KR101365546B1 - Method for treatment of phosphoric gypsum using flue gas desulfurization dust - Google Patents

Method for treatment of phosphoric gypsum using flue gas desulfurization dust Download PDF

Info

Publication number
KR101365546B1
KR101365546B1 KR20120128998A KR20120128998A KR101365546B1 KR 101365546 B1 KR101365546 B1 KR 101365546B1 KR 20120128998 A KR20120128998 A KR 20120128998A KR 20120128998 A KR20120128998 A KR 20120128998A KR 101365546 B1 KR101365546 B1 KR 101365546B1
Authority
KR
South Korea
Prior art keywords
flue gas
gas desulfurization
desulfurization dust
gypsum
present
Prior art date
Application number
KR20120128998A
Other languages
Korean (ko)
Inventor
석재민
반봉찬
Original Assignee
반봉찬
주식회사 신승오앤에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 반봉찬, 주식회사 신승오앤에프 filed Critical 반봉찬
Priority to KR20120128998A priority Critical patent/KR101365546B1/en
Application granted granted Critical
Publication of KR101365546B1 publication Critical patent/KR101365546B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/40Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by heating to effect chemical change, e.g. pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention relates to a method for treating waste phosphoric gypsum using flue gas desulfurization dust, wherein the method allows a user to crush flue gas desulfurization dust into a size of 25 micrometers or less, to mix the dust with waste phosphoric gypsum, and to sinter the mixture at 600-650 deg. C. The present invention can prevent environmental pollution by removing heavy metals from waste phosphoric gypsum using the flue gas desulfurization dust. More particularly, the present invention can create economic benefits by recycling waste phosphoric gypsum classified as industrial wastes into value-added resources. [Reference numerals] (AA) Weight

Description

배연탈황 분진을 이용한 폐인산석고의 처리방법{Method for treatment of phosphoric gypsum using flue gas desulfurization dust}Method for treatment of phosphoric gypsum using flue gas desulfurization dust

본 발명은 배연탈황 분진을 이용한 폐인산석고의 처리방법에 관한 것으로, 더욱 상세하게는 배연탈황 분진을 입정입도로 분쇄하여 폐인산석고와 혼합 교반한 후 일정온도로 소성하여 납과 중금속 등을 제거할 수 있도록 하는 배연탈황 분진을 이용한 폐인산석고의 처리방법에 관한 것이다.
The present invention relates to a method for treating waste phosphate gypsum using flue gas desulfurization dust, and more particularly, to remove lead and heavy metals by pulverizing flue gas desulphurization dust with a grain size and mixing and mixing with waste phosphate gypsum. The present invention relates to a method for treating waste phosphate gypsum using flue gas desulfurization dust.

일반적으로 인광석에서 인산을 추출하는 방법으로는 원소상태의 인의 연소와 수화에 의하여 추출하는 건식법과, 인광석의 황산분해에 의하여 추출하는 습식법으로 크게 구분되며 주로 습식법이 널리 사용되고 있다.In general, the extraction of phosphoric acid from phosphate ores is roughly divided into the dry method of extraction by the combustion and hydration of elemental phosphorus and the wet method of extraction by sulfuric acid decomposition of phosphate ore.

특히 국내의 경우 복합비료공장에서 복합비료에 인산 성분을 공급하기 위해서 인광석에서 인산을 추출하고 있다. In particular, in Korea, phosphoric acid is extracted from phosphate ores to supply phosphate components to complex fertilizers.

여기서 인산추출 공정은 인광석 선별 및 분쇄공정, 반수석고 분해반응공정, 반수석고 여과공정, 이수석고 전환공정, 이수석고 여과공정으로 이루어지고 있으며, 이 과정에서 일종의 폐기 부산물로 다량의 폐인산석고(CaSO 42H2O)가 발생한다.The phosphate extraction process consists of phosphate ore sorting and crushing process, hemihydrate gypsum decomposition process, hemihydrate gypsum filtration process, dihydrate gypsum conversion process, and dihydrate gypsum filtration process.In this process, a large amount of waste phosphate gypsum (CaSO) 42H 2 O).

이때 폐기용 부산물로 생성되는 폐인산석고의 크기 및 성분을 보면, 입자의 크기는 0.04~1.5이고 성분비율은 인광석의 종류 또는 저장장소에 따라 약간씩 달라질 수 있으나, 대체로 CaO가 약 30%, SO3가 약 45%, 결정수(H2O)가 약 20%, 그리고 나머지를 이루는 불순물로 이루어진다.At this time, the size and composition of the waste phosphate gypsum produced as a waste by-product, the particle size is 0.04 ~ 1.5 and the component ratio may vary slightly depending on the type or storage location of the phosphate, but CaO is approximately 30%, SO3 Is about 45%, crystal water (H2O) is about 20%, and the rest is composed of impurities.

현재 국내의 복합비료공장에서 부산물로 생성되는 폐인산석고의 양이 연간 70만 톤을 넘어서고 있으며, 야적되어 있는 폐인산석고의 양이 약 3천만 톤에 이르고 있는 실정으로 폐인산석고의 야적장 방치에 따른 분진발생 등의 문제들이 잠재되어 있다.At present, the amount of waste phosphate gypsum produced as a by-product from domestic compound fertilizer plants exceeds 700,000 tons per year, and the amount of waste phosphate gypsum that has been piled up is about 30 million tons. There are potential problems such as dust generation.

참고로 폐인산석고의 별다른 용도가 발견되지 않으므로 지금까지 폐인산석고는 건조, 소성 공정을 거쳐 무수석고, 반수석고를 생산하거나 또는 건조하여 이수석고로 소량 생산되어 판매되고 있을 뿐이다. For reference, no special use of waste phosphate gypsum has been found. So far, the waste phosphate gypsum has been produced and sold in small quantities as dihydrate gypsum after drying or calcining, or after drying.

더구나, 폐인산석고의 폐기처리에는 막대한 비용이 들기 때문에 복합비료공장들은 이를 제때에 폐기하지 못할 뿐만 아니라 환경오염원인 중금속까지 함유하고 있지만 처리기술이 없어 그대로 방치해두고 있는 실정이다.Moreover, the disposal of waste phosphate gypsum has enormous costs, so complex fertilizer plants not only dispose of it in a timely manner, but also contain heavy metals, which are environmental pollution sources, but have been left unattended because they do not have treatment technology.

따라서 최근에는 폐인산석고의 유해물을 선별하는 방법이 대한민국 등록특허공보 제10-0597707호(2006.07.05)에 개시되어 있다.Therefore, recently, a method for screening harmful substances of waste phosphate gypsum has been disclosed in Korean Patent Publication No. 10-0597707 (2006.07.05).

그러나 종래 폐인산석고의 유해물 선별방법은 다량의 물을 이용하는 습식방법으로 폐수발생과 처리 후 건조를 통한 많은 에너지가 소모된다는 점에서 경제성에 있어서 문제점을 제시하는 한계를 갖게 되었다. However, the conventional waste screening method of the phosphate gypsum has a limitation in presenting a problem in economics in that it is a wet method using a large amount of water and waste water is generated and consumed a lot of energy through drying after treatment.

아울러 일반적으로 연소되는 배기가스 중의 황산화물을 제거하기 위해 시행되는 배연탈황 공정 중에서도 특히 공정의 안정성을 기하기 위하여 아황산가스가 포함된 배기가스를 석회석 또는 소석희 슬러지와 접촉시켜 아황산가스를 제거하고 그 부산물로 석고를 생산하는 습식 석회석 석고법이 보편화 되어있다.In addition, among the flue gas desulfurization processes that are generally carried out to remove sulfur oxides in the combustion flue gas, in order to ensure the stability of the process, the flue gas containing sulfurous acid gas is contacted with limestone or Soseokhee sludge to remove sulfur dioxide. Wet limestone gypsum, which produces gypsum as a by-product, is commonplace.

특히 습식 석회석 석고법은 생성 부산물인 석고를 폐기하지 않고 시멘트의 첨가물과 지반 개량재 또는 판유리나 석고보드 등의 건축재료로의 이용이 가능하기 때문에 생성된 고체 폐기물을 저장 및 매립하기 위한 별도의 부지가 필요하지 않다는 장점이 있다.In particular, the wet limestone gypsum method can be used as an additive for cement and ground improvement material or as a building material such as plate glass or gypsum board without disposing of gypsum which is a byproduct. There is an advantage that is not necessary.

한편, 각종 연소배출가스에서 산화유황가스를 제거하기 위해 사용되는 습식배연탈황기술로서 가장 기본적인 탈황공정은 탄산칼슘 및 산화칼슘을 사용하는 기술이며, 이 기술은 탄산칼슘 또는 산화칼슘을 물에 녹인 탄산칼슘 및 산화칼슘 슬러리에 산화유황가스를 함유한 연소배출가스를 통과시켜 산화유황가스를 흡수시켜 제거하는 기술이며, 이 공정은 물과 탄산칼슘 및 산화칼슘, 그리고 연소배출가스가 참여하기 때문에 3상반응이며, 따라서 이 공정에서는 이황산가스와 탄산가스가 먼저 물에 용해된 후 물 분자와 반응하여 아황산(H2SO3) 및 탄산(H2CO3)으로 변환된 후 이온화하여 HSO3-, SO32-, H+, Ca2++ 그리고 CO32-을 생성하고, 그것들 중 Ca 2+와 SO32-, 그리고 물분자가 결합하여 불용성의 CaSO41/2H2O를 생성한다. Meanwhile, the wet flue gas desulfurization technology used to remove sulfur oxide gas from various combustion exhaust gases is the most basic desulfurization process using calcium carbonate and calcium oxide, and this technique is a carbonic acid in which calcium carbonate or calcium oxide is dissolved in water. It is a technology that absorbs and removes sulfur oxide gas by passing combustion exhaust gas containing sulfur oxide gas through calcium and calcium oxide slurry. This process is a three-phase process because water, calcium carbonate, calcium oxide, and combustion exhaust gas participate. Therefore, in this process, disulfide gas and carbon dioxide gas are first dissolved in water and then reacted with water molecules to be converted into sulfurous acid (H2SO3) and carbonic acid (H2CO3), and then ionized to HSO3-, SO32-, H +, Ca2 ++ and Produces CO32-, of which Ca2 +, SO32- and water molecules combine to form insoluble CaSO41 / 2H2O.

이때 상당부분의 SO32-는 O2에 의해서 더욱더 산화되어 CaSO 42H2O(gypsum)로 된다.At this time, a significant portion of SO32- is further oxidized by O2 to CaSO42H2O (gypsum).

이상의 공정들에서는 비록 공정을 개선하여 반응효율을 향상시킴으로써 배연탈황 분진량을 줄였다 하더라도 각종 산업체의 규모가 커지고 에너지의 소요량이 급격하게 증가함에 따라 배출가스의 양이 많이 증가하기 때문에 그로 인해 증가하는 배연탈황 분진량은 공정의 개선으로 인해 줄어든 양을 훨씬 능가하게 되었고, 따라서 이 배연탈황 분진을 처리하거나 재활용할 수 있는 공정의 개발이 절실히 요구되고 있는 실정이다.
In the above processes, although the flue gas desulfurization is reduced by improving the process to improve the reaction efficiency, the flue gas desulfurization increases because the amount of exhaust gas increases as the size of various industries increases and energy demand increases rapidly. The amount of dust has far exceeded the amount reduced due to the improvement of the process, and therefore, the development of a process capable of treating or recycling the flue gas desulfurization dust is urgently required.

따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출한 것으로서,SUMMARY OF THE INVENTION Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art,

본 발명은 배연탈황 분진을 일정입도로 분쇄하고 폐인산석고와 혼합한 후 일정온도로 소성하여 폐인산석고에 포함된 납과 같은 중금속 등을 제거할 수 있는 배연탈황 분진을 이용한 폐인산석고의 처리방법을 제공함에 목적이 있다.The present invention is to treat the waste phosphate gypsum using a flue gas desulfurization dust that can remove the heavy metals such as lead contained in the waste phosphate gypsum by pulverizing the flue gas desulfurization dust to a certain particle size and mixed with the waste phosphate gypsum The purpose is to provide a method.

또한, 본 발명은 전량 폐기되는 배연탈황 분진을 재활용할 수 있는 배연탈황 분진을 이용한 폐인산석고의 처리방법을 제공함에 다른 목적이 있다.
In addition, another object of the present invention is to provide a method for treating waste phosphate gypsum using flue gas desulfurization dust that can recycle all waste gas.

상기한 목적을 달성하기 위한 본 발명 배연탈황 분진을 이용한 폐인산석고의 처리방법은,Waste gas phosphate gypsum treatment method using the present invention flue gas desulfurization dust to achieve the above object,

배연탈황 분진을 25μm이하로 분쇄한 후 폐인산석고와 혼합교반하여 600℃ 내지 650℃ 범위의 온도에서 소성하는 것을 특징으로 한다.
The flue gas desulfurization dust is pulverized to 25 μm or less, and then mixed with the waste phosphate gypsum, characterized in that the fire at a temperature in the range of 600 ℃ to 650 ℃.

본 발명은 공해물질인 배연탈황 분진을 활용하여 폐인산석고에 포함된 중금속을 제거함으로써 환경오염을 방지할 수 있는 효과를 갖는다.The present invention has the effect of preventing environmental pollution by removing heavy metals contained in the waste phosphate gypsum by using flue gas desulfurization dust as a pollutant.

특히 본 발명은 산업폐기물로 분류되던 폐인산석고를 고부가가치의 자원으로 재활용하여 경제적인 이익을 창출할 수 있는 효과를 갖는다.
In particular, the present invention has the effect of generating economic benefits by recycling the waste phosphate gypsum, which was classified as industrial waste as a high value-added resource.

도 1은 600℃에서 배연탈황 분진의 소성 시간에 따른 중량 감소율 및 PbO감소량을 나타내는 그래프.
도 2는 소성된 배연탈황 분진의 온도에 따른 중량 감소율을 비교한 그래프.
도 3은 특정 온도에서 폐인산석고와 배연탈황 분진의 혼합물을 소성한 XRD분석결과 그래프.
1 is a graph showing the weight reduction rate and the amount of PbO reduction according to the firing time of flue gas desulfurization dust at 600 ° C.
Figure 2 is a graph comparing the weight loss rate with the temperature of calcined flue gas desulfurization dust.
Figure 3 is a graph of the XRD analysis results firing a mixture of waste phosphate gypsum and flue gas desulfurization dust at a specific temperature.

상기한 바와 같은 목적을 달성하기 위한 본 발명 배연탈황 분진을 이용한 폐인산석고의 처리방법을 상세하게 설명하면 다음과 같다.Referring to the method for treating waste phosphate gypsum using the present invention flue gas desulfurization dust for achieving the above object as follows.

본 발명의 실시예에 사용된 배연탈황 분진의 물성은 표 1과 같다. Physical properties of the flue gas desulfurization dust used in the embodiment of the present invention are shown in Table 1.

Figure 112012093724798-pat00001
Figure 112012093724798-pat00001

먼저 배연탈황 분진을 건조 후 원심 진동밀, 볼텍스밀, 수평 레이몬드밀 등을 이용하여 미분화하여 25μm이하의 입도를 갖도록 분쇄하였다.First, the flue gas desulfurization dust was dried and pulverized using a centrifugal vibration mill, vortex mill, horizontal raymond mill, and the like to have a particle size of 25 μm or less.

여기서 배연탈황 분진 입도가 25μm 보다 클 경우, 배연탈황 분진 결정 내에 존재하는 구조수, 결정수 및 -OH기는 가열하여도 배연탈황 분진 격자 내에 갇혀 쉽게 방출되지 않아서 열처리 속도가 느려져 에너지 손실이 클 뿐만 아니라, 이산화탄소와 반응을 할 수 있는 활성성분이 배연탈황 분진 입자 내부에 갇혀 이산화탄소와 효과적인 반응을 할 수 없게 되기 때문이다.Here, if the particle size of the flue gas desulfurization dust is larger than 25 μm, the structural water, crystal water and -OH groups present in the flue gas desulfurization dust crystal are trapped in the flue gas desulfurization dust lattice even when heated, so that the heat treatment rate is slowed and the energy loss is large. This is because active ingredients capable of reacting with carbon dioxide are trapped inside the flue gas desulfurization dust particles and thus cannot effectively react with carbon dioxide.

또한, 25μm보다 작은 입도의 배연탈황 분진은 비 표면적은 크고, 열처리 과정에서 광물내의 흡착수 및 결정 내에 존재하는 구조수, 결정수 및 화학 결합을 이루고 있는 -OH기 및 Pb를 빠른 시간내에 효율적으로 제거할 수 있을 뿐만 아니라, 배연탈황 분진 내에 존재하는 활성 미네랄 성분의 화학적 성질을 파괴하지 않고, 더 많은 활성성분이 표면에 드러나 더 효과적으로 이산화탄소와 반응이 일어날 수 있다.In addition, the flue gas desulfurization dust having a particle size of less than 25 μm has a large specific surface area and efficiently removes -OH groups and Pb which form structural water, crystal water, and chemical bonds present in the adsorbed water and crystals in the mineral during the heat treatment process. In addition, more active ingredients can be exposed on the surface and react with carbon dioxide more effectively, without destroying the chemical properties of the active minerals present in the flue gas desulfurization dust.

한편, 배연탈황 분진의 소성처리시 600 내지 700℃ 온도 조건에서 1시간 이상 열처리하여 배연탈황 분진 내부에 결합된 물 분자, -OH기 및 Pb 등을 제거시킨다. On the other hand, during the calcining treatment of the flue gas desulfurization dust to remove the water molecules, -OH group, Pb and the like bound inside the flue gas desulfurization dust by heat treatment for 1 hour at 600 to 700 ℃ temperature conditions.

이때 소성온도가 600℃ 이하의 조건에서는 배연탈황 분진 결정 내에 존재하는 구조수와 광물 내 구조 결합을 이룬 결정수를 제거할 수 없으며, 600℃ 이상의 온도조건에서는 배연탈황 분진내의 구조수, 결정수 및 Pb 등이 제거된다. At this time, when the firing temperature is 600 ° C or less, the structured water present in the flue gas desulfurization dust crystals and the crystallized water having a structural bond in the mineral cannot be removed. Pb and the like are removed.

이를 위해 다양한 실험을 통하여 본 발명의 바람직한 실시예를 제공한다.To this end it provides a preferred embodiment of the present invention through various experiments.

[실시예 1]Example 1

배연탈황 분진을 이용하여 기계화학적 기능을 갖는 밀에서 작은 입자로 분쇄한 후, 25μm이하의 배연탈황 분진 입자들을 분리한 후, 인산석고와 혼합교반하여 500℃에서 각각 0.5시간, 1시간, 1.5시간, 2시간, 3시간 소성하고, 수분과 -OH기 및 Pb를 제거한다.After pulverizing into small particles in a mill with mechanochemical function using flue gas desulfurization dust, the flue gas desulfurization dust particles below 25μm were separated, and then mixed with phosphate gypsum and stirred at 500 ° C for 0.5 hour, 1 hour and 1.5 hour, respectively. The mixture was calcined for 2 hours, 3 hours, and water, -OH groups, and Pb were removed.

[실시예 2][Example 2]

소성 온도를 550℃에서 수행하고 나머지 조건은 실시예 1과 동일하게 실험을 진행하였다.The firing temperature was performed at 550 ° C. and the rest of the conditions were conducted in the same manner as in Example 1.

[실시예 3][Example 3]

소성 온도를 600℃에서 수행하고 나머지 조건은 실시예 1과 동일하게 실험을 진행하였다.The firing temperature was carried out at 600 ℃ and the rest of the conditions were carried out in the same manner as in Example 1.

[실시예 4]Example 4

소성 온도를 650℃에서 수행하고 나머지 조건은 실시예 1과 동일하게 실험을 진행하였다.The firing temperature was performed at 650 ℃ and the rest of the conditions were carried out in the same manner as in Example 1.

[실시예 5][Example 5]

소성 온도를 700℃에서 수행하고 나머지 조건은 실시예 1과 동일하게 실험을 진행하였다. The firing temperature was carried out at 700 ℃ and the rest of the conditions were carried out in the same manner as in Example 1.

이처럼 상기 실시예 1~5의 결과를 도 1 내지 도 3을 참조하여 설명한다. As described above, the results of Examples 1 to 5 will be described with reference to FIGS. 1 to 3.

도 2는 소성된 배연탈황 분진의 온도에 따른 중량 감소율을 비교한 그래프이다.Figure 2 is a graph comparing the weight loss rate with the temperature of the calcined flue gas desulfurization dust.

상기 결과를 비교하여 보면 500℃에서 중량 감소량은 0.9%로서 거의 변화가 없는 반면, 550℃에서는 4.9%의 중량 감소량을 나타냈으며, 650℃에서는 약 12%의 중량 감소량을 나타내고, 700℃ 이상의 온도에서는 온도 증가와 관계없이 약 12% 정도의 중량 감소량을 보이고 있음을 알 수 있다. Comparing the results, the weight loss amount was 0.9% at 500 ° C., almost no change, while the weight loss amount was 4.9% at 550 ° C., about 12% weight loss at 650 ° C., and at temperatures above 700 ° C. It can be seen that the weight loss is about 12% regardless of the increase in temperature.

따라서 배연탈황 분진을 소성함에 있어서 가장 최적화된 온도 범위는 약 600~650℃임을 확인할 수 있다. Therefore, the most optimized temperature range for firing flue gas desulfurization dust can be confirmed that it is about 600 ~ 650 ℃.

도 1은 600℃에서 배연탈황 분진의 소성 시간에 따른 중량 감소율 및 PbO감소량을 나타내는 그래프이다. 1 is a graph showing the weight loss rate and the amount of PbO reduction according to the firing time of flue gas desulfurization dust at 600 ° C.

상기 그래프에서 살펴볼 수 있듯이 600℃에서 0.5시간, 1시간, 1.5시간, 2시간, 3시간 소성 후 무게 변화를 비교하였을 때 0.5시간에서는 약 8.5%의 무게가 감소하였으며, 1시간, 1.5시간, 2시간, 3시간에서 소성 후 무게 감소율은 약 11%로서 거의 비슷한 것으로 나타났다. As can be seen from the graph, when the weight change after firing at 0.5 ° C. for 1 hour, 1.5 hours, 2 hours, and 3 hours at 600 ° C., the weight was reduced by about 8.5% at 0.5 hours, 1 hour, 1.5 hours, 2 hours. After 3 hours of firing, the weight loss rate after firing was about 11%.

도 3은 특정 온도에서 폐인산석고와 배연탈황 분진의 혼합물을 소성한 XRD분석결과 그래프이다.3 is a graph of XRD analysis results of calcining a mixture of waste phosphate gypsum and flue gas desulfurization dust at a specific temperature.

따라서 본 발명은 600℃ 이상의 온도에서 소성하였을 때의 배연탈황 분진의 구조적 특징은 그 이하의 온도에서 소성하였을 때의 구조적 특징 및 전혀 소성하지 않은 상태의 배연탈황 분진 원료의 구조적 특징과는 판이하게 다른 것으로 나타났는데, 이는 600℃ 이상의 온도에서 소성하였을 경우 배연탈황 분진 내의 물분자, 수산기 및 기타 Pb 휘발성 물질 등이 충분히 제거되었기 때문이라고 볼 수 있다.Therefore, the present invention is characterized in that the structural characteristics of flue gas desulfurization dust when fired at a temperature of 600 ° C. or higher are significantly different from the structural characteristics when fired at a temperature lower than that and the structural characteristics of flue gas desulfurization dust raw materials which are not fired at all. This is because the water molecules, hydroxyl groups and other Pb volatiles in the flue gas desulfurization dust were sufficiently removed when fired at a temperature of 600 ° C. or higher.

이처럼 상기와 같이 본 발명의 실시예에 대하여 상세히 설명하였으나, 본 발명의 권리범위는 이에 한정되지 않으며, 본 발명의 실시예와 실질적으로 균등의 범위에 있는 것까지 본 발명의 권리범위가 포함되는 것은 당연하다.As described above, the embodiments of the present invention have been described in detail, but the scope of the present invention is not limited thereto, and the scope of the present invention is included to those which are substantially equivalent to the embodiments of the present invention. Of course.

Claims (1)

배연탈황 분진을 건조 후 원심 진동밀, 볼텍스밀, 수평 레이몬드밀 등을 이용하여 미분화하여 25μm이하의 입도를 갖도록 분쇄한 후 폐인산석고와 혼합교반하여 600℃ 내지 650℃ 범위의 온도에서 1시간 이상 열처리하여 배연탈황 분진 내부에 결합된 물 분자, -OH기 및 Pb 를 제거시켜 소성하는 것을 특징으로 하는 배연탈황 분진을 이용한 폐인산석고의 처리방법.After drying the flue gas desulfurization dust, it is pulverized using a centrifugal vibration mill, vortex mill, horizontal raymond mill, etc., and pulverized to have a particle size of 25 μm or less, and then mixed and mixed with waste phosphate gypsum for at least 1 hour Process for treating waste phosphate gypsum using flue gas desulfurization dust characterized in that the heat treatment by removing the water molecules, -OH group and Pb bound inside the flue gas desulfurization dust.
KR20120128998A 2012-11-14 2012-11-14 Method for treatment of phosphoric gypsum using flue gas desulfurization dust KR101365546B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20120128998A KR101365546B1 (en) 2012-11-14 2012-11-14 Method for treatment of phosphoric gypsum using flue gas desulfurization dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120128998A KR101365546B1 (en) 2012-11-14 2012-11-14 Method for treatment of phosphoric gypsum using flue gas desulfurization dust

Publications (1)

Publication Number Publication Date
KR101365546B1 true KR101365546B1 (en) 2014-02-21

Family

ID=50271581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120128998A KR101365546B1 (en) 2012-11-14 2012-11-14 Method for treatment of phosphoric gypsum using flue gas desulfurization dust

Country Status (1)

Country Link
KR (1) KR101365546B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200131997A (en) * 2019-05-15 2020-11-25 한동운 Refind Gypsum from phosphate for Cement
KR102648802B1 (en) * 2023-07-25 2024-03-18 주식회사 리켐텍 A method of using waste desulfurization dust in lithium manufacturing process.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003795A1 (en) 1997-07-15 1999-01-28 Karageorgis, Ioannis Method and apparatus for the processing of phosphate gypsum waste
KR20020096785A (en) * 2001-06-20 2002-12-31 남해화학주식회사 Artificial aggregate manufactured by using phospho-gypsum
KR20040001079A (en) * 2002-06-26 2004-01-07 한국지질자원연구원 a Method for Manufacturing Aluminate Clinker and Cement using a By-Product Steel and By-Plaster
KR20040001081A (en) * 2002-06-26 2004-01-07 한국지질자원연구원 a Method for Manufacturing Clinker and Cement using Burning Ash the Living Wastes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003795A1 (en) 1997-07-15 1999-01-28 Karageorgis, Ioannis Method and apparatus for the processing of phosphate gypsum waste
KR20020096785A (en) * 2001-06-20 2002-12-31 남해화학주식회사 Artificial aggregate manufactured by using phospho-gypsum
KR20040001079A (en) * 2002-06-26 2004-01-07 한국지질자원연구원 a Method for Manufacturing Aluminate Clinker and Cement using a By-Product Steel and By-Plaster
KR20040001081A (en) * 2002-06-26 2004-01-07 한국지질자원연구원 a Method for Manufacturing Clinker and Cement using Burning Ash the Living Wastes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200131997A (en) * 2019-05-15 2020-11-25 한동운 Refind Gypsum from phosphate for Cement
KR102200001B1 (en) 2019-05-15 2021-01-13 한동운 Refind Gypsum from phosphate for Cement
KR102648802B1 (en) * 2023-07-25 2024-03-18 주식회사 리켐텍 A method of using waste desulfurization dust in lithium manufacturing process.

Similar Documents

Publication Publication Date Title
CN102000481B (en) Method for treating desulfurization ash
KR101452371B1 (en) Method for preparing pure calcite and ammonium sulfate from the waste gypsum
US7585485B2 (en) Process for the physiochemical conditioning of chemical gypsum or phospho-gypsum for use in formulation for cement and other construction materials
CN109127650B (en) Method for harmlessly treating electrolytic manganese slag by using cement kiln intermediate product
CN107512857B (en) Method and device for preparing building gypsum by phosphogypsum
CN105645793A (en) Method using electrolytic manganese slag to manufacture active mixed material
CN113337295B (en) Method for producing soil conditioner by utilizing bulk industrial solid wastes and product
EP3154920B1 (en) Production of citrate soluble phosphates by calcination of secondary phosphate sources with a sodium-sulfuric compound
CN102068898B (en) Composite calcium-based solid desulfurizer and production method thereof
Ladwig et al. Flue-gas desulfurization products and other air emissions controls
CN101323436A (en) Method for reductively decomposion of ardealite by composite reducer
KR101365546B1 (en) Method for treatment of phosphoric gypsum using flue gas desulfurization dust
Ma et al. A novel plant-internal route of recycling sulfur from the flue gas desulfurization (FGD) ash through sintering process: From lab-scale principles to industrial practices
CN101670353B (en) Technology for removing sulfate radicals out of electrolytic manganese press filtration residues
CN111302312B (en) Process and system for resource utilization of gypsum and pyrite
KR102452142B1 (en) Manufacturing method of gypsum by using biosulfur and uses of the gypsum
CN101492177B (en) Method for reduction and decomposition of phosphogypsum with yellow phosphorus tail gas
CN102921292A (en) Method used to improve carbon dioxide trapping performance of papermaking white mud in fire coal fluidized bed boiler system
CN101302002A (en) Method for producing sulfuric acid and cement clinker using gypsum
CN1285415A (en) On-line desulfuration method for agglutination process
CN107185384A (en) The method that dry powder-shaped fume desulfurizing agent is produced using discarded marble
CN110606729A (en) Phosphogypsum fly ash ceramsite with good effect and preparation method thereof
CN110981242A (en) Method for preparing high-strength anhydrous gypsum from calcium sulfide slag
CN104496605B (en) The method and device of sulphur dioxide production alkaline fertilizer in a kind of recycling furnace gas
CN111018389A (en) Expanding agent clinker and production method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee