WO2010141940A1 - Recombinase polymerase amplification reagents and kits - Google Patents

Recombinase polymerase amplification reagents and kits Download PDF

Info

Publication number
WO2010141940A1
WO2010141940A1 PCT/US2010/037611 US2010037611W WO2010141940A1 WO 2010141940 A1 WO2010141940 A1 WO 2010141940A1 US 2010037611 W US2010037611 W US 2010037611W WO 2010141940 A1 WO2010141940 A1 WO 2010141940A1
Authority
WO
WIPO (PCT)
Prior art keywords
freeze dried
amplification
nucleic acid
kit according
dna
Prior art date
Application number
PCT/US2010/037611
Other languages
French (fr)
Inventor
Olaf Piepenburg
Niall A. Armes
Original Assignee
Alere San Diego, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alere San Diego, Inc. filed Critical Alere San Diego, Inc.
Priority to EP10784225.4A priority Critical patent/EP2438196B1/en
Priority to EP17186755.9A priority patent/EP3360974A1/en
Priority to US13/375,264 priority patent/US9057097B2/en
Publication of WO2010141940A1 publication Critical patent/WO2010141940A1/en
Priority to US14/705,150 priority patent/US20150240298A1/en
Priority to US17/865,671 priority patent/US20230052199A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the present invention relates to reagents and kits, and the use of such reagents and kits, for the amplification of nucleic acids. More specifically, the present invention relates to the use of reagents and kits in recombinase polymerase amplification processes.
  • RPA Recombinase Polymerase Amplification
  • RPA depends upon components of the cellular DNA replication and repair machinery.
  • the notion of employing some of this machinery for in vitro DNA amplification has existed for some time (Zarling et al., US patent 5,223,414), however the concept has not transformed to a working technology until recently as, despite a long history of research in the area of recombinase function involving principally the E.coli RecA protein, in vitro conditions permitting sensitive amplification of DNA have only recently been determined (Piepenburg et al. US patent 7,399,590, also Piepenburg et al., PlosBiology 2006).
  • Crowding agents have been reported to enhance the interaction of polymerase enzymes with DNA (Zimmerman and Harrison, 1987), to improve the activity of polymerases (Chan E.W. et al., 1980), to influence the kinetics of RecA binding to DNA in the presence of SSB (Lavery PE, Kowalczykowski SC. J Biol Chem. 1992 May 5;267(13):9307-14). Crowding agents are reported to have marked influence on systems in which co-operative binding of monomers is known to occur such as during rod and filament formation (Rivas et al., 2003) by increasing association constants by potentially several orders of magnitude (see Minton, 2001).
  • the dependence on large molecular weight crowding agents for the most substantial reaction improvement may reflect a need to restrict the crowding effect to reaction components over a certain size (for example oligonucleotides, oligonucleotide :protein filaments, duplex products, protein components) while permitting efficient diffusion of others (say nucleotides, smaller peptides such as UvsY).
  • the high molecular weight preference might reflect findings elsewhere that as PEG molecular weight increases the concentration of metal ions required to promote DNA condensation decreases. In any case it is an empirical finding that RPA is made effective by the use of high molecular weight polyethylene glycols.
  • Rapid filament formation ensures that at any given moment there will be a high steady state level of functional recombinase-DNA filaments, while rapid disassembly ensures that completed strand exchange complexes can be accessed by polymerases.
  • RPA a kit and reagents for, as well as methods of, DNA amplification, termed RPA.
  • RPA comprises the following steps (See Figure 1): First, a recombinase agent is contacted with a first and a second nucleic acid primer to form a first and a second nucleoprotein primer.
  • the first and second nucleoprotein primers are contacted to a double stranded target sequence to form a first double stranded structure at a first portion of said first strand and form a double stranded structure at a second portion of said second strand so the 3 ' ends of said first nucleic acid primer and said second nucleic acid primer are oriented towards each other on a given template DNA molecule.
  • the 3' end of said first and second nucleoprotein primers are extended by DNA polymerases to generate first and second double stranded nucleic acids, and first and second displaced strands of nucleic acid.
  • the second and third steps are repeated until a desired degree of amplification is reached.
  • compositions and kits for recombinase polymerase amplification processes of DNA amplification of a target nucleic acid molecule which include one or more freeze dried pellets.
  • each freeze dried pellet includes a combination of the following reagents in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5% - 5% (weight/lyophilization mixture volume) of polyethylene glycol (e.g., 2.28% (weight/lyophilization mixture volume) of polyethylene glycol with a molecular weight of 35 kilodaltons); (2) 2.5% - 7.5% weight/volume of trehalose (e.g., 5.7%); (3) 0 - 60 niM Tris buffer; (4) 1 - 10 mM DTT; (5) 150 - 400 ⁇ M dNTPs; (6) 1.5 - 3.5 mM ATP; (7) 100 - 350 ng/ ⁇ L
  • rehydration buffers for reconstituting freeze dried pellets for nucleic acid amplification are provided.
  • the rehydration buffer for reconstituting the freeze dried pellets are included with the kits described herein and, the rehydration buffer includes 0 - 60 mM Tris buffer, 50 - 150 mM Potassium Acetate, and
  • kits further include a 160 - 320 mM Magnesium Acetate solution.
  • the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process.
  • the freeze dried pellets also include a nuclease.
  • the nuclesase is exonuclease III (exoIII), endonuclease IV (Nfo) or 8- oxoguanine DNA glycosylase (fpg).
  • kits or compositions may further include positive control primers and target DNA to test the activity of the kit components.
  • the kit can include a positive control DNA (e.g., human genomic DNA) and first and second primers specific for the positive control DNA.
  • kits or compositions described herein that include one or more freeze dried pellets and rehydration buffer is provided.
  • at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume.
  • Magnesium e.g., Magnesium Acetate solution
  • the reaction is incubated until a desired degree of amplification is achieved. In some embodiments, this last step comprises mixing the sample several minutes after the reaction is initiated.
  • embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate).
  • the methods include at least three steps.
  • the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule.
  • a crowding agent e.g., polyethylene glycol
  • embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification.
  • the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule.
  • kits for nucleic acid amplification processes such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets.
  • the freeze dried pellets comprise polyethylene glycol.
  • the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG).
  • the freeze dried pellets comprise trehalose.
  • the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
  • embodiments of the present invention include any of the freeze dried pellets described herein.
  • the freeze dried pellets comprise polyethylene glycol.
  • the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG).
  • the freeze dried pellets comprise trehalose.
  • the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
  • embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein.
  • the rehydration buffer comprises polyethylene glycol (e.g., 0.3% - 7.5% weight/ volume of PEG).
  • a kit comprising any of the foregoing rehydration buffers is provided.
  • Figure 1 schematically depicts an RPA reaction.
  • Figure 2 depicts the structure of an annealed Exo-probe.
  • the abasic THF residue is cleaved by exonuclease only when the probe is bound. Cleavage by exonuclease separates the fluorophore and quencher and generates fluorescent signal.
  • Figure 3 depicts the structure of an annealed LF -probe. The abasic THF residue is cleaved by Nfo only when the probe is bound.
  • Figure 4 depicts the structure of an annealed Fpg-probe.
  • the abasic dR residue is cleaved by fpg only when the probe is bound. Cleavage by fpg releases the fluorophore from the probe and generates fluorescent signal.
  • RPA is a method (process) for amplifying DNA fragments.
  • RPA employs enzymes, known as recombinases, that are capable of pairing oligonucleotide primers with homologous sequence in duplex DNA. In this way, DNA synthesis is directed to defined points in a sample DNA.
  • recombinases enzymes, known as recombinases, that are capable of pairing oligonucleotide primers with homologous sequence in duplex DNA.
  • DNA synthesis is directed to defined points in a sample DNA.
  • an exponential amplification reaction is initiated if the target sequence is present. The reaction progresses rapidly and results in specific amplification from just a few target copies (such as less than 10,000 copies, less than 1000 copies, less than 100 copies or less than 10 copies) to detectable levels within as little as 20-40 minutes.
  • RPA reactions contain a blend of proteins and other factors that are required to support both the activity of the recombination element of the system, as well as those which support DNA synthesis from the 3' ends of olignucleotides paired to complementary substrates.
  • the key protein component of the recombination system is the recombinase itself, which may originate from prokaryotic, viral or eukaryotic origin. Additionally, however, there is a requirement for single-stranded DNA binding proteins to stabilize nucleic acids during the various exchange transactions that are ongoing in the reaction. A polymerase with strand-displacing character is required specifically as many substrates are still partially duplex in character.
  • a system comprising a bacteriophage T 6 UvsX recombinase (e.g., T6UvsXH66S), a bacteriophage Rb69 UvsY loading agent, a bacteriophage Rb69 gp32 and a S. aureus Pol I large fragment has proven to be effective.
  • Embodiments of the present invention provide for Recombinase Polymerase Amplification (RPA) — a method for the amplification of target nucleic acid polymers. They also provide for a general in vitro environment in which high recombinase activity is maintained in a highly dynamic recombination environment, supported by ATP.
  • RPA Recombinase Polymerase Amplification
  • One benefit of RPA is that it may be performed without the need for thermal melting of double-stranded templates. Therefore, the need for expensive thermocyclers is also eliminated.
  • nucleic acid primers are targeted to homologous double-stranded, or partially double-stranded, sequences using recombinase agents, which form D-loop structures.
  • the invading single-stranded primers, which are part of the D-loops, are used to initiate polymerase synthesis reactions.
  • a single primer species will amplify a target nucleic acid sequence through multiple rounds of double-stranded invasion followed by synthesis. If two opposing primers are used, amplification of a fragment — the target sequence — can be achieved.
  • the target sequence to be amplified in any of the embodiments of the present invention, is preferably a double stranded DNA.
  • the embodiments of the present invention are not limited to double stranded DNA because other nucleic acid molecules, such as a single stranded DNA or RNA can be turned into double stranded DNA by one of skill in the art using known methods.
  • Suitable double stranded target DNA may be a genomic DNA or a cDNA.
  • An RPA of the invention may amplify a target nucleic acid at least 10 fold, preferably at least 100 fold, more preferably at least 1,000 fold, even more preferably at least 10,000 fold, and most preferably at least 1,000,000 fold.
  • nucleic acids of embodiments of the present invention may be labeled with a detectable label.
  • a detectable label includes, for example, a fluorochrome, an enzyme, a fluorescence quencher, an enzyme inhibitor, a radioactive label and a combination thereof.
  • RPA Relatively stable reagent
  • Freeze dried reagents offer the advantage of not requiring refrigeration to maintain activity.
  • a tube of RPA reagents may be stored at room temperature. This advantage is especially useful in field conditions where access to refrigeration is limited.
  • Freeze dried reagents also offer the advantage of long term storage without significant activity loss.
  • a tube of RPA reagents may be stored at -20 0 C for up to six months without significant activity loss.
  • the reagents that can be freeze dried before use can include, at least, the recombinase, the single stranded DNA binding protein, the DNA polymerase, the dNTPs or the mixture of dNTPs and ddNTPs, the reducing agent, the ATP or ATP analog, the recombinase loading protein, and the first primer and optionally a second primer or a combination of any of these.
  • the RPA reagents may be freeze dried onto the bottom of a tube, or on a bead (or another type of solid support).
  • the reagents are reconstituted with buffer (a) Tris-Acetate buffer at a concentration of between 0 mM to 60 mM; (b) 50 mM to 150 mM Potassium Acetate and (c) polyethylene glycol at a concentration of between 2.5% to 7.5% by weight/volume. If the primers were not added before freeze drying, they can be added at this stage. Finally, a target nucleic acid, or a sample suspected of containing a target nucleic acid is added to begin the reaction.
  • the target, or sample, nucleic acid may be contained within the reconstitution buffer as a consequence of earlier extraction or processing steps.
  • the reaction is incubated until a desired degree of amplification is achieved.
  • the tube containing the RPA reaction is placed into an incubator block set to a temperature of 37 0 C and is incubated for 4 minutes.
  • the sample is then taken out of the incubator, vortexed and spun down.
  • the sample is then returned to the incubator block and incubated for an additional 15-40 minutes.
  • kits for performing RPA reactions comprise kits for performing RPA reactions.
  • the kits include one or more freeze dried pellets each including a combination of reagents for performing RPA reactions.
  • the kits comprise 8 freeze dried pellets.
  • the kits comprise 96 freeze dried pellets. If desired, the freeze dried reagents may be stored for 1 day, 1 week, 1 month or 1 year or more before use.
  • the pellets can be assembled by combining each reagent in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5% - 5% (weight/lyophilization mixture volume ) of polyethylene glycol; (2) 2.5% - 7.5% weight/volume of trehalose; (3) 0 - 60 mM Tris buffer; (4) 1 - 10 mM DTT; (5) 150 - 400 ⁇ M dNTPs; (6) 1.5 - 3.5 mM ATP; (7) 100 - 350 ng/ ⁇ L uvsX recombinase; (8) optionally 50 - 200 ng/ ⁇ L uvsY; (9) 150 - 800 ng/ ⁇ L gp32; (10) 30 - 150 ng/ ⁇ L Bsu polymerase or Sau polymerase; (11) 20 - 75 mM phosphocreatine; and (12) 10 - 200 ng/ ⁇ L creatine kinas
  • the reagents in the solution mixture frozen for lyophilization can have approximately the following concentrations: (1) 2.28% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons; (2) 5.7% weight/volume of trehalose; (3) 25 mM Tris buffer; (4) 5 mM DTT; (5) 240 ⁇ M dNTPs; (6) 2.5 mM ATP; (7) 260 ng/ ⁇ L uvsX recombinase; (8) 88 ng/ ⁇ L uvsY; (9) 254 ng/ ⁇ L gp32; (10) 90 ng/ ⁇ L Bsu polymerase or Sau polymerase; (11) 50 mM phosphocreatine; and (12) 100 ng/ ⁇ L creatine kinase.
  • the reagents may be freeze dried onto the bottom of a tube or in a well of a multi-well container.
  • the reagents may be dried or attached onto a mobile solid support such
  • kits further include a rehydration buffer for reconstituting the freeze dried pellets, where the rehydration buffer includes 0 - 60 mM Tris buffer, 50 - 150 mM Potassium Acetate, and 0.3% - 7.5% weight/volume of polyethylene glycol.
  • the rehydration buffer includes approximately 25 mM Tris buffer, 100 mM Potasium Acetate, and 5.46% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons.
  • the kit will comprise 4 mL of rehydration buffer.
  • kits further include a 160 - 320 mM Magnesium Acetate solution (e.g., about 280 mM Magnesium Acetate solution).
  • the kit will comprise 250 ⁇ L of the Magnesium Acetate solution.
  • the rehydration buffer itself will comprise 8 - 16 mM Magnesium Acetate (e.g., about 14 mM Magnesium Acetate).
  • the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process. In certain embodiments of the foregoing kits, the freeze dried pellets also include 50 - 200 ng/ ⁇ L of either exonuclease III (exoIII), endonuclease IV (Nfo) or 8-oxoguanine DNA glycosylase (fpg).
  • exoIII exonuclease III
  • Nfo endonuclease IV
  • fpg 8-oxoguanine DNA glycosylase
  • the kit may further include positive control primers and target DNA to test the activity of the kit components.
  • the kit can include a positive control DNA (e.g. , human genomic DNA) and first and second primers specific for the positive control DNA.
  • embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification.
  • the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule.
  • kits for nucleic acid amplification processes such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets.
  • the freeze dried pellets comprise polyethylene glycol.
  • the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG).
  • the freeze dried pellets comprise trehalose.
  • the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
  • embodiments of the present invention include any of the freeze dried pellets described herein.
  • the freeze dried pellets comprise polyethylene glycol.
  • the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG).
  • the freeze dried pellets comprise trehalose.
  • the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
  • embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein.
  • the rehydration buffer comprises polyethylene glycol (e.g., 0.3% - 7.5% weight/ volume of PEG).
  • a kit comprising any of the foregoing rehydration buffers is provided. RPA initiation by Magnesium
  • kits that include one or more freeze dried pellets and rehydration buffer are provided.
  • at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume.
  • Magnesium e.g., Magnesium Acetate solution
  • the reaction is incubated until a desired degree of amplification is achieved.
  • RPA is a versatile method, but it can be improved by incorporation of features to control the RPA reaction.
  • Embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate). For example, the method includes at least three steps.
  • the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule.
  • a crowding agent e.g., polyethylene glycol
  • Magnesium is added to initiate the reaction.
  • the reaction is incubated until a desired degree of amplification is achieved.
  • one or more of the reagents are freeze dried before the first step. Furthermore, it is possible to initiate a plurality of RPA reactions simultaneously by the simultaneous addition of Magnesium to each reaction.
  • a rehydration solution is prepared from the following rehydration buffer:
  • reaction volumes of 25 ⁇ L, 50 ⁇ L, 100 ⁇ L, 1 mL, 10 mL and 100 mL or larger may be performed in one vessel.
  • a reaction volume of 50 ⁇ L is used.
  • a nuclease may also be added to each freeze dried reaction pellet.
  • the "Exo RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 96 ng/ ⁇ L exonuclease III (exoIII).
  • the "Nfo RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 62 ng/ ⁇ L endonuclease IV (Nfo).
  • the "Fpg RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 114 ng/ ⁇ L 8-oxoguanine DNA glycosylase (fpg).
  • the tubes with the freeze dried pellets can be vacuum-sealed in pouches, for example in 12 strips of 8 pouches/strip for a total of 96 RPA reactions. While the vacuum- sealed pouches can be stored at room temperature for days without loss of activity, long term storage (up to at least about six months) at -20 0 C is preferred.
  • the rehydration buffer can be stored as frozen aliquots, for example 4 x 1.2 mL aliquots. For long term storage (up to at least about six months), storage at -20 0 C is preferred. Unused rehydration buffer can be refrozen, or stored at 4 0 C for up to 1 week. However, excessive freeze-thaw cycles should be avoided.
  • EXAMPLE 2 Basic RPA reaction
  • a basic RPA reaction for each sample is established by reconstituting the basic RPA freeze-dried reaction pellet of Example 1 with a suitable rehydration solution.
  • the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, and template (and water to a total volume of 47.5 ⁇ L per sample).
  • the components of the rehydration solution can be combined in a master-mix for the number of samples required.
  • a number of different rehydration solutions are to be made (here according to the number of primer pairs being tested).
  • components common to all reactions e.g., template, rehydration buffer, water
  • the different rehydration solutions are then used as normal according to the protocol below.
  • the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
  • the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and H 2 O to a total volume of 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
  • the 47.5 ⁇ L of rehydration solution is transferred to a basic RPA freeze-dried reaction pellet of Example 1.
  • the sample is mixed by pipetting up and down until the entire pellet has been resuspended.
  • a detection probe can be used to monitor RPA reactions.
  • the probe is a third oligonucleotide primer which recognizes the target amplicon and is typically homologous to sequences between the main amplification primers.
  • fluorophore/quencher with probes in real-time detection formats is a very convenient way to monitor amplification events in RPA reactions.
  • RPA technology is compatible with a variety of different types of oligonucleotide probes.
  • Exo-probes Exo-probes
  • Exo-probes are generally 46-52 oligonucleotides long. Signal is generated by an internal dT fluorophore (Fluorescein or TAMRA) and quenched by an internal dT quencher (typically Black Hole Quencher (BHQ) 1 or 2) located 1-5 bases 3' to the fluorophore. In this case, probes are restricted to contain sequences where two thymines can be found with ⁇ 6 intervening nucleotides. One of the bases between the fluorophore and quencher is the abasic nucleotide analog, tetrahydrofuran (THF - sometimes referred to as a 'dSpacer').
  • TAMRA internal dT fluorophore
  • BHQ Black Hole Quencher
  • the probe There should be at least 30 nucleotides placed 5' to the THF site, and at least a further 15 located 3' to it.
  • Exonuclease III will recognize and cleave the THF, thereby separating the fluorophore and quencher and generating a fluorescent signal.
  • the THF should be at least 31 bases from the 5 ' end of the probe and 16 bases from the 3' end.
  • the probe is blocked from polymerase extension by a 3'- blocking group (e.g., Biotin-TEG).
  • Figure 2 depicts a typical annealed Exo-probe.
  • LF-probes are often 46-52 oligonucleotides long and intended for detection of RPA reactions in simple sandwich assays such as lateral flow strips.
  • the probe is blocked from polymerase extension by making the last nucleotide a dideoxy nucleotide.
  • a THF is typically positioned about 30 bases from the 5' end of the probe and 16 bases from the 3' end. When the probe has annealed to the target sequence, Nfo nuclease will recognize and cleave the THF. This allows the 5' portion of the cut probe to then act as a primer, ultimately leading to an amplicon containing the 5' portion of the probe conjoined to the opposing primer.
  • the amplicon is detected by virtue of labels attached to the 5' end of the opposing primer (usually biotin) and to the 5' end of the probe (usually FAM).
  • the duplex formed is captured on a surface coated with the appropriate capture molecule (e.g., streptavidin for biotin or an anti-FAM antibody for FAM).
  • RPA products are run on lateral flow strips, such as available from Milenia Biotec.
  • Figure 3 depicts a typical annealed LF- probe.
  • Fpg-probes are generally 35 oligonucleotides long.
  • a quencher typically Black Hole Quencher (BHQ) 1 or 2).
  • BHQ Black Hole Quencher
  • Signal is generated by a fluorophore (typically FAM or Texas Red) attached to the ribose of a base-less nucleotide analog (a so-called dR residue; a fluorophore/O-linker effectively replaces the base at the C 1 position of the ribose) 4-6 bases downstream of the 5' end.
  • FAM Black Hole Quencher
  • FIG. 4 is a schematic of a typical annealed Fpg-probe.
  • Figure 7 depicts the structure of an annealed Fpg-probe. The abasic dR residue is cleaved by fpg only when the probe is bound. This releases the fluorophore from the probe and generates fluorescent signal.
  • a RPA reaction using exonuclease III is performed using a modified protocol of Example 2.
  • Each sample is established by reconstituting the Exo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution.
  • the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Exo-probe (and water to a total volume of 47.5 ⁇ L per sample).
  • the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
  • the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and 0.6 ⁇ L of an Exo- probe (10 ⁇ M) as described in Example 3. H 2 O is added to bring the total volume of the foregoing components to 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly. [0075] For each sample, the 47.5 ⁇ L of rehydration solution is transferred to an Exo RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 ⁇ L of 280 mM Magnesium- Acetate is added and is mixed well to initiate the reaction.
  • the tubes are place into a suitable thermal incubator/fluorometer (e.g. , isothermally set to a temperature of 37-39°C) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
  • a suitable thermal incubator/fluorometer e.g. , isothermally set to a temperature of 37-39°C
  • a RPA reaction using Nfo is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Nfo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution.
  • the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an LF -probe (and water to a total volume of 47.5 ⁇ L per sample).
  • the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
  • the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and 0.6 ⁇ L of an LF- probe (10 ⁇ M) as described in Example 3. H 2 O is added to bring the total volume of the foregoing components to 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
  • the 47.5 ⁇ L of rehydration solution is transferred to an Nfo RPA Freeze Dried Reaction Pellet of Example 1.
  • the sample is mixed by pipetting up and down until the entire pellet has been resuspended.
  • 2.5 ⁇ L of 280 mM Magnesium- Acetate is added and is mixed well to initiate the reaction.
  • the tubes are place into a suitable incubator block (e.g., set to a temperature of 37-39°C) and are incubated for 4 minutes. For ultra-high sensitivity after 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator block. The total incubation time is 15-30 minutes. After the reaction is completed, the outcome of each reaction is typically analyzed by an endpoint method, such as a sandwich assay technique.
  • a suitable incubator block e.g., set to a temperature of 37-39°C
  • a RPA reaction using fpg is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Fpg RPA Freeze Dried Reaction Pellet of
  • Example 1 with a suitable rehydration solution.
  • the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Fpg-probe (and water to a total volume of 47.5 ⁇ L per sample).
  • the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
  • the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and 0.6 ⁇ L of an Fpg- probe (10 ⁇ M) as described in Example 3. H 2 O is added to bring the total volume of the foregoing components to 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
  • the 47.5 ⁇ L of rehydration solution is transferred to an Fpg RPA Freeze Dried Reaction Pellet of Example 1.
  • the sample is mixed by pipetting up and down until the entire pellet has been resuspended.
  • 2.5 ⁇ L of 280 mM Magnesium- Acetate is added and is mixed well to initiate the reaction.
  • the tubes are place into a suitable thermal incubator/fluorometer (e.g. , isothermally set to a temperature of 37-39°C) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
  • a suitable thermal incubator/fluorometer e.g. , isothermally set to a temperature of 37-39°C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

This disclosure describes kits, reagents and methods for Recombinase Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed kits, reagents and methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods.

Description

RECOMBINASE POLYMERASE AMPLIFICATION REAGENTS AND KITS
RELATED APPLICATIONS
[0001] This application claims the benefit of priority to US Provisional Patent
Application No. 61/184,397 filed June 5, 2009, which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present invention relates to reagents and kits, and the use of such reagents and kits, for the amplification of nucleic acids. More specifically, the present invention relates to the use of reagents and kits in recombinase polymerase amplification processes. BACKGROUND OF THE INVENTION
[0003] Recombinase Polymerase Amplification (RPA) is a process in which recombinase-mediated targeting of oligonucleotides to DNA targets is coupled to DNA synthesis by a polymerase (U.S. Patent Nos. 7,270,981 filed February 21, 2003; 7,399,590 filed September 1, 2004; 7,435,561 filed July 25, 2006 and 7,485,428 filed August 13, 2007, as well as, U.S. Application Nos. 11/628,179, filed August 30, 2007; 11/800,318 filed May 4, 2007 and 61/179,793 filed May 20, 2009; the disclosures of the foregoing patents and patent applications are each hereby incorporated by reference in its entirety). RPA depends upon components of the cellular DNA replication and repair machinery. The notion of employing some of this machinery for in vitro DNA amplification has existed for some time (Zarling et al., US patent 5,223,414), however the concept has not transformed to a working technology until recently as, despite a long history of research in the area of recombinase function involving principally the E.coli RecA protein, in vitro conditions permitting sensitive amplification of DNA have only recently been determined (Piepenburg et al. US patent 7,399,590, also Piepenburg et al., PlosBiology 2006). Development of a 'dynamic' recombination environment having adequate rates of both recombinase loading and unloading that maintains high levels of recombination activity for over an hour in the presence of polymerase activity proved technically challenging and needed specific crowding agents, notably PEG molecules of high molecular weight {e.g., Carbowax 2OM molecular weight 15- 20,000 and PEG molecular weight 35,000), in combination with the use of recombinase- loading factors, specific strand-displacing polymerases and a robust energy regeneration system. [0004] The RPA technology depended critically on the empirical finding that high molecular weight polyethylene glycol species (particularly > 10,000 Daltons or more) very profoundly influenced the reaction behavior. It has previously been discovered that polyethylene glycol species ranging in size from at least molecular weight 12,000 to 100,000 stimulate RPA reactions strongly. While it is unclear how crowding agents influence processes within an amplification reaction, a large variety of biochemical consequences are attributed to crowding agents and are probably key to their influence on RPA reactions.
[0005] Crowding agents have been reported to enhance the interaction of polymerase enzymes with DNA (Zimmerman and Harrison, 1987), to improve the activity of polymerases (Chan E.W. et al., 1980), to influence the kinetics of RecA binding to DNA in the presence of SSB (Lavery PE, Kowalczykowski SC. J Biol Chem. 1992 May 5;267(13):9307-14). Crowding agents are reported to have marked influence on systems in which co-operative binding of monomers is known to occur such as during rod and filament formation (Rivas et al., 2003) by increasing association constants by potentially several orders of magnitude (see Minton, 2001). In the RPA system multiple components rely on cooperative binding to nucleic acids, including the formation of SSB filaments, recombinase filaments, and possibly the condensation of loading agents such as UvsY. Crowding agents are also well known to enhance the hybridization of nucleic acids (Amasino, 1986), and this is a process that is also necessary within RPA reactions. Finally, and not least, PEG is known to drive the condensation of DNA molecules in which they change from elongated structures to compact globular or toroidal forms, thus mimicking structures more common in many in vivo contexts (see Lerman, 1971; also see Vasilevskaya.et. al., 1995; also see Zinchenko and Anatoly, 2005) and also to affect the supercoiling free energy of DNA (Naimushin et al., 2001). [0006] Without intending to be bound by theory, it is likely that crowding agents influence the kinetics of multiple protein-protein, protein-nucleic acid, and nucleic acid- nucleic acid interactions within the reaction. The dependence on large molecular weight crowding agents for the most substantial reaction improvement (probably greater than about 10,000 Daltons in size) may reflect a need to restrict the crowding effect to reaction components over a certain size (for example oligonucleotides, oligonucleotide :protein filaments, duplex products, protein components) while permitting efficient diffusion of others (say nucleotides, smaller peptides such as UvsY). Further, it may also be that the high molecular weight preference might reflect findings elsewhere that as PEG molecular weight increases the concentration of metal ions required to promote DNA condensation decreases. In any case it is an empirical finding that RPA is made effective by the use of high molecular weight polyethylene glycols.
[0007] In addition to a need for specific type of 'crowded' reaction conditions as described above (reaction in the presence of crowding agents), effective RPA reaction kinetics depend on a high degree of 'dynamic' activity within the reaction with respect to recombinase-DNA interactions. In other words, the available data which includes (i) reaction inhibition by ATP -γ-S, or removal of the acidic C terminus of RecA or UvsX, and (ii) inhibition by excessive ATP (Piepenburg et al., 2006) suggest that not only is it important that recombinase filaments can be formed rapidly, but also important that they can disassemble quickly. This data is consistent with predictions made in earlier US patent
7,270,981. Rapid filament formation ensures that at any given moment there will be a high steady state level of functional recombinase-DNA filaments, while rapid disassembly ensures that completed strand exchange complexes can be accessed by polymerases.
SUMMARY OF THE INVENTION [0008] The invention provides a kit and reagents for, as well as methods of, DNA amplification, termed RPA. RPA comprises the following steps (See Figure 1): First, a recombinase agent is contacted with a first and a second nucleic acid primer to form a first and a second nucleoprotein primer. Second, the first and second nucleoprotein primers are contacted to a double stranded target sequence to form a first double stranded structure at a first portion of said first strand and form a double stranded structure at a second portion of said second strand so the 3 ' ends of said first nucleic acid primer and said second nucleic acid primer are oriented towards each other on a given template DNA molecule. Third, the 3' end of said first and second nucleoprotein primers are extended by DNA polymerases to generate first and second double stranded nucleic acids, and first and second displaced strands of nucleic acid. Finally, the second and third steps are repeated until a desired degree of amplification is reached.
[0009] In one aspect, embodiments of the present invention provide compositions and kits for recombinase polymerase amplification processes of DNA amplification of a target nucleic acid molecule, which include one or more freeze dried pellets. For example, each freeze dried pellet includes a combination of the following reagents in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5% - 5% (weight/lyophilization mixture volume) of polyethylene glycol (e.g., 2.28% (weight/lyophilization mixture volume) of polyethylene glycol with a molecular weight of 35 kilodaltons); (2) 2.5% - 7.5% weight/volume of trehalose (e.g., 5.7%); (3) 0 - 60 niM Tris buffer; (4) 1 - 10 mM DTT; (5) 150 - 400 μM dNTPs; (6) 1.5 - 3.5 mM ATP; (7) 100 - 350 ng/μL uvsX recombinase; (8) optionally 50 - 200 ng/μL uvsY; (9) 150 - 800 ng/μL gp32; (10) 30 - 150 ng/μL Bacillus subtilis Pol I (Bsu) polymerase or S. aureus Pol I large fragment (Sau polymerase); (11) 20 - 75 mM phosphocreatine; and (12) 10 - 200 ng/μL creatine kinase.
[0010] In another aspect, rehydration buffers for reconstituting freeze dried pellets for nucleic acid amplification are provided. In some embodiments, the rehydration buffer for reconstituting the freeze dried pellets are included with the kits described herein and, the rehydration buffer includes 0 - 60 mM Tris buffer, 50 - 150 mM Potassium Acetate, and
2.5% - 7.5% weight/volume of polyethylene glycol. In certain embodiments, the kits further include a 160 - 320 mM Magnesium Acetate solution.
[0011] In certain embodiments of the compositions and kits described herein, the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process. In certain embodiments of the foregoing kits, the freeze dried pellets also include a nuclease. For example, the nuclesase is exonuclease III (exoIII), endonuclease IV (Nfo) or 8- oxoguanine DNA glycosylase (fpg).
[0012] In certain embodiments of the compositions and kits described herein, the kits or compositions may further include positive control primers and target DNA to test the activity of the kit components. For example, the kit can include a positive control DNA (e.g., human genomic DNA) and first and second primers specific for the positive control DNA.
[0013] In another aspect, methods of recombinase polymerase amplification are provided comprising the following steps: First, one of the kits or compositions described herein that include one or more freeze dried pellets and rehydration buffer is provided. Second, at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume. Third, Magnesium (e.g., Magnesium Acetate solution) is added to initiate the reaction. Finally, the reaction is incubated until a desired degree of amplification is achieved. In some embodiments, this last step comprises mixing the sample several minutes after the reaction is initiated.
[0014] In yet another aspect, embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate). For example, the methods include at least three steps. In the first step, the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule. In the second step, Magnesium is added to initiate the reaction. In the third step, the reaction is incubated until a desired degree of amplification is achieved. In certain embodiments, one or more of the reagents are freeze dried before the first step. [0015] In yet another aspect, embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification. For example, the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule.
[0016] In another aspect, embodiments of the present invention include kits for nucleic acid amplification processes, such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
[0017] In yet another aspect, embodiments of the present invention include any of the freeze dried pellets described herein. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose. [0018] In yet another aspect, embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein. In some embodiments, the rehydration buffer comprises polyethylene glycol (e.g., 0.3% - 7.5% weight/ volume of PEG). In some embodiments, a kit comprising any of the foregoing rehydration buffers is provided. [0019] Other embodiments, objects, aspects, features, and advantages of the invention will be apparent from the accompanying description and claims. It is contemplated that whenever appropriate, any embodiment of the present invention can be combined with one or more other embodiments of the present invention, even though the embodiments are described under different aspects of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS
[0020] Figure 1 schematically depicts an RPA reaction.
[0021] Figure 2 depicts the structure of an annealed Exo-probe. The abasic THF residue is cleaved by exonuclease only when the probe is bound. Cleavage by exonuclease separates the fluorophore and quencher and generates fluorescent signal. [0022] Figure 3 depicts the structure of an annealed LF -probe. The abasic THF residue is cleaved by Nfo only when the probe is bound.
[0023] Figure 4 depicts the structure of an annealed Fpg-probe. The abasic dR residue is cleaved by fpg only when the probe is bound. Cleavage by fpg releases the fluorophore from the probe and generates fluorescent signal. DETAILED DESCRIPTION OF THE INVENTION
[0024] Brief description of RPA
[0025] RPA is a method (process) for amplifying DNA fragments. RPA employs enzymes, known as recombinases, that are capable of pairing oligonucleotide primers with homologous sequence in duplex DNA. In this way, DNA synthesis is directed to defined points in a sample DNA. Using two gene-specific primers, an exponential amplification reaction is initiated if the target sequence is present. The reaction progresses rapidly and results in specific amplification from just a few target copies (such as less than 10,000 copies, less than 1000 copies, less than 100 copies or less than 10 copies) to detectable levels within as little as 20-40 minutes. [0026] RPA reactions contain a blend of proteins and other factors that are required to support both the activity of the recombination element of the system, as well as those which support DNA synthesis from the 3' ends of olignucleotides paired to complementary substrates. The key protein component of the recombination system is the recombinase itself, which may originate from prokaryotic, viral or eukaryotic origin. Additionally, however, there is a requirement for single-stranded DNA binding proteins to stabilize nucleic acids during the various exchange transactions that are ongoing in the reaction. A polymerase with strand-displacing character is required specifically as many substrates are still partially duplex in character. Reduction to practice has established that in order to make the reaction capable of amplifying from trace levels of nucleic acids precise in vitro conditions are required that include the use of crowding agents and loading proteins. A system comprising a bacteriophage T 6 UvsX recombinase (e.g., T6UvsXH66S), a bacteriophage Rb69 UvsY loading agent, a bacteriophage Rb69 gp32 and a S. aureus Pol I large fragment has proven to be effective.
[0027] Embodiments of the present invention provide for Recombinase Polymerase Amplification (RPA) — a method for the amplification of target nucleic acid polymers. They also provide for a general in vitro environment in which high recombinase activity is maintained in a highly dynamic recombination environment, supported by ATP. One benefit of RPA is that it may be performed without the need for thermal melting of double-stranded templates. Therefore, the need for expensive thermocyclers is also eliminated.
[0028] Throughout this specification, various patents, published patent applications and scientific references are cited to describe the state and content of the art. Those disclosures, in their entireties, are hereby incorporated into the present specification by reference.
[0029] In Recombinase Polymerase Amplification single-stranded, or partially single- stranded, nucleic acid primers are targeted to homologous double-stranded, or partially double-stranded, sequences using recombinase agents, which form D-loop structures. The invading single-stranded primers, which are part of the D-loops, are used to initiate polymerase synthesis reactions. A single primer species will amplify a target nucleic acid sequence through multiple rounds of double-stranded invasion followed by synthesis. If two opposing primers are used, amplification of a fragment — the target sequence — can be achieved. [0030] The target sequence to be amplified, in any of the embodiments of the present invention, is preferably a double stranded DNA. However, the embodiments of the present invention are not limited to double stranded DNA because other nucleic acid molecules, such as a single stranded DNA or RNA can be turned into double stranded DNA by one of skill in the art using known methods. Suitable double stranded target DNA may be a genomic DNA or a cDNA. An RPA of the invention may amplify a target nucleic acid at least 10 fold, preferably at least 100 fold, more preferably at least 1,000 fold, even more preferably at least 10,000 fold, and most preferably at least 1,000,000 fold. [0031] The terms 'nucleic acid polymer' or 'nucleic acids' as used in this description can be interpreted broadly and include DNA and RNA as well as other hybridizing nucleic-acid- like molecules such as those with substituted backbones e.g. peptide nucleic acids (PNAs), morpholino backboned nucleic acids, locked nucleic acid or other nucleic acids with modified bases and sugars. [0032] In addition, nucleic acids of embodiments of the present invention may be labeled with a detectable label. A detectable label includes, for example, a fluorochrome, an enzyme, a fluorescence quencher, an enzyme inhibitor, a radioactive label and a combination thereof.
Lyophilization of the RPA reaction
[0033] One advantage of RPA is that the reagents for RPA, may be freeze dried (i.e., lyophilized) before use. Freeze dried reagents offer the advantage of not requiring refrigeration to maintain activity. For example, a tube of RPA reagents may be stored at room temperature. This advantage is especially useful in field conditions where access to refrigeration is limited. Freeze dried reagents also offer the advantage of long term storage without significant activity loss. For example, a tube of RPA reagents may be stored at -20 0C for up to six months without significant activity loss.
[0034] While lyophilization is a well-established process there is no guarantee that all components of a reaction system will successfully be co-lyophilized and reconstituted under the same conditions. We have attempted to lyophilize RPA reactions with and without various of the final reaction components. The disaccharide sugar trehalose proves in these experiments to be required to stabilize the lyophilisate, permitting room temperature storage for at least 10 days. We have also found that it is preferable to exclude the salt (e.g., Potassium Acetate) and reduce the buffer concentration to 25 mM of Tris or less from the lyophilisate, to maximize its stability - particularly for storage above 0 0C.
[0035] We have also found that, if salt is present in the lyophilisate, polyethylene glycol is required to stabilize the lyophilisate. By contrast, if salt is not present, then PEG is not required to stabilize the lyophilizate, and need only be provided in the rehydration buffer. A typical RPA reaction will have a final PEG concentration in the reaction of 5% - 6% (w/v). [0036] In addition trehalose and PEG, the reagents that can be freeze dried before use can include, at least, the recombinase, the single stranded DNA binding protein, the DNA polymerase, the dNTPs or the mixture of dNTPs and ddNTPs, the reducing agent, the ATP or ATP analog, the recombinase loading protein, and the first primer and optionally a second primer or a combination of any of these.
[0037] In some embodiments, the RPA reagents may be freeze dried onto the bottom of a tube, or on a bead (or another type of solid support). In use, the reagents are reconstituted with buffer (a) Tris-Acetate buffer at a concentration of between 0 mM to 60 mM; (b) 50 mM to 150 mM Potassium Acetate and (c) polyethylene glycol at a concentration of between 2.5% to 7.5% by weight/volume. If the primers were not added before freeze drying, they can be added at this stage. Finally, a target nucleic acid, or a sample suspected of containing a target nucleic acid is added to begin the reaction. The target, or sample, nucleic acid may be contained within the reconstitution buffer as a consequence of earlier extraction or processing steps. The reaction is incubated until a desired degree of amplification is achieved. [0038] We have found that it is possible to increase the sensitivity of the RPA reaction by agitating or mixing the sample several minutes (e.g., two, three, four, five or six minutes) after reconstituting and initiating the reaction. For example, after reconstituting and initiating the RPA reaction, the tube containing the RPA reaction is placed into an incubator block set to a temperature of 37 0C and is incubated for 4 minutes. The sample is then taken out of the incubator, vortexed and spun down. The sample is then returned to the incubator block and incubated for an additional 15-40 minutes.
[0039] In one aspect, embodiments of the present invention comprise kits for performing RPA reactions. In certain embodiments, the kits include one or more freeze dried pellets each including a combination of reagents for performing RPA reactions. In certain embodiments, the kits comprise 8 freeze dried pellets. In some embodiments, the kits comprise 96 freeze dried pellets. If desired, the freeze dried reagents may be stored for 1 day, 1 week, 1 month or 1 year or more before use.
[0040] In certain embodiments, the pellets can be assembled by combining each reagent in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5% - 5% (weight/lyophilization mixture volume ) of polyethylene glycol; (2) 2.5% - 7.5% weight/volume of trehalose; (3) 0 - 60 mM Tris buffer; (4) 1 - 10 mM DTT; (5) 150 - 400 μM dNTPs; (6) 1.5 - 3.5 mM ATP; (7) 100 - 350 ng/μL uvsX recombinase; (8) optionally 50 - 200 ng/μL uvsY; (9) 150 - 800 ng/μL gp32; (10) 30 - 150 ng/μL Bsu polymerase or Sau polymerase; (11) 20 - 75 mM phosphocreatine; and (12) 10 - 200 ng/μL creatine kinase. For example, the reagents in the solution mixture frozen for lyophilization can have approximately the following concentrations: (1) 2.28% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons; (2) 5.7% weight/volume of trehalose; (3) 25 mM Tris buffer; (4) 5 mM DTT; (5) 240 μM dNTPs; (6) 2.5 mM ATP; (7) 260 ng/μL uvsX recombinase; (8) 88 ng/μL uvsY; (9) 254 ng/μL gp32; (10) 90 ng/μL Bsu polymerase or Sau polymerase; (11) 50 mM phosphocreatine; and (12) 100 ng/μL creatine kinase. The reagents may be freeze dried onto the bottom of a tube or in a well of a multi-well container. The reagents may be dried or attached onto a mobile solid support such as a bead or a strip, or a well.
[0041] While it is often preferred that the volume of the reagent mixture that is frozen and lyophilized is the same as the final volume of the RPA reaction after rehydration, this is not necessary. For example, an 80 μL volume of reagents can be freeze dried, which can then be reconstituted to a final RPA reaction volume of 50 μL. [0042] In certain embodiments, the kits further include a rehydration buffer for reconstituting the freeze dried pellets, where the rehydration buffer includes 0 - 60 mM Tris buffer, 50 - 150 mM Potassium Acetate, and 0.3% - 7.5% weight/volume of polyethylene glycol. For example, the rehydration buffer includes approximately 25 mM Tris buffer, 100 mM Potasium Acetate, and 5.46% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons. In certain embodiments, the kit will comprise 4 mL of rehydration buffer.
[0043] In certain embodiments, the kits further include a 160 - 320 mM Magnesium Acetate solution (e.g., about 280 mM Magnesium Acetate solution). In some embodiments, the kit will comprise 250 μL of the Magnesium Acetate solution. In other embodiments, the rehydration buffer itself will comprise 8 - 16 mM Magnesium Acetate (e.g., about 14 mM Magnesium Acetate).
[0044] In certain embodiments of the foregoing kits, the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process. In certain embodiments of the foregoing kits, the freeze dried pellets also include 50 - 200 ng/μL of either exonuclease III (exoIII), endonuclease IV (Nfo) or 8-oxoguanine DNA glycosylase (fpg).
[0045] In any of the foregoing embodiments, the kit may further include positive control primers and target DNA to test the activity of the kit components. For example, the kit can include a positive control DNA (e.g. , human genomic DNA) and first and second primers specific for the positive control DNA.
[0046] In yet another aspect, embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification. For example, the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule. [0047] In another aspect, embodiments of the present invention include kits for nucleic acid amplification processes, such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
[0048] In yet another aspect, embodiments of the present invention include any of the freeze dried pellets described herein. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3% - 7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
[0049] In yet another aspect, embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein. In some embodiments, the rehydration buffer comprises polyethylene glycol (e.g., 0.3% - 7.5% weight/ volume of PEG). In some embodiments, a kit comprising any of the foregoing rehydration buffers is provided. RPA initiation by Magnesium
[0050] In another aspect, methods of recombinase polymerase amplification are provided comprising the following steps: First, one of the foregoing kits that include one or more freeze dried pellets and rehydration buffer is provided. Second, at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume. Third, Magnesium (e.g., Magnesium Acetate solution) is added to initiate the reaction. Finally, the reaction is incubated until a desired degree of amplification is achieved.
[0051] RPA is a versatile method, but it can be improved by incorporation of features to control the RPA reaction. Embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate). For example, the method includes at least three steps. In the first step, the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule. In the second step,
Magnesium is added to initiate the reaction. In the third step, the reaction is incubated until a desired degree of amplification is achieved. In certain embodiments, one or more of the reagents are freeze dried before the first step. Furthermore, it is possible to initiate a plurality of RPA reactions simultaneously by the simultaneous addition of Magnesium to each reaction.
EXAMPLES
[0052] The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.
EXAMPLE 1 Reagents for RPA reactions [0053] To form a freeze dried reaction pellet for a typical single basic RPA reaction, the following RPA reagents with the indicated concentrations are freeze dried (lyophilized) onto the bottom of a tube: BASIC RPA FREEZE DRIED REACTION PELLET:
Figure imgf000015_0001
[0054] For reconstituting the freeze dried reaction pellet, a rehydration solution is prepared from the following rehydration buffer:
REHYDRATION BUFFER:
Figure imgf000015_0002
[0055] Unlike PCR, which requires small volumes for rapid temperature change, there is no limit to the reaction volume of RPA. Reaction volumes of 25 μL, 50 μL, 100 μL, 1 mL, 10 mL and 100 mL or larger may be performed in one vessel. For the examples given below, a reaction volume of 50 μL is used.
[0056] To permit monitoring of the RPA reaction, a nuclease may also be added to each freeze dried reaction pellet. For example, the "Exo RPA Freeze Dried Reaction Pellet" is the basic RPA freeze-dried reaction pellet plus 96 ng/μL exonuclease III (exoIII). Similarly, the "Nfo RPA Freeze Dried Reaction Pellet" is the basic RPA freeze-dried reaction pellet plus 62 ng/μL endonuclease IV (Nfo). Finally, the "Fpg RPA Freeze Dried Reaction Pellet" is the basic RPA freeze-dried reaction pellet plus 114 ng/μL 8-oxoguanine DNA glycosylase (fpg). [0057] The tubes with the freeze dried pellets can be vacuum-sealed in pouches, for example in 12 strips of 8 pouches/strip for a total of 96 RPA reactions. While the vacuum- sealed pouches can be stored at room temperature for days without loss of activity, long term storage (up to at least about six months) at -20 0C is preferred. The rehydration buffer can be stored as frozen aliquots, for example 4 x 1.2 mL aliquots. For long term storage (up to at least about six months), storage at -20 0C is preferred. Unused rehydration buffer can be refrozen, or stored at 4 0C for up to 1 week. However, excessive freeze-thaw cycles should be avoided.
EXAMPLE 2 Basic RPA reaction [0058] A basic RPA reaction for each sample is established by reconstituting the basic RPA freeze-dried reaction pellet of Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, and template (and water to a total volume of 47.5 μL per sample).
[0059] The components of the rehydration solution can be combined in a master-mix for the number of samples required. In some circumstances, for example when performing a primer screen, a number of different rehydration solutions are to be made (here according to the number of primer pairs being tested). In that case components common to all reactions (e.g., template, rehydration buffer, water) is prepared as a master-mix, distributed in a corresponding volume into fresh tubes, and is combined with the required volume of the different primer pairs. The different rehydration solutions are then used as normal according to the protocol below.
[0060] The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 μL per sample.
[0061] For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and H2O to a total volume of 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
[0062] For each sample, the 47.5 μL of rehydration solution is transferred to a basic RPA freeze-dried reaction pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended.
[0063] For each sample, 2.5 μL of 280 mM Magnesium- Acetate is added and is mixed well. One way to do this simultaneously for many samples is to place the Magnesium- Acetate into the lid of the reaction tubes and then spin it down into the tubes to initiate the reactions. The reaction mixture is vortexed briefly and is spun down once again. [0064] The tubes are place into a suitable incubator block (e.g., set to a temperature of 37-39°C) and are incubated for 4 minutes. For ultra-high sensitivity, after 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator block. The total incubation time is 20-40 minutes. If a timecourse of the reaction is desired the incubation time is adjusted as required. After the reaction is completed, the outcome of each reaction is typically analyzed by an endpoint method, such as agarose-gel- electrophoresis. EXAMPLE 3
Detection probes for use with RPA reactions
[0065] A detection probe can be used to monitor RPA reactions. The probe is a third oligonucleotide primer which recognizes the target amplicon and is typically homologous to sequences between the main amplification primers. The use of fluorophore/quencher with probes in real-time detection formats is a very convenient way to monitor amplification events in RPA reactions.
[0066] RPA technology is compatible with a variety of different types of oligonucleotide probes. The structures of three types — Exo-probes, LF-probes, and Fpg-probes — are each discussed below. Exo-probes
[0067] Exo-probes are generally 46-52 oligonucleotides long. Signal is generated by an internal dT fluorophore (Fluorescein or TAMRA) and quenched by an internal dT quencher (typically Black Hole Quencher (BHQ) 1 or 2) located 1-5 bases 3' to the fluorophore. In this case, probes are restricted to contain sequences where two thymines can be found with <6 intervening nucleotides. One of the bases between the fluorophore and quencher is the abasic nucleotide analog, tetrahydrofuran (THF - sometimes referred to as a 'dSpacer'). There should be at least 30 nucleotides placed 5' to the THF site, and at least a further 15 located 3' to it. When the probe has hybridized to the target sequence, Exonuclease III will recognize and cleave the THF, thereby separating the fluorophore and quencher and generating a fluorescent signal. The THF should be at least 31 bases from the 5 ' end of the probe and 16 bases from the 3' end. Finally, the probe is blocked from polymerase extension by a 3'- blocking group (e.g., Biotin-TEG). Figure 2 depicts a typical annealed Exo-probe.
[0068] While there is no fixed rule describing the best position of a given probe relative to its corresponding amplification primers, care must be taken to avoid the possibility that primer artefacts can be detected by the probe. Although primers that have the same direction as the probe can even overlap its 5 ' part, this overlap must not extend up to the fluorophore/abasic-site/quencher portion of the probe (i.e., the overlap of the primer should be restricted to the 5 '-most 27 nucleotides of the probe or so). This design will prevent the inadvertent generation of hybridization targets for the 'sensitive' sequence element of the probe by primer artefacts. Primers opposing the direction of the probe should not overlap to avoid the occurrence of primer-probe dimers. LF-probes
[0069] LF-probes are often 46-52 oligonucleotides long and intended for detection of RPA reactions in simple sandwich assays such as lateral flow strips. The probe is blocked from polymerase extension by making the last nucleotide a dideoxy nucleotide. As in an Exo- probe, a THF is typically positioned about 30 bases from the 5' end of the probe and 16 bases from the 3' end. When the probe has annealed to the target sequence, Nfo nuclease will recognize and cleave the THF. This allows the 5' portion of the cut probe to then act as a primer, ultimately leading to an amplicon containing the 5' portion of the probe conjoined to the opposing primer. The amplicon is detected by virtue of labels attached to the 5' end of the opposing primer (usually biotin) and to the 5' end of the probe (usually FAM). The duplex formed is captured on a surface coated with the appropriate capture molecule (e.g., streptavidin for biotin or an anti-FAM antibody for FAM). RPA products are run on lateral flow strips, such as available from Milenia Biotec. Figure 3 depicts a typical annealed LF- probe.
[0070] While there is no fixed rule describing the best position of a given probe relative to its corresponding amplification primers, care must be taken to avoid the possibility that primer artefacts can be detected by the probe. Although primers that have the same direction as the probe can even overlap its 5 ' part, this overlap must not extend up to the abasic-site portion of the probe (i.e., the overlap of the primer should be restricted to the 5 '-most 27 nucleotides of the probe or so). This design will prevent the inadvertent generation of hybridization targets for the 'sensitive' sequence element of the probe by primer artefacts. Primers opposing the direction of the probe should not overlap to avoid the occurrence of primer-probe dimers. The opposing amplification primer is usually labelled with biotin.
Fpg-probes
[0071] Fpg-probes are generally 35 oligonucleotides long. At the 5' end of the probe is a quencher (typically Black Hole Quencher (BHQ) 1 or 2). Signal is generated by a fluorophore (typically FAM or Texas Red) attached to the ribose of a base-less nucleotide analog (a so-called dR residue; a fluorophore/O-linker effectively replaces the base at the C 1 position of the ribose) 4-6 bases downstream of the 5' end. When the probe has annealed to the target sequence, fpg will recognize and cleave the dR, thereby releasing the fluorophore from the probe and generating a fluorescent signal. Finally, the probe is blocked from polymerase extension by a 3 '-blocking group (e.g., Biotin-TEG). Figure 4 is a schematic of a typical annealed Fpg-probe. Figure 7 depicts the structure of an annealed Fpg-probe. The abasic dR residue is cleaved by fpg only when the probe is bound. This releases the fluorophore from the probe and generates fluorescent signal.
[0072] While there is no fixed rule describing the best position of a given Fpg-probe relative to the amplification primers with which it is used, care must be taken to avoid the possibility that primer artefacts can be detected by the probe. As a result any overlap between primers and the probe should be avoided.
EXAMPLE 4 RPA reaction with real time monitoring using exonuclease III
[0073] A RPA reaction using exonuclease III is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Exo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Exo-probe (and water to a total volume of 47.5 μL per sample). The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 μL per sample. [0074] For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and 0.6 μL of an Exo- probe (10 μM) as described in Example 3. H2O is added to bring the total volume of the foregoing components to 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly. [0075] For each sample, the 47.5 μL of rehydration solution is transferred to an Exo RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 μL of 280 mM Magnesium- Acetate is added and is mixed well to initiate the reaction.
[0076] The tubes are place into a suitable thermal incubator/fluorometer (e.g. , isothermally set to a temperature of 37-39°C) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
EXAMPLE 5 RPA reaction using Nfo [0077] A RPA reaction using Nfo is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Nfo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an LF -probe (and water to a total volume of 47.5 μL per sample). The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 μL per sample.
[0078] For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and 0.6 μL of an LF- probe (10 μM) as described in Example 3. H2O is added to bring the total volume of the foregoing components to 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
[0079] For each sample, the 47.5 μL of rehydration solution is transferred to an Nfo RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 μL of 280 mM Magnesium- Acetate is added and is mixed well to initiate the reaction.
[0080] The tubes are place into a suitable incubator block (e.g., set to a temperature of 37-39°C) and are incubated for 4 minutes. For ultra-high sensitivity after 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator block. The total incubation time is 15-30 minutes. After the reaction is completed, the outcome of each reaction is typically analyzed by an endpoint method, such as a sandwich assay technique.
EXAMPLE 6 RPA reaction with real time monitoring using Fp g
[0081] A RPA reaction using fpg is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Fpg RPA Freeze Dried Reaction Pellet of
Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Fpg-probe (and water to a total volume of 47.5 μL per sample). The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium- Acetate solution, bringing the final reaction volume to 50 μL per sample.
[0082] For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and 0.6 μL of an Fpg- probe (10 μM) as described in Example 3. H2O is added to bring the total volume of the foregoing components to 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
[0083] For each sample, the 47.5 μL of rehydration solution is transferred to an Fpg RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 μL of 280 mM Magnesium- Acetate is added and is mixed well to initiate the reaction.
[0084] The tubes are place into a suitable thermal incubator/fluorometer (e.g. , isothermally set to a temperature of 37-39°C) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
[0085] The details of one or more embodiments of the invention have been set forth in the accompanying description above. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims.
[0086] In the specification and the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Unless expressly stated otherwise, the techniques employed or contemplated herein are standard methodologies well known to one of ordinary skill in the art. All sequence citations, patents, patent applications and publications cited in this specification are hereby incorporated by reference herein, including the disclosures provided by U.S. Patent Nos. 7,270,981 filed February 21, 2003; 7,399,590 filed September 1, 2004; 7,435,561 filed July 25, 2006 and 7,485,428 filed August 13, 2007, as well as, U.S. Application Nos. 11/628,179, filed August 30, 2007; 11/800,318 filed May 4, 2007 and 61/179,793 filed May 20, 2009.

Claims

CLAIMSWhat is claimed is:
1. A kit for a recombinase polymerase amplification process of DNA amplification of a target nucleic acid molecule comprising: (a) one or more freeze dried pellets each comprising a combination of the following reagents in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried);
(I) 1.5% - 5 % (weight/lyophilization mixture volume) of polyethylene glycol; (2) 2.5% - 7.5% weight/volume of trehalose;
(3) 0 - 60 mM Tris buffer;
(4) 1 - 1O mM DTT;
(5) 150 - 400 μM dNTPs;
(6) 1.5 - 3.5 mM ATP; (7) 100 - 350 ng/μL uvsX recombinase;
(8) optionally 50 - 200 ng/μL uvsY;
(9) 150 - 800 ng/μL gp32;
(10) 30 - 150 ng/μL Bsu polymerase or Sau polymerase;
(I I) 20 - 75 mM phosphocreatine; and (12) 10 - 200 ng/μL creatine kinase.
2. The kit of claim 1, wherein each of the freeze dried reagents is in approximately the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried):
(1) 2.28% (weight/lyophilization mixture volume) of polyethylene glycol with a molecular weight of 35 kilodaltons;
(2) 5.7% weight/volume of trehalose;
(3) 25 mM Tris buffer;
(4) 5 mM DTT; (5) 240 μM dNTPs;
(6) 2.5 niM ATP;
(7) 260 ng/μL uvsX recombinase;
(8) 88 ng/μL uvsY; (9) 254 ng/μL gp32;
(10) 90 ng/μL Sau polymerase;
(11) 50 rnM phosphocreatine; and
(12) 100 ng/μL creatine kinase.
3. The kit according to either of claims 1 or 2, wherein said kit comprises 8 freeze dried pellets.
4. The kit according to either of claims 1 or 2,wherein said kit comprises 96 freeze dried pellets.
5. The kit according to any one of claims 1 - 4 further comprising:
(b) a rehydration buffer for reconstituting said freeze dried pellets, wherein said rehydration buffer comprises 0 - 60 mM Tris buffer, 50 - 150 mM Potassium Acetate, and 0.3% - 7.5% weight/volume of polyethylene glycol.
6. The kit according to claim 5, wherein said rehydration buffer comprises approximately 25 mM Tris buffer; approximately 100 mM Potassium Acetate, and approximately 5.46% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons.
7. The kit according to claim 5, wherein said kit comprises 4 mL of said rehydration buffer.
8. The kit according to claim 5, wherein said rehydration buffer further comprises 8 - 16 mM Magnesium Acetate.
9. The kit according to claim 8, wherein said rehydration buffer comprises approximately 14 mM Magnesium Acetate.
10. The kit according to claim 5, further comprising:
(c) a 160 - 320 mM Magnesium Acetate solution.
11. The kit according to claim 10, where the concentration of said Magnesium Acetate solution is approximately 280 mM.
12. The kit according to claim 10, wherein said kit comprises 250 μL of said Magnesium Acetate solution.
13. The kit according to any one of the preceding claims, wherein said freeze dried pellets further comprise 50-1000 nM of a first primer and 50-1000 nM of a second primer.
14. The kit according to any one of the preceding claims, wherein said freeze dried pellets further comprises a nuclease.
15. The kit according to claim 14, wherein said kit further comprises a positive control, wherein said positive control comprises a positive control DNA, a first positive control nucleic acid primer, a second positive control nucleic acid primer and a positive control nucleic acid probe, and said probe is capable of being cleaved by said nuclease when said probe is hybridized to said positive control DNA.
16. The kit according to claim 15, wherein said positive control DNA comprises human genomic DNA, said first and second positive control nucleic acid primers are each provided at a concentration of about 10 μM and said positive control nucleic acid probe is provide at a concentration of about 120 nM.
17. The kit according to claim 14, wherein said nuclease is selected from the group consisting of exonuclease III (exoIII), endonuclease IV (Nfo) and 8-oxoguanine DNA glycosylase (fpg).
18. The kit according to claim 17, wherein said pellets comprise 50 - 200 ng/μL of said nuclease.
19. The kit according to claim 18, wherein said pellets comprise approximately 96 ng/μL exoIII.
20. The kit according to claim 18, wherein said pellets comprise approximately 62 ng/μL Nfo.
21. The kit according to claim 18, wherein said pellets comprise approximately 114 ng/μL fpg.
22. A recombinase polymerase amplification process of DNA amplification comprising the steps of:
(a) combining the following reagents in a solution in the absence of Magnesium:
(1) at least one recombinase; (2) at least one single stranded DNA binding protein;
(3) at least one DNA polymerase; (4) dNTPs;
(5) polyethylene glycol;
(6) a buffer;
(7) a reducing agent; (8) ATP;
(9) optionally at least one recombinase loading protein;
(10) a first primer and a second primer; and
(11) a target nucleic acid molecule;
(b) adding Magnesium to initiate the amplification reaction; and (c) incubating said solution until a desired degree of amplification is achieved.
23. The process of claim 22, wherein one or more of the reagents of step (a) are freeze dried before step (a).
24. The process of claim 23, wherein step (c) comprises the following steps:
(1) incubating said solution for a first period of time; (2) mixing said solution; and
(3) incubating said solution for a second period of time until the desired degree of amplification is achieved.
25. The process of claim 24, wherein said first period of time is about four minutes.
26. The process of claim 24, wherein said mixing step comprises vortexing said solution.
27. The process of claim 22, wherein the Magnesium is added in the form of a Magnesium
Acetate solution.
28. The process of claim 22, wherein the Magnesium is added to a final concentration of 8 - 16 mM.
29. The process of claim 28, wherein the Magnesium is added to a final concentration of about 14 mM.
30. A recombinase polymerase amplification process of DNA amplification comprising the steps of:
(a) providing the kit of claim 5;
(b) reconstituting at least one of said freeze dried pellets with the following in any order:
( 1 ) said rehydration buffer; (2) a first nucleic acid primer and a second nucleic acid primer; a
(3) a target nucleic acid; and
(4) optionally water;
(c) adding Magnesium to initiate the amplification reaction; and (d) incubating said reaction until a desired degree of amplification is achieved.
31. The process of claim 30, wherein the Magnesium is added in the form of a Magnesium Acetate solution.
32. The process of claim 30, wherein the Magnesium is added to a final concentration of 8 - 16 mM.
33. The process of claim 32, wherein the Magnesium is added to a final concentration of about 14 mM.
34. The process of claim 30, wherein said freeze dried pellet comprises a nuclease and wherein said freeze dried is also reconstituted with a nucleic acid probe, where said probe is capable of being cleaved by said nuclease when said probe is hybridized to said target nucleic acid.
35. The process of claim 30, wherein a plurality of freeze dried pellets are reconstituted during step (b) and initiating each amplification reaction simultaneously by adding the Magnesium to each reconstituted pellet at the same time during step (c).
36. The process of claim 30, wherein the reaction volume after step (c) is approximately 50 μL.
37. The process of claim 30, wherein step (d) comprises the following steps:
(1) incubating said solution for a first period of time;
(2) mixing said solution; and
(3) incubating said solution for a second period of time until the desired degree of amplification is achieved.
38. The process of claim 37, wherein said first period of time is about four minutes.
39. The process of claim 37, wherein said mixing step comprises vortexing said solution.
40. A frieze dried pellet for a recombinase polymerase amplification process of DNA amplification of a target nucleic acid molecule, comprising: trehalose, and wherein said pellet does not contain polyethylene glycol.
41. The frieze dried pellet of claim 40, wherein said pellet comprises 2.5% - 7.5% weight/lyophilization mixture volume of trehalose.
PCT/US2010/037611 2009-06-05 2010-06-07 Recombinase polymerase amplification reagents and kits WO2010141940A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10784225.4A EP2438196B1 (en) 2009-06-05 2010-06-07 Recombinase polymerase amplification reagents and kits
EP17186755.9A EP3360974A1 (en) 2009-06-05 2010-06-07 Recombinase polymerase amplification reagents
US13/375,264 US9057097B2 (en) 2009-06-05 2010-06-07 Recombinase polymerase amplification reagents and kits
US14/705,150 US20150240298A1 (en) 2009-06-05 2015-05-06 Recombinase polymerase amplification reagents and kits
US17/865,671 US20230052199A1 (en) 2009-06-05 2022-07-15 Recombinase polymerase amplification reagents and kits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18439709P 2009-06-05 2009-06-05
US61/184,397 2009-06-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/375,264 A-371-Of-International US9057097B2 (en) 2009-06-05 2010-06-07 Recombinase polymerase amplification reagents and kits
US14/705,150 Division US20150240298A1 (en) 2009-06-05 2015-05-06 Recombinase polymerase amplification reagents and kits

Publications (1)

Publication Number Publication Date
WO2010141940A1 true WO2010141940A1 (en) 2010-12-09

Family

ID=43298213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/037611 WO2010141940A1 (en) 2009-06-05 2010-06-07 Recombinase polymerase amplification reagents and kits

Country Status (3)

Country Link
US (3) US9057097B2 (en)
EP (2) EP3360974A1 (en)
WO (1) WO2010141940A1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138989A1 (en) 2011-04-07 2012-10-11 Alere San Diego Inc. Monitoring recombinase polymerase amplification mixtures
WO2013041713A2 (en) 2011-09-23 2013-03-28 Cambridge Medical Innovations Limited System and apparatus for reactions
WO2013185081A1 (en) 2012-06-08 2013-12-12 Ionian Technologies, Inc Nucleic acid amplifications
CN103451291A (en) * 2013-09-02 2013-12-18 中国农业科学院生物技术研究所 RPA (Recombinase Polymerase Amplification) detection method for CrylAb/CrylAc insect-resistant gene
US8945845B2 (en) 2002-02-21 2015-02-03 Alere San Diego Inc. Recombinase polymerase amplification
US8962255B2 (en) 2002-02-21 2015-02-24 Alere San Diego, Inc. Recombinase polymerase amplification
US8969002B2 (en) 2010-10-04 2015-03-03 Genapsys, Inc. Methods and systems for electronic sequencing
US9057097B2 (en) 2009-06-05 2015-06-16 Alere San Diego Inc. Recombinase polymerase amplification reagents and kits
EP2811019A4 (en) * 2012-01-31 2015-08-12 Fujirebio Kk Method for correcting detection signal in isothermal nucleic acid amplification reaction
US9274077B2 (en) 2011-05-27 2016-03-01 Genapsys, Inc. Systems and methods for genetic and biological analysis
WO2016054088A1 (en) * 2014-09-29 2016-04-07 Illumina Cambridge Limited Recombinase mutants
US9340825B2 (en) 2002-02-21 2016-05-17 Alere San Diego, Inc. Compositions for recombinase polymerase amplification
US9399217B2 (en) 2010-10-04 2016-07-26 Genapsys, Inc. Chamber free nanoreactor system
US9434983B2 (en) 2011-05-27 2016-09-06 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
US9469867B2 (en) 2009-05-20 2016-10-18 Alere San Diego, Inc. DNA glycosylase/lyase and AP endonuclease substrates
WO2017172699A1 (en) * 2016-03-28 2017-10-05 Illumina, Inc. Recombinase mutants
US9809852B2 (en) 2013-03-15 2017-11-07 Genapsys, Inc. Systems and methods for biological analysis
US9822401B2 (en) 2014-04-18 2017-11-21 Genapsys, Inc. Methods and systems for nucleic acid amplification
GB2553164A (en) * 2016-02-05 2018-02-28 Gen Probe Inc Dried Amplication compositions
US9932577B2 (en) 2005-07-25 2018-04-03 Alere San Diego, Inc. Methods for multiplexing recombinase polymerase amplification
CN107893103A (en) * 2017-11-29 2018-04-10 默禾医疗科技(上海)有限公司 Recombinase and protein concentration when active level method in recombinase polymeric enzymatic amplification
US9945807B2 (en) 2010-10-04 2018-04-17 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods therefor
CN108410954A (en) * 2018-07-10 2018-08-17 默禾医疗科技(上海)有限公司 The compounding method of reaction buffer in a kind of room temperature amplification reaction system
US10093975B2 (en) 2011-12-01 2018-10-09 Genapsys, Inc. Systems and methods for high efficiency electronic sequencing and detection
US10093908B2 (en) 2006-05-04 2018-10-09 Alere San Diego, Inc. Recombinase polymerase amplification
US10125393B2 (en) 2013-12-11 2018-11-13 Genapsys, Inc. Systems and methods for biological analysis and computation
US10329601B2 (en) 2015-12-28 2019-06-25 Ionian Technologies, Inc. Nicking and extension amplification reaction (NEAR) of Streptococcus species
WO2019238765A1 (en) 2018-06-12 2019-12-19 Keygene N.V. Nucleic acid amplification method
US10544456B2 (en) 2016-07-20 2020-01-28 Genapsys, Inc. Systems and methods for nucleic acid sequencing
US10632464B2 (en) 2017-02-28 2020-04-28 Alere San Diego, Inc. Microfluidic devices and related methods
US10900075B2 (en) 2017-09-21 2021-01-26 Genapsys, Inc. Systems and methods for nucleic acid sequencing
WO2021075958A1 (en) * 2019-10-15 2021-04-22 Technische Universiteit Delft Detection of a target polynucleotide
US11118219B2 (en) 2016-04-04 2021-09-14 Nat Diagnostics, Inc. Isothermal amplification components and processes
US11185864B2 (en) 2015-11-05 2021-11-30 Alere San Diego, Inc. Sample preparation device
CN113728111A (en) * 2018-12-19 2021-11-30 弗劳恩霍夫应用研究促进协会 In vitro method for detecting at least one nucleic acid located outside blood cells in biological whole blood, and device and kit for this purpose
US11286526B2 (en) 2017-05-19 2022-03-29 Gen-Probe Incorporated Dried compositions containing flap endonuclease
EP3995592A1 (en) * 2020-11-09 2022-05-11 midge medical GmbH Multimeric isothermal nucleic acid amplification methods for point-of-need diagnosis
AU2018297861B2 (en) * 2017-07-05 2022-05-12 OriCiro Genomics, Inc. DNA production method and DNA fragment joining kit
WO2022146745A1 (en) * 2020-12-31 2022-07-07 Life Technologies Corporation Rehydration buffer solutions and methods
US11634770B2 (en) 2017-08-31 2023-04-25 Ionian Technologies, Llc Nicking and extension amplification reaction (NEAR) of respiratory syncytial virus species
US11649484B2 (en) 2016-02-26 2023-05-16 Abbott Diagnostics Scarborough, Inc. Redox labeled oligonucleotide probes and their use
WO2023093061A1 (en) 2021-11-23 2023-06-01 广州达安基因股份有限公司 Method for preparing constant-temperature amplification mixed enzyme system
WO2023093060A1 (en) 2021-11-23 2023-06-01 广州达安基因股份有限公司 Reverse-transcription amplification system and method based on recombinase polymerase amplification technology
US11807899B2 (en) 2019-11-11 2023-11-07 Biocrucible Limited Biochemical reaction methods and reagents comprising intrinsically disordered regions
EP4275794A2 (en) 2016-03-04 2023-11-15 Abbott Diagnostics Scarborough, Inc. Device for automated nested recombinase polymerase amplification
US11884969B2 (en) 2016-04-04 2024-01-30 Nat Diagnostics, Inc. Isothermal amplification components and processes
WO2024063653A1 (en) 2022-09-23 2024-03-28 Rapidemic B.V Methods and device for multiple-label nucleic acid amplification and detection

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120156728A1 (en) 2010-12-17 2012-06-21 Life Technologies Corporation Clonal amplification of nucleic acid on solid surface with template walking
US9309566B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Methods, compositions, systems, apparatuses and kits for nucleic acid amplification
US9309557B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Nucleic acid amplification
US9334531B2 (en) 2010-12-17 2016-05-10 Life Technologies Corporation Nucleic acid amplification
US10195610B2 (en) 2014-03-10 2019-02-05 Click Diagnostics, Inc. Cartridge-based thermocycler
EP2966177A1 (en) * 2014-07-09 2016-01-13 Vetgenomics, S.L. Methods for detecting target DNA sequences
CA2972587A1 (en) 2014-12-31 2016-07-07 Click Diagnostics, Inc. Devices and methods for molecular diagnostic testing
CN107849600A (en) 2015-06-09 2018-03-27 生命技术公司 For the method for molecular labeling, system, composition, kit, device and computer-readable media
EP3359669B1 (en) 2015-10-06 2020-05-13 Pierce Biotechnology, Inc. Devices and methods for producing proteins
US10987674B2 (en) 2016-04-22 2021-04-27 Visby Medical, Inc. Printed circuit board heater for an amplification module
WO2017197040A1 (en) 2016-05-11 2017-11-16 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
US10161012B2 (en) * 2017-02-22 2018-12-25 National Taiwan University Method and kit for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection
KR20200016259A (en) * 2017-06-07 2020-02-14 다카라 바이오 가부시키가이샤 Preservation method of oligonucleotide
JP7239568B2 (en) 2017-11-09 2023-03-14 ビスビュー メディカル,インコーポレイテッド Portable molecular diagnostic device and method for detecting target virus
CN108866244A (en) * 2018-08-31 2018-11-23 杭州奥盛仪器有限公司 Detect RPA primer and probe, kit and its method of prawn irido virus
GB201905303D0 (en) 2019-04-15 2019-05-29 Thermo Fisher Scient Geneart Gmbh Multiplex assembly of nucleic acid molecules
WO2021138544A1 (en) 2020-01-03 2021-07-08 Visby Medical, Inc. Devices and methods for antibiotic susceptibility testing
US20240218466A1 (en) * 2020-03-23 2024-07-04 Visby Medical, Inc. Devices and methods for detection of target viruses
BR112022021086A2 (en) 2020-04-30 2022-12-13 Stab Vida Investig E Servicos Em Ciencias Biologicas Lda INTEGRATED SYSTEM FOR THE DETECTION AND IDENTIFICATION OF SPECIFIC SEQUENCES OF NUCLEIC ACIDS AND METHOD OF USE OF THE INTEGRATED SYSTEM
CN113215269B (en) * 2021-04-27 2022-07-26 中国农业大学 Detection kit for visual detection of potato rot stem nematodes and application thereof
KR20240004692A (en) 2021-04-29 2024-01-11 애벗트 라보라토리이즈 Sample pooling systems and methods for high-throughput analysis
CO2022007673A1 (en) * 2022-05-31 2022-06-10 Corporacion Centro De Investig En Palma De Aceite Composition and method of detection of phytomonas staheli by rpa-lfa
WO2024030985A1 (en) 2022-08-04 2024-02-08 Abbott Laboratories Assays for detecting monkeypox virus
CN115948515A (en) * 2022-12-30 2023-04-11 圣湘生物科技股份有限公司 Recombinase-mediated full-freeze-drying isothermal amplification system and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118853A2 (en) * 2004-06-01 2005-12-15 Asm Scientific, Inc. Recombinase polymerase amplification
WO2007096702A2 (en) * 2005-07-25 2007-08-30 Asm Scientific, Inc. Methods for multiplexing recombinase polymerase amplification
WO2008035205A2 (en) * 2006-05-04 2008-03-27 Asm Scientific, Inc. Recombinase polymerase amplification
US7485428B2 (en) * 2002-02-21 2009-02-03 Twistdx, Inc. Recombinase polymerase amplification

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5858652A (en) 1988-08-30 1999-01-12 Abbott Laboratories Detection and amplification of target nucleic acid sequences
GB8903627D0 (en) 1989-02-17 1989-04-05 Unilever Plc Assays
AU635105B2 (en) 1990-01-26 1993-03-11 Abbott Laboratories Improved method of amplifying target nucleic acids applicable to both polymerase and ligase chain reactions
US5326692B1 (en) 1992-05-13 1996-04-30 Molecular Probes Inc Fluorescent microparticles with controllable enhanced stokes shift
US5273881A (en) 1990-05-07 1993-12-28 Daikin Industries, Ltd. Diagnostic applications of double D-loop formation
US5223414A (en) 1990-05-07 1993-06-29 Sri International Process for nucleic acid hybridization and amplification
ATE153707T1 (en) 1990-05-07 1997-06-15 Daikin Ind Ltd DIAGNOSTIC APPLICATIONS OF DOUBLE D-LOOPS FORMATION.
DE69130800T2 (en) 1990-07-24 1999-09-16 Hoffmann La Roche REDUCING NON-SPECIFIC AMPLIFICATION DURING AN (IN VITRO) NUCLEIC ACID AMPLIFICATION USING MODIFIED NUCLEIC ACID BASES
US5455166A (en) 1991-01-31 1995-10-03 Becton, Dickinson And Company Strand displacement amplification
US5556751A (en) 1991-04-25 1996-09-17 Amoco Corporation Selective amplification system using Q-β replicase
EP0543484B1 (en) 1991-08-30 2001-01-31 Research Development Corporation of Japan A method of DNA amplification
US5834202A (en) 1992-08-04 1998-11-10 Replicon, Inc. Methods for the isothermal amplification of nucleic acid molecules
US5614389A (en) 1992-08-04 1997-03-25 Replicon, Inc. Methods for the isothermal amplification of nucleic acid molecules
US5733733A (en) 1992-08-04 1998-03-31 Replicon, Inc. Methods for the isothermal amplification of nucleic acid molecules
WO1994003624A1 (en) 1992-08-04 1994-02-17 Auerbach Jeffrey I Methods for the isothermal amplification of nucleic acid molecules
CA2122203C (en) 1993-05-11 2001-12-18 Melinda S. Fraiser Decontamination of nucleic acid amplification reactions
FR2708288B1 (en) 1993-07-26 1995-09-01 Bio Merieux Method for amplification of nucleic acids by transcription using displacement, reagents and necessary for the implementation of this method.
US6165793A (en) 1996-03-25 2000-12-26 Maxygen, Inc. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
US6117679A (en) 1994-02-17 2000-09-12 Maxygen, Inc. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
US5648211A (en) 1994-04-18 1997-07-15 Becton, Dickinson And Company Strand displacement amplification using thermophilic enzymes
US5942391A (en) 1994-06-22 1999-08-24 Mount Sinai School Of Medicine Nucleic acid amplification method: ramification-extension amplification method (RAM)
US5705366A (en) 1994-09-15 1998-01-06 Johnson & Johnson Clinical Diagnostics, Inc. Coamplification of target nucleic acids using volume exclusion agent in reaction composition, test kit and test device useful therefor
US5656430A (en) 1995-06-07 1997-08-12 Trevigen, Inc. Oscillating signal amplifier for nucleic acid detection
US5916779A (en) 1995-09-21 1999-06-29 Becton, Dickinson And Company Strand displacement amplification of RNA targets
US5731150A (en) 1995-11-01 1998-03-24 Chiron Diagnostic Corporation IS6110 based molecular detection of mycobacterium tuberculosis
US5853990A (en) 1996-07-26 1998-12-29 Edward E. Winger Real time homogeneous nucleotide assay
CA2263815A1 (en) 1996-08-29 1998-03-05 Koji Kigawa Methods for targeting, enriching, detecting and/or isolating target nucleic acid sequence using reca-like recombinase
CA2256563A1 (en) 1997-04-04 1998-10-15 Innogenetics N.V. Isothermal polymerase chain reaction by cycling the concentration of divalent metal ions
US6245506B1 (en) 1997-07-30 2001-06-12 Bbi Bioseq, Inc. Integrated sequencing device
WO1999060158A1 (en) 1998-05-19 1999-11-25 Laboratory Of Molecular Biophotonics Solid phase for detecting nucleic acid and method for detecting nucleic acid
US6087112A (en) 1998-12-30 2000-07-11 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
CA2375769A1 (en) 1999-01-11 2000-07-20 President And Fellows Of Harvard College Isothermal amplification of dna
WO2000046408A1 (en) 1999-02-04 2000-08-10 Sloan-Kettering Institute For Cancer Research Process for dna replication
US6699693B1 (en) 1999-02-04 2004-03-02 Sloan-Kettering Institute For Cancer Research Process for DNA replication
US6387621B1 (en) 1999-04-27 2002-05-14 University Of Utah Research Foundation Automated analysis of real-time nucleic acid amplification
NO314091B1 (en) 2000-01-12 2003-01-27 Biotec Pharmacon Asa Heat-labile uracil DNA glycosylase, DNA sequence encoding the enzyme, microorganism containing the DNA sequence, and use of the enzyme
AU2001243670A1 (en) 2000-03-20 2001-10-03 Maxygen, Inc. Method for generating recombinant dna molecules in complex mixtures
US20020061530A1 (en) 2000-07-31 2002-05-23 Belotserkovskii Boris P. Enhanced targeting of DNA sequences by recombinase protein and single-stranded homologous DNA probes using DNA analog activation
US6379899B1 (en) 2001-03-13 2002-04-30 Discoverx Isothermal exponential RNA amplification in complex mixtures
ES2305289T3 (en) 2001-04-20 2008-11-01 The Penn State Research Foundation METHOD OF HANDLING NUCLEIC ACIDS.
EP1417336A4 (en) 2001-07-15 2005-06-22 Keck Graduate Inst Exponential nucleic acid amplification using nicking endonucleases
CA2492220C (en) 2001-07-15 2014-03-18 Keck Graduate Institute Nucleic acid amplification using nicking agents
KR20040028991A (en) 2001-08-20 2004-04-03 다카라 바이오 가부시키가이샤 Nucleic acid amplification methods
AU2002341898A2 (en) 2001-09-28 2003-04-07 University Of Delaware Polymorphism detection and separation
KR100445560B1 (en) 2001-10-31 2004-08-21 (주)바이오넥스 Method of manufacturing kit for isolating nucleic acids or biological materials, kit manufactured by the method, and apparatus using the kit
US7244562B2 (en) 2001-11-01 2007-07-17 Gene Check, Inc. RecA assisted detection of mutations, single nucleotide polymorphisms and specific sequences
US8030000B2 (en) 2002-02-21 2011-10-04 Alere San Diego, Inc. Recombinase polymerase amplification
US7399590B2 (en) 2002-02-21 2008-07-15 Asm Scientific, Inc. Recombinase polymerase amplification
US20040137456A1 (en) 2002-04-04 2004-07-15 Hiroki Yokota Method for identifying and characterizing individual dna molecules
US20030228611A1 (en) 2002-05-01 2003-12-11 President And Fellows Of Harvard College Nucleic acid memory device
US6713262B2 (en) 2002-06-25 2004-03-30 Agilent Technologies, Inc. Methods and compositions for high throughput identification of protein/nucleic acid binding pairs
JP2005532827A (en) 2002-07-12 2005-11-04 ブリティッシュ・バイオセル・インターナショナル・リミテッド Device and method for lateral flow assay
US20040038213A1 (en) 2002-08-06 2004-02-26 Kwon Jai W. Genotyping by in situ PCR amplification of a polynucleotide in a tissue biopsy
AU2003274914A1 (en) 2002-08-21 2004-03-11 Epoch Biosciences, Inc. Abasic site endonuclease assay
CA2498764C (en) 2002-09-20 2015-11-10 New England Biolabs, Inc. Helicase dependent amplification of nucleic acids
US7662594B2 (en) 2002-09-20 2010-02-16 New England Biolabs, Inc. Helicase-dependent amplification of RNA
WO2004081224A2 (en) 2003-03-11 2004-09-23 Gene Check, Inc. Reca-assisted allele specific oligonucleotide extension method
DE10315640A1 (en) * 2003-04-04 2004-10-14 Ignatov, Konstantin Process for the controlled release of components into a solution
JP2005110621A (en) 2003-10-10 2005-04-28 Aisin Seiki Co Ltd Method for amplifying nucleic acid and reagent kit for amplifying nucleic acid
CA2497324A1 (en) 2004-02-17 2005-08-17 Affymetrix, Inc. Methods for fragmenting and labelling dna
US7745125B2 (en) 2004-06-28 2010-06-29 Roche Molecular Systems, Inc. 2′-terminator related pyrophosphorolysis activated polymerization
DK1659186T3 (en) 2004-10-11 2008-09-22 Epigenomics Ag Method of contamination protection in DNA amplification systems for methylation analysis obtained by a modified pretreatment of nucleic acids
WO2006057918A2 (en) 2004-11-23 2006-06-01 Morisawa, Shinkatsu Detection of nucleic acid variation by cleavage-amplification method
WO2006119280A2 (en) * 2005-05-03 2006-11-09 Handylab, Inc. Lyophilized pellets
GB0701253D0 (en) * 2007-01-23 2007-02-28 Diagnostics For The Real World Nucleic acid amplification and testing
WO2009011971A2 (en) 2007-05-18 2009-01-22 The Govt. Of The U.S.A. As Represented By The Secretary Of The Dept. Of Health And Human Services, Centers For Disease Control And Prevention Primers and probes for the detection of streptococcus pneumoniae
US9689031B2 (en) 2007-07-14 2017-06-27 Ionian Technologies, Inc. Nicking and extension amplification reaction for the exponential amplification of nucleic acids
JP2009139487A (en) 2007-12-04 2009-06-25 Nippon Sheet Glass Co Ltd Erecting equal-magnification lens array plate
WO2010135310A1 (en) 2009-05-20 2010-11-25 Biosite Incorporated Dna glycosylase/lyase and ap endonuclease substrates
WO2010141940A1 (en) 2009-06-05 2010-12-09 Alere San Diego, Inc. Recombinase polymerase amplification reagents and kits
ES2823551T3 (en) 2012-06-08 2021-05-07 Ionian Tech Llc Nucleic acid amplifications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485428B2 (en) * 2002-02-21 2009-02-03 Twistdx, Inc. Recombinase polymerase amplification
WO2005118853A2 (en) * 2004-06-01 2005-12-15 Asm Scientific, Inc. Recombinase polymerase amplification
WO2007096702A2 (en) * 2005-07-25 2007-08-30 Asm Scientific, Inc. Methods for multiplexing recombinase polymerase amplification
WO2008035205A2 (en) * 2006-05-04 2008-03-27 Asm Scientific, Inc. Recombinase polymerase amplification
US20090029421A1 (en) * 2006-05-04 2009-01-29 Olaf Piepenburg Recombinase polymerase amplification

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PIEPENBURG ET AL: "DNA detection using recombination proteins, article e204", PLOS BIOL., vol. 4, no. 7, 2006, pages 1 - 7, XP002501560 *
See also references of EP2438196A4 *

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663820B2 (en) 2002-02-21 2017-05-30 Alere San Diego Inc. Recombinase polymerase amplification
US10329603B2 (en) 2002-02-21 2019-06-25 Alere San Diego Inc. Recombinase polymerase amplification
US10947584B2 (en) 2002-02-21 2021-03-16 Abbott Diagnostics Scarborough, Inc. Recombinase polymerase amplification
US9340825B2 (en) 2002-02-21 2016-05-17 Alere San Diego, Inc. Compositions for recombinase polymerase amplification
US10036057B2 (en) 2002-02-21 2018-07-31 Alere San Diego, Inc. Recombinase polymerase amplification
US8945845B2 (en) 2002-02-21 2015-02-03 Alere San Diego Inc. Recombinase polymerase amplification
US8962255B2 (en) 2002-02-21 2015-02-24 Alere San Diego, Inc. Recombinase polymerase amplification
US10329602B2 (en) 2002-02-21 2019-06-25 Alere San Diego, Inc. Recombinase polymerase amplification
US9309502B2 (en) 2002-02-21 2016-04-12 Alere San Diego Inc. Recombinase polymerase amplification
US10538760B2 (en) 2005-07-25 2020-01-21 Alere San Diego, Inc. Methods for multiplexing recombinase polymerase amplification
US9932577B2 (en) 2005-07-25 2018-04-03 Alere San Diego, Inc. Methods for multiplexing recombinase polymerase amplification
US11566244B2 (en) 2005-07-25 2023-01-31 Abbott Diagnostics Scarborough, Inc. Methods for multiplexing recombinase polymerase amplification
US10093908B2 (en) 2006-05-04 2018-10-09 Alere San Diego, Inc. Recombinase polymerase amplification
US11339382B2 (en) 2006-05-04 2022-05-24 Abbott Diagnostics Scarborough, Inc. Recombinase polymerase amplification
US9896719B2 (en) 2009-05-20 2018-02-20 Alere San Diego Inc. DNA glycosylase/lyase and AP endonuclease substrates
US9469867B2 (en) 2009-05-20 2016-10-18 Alere San Diego, Inc. DNA glycosylase/lyase and AP endonuclease substrates
US9057097B2 (en) 2009-06-05 2015-06-16 Alere San Diego Inc. Recombinase polymerase amplification reagents and kits
US9945807B2 (en) 2010-10-04 2018-04-17 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods therefor
US9150915B2 (en) 2010-10-04 2015-10-06 Genapsys, Inc. Systems and methods for automated reusable parallel biological reactions
US9399217B2 (en) 2010-10-04 2016-07-26 Genapsys, Inc. Chamber free nanoreactor system
US9533305B2 (en) 2010-10-04 2017-01-03 Genapsys, Inc. Systems and methods for automated reusable parallel biological reactions
US10539527B2 (en) 2010-10-04 2020-01-21 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods for detecting or analyzing a sample
US10100356B2 (en) 2010-10-04 2018-10-16 Genapsys, Inc. Systems and methods for automated reusable parallel biological reactions
US8969002B2 (en) 2010-10-04 2015-03-03 Genapsys, Inc. Methods and systems for electronic sequencing
US10472674B2 (en) 2010-10-04 2019-11-12 Genapsys, Inc. Systems and methods for automated reusable parallel biological reactions
US9187783B2 (en) 2010-10-04 2015-11-17 Genapsys, Inc. Systems and methods for automated reusable parallel biological reactions
CN103476940A (en) * 2011-04-07 2013-12-25 美艾利尔圣地亚哥有限公司 Monitoring recombinase polymerase amplification mixtures
EP3202918A1 (en) 2011-04-07 2017-08-09 Alere San Diego, Inc. Monitoring recombinase polymerase amplification mixtures
US9719132B2 (en) 2011-04-07 2017-08-01 Alere San Diego Inc. Monitoring recombinase polymerase amplification mixtures
WO2012138989A1 (en) 2011-04-07 2012-10-11 Alere San Diego Inc. Monitoring recombinase polymerase amplification mixtures
US8809021B2 (en) 2011-04-07 2014-08-19 Alere San Diego Inc. Monitoring recombinase polymerase amplification mixtures
US10787705B2 (en) 2011-05-27 2020-09-29 Genapsys, Inc. Systems and methods for genetic and biological analysis
US9274077B2 (en) 2011-05-27 2016-03-01 Genapsys, Inc. Systems and methods for genetic and biological analysis
US10266892B2 (en) 2011-05-27 2019-04-23 Genapsys, Inc. Systems and methods for genetic and biological analysis
US11155865B2 (en) 2011-05-27 2021-10-26 Genapsys, Inc. Systems and methods for genetic and biological analysis
US9926596B2 (en) 2011-05-27 2018-03-27 Genapsys, Inc. Systems and methods for genetic and biological analysis
US11021748B2 (en) 2011-05-27 2021-06-01 Genapsys, Inc. Systems and methods for genetic and biological analysis
US10059982B2 (en) 2011-05-27 2018-08-28 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
US10260095B2 (en) 2011-05-27 2019-04-16 Genapsys, Inc. Systems and methods for genetic and biological analysis
US9434983B2 (en) 2011-05-27 2016-09-06 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
US10612091B2 (en) 2011-05-27 2020-04-07 Genapsys, Inc. Systems and methods for genetic and biological analysis
US10494672B2 (en) 2011-05-27 2019-12-03 Genapsys, Inc. Systems and methods for genetic and biological analysis
WO2013041713A2 (en) 2011-09-23 2013-03-28 Cambridge Medical Innovations Limited System and apparatus for reactions
EP3763440A2 (en) 2011-09-23 2021-01-13 Abbott Rapid Diagnostics International Unlimited Company System and apparatus for reactions
US11286522B2 (en) 2011-12-01 2022-03-29 Genapsys, Inc. Systems and methods for high efficiency electronic sequencing and detection
US10093975B2 (en) 2011-12-01 2018-10-09 Genapsys, Inc. Systems and methods for high efficiency electronic sequencing and detection
EP2811019A4 (en) * 2012-01-31 2015-08-12 Fujirebio Kk Method for correcting detection signal in isothermal nucleic acid amplification reaction
US10927393B2 (en) 2012-06-08 2021-02-23 Ionian Technologies, Llc Nucleic acid amplifications
EP3778915A1 (en) 2012-06-08 2021-02-17 Ionian Technologies, LLC Nucleic acid amplifications
WO2013185081A1 (en) 2012-06-08 2013-12-12 Ionian Technologies, Inc Nucleic acid amplifications
US10570449B2 (en) 2013-03-15 2020-02-25 Genapsys, Inc. Systems and methods for biological analysis
US9809852B2 (en) 2013-03-15 2017-11-07 Genapsys, Inc. Systems and methods for biological analysis
CN103451291A (en) * 2013-09-02 2013-12-18 中国农业科学院生物技术研究所 RPA (Recombinase Polymerase Amplification) detection method for CrylAb/CrylAc insect-resistant gene
US10125393B2 (en) 2013-12-11 2018-11-13 Genapsys, Inc. Systems and methods for biological analysis and computation
US11332778B2 (en) 2014-04-18 2022-05-17 Genapsys, Inc. Methods and systems for nucleic acid amplification
US9822401B2 (en) 2014-04-18 2017-11-21 Genapsys, Inc. Methods and systems for nucleic acid amplification
US10533218B2 (en) 2014-04-18 2020-01-14 Genapsys, Inc. Methods and systems for nucleic acid amplification
CN107208075A (en) * 2014-09-29 2017-09-26 伊卢米纳剑桥有限公司 Recombinate enzyme mutant
WO2016054088A1 (en) * 2014-09-29 2016-04-07 Illumina Cambridge Limited Recombinase mutants
US9982244B2 (en) 2014-09-29 2018-05-29 Illumina Cambridge Limited Recombinase mutants
CN107208075B (en) * 2014-09-29 2021-08-24 伊卢米纳剑桥有限公司 Recombinant enzyme mutant
RU2721920C2 (en) * 2014-09-29 2020-05-25 Иллумина Кембридж Лимитед Recombinase mutants
KR102126641B1 (en) 2014-09-29 2020-06-24 일루미나 케임브리지 리미티드 Recombinase mutants
US10344269B2 (en) 2014-09-29 2019-07-09 Illumina Cambridge Limited Recombinase mutants
AU2015323936B2 (en) * 2014-09-29 2021-03-11 Illumina Cambridge Limited Recombinase mutants
KR20190037364A (en) * 2014-09-29 2019-04-05 일루미나 케임브리지 리미티드 Recombinase mutants
US11185864B2 (en) 2015-11-05 2021-11-30 Alere San Diego, Inc. Sample preparation device
EP3978120A1 (en) 2015-11-05 2022-04-06 Abbott Diagnostics Scarborough, Inc. Sample preparation device
US10329601B2 (en) 2015-12-28 2019-06-25 Ionian Technologies, Inc. Nicking and extension amplification reaction (NEAR) of Streptococcus species
US11186864B2 (en) 2015-12-28 2021-11-30 Ionian Technologies, Llc Nicking and extension amplification reaction (near) of Streptococcus species
GB2553164B (en) * 2016-02-05 2020-10-21 Gen Probe Inc Dried Amplification Compositions
GB2553164A (en) * 2016-02-05 2018-02-28 Gen Probe Inc Dried Amplication compositions
US11649484B2 (en) 2016-02-26 2023-05-16 Abbott Diagnostics Scarborough, Inc. Redox labeled oligonucleotide probes and their use
EP4275794A2 (en) 2016-03-04 2023-11-15 Abbott Diagnostics Scarborough, Inc. Device for automated nested recombinase polymerase amplification
US10287560B2 (en) 2016-03-28 2019-05-14 Illumina, Inc. Recombinase mutants
CN108779445A (en) * 2016-03-28 2018-11-09 亿明达股份有限公司 Recombinate enzyme mutant
WO2017172699A1 (en) * 2016-03-28 2017-10-05 Illumina, Inc. Recombinase mutants
US11118219B2 (en) 2016-04-04 2021-09-14 Nat Diagnostics, Inc. Isothermal amplification components and processes
US11884969B2 (en) 2016-04-04 2024-01-30 Nat Diagnostics, Inc. Isothermal amplification components and processes
US11299777B2 (en) 2016-04-04 2022-04-12 Nat Diagnostics, Inc. Isothermal amplification components and processes
US10544456B2 (en) 2016-07-20 2020-01-28 Genapsys, Inc. Systems and methods for nucleic acid sequencing
US10632464B2 (en) 2017-02-28 2020-04-28 Alere San Diego, Inc. Microfluidic devices and related methods
US11872554B2 (en) 2017-02-28 2024-01-16 Abbott Diagnostics Scarborough, Inc. Microfluidic devices and related methods
US11286526B2 (en) 2017-05-19 2022-03-29 Gen-Probe Incorporated Dried compositions containing flap endonuclease
US11952630B2 (en) 2017-05-19 2024-04-09 Gen-Probe Incorporated Dried compositions containing flap endonuclease
AU2018297861C9 (en) * 2017-07-05 2022-12-08 OriCiro Genomics, Inc. DNA production method and DNA fragment joining kit
AU2018297861B2 (en) * 2017-07-05 2022-05-12 OriCiro Genomics, Inc. DNA production method and DNA fragment joining kit
AU2018297861C1 (en) * 2017-07-05 2022-10-13 OriCiro Genomics, Inc. DNA production method and DNA fragment joining kit
US11634770B2 (en) 2017-08-31 2023-04-25 Ionian Technologies, Llc Nicking and extension amplification reaction (NEAR) of respiratory syncytial virus species
US10900075B2 (en) 2017-09-21 2021-01-26 Genapsys, Inc. Systems and methods for nucleic acid sequencing
CN107893103A (en) * 2017-11-29 2018-04-10 默禾医疗科技(上海)有限公司 Recombinase and protein concentration when active level method in recombinase polymeric enzymatic amplification
WO2019238765A1 (en) 2018-06-12 2019-12-19 Keygene N.V. Nucleic acid amplification method
CN108410954A (en) * 2018-07-10 2018-08-17 默禾医疗科技(上海)有限公司 The compounding method of reaction buffer in a kind of room temperature amplification reaction system
CN113728111A (en) * 2018-12-19 2021-11-30 弗劳恩霍夫应用研究促进协会 In vitro method for detecting at least one nucleic acid located outside blood cells in biological whole blood, and device and kit for this purpose
NL2024019B1 (en) * 2019-10-15 2021-06-17 Univ Delft Tech Detection of a target polynucleotide
WO2021075958A1 (en) * 2019-10-15 2021-04-22 Technische Universiteit Delft Detection of a target polynucleotide
US11807899B2 (en) 2019-11-11 2023-11-07 Biocrucible Limited Biochemical reaction methods and reagents comprising intrinsically disordered regions
EP3995592A1 (en) * 2020-11-09 2022-05-11 midge medical GmbH Multimeric isothermal nucleic acid amplification methods for point-of-need diagnosis
WO2022146745A1 (en) * 2020-12-31 2022-07-07 Life Technologies Corporation Rehydration buffer solutions and methods
WO2023093060A1 (en) 2021-11-23 2023-06-01 广州达安基因股份有限公司 Reverse-transcription amplification system and method based on recombinase polymerase amplification technology
WO2023093061A1 (en) 2021-11-23 2023-06-01 广州达安基因股份有限公司 Method for preparing constant-temperature amplification mixed enzyme system
WO2024063653A1 (en) 2022-09-23 2024-03-28 Rapidemic B.V Methods and device for multiple-label nucleic acid amplification and detection
NL2033124B1 (en) 2022-09-23 2024-03-29 Rapidemic B V Methods and device for multiple-label nucleic acid amplification and detection

Also Published As

Publication number Publication date
EP2438196B1 (en) 2016-12-21
EP2438196A1 (en) 2012-04-11
US20150240298A1 (en) 2015-08-27
US20120129173A1 (en) 2012-05-24
US20230052199A1 (en) 2023-02-16
EP2438196A4 (en) 2012-11-28
EP3360974A1 (en) 2018-08-15
US9057097B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
US20230052199A1 (en) Recombinase polymerase amplification reagents and kits
US10501780B2 (en) Compositions for in situ nucleic acid analysis
EP1951905B1 (en) Detection of nucleic acids through amplification of surrogate nucleic acids
AU2010298202B2 (en) Detection of nucleic acids in crude matrices
US20080193946A1 (en) Universal and Target Specific Reagent Beads for Nucleic Acid Amplification
US20120190027A1 (en) Ligation-based method of normalized quantification of nucleic acids
WO2011012330A1 (en) Method of normalized quantification of nucleic acids using anchor oligonucleotides and adapter oligonucleotides
US20050095603A1 (en) Universal control for nucleic acid amplification
US9090926B2 (en) Method for cell lysis and PCR within the same reaction chamber
EP2625284B1 (en) Method for cell lysis in a rt-pcr reaction buffer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10784225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010784225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010784225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13375264

Country of ref document: US