WO2010143270A1 - Method and system for utilizing components contained in heavy oil-based combustion ash - Google Patents

Method and system for utilizing components contained in heavy oil-based combustion ash Download PDF

Info

Publication number
WO2010143270A1
WO2010143270A1 PCT/JP2009/060561 JP2009060561W WO2010143270A1 WO 2010143270 A1 WO2010143270 A1 WO 2010143270A1 JP 2009060561 W JP2009060561 W JP 2009060561W WO 2010143270 A1 WO2010143270 A1 WO 2010143270A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy oil
combustion ash
plant
gypsum
exhaust gas
Prior art date
Application number
PCT/JP2009/060561
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 三浦
博 尾花
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to PCT/JP2009/060561 priority Critical patent/WO2010143270A1/en
Publication of WO2010143270A1 publication Critical patent/WO2010143270A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/04General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a utilization method and utilization system of various components contained in heavy oil combustion ash.
  • Heavy oil fuels such as heavy oil and petroleum coke are often used in boilers of thermal power plants and various industrial plants, and a large amount of combustion ash is currently discharged. Most of the combustion ash is disposed of in landfills, but the combustion ash contains useful metal compounds such as vanadium compounds, nickel compounds, and magnesium compounds, and various components such as ammonia and sulfur. From the viewpoint of prevention and recycling, effective utilization of these various components is required.
  • Step (A) a solution obtained by solid-liquid separation of this aqueous slurry is diluted, ammonia is added to adjust to neutral or weak alkalinity, and vanadium in the solution is oxidized (B).
  • a treatment system (I) comprising a step (C) of extracting a vanadium by adding a solvent, and adjusting the neutrality or weak alkalinity by adding ammonia water to the solid content obtained by solid-liquid separation of the aqueous slurry, followed by an oxidation treatment.
  • step II) is a step (F) in which gypsum and magnesium hydroxide are separated and recovered from the solvent-extracted solution, and a step in which this solution is led to a distillation column to evaporate ammonia and separated from water to recover ( (Claim 3).
  • this document describes that the solid content obtained in step (D) is used as a cement raw material (paragraph 0015 on page 4).
  • methods for separating and recovering useful metal compounds and the like from petroleum-based combustion ash include, for example, JP-A-11-207292, JP-A-11-207293, JP-A-11-235562. JP-A-2001-179214, JP-A-2001-192747, JP-A-2001-192749, JP-A-2002-166241, and the like.
  • JP 2002-166244 A Japanese Patent Laid-Open No. 11-207292 JP 11-207293 A Japanese Patent Laid-Open No. 11-235562 JP 2001-179214 A JP 2001-192747 A JP 2001-192749 A JP 2002-166241 A
  • non-ferrous metal compounds such as vanadium compounds, ammonia, gypsum (sulfur-containing substances), solids (after treatment)
  • the method of separating and recovering the residue is described.
  • non-ferrous metal compounds such as vanadium compounds, ammonia, sulfur, and residues can be separated and recovered, if there is something that cannot be recycled and reused among these recovered materials
  • the recovered material that is not used is only waste newly generated from petroleum combustion ash.
  • the present inventor has found that the above problems can be solved by limiting the use of various components separated and recovered from heavy oil-based combustion ash. Completed the invention. That is, the present invention provides the following [1] to [10].
  • the heavy oil-based combustion ash is ash generated by burning heavy oil-based fuel in a thermal power plant or other industrial plant, and the non-ferrous metal compound includes a vanadium compound, a nickel compound, and a magnesium compound.
  • the nitrogen oxide-containing exhaust gas is generated in one or more plants selected from thermal power plants, cement manufacturing plants, and other nitrogen oxide-containing exhaust gas generation plants.
  • [6] The system for using components contained in the heavy oil-based combustion ash according to [5], including a combustion ash generation plant for burning the heavy oil-based fuel to obtain the heavy oil-based combustion ash .
  • a combustion ash generation plant for burning the heavy oil-based fuel to obtain the heavy oil-based combustion ash .
  • [8] Utilization of components contained in heavy oil-based combustion ash according to any one of [5] to [7], wherein (c) the gypsum utilization plant is a cement production plant and / or a gypsum product production plant system.
  • nonferrous metal compounds such as vanadium compounds recovered from heavy oil-based combustion ash, ammonia, sulfur (gypsum) and residues can be used, new waste is Does not occur.
  • ammonia, gypsum, and residue generated in the ash treatment plant are used only for specific applications, and therefore correspond to the combustion ash generation plant, the ash treatment plant, and the specific application. It is possible to greatly reduce burdens such as transportation costs of combustion ash, ammonia, gypsum, and residues by providing a group of plants in the same premises (for example, in an area within a radius of 1 km). In this case, waste heat generated from each plant can be mutually utilized between the plurality of plants.
  • waste heat from a combustion ash generation plant such as a thermal power plant, which is a generation source of combustion ash, or waste heat from a cement manufacturing plant (cement factory) can be used as a heat source necessary for an ash treatment plant.
  • a combustion ash generation plant such as a thermal power plant, which is a generation source of combustion ash, or waste heat from a cement manufacturing plant (cement factory)
  • waste heat from a cement manufacturing plant cement factory
  • ammonia, gypsum, and residue are used only for specific applications, so in addition to the combustion ash generation plant, a small number of plants such as an ash treatment plant and a cement production plant are used. All that is needed is ammonia, gypsum and residue recovered from the combustion ash.
  • a part of the calcium carbonate generated in the cement manufacturing plant can be used for desulfurization of the sulfur oxide-containing exhaust gas of the combustion ash generation plant such as a thermal power plant.
  • FIG. 1 is a diagram showing an example of a system for using components contained in heavy oil combustion ash of the present invention.
  • the method of using the components contained in the heavy oil-based combustion ash of the present invention includes (A) a separation / recovery step for separating and recovering non-ferrous metal compounds, ammonia, gypsum and residues from the heavy oil-based combustion ash; (B) a denitration step of adding the ammonia to the nitrogen oxide-containing exhaust gas to denitrate the nitrogen oxide in the exhaust gas; and (C) gypsum for producing a gypsum product and / or cement using the gypsum. A utilization process, and (D) a residue utilization process that utilizes the residue as a part of the cement clinker raw material.
  • the method of the present invention can include a heavy oil combustion step of burning heavy oil fuel to obtain heavy oil combustion ash as a pre-step of step (A).
  • heavy oil-based fuels include tar fuel, heavy oil, petroleum coke, petroleum pitch, and asphalt.
  • Heavy oil-based fuels include heavy oil and super heavy oil.
  • An example of the tar fuel is super heavy oil called orinocotal.
  • Orinocotal has been attracting attention as a new energy source in recent years because of its rich reserves. Orinocotal is a highly viscous heavy oil produced from the Orinoco River basin in Venezuela, and the emulsion of this oil is called Orimaru John. .
  • the components of the combustion ash of the origin include, for example, V 2 O 5 : 5 to 10 mass%, Ni: 0.5 to 4 mass%, MgO: 5 to 25 mass%, NH 3 : 15 to 30 mass%, SO 3 : 30 to 60% by mass.
  • the combustion ash of Olimar John contains vanadium, nickel and magnesium, and has a high sulfur content and ammonia content, so it is highly valuable as a resource.
  • the combustion ash derived from orinocotal is suitably used as the heavy oil-based combustion ash that is the object to be treated of the present invention.
  • Heavy oil-based combustion ash refers to dust ash that is generated when heavy oil-based fuel is burned. Examples of the places where heavy oil combustion ash is generated include thermal power plants and other industrial plants. Heavy oil-based combustion ash is usually generated by using heavy oil-based fuel as fuel for boilers in plants such as thermal power plants.
  • Step (A) is a step of separating and recovering the nonferrous metal compound, ammonia, gypsum and residue from the heavy oil-based combustion ash.
  • a nonferrous metal compound is 1 type, or 2 or more types chosen from a vanadium compound, a magnesium compound, and a nickel compound, for example.
  • a compound includes a metal simple substance, a complex, etc. widely.
  • Ammonia is obtained by recovering ammonium sulfate in combustion ash, which is converted into ammonium ions by elution into a liquid, as ammonia gas, for example, by heating in a distillation column.
  • the gypsum is obtained by recovering the sulfur content in the combustion ash as a sulfate ion by adding a CaO source such as slaked lime as calcium sulfate (gypsum). Gypsum is usually recovered as dihydrate gypsum.
  • the residue is a solid content including components (for example, silica, alumina, etc.) other than the above-mentioned other components (vanadium compound, magnesium compound, nickel compound, ammonia, sulfur content).
  • the step (A) includes a water leaching step for converting combustion ash into an aqueous slurry, and diluting a filtrate obtained by solid-liquid separation of the aqueous slurry (pH 1 to 4), and then adding ammonia.
  • a diluted oxidation step in which vanadium in the liquid is further oxidized using an oxidizing agent (eg, air, hydrogen peroxide, etc.), and a vanadium extraction solvent for example, a vanadium extraction chelating agent (Tricaprylyl Methyl Ammonium Chloride) diluted with kerosene is added to extract vanadium, and after adding slaked lime slurry to the solution obtained in this step, solid-liquid separation Then, the gypsum is recovered, and then the treatment system (I) comprising the ammonia recovery step of recovering ammonia by heating the filtrate, and the solid content obtained by solid-liquid separation of the aqueous slurry.
  • an oxidizing agent eg, air, hydrogen peroxide, etc.
  • a vanadium extraction solvent for example, a vanadium extraction chelating agent (Tricaprylyl Methyl Ammonium Chloride) diluted with kerosene is added to extract vanadium, and after adding
  • Ammonia water is added to adjust to neutral or weak alkaline, and air is introduced to oxidize to oxidize and leach out vanadium, nickel and magnesium contained in the solid content, and the slurry obtained in this step
  • the method for separating and recovering each component in step (A) is not limited to the method described in JP-A-2002-166244, and other known methods may be employed.
  • the methods described in Japanese Patent Laid-Open No. 2002-166241 and the like can be employed.
  • Step (B) is a step of adding the ammonia obtained in the step (A) to the nitrogen oxide-containing exhaust gas to denitrate the nitrogen oxide in the exhaust gas.
  • the nitrogen oxide-containing exhaust gas include those generated in thermal power plants, cement factories, other nitrogen oxide-containing exhaust gas generation plants, and the like.
  • Step (C) is a step of producing a gypsum product and / or cement using the gypsum obtained in step (B).
  • a gypsum product is manufactured in a gypsum product manufacturing plant (gypsum product manufacturing plant), for example.
  • Examples of the gypsum product include gypsum board.
  • Step (D) is a step of using the residue obtained in step (A) as part of the cement clinker raw material.
  • the residue obtained in the step (A) does not contain a specific non-ferrous metal compound such as vanadium, ammonia and gypsum, and contains silica, alumina and the like.
  • a cement clinker can be manufactured by adding this residue to a normal cement clinker raw material and mixing the mixture, and firing the resulting mixture in a rotary kiln. As described above, the obtained cement clinker is cemented with gypsum added in the step (C).
  • the utilization system of components contained in the heavy oil-based combustion ash of the present invention includes: (a) an ash treatment plant for separating and recovering non-ferrous metal compounds, ammonia, gypsum and residues from heavy oil-based combustion ash; (B) a denitration plant for denitrating nitrogen oxides in the exhaust gas by adding the ammonia to the nitrogen oxide-containing exhaust gas, and (c) producing a gypsum product and / or cement using the gypsum. And (d) a cement production plant for using the residue as part of the cement clinker raw material.
  • the utilization system of the present invention can include a combustion ash generation plant for burning heavy oil fuel to obtain heavy oil combustion ash.
  • Examples of the combustion ash generation plant include a thermal power plant and other industrial plants.
  • Examples of the (a) ash treatment plant include a plant for carrying out a method similar to the method for treating petroleum-based combustion ash described in JP-A-2002-166244 described above.
  • Examples of the denitration plant include a thermal power plant, a cement production plant, and other nitrogen oxide-containing exhaust gas generation plants.
  • C As a gypsum utilization plant, a cement manufacturing plant, a gypsum product manufacturing plant, etc. are mentioned, for example.
  • the utilization system of the present invention can be configured so that (b) waste heat generated in a denitration plant is used as part of the heat source used for separation or recovery of each component in the ash treatment plant.
  • the utilization system of the present invention can be configured such that all plants are within a region of preferably a radius of 1 km, more preferably a radius of 0.8 km.
  • An example of the utilization system of the present invention shown in FIG. 1 includes four plants: a thermal power plant, an ash processing plant (ash processing plant), a cement plant (cement manufacturing plant), and a gypsum product manufacturing plant. Of these, the gypsum product manufacturing plant can be omitted.
  • the combustion ash generated at the thermal power plant is transported to the ash treatment plant.
  • vanadium (V), nickel (Ni), and magnesium (Mg) compounds are separated and recovered, and ammonia, gypsum, and residues are generated.
  • ammonia is used for denitration of exhaust gas containing nitrogen oxides in a thermal power plant and / or a cement factory.
  • Gypsum is used as a cement raw material and / or a gypsum product raw material in a cement factory and / or a gypsum product manufacturing factory.
  • the residue is used as a raw material for cement clinker in a cement factory.
  • Waste heat generated in thermal power plants and cement factories is used as a heat source for the separation and recovery of each component (for example, recovery of ammonia in a distillation tower) in an ash treatment plant.
  • Calcium carbonate generated in a cement factory is used for desulfurization of exhaust gas containing sulfur oxides in a thermal power plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a method by which all of various types of components separated and recovered from heavy oil-based combustion ash can be recycled and used while the burden of transportation cost and the like is reduced. A method for utilizing components contained in heavy oil-based combustion ash comprises (A) a separation/recovery step of separating and recovering a nonferrous metal compound, ammonia, gypsum, and a residue from the heavy oil-based combustion ash, (B) a denitration step of denitrating nitrogen oxide in exhaust gas containing the nitrogen oxide by doping the exhaust gas with the ammonia, (C) a gypsum utilizing step of manufacturing gypsum products and/or cement by utilizing the gypsum, and (D) a residue utilizing step of utilizing the residue as part of a raw material for cement clinker.

Description

重質油系燃焼灰に含まれる成分の利用方法並びに利用システムUtilization method and utilization system of components contained in heavy oil combustion ash
 本発明は、重質油系燃焼灰に含まれる各種成分の利用方法並びに利用システムに関する。 The present invention relates to a utilization method and utilization system of various components contained in heavy oil combustion ash.
 火力発電所や各種工業プラントのボイラー等において、重油や石油コークス等の重質油系燃料が用いられることが多く、現在、多量の燃焼灰が排出されている。この燃焼灰の大部分は、埋め立て処分されているが、この燃焼灰にはバナジウム化合物、ニッケル化合物、マグネシウム化合物等の有用金属化合物や、アンモニア、硫黄等の各種成分が含有されており、環境汚染の防止および再資源化の観点から、これら各種成分の有効利用が求められている。 Heavy oil fuels such as heavy oil and petroleum coke are often used in boilers of thermal power plants and various industrial plants, and a large amount of combustion ash is currently discharged. Most of the combustion ash is disposed of in landfills, but the combustion ash contains useful metal compounds such as vanadium compounds, nickel compounds, and magnesium compounds, and various components such as ammonia and sulfur. From the viewpoint of prevention and recycling, effective utilization of these various components is required.
 石油系燃焼灰から、バナジウム化合物等の非鉄金属化合物とアンモニアと硫黄等を分離して回収する方法として、例えば、特開2002-166244号公報には、石油系燃焼灰を水性スラリーにする水浸出工程(A)、この水性スラリーを固液分離した溶液を希釈し、アンモニアを添加して中性ないし弱アルカリ性に調整し、さらに液中のバナジウムを酸化する工程(B)、この溶液にバナジウム抽出溶媒を加えてバナジウムを抽出する工程(C)からなる処理系統(I)と、上記水性スラリーを固液分離した固形分にアンモニア水を加えて中性ないし弱アルカリ性に調整すると共に酸化処理して固形分に含まれるバナジウム、ニッケルおよびマグネシウムを溶出させる酸化浸出工程(D)、この浸出スラリーを固液分離した溶液からバナジウムおよび/またはニッケルを溶媒抽出する工程(E)からなる処理系統(II)とを有することを特徴とする石油系燃焼灰の処理方法(第2頁の請求項1)、上記処理系統(I)が、バナジウム抽出後の溶液から石膏を沈澱分離し、さらにこの溶液を蒸留塔に導いてアンモニアを蒸発させて水と分離して回収する工程(G)を有すること(請求項2)、上記処理系統(II)が、溶媒抽出後の溶液から石膏と水酸化マグネシウムを沈澱分離して回収する工程(F)と、この溶液を蒸留塔に導いてアンモニアを蒸発させて水と分離して回収する工程(H)とを有すること(請求項3)、が記載されている。
 また、この文献には、工程(D)で得られる固形分を、セメント原料として利用することが記載されている(第4頁の段落0015)。
 なお、石油系燃焼灰から有用金属化合物等を分離して回収する方法は、前記の文献以外に、例えば、特開平11-207292号公報、特開平11-207293号公報、特開平11-235562号公報、特開2001-179214号公報、特開2001-192747号公報、特開2001-192749号公報、特開2002-166241号公報等に記載されている。
As a method for separating and recovering nonferrous metal compounds such as vanadium compounds and ammonia and sulfur from petroleum combustion ash, for example, Japanese Patent Application Laid-Open No. 2002-166244 discloses water leaching to make petroleum combustion ash into an aqueous slurry. Step (A), a solution obtained by solid-liquid separation of this aqueous slurry is diluted, ammonia is added to adjust to neutral or weak alkalinity, and vanadium in the solution is oxidized (B). A treatment system (I) comprising a step (C) of extracting a vanadium by adding a solvent, and adjusting the neutrality or weak alkalinity by adding ammonia water to the solid content obtained by solid-liquid separation of the aqueous slurry, followed by an oxidation treatment. Oxidation leaching step (D) for eluting vanadium, nickel and magnesium contained in the solid content, vanadium and / or from the solution obtained by solid-liquid separation of this leaching slurry Or a processing system (II) comprising a step (E) of extracting nickel with a solvent, and a method for treating petroleum combustion ash (claim 1 on page 2), wherein the processing system (I) comprises: (G) further comprising a step (G) of separating and recovering gypsum from the solution after the vanadium extraction, and further introducing the solution to a distillation column to evaporate ammonia to separate it from water. II) is a step (F) in which gypsum and magnesium hydroxide are separated and recovered from the solvent-extracted solution, and a step in which this solution is led to a distillation column to evaporate ammonia and separated from water to recover ( (Claim 3).
In addition, this document describes that the solid content obtained in step (D) is used as a cement raw material (paragraph 0015 on page 4).
In addition to the above documents, methods for separating and recovering useful metal compounds and the like from petroleum-based combustion ash include, for example, JP-A-11-207292, JP-A-11-207293, JP-A-11-235562. JP-A-2001-179214, JP-A-2001-192747, JP-A-2001-192749, JP-A-2002-166241, and the like.
特開2002-166244号公報JP 2002-166244 A 特開平11-207292号公報Japanese Patent Laid-Open No. 11-207292 特開平11-207293号公報JP 11-207293 A 特開平11-235562号公報Japanese Patent Laid-Open No. 11-235562 特開2001-179214号公報JP 2001-179214 A 特開2001-192747号公報JP 2001-192747 A 特開2001-192749号公報JP 2001-192749 A 特開2002-166241号公報JP 2002-166241 A
 前記の文献(特開2002-166244号公報)には、上述のとおり、石油系燃焼灰から、バナジウム化合物等の非鉄金属化合物と、アンモニアと、石膏(硫黄含有物質)と、固形分(処理後の残渣)を分離して回収する方法が記載されている。
 しかし、バナジウム化合物等の非鉄金属化合物と、アンモニアと、硫黄と、残渣を分離して回収することができたとしても、これらの回収物の中で再資源化して利用しないものがある場合には、この利用しない回収物は、石油系燃焼灰から新たに生じた廃棄物に過ぎないものとなる。
 一方、これらの回収物のすべてを再資源化して利用することは、各回収物毎に遠隔の各種工場に運搬しなければならないなど、輸送時の労力やコスト等の面での負担が大きく、実用化するには、これらの負担の軽減が必要であるという問題がある。
 なお、石油系燃焼灰の中でも、重質油系燃焼灰は、バナジウム化合物、ニッケル化合物等の有用金属化合物の含有率が高いため、昨今の資源枯渇の観点から、これら成分を分離・回収し再資源化して利用することが、特に期待されている。
 本発明は、前記の諸事情に鑑みてなされたものであって、重質油系燃焼灰から分離して回収された各種成分のすべてを、輸送コスト等の負担を軽減しつつ、再資源化して利用することのできる方法並びに利用システムを提供することを目的とする。
In the above-mentioned document (Japanese Patent Laid-Open No. 2002-166244), as described above, non-ferrous metal compounds such as vanadium compounds, ammonia, gypsum (sulfur-containing substances), solids (after treatment) The method of separating and recovering the residue) is described.
However, even if non-ferrous metal compounds such as vanadium compounds, ammonia, sulfur, and residues can be separated and recovered, if there is something that cannot be recycled and reused among these recovered materials The recovered material that is not used is only waste newly generated from petroleum combustion ash.
On the other hand, recycling and using all of these collected materials has a heavy burden in terms of labor and costs during transportation, such as having to transport each collected material to various remote factories, There is a problem that it is necessary to reduce these burdens for practical use.
Among oil-based combustion ash, heavy oil-based combustion ash has a high content of useful metal compounds such as vanadium compounds and nickel compounds. Therefore, these components are separated, recovered, and reused from the viewpoint of recent resource depletion. It is particularly expected to use it as a resource.
The present invention has been made in view of the above-mentioned circumstances, and all of the various components separated and recovered from the heavy oil-based combustion ash are recycled while reducing the burden on transportation costs and the like. It is an object of the present invention to provide a method and a use system that can be used.
 本発明者は、上記課題を解決するために鋭意検討した結果、重質油系燃焼灰から分離して回収された各種成分の用途を限定すれば、上記課題を解決しうることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
[1] (A)重質油系燃焼灰から、非鉄金属化合物、アンモニア、石膏および残渣を分離して回収する分離・回収工程と、(B)前記アンモニアを、窒素酸化物含有排ガスに添加して、該排ガス中の窒素酸化物を脱硝する脱硝工程と、(C)前記石膏を用いて、石膏製品および/またはセメントを製造する石膏利用工程と、(D)前記残渣をセメントクリンカ原料の一部として利用する残渣利用工程とを含むことを特徴とする重質油系燃焼灰に含まれる成分の利用方法。
[2] 工程(A)の前工程として、重質油系燃料を燃焼させて前記重質油系燃焼灰を得る重質油燃焼工程、を含む前記[1]に記載の重質油系燃焼灰に含まれる成分の利用方法。
[3] 前記重質油系燃焼灰は、火力発電所またはその他の工業プラントで重質油系燃料を燃焼させて発生する灰であり、前記非鉄金属化合物は、バナジウム化合物、ニッケル化合物およびマグネシウム化合物からなる群より選ばれる一種または二種以上であり、前記窒素酸化物含有排ガスは、火力発電所、セメント製造プラントおよびその他の窒素酸化物含有排ガス発生プラントから選ばれる一つ以上のプラントで発生する排ガスである前記[1]又は[2]に記載の重質油系燃焼灰に含まれる成分の利用方法。
[4] 前記重質油系燃焼灰は、オリノコタールに由来する燃焼灰である前記[1]~[3]のいずれかに記載の重質油系燃焼灰に含まれる成分の利用方法。
As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved by limiting the use of various components separated and recovered from heavy oil-based combustion ash. Completed the invention.
That is, the present invention provides the following [1] to [10].
[1] (A) Separation / recovery process for separating and recovering non-ferrous metal compounds, ammonia, gypsum and residues from heavy oil-based combustion ash, and (B) adding the ammonia to the exhaust gas containing nitrogen oxides A denitration process for denitrating nitrogen oxides in the exhaust gas, (C) a gypsum utilization process for producing a gypsum product and / or cement using the gypsum, and (D) the residue as a cement clinker raw material. A method for using a component contained in heavy oil-based combustion ash, comprising a residue utilization step utilized as a part.
[2] The heavy oil combustion according to the above [1], which includes a heavy oil combustion step of burning the heavy oil fuel to obtain the heavy oil combustion ash as a pre-step of the step (A) How to use ingredients contained in ash.
[3] The heavy oil-based combustion ash is ash generated by burning heavy oil-based fuel in a thermal power plant or other industrial plant, and the non-ferrous metal compound includes a vanadium compound, a nickel compound, and a magnesium compound. The nitrogen oxide-containing exhaust gas is generated in one or more plants selected from thermal power plants, cement manufacturing plants, and other nitrogen oxide-containing exhaust gas generation plants. The utilization method of the component contained in the heavy oil type combustion ash as described in said [1] or [2] which is exhaust gas.
[4] The method of using a component contained in the heavy oil-based combustion ash according to any one of [1] to [3], wherein the heavy oil-based combustion ash is combustion ash derived from orinocotal.
[5] (a)重質油系燃焼灰から、非鉄金属化合物、アンモニア、石膏および残渣を分離して回収するための灰処理プラントと、(b)前記アンモニアを窒素酸化物含有排ガスに添加して、該排ガス中の窒素酸化物を脱硝するための脱硝プラントと、(c)前記石膏を用いて、石膏製品および/またはセメントを製造するための石膏利用プラントと、(d)前記残渣をセメントクリンカ原料の一部として利用するためのセメント製造プラントとを含むことを特徴とする重質油系燃焼灰に含まれる成分の利用システム。
[6] 重質油系燃料を燃焼させて前記重質油系燃焼灰を得るための燃焼灰発生プラント、を含む前記[5]に記載の重質油系燃焼灰に含まれる成分の利用システム。
[7] 前記(b)脱硝プラントが、火力発電所、セメント製造プラントおよびその他の窒素酸化物含有排ガス発生プラントから選ばれる一つ以上のプラントである前記[5]又は[6]に記載の重質油系燃焼灰に含まれる成分の利用システム。
[8] 前記(c)石膏利用プラントが、セメント製造プラントおよび/または石膏製品製造プラントである前記[5]~[7]のいずれかに記載の重質油系燃焼灰に含まれる成分の利用システム。
[9] 前記(a)灰処理プラントにおける前記分離または回収に供する熱源の一部に、(b)脱硝プラントから発生する廃熱を用いるように構成してなる前記[5]~[8]のいずれかに記載の重質油系燃焼灰に含まれる成分の利用システム。
[10] 半径1kmの領域内に前記のすべてのプラントが収まるように構成してなる前記[5]~[9]のいずれかに記載の重質油系燃焼灰に含まれる成分の利用システム。
[5] (a) An ash treatment plant for separating and recovering non-ferrous metal compounds, ammonia, gypsum and residues from heavy oil-based combustion ash; and (b) adding the ammonia to the nitrogen oxide-containing exhaust gas. A denitration plant for denitrating nitrogen oxides in the exhaust gas, (c) a gypsum utilization plant for producing a gypsum product and / or cement using the gypsum, and (d) the residue as cement. A system for using components contained in heavy oil-based combustion ash, comprising a cement production plant for use as a part of clinker raw material.
[6] The system for using components contained in the heavy oil-based combustion ash according to [5], including a combustion ash generation plant for burning the heavy oil-based fuel to obtain the heavy oil-based combustion ash .
[7] The weight according to [5] or [6], wherein the (b) denitration plant is one or more plants selected from a thermal power plant, a cement production plant, and other nitrogen oxide-containing exhaust gas generation plants. Utilization system of components contained in quality oil combustion ash.
[8] Utilization of components contained in heavy oil-based combustion ash according to any one of [5] to [7], wherein (c) the gypsum utilization plant is a cement production plant and / or a gypsum product production plant system.
[9] The above [5] to [8], wherein (a) waste heat generated from the denitration plant is used as part of the heat source used for the separation or recovery in the (a) ash treatment plant. Use system of components contained in heavy oil combustion ash according to any one of the above.
[10] The system for using components contained in the heavy oil-based combustion ash according to any one of the above [5] to [9], wherein all the plants are contained within an area having a radius of 1 km.
 本発明によれば、重質油系燃焼灰から分離して回収したバナジウム化合物等の非鉄金属化合物とアンモニアと硫黄分(石膏)と残渣のすべてを利用することができるため、新たな廃棄物は発生しない。
 また、本発明によれば、灰処理プラントで生じるアンモニア、石膏および残渣の各々を特定の用途に限定して用いているので、燃焼灰発生プラント、灰処理プラント及び前記の特定の用途に対応するプラント群を同一の構内(例えば、半径1kmの領域内に収まる区域内)に設けて、燃焼灰、アンモニア、石膏および残渣の輸送コスト等の負担を大きく軽減することが可能である。
 この場合、各プラントから発生する廃熱を、前記の複数のプラントの間で相互に利用することもできる。例えば、燃焼灰の発生源である火力発電所等の燃焼灰発生プラントの廃熱や、セメント製造プラント(セメント工場)の廃熱を、灰処理プラントで必要な熱源として用いることができる。
 また、この場合、比重が小さく飛散した場合に環境汚染を招くおそれがある重質油系燃焼灰は、同一の構内での移動に限られるため、構内から外部への拡散を招くこともない。
 また、本発明によれば、残渣をセメントクリンカ原料の一部として利用するため、セメントの品質規格を満たす限りにおいて、残渣中に非鉄金属化合物等が一部残存してもよい。したがって、新たな廃棄物の発生の回避のために非鉄金属化合物等の各成分の分離の精度を非常に高めることは不要であり、各成分の分離及び回収の工程の簡易化及び処理コストの削減を図ることができる。
 また、本発明によれば、アンモニア、石膏および残渣の各々を特定の用途に限定して用いているので、燃焼灰発生プラントに加えて、少数のプラント、例えば、灰処理プラントおよびセメント製造プラントを設けるだけで、燃焼灰から回収したアンモニア、石膏および残渣のすべてを利用することができる。
 この場合、セメント製造プラントで生成した炭酸カルシウムの一部は、火力発電所等の燃焼灰発生プラントの硫黄酸化物含有排ガスの脱硫に用いることもできる。
According to the present invention, since all nonferrous metal compounds such as vanadium compounds recovered from heavy oil-based combustion ash, ammonia, sulfur (gypsum) and residues can be used, new waste is Does not occur.
In addition, according to the present invention, ammonia, gypsum, and residue generated in the ash treatment plant are used only for specific applications, and therefore correspond to the combustion ash generation plant, the ash treatment plant, and the specific application. It is possible to greatly reduce burdens such as transportation costs of combustion ash, ammonia, gypsum, and residues by providing a group of plants in the same premises (for example, in an area within a radius of 1 km).
In this case, waste heat generated from each plant can be mutually utilized between the plurality of plants. For example, waste heat from a combustion ash generation plant such as a thermal power plant, which is a generation source of combustion ash, or waste heat from a cement manufacturing plant (cement factory) can be used as a heat source necessary for an ash treatment plant.
Further, in this case, heavy oil-based combustion ash that may cause environmental pollution when scattered with a small specific gravity is limited to movement within the same premises, and thus does not cause diffusion from the premises to the outside.
Further, according to the present invention, since the residue is used as a part of the cement clinker raw material, a part of the non-ferrous metal compound or the like may remain in the residue as long as the cement quality standard is satisfied. Therefore, it is not necessary to increase the accuracy of separation of each component such as non-ferrous metal compounds in order to avoid the generation of new waste, simplifying the separation and recovery process of each component, and reducing processing costs. Can be achieved.
In addition, according to the present invention, ammonia, gypsum, and residue are used only for specific applications, so in addition to the combustion ash generation plant, a small number of plants such as an ash treatment plant and a cement production plant are used. All that is needed is ammonia, gypsum and residue recovered from the combustion ash.
In this case, a part of the calcium carbonate generated in the cement manufacturing plant can be used for desulfurization of the sulfur oxide-containing exhaust gas of the combustion ash generation plant such as a thermal power plant.
図1は本発明の重質油系燃焼灰に含まれる成分の利用システムの一例を示す図である。FIG. 1 is a diagram showing an example of a system for using components contained in heavy oil combustion ash of the present invention.
 本発明の重質油系燃焼灰に含まれる成分の利用方法は、(A)重質油系燃焼灰から、非鉄金属化合物、アンモニア、石膏および残渣を分離して回収する分離・回収工程と、(B)前記アンモニアを、窒素酸化物含有排ガスに添加して、該排ガス中の窒素酸化物を脱硝する脱硝工程と、(C)前記石膏を用いて、石膏製品および/またはセメントを製造する石膏利用工程と、(D)前記残渣をセメントクリンカ原料の一部として利用する残渣利用工程とを含むものである。 The method of using the components contained in the heavy oil-based combustion ash of the present invention includes (A) a separation / recovery step for separating and recovering non-ferrous metal compounds, ammonia, gypsum and residues from the heavy oil-based combustion ash; (B) a denitration step of adding the ammonia to the nitrogen oxide-containing exhaust gas to denitrate the nitrogen oxide in the exhaust gas; and (C) gypsum for producing a gypsum product and / or cement using the gypsum. A utilization process, and (D) a residue utilization process that utilizes the residue as a part of the cement clinker raw material.
[前工程]
 本発明の方法は、工程(A)の前工程として、重質油系燃料を燃焼させて重質油系燃焼灰を得る重質油燃焼工程、を含むことができる。
 重質油系燃料の例としては、タール質燃料、重油、石油コークス、石油ピッチ、アスファルト等が挙げられる。重質油系燃料は、重質油および超重質油を含む。
 タール質燃料の一例として、オリノコタールと称する超重質油が挙げられる。オリノコタールは、豊富な埋蔵量が見込まれることから、新たなエネルギー源として近年注目されている。オリノコタールは、ベネズエラのオリノコ川流域から産出する高粘性の重質油であり、これをエマルジョン化したものは、オリマルジョンと呼ばれている。。オリマルジョンの燃焼灰の成分は、例えば、V25:5~10質量%、Ni:0.5~4質量%、MgO:5~25質量%、NH3:15~30質量%、SO3:30~60質量%である。この成分例に示すように、オリマルジョンの燃焼灰は、バナジウム、ニッケルおよびマグネシウムを含み、かつ硫黄分およびアンモニアの含有率が高いので、資源としての価値が高い。このように、オリノコタールに由来する燃焼灰は、本発明の処理対象物である重質油系燃焼灰として好適に用いられる。
 重質油系燃焼灰とは、重質油系燃料を燃焼させた際に生じる塵灰をいう。
 重質油系燃焼灰の発生場所としては、火力発電所、その他の工業プラント等が挙げられる。重質油系燃焼灰は、通常、火力発電所等のプラント内のボイラーの燃料として重質油系燃料を用いることによって発生する。
[pre-process]
The method of the present invention can include a heavy oil combustion step of burning heavy oil fuel to obtain heavy oil combustion ash as a pre-step of step (A).
Examples of heavy oil-based fuels include tar fuel, heavy oil, petroleum coke, petroleum pitch, and asphalt. Heavy oil-based fuels include heavy oil and super heavy oil.
An example of the tar fuel is super heavy oil called orinocotal. Orinocotal has been attracting attention as a new energy source in recent years because of its rich reserves. Orinocotal is a highly viscous heavy oil produced from the Orinoco River basin in Venezuela, and the emulsion of this oil is called Orimaru John. . The components of the combustion ash of the origin include, for example, V 2 O 5 : 5 to 10 mass%, Ni: 0.5 to 4 mass%, MgO: 5 to 25 mass%, NH 3 : 15 to 30 mass%, SO 3 : 30 to 60% by mass. As shown in this component example, the combustion ash of Olimar John contains vanadium, nickel and magnesium, and has a high sulfur content and ammonia content, so it is highly valuable as a resource. Thus, the combustion ash derived from orinocotal is suitably used as the heavy oil-based combustion ash that is the object to be treated of the present invention.
Heavy oil-based combustion ash refers to dust ash that is generated when heavy oil-based fuel is burned.
Examples of the places where heavy oil combustion ash is generated include thermal power plants and other industrial plants. Heavy oil-based combustion ash is usually generated by using heavy oil-based fuel as fuel for boilers in plants such as thermal power plants.
[工程(A)]
 工程(A)は、重質油系燃焼灰から、非鉄金属化合物、アンモニア、石膏および残渣を分離して回収する工程である。
 本発明において、非鉄金属化合物とは、例えば、バナジウム化合物、マグネシウム化合物およびニッケル化合物から選ばれる一種または二種以上である。なお、本明細書において、化合物とは、金属単体や錯体等を広く包含するものである。
 アンモニアは、燃焼灰中の硫酸アンモニウムが液中に溶出してアンモニウムイオンとなったものを、例えば蒸留塔での加熱によってアンモニアガスとして回収するものである。
 石膏は、燃焼灰中の硫黄分が液中に溶出して硫酸イオンとなったものを、消石灰等のCaO源を加えることによって、硫酸カルシウム(石膏)として回収するものである。石膏は、通常、二水石膏として回収される。
 残渣は、上述の他の成分(バナジウム化合物、マグネシウム化合物、ニッケル化合物、アンモニア、硫黄分)以外の成分(例えば、シリカ、アルミナ等)を含む固形分である。
[Step (A)]
Step (A) is a step of separating and recovering the nonferrous metal compound, ammonia, gypsum and residue from the heavy oil-based combustion ash.
In this invention, a nonferrous metal compound is 1 type, or 2 or more types chosen from a vanadium compound, a magnesium compound, and a nickel compound, for example. In addition, in this specification, a compound includes a metal simple substance, a complex, etc. widely.
Ammonia is obtained by recovering ammonium sulfate in combustion ash, which is converted into ammonium ions by elution into a liquid, as ammonia gas, for example, by heating in a distillation column.
The gypsum is obtained by recovering the sulfur content in the combustion ash as a sulfate ion by adding a CaO source such as slaked lime as calcium sulfate (gypsum). Gypsum is usually recovered as dihydrate gypsum.
The residue is a solid content including components (for example, silica, alumina, etc.) other than the above-mentioned other components (vanadium compound, magnesium compound, nickel compound, ammonia, sulfur content).
 工程(A)における各成分の分離および回収の方法としては、例えば、上述の特開2002-166244号公報に記載されている石油系燃焼灰の処理方法と同様の方法を採用することができる。
 具体的には、工程(A)は、燃焼灰を水性スラリーにする水浸出工程と、この水性スラリー(pH1~4)を固液分離して得られた濾液を希釈した後、アンモニアを添加して中性ないし弱アルカリ性に調整し、さらに液中のバナジウムを酸化剤(例えば、空気、過酸化水素等)を用いて酸化する希釈酸化工程と、該工程で得られた溶液にバナジウム抽出溶媒(例えば、バナジウム抽出用キレート剤(Tricaprylyl Methyl Ammonium Chloride)をケロシンで希釈したもの)を加えてバナジウムを抽出するバナジウム抽出工程と、該工程で得られた溶液に消石灰スラリーを加えた後、固液分離して、石膏を回収し、次いで、濾液を加熱してアンモニアを回収するアンモニア回収工程とからなる処理系統(I)と、上記水性スラリーを固液分離して得られた固形分にアンモニア水を加えて中性ないし弱アルカリ性に調整すると共に空気を導入して酸化処理して、固形分に含まれるバナジウム、ニッケルおよびマグネシウムを溶出させる酸化浸出工程と、該工程で得られたスラリーを固液分離して得られた濾液から、バナジウム抽出溶媒(前記と同様のもの)および/またはニッケル抽出溶媒(例えば、バーサチック酸)を用いて、バナジウムおよび/またはニッケルを溶媒抽出する溶媒抽出工程と、該工程における処理後の溶液に消石灰スラリーを加えた後、固液分離して石膏を回収し、次いで、複数段の液体サイクロンを経て、水酸化マグネシウムを回収する石膏・マグネシウム回収工程と、該工程後の溶液を加熱してアンモニアを回収するアンモニア回収工程とからなる処理系統(II)とを有するものである。
 なお、工程(A)における各成分の分離および回収の方法としては、特開2002-166244号公報に記載されている方法に限らず、他の公知の方法を採用してもよい。例えば、上述の特開平11-207292号公報、特開平11-207293号公報、特開平11-235562号公報、特開2001-179214号公報、特開2001-192747号公報、特開2001-192749号公報、特開2002-166241号公報等に記載されている方法を採用することができる。
As a method for separating and recovering each component in the step (A), for example, a method similar to the method for treating petroleum combustion ash described in JP-A-2002-166244 described above can be employed.
Specifically, the step (A) includes a water leaching step for converting combustion ash into an aqueous slurry, and diluting a filtrate obtained by solid-liquid separation of the aqueous slurry (pH 1 to 4), and then adding ammonia. A diluted oxidation step in which vanadium in the liquid is further oxidized using an oxidizing agent (eg, air, hydrogen peroxide, etc.), and a vanadium extraction solvent ( For example, a vanadium extraction chelating agent (Tricaprylyl Methyl Ammonium Chloride) diluted with kerosene is added to extract vanadium, and after adding slaked lime slurry to the solution obtained in this step, solid-liquid separation Then, the gypsum is recovered, and then the treatment system (I) comprising the ammonia recovery step of recovering ammonia by heating the filtrate, and the solid content obtained by solid-liquid separation of the aqueous slurry. Ammonia water is added to adjust to neutral or weak alkaline, and air is introduced to oxidize to oxidize and leach out vanadium, nickel and magnesium contained in the solid content, and the slurry obtained in this step A solvent extraction step of solvent extraction of vanadium and / or nickel from the filtrate obtained by solid-liquid separation using a vanadium extraction solvent (same as described above) and / or a nickel extraction solvent (for example, versatic acid); , After adding slaked lime slurry to the solution after the treatment in this step, solid-liquid separation to collect gypsum, then, through a plurality of stages of liquid cyclone, gypsum and magnesium recovery step of recovering magnesium hydroxide, And a treatment system (II) comprising an ammonia recovery step of recovering ammonia by heating the solution after the step. That.
The method for separating and recovering each component in step (A) is not limited to the method described in JP-A-2002-166244, and other known methods may be employed. For example, the above-mentioned JP-A-11-207292, JP-A-11-207293, JP-A-11-235562, JP-A-2001-179214, JP-A-2001-192747, JP-A-2001-12749. The methods described in Japanese Patent Laid-Open No. 2002-166241 and the like can be employed.
[工程(B)]
 工程(B)は、工程(A)で得られたアンモニアを、窒素酸化物含有排ガスに添加して、該排ガス中の窒素酸化物を脱硝する工程である。
 窒素酸化物含有排ガスとしては、例えば、火力発電所、セメント工場、その他の窒素酸化物含有排ガス発生プラント等で発生するものが挙げられる。
[工程(C)]
 工程(C)は、工程(B)で得られた石膏を用いて、石膏製品および/またはセメントを製造する工程である。
 石膏製品は、例えば、石膏製品製造プラント(石膏製品製造工場)で製造される。石膏製品としては、石膏ボード等が挙げられる。
 セメントは、セメント製造プラント(セメント工場)において、セメントクリンカに少量の石膏を添加して混合し粉砕することによって製造される。
[工程(D)]
 工程(D)は、工程(A)で得られた残渣をセメントクリンカ原料の一部として利用する工程である。工程(A)で得られた残渣は、バナジウム等の特定の非鉄金属化合物、アンモニアおよび石膏を含まず、シリカ、アルミナ等を含むものである。この残渣を通常のセメントクリンカ原料に加えて混合し、得られた混合物をロータリーキルンで焼成することによって、セメントクリンカを製造することができる。得られたセメントクリンカは、上述のとおり、工程(C)において石膏が添加され、セメントとなる。
[Step (B)]
The step (B) is a step of adding the ammonia obtained in the step (A) to the nitrogen oxide-containing exhaust gas to denitrate the nitrogen oxide in the exhaust gas.
Examples of the nitrogen oxide-containing exhaust gas include those generated in thermal power plants, cement factories, other nitrogen oxide-containing exhaust gas generation plants, and the like.
[Step (C)]
Step (C) is a step of producing a gypsum product and / or cement using the gypsum obtained in step (B).
A gypsum product is manufactured in a gypsum product manufacturing plant (gypsum product manufacturing plant), for example. Examples of the gypsum product include gypsum board.
Cement is produced by adding a small amount of gypsum to a cement clinker, mixing, and grinding in a cement production plant (cement factory).
[Step (D)]
Step (D) is a step of using the residue obtained in step (A) as part of the cement clinker raw material. The residue obtained in the step (A) does not contain a specific non-ferrous metal compound such as vanadium, ammonia and gypsum, and contains silica, alumina and the like. A cement clinker can be manufactured by adding this residue to a normal cement clinker raw material and mixing the mixture, and firing the resulting mixture in a rotary kiln. As described above, the obtained cement clinker is cemented with gypsum added in the step (C).
 本発明の重質油系燃焼灰に含まれる成分の利用システムは、(a)重質油系燃焼灰から、非鉄金属化合物、アンモニア、石膏および残渣を分離して回収するための灰処理プラントと、(b)前記アンモニアを窒素酸化物含有排ガスに添加して、該排ガス中の窒素酸化物を脱硝するための脱硝プラントと、(c)前記石膏を用いて、石膏製品および/またはセメントを製造するための石膏利用プラントと、(d)前記残渣をセメントクリンカ原料の一部として利用するためのセメント製造プラントとを含むものである。
 本発明の利用システムは、重質油系燃料を燃焼させて重質油系燃焼灰を得るための燃焼灰発生プラント、を含むことができる。該燃焼灰発生プラントとしては、例えば、火力発電所や、その他の工業プラントが挙げられる。
 (a)灰処理プラントとしては、例えば、上述の特開2002-166244号公報に記載されている石油系燃焼灰の処理方法と同様の方法を実施するためのプラント等が挙げられる。
 (b)脱硝プラントとしては、例えば、火力発電所、セメント製造プラント、その他の窒素酸化物含有排ガス発生プラント等が挙げられる。
 (c)石膏利用プラントとしては、例えば、セメント製造プラント、石膏製品製造プラント等が挙げられる。
 (a)灰処理プラントにおける各成分の分離または回収に供する熱源の一部として、(b)脱硝プラントで発生する廃熱を用いるように、本発明の利用システムを構成することができる。この場合、本発明の利用システムで外部から導入するエネルギーの量を削減することができる。
 本発明の利用システムは、好ましくは半径1km、より好ましくは半径0.8kmの領域内にすべてのプラントが収まるように構成することができる。
The utilization system of components contained in the heavy oil-based combustion ash of the present invention includes: (a) an ash treatment plant for separating and recovering non-ferrous metal compounds, ammonia, gypsum and residues from heavy oil-based combustion ash; (B) a denitration plant for denitrating nitrogen oxides in the exhaust gas by adding the ammonia to the nitrogen oxide-containing exhaust gas, and (c) producing a gypsum product and / or cement using the gypsum. And (d) a cement production plant for using the residue as part of the cement clinker raw material.
The utilization system of the present invention can include a combustion ash generation plant for burning heavy oil fuel to obtain heavy oil combustion ash. Examples of the combustion ash generation plant include a thermal power plant and other industrial plants.
Examples of the (a) ash treatment plant include a plant for carrying out a method similar to the method for treating petroleum-based combustion ash described in JP-A-2002-166244 described above.
(B) Examples of the denitration plant include a thermal power plant, a cement production plant, and other nitrogen oxide-containing exhaust gas generation plants.
(C) As a gypsum utilization plant, a cement manufacturing plant, a gypsum product manufacturing plant, etc. are mentioned, for example.
(A) The utilization system of the present invention can be configured so that (b) waste heat generated in a denitration plant is used as part of the heat source used for separation or recovery of each component in the ash treatment plant. In this case, the amount of energy introduced from the outside by the utilization system of the present invention can be reduced.
The utilization system of the present invention can be configured such that all plants are within a region of preferably a radius of 1 km, more preferably a radius of 0.8 km.
 図1に示す本発明の利用システムの一例は、火力発電所、灰処理工場(灰処理プラント)、セメント工場(セメント製造プラント)、石膏製品製造工場、の4つのプラントを含む。このうち、石膏製品製造工場は、省略することができる。
 火力発電所で発生した燃焼灰は、灰処理工場へと運搬される。灰処理工場では、バナジウム(V)、ニッケル(Ni)、マグネシウム(Mg)の各化合物が分離されて回収されるとともに、アンモニア、石膏、残渣が生じる。
 このうち、アンモニアは、火力発電所および/またはセメント工場における窒素酸化物含有排ガスの脱硝に用いられる。石膏は、セメント工場および/または石膏製品製造工場におけるセメント原料および/または石膏製品原料として用いられる。残渣は、セメント工場におけるセメントクリンカ原料として用いられる。
 火力発電所およびセメント工場で生じた廃熱は、灰処理工場における各成分の分離および回収(例えば、蒸留塔におけるアンモニアの回収)の際の熱源として用いられる。
 セメント工場で生じる炭酸カルシウムは、火力発電所における硫黄酸化物含有排ガスの脱硫に用いられる。
An example of the utilization system of the present invention shown in FIG. 1 includes four plants: a thermal power plant, an ash processing plant (ash processing plant), a cement plant (cement manufacturing plant), and a gypsum product manufacturing plant. Of these, the gypsum product manufacturing plant can be omitted.
The combustion ash generated at the thermal power plant is transported to the ash treatment plant. In the ash treatment plant, vanadium (V), nickel (Ni), and magnesium (Mg) compounds are separated and recovered, and ammonia, gypsum, and residues are generated.
Among these, ammonia is used for denitration of exhaust gas containing nitrogen oxides in a thermal power plant and / or a cement factory. Gypsum is used as a cement raw material and / or a gypsum product raw material in a cement factory and / or a gypsum product manufacturing factory. The residue is used as a raw material for cement clinker in a cement factory.
Waste heat generated in thermal power plants and cement factories is used as a heat source for the separation and recovery of each component (for example, recovery of ammonia in a distillation tower) in an ash treatment plant.
Calcium carbonate generated in a cement factory is used for desulfurization of exhaust gas containing sulfur oxides in a thermal power plant.

Claims (10)

  1. (A)重質油系燃焼灰から、非鉄金属化合物、アンモニア、石膏および残渣を分離して回収する分離・回収工程と、
    (B)前記アンモニアを、窒素酸化物含有排ガスに添加して、該排ガス中の窒素酸化物を脱硝する脱硝工程と、
    (C)前記石膏を用いて、石膏製品および/またはセメントを製造する石膏利用工程と、
    (D)前記残渣をセメントクリンカ原料の一部として利用する残渣利用工程とを
    含むことを特徴とする重質油系燃焼灰に含まれる成分の利用方法。
    (A) a separation / recovery process for separating and collecting non-ferrous metal compounds, ammonia, gypsum and residues from heavy oil-based combustion ash;
    (B) a denitration step of adding the ammonia to the nitrogen oxide-containing exhaust gas to denitrate the nitrogen oxide in the exhaust gas;
    (C) a gypsum utilization process for producing a gypsum product and / or cement using the gypsum;
    (D) A method of using a component contained in heavy oil-based combustion ash, comprising a residue utilization step of utilizing the residue as part of a cement clinker raw material.
  2.  工程(A)の前工程として、重質油系燃料を燃焼させて前記重質油系燃焼灰を得る重質油燃焼工程、を含む請求項1に記載の重質油系燃焼灰に含まれる成分の利用方法。 It is contained in the heavy oil combustion ash of Claim 1 including the heavy oil combustion process of burning a heavy oil fuel and obtaining the said heavy oil combustion ash as a pre-process of a process (A). How to use the ingredients.
  3.  前記重質油系燃焼灰は、火力発電所またはその他の工業プラントで重質油系燃料を燃焼させて発生する灰であり、
     前記非鉄金属化合物は、バナジウム化合物、ニッケル化合物およびマグネシウム化合物からなる群より選ばれる一種または二種以上であり、
     前記窒素酸化物含有排ガスは、火力発電所、セメント製造プラントおよびその他の窒素酸化物含有排ガス発生プラントから選ばれる一つ以上のプラントで発生する排ガスである請求項1又は2に記載の重質油系燃焼灰に含まれる成分の利用方法。
    The heavy oil-based combustion ash is ash generated by burning heavy oil-based fuel in a thermal power plant or other industrial plant,
    The non-ferrous metal compound is one or more selected from the group consisting of vanadium compounds, nickel compounds and magnesium compounds,
    The heavy oil according to claim 1 or 2, wherein the nitrogen oxide-containing exhaust gas is exhaust gas generated in one or more plants selected from a thermal power plant, a cement manufacturing plant, and other nitrogen oxide-containing exhaust gas generation plants. To use the components contained in the combustion ash.
  4.  前記重質油系燃焼灰は、オリノコタールに由来する燃焼灰である請求項1~3のいずれか1項に記載の重質油系燃焼灰に含まれる成分の利用方法。 The method for using a component contained in heavy oil-based combustion ash according to any one of claims 1 to 3, wherein the heavy oil-based combustion ash is combustion ash derived from orinocotal.
  5. (a)重質油系燃焼灰から、非鉄金属化合物、アンモニア、石膏および残渣を分離して回収するための灰処理プラントと、
    (b)前記アンモニアを窒素酸化物含有排ガスに添加して、該排ガス中の窒素酸化物を脱硝するための脱硝プラントと、
    (c)前記石膏を用いて、石膏製品および/またはセメントを製造するための石膏利用プラントと、
    (d)前記残渣をセメントクリンカ原料の一部として利用するためのセメント製造プラントとを
    含むことを特徴とする重質油系燃焼灰に含まれる成分の利用システム。
    (A) an ash treatment plant for separating and recovering nonferrous metal compounds, ammonia, gypsum and residues from heavy oil-based combustion ash;
    (B) a denitration plant for adding the ammonia to the nitrogen oxide-containing exhaust gas to denitrate the nitrogen oxides in the exhaust gas;
    (C) a gypsum utilization plant for producing a gypsum product and / or cement using the gypsum;
    (D) A system for using components contained in heavy oil-based combustion ash, comprising a cement manufacturing plant for using the residue as part of a cement clinker raw material.
  6.  重質油系燃料を燃焼させて前記重質油系燃焼灰を得るための燃焼灰発生プラント、を含む請求項5に記載の重質油系燃焼灰に含まれる成分の利用システム。 The utilization system of the component contained in the heavy oil type combustion ash of Claim 5 containing the combustion ash generation plant for burning the heavy oil type fuel and obtaining the said heavy oil type combustion ash.
  7.  前記(b)脱硝プラントが、火力発電所、セメント製造プラントおよびその他の窒素酸化物含有排ガス発生プラントから選ばれる一つ以上のプラントである請求項5又は6に記載の重質油系燃焼灰に含まれる成分の利用システム。 The heavy oil-based combustion ash according to claim 5 or 6, wherein the (b) denitration plant is one or more plants selected from a thermal power plant, a cement manufacturing plant, and other exhaust gas generation plants containing nitrogen oxides. Utilization system of contained components.
  8.  前記(c)石膏利用プラントが、セメント製造プラントおよび/または石膏製品製造プラントである請求項5~7のいずれか1項に記載の重質油系燃焼灰に含まれる成分の利用システム。 The system for using components contained in heavy oil-based combustion ash according to any one of claims 5 to 7, wherein the (c) gypsum utilization plant is a cement production plant and / or a gypsum product production plant.
  9.  前記(a)灰処理プラントにおける前記分離または回収に供する熱源の一部に、(b)脱硝プラントから発生する廃熱を用いるように構成してなる請求項5~8のいずれか1項に記載の重質油系燃焼灰に含まれる成分の利用システム。 The waste heat generated from the (b) denitration plant is used as a part of the heat source used for the separation or recovery in the (a) ash treatment plant, according to any one of claims 5 to 8. Utilization system of components contained in heavy oil combustion ash.
  10.  半径1kmの領域内に前記のすべてのプラントが収まるように構成してなる請求項5~9のいずれか1項に記載の重質油系燃焼灰に含まれる成分の利用システム。 The system for using components contained in heavy oil-based combustion ash according to any one of claims 5 to 9, wherein all of the plants are contained within an area of a radius of 1 km.
PCT/JP2009/060561 2009-06-09 2009-06-09 Method and system for utilizing components contained in heavy oil-based combustion ash WO2010143270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060561 WO2010143270A1 (en) 2009-06-09 2009-06-09 Method and system for utilizing components contained in heavy oil-based combustion ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060561 WO2010143270A1 (en) 2009-06-09 2009-06-09 Method and system for utilizing components contained in heavy oil-based combustion ash

Publications (1)

Publication Number Publication Date
WO2010143270A1 true WO2010143270A1 (en) 2010-12-16

Family

ID=43308538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060561 WO2010143270A1 (en) 2009-06-09 2009-06-09 Method and system for utilizing components contained in heavy oil-based combustion ash

Country Status (1)

Country Link
WO (1) WO2010143270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124679A (en) * 2019-02-05 2020-08-20 太平洋セメント株式会社 Processing method of incineration ash and processor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174947A (en) * 1996-12-18 1998-06-30 Chubu Electric Power Co Inc Mixing treatment of collected ash and desulfurization waste water of heavy oil fuel burning boiler
JPH10174946A (en) * 1996-12-18 1998-06-30 Chubu Electric Power Co Inc Mixing treatment of collected ash and desulfurization waste water of heavy oil fuel burning boiler
JPH11114516A (en) * 1997-10-16 1999-04-27 Kansai Electric Power Co Inc:The Treatment of collected ash of heavy oil firing boiler
JP2000073077A (en) * 1998-08-27 2000-03-07 Ishikawajima Harima Heavy Ind Co Ltd Recycling system for fuel additive by utilizing ash disposal and apparatus therefor
JP2001062421A (en) * 1999-08-26 2001-03-13 Kawasaki Heavy Ind Ltd Process and equipment for treatment of incineration ash
JP2001179214A (en) * 1999-12-28 2001-07-03 Taiheiyo Cement Corp Method for treating petroleum combustion ash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174947A (en) * 1996-12-18 1998-06-30 Chubu Electric Power Co Inc Mixing treatment of collected ash and desulfurization waste water of heavy oil fuel burning boiler
JPH10174946A (en) * 1996-12-18 1998-06-30 Chubu Electric Power Co Inc Mixing treatment of collected ash and desulfurization waste water of heavy oil fuel burning boiler
JPH11114516A (en) * 1997-10-16 1999-04-27 Kansai Electric Power Co Inc:The Treatment of collected ash of heavy oil firing boiler
JP2000073077A (en) * 1998-08-27 2000-03-07 Ishikawajima Harima Heavy Ind Co Ltd Recycling system for fuel additive by utilizing ash disposal and apparatus therefor
JP2001062421A (en) * 1999-08-26 2001-03-13 Kawasaki Heavy Ind Ltd Process and equipment for treatment of incineration ash
JP2001179214A (en) * 1999-12-28 2001-07-03 Taiheiyo Cement Corp Method for treating petroleum combustion ash

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124679A (en) * 2019-02-05 2020-08-20 太平洋セメント株式会社 Processing method of incineration ash and processor
JP7143233B2 (en) 2019-02-05 2022-09-28 太平洋セメント株式会社 Incineration ash disposal method

Similar Documents

Publication Publication Date Title
Clavier et al. Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production–a review
CN109607491B (en) Method for preparing sulfuric acid from desulfurized fly ash
JP2006205154A (en) Method for manufacturing adsorbent consisting essentially of hydroxyapatite crystal
CN1947872A (en) Water washing pretreatment method for making fly-ash from incineration harmless
CN109500061B (en) Method for combined utilization of incineration fly ash and bypass ash
CN110817925A (en) Method for resource utilization of desulfurized fly ash
Jordán et al. Technological behaviour and leaching tests in ceramic tile bodies obtained by recycling of copper slag and MSW fly ash wastes
KR101789701B1 (en) Manufacturing method of potassium chloride using cement bypass dust
CN106414319B (en) Citric acid soluble phosphorus hydrochlorate is prepared by two hypophosphites sources of calcining and sodium sulfur-containing compound
CN1301584A (en) Complex utilization method for boiler fume
JP2006263651A (en) Carbonated carbide, production method therefor, method for collecting zinc from fly ash from incinerator, and method for treating acidic gas in exhaust gas in incinerator
CN103506372A (en) Coal-fired furnace slag processing method
CN101481221B (en) Method for treating silicate slag from wastewater treatment
WO2010143270A1 (en) Method and system for utilizing components contained in heavy oil-based combustion ash
CN101461991A (en) Device and method for pretreatment of refuse burning flyash by wet method
CN101549859B (en) Comprehensive utilization method of phosphogypsum and fag-end
CN102921292A (en) Method used to improve carbon dioxide trapping performance of papermaking white mud in fire coal fluidized bed boiler system
JP6327943B2 (en) Method for recovering valuable metals in waste
CN102676118B (en) Curing agent for oily sludge incineration innocent treatment and usage method of curing agent
KR101365546B1 (en) Method for treatment of phosphoric gypsum using flue gas desulfurization dust
JP4358144B2 (en) Waste treatment apparatus and waste treatment method
JP4316425B2 (en) Thermal power plant operation method
Yermagambet et al. Methods for extraction of valuable components from ash-and-slag coal wastes
JP2009131726A (en) Method of treating flue gas
CN105984892A (en) Calcium sulfate biological treatment regeneration method based on biological desulphurization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP