern, and retransmission data from initial transmission data.
  • Retransmission is performed by changing parameters such as frequency bandwidth and transmission power (see Patent Document 1).
  • it has been proposed to use a plurality of transmission antennas such as STTD (Space Time Transmit Diversity) and MIMO (Multiple-Input Multiple-Output) which are transmission diversity methods during retransmission (see Patent Document 2).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Clustered DFT-S-OFDM also called Dynamic Spectrum Control (DSC), DFT-S-OFDM with SDC (Spectrum Division Control)) and DFT-S-OFDM (Discrete Fourier) on the uplink.
  • Adaptive ARQ that takes into account PH (Power Headroom) indicating transmission power surplus in a wireless communication system that can use access methods with different peak powers such as Transform, Spread, Orthogonal, Frequency, Division, Multiplexing, and SC-FDMA) Retransmission control by was not considered. For this reason, in retransmission when using an access method with high peak power, there is a problem that users with insufficient PH, such as cell edge users, cannot further increase transmission power and cannot receive data correctly at the base station. .
  • the present invention has been made in view of such circumstances, taking into account the PH indicating the transmission power surplus, the access system, the transmission power, the antenna to be used, the radio communication system for controlling the number of antennas, the base station, the mobile It is an object to provide a control program for a station, a base station, and a control program for a mobile station.
  • the wireless communication system of the present invention is a wireless communication system that includes a base station and a mobile station and performs wireless communication by selecting any one access method from a plurality of access methods having different peak powers.
  • the station selects an access method having a peak power lower than that of the access method, and gives an instruction to the mobile station to perform retransmission by increasing the transmission power.
  • the base station selects an access method having a peak power lower than that of the access method, and instructs the mobile station to perform retransmission by increasing the transmission power.
  • the mobile station can avoid a shortage of transmission power and perform retransmission with sufficient transmission power, so that cell throughput can be improved.
  • the wireless communication system of the present invention includes a base station and a mobile station, and the mobile station converts a transmission signal converted into a frequency signal into discrete frequency bands or a predetermined number of discrete signals.
  • a wireless communication system that performs data transmission to a base station by allocating to a frequency band, wherein the base station is a data transmission performed by a mobile station allocating transmission signals converted into frequency signals to discrete frequency bands.
  • the transmission power remaining capacity of the mobile station when the transmission signal is allocated to a discrete frequency band is determined. If there is no transmission power remaining as a result of the determination, the transmission signal is transmitted to the mobile station. It is characterized by assigning to continuous frequency bands and giving an instruction to perform retransmission by increasing transmission power.
  • the base station assigns the transmission signal to the discrete frequency band when retransmission occurs in the data transmission performed by the mobile station assigning the transmission signal converted into the frequency signal to the discrete frequency band. Instructs the mobile station to allocate the transmission signal to a continuous frequency band and increase the transmission power for retransmission if the transmission power remaining capacity of the mobile station is determined. Thus, it is possible to suppress an increase in retransmission due to insufficient transmission power of the mobile station, and to improve cell throughput.
  • the mobile station performs retransmission by increasing the transmission power corresponding to the transmission power margin generated by assigning the transmission signal to the continuous frequency band.
  • the mobile station avoids a shortage of transmission power of the mobile station by increasing the transmission power corresponding to the transmission power reserve generated by allocating transmission signals to continuous frequency bands and performing retransmission.
  • retransmission can be performed with sufficient transmission power, cell throughput can be improved.
  • the mobile station is characterized by allocating transmission signals to continuous frequency bands and performing retransmission by increasing transmission power by a predetermined amount.
  • the mobile station allocates transmission signals to continuous frequency bands and increases transmission power by a predetermined amount to perform retransmission, so that the base station moves transmission power control information during retransmission. Since it is possible to avoid transmission power shortage and perform retransmission with sufficient transmission power without notifying the station, cell throughput can be improved.
  • the mobile station has a plurality of antennas, and the base station allocates transmission signals to the mobile station to continuous frequency bands, and the mobile station has a plurality of Of these antennas, an antenna having a high channel gain is used, and an instruction to perform retransmission by increasing the transmission power is given to the mobile station.
  • the mobile station has a plurality of antennas
  • the base station assigns transmission signals to the mobile station to continuous frequency bands, and the propagation gain of the plurality of antennas of the mobile station is high.
  • the base station determines the increase amount of the transmission power based on the propagation path gain of the antenna used at the time of retransmission.
  • the base station can flexibly set the transmission power according to the propagation path gain of the antenna used by the mobile station by determining the amount of increase in transmission power based on the propagation path gain of the antenna used during retransmission. can do.
  • the mobile station has a plurality of antennas, and the base station determines the number of antennas to be used for retransmission among the plurality of antennas of the mobile station, and the mobile station
  • the transmission signal is assigned to a continuous frequency band, the determined number of antennas is used, and the transmission power is increased to give an instruction to perform retransmission.
  • the mobile station has a plurality of antennas
  • the base station determines the number of antennas to be used for retransmission among the plurality of antennas of the mobile station, and continuously transmits transmission signals to the mobile station.
  • the mobile station transmits the transmission power corresponding to the transmission power surplus generated by assigning the transmission signal to the continuous frequency band from the total power at the initial transmission. And performing retransmission using the determined number of antennas.
  • the mobile station increases the transmission power corresponding to the transmission power surplus generated by assigning the transmission signal to the continuous frequency band from the total power at the time of initial transmission, and determines the number of antennas determined.
  • the mobile station increases the transmission power corresponding to the transmission power surplus generated by assigning the transmission signal to the continuous frequency band from the total power at the time of initial transmission, and determines the number of antennas determined.
  • the base station of the present invention is composed of a base station and a mobile station, and a discrete frequency obtained by dividing a transmission signal converted into a frequency signal by the mobile station into a continuous frequency band or a predetermined number.
  • a base station that is applied to a radio communication system that performs data transmission to a base station by allocating to a band, and data transmission performed by a mobile station allocating transmission signals converted into frequency signals to discrete frequency bands
  • the transmission power remaining capacity of the mobile station when the transmission signal is allocated to a discrete frequency band is determined. If there is no transmission power remaining as a result of the determination, the mobile station transmits the transmission signal. Is assigned to a continuous frequency band, and the transmission power is increased to give an instruction to perform retransmission.
  • the base station assigns the transmission signal to the discrete frequency band when retransmission occurs in the data transmission performed by the mobile station assigning the transmission signal converted into the frequency signal to the discrete frequency band. Instructs the mobile station to allocate the transmission signal to a continuous frequency band and increase the transmission power for retransmission if the transmission power remaining capacity of the mobile station is determined. Thus, it is possible to suppress an increase in retransmission due to insufficient transmission power of the mobile station, and to improve cell throughput.
  • the mobile station of the present invention includes a base station and a mobile station, and a discrete frequency obtained by dividing a transmission signal converted into a frequency signal by the mobile station into a continuous frequency band or a predetermined number.
  • a mobile station that is applied to a radio communication system that performs data transmission to a base station by allocating to a band, and transmitting power corresponding to a transmission power surplus generated by allocating a transmission signal to a continuous frequency band And retransmitting to the base station.
  • the mobile station increases the transmission power corresponding to the transmission power surplus generated by allocating the transmission signal to the continuous frequency band, and performs retransmission to the base station, resulting in insufficient transmission power. Can be avoided and retransmission can be performed with sufficient transmission power, so that cell throughput can be improved.
  • a base station control program includes a base station and a mobile station, and the mobile station converts a transmission signal converted into a frequency signal into a continuous frequency band or a predetermined number of discrete signals.
  • a base station control program applied to a radio communication system that performs data transmission to a base station by assigning to a specific frequency band, wherein a mobile station converts a transmission signal converted into a frequency signal into a discrete frequency band
  • a mobile station converts a transmission signal converted into a frequency signal into a discrete frequency band
  • the process of determining the transmission power margin of the mobile station, and if the result of the determination is that there is no transmission power margin A series of processes of assigning a transmission signal to a continuous frequency band and giving an instruction to increase transmission power and perform retransmission can be read by a computer, and Line can be characterized in that the command of.
  • the mobile station when retransmission occurs in data transmission performed by the mobile station assigning the transmission signal converted into the frequency signal to the discrete frequency band, the mobile station when the transmission signal is assigned to the discrete frequency band If there is no remaining transmission power as a result of the determination, the mobile station is instructed to allocate a transmission signal to a continuous frequency band, increase the transmission power, and perform retransmission.
  • the series of processes into commands that can be read and executed by a computer, it is possible to suppress an increase in retransmission due to a shortage of transmission power of the mobile station, and to improve cell throughput.
  • a mobile station control program includes a base station and a mobile station, and the mobile station converts a transmission signal converted into a frequency signal into discrete frequencies divided into a continuous frequency band or a predetermined number.
  • a mobile station control program that is applied to a radio communication system that performs data transmission to a base station by allocating to a specific frequency band, the transmission power margin generated by allocating a transmission signal to a continuous frequency band The process of increasing the corresponding transmission power and retransmitting the base station is converted into a command that can be read and executed by a computer.
  • the computer can read and execute the process of increasing the transmission power corresponding to the transmission power margin generated by allocating the transmission signal to the continuous frequency band and performing retransmission to the base station. Therefore, the increase in retransmission due to a shortage of transmission power of the mobile station can be suppressed, and the cell throughput can be improved.
  • LTE-A also referred to as LTE-Advanced, IMT-A, etc.
  • IMT-A fourth generation radio communication system
  • Clustered DFT-S-OFDM is proposed, which emphasizes backward compatibility with the LTE system, supports DFT-S-OFDM, and can further improve the throughput.
  • Clustered DFT-S-OFDM selects a frequency with a high channel gain from the usable band and arranges the spectrum discretely. Therefore, although peak power is higher than DFT-S-OFDM, high frequency selection diversity is achieved. This is an access method that can obtain the effect and improve the cell throughput.
  • a plurality of antennas are not used at the same time, but in the LTE-A system, by using MIMO (Multiple-Input Multiple-Output) multiplex transmission and transmission diversity that use a plurality of transmitting antennas simultaneously, Methods of improving frequency utilization efficiency and coverage are being studied.
  • MIMO Multiple-Input Multiple-Output
  • FIG. 1 is a block diagram illustrating an example of a schematic configuration of a mobile station according to the first embodiment.
  • the mobile station includes a buffer unit 100, an encoding unit 101, a modulation unit 102, a DFT unit 103, a transmission data arrangement unit 104, an IDFT unit 105, a reference signal generation unit 106, a reference signal insertion unit 107, a CP insertion unit 108, and a radio unit 109.
  • a PA unit 110 a transmission antenna 111, a transmission power reserve calculation unit 112, a control information transmission unit 113, a control information reception processing unit 114, a reception antenna 115, and a retransmission control unit 116.
  • the mobile station receives the control information including the band allocation information notified from the base station which is a receiving device, transmits data according to the band allocation, and receives the delivery confirmation signal notified from the base station by the receiving antenna 115.
  • This delivery confirmation signal indicates whether the base station has correctly decoded the data transmitted from the mobile station, and is ACK if the base station has correctly decoded the data and NACK if it has not been correctly decoded.
  • control information such as a bandwidth allocation method and transmission power is also received.
  • a signal received by the reception antenna 115 is input to the control information reception processing unit 114.
  • the control information reception processing unit 114 obtains a delivery confirmation signal and band allocation information from the received signal.
  • the obtained delivery confirmation signal is input to retransmission control section 116, while band allocation information of control information is input to transmission data arrangement section 104, and transmission power information is input to PA (Power-Amplifier) section 110.
  • PA Power-Amplifier
  • the retransmission control unit 116 When the input acknowledgment signal is ACK, the retransmission control unit 116 inputs the transmission data input to the buffer unit 100 to the encoder 101, and when the input acknowledgment signal is NACK. Transmission data that the base station stored in the buffer has not received correctly is input to the encoding unit 101.
  • the transmission data input to the encoding unit 101 is converted into code bits subjected to an error correction code, and in the modulation unit 102, QPSK (Quadrature Phase Shift Keying), 16QAM (16 Quadrature Amplitude Modulation) ; 16 quadrature amplitude modulation).
  • the modulation symbol is converted into a frequency domain signal by the DFT unit 103, and the frequency signal is arranged based on the frequency allocation information notified from the base station in the transmission data arrangement unit 104.
  • An IDFT (Inverse DFT) unit 105 converts the signal into a time domain signal.
  • the signal generated by the reference signal generation unit 106 is inserted by the reference signal insertion unit 107. In this embodiment, the reference signal is inserted into the time domain signal.
  • frequency conversion may be performed before the IDFT unit 105 converts the signal into a time domain signal.
  • the time signal is added with a CP by a CP (Cyclic Prefix) insertion unit 108, up-converted to a radio frequency by a radio unit 109, and amplified to transmission power notified from a base station by a PA unit 110. It is transmitted from the transmission antenna 111.
  • CP Cyclic Prefix
  • the PH of the transmission power remaining capacity calculated by the transmission power remaining capacity calculation unit 112 is periodically transmitted to the base station via the control information transmission unit 113.
  • the transmission data is encoded at the time of retransmission.
  • the encoding method to be applied the encoding rate, the constraint length, the puncture pattern, etc. are not changed, the encoding is not performed again. It is also possible to store the converted data. Similarly, when the modulation scheme applied by the modulation unit is not changed, a frequency domain signal obtained by DFT may be stored.
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the base station according to the embodiment of the present invention.
  • the base station includes a reception antenna 201, a radio unit 202, a CP removal unit 203, a reference signal separation unit 204, a DFT unit 205, a transmission data extraction unit 206, a propagation path compensation unit 207, an IDFT unit 208, a demodulation unit 209, and a decoding unit 210.
  • Cyclic redundancy check unit 211 Cyclic redundancy check unit 211, propagation path estimation unit 213, band allocation determination unit 214, control information generation unit 215, control information transmission unit 216, buffer unit 217, delivery confirmation signal transmission unit 218, transmission antenna 219, control information storage unit 220.
  • the receiving antenna 201 receives data or control information transmitted from the mobile station.
  • the radio unit 202 down-converts the signal received by the receiving antenna 201 to the baseband frequency
  • the CP removal unit 203 removes the cyclic prefix
  • the reference signal separation unit 204 separates the reference signal. To do.
  • the separated reference signal is input to the propagation path estimation unit 213, and the frequency response of the propagation path is estimated by the reference signal.
  • the estimated propagation path information is input to the propagation path compensation unit 207 and the band allocation determination unit 214.
  • the signal from which the reference signal is separated is converted into a frequency domain signal by the DFT unit 205, and the data is arranged based on the band allocation information stored in the buffer unit 217 by the transmission data extracting unit 206. Data transmitted from a certain frequency is extracted.
  • the propagation path compensation unit 207 performs processing for compensating for the distortion of the wireless propagation path, such as multiplying a minimum mean square error (MMSE) weight by using the frequency response estimated by the propagation path estimation unit 213.
  • the IDFT unit 208 converts the signal into a time domain signal.
  • the obtained time domain signal is decomposed from the modulation symbol into received code bits by the demodulator 209 and subjected to error correction decoding by the decoder 210.
  • the cyclic redundancy check unit 211 uses the CRC added to the transmission data to determine whether the data has been correctly received.
  • control information when control information is received, it can be obtained by performing reception processing in the same manner.
  • PH When PH is received as control information, it is stored in the control information storage unit 220 for use in retransmission control.
  • the cyclic redundancy check unit 211 determines that the received data is correct, the cyclic redundancy check unit 211 transmits an ACK via the delivery confirmation signal transmission unit 218. If an error is detected from the received data, a NACK is transmitted via the delivery confirmation signal transmission unit 218. Further, the PH information stored in the control information storage unit 220 is input to the band allocation determination unit 214.
  • the band allocation determination unit 214 determines band allocation based on the input propagation path information and control information such as PH, and inputs the band allocation to the buffer unit 217 and the control information generation unit 215. Bandwidth allocation is determined based on PH indicating transmission power reserve, whether continuous allocation or discrete allocation. If there is no transmission power reserve, continuous bandwidth allocation is performed. Further, the frequency band to be allocated is determined based on the propagation path information estimated by the propagation path estimation unit 213. Control information is generated by the control information generation unit 215 and transmitted from the transmission antenna 219 via the control information transmission unit 216.
  • the first embodiment relates to a retransmission method when a mobile station uses Clustered DFT-S-OFDM for data transmission and an error is detected from a decoding result of received data by CRC at a base station.
  • a description will be given of an example of switching transmission methods to DFT-S-OFDM when there is no transmission power reserve and increasing the transmission power for the amount of back-off available due to the switching.
  • the mobile station has one transmission antenna 111, even when the mobile station has a plurality of transmission antennas 111, it is applicable if the number of transmission antennas 111 to be used is one.
  • FIG. 3 is a diagram illustrating a retransmission process according to the first embodiment.
  • the mobile station 301 periodically notifies the base station 303 of PH as control information (step S1).
  • the base station 303 determines the transmission power of the mobile station 301 in consideration of interference with the mobile station 301 in the same cell as the notified PH, and notifies the mobile station 301 (step S2).
  • FIG. 4 is a diagram illustrating transmission power when the mobile station 301 transmits data using a discrete frequency band.
  • control information including information on discrete band allocation is transmitted from the base station 303 to the mobile station 301 (step S3).
  • the mobile station 301 transmits data using a discrete frequency band as shown in FIG. 4 based on the received control information (step S4).
  • FIG. 5 is a diagram illustrating transmission power when the mobile station 301 transmits data by increasing transmission power using a continuous frequency band.
  • a NACK that is a retransmission request is transmitted (step S5).
  • continuous band allocation is determined as a transmission method with low peak power. By continuously allocating the band, the required back-off amount is reduced and the transmission power margin can be afforded, so that the transmission power can be increased as shown in FIG.
  • step S5 the mobile station 301 is notified of bandwidth allocation information and transmission power as control information.
  • the mobile station 301 performs retransmission based on the received control information (step S6), and returns ACK if the base station 303 can correctly receive data (step S7).
  • FIG. 6 is a flowchart of a method for determining control information that the base station 303 transmits at the time of a retransmission request according to the first embodiment.
  • the base station 303 receives data transmitted using a discrete band (step S101).
  • the received data is decoded, and an error is detected by CRC to determine whether decoding has been performed correctly (step S102).
  • ACK is notified to the mobile station 301 as a delivery confirmation signal (step S106).
  • step S103 If the decoding fails, the presence / absence of transmission power remaining capacity is confirmed based on the PH notified from the mobile station 301 (step S103). If there is a remaining transmission power, control information for assigning discrete bands is generated (step S105). The discrete band allocation may be the same as or changed from the initial data transmission. Further, since there is a transmission power margin, control information may be transmitted to the mobile station 301 so as to increase the transmission power. If there is no transmission power reserve, continuous band allocation and transmission power control information are generated (step S104). The generated control information and NACK that is a delivery confirmation signal are notified to the mobile station 301 (step S107).
  • the base station 303 retransmits in consideration of the transmission power remaining capacity. Therefore, an increase in retransmission due to insufficient transmission power can be suppressed, and cell throughput can be improved.
  • it when there is no transmission power reserve, it is changed to continuous band allocation, and when there is transmission power reserve, it is set as discrete band allocation, but when there is transmission power reserve, it is a multi-carrier, When there is no remaining transmission power, retransmission may be performed with a single carrier.
  • the mobile station 301 is notified of the change of the continuous band allocation and the transmission power control information to the mobile station 301 at the time of retransmission, but if the transmission power at the time of retransmission is a value smaller than the increase in the remaining transmission power, it is determined in advance. You may use the value.
  • FIG. 7 is a block diagram showing an example of a schematic configuration of a mobile station according to the second embodiment.
  • the mobile station 301 has a plurality of antennas, and with respect to the transmission antenna 605, a buffer unit 600, a transmission signal generation unit 601, an antenna determination unit 602, a radio unit 603, a PA unit 604, a transmission power remaining capacity calculation unit 606, and transmission of control information.
  • the transmission antennas 605 ′ and 605 ′′ other than the transmission antenna 605 have radio units 603 ′ and 603 ′′ and PA units 604 ′ and 604 ′′, respectively.
  • control information receiving section 608 obtains ACK or NACK delivery confirmation signal, band allocation information, retransmission antenna information, control information indicating transmission power at the time of retransmission, and the like.
  • the control information receiving unit 608 inputs the delivery confirmation signal to the retransmission control unit 610, inputs the band allocation information to the transmission signal generation unit 601, inputs the retransmission antenna information to the antenna determination unit 602, and sets the transmission power at the time of retransmission. Input to the PA unit 604.
  • the retransmission control unit 610 inputs transmission data input to the buffer unit 600 to the transmission signal generation unit 601 when the delivery confirmation signal is ACK, and stores the base data stored in the buffer when the delivery confirmation signal is NACK. In order to retransmit the transmission data that could not be correctly received by the station 303, the data is input to the transmission signal generation unit 601.
  • the transmission signal generation unit 601 performs the same processing as that from the encoding unit 101 to the CP insertion unit 108 in FIG. 1 on the input transmission data, and inputs the input data to the antenna determination unit 602.
  • the antenna determination unit 602 selects the retransmission transmission antenna 605 indicated by the retransmission antenna information input from the control information reception unit 608, and transmits the transmission signal input from the transmission signal generation unit 601 to the radio of the transmission antenna 605 for retransmission. To the part 603.
  • the PA unit 604 of the transmission antenna 605 used for retransmission performs amplification based on the transmission power information notified from the base station 303, and transmits retransmission data from the transmission antenna 605 used for retransmission.
  • the base station 303 configuration is the same as in FIG. 2, and the propagation path estimation unit 213 inputs retransmission antenna information and propagation path information to the band allocation determination unit based on the propagation paths of a plurality of antennas.
  • Band allocation determination section 214 determines a band to be allocated based on propagation path information, and inputs band allocation information and retransmission antenna information to control information generation section 215.
  • Band assignment information and retransmission antenna information are converted into control information data by the control information generation unit 215 and transmitted from the transmission antenna 219 via the control information transmission unit 216.
  • FIG. 8 is a diagram illustrating a retransmission process according to the second embodiment.
  • the mobile station 301 periodically notifies the base station 303 of PH as control information (step S201).
  • the base station 303 determines the transmission power of the mobile station 301 in consideration of interference with the mobile station 301 in the same cell as the notified PH, and notifies the mobile station 301 of the transmission power (step S202).
  • the base station 303 transmits control information including discrete band allocation information to the mobile station 301 (step S203).
  • the mobile station 301 transmits data using a discrete frequency band based on the received control information (step S204).
  • the mobile station 301 transmits data using a discrete band, and the base station 303 detects an error in the received data decoding result by cyclic redundancy check.
  • a band is continuously allocated, a transmission antenna 605 having a high channel gain is designated, and a retransmission request is made (Ste S205).
  • the transmission power at the time of retransmission can be increased in consideration of the reception SINR (Signal to Interference and Noise power Ratio), which is the propagation path gain of the antenna used for retransmission, because the transmission power margin can be afforded.
  • the mobile station 301 performs retransmission based on the received control information (step S206), and returns ACK if the base station 303 can correctly receive data (step S207).
  • the base station 303 when the mobile station 301 detects an error in the base station 303 at the time of transmission using a discrete frequency band, the base station 303 considers the transmission power remaining capacity and performs a retransmission transmission scheme. Since the transmission antenna 605 is changed, an increase in retransmission due to insufficient transmission power can be suppressed, and the cell throughput can be improved by the antenna diversity effect.
  • the mobile station 301 when the mobile station 301 performs data transmission by Clustered DFT-S-OFDM, transmission power is allocated in consideration of the remaining transmission power at the time of retransmission, and an allowance for changing the allocated band and backoff.
  • An example of increasing the power and switching the number of transmission antennas 905 used for retransmission will be described.
  • the number of transmission antennas 905 of the mobile station 301 at the time of retransmission is two, but the present invention is applicable even when there are three or more transmission antennas 905 used for retransmission.
  • the first transmission antenna 905 is used as one, but the present invention is applicable even when a plurality of transmission antennas 905 are used.
  • FIG. 9 is a block diagram illustrating an example of a schematic configuration of a mobile station according to the third embodiment.
  • the mobile station 301 includes a buffer unit 900, a transmission method determination unit 901, a first transmission signal generation unit 902, a radio unit 903, a PA unit 904, a transmission antenna 905, a second transmission signal generation unit 906, a radio unit 907, and a PA. 908, a transmission antenna 909, a transmission power reserve calculation unit 910, a control information transmission unit 911, a control information reception unit 912, a reception antenna 913, and a retransmission control unit 914.
  • the mobile station 301 uses one transmission antenna 905 and receives a delivery confirmation signal as control information at the reception antenna 913 after transmitting data using discrete bands.
  • control information receiving section 912 obtains an acknowledgment signal for ACK or NACK, control information indicating band allocation information, the number of transmission antennas, and the like.
  • the control information receiving unit 912 inputs a delivery confirmation signal to the retransmission control unit 914, inputs information on the number of retransmission antennas to the transmission method determination unit 901, and transmits band allocation information to the first transmission signal generation unit 902 and the second transmission signal generation unit 902.
  • the transmission signal is input to the transmission signal generation unit 906, and the transmission power of each of the transmission antennas 905 and 909 is input to the PA unit 904 and the PA unit 908.
  • the delivery confirmation signal is ACK
  • the transmission data input to the buffer unit 900 is input to the transmission method determination unit 901.
  • the delivery confirmation signal is NACK
  • the base station 303 stored in the buffer can correctly receive the transmission data. In order to retransmit the transmission data that has not been received, the data is input to the transmission method determination unit 901.
  • the transmission method determination unit 901 receives retransmission data and the number of retransmission antennas, and if the number of antennas is two or more, predetermined transmission diversity such as CDD (Cyclic Delay) Diversity) or SFBC (Space Frequency Block Code). Apply.
  • First transmission signal generation section 902 receives transmission diversity application status and retransmission data input from transmission method determination section 901, and performs the same processing from encoding section 101 to CP insertion section 108 in FIG.
  • the transmission signal is up-converted by the radio unit 903, amplified by the PA unit 904 based on the transmission power information notified from the control information receiving unit 912, and transmitted from the transmission antenna 905.
  • the transmission antenna 909 similarly to the transmission antenna 905, retransmission processing is performed based on whether transmission diversity is applied and retransmission data input from the transmission method determination unit 901.
  • the configuration of the base station 303 is the same as that in FIG. 2, and the cyclic redundancy check unit 211 detects an error by CRC in the received data decoding result to determine whether decoding has been performed correctly. If the cyclic redundancy check unit 211 determines that the received data is correct, the cyclic redundancy check unit 211 transmits an ACK via the delivery confirmation signal transmission unit 218. If an error is detected from the received data, a NACK is transmitted via the delivery confirmation signal transmission unit 218. Further, information such as PH stored in the control information storage unit 220 is input to the band allocation determination unit 214.
  • the band allocation determination unit 214 determines the allocation of the band to be used at the time of retransmission, the number of transmission antennas 905, and the transmission power based on the channel information input from the channel estimation unit 213 and the control information such as PH. Via the control information generation unit 215 and the control information transmission unit 216, the allocation of bands used at the time of retransmission, the number of transmission antennas 905, and the transmission power are transmitted as control information.
  • the peak power is reduced, so that the required back-off amount is reduced.
  • transmission power per one is without P TX -Log (N ANT), it may be P TX -Log (N ANT) + ⁇ .
  • P TX is transmission power at the time of initial transmission, and ⁇ represents a difference in backoff amount between when the band is used discretely and when the band is used continuously.
  • the transmission diversity method has been described as CDD, but a transmission diversity method such as SFBC is also applicable.
  • SFBC transmission diversity method
  • SFBC decoding is necessary after the propagation path compensation unit 207 multiplies the weight.
  • FIG. 10 is a diagram illustrating a retransmission process according to the third embodiment.
  • the mobile station 301 periodically notifies the base station 303 of PH as control information (step S301).
  • the base station 303 also considers the interference with the mobile station 301 in the same cell as the notified PH, determines the transmission power of the mobile station 301, and notifies the mobile station 301 (step S302).
  • the base station 303 transmits control information including discrete band allocation information to the mobile station 301 (step S303).
  • the mobile station 301 transmits data using a discrete frequency band based on the received control information (step S304).
  • the mobile station 301 transmits data using a discrete band, and the base station 303 detects an error in the received data decoding result by cyclic redundancy check. If an error is detected and there is no transmission power from the PH periodically notified from the mobile station 301, a bandwidth is continuously allocated, the number of retransmission antennas used for transmission diversity is designated, and a retransmission request is made (step S305). Since the transmission power used for retransmission is continuously allocated, the required back-off amount is reduced. Therefore, the transmission power of all transmission antennas 905 used for retransmission is increased from the transmission power at the time of initial transmission.
  • the mobile station 301 performs retransmission based on the received control information (step S306), and returns ACK if the base station 303 can correctly receive data (step S307).
  • the base station 303 when the mobile station 301 detects an error in the base station 303 at the time of transmission using a discrete frequency band, the base station 303 considers the transmission power remaining capacity and performs a retransmission transmission scheme. Since the number of transmission antennas 905 is changed, an increase in retransmission due to a lack of transmission power is suppressed, and cell throughput can be improved due to a transmission diversity effect.

Abstract

 送信電力余力を示すPHを考慮し、アクセス方式、送信電力、使用するアンテナ、アンテナ数を制御する。基地局および移動局により構成され、移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて基地局に対してデータ伝送を行なう無線通信システムであって、基地局は、移動局が周波数信号に変換された送信信号を離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、送信信号を離散的な周波数帯域に割当てた際の移動局の送信電力余力を判定し、判定の結果、送信電力余力が無い場合は、移動局に対して、送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与える。

Description

無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム
 本発明は、無線通信における再送処理方法を実施する無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラムに関する。
 第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution)システムでは、基地局と移動局の間での送信パケットの誤り検出を行ない、誤りがあるパケットを再度送信する再送制御法であるHARQ(Hybrid Automatic Repeat Request)が採用されている。この再送制御は、送信パケットに付加されたCRC(Cyclic Redundancy Check、巡回冗長検査)を用いてパケットの誤りを検査し、受信したパケットを正しく復号できない場合に再送要求信号であるNACK(Negative ACKnowledgement)を送信することで行なわれる。また、送信パケットが正しく受信された場合に送達確認信号であるACK(ACKnowledgement)を送信する(非特許文献1参照)。
 再送制御には、非適応型ARQ(Non-adaptive ARQ)と適応型ARQ(Adaptive ARQ)がある。非適応型ARQは、再送時に初回送信と同様の伝送方法でデータを送信するものであるが、適応型ARQは再送データが初回送信データと異なり、変調方式、符号化率、パンクチャパターン、使用する周波数の帯域幅、送信電力等のパラメータを変えて再送する(特許文献1参照)。また、再送時に送信ダイバーシチ法であるSTTD(Space Time  Transmit Diversity)やMIMO(Multiple-Input Multiple-Output)の様な複数の送信アンテナを使用することが提案されている(特許文献2参照)。
特開2007―214824号公報 国際公開第WO2005/004376号パンフレット
 しかしながら、上り回線でClustered DFT-S-OFDM(ダイナミックスペクトル制御(DSC:Dynamic Spectrum Control)、DFT-S-OFDM with SDC(Spectrum Division Control)とも呼称される。)とDFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing、SC-FDMAとも称される)のようなピーク電力が異なるアクセス方式を使用可能とする無線通信システムにおいて、送信電力余力を示すPH(Power Headroom)を考慮した適応型ARQによる再送制御が検討されていなかった。そのため、ピーク電力の高いアクセス方式を用いた場合の再送において、セルエッジユーザ等のPHに余裕のないユーザはさらに送信電力を上げることができず、基地局でデータを正しく受信できない問題があった。
 本発明は、このような事情を鑑みてなされたものであり、送信電力余力を示すPHを考慮し、アクセス方式、送信電力、使用するアンテナ、アンテナ数を制御する無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラムを提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、基地局および移動局により構成され、ピーク電力が異なる複数のアクセス方式からいずれか一つのアクセス方式を選択して無線通信を行なう無線通信システムであって、基地局は、移動局が使用したアクセス方式で再送が発生した場合、アクセス方式よりもピーク電力が低いアクセス方式を選択すると共に、送信電力を上げて再送を行なう指示を移動局に対して与えることを特徴とする。
 このように、基地局は、移動局が使用したアクセス方式で再送が発生した場合、アクセス方式よりもピーク電力が低いアクセス方式を選択すると共に、送信電力を上げて再送を行なう指示を移動局に対して与えることにより、移動局は、送信電力不足を回避し、十分な送信電力で再送を行なうことができるため、セルスループットを向上させることが可能となる。
 (2)本発明の無線通信システムは、基地局および移動局により構成され、移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて基地局に対してデータ伝送を行なう無線通信システムであって、基地局は、移動局が周波数信号に変換された送信信号を離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、送信信号を離散的な周波数帯域に割当てた際の移動局の送信電力余力を判定し、判定の結果、送信電力余力が無い場合は、移動局に対して、送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与えることを特徴とする。
 このように、基地局は、移動局が周波数信号に変換された送信信号を離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、送信信号を離散的な周波数帯域に割当てた際の移動局の送信電力余力を判定し、判定の結果、送信電力余力が無い場合は、移動局に対して、送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与えることにより、移動局の送信電力が不足することによる再送の増加を抑制でき、セルスループットが改善できる。
 (3)また、本発明の無線通信システムにおいて、移動局は、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、再送を行なうことを特徴とする。
 このように、移動局は、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、再送を行なうことにより、移動局の送信電力不足を回避し、十分な送信電力で再送を行なうことができるため、セルスループットを向上させることが可能となる。
 (4)また、本発明の無線通信システムにおいて、移動局は、送信信号を連続的な周波数帯域に割当てると共に、予め定められた分の送信電力を上げて、再送を行なうことを特徴とする。
 このように、移動局は、送信信号を連続的な周波数帯域に割当てると共に、予め定められた分の送信電力を上げて、再送を行なうことにより、基地局が再送時に送信電力の制御情報を移動局に通知することなく、送信電力不足を回避し、十分な送信電力で再送を行なうことができるため、セルスループットを向上させることが可能となる。
(5)また、本発明の無線通信システムにおいて、移動局は、複数のアンテナを有し、基地局は、移動局に対して、送信信号を連続的な周波数帯域に割当て、移動局が有する複数のアンテナのうち伝搬路利得の高いアンテナを使用し、送信電力を上げて再送を行なう指示を移動局に対して与えることを特徴とする。
 このように、移動局は、複数のアンテナを有し、基地局は、移動局に対して、送信信号を連続的な周波数帯域に割当て、移動局が有する複数のアンテナのうち伝搬路利得の高いアンテナを使用し、送信電力を上げて再送を行なう指示を移動局に対して与えることにより、移動局の送信電力が不足することによる再送の増加を抑制し、アンテナダイバーシチ効果によりセルスループットが改善できる。
 (6)また、本発明の無線通信システムにおいて、基地局は、再送時に使用するアンテナの伝搬路利得に基づいて、送信電力の上げ幅を決定することを特徴とする。
 このように、基地局は、再送時に使用するアンテナの伝搬路利得に基づいて、送信電力の上げ幅を決定することにより、移動局の使用するアンテナの伝搬路利得に応じて柔軟に送信電力を設定することができる。
 (7)また、本発明の無線通信システムにおいて、移動局は、複数のアンテナを有し、基地局は、移動局が有する複数のアンテナのうち再送時に使用するアンテナの本数を決定し、移動局に対して、送信信号を連続的な周波数帯域に割当て、決定した本数のアンテナを使用し、送信電力を上げて再送を行なう指示を与えることを特徴とする。
 このように、移動局は、複数のアンテナを有し、基地局は、移動局が有する複数のアンテナのうち再送時に使用するアンテナの本数を決定し、移動局に対して、送信信号を連続的な周波数帯域に割当て、決定した本数のアンテナを使用し、送信電力を上げて再送を行なう指示を与えることにより、移動局の送信電力が不足することによる再送の増加を抑制し、送信ダイバーシチ効果によりセルスループットが改善できる。
 (8)また、本発明の無線通信システムにおいて、移動局は、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を、初送時の総電力より上げて、決定した本数のアンテナを用いて再送を行なうことを特徴とする。
 このように、移動局は、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を、初送時の総電力より上げて、決定した本数のアンテナを用いて再送を行なうことにより、送信電力が不足することによる再送の増加を抑制することができる。
 (9)本発明の基地局は、基地局および移動局により構成され、移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて基地局に対してデータ伝送を行なう無線通信システムに適用される基地局であって、移動局が周波数信号に変換された送信信号を離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、送信信号を離散的な周波数帯域に割当てた際の移動局の送信電力余力を判定し、判定の結果、送信電力余力が無い場合は、移動局に対して、送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与えることを特徴とする。
 このように、基地局は、移動局が周波数信号に変換された送信信号を離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、送信信号を離散的な周波数帯域に割当てた際の移動局の送信電力余力を判定し、判定の結果、送信電力余力が無い場合は、移動局に対して、送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与えることにより、移動局の送信電力が不足することによる再送の増加を抑制でき、セルスループットが改善できる。
 (10)本発明の移動局は、基地局および移動局により構成され、移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて基地局に対してデータ伝送を行なう無線通信システムに適用される移動局であって、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、基地局に対して再送を行なうことを特徴とする。
 このように、移動局は、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、基地局に対して再送を行なうことにより、送信電力不足を回避し、十分な送信電力で再送を行なうことができるため、セルスループットを向上させることが可能となる。
 (11)本発明の基地局の制御プログラムは、基地局および移動局により構成され、移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて基地局に対してデータ伝送を行なう無線通信システムに適用される基地局の制御プログラムであって、移動局が周波数信号に変換された送信信号を離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、送信信号を離散的な周波数帯域に割当てた際の移動局の送信電力余力を判定する処理と、判定の結果、送信電力余力が無い場合は、移動局に対して、送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与える処理と、の一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする。
 このように、移動局が周波数信号に変換された送信信号を離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、送信信号を離散的な周波数帯域に割当てた際の移動局の送信電力余力を判定する処理と、判定の結果、送信電力余力が無い場合は、移動局に対して、送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与える処理と、の一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことにより、移動局の送信電力が不足することによる再送の増加を抑制でき、セルスループットが改善できる。
 (12)本発明の移動局の制御プログラムは、基地局および移動局により構成され、移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて基地局に対してデータ伝送を行なう無線通信システムに適用される移動局の制御プログラムであって、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、基地局に対して再送を行なう処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする。
 このように、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、基地局に対して再送を行なう処理を、コンピュータに読み取り可能および実行可能にコマンド化したことにより、移動局の送信電力が不足することによる再送の増加を抑制でき、セルスループットが改善できる。
 本発明を適用することにより、セルエッジにいるユーザの場合でも、再送時に送信電力が不足しデータが正しく送信できないことを、回避することができ、セルスループットを向上できる。
第1の実施形態に係る移動局の概略構成の一例を示すブロック図である。 本発明の実施形態に係る基地局の概略構成の一例を示すブロック図である。 第1の実施形態の再送処理を示す図である。 移動局が離散的な周波数帯域を使用してデータ送信するときの送信電力を示す図である。 移動局が連続的な周波数帯域を使用して送信電力を上げてデータ送信するときの送信電力を示す図である。 基地局が第1の実施形態の再送要求時に送信する制御情報の決定方法についてのフローチャートである。 第2の実施形態に係る移動局の概略構成の一例を示すブロック図である。 第2の実施形態の再送処理を示す図である。 第3の実施形態に係る移動局の概略構成の一例を示すブロック図である。 第3の実施形態の再送処理を示す図である。
 LTEシステムの標準化がほぼ終了し、最近ではLTEシステムをより発展させた第4世代の無線通信システムであるLTE-A(LTE-Advanced、IMT-Aなどとも称する。)の標準化が開始された。
 LTE-Aのアップリンク(移動局から基地局への通信)ではLTEよりも高いピークデータレートや、周波数利用効率の改善が要求されている。そのため、新しいアクセス方式を導入することによるスループットの改善や多アンテナ技術を用いることによるピークデータレートの向上が検討されている。
 LTE-Aシステムのアップリンクのアクセス方式として、LTEシステムとの後方互換性を重視し、DFT-S-OFDMをサポートし、さらにスループットを改善できるClustered DFT-S-OFDMが提案されている。Clustered DFT-S-OFDMは、使用可能な帯域から伝搬路利得の高い周波数を選択し、スペクトルを離散的に配置することから、ピーク電力がDFT-S-OFDMより高くなるものの、高い周波数選択ダイバーシチ効果が得られることができ、セルスループットを向上させることができるアクセス方式である。
 また、LTEシステムのアップリンクでは複数のアンテナを同時に使用しないが、LTE-Aシステムでは、複数の送信アンテナを同時に使用するMIMO(Multiple-Input Multiple-Output)多重伝送や送信ダイバーシチを用いることで、周波数利用効率の改善やカバレッジの改善する方法が検討されている。
 以下、図面を参照して、本発明の実施形態について説明する。以下の実施形態において、送信装置である移動局がピーク電力の異なるシングルキャリア伝送を使用可能である場合のみについて説明しているが、ピーク電力の異なるシングルキャリア伝送とマルチキャリア伝送を使用可能である場合についても本質的に同一の送信電力余力に基づく再送方法であれば、本発明と同様とする。
 図1は、第1の実施形態に係る移動局の概略構成の一例を示すブロック図である。移動局は、バッファ部100、符号部101、変調部102、DFT部103、送信データ配置部104、IDFT部105、参照信号生成部106、参照信号挿入部107、CP挿入部108、無線部109、PA部110、送信アンテナ111、送信電力余力算出部112、制御情報送信部113、制御情報受信処理部114、受信アンテナ115、再送制御部116を具備する。
 移動局では、受信装置である基地局から通知された帯域割り当て情報を含む制御情報を受信し、帯域割り当てに従いデータ送信後、基地局から通知される送達確認信号を受信アンテナ115で受信する。この送達確認信号は、基地局が移動局から送信されたデータを正しく復号ができたかを表し、基地局がデータを正しく復号できた場合はACK、正しく復号できなかった場合はNACKとなる。再送時に初回のデータ送信と異なる送信方法を用いる場合は、帯域の割り当て方法や送信電力等の制御情報の受信も行なう。受信アンテナ115で受信された信号は、制御情報受信処理部114に入力される。
 制御情報受信処理部114では、受信信号から送達確認信号と帯域割り当て情報を得る。得られた送達確認信号は、再送制御部116に入力され、一方、制御情報の帯域割り当て情報は送信データ配置部104、送信電力の情報はPA(Power Amplifier)部110に入力される。
 再送制御部116は、入力された送達確認信号がACKであった場合は、バッファ部100に入力される送信データを符号部101に入力し、入力された送達確認信号がNACKであった場合はバッファに記憶されている基地局が正しく受信できなかった送信データを符号部101に入力する。
 符号部101に入力された送信データは、誤り訂正符号が施された符号ビットに変換され、変調部102において、QPSK(Quadrature Phase Shift Keying;四相位相偏移変調)、16QAM(16 Quadrature Amplitude Modulation;16直交振幅変調)などの変調シンボルへ変調される。変調シンボルは、DFT部103で周波数領域の信号に変換され、送信データ配置部104において基地局から通知された周波数の割り当て情報を基に周波数信号を配置する。IDFT(Inverse DFT;逆離散フーリエ変換)部105において、時間領域の信号に変換される。参照信号生成部106で生成された信号は、参照信号挿入部107で挿入される。本実施形態では、時間領域の信号に対して参照信号を挿入したが、IDFT部105で時間領域の信号に変換する前に周波数多重しても良い。時間信号は、CP(Cyclic Prefix;サイクリックプレフィックス)挿入部108でCPが付加され、無線部109により無線周波数にアップコンバートされ、PA部110で基地局から通知された送信電力に増幅された後に送信アンテナ111から送信される。
 また、送信電力余力算出部112により算出された送信電力余力のPHは、定期的に制御情報送信部113を介して基地局に送信される。
 本実施形態では、再送時に送信データの符号化から行なうものとしたが、適用する符号化の方法や符号化率、拘束長、パンクチャパターン等を変更しない場合は、再度符号化を行なわずに符号化を行なったデータを記憶しておいても良い。同様に変調部で適用する変調方式を変更しない場合は、DFTにより得られた周波数領域の信号の記憶しておいてもよい。
 図2は、本発明の実施形態に係る基地局の概略構成の一例を示すブロック図である。基地局は、受信アンテナ201、無線部202、CP除去部203、参照信号分離部204、DFT部205、送信データ抽出部206、伝搬路補償部207、IDFT部208、復調部209、復号部210、巡回冗長検査部211、伝搬路推定部213、帯域割当決定部214、制御情報生成部215、制御情報送信部216、バッファ部217、送達確認信号送信部218、送信アンテナ219、制御情報保存部220を具備する。
 受信アンテナ201では、移動局から送信されたデータもしくは制御情報を受信する。データを受信した場合は、無線部202により受信アンテナ201で受信した信号をベースバンド周波数にダウンコンバートし、CP除去部203でサイクリックプレフィックスの除去を行ない、参照信号分離部204で参照信号を分離する。分離された参照信号は、伝搬路推定部213に入力され、参照信号により伝搬路の周波数応答を推定する。推定された伝搬路情報は、伝搬路補償部207と帯域割当決定部214に入力される。
 一方、参照信号が分離された信号は、DFT部205により周波数領域の信号に変換され、送信データ抽出部206でバッファ部217に記憶されている帯域の割り当て情報を基に、データが配置されている周波数から送信されたデータを抽出される。伝搬路補償部207において、伝搬路推定部213により推定された周波数応答を用いて、最小平均二乗誤差(MMSE:Minimum Mean Square Error)重みを乗算する等の無線伝搬路のひずみを補償する処理を施し、IDFT部208では時間領域の信号に変換する。得られた時間領域の信号は、復調部209により変調シンボルから受信符号ビットに分解され、復号部210により誤り訂正復号が施される。復号されたデータは、巡回冗長検査部211で送信データに付加されているCRCを用いて、正しくデータが受信できたかを判定する。
 また、制御情報を受信した場合にも同様に受信処理を行なうことで得ることができ、制御情報としてPHを受信した場合は再送制御で用いるため、制御情報保存部220で記憶する。
 巡回冗長検査部211により、受信データが正しいと判定された場合は、送達確認信号送信部218を介し、ACKを送信する。受信データから誤りが検出された場合には、送達確認信号送信部218を介し、NACKを送信する。さらに制御情報保存部220に記憶されているPHの情報を帯域割当決定部214に入力する。
 帯域割当決定部214は、入力された伝搬路情報とPH等の制御情報を基に帯域の割り当てを決定し、バッファ部217と制御情報生成部215に入力する。帯域の割り当ては、送信電力余力を示すPHに基づいて連続的な割り当てか、離散的な割り当てかが決定され、送信電力余力がない場合は連続的な帯域の割り当てを行なう。また、伝搬路推定部213で推定された伝搬路情報を基に割り当てる周波数帯域を決定する。制御情報生成部215で制御情報が生成され、制御情報送信部216を介し、送信アンテナ219から送信される。
 [第1の実施形態]
 第1の実施形態では、移動局がデータ伝送をClustered DFT-S-OFDMを用い、基地局においてCRCにより受信データの復号結果から誤り検出した際の再送方法に関する。送信電力余力がない場合にDFT-S-OFDMへ伝送方式の切り替えと、切り替えによってバックオフに余裕ができた分の送信電力を上げる例について説明する。移動局の送信アンテナ111を1本としているが、移動局が複数の送信アンテナ111を持っている場合においても使用する送信アンテナ111が1本であれば、適用可能である。
 図3は、第1の実施形態の再送処理を示す図である。移動局301は、定期的にPHを制御情報として基地局303に通知する(ステップS1)。一方、基地局303は、通知されたPHと同一セル内の移動局301への干渉も考慮し、移動局301の送信電力を決定し、移動局301へ通知する(ステップS2)。
 図4は、移動局301が離散的な周波数帯域を使用してデータ送信するときの送信電力を示す図である。図3において、移動局301がデータ送信を行なう場合は、基地局303から移動局301に離散的な帯域の割り当ての情報を含む制御情報を送信する(ステップS3)。移動局301は、受信した制御情報を基に図4で示すように離散的な周波数帯域を使用し、データを送信する(ステップS4)。
 図5は、移動局301が連続的な周波数帯域を使用して送信電力を上げてデータ送信するときの送信電力を示す図である。図3において、基地局303で受信信号を復号して得られたデータがCRCにより誤り検出された場合は、再送要求であるNACKを送信する(ステップS5)。また、移動局301から定期的に通知されるPHより送信電力余力がない場合は、ピーク電力の低い送信方法となる連続的な帯域の割り当てを決定する。連続的に帯域の割り当てを行なうことにより、必要なバックオフ量が少なくなり、送信電力余力に余裕ができるため、図5で示すように送信電力を上げることが可能となる。
 図3において、ステップS5では、帯域の割り当て情報と送信電力を制御情報として移動局301に通知する。移動局301は受信した制御情報を基に再送を行ない(ステップS6)、基地局303がデータを正しく受信できれば、ACKを返す(ステップS7)。
 図6は、基地局303が第1の実施形態の再送要求時に送信する制御情報の決定方法についてのフローチャートである。基地局303は、離散的な帯域を使用して送信されたデータを受信する(ステップS101)。受信したデータを復号し、CRCにより誤りの検出を行なうことで復号が正しく行なえたかの判定を行なう(ステップS102)。復号に成功した場合は、ACKを送達確認信号として、移動局301に通知する(ステップS106)。
 復号に失敗した場合は、移動局301から通知されているPHを基に送信電力余力の有無を確認する(ステップS103)。送信電力余力がある場合は、離散的な帯域の割り当ての制御情報を生成する(ステップS105)。離散的な帯域の割り当ては、初回のデータ送信と同一であっても良いし、変更しても良い。また、送信電力余力があるため、送信電力を上げるように移動局301に制御情報を送信しても良い。送信電力余力がない場合は、連続的な帯域の割り当てと送信電力の制御情報を生成する(ステップS104)。生成された制御情報と送達確認信号であるNACKを移動局301に通知する(ステップS107)。
 本実施形態を適用することにより、移動局301の送信アンテナが1本で離散的な周波数帯域を送信時に基地局303で誤り検出された場合は、基地局303で送信電力余力を考慮して再送の送信方式を変更するため、送信電力が不足することによる再送の増加を抑制でき、セルスループットが改善できる。本実施形態では、送信電力余力がない場合に連続的な帯域の割り当てに変更し、送信電力余力がある場合に離散的な帯域の割り当てとしたが、送信電力余力がある場合にマルチキャリアとし、送信電力余力がない場合にシングルキャリアで再送するようにしても良い。また、再送時に連続的な帯域の割り当てに変更と送信電力の制御情報を移動局301に通知するとしたが、再送時の送信電力は送信電力余力の増加分より少ない値であれば、予め決められた値を用いても良い。
 [第2の実施形態]
 第2の実施形態では、移動局301がデータ伝送をClustered DFT-S-OFDMで行なった場合において、再送時に送信電力余力を考慮し、割り当てる帯域の変更とバックオフに余裕ができた分の送信電力を上げ、伝搬利得の高い送信アンテナ605に切り替える一例について説明する。本実施形態では、初送の送信アンテナ605の本数を1本としているが、複数の送信アンテナ605を使用している場合についても適用可能である。
 図7は、第2の実施形態に係る移動局の概略構成の一例を示すブロック図である。移動局301は、複数のアンテナを有し、送信アンテナ605に関して、バッファ部600、送信信号生成部601、アンテナ決定部602、無線部603、PA部604、送信電力余力算出部606、制御情報送信部607、制御情報受信部608、受信アンテナ609、再送制御部610を具備する。送信アンテナ605以外の送信アンテナ605’、605”に関しても同様にそれぞれ無線部603’、603”、PA部604’、604”を有している。
 移動局301は、受信アンテナ609で制御情報を受信する。受信した制御情報から、制御情報受信部608により、ACKもしくはNACKの送達確認信号と、帯域割り当て情報と再送アンテナ情報、再送時の送信電力等を示す制御情報を得る。
 制御情報受信部608は、送達確認信号を再送制御部610に入力し、帯域割り当て情報を送信信号生成部601に入力し、再送アンテナ情報をアンテナ決定部602に入力し、再送時の送信電力をPA部604へ入力する。再送制御部610は、送達確認信号がACKの場合にはバッファ部600に入力される送信データを送信信号生成部601に入力し、送達確認信号がNACKの場合にはバッファに記憶されている基地局303で正しく受信できなかった送信データを再送するために送信信号生成部601に入力する。送信信号生成部601は、図1の符号部101からCP挿入部108までと同様の処理を入力された送信データに施し、アンテナ決定部602に入力する。アンテナ決定部602は、制御情報受信部608から入力された再送アンテナ情報の示す再送用の送信アンテナ605を選択し、送信信号生成部601から入力された送信信号を再送用の送信アンテナ605の無線部603に入力する。
 また、再送に使用する送信アンテナ605のPA部604は、基地局303より通知された送信電力の情報に基づいて増幅を行ない、再送に使用する送信アンテナ605から再送データを送信する。
 基地局303構成は、図2と同様であり、伝搬路推定部213で複数のアンテナの伝搬路に基づき、再送アンテナ情報と伝搬路情報を帯域割当決定部に入力する。帯域割当決定部214は、伝搬路情報を基に割り当てる帯域を決定し、帯域の割り当て情報と再送アンテナ情報を制御情報生成部215に入力する。帯域の割り当て情報と再送アンテナ情報は、制御情報生成部215で制御情報データに変換され、制御情報送信部216を介し、送信アンテナ219から送信される。
 図8は、第2の実施形態の再送処理を示す図である。移動局301は、定期的にPHを制御情報として基地局303に通知する(ステップS201)。一方、基地局303は、通知されたPHと同一セル内の移動局301への干渉も考慮し、移動局301の送信電力を決定し、移動局301へ通知する(ステップS202)。移動局301がデータ送信を行なう場合は、基地局303から移動局301に離散的な帯域の割り当ての情報を含む制御情報を送信する(ステップS203)。移動局301は、受信した制御情報を基に離散的な周波数帯域を使用し、データを送信する(ステップS204)。移動局301が離散的な帯域を用いてデータ送信を行ない、基地局303で受信データの復号結果に対し、巡回冗長検査により誤り検出をする。誤りが検出され、定期的に移動局301より通知されているPHから送信電力余力がない場合は、連続的に帯域を割り当て、伝搬路利得の高い送信アンテナ605を指定し、再送要求を行なう(ステップS205)。再送時の送信電力は、送信電力余力に余裕ができるため、再送に用いるアンテナの伝搬路利得である受信SINR(Signal to Interference and Noise power Ratio:信号対干渉雑音電力比)を考慮して上げる。移動局301は受信した制御情報を基に再送を行ない(ステップS206)、基地局303がデータを正しく受信できれば、ACKを返す(ステップS207)。
 本実施形態を適用することにより、移動局301が離散的な周波数帯域を使用して送信時に基地局303で誤り検出された場合は、基地局303で送信電力余力を考慮して再送の送信方式と送信アンテナ605を変更するため、送信電力が不足することによる再送の増加を抑制し、アンテナダイバーシチ効果によりセルスループットが改善できる。
 [第3の実施形態]
 第3の実施形態では、移動局301がデータ送信をClustered DFT-S-OFDMで行なった場合において、再送時に送信電力余力を考慮し、割り当てる帯域の変更とバックオフに余裕ができた分の送信電力を上げ、再送に用いる送信アンテナ905の数を切り替える一例について説明する。本実施形態では、再送時の移動局301の送信アンテナ905を2本としているが、再送に用いる送信アンテナ905が3本以上であっても適用可能である。本実施形態では、初送の送信アンテナ905を1本としているが、複数の送信アンテナ905を使用していても適用可能である。
 図9は、第3の実施形態に係る移動局の概略構成の一例を示すブロック図である。移動局301は、バッファ部900、送信方法決定部901、第1の送信信号生成部902、無線部903、PA部904、送信アンテナ905、第2の送信信号生成部906、無線部907、PA部908、送信アンテナ909、送信電力余力算出部910、制御情報送信部911、制御情報受信部912、受信アンテナ913、再送制御部914を具備する。
 移動局301は、1本の送信アンテナ905を使用し、離散的な帯域を使用してデータ送信後に受信アンテナ913で制御情報である送達確認信号を受信する。受信した信号は、制御情報受信部912より、ACKもしくはNACKの送達確認信号と帯域割り当て情報や送信アンテナ本数等を示す制御情報を得る。
 制御情報受信部912は、送達確認信号を再送制御部914に入力し、再送アンテナ本数の情報を送信方法決定部901に入力し、帯域割り当て情報を第1の送信信号生成部902と第2の送信信号生成部906に入力し、各送信アンテナ905、909の送信電力をPA部904とPA部908に入力する。送達確認信号がACKである場合はバッファ部900に入力される送信データを送信方法決定部901に入力し、送達確認信号がNACKである場合はバッファに記憶されている基地局303で正しく受信できなかった送信データを再送するために送信方法決定部901に入力する。
 送信方法決定部901は、再送データと再送アンテナ本数が入力され、アンテナ本数が2本以上であれば、CDD(Cyclic Delay Diversity)やSFBC(Space Frequency Block Code)等の予め決められている送信ダイバーシチを適用する。第1の送信信号生成部902は、送信方法決定部901から入力された送信ダイバーシチの適用有無と再送データが入力され、図1の符号部101からCP挿入部108までと同様の処理を施す。送信信号は、無線部903によりアップコンバートされ、PA部904で制御情報受信部912から通知された送信電力の情報を基に増幅し、送信アンテナ905から送信される。
 送信アンテナ909に関しても送信アンテナ905と同様に送信方法決定部901から入力された送信ダイバーシチの適用有無と再送データを基に再送処理を行なう。
 基地局303の構成は、図2と同様であり、受信したデータの復号結果を巡回冗長検査部211でCRCにより誤りの検出を行なうことで復号が正しく行なえたかの判定を行なう。巡回冗長検査部211により、受信データが正しいと判定された場合は、送達確認信号送信部218を介し、ACKを送信する。受信データから誤りが検出された場合には、送達確認信号送信部218を介し、NACKを送信する。さらに制御情報保存部220に記憶されているPH等の情報を帯域割当決定部214に入力する。
 帯域割当決定部214は、伝搬路推定部213から入力された伝搬路情報とPH等の制御情報を基に再送時に用いる帯域の割り当てと送信アンテナ905の本数と送信電力を決定する。制御情報生成部215と制御情報送信部216を介し、再送時に用いる帯域の割り当てと送信アンテナ905の本数と送信電力は制御情報として送信される。ここで、再送時に連続的に帯域を使用する送信方法を用いるとピーク電力が下がるため、必要なバックオフ量が少なくなる。
 再送で用いるアンテナ本数がNANTの場合、1本あたりの送信電力はPTX-Log(NANT)とせずに、PTX-Log(NANT)+αとしても良い。ただし、PTXは初送時の送信電力とし、αは離散的に帯域を使用時と連続的に帯域を使用時のバックオフ量の差を表す。
 本実施形態では、送信ダイバーシチ法をCDDとして、説明を行なったが、SFBC等の送信ダイバーシチ法も適用可能である。SFBCを用いる場合は、伝搬路補償部207で重みを乗算後にSFBC復号が必要になる。
 図10は、第3の実施形態の再送処理を示す図である。移動局301は、定期的にPHを制御情報として基地局303に通知する(ステップS301)。一方、基地局303は、通知されたPHと同一セル内の移動局301への干渉も考慮し、移動局301の送信電力を決定し、移動局301へ通知する(ステップS302)。移動局301がデータ送信を行なう場合は、基地局303から移動局301に離散的な帯域の割り当ての情報を含む制御情報を送信する(ステップS303)。移動局301は、受信した制御情報を基に離散的な周波数帯域を使用し、データを送信する(ステップS304)。移動局301が離散的な帯域を用いてデータ送信を行ない、基地局303で受信データの復号結果に対し、巡回冗長検査により誤り検出をする。誤りが検出され、定期的に移動局301より通知されているPHから送信電力がない場合は、連続的に帯域を割り当て、送信ダイバーシチに用いる再送アンテナの本数を指定し、再送要求を行なう(ステップS305)。再送に用いる送信電力は、連続的に割り当てることにより、必要とするバックオフ量が少なくなることから、再送で使用する全送信アンテナ905の送信電力を初送時の送信電力より上げる。移動局301は受信した制御情報を基に再送を行ない(ステップS306)、基地局303がデータを正しく受信できれば、ACKを返す(ステップS307)。
 本実施形態を適用することにより、移動局301が離散的な周波数帯域を使用して送信時に基地局303で誤り検出された場合は、基地局303で送信電力余力を考慮して再送の送信方式と送信アンテナ905の本数を変更するため、送信電力が不足することによる再送の増加を抑制し、送信ダイバーシチ効果によりセルスループットが改善できる。
100 バッファ部
101 符号部
102 変調部
103 DFT部
104 送信データ配置部
105 IDFT部
106 参照信号生成部
107 参照信号挿入部
108 CP挿入部
109 無線部
110 PA部
111 送信アンテナ
112 送信電力余力算出部
113 制御情報送信部
114 制御情報受信処理部
115 受信アンテナ
116 再送制御部
201 受信アンテナ
202 無線部
203 CP除去部
204 参照信号分離部
205 DFT部
206 送信データ抽出部
207 伝搬路補償部
208 IDFT部
209 復調部
210 復号部
211 巡回冗長検査部
213 伝搬路推定部
214 帯域割当決定部
215 制御情報生成部
216 制御情報送信部
217 バッファ部
218 送達確認信号送信部
219 送信アンテナ
220 制御情報保存部
301 移動局
303 基地局
600 バッファ部
601 送信信号生成部
602 アンテナ決定部
603 無線部
604 PA部
605 送信アンテナ
606 送信電力余力算出部
607 制御情報送信部
608 制御情報受信部
609 受信アンテナ
610 再送制御部
900 バッファ部
901 送信方法決定部
902 第1の送信信号生成部
903 無線部
904 PA部
905 送信アンテナ
906 第2の送信信号生成部
907 無線部
908 PA部
909 送信アンテナ
910 送信電力余力算出部
911 制御情報送信部
912 制御情報受信部
913 受信アンテナ
914 再送制御部

Claims (12)

  1.  基地局および移動局により構成され、ピーク電力が異なる複数のアクセス方式からいずれか一つのアクセス方式を選択して無線通信を行なう無線通信システムであって、
     前記基地局は、前記移動局が使用したアクセス方式で再送が発生した場合、前記アクセス方式よりもピーク電力が低いアクセス方式を選択すると共に、送信電力を上げて再送を行なう指示を前記移動局に対して与えることを特徴とする無線通信システム。
  2.  基地局および移動局により構成され、前記移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて前記基地局に対してデータ伝送を行なう無線通信システムであって、
     前記基地局は、前記移動局が周波数信号に変換された送信信号を前記離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、前記送信信号を離散的な周波数帯域に割当てた際の前記移動局の送信電力余力を判定し、前記判定の結果、送信電力余力が無い場合は、前記移動局に対して、前記送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与えることを特徴とする無線通信システム。
  3.  前記移動局は、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、再送を行なうことを特徴とする請求項2記載の無線通信システム。
  4.  前記移動局は、送信信号を連続的な周波数帯域に割当てると共に、予め定められた分の送信電力を上げて、再送を行なうことを特徴とする請求項2記載の無線通信システム。
  5.  前記移動局は、複数のアンテナを有し、
     前記基地局は、前記移動局に対して、前記送信信号を連続的な周波数帯域に割当て、前記移動局が有する複数のアンテナのうち伝搬路利得の高いアンテナを使用し、送信電力を上げて再送を行なう指示を前記移動局に対して与えることを特徴とする請求項2記載の無線通信システム。
  6.  前記基地局は、再送時に使用するアンテナの前記伝搬路利得に基づいて、送信電力の上げ幅を決定することを特徴とする請求項5記載の無線通信システム。
  7.  前記移動局は、複数のアンテナを有し、
     前記基地局は、前記移動局が有する複数のアンテナのうち再送時に使用するアンテナの本数を決定し、前記移動局に対して、前記送信信号を連続的な周波数帯域に割当て、前記決定した本数のアンテナを使用し、送信電力を上げて再送を行なう指示を与えることを特徴とする請求項2記載の無線通信システム。
  8.  前記移動局は、送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を、初送時の総電力より上げて、前記決定した本数のアンテナを用いて再送を行なうことを特徴とする請求項7記載の無線通信システム。
  9.  基地局および移動局により構成され、前記移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて前記基地局に対してデータ伝送を行なう無線通信システムに適用される基地局であって、
     前記移動局が周波数信号に変換された送信信号を前記離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、前記送信信号を離散的な周波数帯域に割当てた際の前記移動局の送信電力余力を判定し、前記判定の結果、送信電力余力が無い場合は、前記移動局に対して、前記送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与えることを特徴とする基地局。
  10.  基地局および移動局により構成され、前記移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて前記基地局に対してデータ伝送を行なう無線通信システムに適用される移動局であって、
     送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、前記基地局に対して再送を行なうことを特徴とする移動局。
  11.  基地局および移動局により構成され、前記移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて前記基地局に対してデータ伝送を行なう無線通信システムに適用される基地局の制御プログラムであって、
     前記移動局が周波数信号に変換された送信信号を前記離散的な周波数帯域に割当てて行なったデータ伝送で再送が発生した場合、前記送信信号を離散的な周波数帯域に割当てた際の前記移動局の送信電力余力を判定する処理と、
     前記判定の結果、送信電力余力が無い場合は、前記移動局に対して、前記送信信号を連続的な周波数帯域に割当て、送信電力を上げて再送を行なう指示を与える処理と、の一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする基地局の制御プログラム。
  12.  基地局および移動局により構成され、前記移動局が周波数信号に変換された送信信号を連続的な周波数帯域または予め定められた数に分割された離散的な周波数帯域に割当てて前記基地局に対してデータ伝送を行なう無線通信システムに適用される移動局の制御プログラムであって、
     送信信号を連続的な周波数帯域に割当てることによって生じた送信電力余力に相当する分の送信電力を上げて、前記基地局に対して再送を行なう処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする移動局の制御プログラム。
PCT/JP2010/057260 2009-06-12 2010-04-23 無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム WO2010143477A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/377,474 US8654730B2 (en) 2009-06-12 2010-04-23 Wireless communication system, base station, mobile station, base station control program, and mobile station control program
KR1020117029745A KR101518535B1 (ko) 2009-06-12 2010-04-23 기지국 장치, 이동국 장치, 제어 방법, 통신 방법 및 통신 시스템
EP10786008.2A EP2442617B1 (en) 2009-06-12 2010-04-23 Wireless communication system, base station, mobile station, base station control program, and mobile station control program
CN201080025608.XA CN102461285B (zh) 2009-06-12 2010-04-23 无线通信系统、基站、移动站、基站的控制程序及移动站的控制程序
JP2011518360A JP5123434B2 (ja) 2009-06-12 2010-04-23 無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム
US14/147,398 US20140119326A1 (en) 2009-06-12 2014-01-03 Wireless communication system, base station, mobile station, base station control program, and mobile station control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-141141 2009-06-12
JP2009141141 2009-06-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/377,474 A-371-Of-International US8654730B2 (en) 2009-06-12 2010-04-23 Wireless communication system, base station, mobile station, base station control program, and mobile station control program
US14/147,398 Division US20140119326A1 (en) 2009-06-12 2014-01-03 Wireless communication system, base station, mobile station, base station control program, and mobile station control program

Publications (1)

Publication Number Publication Date
WO2010143477A1 true WO2010143477A1 (ja) 2010-12-16

Family

ID=43308737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057260 WO2010143477A1 (ja) 2009-06-12 2010-04-23 無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム

Country Status (6)

Country Link
US (2) US8654730B2 (ja)
EP (1) EP2442617B1 (ja)
JP (1) JP5123434B2 (ja)
KR (1) KR101518535B1 (ja)
CN (1) CN102461285B (ja)
WO (1) WO2010143477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034056A (ja) * 2011-08-01 2013-02-14 Nippon Telegr & Teleph Corp <Ntt> 回線割当装置および回線割当方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101606803B1 (ko) * 2010-04-29 2016-03-28 엘지전자 주식회사 제어정보의 전송방법 및 기지국과, 제어정보의 수신방법 및 사용자기기
WO2013101342A1 (en) * 2011-12-29 2013-07-04 Raytheon Bbn Technologies Corp. Non-contiguous spectral-band modulator and method for non-contiguous spectral-band modulation
US20140307646A1 (en) * 2013-04-16 2014-10-16 Qualcomm Incorporated Enhanced antenna management for uplink operation under carrier aggregation in lte
CN105580448B (zh) * 2013-09-30 2020-05-19 索尼公司 通信控制设备、通信控制方法、终端设备和信息处理设备
WO2016183533A1 (en) * 2015-05-14 2016-11-17 Cable Laboratories Llc Hybrid automatic repeat request (harq) in listen before talk systems
US11051252B2 (en) * 2018-12-07 2021-06-29 Qualcomm Incorporated Mitigating spectral emission conditions for high transmission output power during degraded antenna peak gain
CN113892242A (zh) * 2019-03-15 2022-01-04 英特尔公司 基于上行链路重传指示符的预测提早释放上行链路重传存储器
CN110311877B (zh) * 2019-07-05 2022-03-01 北京神经元网络技术有限公司 多子频带信号传输方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205279A (ja) * 1998-01-08 1999-07-30 Toshiba Corp 再送制御方法及び再送制御装置
WO2005004376A1 (ja) 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム
WO2006082664A1 (ja) * 2005-02-01 2006-08-10 Mitsubishi Denki Kabushiki Kaisha 送信制御方法、移動局および通信システム
JP2007214824A (ja) 2006-02-08 2007-08-23 Ntt Docomo Inc 移動局及び基地局

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914950A (en) * 1997-04-08 1999-06-22 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US5923650A (en) * 1997-04-08 1999-07-13 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
EP1422856B1 (en) * 2001-08-28 2012-04-18 Sony Corporation Transmission apparatus transmission control method reception apparatus and reception control method
US6563783B1 (en) 2001-11-19 2003-05-13 Geneticware Co., Ltd. Lower inertial compact disc drive
JP2004112597A (ja) * 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd 基地局装置及びパケット品質推定方法
US20040190485A1 (en) * 2003-03-24 2004-09-30 Khan Farooq Ullah Method of scheduling grant transmission in a wireless communication system
JP4527067B2 (ja) 2005-03-31 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び移動通信システム
US8391196B2 (en) 2006-10-26 2013-03-05 Qualcomm Incorporated Dynamic power amplifier backoff using headroom information
EP2213131A4 (en) * 2007-11-09 2014-01-08 Nortel Networks Ltd UPGRADE POWER CONTROL WITH INTERFERENCE-OVER-THERMAL (LOT) LOAD CONTROL
US8284732B2 (en) * 2009-02-03 2012-10-09 Motorola Mobility Llc Method and apparatus for transport block signaling in a wireless communication system
WO2010126339A2 (en) * 2009-04-30 2010-11-04 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205279A (ja) * 1998-01-08 1999-07-30 Toshiba Corp 再送制御方法及び再送制御装置
WO2005004376A1 (ja) 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム
WO2006082664A1 (ja) * 2005-02-01 2006-08-10 Mitsubishi Denki Kabushiki Kaisha 送信制御方法、移動局および通信システム
JP2007214824A (ja) 2006-02-08 2007-08-23 Ntt Docomo Inc 移動局及び基地局

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Channels and Modulation", 3GPP TS 36.211 (V8.6.0
See also references of EP2442617A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034056A (ja) * 2011-08-01 2013-02-14 Nippon Telegr & Teleph Corp <Ntt> 回線割当装置および回線割当方法

Also Published As

Publication number Publication date
US8654730B2 (en) 2014-02-18
US20140119326A1 (en) 2014-05-01
KR101518535B1 (ko) 2015-05-07
KR20120036843A (ko) 2012-04-18
CN102461285B (zh) 2015-10-14
EP2442617B1 (en) 2019-09-25
CN102461285A (zh) 2012-05-16
EP2442617A4 (en) 2015-11-25
US20120093114A1 (en) 2012-04-19
EP2442617A1 (en) 2012-04-18
JPWO2010143477A1 (ja) 2012-11-22
JP5123434B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
US11979214B2 (en) Transmission of information in a wireless communication system
JP5123434B2 (ja) 無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム
CN106850151B (zh) 长期演进系统中用于上行链路重发的收发方法和装置
US9736787B2 (en) Mobile station device, communication system, communication method and integrated circuit
EP2375607B1 (en) Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting MIMO
US9287949B2 (en) Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting MIMO
JP5131998B2 (ja) 無線通信装置、無線通信システム及び無線通信方法
JP5210895B2 (ja) 無線通信システム、端末及び基地局
JP2020010378A (ja) Tddセルとfddセルがキャリアアグリゲーションに含まれる状況におけるharq動作
KR101740731B1 (ko) 다중 안테나 시스템에서 제어 정보 송수신 방법 및 장치
JP5497095B2 (ja) 移動局装置、通信システム、通信方法および集積回路
JP2012134787A (ja) 移動局装置、通信システム、通信方法および集積回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025608.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786008

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011518360

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117029745

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13377474

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010786008

Country of ref document: EP